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Abstract

We study monopolistic certification in a buyer-seller relationship, explicitly distin-

guishing between its role as a device for screening versus acquisition. As a screening

device, certification discloses soft information about a seller’s private information. As

an acquistion device, certification discloses hard information about the good’s quality.

Despite being costless, we show that, optimally, a monopolistic certifier provides non-

maximal information-acquisition, while offering maximal screening. Thus, monopolistic

certification exhibits no economic distortions as a screening device, resolving all private

information, but provides too little hard information as an acquisition device. While

feasible and costless, full information acquisition is suboptimal as it requires excessive

information rents. Consequently, market inefficiencies remain due to market uncertainty

but not due to private information.
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1 Introduction

Certification plays a crucial role in modern markets by publicly disclosing information to market

participants. Its importance is evident across various sectors of the economy. Rating agencies,

for instance, publicly certify the default risk of financial securities, providing critical information

for investors and regulators. Accounting firms certify the financial reports of corporations,

ensuring transparency and accountability in business operations. In the digital realm, online

recommendation systems allow consumers to publicly certify the quality of previously purchased

goods, shaping the decisions of future buyers.

The significance of these certification processes cannot be overstated. Many analysts argue

that the 2007-2008 financial crisis might have been averted had rating agencies performed

their certification duties more rigorously. Similarly, the 2001 Enron scandal is often attributed

to the failure of Arthur Andersen to properly certify the company’s financial statements. In

e-commerce, some industry observers attribute eBay’s decline relative to Amazon’s rise to

differences in their rating systems, with eBay’s system focusing on certifying the transaction

while Amazon’s emphasizes the certification of the seller’s product quality.

Despite a substantial body of theoretical literature on certification, two fundamental issues

remain unclear. First, there is ambiguity about whether certifiers disclose new information

or only reveal existing, private information. Second, the exact economic mechanism by which

certification provides information to market participants is not thoroughly spelled out. These

unresolved questions hinder a comprehensive understanding of certification’s role and impact

in markets.

Regarding the first fundamental question, two opposing views have emerged in the liter-

ature. The more traditional strand presumes that certifiers provide information about the

private knowledge of an economic agent, such as a seller who is privately informed about their

product’s quality (see Viscusi, 1978 and Lizzeri, 1999). In this view, certification levels the in-

formational playing field by closing the gap between privately informed and uninformed parties.

Conversely, a more recent strand of literature based on ideas in information design conceptu-

alizes certification as providing new information previously unknown to any economic party

(see Bizzotto, Rüdiger, and Vigier, 2020; Ali et al., 2022; Evans and Park, 2024; Asseyer and

Weksler, 2024). This perspective suggests that certification raises the informational playing

field for all parties involved.

The second fundamental question is closely related to the first, as it concerns the channel

through which certification conveys information. When certification reveals new information,
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it acts as a device of acquisition, providing previously unknown data to market participants

through a hard, objective information channel, disclosing new facts or new evidence. In con-

trast, when certification reveals private information, it often does so by means of screening,

playing the role of a screening device. This process involves revealing the information of a pri-

vately informed party to market participants via a soft, more subjective information channel.1

In practice, certification often plays both roles simultaneously. Consider the example of cer-

tified pre-owned (CPO) cars, where car owners can certify the quality of their vehicle externally

before placing it on the market. The seller, as the previous owner, naturally possesses some

private information about the car’s quality. The certification process will not only confirm this

private information but also provide additional objective data, such as precise measurements of

tire wear in millimeters or the exact chemical composition of the exhaust emissions. The provi-

sion of this latter data is a clear example of certification as a device for information acquisition.

To see, instead, its role as a screening device, it is best to consider the buyer’s reaction to an

absence of any certification. Even though the absence of certification obviously cannot reveal

any new objective information, buyers tend to interpret the fact that the seller did not certify

as informative about the seller’s private information, naturally downgrading their expectations

of the car’s quality.

This paper aims to elucidate the economic differences and interactions between these two

types and roles of certification. Working out these distinctions and their interplay is crucial

for developing a more comprehensive understanding of certification. By examining how certi-

fication can simultaneously reveal private information and generate new information, and how

it functions as both a screening device and an information acquisition tool, we gain deeper

insights into the optimal design and economic impact of certification systems in various market

contexts.

The main insight of our analysis is that a monopolistic certifier exploits the screening role

of certification to the fullest, whereas it exploits its role of information acquisition at most

partially. Notably, we obtain this result despite the absence of any explicit costs of certification.

This implies that the certifier’s optimal certification structure exhibits maximal screening, fully

disclosing all private information, while it does not exhibit full information acquisition, leaving

market uncertainties.

This result is both surprising and important, as it corrects a potentially misleading intuition.

Conventional wisdom might suggest that screening should be more costly for the certifier than

1See Corrao (2024) for a recent study of this soft information channel in more general mediation problems.
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information acquisition. This is because, to induce truthful revelation of the seller’s private

information through screening, the certifier must respect incentive compatibility constraints.

Screening thus exhibits an inherent, indirect cost of disclosure—the information rents associated

with incentive compatibility. In contrast, information acquisition does not require any incentive

compatibility. The indirect costs associated with screening would seem to suggest that, all other

things equal, the certifier should prefer the information acquisition role of certification over its

screening role. Paradoxically, our analysis reveals that this intuition is incorrect.

The resolution of this paradox lies in how the information rents due to incentive compatibil-

ity affect the certifier’s incentives. Our analysis uncovers that the information rents associated

with incentive-compatible screening are increasing in the amount of information acquisition

that the certification induces. It is precisely for this reason that full information acquisition is

suboptimal for the certifier. In fact, the certifier can fully screen private information without

conceding any information rents if the certification does not provide any information acquisi-

tion.

Our main finding has important policy implications. While monopolistic certification does

not exhibit any distortions as a screening device, it does exhibit distortions as a device for

information acquisition, providing too little new information from a social point of view. In

other words, monopolistic certification leads to a complete leveling of the informational playing

field, eliminating all private information, but it does not eliminate all market uncertainty, even

though doing so would increase aggregate surplus. This suggests that regulatory interventions

in certification markets might be more effectively targeted at encouraging the production and

disclosure of new information rather than at the revelation of existing private information.

Thus, our analysis provides a theoretical foundation for understanding why certifiers might

perform well at eliminating information asymmetries while simultaneously underperforming in

reducing overall market uncertainty.

Formally, we derive our results in a natural and generic buyer-seller model that can explicitly

distinguish between the two types and roles of certification. In particular, we consider a buyer,

who faces uncertainty about the good’s quality, and a seller, who has only partial information

about the good’s quality. In this setup of both private information and market uncertainty, we

introduce a third party—a certifier—who has the technology to publicly disclose information

about the seller’s private information as well as the remaining market uncertainty.

We thereby take the seller’s private information as also fundamental to the certifier. That is,

while the certifier’s informative signal may, in the spirit of information design, depend arbitrarily
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on the true underlying quality (the fundamental state), it cannot directly depend on the seller’s

private information about this state (the seller’s type). However, in the spirit of monopolistic

screening, the certifier may screen between different seller-types by offering a menu of different

pairs of certification rules and associated prices. Thus, the certifier controls the acquisition

of market information by its ability to design any information signal that conditions on the

true underlying quality. In addition, the certifier controls the disclosure of the seller’s private

information by determining the degree to which the certification menu screens seller-types.

While the economic literature on certification is vast (see Dranove and Jin, 2010 for a

survey), we are unaware of existing work that explicitly distinguishes between the two natural

roles of certification—screening and acquisition.

Indeed, starting with Viscusi (1978), most of the literature on certification exclusively fo-

cuses on the role of certification in reducing informational asymmetries. Implicitly, this liter-

ature considers certification models of “full private information”, in which the seller is fully

informed about her quality. As a result, these models cannot capture a certifier’s ability to ac-

quire information that is unknown to the seller.2 Consequently, the certifier’s role of acquisition

is moot.

By contrast, a more recent literature abstracts from any private information, focusing on

the certifier’s role of acquiring hard information (e.g., Bizzotto, Rüdiger, and Vigier, 2020;

Ali et al., 2022; Evans and Park, 2024; Asseyer and Weksler, 2024). Applying techniques

from information design, these models study a certifier, who can reveal information about an

unknown state concerning which the parties are uninformed symmetrically. Because of the

absence of any private information, the certifier’s role of screening is moot.

Studies that, similar to us, consider a seller with “partial private information” are Rosar

(2017), Bergemann, Bonatti, and Smolin (2018), Kartik, Lee, and Suen (2021), Ichihashi and

Smolin (2023), and Weksler and Zik (2023, 2024). These papers, however, do not explicitly

distinguish between the two distinct roles of certification—screening and acquisition—that we

focus on. In particular, Rosar (2017), Kartik, Lee, and Suen (2021, Section II), and Weksler

and Zik (2023, 2024) study the role of certification with partial private information but limit

the certifier’s ability to screen. More specifically, they do not allow the certifier to use maximal-

screening menus, which we show to be optimal. In Bergemann, Bonatti, and Smolin (2018),

there is no role for disclosing private information, because information is sold to the privately

2For instance, Hancart (2024) studies a certifier, who can offer a menu of certification contracts to screen for
private information, but as the private information is fully informative about the state, an acquisition of any
unknown information does not take place.
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informed party rather than revealed publicly to the market. Similarly, there is no role for

disclosing the seller’s private information to buyers in Ichihashi and Smolin (2023) because

buyers are already fully informed about their value for the product so that revealing the seller’s

private information is uninformative to all market participants.

With its insights on the optimality of maximal screening and the suboptimality of maximal

information-acquisition, the paper also contributes to an extensive literature that identifies

conditions under which verifiable information is fully revealed (e.g., Okuno-Fujiwara et al.,

1990; Seidmann and Winter, 1997; Koessler and Renault, 2012; Hagenbach et al., 2014). In

particular, we provide the insight that verifiable information that is initially unavailable in the

form of private information is typically not fully revealed.

2 The Setup

Allocations and Payoffs. We consider a monopolistic seller (she), who sells a quantity x of

a divisible good to a single buyer (he). The seller’s quality ω is either high (h) or low (l), i.e.,

ω ∈ {h, l}. As we explicitly want to consider a seller who does not fully know her quality, we

assume that the cost of production is independent of quality so that the seller cannot induce

the quality from observing her costs. For simplicity, we take this common cost to be zero.

Consuming a quantity x of quality level ω at price p yields the buyer the utility U = uω(x)−p.
The buyer’s marginal value is strictly decreasing and is higher for high quality than for low

quality. Taking uω(x) to be twice differentiable, we thus assume u′′ω(x) < 0 and the single

crossing condition u′h(x) > u′l(x). We further assume that the marginal value of an initial

unit is strictly positive, u′ω(0|ω) > 0, whereas for large enough quantities the marginal value

of consumption exceeds the seller’s (zero) costs, limx→∞ u′ω(x|ω) < 0. It follows that the

buyer’s utility-maximizing quantity x∗ω for product quality ω satisfies the first order condition

u′ω(x
∗
ω) = 0, equalizing marginal benefits to marginal costs. Our assumptions on uω(x) imply

x∗h > x∗l > 0. Finally, we assume that ul(x) < uh(x) for all x ∈ [x∗l , x
∗
h].

Because an economic allocation (x, p) of quality ω yields the buyer a net utility of U =

uω(x)− p and the seller a profit of Π = p, the value x∗ω is not only the buyer-optimal level but

also the efficient level of consumption with quality level ω. Quality information is therefore

efficiency-relevant as it allows to determine the efficient level of consumption.

We denote by u∗ω ≡ uω(x
∗
ω) the surplus associated with the efficient quantity in state ω. To

simplify the exposition, we normalize utilities and assume without loss that u∗l = 0 and u∗h = 1.
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We further assume that, as an outside option, the buyer can obtain the good at the low quality

level for sure from a competitive fringe. Hence, the buyer’s outside option matches the utility

level u∗l = 0.

Information structure. We let θ̄ ∈ (0, 1) denote the ex ante probability that the seller’s

quality is high, i.e., P{ω = h} = θ̄ and P{ω = l} = 1− θ̄. The buyer is uninformed about the

quality and θ̄ therefore signifies his prior of facing a seller with high quality. By contrast, the

seller is better but not fully informed about the quality of her good. In particular, the seller

receives an informative signal θ ∈ Θ ≡ [0, 1] about ω such that it leads her to update her prior

from θ̄ to θ. The seller observes the signal θ privately so that θ represents the seller’s type. We

denote the cdf of the seller’s type by F (θ) and assume that its pdf, f(θ), exists and exhibits full

support, i.e., f(θ) > 0 for all θ ∈ Θ.3 Because quality is binary, the seller’s private information

is one-dimensional, allowing us to avoid the multidimensional-screening complications when

studying certification.

Certification. We assume that there is a monopolistic certifier (it) with a technology to

generate public certificates. These certificates can be informative about the product’s quality

ω due to the acquisition of new, hard information and due to a screening of the seller, which

we view as more subjective, soft information.

Following information design, we capture the certifier’s information acquisition by allowing

the certifier to commit to a certification structure σ = (C, πl, πh). That is, a certification struc-

ture σ consists of a set C that represents a (finite) set of public certificates, together with the

two probability vectors πl = (πlc)c∈C and πh = (πhc )c∈C , where π
ω
c denotes the probability that

the certificate c ∈ C realizes in state ω ∈ {h, l}. Because for a given structure σ, the certificate

c is drawn objectively given state ω, it represents hard, objective information. Moreover, a

certification contract γ = (σ, t) consists of a certification structure σ = (C, πl, πh) together

with a price t which the seller has to pay to the certifier.

Following monopolistic screening, we capture the certifier’s disclosure of private information

by allowing the certifier to screen the different seller-types. That is, the certifier publicly

commits to some menu Γ = {γi}i∈I of different certification contracts γi = (σi, ti) from some

3It is without loss to assume that the signal coincides with the seller’s updated belief as we can represent
any signal this way. Formally, it means that the signal θ has the cumulative distribution Fω(θ) in state ω and
F (θ) ≡ θ̄Fh(θ) + (1 − θ̄)F l(θ) has support Θ and is such that its expectation equals the prior θ̄. Moreover,
after receiving the signal θ, the seller’s belief updates to θ. That is, the pdfs f l(θ) and fh(θ) are such that
θ/(1− θ) = θ̄fh(θ)/(1− θ̄)f l(θ) for all θ ∈ Θ. The full support assumption is for technical convenience and not
crucial.
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set I. From the menu Γ, the privately informed seller can select a menu item γi ∈ Γ or reject

the menu altogether. If the seller selects a menu item, the seller’s pick is publicly disclosed.

Because the seller has the ability to pick any item from Γ regardless of her true type, the

information conveyed by her pick will only be determined in equilibrium. In contrast to the

certificate c, the seller’s pick therefore represents soft information.

A menu Γ = {(σi, ti)}i∈I induces the following certification game between seller and buyer:

t = 1: Seller publicly selects some contact γi = (σi, ti) from the menu Γ, or not;

t = 2: Certificate c ∈ C is publicly drawn according to the picked certification structure σi

(if any);

t = 3: Seller offers a quantity x at a price p to buyer;

t = 4: Buyer accepts or rejects;

t = 5: Payoffs result.

A perfect Bayesian Equilibrium (PBE) of this game consists of strategies for both players

and their beliefs. The strategy of the seller describes her selection from the certification menu

as well as her offer (x, p) conditional on the chosen menu-item and the realized certificate. The

strategy of the buyer is an accept-or-reject decision conditional on the seller’s choice from the

menu, the realized certificate, and the seller’s offer (x, p). The buyer’s equilibrium-path beliefs

are consistent with the seller’s strategy of certification-contract selection and the probability

distributions governing the realization of different certificates.4

For this setup, we are interested in characterizing the certifier’s profit-maximizing menu, i.e.,

the menu that induces a certification game that yields the certifier the highest expected profit.

Moreover, we are interested in the main economic properties of the certification game that the

profit-maximizing menu induces, such as the degree of information revelation and efficiency of

trade.

Illustrative Example. To illustrate our results, we use a fully parameterized uniform-

quadratic example, where high and low quality are equally likely. We use this example not

only to illustrate the insights of our more general model but also to point out the extent to

which this natural example is special. For instance, while the optimal certification menu for

this example will feature maximal revelation of soft information and no revelation of any hard

information, the former feature is general, whereas the latter is not.

4Concerning the beliefs, we assume that the buyer’s beliefs are passive vis-à-vis the seller’s offer (x, p) off
the equilibrium path. This is justified with the observation that the seller’s payoff function is independent of the
quality of the good and her private information about it.
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Example: The seller’s type θ is distributed uniformly over [0, 1], implying θ̄ = 1/2. For a low

quality good, the buyer has the quadratic utility function ul(x) = −(1−x)2 so that the efficient

quantity is x∗l = 1, generating the normalized aggregate surplus of u∗l = ul(1) = 0. For a high

quality good, the buyer has the quadratic utility function uh(x) = 1 − (2 − x)2 so that the

efficient quantity is x∗h = 2, generating the normalized aggregate surplus of u∗h = uh(2) = 1.

Hence, from an ex ante perspective, the efficient solution generates an expected surplus of

Eω{u∗ω} = θ̄uh(x
∗
h) + (1− θ̄)ul(x

∗
l ) = 1/2. □

3 Benchmarks and a Theorem

In this section, we present four natural benchmarks that inform about the key differences

between soft and hard information. These benchmarks also illustrate the main intuition of a

theorem that captures our main result that we prove in the remainder of the paper.

1. No Certification. Suppose there is no certifier. In this case, a seller θ cannot credibly

convey her private information to the buyer. Because the seller’s outside option and costs are

type-independent, there is no adverse selection effect in the sense of Akerlof (1970). Hence,

consistent with the buyer’s passive beliefs, the buyer, upon observing a seller’s offer (x, p),

continues to expect high quality with probability θ̄ and low quality with probability 1 − θ̄.

Consequently, he expects a quantity x to yield a (gross) utility

ū(x) ≡ Eω{uω(x)} = θ̄uh(x) + (1− θ̄)ul(x).

Hence, it is sequentially rational for the buyer to accept an offer (x, p) if and only if p ≤ ū(x).

Thus, for some quantity x, the monopolistic seller optimally charges p = ū(x).

It follows that her profit-maximizing quantity, x̄, maximizes ū(x), yielding her the revenue

Π̄ ≡ ū(x̄). Clearly, the expressions x̄ and Π̄ depend on the ex ante probability, θ̄, that quality

is high. For future reference, it is helpful to express this dependence explicitly. Thus, we write

the buyer’s optimal quantity at a belief θ as

x̂(θ) ≡ argmax
x

θuh(x) + (1− θ)ul(x) (1)
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and the associated revenue function as

v̂(θ) ≡ ū(x̂(θ)) = θuh(x̂(θ)) + (1− θ)ul(x̂(θ)). (2)

Note that 0 < x∗l = x̂(0) ≤ x̂(θ̄) = x̄ ≤ x̂(1) = x∗h and 0 = u∗l = v̂(0) ≤ Π̄ = v̂(θ̄) ≤ v̂(1) =

u∗h = 1.

The following lemma plays a crucial role in our analysis.

Lemma 1 The revenue function v̂(θ) is strictly increasing and strictly convex in θ.

Intuitively, the positive slope of v̂ reflects that a high θ represents “good news” about the

good’s quality. Its strict convexity expresses that quality information is efficiency-relevant so

that revealing additional information about the quality has a strictly positive social value.

Example: Applying this to our running example, the buyer’s expected utility from a quantity

x given a belief θ equals

ūh(x) = θuh(x) + (1− θ)ul(x) = (x− 1)(1 + 2θ − x).

It follows that the utility maximizing quantity equals x̂(θ) = 1 + θ, yielding the buyer the

expected utility θ2, which the seller can fully extract. Hence, in our example with quadratic

utilities, we have

v̂(θ) = θ2,

confirming that v̂ is increasing and convex. It then follows x̄ = 1 + θ̄ and Π̄ = θ̄2. □

2. Certification Without Soft or Hard Information. Next consider the presence of a

monopolistic certifier, who however cannot provide any information to market participants,

neither in the form of hard nor in the form of soft information. Effectively, the certifier can

only use the non-informative certificate structure σu ≡ ({c∅}, 1, 1), which, irrespective of actual
quality ω, always generates the uninformative certificate c∅.

We verify first that, in line with Lizzeri (1999), the certifier can, by using the non-informative

certification structure, extract the entire surplus that seller-types θ > 0 generate.5. To see the

full surplus extraction, suppose the certifier charges a certification price t = Π̄ for providing

5Because in our context quality information is socially valuable, the uninformative certification structure σu

does however not maximize aggregate surplus. Hence, more precisely, but fully in line with Lizzeri (1999), the
uninformative certification structure σu allows the certifier to extract all (non-maximal) rents in excess of what
the worst seller-type θ = 0 obtains from the buyer. See also Kartik, Lee, and Suen (2021).
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a fully uninformative certificate. That is, the certifier offers the uninformative pooling menu

Γu ≡ {(σu, Π̄)}, containing only the unformative certification structure σu at the single price

t = Π̄.

The uninformative menu Γu sustains the following equilibrium outcome. All seller-types θ >

0 apply for the certification, while seller-type θ = 0 does not. Upon seeing no certification, the

buyer correctly anticipates θ = 0 and upon seeing a certificate, the buyer correctly anticipates

P{ω = h} = θ̄.6 Given these Bayes-consistent beliefs, it is then indeed optimal for a seller-type

θ = 0 not to apply for certification and sell quantity x∗l at price p = 0, while it is optimal

for seller-types θ > 0 to apply for certification and, subsequently, sell a quantity x̂(θ̄) of the

certified good at the price p = Π̄. In this outcome, the certifier fully extracts the generated

surplus Π̄ and the buyer and all seller-types obtain zero payoffs.

Hence, without providing any information, the certifier still manages to appropriate the

entire aggregate surplus, obtaining profits Πu ≡ Π̄. The resulting aggregate surplus is however

not maximized, as the induced quantity x̂(θ̄) is inefficient.

3. Certification with only Soft Information. Next consider a monopolistic certifier that

can disclose the seller’s private information through screening, but cannot acquire additional

hard information about the product’s quality ω. That is, the certifier only uses the uninforma-

tive certification structure σu, as in the first benchmark.

We first argue that screening enables the certifier to fully disclose the seller’s private in-

formation by offering the seller a menu of uninformative tests at different prices t. To show

this, we consider a certification menu Γ that only contains the uninformative certification struc-

ture σu, but offers it at different prices. In particular, this menu allows the seller to buy the

uninformative σu for any price in between 0 and 1, i.e., Γs ≡ {({σu, v̂(θ))}θ∈[0.1].
We make the, perhaps at first sight paradoxical, claim that the menu Γs is “incentive

compatible”. That is, given Γs, it is optimal for any seller-type θ to reveal her type honestly

by paying exactly v̂(θ) to the certifier for obtaining the uninformative certificate σu. To the

buyer, the seller’s pick from the menu Γs fully reveals the seller-type θ.7

To substantiate our claim, we argue that Γs induces a certification game in which it is an

equilibrium for any seller-type θ > 0 to buy the certificate σu at a price v̂(θ) and, subsequently,

sell to the buyer the quantity x̂(θ) at a price v̂(θ) so that, in this equilibrium, the seller ends

6Hence, treating seller-type θ = 0 as a type who does not certify clarifies that the equilibrium does not
depend on some construed out-of-equilibrium belief when the buyer does not see any certification.

7Clearly, the menu Γs supports other equilibrium outcomes as well, but to illustrate the main point of this
benchmark, we focus on the incentive compatible one.
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up with a profit of zero. Moreover, seller-type θ = 0 does not buy any certification, and sells

the quantity x∗l = x̂(0) at the price v̂(0) = 0. Upon seeing the seller picking the certificate

θ, the buyer has the Bayes-consistent belief P{ω = h} = θ so that it is optimal to accept

the seller’s offer (x, p) = (x̂(θ), v̂(θ)). For a good that remains uncertified, the buyer has the

Bayes-consistent belief P{ω = h} = 0, and, hence, accepts the offer (x, p) = (x̂(0), v̂(0)). Given

the buyer’s specified behavior, it is indeed (weakly) optimal for the seller to reveal her type

θ by picking her type-specific menu-item (σu, v̂(θ)) from Γs, as any item from Γs yields any

seller-type a payoff of zero.

Because, in this equilibrium of Γs, the screening yields the certifier the transfer v̂(θ) from a

seller-type θ > 0, the certification contract with full disclosure yields the certifier the revenue

Πs ≡ Eθ{v̂(θ)} > v̂(Eθ{θ)}) = v̂(θ̄) = Πu,

where the inequality follows from the strict convexity of the revenue function v̂(θ) as established

in Lemma 1.

We therefore conclude that, at least with respect to the uninformative certification structure

σu, the certifier profits from providing complete soft information in the form of full screening.

Moreover, the benchmark shows that the certifier still manages to extract the full surplus

that the seller and buyer generate. This latter observation implies that the certifier does not

need to concede any information rents to the seller for inducing full screening. Hence, for the

specific case that the certification structure does not reveal any hard information, the intuition

as suggested in the introduction that screening exhibits an inherent cost because of ensuring

incentive compatibility is not compelling.

4. Certification with only Hard Information. Finally, consider a certifier who, using

information acquisition, only provides hard information and no soft information, thus offering

a pooling menu. In particular, suppose the certifier uses a certification scheme with a maximal

degree of hard information, fully disclosing the good’s quality ω. Effectively, the certifier can do

so with the fully informative certification structure σf ≡ ({cl, ch}, (1, 0), (0, 1)), where certificate
cl obtains for sure when quality is low (ω = l), while for high quality (ω = h), only certificate

ch obtains. Disregarding in this benchmark any soft information so that the menu consists of

only one fully informative contract, we thus consider the hard information menu Γh = (σf , tf ),

where we still have to specify the price tf .

From an aggregate surplus perspective, the certification structure σf is highly attractive as
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it induces a certification game which results in the efficient quantity x∗l when quality is low, and

the efficient quantity x∗h when quality is high. Also note that with such maximal information

acquisition, disclosure of the seller’s private information is superfluous; perfect hard information

renders any soft information uninformative.

To the certifier, providing maximal hard information to all seller-types is however unattrac-

tive. This is so because a seller-type θ obtains at most (1− θ)v̂(0)+ θv̂(1) = θ from buying σf .

Consequently, if the certifier wants to induce all seller-types θ > 0 to participate in Γh, paying

a price tf for σf , then we must have tf = 0; the certifier does not obtain any profits. Hence,

we conclude that while feasible, it is not optimal for the certifier to maximize hard information

and induce all seller-types to accept it.

A Theorem. The latter benchmark implies that a certifier faces a trade-off between profit

maximization and information acquisition, while the third benchmark indicates that there is

no such trade-off between profit maximization and screening. Taken together, the two suggest

the following theorem.

Theorem 1 The certifier’s profit-maximizing menu of certification contracts reveals the seller’s

private information fully and reveals additional market information at most partially.

In the remainder of this paper, we prove this theorem. In doing so, we identify further

properties of the certifier’s optimal menu. In particular, we show the crucial role that the

curvature of the convex revenue function, v̂(θ), plays—i.e., whether its average slope is larger

or smaller than the geometric mean of its slopes.

We prove the theorem in two steps. First, we focus, in Section 4, on maximal-screening

menus which provide a maximal degree of soft information. We derive the profit maximizing

one among these menus and establish its properties. In particular, we show that, in general,

optimal maximal-screening menus must also provide some degree of hard information by non-

trivial information acquisition, but, in line with Benchmark 4, it is never strictly optimal

that they provide hard information to the fullest extent. Second, we show, in Section 5, that

certification menus that fully screen the seller’s private information are indeed optimal.

Example: We close this section by analyzing the different benchmarks for our running exam-

ple. We already established for the first benchmark, where buyers do not learn more about

quality than its ex ante probability θ̄, our example generates aggregate surplus v̂(θ̄) = 1/4.

In Benchmark 2, the certifier extracts this surplus completely; the certifier’s maximum profits
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are 1/4. For Benchmark 3, where the certifier fully discloses the seller’s private information

to the buyer but acquires no hard information, the certifier’s payoff and ex ante expected

aggregate surplus increase to Eθ{v̂(θ)} =
∫ 1

0
θ2dθ = 1/3. Finally, in the last benchmark of

acquiring maximal hard information, a surplus of v̂(0) = 0 obtains for low quality and the

surplus v̂(1) = 1 obtains for high quality. From an ex ante perspective, the expected aggregate

surplus is θ̄v̂(0) + (1− θ̄)v̂(1) = 1/2, while a seller-type θ expects the (gross) payoff θ and the

certifier’s payoff is zero. Note that the certifier appropriates the entire surplus in Benchmark

2 and 3, but does not get any rents in Benchmark 4, as seller-types arbitrarily close to 0 have

no willingness to pay for the certification. □

4 Optimal Maximal-Screening Menus

We start with studying menus that, in equilibrium, fully disclose the seller’s private information.

We call such menus maximal-screening menus and denote them with ΓS. In Section 5, we show

that these menus are indeed optimal for the monopolistic certifier.

Without loss, we can capture maximal-screening menus by an incentive compatible, direct

menu of certification contracts from which the seller publicly picks her type-specific certification

contract, thereby revealing her private information to the buyer. We denote a direct menu

contract by

ΓD ≡ {(C(θr), πl(θr), πh(θr), t(θr)}θr∈Θ,

and the set of all direct menus as MD.

Hence, in this section, we restrict attention to direct menus ΓD in MD that induce a game

in which it is optimal for a seller-type θ to report her type honestly, so that her type gets fully

disclosed.8

By definition, a maximal-screening menu resolves the seller’s private information completely

so that, after the chosen certification contract is publicly revealed, the buyer and seller have the

identical beliefs θB = θS = θ. Hence, a maximal-screening menu is special in that, in any PBE,

it holds that after the seller reports some θ and the information provider reveals the certificate

8To be sure, as we assume that the certifier only discloses publicly the chosen certification contract but not
the seller’s message θr, a maximal-screening menu also has to satisfy the (trivial) requirement that all items
in the menu differ in the sense that (C(θ), πl(θ), πh(θ), t(θ)) = (C(θ′), πl(θ′), πh(θ′), t(θ′)) implies θ = θ′. This
requirement can be satisfied trivially by labeling certificates in C(θ) and C(θ′) differently even if the number of
certificates in C(θ) and C(θ′), and the probability vectors (πl(θ), πh(θ)) and (πl(θ′), πh(θ′)) do not differ.
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c, the buyer’s belief θB and the seller’s belief θS coincide, and by Bayes’ rule satisfy

θc(θ) ≡
θπhc (θ)

θπhc (θ) + (1− θ)πlc(θ)
= P{ω = h|c, θ}. (3)

This means that, at the selling stage t = 3, there is no asymmetric information. That is, given

(θ, c), the buyer and seller both expect a quantity x to yield the buyer the utility

Eω{uω(x)|θ, c} = θc(θ)uh(x) + (1− θc(θ))ul(x).

Consequently, it is optimal for the buyer to accept an offer (x, p) if and only if p ≤
Eω{uω(x)|θ, c}.

Thus, given (θ, c), the seller’s optimal offer (x, p) at stage 3 is straightforward. Given a

quantity x, she optimally charges p = Eω{uω(x)|θ, c}. Her profit-maximizing quantity equals

x̂(θc(θ)) with profits v̂(θc(θ)) as defined by (1). Consequently, a maximal-screening menu ΓS

which generates a certificate c, yields a seller-type θ the revenue v̂(θc(θ)) as defined in (2).

We next formalize incentive compatibility of a direct menu ΓD, which is crucial for deter-

mining the certifier’s optimal menu. For a maximal-screening menu, a seller-type θ expects the

payoff v̂(θc(θ
r)) from a certificate c after reporting some θr. Hence, when seller-type θ reports

θr, she expects to obtain an expected profit of

Ṽ (θr|θ) ≡
∑
c

[
θπhc (θ

r) + (1− θ)πlc(θ
r)
]
v̂(θ̂c(θ

r))− t(θr)

= Ṽ (θr|θr) + (θ − θr)I(θr),

where we can interpret

I(θ) ≡
∑
c

[πhc (θ)− πlc(θ)]v̂(θ̂c(θ)) (4)

as the marginal information rent of seller-type θ.

Denoting by V (θ) ≡ Ṽ (θ|θ) the seller-type θ’s rent from revealing her type truthfully, we

have that ΓD is incentive compatible with truth-telling if and only it holds for all θ, θr ∈ [0, 1]

that

V (θ) ≥ V (θr) + (θ − θr)I(θr). (ICθ,θr)

Moreover, a direct menu ΓD is individual rational if for all θ ∈ Θ

V (θ) ≥ 0. (IRθ)
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Hence, we can express a maximal-screening menu Γ as a direct menu ΓD that satisfies (ICθ,θr)

and (IRθ).

Because the seller’s offer does not leave any rents to the buyer, the certifier’s profit, Πc(Γ),

from a maximal-screening menu Γ ∈ MD is the difference between the surplus

S(θ) ≡
∑
j

[θπhj (θ) + (1− θ)πlj(θ)]v̂(θ̂j(θ)) (5)

and the seller’s rent, V (θ). That is,

Πc(Γ) =

∫ 1

0

[S(θ)− V (θ)] dF (θ). (6)

Hence, the certifier’s optimal maximal-screening menu is a direct one that solves the following

maximization program:

PS : max
Γ∈MD

Πc(Γ) s.t. (ICθ,θr) and (IRθ) for all θ, θ
r ∈ Θ. (7)

We denote a solution to the program by Γ̂S and its associated value by V̂ S = Πc(Γ̂S).

To simplify this problem, we first characterize incentive compatibility and individual ra-

tionality for maximal-screening menus. To do so, we say that a direct menu ΓD satisfies

monotonicity if

I(θ) is increasing; (MON)

and satisfies payoff-equivalence if

V (θ) =

∫ θ

0

I(τ)dτ + V (0). (PE)

The following lemma characterizes a menu’s incentive compatibility and its individual ra-

tionality in terms of monotonicity and payoff equivalence.

Lemma 2 A direct menu ΓD is incentive compatible if and only if it satisfies both (MON)

and (PE). An incentive compatible direct menu ΓD exhibits an increasing V . An incentive

compatible direct menu ΓD is individually rational if and only if V (0) ≥ 0.

The lemma motivates our interpretation of I(θ) as the marginal rent of a seller-type θ.

Using an integration by parts, it also allows us to rewrite the certifier’s objective (6) so that
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we can simplify PS to

P̂S : max
Γ∈MD

Π̂c(Γ) ≡
∫ 1

0

[
S(θ)− 1− F (θ)

f(θ)
I(θ)

]
dF (θ) s.t. (MON). (8)

This simplified problem however still maximizes over a large set of direct menus. In particular,

it is unclear what the optimal number of certificates is. In a non-divisible, unit-good model

in which there are only the two allocations—to buy or not to buy—it follows already from

feasibility considerations alone that it suffices to consider only two certificates, as this leads

to at most two posteriors. Instead, in our setup with continuous quantities the feasibility

considerations alone do not imply any limits on the optimal number of certificates.9

To address the question of the optimal number of certificates, we first derive the following

result.

Lemma 3 A maximal-screening menu with at most 3 certificates is optimal.

We prove the lemma by showing that we can always replicate the value associated with an

optimal maximal-screening menu that uses more than 3 certificates with a maximal-screening

menu of at most 3 certificates. The main idea behind the proof is that if there is a solution that

uses more than 3 posteriors, then we can reduce it to at most 3 posteriors. More specifically,

the reduction to 3 posteriors follows because we can express the reduction as the outcome of

a linear optimization problem with 3 constraints. The lemma then follows from the general

insight that there is a solution to a linear problem that has at most as many non-zero entries

as there are constraints.

Because one of the three constraints expresses the requirement that the linear optimization

does not violate the monotonicity condition, the proof of the lemma suggests that if the mono-

tonicity is not binding then only 2 posteriors suffice. In this case, one can use the following

two-step procedure for finding optimal certification menus. As a first step, we solve program

P̂S disregarding the monotonicity condition and with respect to certificate menus that involve

2 certificates only. As we disregard the monotonicity condition in this step, it requires only

pointwise maximization. If this solution satisfies the monotonicity condition (MON), then, as

we confirm in Lemma 4, it also represents an optimal maximal-screening certification menu in

9More specifically, the sufficiency of two posteriors in a unit good model reflects the revelation principle’s
insight that an optimal direct mechanism can be interpreted as providing incentive compatible recommendations
over possible allocations—whether the good is bought or not. With continuous quantities, there is a continuum
of possible allocations rather than only two and hence the revelation principle provides no limits on the number
of possible recommendations.
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general. In case the found solution violates the neglected monotonicity constraint (MON), we

take the second step and solve the program P̂S with respect to menus that contain 3 certificates,

including the monotonicity condition explicitly.

To demonstrate formally that this two step procedure is correct and also to operational-

ize it, we next study 2-certificate menus in more detail. Because 2-certificate menus exhibit

C(θ) = {c0, c1} for all θ, we can characterize a 2-certificate menu by a menu of triples

{(t(θ), πl(θ), πh(θ))}θ, expressing the transfer t together with the probabilities πω that, for

quality ω, the certificate c1 is revealed.

Based on a relabeling argument, it is without loss to assume that πl(θ) ≤ πh(θ) so that

certificate c0 is more indicative of low quality and certificate c1 is more indicative of high quality.

Indeed, if the seller reports θ, thus selecting the pair (πl(θ), πh(θ)) from a 2-certificate menu,

then this induces the belief

θ̂0(θ) =
θ(1− πh(θ))

θ(1− πh(θ)) + (1− θ)(1− πl(θ))
and θ̂1(θ) =

θπh(θ)

θπh(θ) + (1− θ)πl(θ)
(9)

after observing, respectively, a certificate c0 and c1, whenever this certificate obtains with a

strictly positive probability. This confirms that πl(θ) ≤ πh(θ) implies θ̂0(θ) ≤ θ ≤ θ̂1(θ) for all

θ.

Inverting the expressions in (9), we obtain the probabilities πh(θ) and πl(θ) that, for a given

prior θ, generate the posteriors q = θ̂0 after seeing certificate c = c0 and p = θ̂1 after seeing

certificate c = c1 :

πh(θ) =
(θ − q)p

(p− q)θ
and πl(θ) =

(θ − q)(1− p)

(p− q)(1− θ)
. (10)

For 2-certificate contracts, it is easier to work directly with the posteriors (p, q) rather than

their inducing probability (πl, πh). Hence, we express an incentive compatible 2-certificate

menu ΓD2 as a triple consisting of the transfer plus a pair of posterior beliefs (p, q) with 0 ≤ q ≤
θ ≤ p ≤ 1:

ΓD2 = {(t(θ), q(θ), p(θ))}θ∈Θ.

We denote the set of 2-certificate menus with maximal-screening by ΓD2 .

Defining

I2(p, q|θ) ≡
[p− θ][θ − q]

(1− θ)θ

[v̂(p)− v̂(q)]

(p− q)
, (11)

we can further exploit the simple structure of 2-certificate menus to simplify the monotonicity

requirement; the summation expression in (MON) reduces to I2(p(θ), q(θ)|θ). It follows from
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Lemma 2 that a 2-certificate menu ΓD2 is incentive compatible if and only if

I2(p(θ), q(θ)|θ) is increasing in θ. (MON2)

Rewriting the objective of program P̂S for the specific case of 2-certificate menus in terms of

the two posteriors, we obtain

V2 ≡
∫ 1

0

[
S2(p(θ), q(θ)|θ)−

1− F (θ)

f(θ)
I2(p(θ), q(θ)|θ)

]
dF (θ) (12)

where

S2(p, q|θ) ≡
θ − q

p− q
v̂(p) +

p− θ

p− q
v̂(q). (13)

That is, the function S2(p, q|θ) expresses the surplus generated by a type θ who induces the

posteriors q and p from a 2-certificate menu and the function I2(p, q|θ) captures the associated
marginal information rent when scaled by the inverse hazard rate.

Accordingly, we can express the first step of the procedure as follows. Find a pair of posterior

functions (p(θ), q(θ)) with p(θ) ≥ θ ≥ q(θ) that maximizes the virtual surplus expression V2

point-wise. That is, we solve for each θ ∈ Θ the problem

RS
θ : max

(p,q):q≤θ≤p
S2(p, q|θ)−

1− F (θ)

f(θ)
I2(p, q|θ).

The next lemma confirms that if the resulting pair (p̂(θ), q̂∗(θ)) satisfies the monotonicity con-

straint that I2(p̂(θ), q̂(θ), θ) is increasing in θ, it solves P̂S.

Lemma 4 Suppose (p̂(θ), q̂(θ)) with value V̂2 solves the unconstrained optimization problem

RS
θ for each θ ∈ Θ. If (p̂(θ), q̂(θ)) satisfies MON2, then V̂2 is the value of program P̂S, i.e.

V̂ S = V̂2.

The proof of Lemma 4 mirrors the proof of Lemma 3, showing that, with the help of a linear

maximization problem that now only consists of two constraints, one can replicate any solution

with more than 2 posteriors by a maximal-screening menu with at most 2 posteriors. Hence,

the lemma validates our 2-step procedure.

Illustrating its strengths, we now apply our 2-step procedure to our running example with

the result that the first step alone already yields the optimal maximal-screening menu.

Example: Applying our first step, we first need to find, for each θ ∈ Θ, a pair (p∗, q∗) that is a
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solution to

max
(p,q):q≤θ≤p

S2(p, q|θ)−
1− F (θ)

f(θ)
I2(p, q|θ) = 2θ(p+ q)− 3qp− p2 − q2 +

pq

θ
(p+ q).

First order conditions of this quadratic optimization problem yields the optimum p∗(θ) = θ and

q∗(θ) = 0 so that by (11), we have

I2(p
∗(θ), q∗(θ)|θ) = I2(θ, 0|θ) = 0,

which satisfies the monotonicity condition (MON2) trivially. Hence, the optimal maximal-

screening menu consists of a certification contract that does not involve any acquisition of hard

information. Our general treatment will however show that the latter result is a special feature

of the uniform-quadratic structure. □

Lemma 4 implies that problems, for which the monotonicity condition is non-binding, pos-

sess a high degree of tractability in two respects. First, they only require the consideration

of 2-certificate menus. Second, they only require a point-wise maximization rather than a

full-fledged dynamic optimization. Consequently, it would be helpful to characterize sufficient

conditions on the model’s primitives guaranteeing such that (MON) is non-binding. While in

classical monopolistic screening problems, such sufficient conditions often exist in the form of

assumptions only on the distribution of types, establishing a sufficient condition in our certi-

fication context requires also assumptions involving the revenue function v̂(θ).10 These latter

conditions turn out to be rather strong; for instance, our uniform-quadratic example, for which

we just showed that (MON) does not bind, does not satisfy these sufficient conditions.

We next show that, irrespective of the optimality of 2-certificate menus, the certifier’s

optimal certification structure depends crucially on the curvature of v̂. In particular, on whether

the geometric mean of its slopes is larger or smaller than the average of its slopes. To make

this precise, consider a pair p, q ∈ [0, 1] with p > q so that
√
v̂′(p)v̂′(q) express the geometric

10To be precise, a sufficient condition is a decreasing inverse hazard rate [1 − F (θ)]/f(θ) together with a
non-negative cross-partial derivative, BIθ(I, θ), of the function

B(I, θ) ≡ max
{p,q:q≤θ≤p∧I2(p,q)=I}

S2(p, q).
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mean of the slopes at p and q. Moreover, let

w(p, q) ≡ v̂(p)− v̂(q)

p− q
(14)

express the average slope of v̂ between the two points p and q. Note that the convexity of v̂

implies that both the inequality v̂′(q) < w(p, q) and the inequality v̂′(p) > w(p, q) hold. By

comparing the geometric mean to the average slope, we obtain a measure about which of these

two inequalities dominates. That is, we evaluate the sign of the expression

A(p, q) ≡
√
v̂′(p)v̂′(q)− w(p, q). (15)

Using this expression, we get the following insight.

Lemma 5 There exists an optimal maximal-screening menu, Γ̂S = {σ(θ), t(θ)}θ∈Θ, such that

for any θ ∈ Θ, and for any two distinct posteriors p and q with p > q induced by σ(θ), it holds

A(p, q) ≤ 0 if q = 0 and p < 1;

A(p, q) = 0 if q > 0 and p < 1;

A(p, q) ≥ 0 if q > 0 and p = 1.

(16)

To understand the intuition behind the lemma and its implications, consider a seller type θ who

chooses a certification contract that could induce either p or q as a posterior. The conditions

stated in the lemma correspond to the first order conditions that are necessary for maximizing

the total surplus S(θ) subject to keeping the marginal information rent I(θ) fixed. If p and q

do not satisfy these first order conditions, then a new certification contract can be constructed

by modifying these two posteriors. This new contract leaves the same information rent I(θ) for

the seller type θ and therefore continues to satisfy the monotonicity conditions of the program.

Because the new contract yields a higher total surplus S(θ), while leaving the same information

rents to the seller, it must yield the certifier a higher profit.

Note that these optimality conditions are independent of the seller type θ who chooses the

contract generating the posteriors. Instead, they only refer to the geometric mean and the

average of the slopes of function v̂, evaluated between these posteriors.

Lemma 5 leads to an alternative, more practical sufficient condition for the optimality of

2-certificate menus than the one based on non-binding monotonicity constraints, as discussed

above. More specifically, when the sign of A(p, q) is independent of (p, q), then there exists an
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optimal menu relying on only two certificates. Stated more intuitively, the condition requires

that the order of the geometric mean and its average slope does not depend on (p, q). Because

the condition then also pins down one of the posteriors at the optimum, we report this finding

as an independent result even though it is a direct implication of Lemma 5.

Corollary 1 Suppose for all p > q, the geometric mean of the slopes at q and p lies below its

average slope, i.e., A(p, q) < 0. Then an optimal maximal-screening menu is a 2-certificate

menu with q∗(θ) = 0. Suppose for all p > q, the geometric mean of the slopes at q and p exceeds

its average slope, i.e., A(p, q) > 0. Then an optimal maximal-screening menu is a 2-certificate

menu with p∗(θ) = 1.

Hence, any contract involving two certificates that would update the belief on the quality

to two distinct but non-degenerate posteriors p, q ∈ (0, 1) is suboptimal if A(p, q) is of constant

sign. The result follows directly form the explanation above that if a certification menu induces

a seller-type θ to choose such a contract, the certifier can raise its profits by moving the

posteriors down- or upward, depending on whether the geometric mean is smaller or larger

than its average. Such an improvement only fails if one of the posteriors is already at the

boundary of the feasible set [0, 1].

To be clear, the two cases expressed in the corollary do not necessarily imply that a cer-

tification by hard information is optimal. Indeed, this would only be so if the fully revealing

certificate is sent with a strictly positive probability, which the corollary does not claim. To the

contrary, the corollary allows this probability to be zero, implying that the second certificate

is actually sent with probability 1 so that the seller’s and the buyer’s beliefs about the state

remain constant—the certification does not reveal any hard information. We demonstrate this

subtle but important point with the help of our example.

Example: For our running example, we established that v̂(θ) = θ2, and, hence it follows that

A(p, q) = −(p− q)2 < 0 for all p > q. By Corollary 1, one of the two certificates in the optimal

menu exhibits a degenerate posterior q∗(θ) = 0, confirming the first step of the analysis as

presented previously. This result suggests that, for this example, fully revealing the good’s

low quality (ω = l) is optimal. However, when the seller’s types are uniformly distributed

(F (θ) = θ) on interval [0, 1], an optimal certification menu sends this certificate of revealing

the low quality with probability 0, confirming the first step of the analysis as presented above

that p∗(θ) = θ. Effectively, the optimal contract boils down to a single-certificate contract that

involves no acquisition of hard information but only discloses the seller’s type θ to the buyer
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through screening. It is however important to point out that this is a special feature of the

uniform distribution. For instance, when the type distribution is F (θ) =
√
θ, both certificates

are sent with strictly positive probabilities for each seller-type in the interior of support [0, 1]

and, hence, display a positive degree of information gathering and fully reveal the state ω = l

with a strictly positive probability.11 Moreover, it is also important to note that, in addition

to the uniform distribution, the quadratic utility in the example is also crucial for optimality

of q∗(θ) = 0. Indeed, the lemma indicates that this is not a general property of optimal

maximal-screening contracts, as it depends on the specific functional form of v̂.12 □

Because the sign of A(p, q) depends on two variables and can therefore be difficult to check,

we provide a more practical sufficient condition that depends only on one variable. In particular,

consider the following scaled curvature measure which measures how the slope, v̂′(θ), changes

relative to its curvature, v̂′′(θ):

Â(θ) ≡
v̂′(θ)

√
v̂′(θ)

v̂′′(θ)
.

Lemma 6 Suppose the scaled curvature measure Â(θ) is strictly increasing for θ > 0. Then

A(p, q) < 0 for all p > q. Suppose the scaled curvature measure Â(θ) is strictly decreasing for

θ > 0. Then A(p, q) > 0 for all p > q.

With the help of this lemma, it is, for instance, straightforward to check that whenever the

revenue function v̂(θ) corresponds to a convex power function of the form v̂(θ) = θα with α > 1,

then it holds A(p, q) < 0 so that an optimal maximal-screening menu is a 2-certificate menu

with q∗(θ) = 0.

Example: We conclude this section by showing that Lemma 6 allows us to obtain closed form

solutions of optimal maximal-screening menus for settings which extend our example to cases

where the revenue function is a convex power function, i.e., v(θ) = θα with α ≥ 2. Doing so

enables us to identify the quadratic utility structure of our specific example as responsible for

the suboptimality of any information gathering. Indeed, for a general power function, it follows

Â(θ) =
α3/2θ3(α−1)/2

α(α− 1)θα−2
and Â′(θ) =

(α + 1)
√
αθα−1

2(α− 1)
> 0.

11One may show that, optimally, q∗0(θ) = 0 and p∗(θ) = 1
4

√
θ + 3

4θ.
12For instance, taking the (convex) function v(θ) = θ/(2 − θ) yields A(p, q) = 0 for all p, q, implying again

that optimal certification involve only two certificates. For this case, starting with any (p, q) pair, as we move
these posteriors either up and down while keeping the information rent constant, the surplus function does
not change. Accordingly, for each type θ we have a continuum of optimal certification tests, including the two
extremes where one of the certificates is fully informative.
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Hence, Lemma 6 implies that we can restrict attention to 2-certificate menus inducing the

two-point belief q(θ) = 0 and p(θ) ≥ θ for a seller-type θ. Using (11) and (13), it follows

I(p, 0|θ) = p− θ

1− θ
pα−1 and S(p, 0) = θpα−1.

With a uniform distribution, a 2-certificate maximal-screening menu that induces the two

posteriors q(θ) = 0 and p(θ) ≥ θ for a seller-type θ, therefore yields the certifier

∫ 1

0

[
S(p(θ), 0)− 1− F (θ)

f(θ)
I(p(θ), 0|θ)

]
dF (θ) =

∫ 1

0

[2θ − p(θ)]p(θ)α−1dθ.

Solving this pointwise for each p(θ), we obtain from first order conditions the optimum

p∗(θ) =


2(α−1)
α

θ if θ ≤ α
2(α−1)

1 otherwise.

For our specific example α = 2, we therefore confirm p∗(θ) = θ, implying that the optimal

maximal-screening menu does not reduce any market uncertainty. However, this is specific to

the quadratic case α = 2; for any α > 2, the optimal maximal-screening menu reduces market

uncertainty to at least some degree because p∗(θ) > θ for all θ ∈ (0, 1). □

5 Optimality of Maximal-Screening Menus

The previous section only considers maximal-screening menus that fully reveal the seller’s pri-

vate information to the buyer. In this section, we show that such menus are indeed profit

maximizing for the certifier. We demonstrate this by showing that, for any menu that does not

fully reveal the seller’s private information, the certifier can increase the degree of screening

while keeping the seller’s information rents constant. Because the increased amount of certi-

fication information raises aggregate surplus and because the certifier’s profit is the difference

between aggregate surplus and the seller’s information rents, this raises the certifier’s profits.

To show this formally, we first introduce notation so that we can capture non-maximal-

screening menus in general. Intuitively, such a menu induces different types of sellers to pick

the same certification contract {C, πl, πh, t} from the menu so that the buyer does not fully

learn the seller’s type from observing the picked menu item. That is, the certification menu

induces some seller-types to pool at the same certification contract.
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To formally describe such menus, fix a (possibly non-direct) menu of contracts

Γ =
{
C(m), πl(m), πh(m), t(m)

}
m∈M ,

where M is some message set. That is, from the menu Γ, the seller picks some menu option

m ∈ M , committing the certifier to the certification structure (C(m), πl(m), πh(m)) for the

transfer t(m).

The menu Γ presents the seller with a game in which she first has to select a certification

contract by sending some message m. Let m̂ : Θ →M represent the seller’s messaging strategy,

describing that seller-type θ picks message m̂(θ). Given a messaging strategy m̂, let Θ̂(m)

represent the subset of types that pick message m.13 That is,

Θ̂(m) ≡ {θ|m̂(θ) = m}.

The non-empty sets Θ̂(m) form a partition of Θ to which we refer by M̂ , i.e., M̂ ≡ {Θ̂(m)}m∈M .

Hence, a menu Γ is maximal (with respect to a messaging strategy m̂) if Θ̂(m) is a singleton

(or empty) for each m ∈ M . By contrast, a menu is non-maximal if it induces some types to

pool and pick the same contract from the menu Γ. We therefore refer to non-maximal menus

also as pooling or bunching ones.

A non-maximal menu reveals information about the seller’s average type θ̄. To capture

such information revelation, let θ̄ : M → Θ denote the expected value type associated with a

message m as induced by the partition M̂ . That is,

θ̄M(m) ≡

∫
θ∈Θ̂(m)

θdF (θ)∫
θ∈Θ̂(m)

dF (θ)
.

The mapping θ̄M(m) captures the disclosure information that underlies the certification

menu. In particular, a maximal-screening menu exhibits θ̄M(m̂(θ)) = θ for all θ ∈ Θ.

To capture the menu’s acquisition of hard information, let θ̂Mc :M → Θ denote the mapping

such that θ̂Mc (m) represents the Bayes’ consistent expectation of θ given the seller’s message

m ∈ ∪θM̂(θ) and a certificate c ∈ C(m). I.e, for any m ∈M and c ∈ C(m), we have

θ̂Mc (m) ≡ θ̄M(m)πhc (m)

θ̄M(m)πhc (m) + (1− θ̄M(m))πlc(m)
.

13We focus on sellers sending a deterministic message (we think this without loss).
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Thus for a non-maximal-screening menu, the change in beliefs from θ̄ to θ̄M(m) represents the

disclosure via soft information, whereas the change in beliefs from θ̄M(m) to θ̂Mc (m) expresses

the extent to which the certification menu provides hard information.

Note that if Θ̂(m) is not a singleton, then, at stage t = 3, the buyer is facing a seller who

is privately informed about his type θ ∈ Θ̂(m). Hence, when the seller offers a contract (p, x)

to the buyer, the buyer may interpret this offer to be informative about the seller’s type. That

is, we formally have an informed principal problem sustaining multiple equilibrium outcomes.

It is straightforward to see that the seller’s optimal equilibrium outcome is supported by the

buyer’s belief being independent of the seller’s offer, i.e., they equal θ̄M(m) for any offer (x, p).

In this case, the seller optimally offers the quantity xm = x̂(θ̄M(m)) at the price pm =

Eω{uω(xm)|θ̄M(m)}, independent of his type θ. While there are equilibrium outcomes in which

the seller obtains less, there are no equilibrium outcomes in which some seller-type θ obtains

more.14

Equipped with this notation, we can extend the notion of incentive compatibility to non-

maximal menus. In particular, we say that a menu Γ together with the seller’s messaging

strategy m̂ is incentive compatible if for any type θ, the message m̂(θ) yields type θ the highest

payoff among all messages m ∈ M . That is, for each type θ ∈ Θ, the following incentive

compatibility constraint is satisfied

∑
c

[
θπhc (m̂(θ)) + (1− θ)πlc(m̂(θ))

]
v̂(θ̂Mc (m̂(θ)))− t(m̂(θ)) ≥∑

c

[
θπhc (m) + (1− θ)πlc(m)

]
v̂(θ̂Mc (m))− t(m), ∀m ∈M,

(17)

where we set θ̂Sc (m) = 0 for any off-equilibrium message m with Θ̂(m) = ∅.
While, for generality, this representation of incentive compatibility explicitly allows for

menus comprising of contracts that are not picked in equilibrium, these off-equilibrium choices

are inconsequential, both in terms of payoffs and for supporting m̂ as an equilibrium. It is

therefore without loss to restrict attention to menus that do not contain contracts that are, in

equilibrium, not picked, i.e., Θ̂(m) ̸= ∅ for all m ∈ M . As a result, we may take the partition

M̂ as a primitive of a general (i.e., possibly non-maximal) certification menu and take the range

14E.g. the buyer having beliefs θ̄M (m) only if the seller offers quantity x̂ with at a price p = pm−δ (with δ > 0
small) and believes to face the lowest possible type otherwise, sustains an equilibrium in which all seller-types
in Θ̂(m) obtain the lesser profit pm−δ. By contrast, there is no equilibrium with a profit higher for some types,
since this higher payoff then has to be obtained for all types, while also requiring that the buyer has a belief
exceeding θ̄M (m) for any offer that these types make, contradicting Bayes’ rule that on average this must equal
θ̄M (m).
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of m̂ to coincide with M .

Consequently, we say that a (general) certification menu is incentive compatible with respect

to messaging strategy m̂ : Θ →M if for all θ, θr ∈ Θ we have

V̂ (θ) ≥ V̂ (θr) + (θ − θr)Im̂(θ), (ÎCθ,θr)

where

V̂ (θ) ≡
∑
c

[
θπhc (m̂(θ)) + (1− θ)πlc(m̂(θ))

]
v̂(θ̂Mc (m̂(θ)))− t(m̂(θ)) (18)

expresses seller-type θ’s utility of sending her message m̂(θ), and

Im̂(θ) ≡
∑
c

[
πhc (m̂(θ))− πlc(m̂(θ))

]
v̂(θ̂Mc (m̂(θ))) (19)

expresses the marginal information rent of type θ. Note that (ÎCθ,θr) differs from (ICθ,θr) in

that for a non-maximal menu, we have to keep track of the message m̂(θ) that seller-type θ

sends.

Lemma 7 A (general) certification menu Γ is incentive compatible with respect to messaging

strategy m̂ : Θ →M if and only if it satisfies both

i) monotonicity

Im̂(θ) is increasing in θ. (M̂ON)

ii) and payoff-equivalence

V̂ (θ) =

∫ θ

0

Im̂(τ)dτ + V̂ (0). (P̂E)

The lemma extends Lemma 2 in that for a direct maximal-screening menu we implicitly

have the identity m̂(θ) = θ as the messaging strategy, in which case (M̂ON) and (P̂E) reduce

to (MON) and (PE), respectively.

Representing both maximal and non-maximal screening contracts as direct mechanisms,

we can view the certifier as solving a two-step maximization procedure. In the first step, the

certifier decides how to partition the type set into subsets that would choose different items

from menu Γ. I.e., the certifier determines which mapping θ̄(.) to implement. In the second

step, the certifier will choose what
(
C, πl, π1, t

)
combination to offer to each subset, subject to
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the monotonicity constraint above to maximize the expected revenue:

Ṽ C(Γ) ≡
∫ 1

0

∑
c

 θπhc (m̂(θ)) + (1− θ)πlc(m̂(θ))

−1−F (θ)
f(θ)

[
πhc (m̂(θ))− πlc(m̂(θ))

]
 v̂(θ̂Sc (m̂(θ)))dF (θ).

Maximal-screening amounts to choosing the finest partition in the first step of this proce-

dure.

As the proofs of Lemma 3, Lemma 4, and Lemma 5 readily extend to non-maximal screening

partitions, we have:

1. A menu with at most 3-certificate contracts is optimal.

2. If M̂ON does not bind for the optimal 2-certificate menu, then 2-certificate menus are

optimal.

3. If, for all p > q, it holds A(p, q) < 0, then a 2-certificate menu with q∗(θ) = 0 is optimal.

If, for all p > q, it holds A(p, q) > 0, then a 2-certificate menu with p∗(θ) = 1 is optimal.

A general (possibly non-maximal) 2-certificate menu Γ̂2 exhibits C(θ) = {cp, cq} for any

θ ∈ Θ. We can fully characterize it by the partition M̂ of Θ and a pair of posterior mappings

(p(θ), q(θ)) with q(θ) ≤ p(θ) and the requirement that (p(θ1), q(θ1)) = (p(θ2), q(θ2)) if θ1 and θ2

come from the same partition cell in M̂ . The posterior p(θ) represents the probability that the

buyer assigns to the good state ω = h after certificate cp, while the posterior q(θ) represents this

probability after certificate cq. The assumption q(θ) ≤ p(θ) expresses the labeling convention

that certificate p is more indicative of the good state than certificate q.

In terms of posterior pairs (p(θ), q(θ)) and using (14), we can express the marginal surplus

that a seller-type θ generates as

Ŝ(θ) ≡ v̂(q(θ)) + [θ − q(θ)]w(p(θ), q(θ)) = v̂(p(θ))− [p(θ)− θ]w(p(θ), q(θ)). (20)

Based on (19) and using (14), we can rewrite type θ’s marginal information rent as

Î(θ) =
p(θ)− θ̄(θ)

1− θ̄(θ)

θ̄(θ)− q(θ)

θ̄(θ)
w(p(θ), q(θ)). (21)

By Lemma 7, the pair (p(θ), q(θ)) is implementable if and only if the marginal surplus Î(θ) is

weakly increasing in θ.
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Integrating over seller-types, we obtain the surplus from certification and information rents

Ŝ =

∫ 1

0

Ŝ(θ)dF (θ) and Î =

∫ 1

0

1− F (θ)

f(θ)
Î(θ)dF (θ), (22)

respectively. Thus, an implementable 2-certificate menu Γ̂2 yields the certifier the expected

profit V̂ c = Ŝ − Î.

Lemma 8 In the class of 2-certificate menus, maximal-screening menus are optimal.

While the result sounds straightforward, the proof is involved. In particular, it is based

on the observation that, whenever a 2-certificate menu is non-maximal then this implies that

over some subset Θ̂ ⊆ Θ all types are bunched in the sense that there exist q̄ ≤ p̄ such that

q(θ) = q̄ and p(θ) = p̄ for all θ ∈ Θ̂. We show in the proof that such bunching is not optimal

because we can raise the surplus by fully separating the types in the subset Θ̂, while keeping

the marginal information rents I(θ) to each seller-type constant. The key of the proof is to

construct type-specific posteriors q(θ) and p(θ) for all θ so that we obtain a surplus function

Š(θ) that is convex.

It is easiest to see the construction of the alternative separating certification menu when

the types in subset Θ̂ are bunched by a certification structure that does not provide any hard

information, i.e, when either q̄ or p̄ equals the average type θ̄(Θ̂) in Θ̂. Such a certification

contract extracts the full surplus Ŝ = v̂(θ̄(Θ̂)) without leaving any information rent (I(θ) = 0)

for θ ∈ Θ̂. The corresponding separating menu fully discloses the types in Θ̂ by still leaving

zero information rent to each of them. The surplus function resulting from this separating

menu Š(θ) = v̂(θ) is indeed convex, implying a higher revenue for the certifier than does the

original bunching contract, because E{v̂(θ)} > v̂(E{θ}).
When a subset of types are bunched by a contract revealing some market information to

the buyer (q̄ < θ̄(Θ̂) < p̄), then there exist different separating menus (q(θ) and p(θ)) resulting

in the same marginal information rent I(θ) as in the original bunching contract. The proof of

the lemma identifies one such menu that yields a convex surplus function Š(θ).

We next extend the insight of the lemma to 3-certificate contracts. We do so by showing that

similar to the case of 2-certificate contracts, we can also construct a convex surplus function

Š(θ) for 3-certificate contracts that pool a subset of seller types. The construction is however

more involved as the convex function Š(θ) will typically consist of two parts: an interval of

types for which 3-certificates are used and an interval of types for which the surplus function
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Š(θ) uses only two certificates. Because menus with at most 3 certificates are optimal, we

finally establish the paper’s theorem with the following result.

Proposition 1 Maximal-screening menus are optimal in general.

6 Conclusion

The paper develops a model that allows to distinguish the two natural roles of certification

— screening and information acquisition, where screening conveys soft information and infor-

mation acquisition conveys hard information. It demonstrates that a monopolistic certifier

optimally engages in full screening, disclosing all available soft information, while engaging in

at most a limited degree of acquisition of hard information. Consequently, monopolistic certi-

fication eradicates all market inefficiencies due to private information, but market inefficiencies

due to market uncertainty remain.

The intuition behind this result is that even though the certifier could eliminate all market

uncertainty by acquiring full hard information costlessly, this would be suboptimal as it requires

leaving excessive information rents to the partially privately informed seller. While this intuition

emphasizes the role of information rents, it runs counter to the alternative but incorrect intuition

that because of the need of incentive compatibility and hence information rents, screening

should be an inherently more costly channel to disclose information than the acquisition of

hard information.
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Appendix

This appendix collects the proofs of the propositions and lemmas in the main text.

Proof of Lemma 1: We first prove that x̂(θ) is strictly increasing. To see this note that x̂ is

defined by the first order condition

θu′h(x̂) + (1− θ)u′l(x̂) = 0.

Applying the implicit function theorem, it follows

u′h(x̂) + θu′′h(x̂)
∂x̂

∂θ
− u′l(x̂) + (1− θ)u′′l (x̂)

∂x̂

∂θ
= 0 ⇒ ∂x̂

∂θ
= − u′h(x̂)− u′l(x̂)

θu′′h(x̂) + (1− θ)u′′l (x̂)
> 0,

where the strict inequality follows from the single crossing condition u′h(x̂) > u′l(x̂), and the

strict concavity of u.

To see that v̂ is strictly increasing, note that by the envelope theorem:

v̂′(θ) =
∂v̂

∂θ
+
∂v̂

∂x

∂x̂

∂θ
=
∂v̂

∂θ
= uh(x̂(θ))− ul(x̂(θ)) > 0,

where the strict inequality follows from single crossing.

To see that v̂ is strictly convex, consider a pair of beliefs θ1 < θ2, and convex combination

θ̃ = πθ1 + (1− π)θ2 with π ∈ (0, 1) so that θ1 < θ̃ < θ2. Because, as established above, x̂(θ) is

strictly increasing, we have x̂(θ1) < x̂(θ̃) < x̂(θ2). Hence, it follows

v̂ (θ1) = θ1uh(x̂(θ1)) + (1− θ1)ul(x̂(θ1)) > θ1uh(x̂(θ̃)) + (1− θ1)ul(x̂(θ̃));

v̂ (θ2) = θ2uh(x̂(θ2)) + (1− θ2)ul(x̂(θ2)) > θ2uh(x̂(θ̃)) + (1− θ2)ul(x̂(θ̃)).

Taking the average of these two strict inequalities with the weights π and (1− π) yields

πv̂(θ1) + (1− π)v̂(θ2) > θ̃uh(x̃) + (1− θ̃)ul(x̃) = v̂(θ̃).

This shows the strict convexity of v̂. □

Proof of Lemma 2: To see that incentive compatibility implies (MON), consider (ICθ,θr)

and (ICθr,θ):

V (θ) ≥ V (θr) + (θ − θr)I(θr);
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V (θr) ≥ V (θ) + (θr − θ)I(θ).

Together they imply

(θ − θr)[I(θ)− I(θr)] ≥ 0.

Hence, incentive compatibility implies (MON).

To see that incentive compatibility implies (PE), rewrite, for δ > 0, the incentive constraint

(ICθ+δ,θ) as
V (θ + δ)− V (θ)

δ
≥ I(θ)

Likewise, for δ > 0, rewrite (ICθ−δ,θ) as

V (θ)− V (θ − δ)

δ
≤ I(θ)

At a point of differentiability of V (θ), we have

I(θ) ≤ lim
δ↓0

V (θ + δ)− V (θ)

δ
= V ′(θ) = lim

δ↓0

V (θ)− V (θ − δ)

δ
≤ I(θ),

implying V ′(θ) = I(θ) so that (PE) then follows from the fundamental theorem of calculus.

We now show sufficiency of (MON) and (PE) for incentive compatibility. When θ > θr,

applying (PE), condition (ICθ,θr) can be rewritten as

V (θ)− V (θr) =

∫ θ

θr
I(τ)dτ ≥ (θ − θr)I(θr),

which follows from (MON), since I(τ) ≥ I(θr) for all τ ≥ θr. Similarly, when θ < θr, condition

(ICθ,θr) reduces to

V (θ)− V (θr) = −
∫ θr

θ

I(τ)dτ ≥ −(θr − θ)I(θr), (23)

which also holds, since I(τ) ≤ I(θr) for all τ ≤ θr.

To see the second statement, note that by (ICθ,θr) the result follows directly if for any θ we

have

I(θ) =
∑
c

[
πhc (θ)− πlc(θ)

]
v̂(θ̂c(θ)) ≥ 0 (24)

To see that this inequality holds, fix θ and, without loss, order the certificates in C(θ) such that

the likelihood ratio πhc (θ)/π
l
c(θ) is increasing in c. Hence, πh(θ) dominates πl(θ) in the sense
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of FOSD. Note that because the likelihood ratio is increasing, also v̂(θc(θ)) is increasing in c.

As FOSD implies that the expectation of any increasing functions is larger under πh(θ) than

under the FOSD-ed πl(θ), it holds in particular for the increasing sequence v̂(θc(θ)). Hence,∑
c π

h
c (θ)v̂(θ̂c(θ)) ≥

∑
c π

l
c(θ)v̂(θc(θ)), which implies (24). Finally, because V (θ) is increasing,

condition (IR0) is sufficient for (IRθ) for all θ. □

Proof of Lemma 3: Fix some solution Γ̂ = {(Ĉ(θ), π̂l(θ), π̂h(θ), t̂(θ)}θ∈[0,1] to the problem

P̂S with associated value Π̂c(Γ̂). Let Θ+ ⊆ [0, 1] denote the subset of types θ for which the

solution Γ̂ uses more than 3 certificates. We next argue that if Θ+ ̸= ∅, then we can construct

an alternative solution Γ̌ that has at most three certificates for each θ which is also a solution

to P̂S with associated value Π̂c(Γ̂). To see this, let

Ŝ(θ) ≡
∑
c

[θπ̂hc (θ) + (1− θ)π̂lc(θ)]v̂(θ̂c(θ))

represent the surplus that a type θ generates under solution Γ̂. Likewise, let

Î(θ) =
∑
c

[π̂hc (θ)− π̂lc(θ)]v̂(θ̂c(θ))

express the marginal information rent of seller-type θ under solution Γ̂. We have

Π̂c(Γ̂) =

∫ 1

0

Π̂(θ)dF (θ) where Π̂(θ) ≡ Ŝ(θ)− 1− F (θ)

f(θ)
Î(θ).

Next for any θ ∈ Θ+, consider the linear problem indexed by θ of finding a solution α(θ) =

(α1(θ), . . . , αN(θ)) to:

P̂α(θ) : max
(α1,...,αN )≥0

∑
c

αc

{
θπ̂hc (θ) + (1− θ)π̂lc(θ)−

1− F (θ)

f(θ)

[
π̂hc (θ)− π̂lc(θ)

]}
v̂(θ̂c(θ))

s.t.
∑
c

αcπ̂
l
c(θ) = 1;

∑
c

αcπ̂
h
c (θ) = 1;

∑
c

αc[π̂
h
c (θ)− π̂lc(θ)]v̂(θ̂c(θ)) = Î(θ).

As α1(θ) = . . . = αN(θ) = 1 is feasible in program P̂α(θ), the program’s value, Π̂α(θ), is at least

Π̂(θ). Moreover, note that P̂α(θ) is a linear program with only 3 constraints. Consequently,

it has a solution α̂(θ) with at most 3 entries being non-zero. For each θ ∈ Θ+, let these three

entries be indexed by the triple (k(θ), l(θ),m(θ)). Given the solution α̂(θ), we construct a

3-certificate menu Γ̌ as follows. For each θ ∈ Θ+ and ω ∈ {0, 1}, let Č(θ) ≡ {ck(θ), cl(θ), cm(θ)},
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π̌ωk(θ)(θ) ≡ α̂k(θ)(θ)π
ω
k(θ)(θ), π̌

ω
l(θ)(θ) ≡ α̂l(θ)(θ)π

ω
l(θ)(θ), π̌

ω
m(θ)(θ) ≡ α̂m(θ)(θ)π

ω
m(θ)(θ), ť(θ) ≡ t(θ).

Now construct Γ̌ = {Γ̌(θ)}θ∈[0,1] by setting Γ̌(θ) = (Č(θ), π̌l(θ), π̌h(θ), ť(θ)) for θ ∈ Θ+ and

Γ̌(θ) = Γ̂(θ) for θ ̸∈ Θ+ By construction, the 3-certificate menu Γ̌ satisfies monotonicity,

because the marginal information rents are unchanged. It is therefore incentive compatible and

yields Π̂c(Γ̌) =
∫
θ∈Θ+ Π̂α(θ)dF +

∫
θ ̸∈Θ+ Π̂(θ)dF ≥

∫ 1

0
Π̂(θ)dF = Π̂c(Γ̂). But since Γ̂ itself is

optimal, we must also have Π̂c(Γ̂) ≥ Π̂c(Γ̌), implying that also the 3-certificate menu Γ̌ must

be optimal. This proves the claim that 3-certificate menus are optimal. □

Proof of Lemma 4: Let (p̂(θ), q̂(θ)) with value V̂2 (as defined by (12)) be such that it

satisfies (MON2) and solves RS
θ for each θ ∈ Θ. Let Γ̂2 = {({c0, c1}, π̂l(θ), π̂h(θ), t̂(θ)}θ∈[0,1]

represent the corresponding 2-certificate menu in terms of the probabilities (π̂l, π̂h), satisfying

(10) with p = p̂(θ) and q = q̂(θ), and the transfer t̂(θ), yielding seller-type θ the information

rent Î(θ) induced by (p̂(θ), q̂(θ)). Recalling (6), let Πc(Γ̂2) represent the certifier’s profit of the

2-certificate menu Γ̂. As it is a solution to RS
θ , it corresponds to the value, V R

2 (θ), of program

RS
θ , i.e., V̂2 = Πc(Γ̂2) =

∫ 1

0
V R
2 (θ)dF .

Next note that Γ̂2 is feasible in program P̂S. Hence, the value V̂ S of program P̂S is at least

V̂2, i.e. V̂
S ≥ V̂2.

Next consider a solution of a relaxed version of P̂S that disregards the constraint (MON).

Let V̂ R denote the value of this program and note that V̂ R ≥ V̂ S.

Let Γ̂ = {(Ĉ(θ), π̂l(θ), π̂h(θ), t̂(θ)}θ∈[0,1] denote a solution to the relaxed program. Note that

for each θ, the collection {(π̂lc(θ), π̂hc (θ))}c∈C(θ) solves

V̂ (θ) = max
{πl

c,π
h
c }c∈C(θ)

∑
c

[{
θπhc + (1− θ)πlc −

1− F (θ)

f(θ)

[
πhc − πlc

]}
v̂(θc(θ))

]
. (25)

Hence, V R =
∫ 1

0
V̂ (θ)dF

Next, consider the linear program of finding a solution α(θ) = (α1, . . . , αN) to:

Pα(θ) : max
(α1,...,αN )≥0

∑
c

[
αc

{
θπ̂hc (θ) + (1− θ)π̂lc(θ)−

1− F (θ)

f(θ)

[
π̂hc (θ)− π̂lc(θ)

]}
v̂(θc(θ))

]
s.t.

∑
c

αcπ
l
c(θ) = 1;

∑
c

αcπ
h
c (θ) = 1.

As α1 = . . . = αN = 1 is feasible in program Pα(θ), its value, V̂ α(θ), is at least V̂ (θ), i.e.

V̂ α(θ) ≥ V̂ (θ). Moreover, note that this is a linear optimization problem under two linear

constraints. Hence, a solution α̂(θ) = (α̂1(θ), . . . , α̂N(θ)) exists with at most two entries in α̂(θ)
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as non-zero, say k(θ) and l(θ).

Given the solutions α̂(θ), we construct a 2-certificate menu Γ̌ as follows. Let Č(θ) ≡
{ck(θ), cl(θ)}, π̌ωk(θ)(θ) ≡ α̂k(θ)(θ)π

ω
c (θ), π̌

ω
l(θ)(θ) ≡ α̂l(θ)(θ)π

ω
c (θ), ť(θ) ≡ t(θ), and let Γ̌ =

{(Č(θ), π̌l(θ), π̌h(θ), ť(θ)}θ∈[0,1]. By construction, this 2-certificate contract has value V α̂ ≡∫ 1

0
V̂ α(θ)dF ≥

∫ 1

0
V̂ (θ)dF = V̂ R

But given that the menu Γ̌ is a 2-certificate menu, it cannot generate a higher value than the

optimal 2-certificate menu Γ̂2, i.e. V̂2 ≥ V α̂. We therefore obtain the string of weak inequalities

V̂2 ≥ V α̂ ≥ V̂ R ≥ V̂ S ≥ V̂2, so that, in fact, they must hold with equality so that V̂ S = V̂2. □

Proof of Lemma 5: Following Lemma 3, we prove the lemma by considering an optimal

maximal-screening menu Γ̂S = {σ̂(θ), t̂(θ)}θ∈Θ that has at most 3 certificates. That is, for

any θ ∈ Θ, the certification structure σ̂(θ) = (Ĉ(θ), π̂l(θ), π̂h(θ)) induces at most three distinct

posteriors. If σ̂(θ) exhibits only one certificate, then σ̂(θ) does not induce two distinct posteriors

and the lemma holds trivially. Thus, to prove the lemma we distinguish between the case that

σ̂(θ) induces, with a strict positive probability, exactly 2 distinct posteriors, and the case in

which σ̂(θ) induces, with a strict positive probability, exactly 3 distinct posteriors. We prove

that for either case, there is an optimal ΓS satisfying (16).

Before doing so, we define

Ã(p, q) ≡ v′(p)v′(q)− w(p, q)2

so that the sign of A(p, q) coincides with the sign of Ã(p, q).

Case 1: σ̂(θ) = ({ĉp, ĉq}, (1 − π̂lp(θ), π̂
l
p(θ)), (1 − π̂hp (θ), π̂

h
p (θ))) with π̂hp (θ) > 0, π̂lp(θ) < 1, and

π̂hp (θ) > π̂lp(θ).
15 By Bayes’ consistency and (3), it holds q < θ < p and

q =
θ(1− π̂hp )

θ(1− π̂hp ) + (1− θ)(1− π̂lp)
; p =

θπ̂hp
θπ̂hp + (1− θ)π̂lp

, (26)

where we dropped the arguments θ in π̂hp (θ) and π̂
l
p(θ).

Solving for π̂hp and π̂lp in (26) yields

π̂lp(p, q) =
(1− p)(θ − q)

(p− q)(1− θ)
; π̂hp (p, q) =

p(θ − q)

(p− q)θ
. (27)

15The conditions π̂h
p (θ) > 0 and π̂l

p(θ) < 1 ensure that the two certificates ĉp and ĉq obtain with a strict

positive probability, while π̂h
p (θ) > π̂l

p(θ) ensures p > q, as stated in the lemma.
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Using (4), it then follows that with 2 certificates, type θ’s marginal information rent I(p, q|θ)
equals

I(p, q|θ) = [πhp (p, q)− πlp(p, q)][v̂(p)− v̂(q)] =
(p− θ)(θ − q)

(1− θ)θ
w(p, q). (28)

Hence, by the implicit function theorem, the information rent does not change if we change p

and q such that

∂p

∂q
= −∂I/∂q

∂I/∂p
=

(p− θ)[(p− θ)w(p, q) + (θ − q)v′(q)]

(θ − q)[(p− θ)v′(p) + (θ − q)w(p, q)]
≥ 0. (29)

Hence, for q > 0, we can decrease q and p marginally without affecting type θ’s information

rent. Similarly, we can increase q and p marginally without affecting type θ’s information rent

if p < 1.

To assess the effect of such changes of q and p on the certifier’s profits, it suffices to determine

how it affects the surplus, because the certifier’s profits is the difference between surplus and

information rents, and the increase in q and p is such that the latter is kept constant.

Using (27), we can express the surplus (5) with two certificates in two equivalent formula-

tions

S(p, q|θ) = v̂(q) + [θ(1− q)− (1− θ)q]w(p, q)

= v̂(p) + [θ(1− p)− (1− θ)p]w(p, q).

Consequently,

∂S

∂p
= [θ(1− q)− (1− θ)q]

∂w

∂p
and

∂S

∂q
= [θ(1− p)− (1− θ)p]

∂w

∂q
.

It therefore follows that an increase in p and q that leaves type θ’s information rent constant

changes the surplus by

dS

dq
=
∂S

∂p

∂p

∂q
+
∂S

∂q
=

p− θ

(p− θ̌)v̂′(p) + (θ − q)w(p, q)
Ã(p, q),

where the fraction is strictly positive. Hence, the sign of Ã(p, q) determines the effect on the

certifier’s profits. As the sign of Ã(p, q) coincides with the sign of A(p, q), we obtain (16).

Because, if Ã(p, q) > 0 and p < 1, we can increase the certifier’s profits by increasing q and p.

And, if, by contrast, Ã(p, q) < 0 and q > 0, we can increase the certifier’s profits by decreasing

q and p.
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Case 2: σ̂(θ) = ({ĉ1, ĉ2, ĉ3}, (π̂l1(θ), π̂l2(θ), π̂l3(θ)), (π̂h1 (θ), π̂h2 (θ), π̂h3 (θ))) with π̂h1 (θ) + π̂l1(θ) > 0,

π̂h2 (θ) + π̂l2(θ) > 0, π̂h3 (θ) + π̂l3(θ) > 0.16 Dropping the argument θ, the certification structure σ̂

induces posteriors

p̂1 =
θπ̂h1

θπ̂h1 + (1− θ)π̂l1
; p̂2 =

θπ̂h2
θπ̂h2 + (1− θ)π̂l2

; p̂3 =
θπ̂h3

θπ̂h3 + (1− θ)π̂l3
,

where we label the posteriors such that p̂1 > p̂2 > p̂3 and, hence, Bayes’ consistency implies

p̂1 > θ > p̂3. These posteriors yield seller-type θ the marginal information rent

Î ≡ [π̂h1 − π̂l1]v(p̂1) + [π̂h2 − π̂l2]v(p̂2) + [π̂h3 − π̂l3]v(p̂3).

We show that, if σ̂(θ) is part of an optimal menu, then there is no loss in assuming that the

posteriors (p̂1, p̂2, p̂3) satisfy the conditions stated in the lemma (where p and q in the lemma

correspond to a pair of posteriors, i.e. (p, q) ∈ {(p̂1, p̂2), (p̂1, p̂3), (p̂2, p̂3)}).
To see this, first note that if σ̂ is optimal, then it necessarily maximizes the certifier’s surplus

S = [θπh1 + (1− θ)πl1]v(p1) + [θπh2 + (1− θ)πl2]v(p2) + [θπh3 + (1− θ)πl3]v(p3) (30)

subject to the following six constraints:

1. The information rent being constant at Î,

[πh1 − πl1]v(p1) + [πh2 − πl2]v(p2) + [πh3 − πl3]v(p3) = Î; (31)

2. the feasibility conditions

πl1 + πl2 + πl3 = 1; (32)

πh1 + πh2 + πh3 = 1; (33)

16The conditions π̂h
1 (θ) + π̂l

1(θ) > 0, π̂h
2 (θ) + π̂l

2(θ) > 0, and π̂h
3 (θ) + π̂l

3(θ) > 0 ensure that each of the three
certificates ĉ1, ĉ2, ĉ3 obtains with a strict positive probability.
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3. the three posterior conditions

[θπh1 + (1− θ)πl1]p1 = θπh1 ; (34)

[θπh2 + (1− θ)πl2]p2 = θπh2 ; (35)

[θπh3 + (1− θ)πl3]p3 = θπh3 . (36)

The six constraints (30)-(36) form a linear system of the six variables (πh1 , π
l
1, π

h
2 , π

l
2, π

h
3 , π

l
3).

For a combination (θ, p1, p2, p3) with 1 ≥ p1 > p2 > p3 ≥ 0 and p1 > θ > p3, define

D(p1, p2, p3, θ) ≡ (p2 − p3)(p1 − θ)(v(p1)− v(p3)) + (p1 − p3)(θ − p2)(v(p2)− v(p3))

so that the solution of this linear system with respect to (p1, p2, p3, θ) exhibits

πh1 =
p1
θ
π1; π

l
1 =

1− p1
1− θ

π1 with π1 ≡
(θ − p2)(θ − p3)[v(p2)− v(p3)] + (1− θ)θ(p2 − p3)I

D(p1, p2, p3)
;

πh2 =
p2
θ
π2; π

l
2 =

1− p2
1− θ

π2 with π2 ≡
(p1 − θ)(θ − p3)[v(p1)− v(p3)]− (1− θ)θ(p1 − p3)I

D(p1, p2, p3)
;

πh3 =
p3
θ
π3; π

l
3 =

1− p3
1− θ

π3 with π3 ≡
(p1 − θ)(p2 − θ)[v(p1)− v(p2)] + (1− θ)θ(p1 − p2)I

D(p1, p2, p3)
.

(37)

Substituting these solutions for (πh1 , π
l
1, π

h
2 , π

l
2, π

h
3 , π

l
3) into (30), we obtain after a rearrange-

ment of terms that (p̂1, p̂2, p̂3) maximizes the expression

S(p1, p2, p3, θ)=
1

D(p1, p2, p3)
×
[
[θ − p2][θ − p3][v(p2)− v(p3)]v(p1)

+ [p1 − θ][θ − p3][v(p1)− v(p3)]v(p2)

+ [p1 − θ][p2 − θ][v(p1)− v(p2)]v(p3)

+ {[p2 − p3]v(p1) + [p3 − p1]v(p2) + [p1 − p2]v(p3)}θ(1− θ)I

]
.

(38)
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Taking derivatives and using w(., .) as defined in (14), we can rewrite them as follows

∂S(p1, p2, p3, θ)

∂p1
=

(p1 − p3)π1
(p1 − θ)w(p1, p2) + (θ − p3)w(p2, p3)

[w(p2, p3)v
′(p1)− w(p1, p3)w(p1, p2)];

∂S(p1, p2, p3, θ)

∂p2
=

(p1 − p3)π2
(p1 − θ)w(p1, p2) + (θ − p3)w(p2, p3)

[w(p1, p3)v
′(p2)− w(p2, p3)w(p1, p2)];

∂S(p1, p2, p3, θ)

∂p3
=

(p1 − p3)π3
(p1 − θ)w(p1, p2) + (θ − p3)w(p2, p3)

[w(p1, p2)v
′(p3)− w(p1, p3)w(p2, p3)],

where all the fractions are strictly positive.

Now suppose posteriors (p̂1, p̂2, p̂3) are optimal.

If any pair (p, q) ∈ {(p̂1, p̂2), (p̂1, p̂3), (p̂2, p̂3)} of these posteriors are interior, then their opti-

mality implies that the two derivatives corresponding to the posteriors evaluated at (p̂1, p̂2, p̂3)

equals zero. For the case (p, q) = (p̂1, p̂2), it follows

w(p̂2, p̂3)v
′(p̂1) = w(p̂1, p̂3)w(p̂1, p̂2) and w(p̂1, p̂3)v

′(p̂2) = w(p̂2, p̂3)w(p̂1, p̂2).

From which it follows Ã(p, q) = 0. Likewise, the cases (p, q) = (p̂1, p̂3) and (p, q) = (p̂2, p̂3) also

imply Ã(p, q) = 0.

Similarly, if q = 0 and p < 1, then their optimality implies that, evaluated at (p̂1, p̂2, p̂3), we

have ∂S/∂q ≤ 0 and ∂S/∂p = 0. For the case (p, q) = (p̂1, p̂2), it follows

w(p̂2, p̂3)v
′(p̂1) = w(p̂1, p̂3)w(p̂1, p̂2) and w(p̂1, p̂3)v

′(p̂2) ≤ w(p̂2, p̂3)w(p̂1, p̂2)

From which it follows Ã(p, q) ≤ 0. Likewise, the cases (p, q) = (p̂1, p̂3) and (p, q) = (p̂2, p̂3) also

imply Ã(p, q) ≤ 0.

Similarly, if q > 0 and p = 1, then their optimality implies that, evaluated at (p̂1, p̂2, p̂3), we

have ∂S/∂q = 0 and ∂S/∂p ≥ 0. That is, it holds

w(p̂2, p̂3)v
′(p̂1) ≥ w(p̂1, p̂3)w(p̂1, p̂2) and w(p̂1, p̂3)v

′(p̂2) = w(p̂2, p̂3)w(p̂1, p̂2)

From which it follows Ã(p, q) ≥ 0. Likewise, the cases (p, q) = (p̂1, p̂3) and (p, q) = (p̂2, p̂3) also

imply Ã(p, q) ≥ 0. □

Proof of Lemma 6: Define for q, p ∈ [0.1] with p > q,

g(p, q) ≡ v′(p)v′(q) and h(p, q) ≡ w(p, q)2.
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We extend the domain of g(p, q) and h(p, q) to include p = q by setting g(p, p) = ĝ(p) and

h(p, p) = ĥ(p), where ĝ(p) ≡ v′(p)2 and ĥ(p) ≡ limq↑p h(q, p) = v′(p)2.

Note that g(p, q) ∈ [v′(0)2, v′(1)2] and h(p, q) ∈ [v′(0)2, v′(1)2]. Moreover,

A(p, q) =
√
g(p, q)−

√
h(p, q)

so that A(p, q) = 0 if and only if g(p, q) = h(p, q). As g(p, p) = h(p, p) = v′(p)2, we have, in

particular, A(p, p) = limq↑pA(p, q) = 0.

Next, for any k ∈ [v′(0)2, v′(1)2], define functions qg(p|k) and qh(p|k) implicitly by

g(p, qg(p|k)) = k and h(p, qh(p|k)) = k. (39)

By the implicit function theorem, we obtain for p > q

q′g(p|k) = −v
′′(p)v′(q)

v′′(q)v′(p)
≤ 0 and q′h(p|k) = −v

′(p)− w(p, q)

w(p, q)− v′(q)
≤ 0. (40)

In addition, note that we have ĝ(p) = ĥ(p) = v′(p)2 so that the convexity of v(θ) implies that

ĥ(p) and ĝ(p) are continuous and increasing with ĥ(0) = ĝ(0) = v′(0)2 and ĥ(1) = ĝ(1) = v′(1)2.

Hence, for any k ∈ [v′(0)2, v′(1)2], we can find a p(k) ∈ [0, 1] such that

qg(p(k)|k) = qh(p(k)|k) = p(k).

Thus, we have established that for any k ∈ [v′(0)2, v′(1)2], we can find a p(k) ∈ [0, 1] such

that A(p(k), p(k)) = 0. Hence, the curves qg(p|k) and qh(p|k) intersect at the point (p(k), p(k)).
We next argue that, while the curves have the same slope of q′g(p(k)|k) = q′h(p(k)|k) = −1

at the intersection point (p, q) = (p(k), p(k)), Â′(θ) > 0 implies q′′g (p(k)|k) > q′′h(p(k)|k) so that

qg(p(k) + ε|k) > qh(p(k) + ε|k) for all ε > 0 small. Indeed, evaluating q′g(p|k) at p = q = p(k)

by taking limits, we obtain

q′g(p(k)|k) = lim
ε→0

−v
′′(p)v′(p− ε)

v′′(p− ε)v′(p)
= −1

Likewise, evaluating q′h(p|k) at p = q = p(k), we obtain after applying Hopital’s rule twice

q′h(p(k)|k) = lim
ε→0

− v(p)− v(p− ε)− εv′(p)

v(p) + v(p− ε) + εv′(p− ε)
= lim

ε→0
− v′′(p− ε)

v′′(p− ε) + εv′′′(p− ε)
= −1
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Implicitly differentiating (39) twice, we evaluate the 2nd order derivative of qg(p|k) at (p, q) =
(p(k), p(k)) to obtain

q′′g (p(k)|k) =
2v′′(p(k))

v′(p(k))
− 2v′′′(p(k))

v′′(p(k))
.

Evaluating moreover the 2nd order derivative of qh(p|k) at (p, q) = (p(k), p(k)) by taking limits,

we obtain after using l’Hopital’s rule multiple times that

q′′h(p(k)|k) = −2v′′′(p(k))

3v′′(p(k))
.

Thus, we obtain

q′′g (p(k)|k) > q′′h(p(k)|k) ⇔
2[3v′′(p)2 − 2v′(p)v′′′(p)]

3v′(p)v′′(p)
≥ 0 ⇔ 3v′′(p)2−2v′(p)v′′′(p)) ≥ 0 ⇔ Â′(θ) > 0.

(41)

We next argue that if Â(θ) is strictly increasing then the previous result implies that the

two curves do not intersect for any p > p(k). We do so by showing that a strictly increasing Â

implies q′g(p|k) > q′h(p|k) at any point (p, q) with p > q where the curves intersect (i.e., where

qg(p|k) = qh(p|k)) and, hence, at any intersection point the curve qg(p|k) cuts qh(p|k) from

above, implying that the two curves have an intersection point only at (p, q) = (p(k), p(k)). To

see q′g(p|k) > q′h(p|k) for any intersection point, note first that at an intersection point (p, q), it

holds

v′(p)v′(q) = w(p, q)2. (42)

Using (42), it holds for q′h(p|k) at an intersection point (p, q) that

q′h(p|k) = −v
′(p)− w(p, q)

w(p, q)− v′(q)
= −v

′(p)w(p, q)− w(p, q)2

w(p, q)2 − w(p, q)v′(q)
= −v

′(p)w(p, q)− v′(p)v′(q)

v′(p)v′(q)− w(p, q)v′(q)
=
v′(p)

v′(q)

1

q′h(p|k)
.

Hence, it holds

q′h(p|k)2 =
v′(p)

v′(q)
,

which with q′h(p|k) ≤ 0 implies

q′h(p|k) = −
√
v′(p)√
v′(q)

.

We therefore have

q′g(p|k) > q′h(p|k) ⇔
v′′(p)v′(q)

v′′(q)v′(p)
<

√
v′(p)√
v′(q)

⇔
v′(q)

√
v′(q)

v′′(q)
<
v′(p)

√
v′(p)

v′′(p)
⇔ Â(q) < Â(p),

(43)
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which, given that Â(θ) is strictly increasing for θ > 0, holds true for any p > q ≥ 0. This yields

the first statement of the lemma.

By contrast, if Â(θ) is strictly decreasing all inequalities in (41) and (43) hold in reverse,

and we obtain the second statement of the lemma. □

Proof of Lemma 8: Consider a 2-certificate menu Γ̂2 that is non-maximal. That is, the

partition M̂ contains a non-singleton subset Θ̂ ⊆ Θ so that it holds p(θ) = p̄ and q(θ) = q̄ for

all θ ∈ Θ̂. Let θ̄ denote the average over Θ̂. Then all types θ ∈ Θ̂ receive the same marginal

information rent

Ī ≡ p̄− θ̄

1− θ̄

θ̄ − q̄

θ̄
w(p̄, q̄).

Now consider a pair of mappings (p̌(θ), q̌(θ)) with (p̌(θ̄), q̌(θ̄)) = (p̄, q̄) and the function

Š(θ) ≡ v̂(q̌(θ)) + (θ − q̌(θ))w(p̌(θ) with q̌(θ)) = v̂(p̌(θ))− [p̌(θ)− θ]w(p̌(θ), q̌(θ)). (44)

If Š is convex, it follows

Ŝ =

∫
θ∈Θ̂

[v̂(q̄) + (θ − q̄)w(p̄, q̄)] dF (θ) +

∫
θ ̸∈Θ̂

Ŝ(θ)dF (θ)

=

∫
θ∈Θ̂

[
v̂(q̄) + (θ̄ − q̄)w(p̄, q̄)

]
dF (θ) +

∫
θ ̸∈Θ̂

Ŝ(θ)dF (θ)

=

∫
θ∈Θ̂

Š(θ̄)dF (θ) +

∫
θ ̸∈Θ̂

Ŝ(θ)dF (θ)

≤
∫
θ∈Θ̂

Š(θ)dF (θ) +

∫
θ ̸∈Θ̂

Ŝ(θ)dF (θ).

To obtain the result, it therefore suffices to construct a pair of mappings (p̌(θ), q̌(θ)) with

(p̌(θ̄), q̌(θ̄)) = (p̄, q̄) so that Š is convex in θ and for all θ ∈ Θ̂, it holds

p̌(θ)− θ

1− θ

θ − q̌(θ)

θ
w(p̌(θ), q̌(θ)) = Ī . (45)

Given (p̌(θ̄), q̌(θ̄)) = (p̄, q̄), Equality (45) holds for all θ ∈ Θ̂ if (p̌(θ), q̌(θ)) satisfies the differential

equation

(θ− q̌)[w(p̌, q̌)+ (p̌− θ)wp(p̌, q̌)]p̌
′− (p̌− θ)[w(p̌, q̌)− (θ− q̌)wq(p̌, q̌)]q̌

′ = ψ(θ, p̌, q̌)w(p̌, q̌), (46)
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where we dropped the argument θ and have

ψ(θ, p, q) ≡ (θ − q)
1− p

1− θ
− (p− θ)

q

θ
.

We construct (p̌(θ), q̌(θ)) as follows. We fix p̌(θ̄) = p̄ and q̌(θ̄) = q̄. Then, depending on

whether ψ(θ, p̌, q̌) is positive or negative, marginally change only p̌ or q̌ so that type θ’s marginal

information rent remains at Ī. In particular,

p̌′(θ) =


ψ(θ,p̌,q̌)
θ−q̌

w
w+(p̌−θ)wp

if ψ(θ, p̌, q̌) ≥ 0

0 otherwise;
and q̌′(θ) =


−ψ(θ,p̌,q̌)
p̌−θ

w
w−(θ−q̌)wq

if ψ(θ, p̌, q̌) ≤ 0

0 otherwise.

(47)

This construction yields two differential equations that define the mappings p̌(θ) and q̌(θ). They

are both continuous and (weakly) increasing in θ. They are also continuously differentiable, as

p̌′(θ0) = q̌′(θ0) = 0 with θ0 such that ψ(θ0, p̌(θ0), q̌(θ0)) = 0. For θ such that ψ ≥ 0, it also

implies that ψ is strictly increasing in θ, as

dψ

dθ

∣∣∣∣
ψ≥0

=
∂ψ

∂θ
+
∂ψ

∂p̌
p̌′(θ) =

(1− p̌)(1− q̌)

(1− θ)2
+
p̌q̌

θ2
−
(
θ − q̌

1− θ
+
q̌

θ

)
p̌′(θ)

>
(1− p̌)(1− q̌)

(1− θ)2
+
p̌q̌

θ2
−
(
θ − q̌

1− θ
+
q̌

θ

)
(1− p̌)

(1− θ)
=

1− p̌

1− θ
+
q̌

θ

p̌− θ

θ(1− θ)
> 0.

This implies that ψ changes sign at most once, and only from negative to positive. Hence,

there is at most one value θ0 such that ψ(θ0, p̌(θ0), q̌(θ0)) = 0. Moreover, ψ(θ, p̌(θ), q̌(θ)) > 0

for θ > θ0 and ψ(θ, p̌(θ), q̌(θ)) < 0 for θ < θ0.

Note that Š ′(θ) is continuous at θ0.17 As a result, it suffices to show convexity of Š by

showing convexity of Š separately for ψ < 0 and ψ > 0. Hence, we distinguish two cases:

Case 1: Consider an interval over which ψ ≥ 0. In this case q′(θ) = 0 and

p̌′(θ) =
ψ(θ, p̌, q̌)

θ − q̌

w

w + (p̌− θ)wp
=

(
1− p̌

1− θ
− (p̌− θ)q̌

(θ − q̌)θ

)
︸ ︷︷ ︸

∈[0,1]

w

w + (p̌− θ)wp︸ ︷︷ ︸
∈[0,1]

∈ [0, 1].

Using the middle expression in (44) and q̌′(θ) = 0, we obtain

Š ′(θ) = w + (θ − q̌)wpp̌
′(θ); (48)

17To see that Š′(θ) is continuous at θ0 (given its existence), note limθ↑θ0 Š′(θ) = w(p̌(θ0), q̌(θ0)) −
[p̌(θ0) − θ0]wq(p̌(θ

0), q̌(θ0))q̌′(θ0) = w(p̌(θ0), q̌(θ0)) which equals limθ↓θ0 Š′(θ) = w(p̌(θ0), q̌(θ0)) − [θ0 −
q̌(θ0)]wp(p̌(θ

0), q̌(θ0))p̌′(θ0) = w(p̌(θ0), q̌(θ0)).
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and differentiating once more yields

Š ′′(θ) = 2wpp̌
′(θ) + (θ − q̌)[wppp̌

′(θ)2 + wpp̌
′′(θ)] (49)

= 2wpp̌
′(θ)− 2

θ − q̌

p̌− q̌
wpp̌

′(θ)2 +
θ − q̌

p̌− q̌
v′′(p̌)p̌′(θ)2 + (θ − q̌)wpp̌

′′(θ) (50)

= 2wpp̌
′(θ)

(
1− θ − q̌

p̌− q̌
p̌′(θ)

)
+
θ − q̌

p̌− q̌
v′′(p̌)p̌′(θ)2 + (θ − q̌)wpp̌

′′(θ) (51)

≥ θ − q̌

p̌− q̌

(
v′′(p̌)p̌′(θ)2 + (p̌− q̌)wpp̌

′′(θ)
)
, (52)

where (50) follows from substituting out wpp, where the definition of w(p, q) implies

wp =
v′(p)− w

p− q
and wpp =

v′′(p)− 2wp
p− q

, (53)

and (52) follows because the first term in (51) is positive as wp ≥ 0, p̌′(θ) ∈ [0, 1], and 0 <

θ − q̌ < p̌− q̌ so that the term in parenthesis is also positive.

We next show that also the remaining term (52) is positive, implying that Š ′′(θ) ≥ 0 and,

hence, Š is convex over the range ψ ≥ 0. To sign (52), we first derive p̌′′(θ) for ψ ≥ 0. By the

product rule, it follows from (47) that

p̌′′(θ) =

(
1− p̌

1− θ
− p̌− θ

θ − q̌

q̌

θ

)(
w

w + (p̌− θ)wp

)′

+

(
1− p̌

1− θ
− p̌− θ

θ − q̌

q̌

θ

)′ (
w

w + (p̌− θ)wp

)
,(54)

≥
2wpp

′(θ)− 2 θ−q̌
p̌−q̌wpp

′(θ)2 − p̌−θ
p̌−q̌v

′′(p̌)p′(θ)2

w + (p̌− θ)wp
≥ − (p̌− θ)v′′(p̌)p′(θ)2

(p̌− q̌)(w + (p̌− θ)wp)
, (55)

where the last inequality in (55) obtains because, taken together, the first two terms in the

numerator of the first fraction are positive as θ − q̌ < p̌ − q̌ and p′(θ) ∈ [0, 1]. To see the first

inequality in (55) note that collecting terms after substituting out wpp using (53), we obtain

(
w

w + (p− θ)wp

)′

=
[w + (p− θ)wp]wpp̌

′(θ)− [wpp̌
′(θ) + (p̌′(θ)− 1)wp + (p− θ)wppp̌

′(θ)]w

(w + (p− θ)wp)2

=
wwp − 2 θ−q

p−qwwpp
′(θ) + wpp

′(θ)(w + (p̌− θ)wp)− p−θ
p−qwv

′′(p̌)p′(θ)

(w + (p̌− θ)wp)2
.
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Moreover, it follows(
1− p

1− θ
− p− θ

θ − q

q

θ

)′

=
1− p

(1− θ)2
+

(p− q)

(θ − q)2
q

θ
+
p− θ

θ − q

q

θ2
− 1

1− θ
p′ (θ)− 1

θ − q

q

θ
p′ (θ)

≥ 1− p

(1− θ)2
+

1

θ − q

1− p

1− θ

q

θ
− 1

1− θ
p′ (θ)− 1

θ − q

q

θ
p′ (θ)

=
1− p

1− θ

(
1

1− θ
+

1

θ − q

q

θ

)
−
(

1

1− θ
+

1

θ − q

q

θ

)
p′ (θ)

≥
(
1− p

1− θ
− p− θ

θ − q

q

θ
− p′ (θ)

)(
1

1− θ
+

1

θ − q

q

θ

)
=

(
w + (p− θ)wp

w
p′ (θ)− p′ (θ)

)(
1

1− θ
+

1

θ − q

q

θ

)
=

(p− θ)wp
w

(
1

1− θ
+

1

θ − q

q

θ

)
p′ (θ) ,

where the first inequality holds since p−q
θ−q ≥ 1 ≥ 1−p

1−θ and p−θ
θ−q

q
θ2

is non-negative, the second one

holds since p−θ
θ−q

q
θ
is non-negative. Substitution of these terms in (54) yields the first inequality

in (55) and, after collecting terms, the first fraction.

Using (55), we continue from (52) to obtain

Š ′′(θ) ≥ θ − q̌

p̌− q̌

(
1− wp(p̌− θ)

w + (p̌− θ)wp

)
v′′(p̌)p̌′(θ)2 =

θ − q̌

p̌− q̌

w

w + (p̌− θ)wp
v′′(p̌)p̌′(θ)2 ≥ 0.

This establishes convexity of Š over an interval for which ψ ≥ 0.

Case 2: Consider an interval over which ψ < 0. In this case p′(θ) = 0 and

q̌′(θ) = −ψ(θ, p̌, q̌)
p̌− θ

w

w + (θ − q̌)wq
=

(
q̌

θ
− θ − q̌

p̌− θ

1− p̌

1− θ

)
︸ ︷︷ ︸

∈[0,1]

w

w + (θ − q̌)wq︸ ︷︷ ︸
∈[0,1]

∈ [0, 1].

We first establish that the definition of w(p, q) implies

wq =
w − v′(q)

p− q
and wqq =

2wq − v′′(q)

p− q
. (56)

By the product rule, we have

q̌′′(θ) =

(
q̌

θ
− θ − q̌

p̌− θ

1− p̌

1− θ

)(
w

w − (θ − q̌)wq

)′

+

(
q̌

θ
− θ − q̌

p̌− θ

1− p̌

1− θ

)′
w

w − (θ − q̌)wq
, (57)

≤ 2(p̌− q̌)wq q̌
′(θ)− 2(p̌− θ)wq q̌

′(θ)2 − (θ − q̌)v′′(q̌)q̌′(θ)2

[p̌− q̌][w − (θ − q̌)wq]
(58)

44



where the inequality follows from using (56) to obtain

(
w

w − (θ − q̌)wq

)′

=
(w − (θ − q̌)wq)wq q̌

′(θ)− [wq q̌
′(θ)− (1− q̌′(θ))wq − (θ − q̌)wqq q̌

′(θ)]w

(w − (θ − q̌)wq)2

=
wwq − 2 p̌−θ

p̌−q̌wwq q̌
′(θ) + (w − (θ − q̌)wq)wq q̌

′(θ)− θ−q̌
p̌−q̌wv

′′(q̌)q̌′(θ)

(w − (θ − q̌)wq)2
,

and(
q̌

θ
− θ − q̌

p̌− θ

1− p̌

1− θ

)′

=

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q′(θ)− q̌

θ2
− p̌− q̌

p̌− θ

1

p̌− θ

1− p̌

1− θ
− θ − q̌

p̌− θ

1− p̌

(1− θ)2

≤
(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q̌′(θ)− q̌

θ2
− q̌

θ

1

p̌− θ

1− p̌

1− θ

=

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q̌′(θ)−

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q̌

θ

≤
(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q̌′(θ)−

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)(
q̌

θ
− θ − q̌

p̌− θ

1− p̌

1− θ

)
=

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)(
1− w − (θ − q̌)wq

w

)
q̌′(θ)

=
(θ − q̌)wq

w

(
1

θ
+

1

p̌− θ

1− p̌

1− θ

)
q̌′(θ),

with using p̌−q̌
p̌−θ ≥ 1 ≥ q̌

θ
and θ−q̌

p̌−θ
1−p̌

(1−θ)2 is non-negative to obtain the first inequality, and using

θ−q̌
p̌−θ

1−p̌
1−θ ≥ 0 to obtain the second inequality.

Using the right-hand-side expression in (44) and p̌′(θ) = 0, we obtain

Š ′(θ) = w − (p̌− θ)wq q̌
′(θ); (59)

and differentiating once more yields

Š ′′(θ) = 2wq q̌
′(θ)− (p̌− θ)[wqq q̌

′(θ)2 + wq q̌
′′(θ)] (60)

= 2wq q̌
′(θ)

(
1− p̌− θ

p̌− q̌
q̌′(θ)

)
+
p̌− θ

p̌− q̌
v′′(q̌)q̌′(θ)2 − (p̌− θ)wq q̌

′′(θ) (61)

≥ 2wq q̌
′(θ)

(
1− p̌− θ

p̌− q̌
q̌′(θ)

)[
1− (p̌− θ)wq

w − (θ − q)wq

]
≥ 0. (62)

where the second equality follows from substituting out wqq using (53) and the inequality from

(58). This establishes convexity of Š over an interval for which ψ < 0. □

Proof of Proposition 1: We first note that the proof of Lemma 3 extends to non-maximal-
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screening menus. Hence, optimal certification menus can be composed of contracts exhibiting

at most three certificates. If a menu pools some subset of types Θ̂ ∈ Θ at a two-certificate

contract, then it follows from the proof of Lemma 8 that the certifier’s revenue can be improved

with an alternative menu fully separating these types. It remains to show that certification

menus pooling types at a three-certificate contract that induces three distinct posteriors are

suboptimal as well.

To show this, we consider an incentive compatible menu that pools a subset of types Θ̂ ⊂ Θ

at a certification structure σ̂ = ({ĉ1, ĉ2, ĉ3}, (π̄l1, π̄l2, π̄l3), (π̄h1 , π̄h2 , π̄h3 )) such that each of the three

certificates obtains with a strict probability: π̄h1 + π̄l1 > 0, π̄h2 + π̄l2 > 0, π̄h3 + π̄l3 > 0. We denote

by θ̄ = E{Θ̂} the expected type over the subset Θ̂ (with possibly θ̄ ̸∈ Θ̂). This certification

structure induces posteriors

p̄1 =
θ̄π̄h1

θ̄π̄h1 + (1− θ̄)π̄l1
; p̄2 =

θ̄π̄h2
θ̄π̄h2 + (1− θ̄)π̄l2

; p̄3 =
θ̄π̄h3

θ̄π̄h3 + (1− θ̄)π̄l3
, (63)

such that p̄1 > p̄2 > p̄3. Incentive compatibility implies that each type θ̂ ∈ Θ̂ obtains the

marginal information rent

Ī = [π̄h1 − π̄l1]v(p̄1) + [π̄h2 − π̄l2]v(p̄2) + [π̄h3 − π̄l3]v(p̄3). (64)

A type θ̂ ∈ Θ̂ generates the surplus

Ŝ(θ̂) = [θ̂π̄h1 + (1− θ̂)π̄l1]v(p̄1) + [θ̂π̄h2 + (1− θ̂)π̄l2]v(p̄2) + [θ̂π̄h3 + (1− θ̂)π̄l3]v(p̄3)

with average Ŝ(θ̄).

We next construct an alternative incentive compatible menu that coincides with the old

one for all θ ̸∈ Θ̂, but separates all types in Θ̂ such that type θ̂ ∈ Θ̂ obtains certificate ĉi in

state ω ∈ {l, h} with probability πωi (θ̂) for i = 1, 2, 3, while keeping the marginal information

rent constant at Ī. The constant information rent ensures that the alternative menu is also

incentive compatible. We construct the type-dependent probability system {πωi (θ̂)} in such a

way that the respective posteriors also remain constant at (p̄1, p̄2, p̄3). It follows from the proof

of Lemma 5 (Case 2) that (p̄1, p̄2, p̄3, θ̂) identify {πωi (θ̂)} as a solution to a system of 6 linear

equation (see (37)). As the solution {πωi (θ)} is continuous in θ and since πωi (θ̄) = π̄ωi , we have

πωc (θ) ∈ [0, 1] for θ close to θ̄. Indeed, as the numerator in πωi (θ) is quadratic in θ, we find for

each certificate ĉi two thresholds θli < θ̄ < θhi such that πωi (θ) ∈ [0, 1] if and only if θ ∈ [θli, θ
h
i ].
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Note that these thresholds are independent of the state ω.

Denoting by θl ≡ maxi{θli} the maximal lower threshold and by θh ≡ mini{θhi } the minimal

upper threshold, it follows that the solution {πωi (θ)} satisfies the individual boundary conditions

for any θ ∈ [θl, θh]. Let Š(θ) for θ ∈ [θl, θh] be the surplus generated by type θ given the solution

{πωi (θ)}.
Š(θ) = S(p̄1, p̄2, p̄3, θ),

where function S is defined in (38). Notice that function Š gives the same value as function Ŝ

when evaluated at the average type in subset Θ̂, that is Š(θ̄) =Ŝ(θ̄). Hence, if Θ̂ ⊂ [θl, θh], we

obtain our result by showing that Š(θ) is convex in θ. Convexity of Š holds if Š ′′(θ) is positive

for any θ ∈ [θl, θh].

By differentiating (38) with respect to θ twice, we find this second derivative as

Š ′′(θ) =
K(p̄1, p̄2, p̄3)

D(p̄1, p̄2, p̄3, θ)3

with

K(p̄1, p̄2, p̄3) =2{(p̄2 − p̄3)[v(p̄1)− v(p̄3)]− (p̄1 − p̄3)[v(p̄2)− v(p̄3)]}×

{(p̄1 − p̄3)(p̄2 − p̄3)(p̄1 − p̄2)[v(p̄1)− v(p̄3)][v(p̄2)− v(p̄3)][v(p̄1)− v(p̄2)]

− [p̄1(p̄2 − p̄3)(v(p̄1)− v(p̄2))− p̄3(p̄1 − p̄2)(v(p̄2)− v(p̄3))]×

[(1− p̄3)(p̄1 − p̄2)(v(p̄2)− v(p̄3))− (1− p̄1)(p̄2 − p̄3)(v(p̄1)− v(p̄2))]Ī} (65)

and

D(p̄1, p̄2, p̄3, θ) = (p̄2 − p̄3)(p̄1 − θ)(v(p̄1)− v(p̄3)) + (p̄1 − p̄3)(θ − p̄2)(v(p̄2)− v(p̄3))

To see that D(p̄1, p̄2, p̄3, θ) is positive, notice that convexity of v implies (p̄2−p̄3)[v(p̄1)−v(p̄3)] >
(p̄1 − p̄3)[v(p̄2)− v(p̄3)]. It follows from this inequality that

D(p̄1, p̄2, p̄3, θ) > (p̄1 − p̄3)(p̄1 − θ)[v(p̄2)− v(p̄3)] + (p̄1 − p̄3)(θ − p̄2)(v(p̄2)− v(p̄3))

= (p̄1 − p̄3)(p̄1 − θ + θ − p̄2)(v(p̄2)− v(p̄3))

= (p̄1 − p̄3)(p̄1 − p̄2)(v(p̄2)− v(p̄3))

> 0
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Hence, the sign of Š ′′ is positive if (65) is positive. As the sign of (65) coincides with the

sign of the term in the second curly brackets of (65), Š ′′ is positive if the following inequality

holds

(p̄1 − p̄3)(p̄2 − p̄3)(p̄1 − p̄2)[v(p̄1)− v(p̄3)][v(p̄2)− v(p̄3)][v(p̄1)− v(p̄2)] ≥

[p̄1(p̄2 − p̄3)(v(p̄1)− v(p̄2))− p̄3(p̄1 − p̄2)(v(p̄2)− v(p̄3))]×

[(1− p̄3)(p̄1 − p̄2)(v(p̄2)− v(p̄3))− (1− p̄1)(p̄2 − p̄3)(v(p̄1)− v(p̄2))]Ī (66)

For any Ī ≥ 0, the right hand side of (66) is smaller than

[p̄1(p̄2 − p̄3)(v(p̄1)− v(p̄2))][(1− p̄3)(p̄1 − p̄2)(v(p̄2)− v(p̄3))]

+ [p̄3(p̄1 − p̄2)(v(p̄2)− v(p̄3))][(1− p̄1)(p̄2 − p̄3)(v(p̄1)− v(p̄2))]Ī ,

which simplifies to

[(p̄2 − p̄3)(p̄1 − p̄2)(p̄1 + p̄3 − 2p̄1p̄3)(v(p̄1)− v(p̄2))(v(p̄2)− v(p̄3))]Ī . (67)

Hence, it suffices to show that the left hand side of (66) is larger than (67), or, equivalently

that

(p̄1 − p̄3)[v(p̄1)− v(p̄3)] ≥ (p̄1 + p̄3 − 2p̄1p̄3)Ī . (68)

Because θ ∈ [θl, θh] implies that π2 = [θπ̄h2 + (1 − θ)π̄l2] ≥ 0 for θ ∈ [θl, θh], the numerator in

the fraction for π2 in (37) must be positive. That is, it holds

Ī ≤ (p̄1 − θ)(θ − p̄3)

(1− θ)θ

v(p̄1)− v(p̄3)

p̄1 − p̄3
.

Hence, inequality (68) holds if

(p̄1 − p̄3)
2 ≥ (p̄1 + p̄3 − 2p̄1p̄3)

(p̄1 − θ)(θ − p̄3)

(1− θ)θ
. (69)

Because

max
θ

(p̄1 − θ)(θ − p̄3)

(1− θ)θ
= p̄1 + p̄3 − 2p̄1p̄3 − 2

√
p̄1p̄3(1− p̄1)(1− p̄3),

it follows that inequality (69) holds if

(p̄1 − p̄3)
2 ≥ (p̄1 + p̄3 − 2p̄1p̄3)(p̄1 + p̄3 − 2p̄1p̄3 − 2

√
p̄1p̄3(1− p̄1)(1− p̄3)). (70)
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Using α = p̄1(1− p̄3) and β = p̄3(1− p̄1), (70) rewrites as

(α− β)2 ≥ (α + β)(α + β − 2
√
αβ), (71)

where it follows

(α− β)2 ≥ (α + β)(α + β − 2
√
αβ) ⇔ (α + β)2 ≥ 4αβ ⇔ (α− β)2 ≥ 0. (72)

As the latter inequality is true, we conclude that also inequality (66) holds so that Š is convex.

Hence, if Θ̂ ⊂ [θl, θh], the 3-certificate menu is not optimal for the certifier, because the

convexity of Š implies that we can raise the certifier’s profit by separating all types in Θ̂, while

keeping the three posteriors for each of these types at p̄1, p̄2, p̄3.

We next argue that, if Θ̂ ̸⊂ [θl, θh], the 3-certificate menu can also not be optimal. To show

this, we derive a convex function ˇ̌S(θ) that is defined for the entire interval Θ by combining the

construction of Š(θ) in this proof with the construction of Š(θ) as in the proof of Lemma 8.

To develop this argument, first note that Š is defined only on the domain [θl, θh], because for

θ ̸∈ [θl, θh] our construction implies that πωi (θ) ̸∈ [0, 1] for some state ω ∈ {l, h} and certificate

c ∈ {ĉ1, ĉ2, ĉ3}.
In particular, we have at θl that πωi (θ

l) = 0 for some state ω ∈ {l, h}. This implies

that at θl, we effectively have a two-certificate menu that induces two of the three posteriors

p̄1, p̄2, p̄3. Hence, following the proof of Lemma 8, we can construct a pair of mappings

(p̌l(θ), q̌l(θ)) satisfying the differential equation (47) with (p̌l(θ
l), q̌l(θ

l)) corresponding to the

only two posteriors among p̄1, p̄2, p̄3 that occur with positive probability at θl. This gives then

rise to a convex function Šl(θ) as defined in (44).

Likewise, we can construct (p̌h(θ), q̌h(θ)) with (p̌h(θ
h), q̌h(θ

h)) corresponding to the two

posteriors among p̄1, p̄2, p̄3 that still occur with positive probability at θh. This yields a

function Šh(θ) that is defined for all θ in Θ.

Thus, we obtain three convex functions Š(θ), Šl(θ), and Šh(θ). The function Š(θ) is sup-

ported by the three (fixed) posteriors p̄1, p̄2, p̄3 and has the limited domain [θl, θh]. The convex

function Šl(θ) is defined for all Θ, satisfies Š(θl) = Šl(θ
l) and is supported by the two posteriors

p̌l(θ), q̌l(θ). Likewise, the convex function Šh(θ) is also defined for all Θ, satisfies Š(θh) = Šh(θ
h)

and is supported by the two posteriors p̌l(θ), q̌h(θ).
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Define

ˇ̌S(θ) ≡

 max{Š(θ), Šl(θ), Šh(θ)} if θ ∈ [θl, θh]

max{Šl(θ), Šh(θ)} otherwise.

Being the maximum over convex functions, ˇ̌S is convex. Hence, if Θ̂ ̸⊂ [θl, θh], the 3-

certificate menu is also not optimal, because the convexity of ˇ̌S implies that we can raise the

certifier’s profit by separating all types in Θ̂ with using either 2 or 3 certificates. □
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