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Abstract. We study the problem of assigning indivisible objects to agents where
each is to receive one object. To ensure fairness in the absence of monetary
compensation, we consider random assignments. Random Priority, also known as
Random Serial Dictatorship, is characterized by symmetry, ex-post efficiency and
probabilistic (Maskin) monotonicity – whenever preferences change so that a given
deterministic assignment is ranked weakly higher by all agents, the probability of
that assignment being chosen should be weakly larger. Probabilistic monotonicity
implies strategy-proofness for random assignment problems and is equivalent on
a general social choice domain; for deterministic rules it coincides with Maskin
monotonicity.
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1. Introduction

Many allocation problems require us to assign indivisible objects to agents such
that each agent receives at most one object – public housing associations assign
apartments to tenants, education administrations match teachers to schools, and
municipalities assign daycare spots to children. In the absence of compensating
transfers, and in light of the indivisible nature of objects, a desire to treat agents
equally forces us to consider randomized assignments.

A random assignment rule prescribes a lottery over deterministic assignments
for any possible profile of agents’ (strict) preferences over objects. Arguably one of
the simplest such rules is known as the Random Priority rule (RP , also known as
random serial dictatorship) implemented for example by the following extensive form
mechanism: order agents uniformly at random and let each agent, one after another
according to the realized ordering, choose their most-preferred among all objects still
available.

It is readily seen to be fair, efficient, and incentive compatible: it treats agents
with identical preferences equally from an ex ante point of view, all assignments
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2 AN AXIOMATIZATION OF THE RANDOM PRIORITY RULE

arising with positive probability are Pareto-efficient, and choosing the most-preferred
available object according to one’s true preferences is a dominant strategy – thus,
if the rule is implemented as a direct mechanism, where agents are asked to report
their preferences before the mechanism chooses optimally on their behalf, it is
strategy-proof.

Moreover, it satisfies another normatively appealing, property: it is responsive to
agents preferences, in that an assignment is more likely to be chosen once agents
consider it more preferred. More precisely, our new axiom, probabilistic (Maskin)
monotonicity, considers different preference profiles R, R′ and an assignment µ where
for each agent an assignments preferred to µ under R′ is also preferred to µ under
R – hence, compared to R, the assignment µ has moved up in each agents’ ranking
of assignments. In any such situation, probabilistic monotonicity requires that the
assignment µ arises with weakly larger probability under R′ than under R.

As our main result, we find that the random priority rule is the unique random
assignment rule satisfying symmetry, (ex post) efficiency, and probabilistic mono-
tonicity. Moreover, this characterization holds both in an ordinal framework, where
agents preferences are represented by rank order list of objects, as well as a cardi-
nal framework where prefences are described by von Neumann–Morgenstern utility
functions.

Note that the characterisation does not invoke strategy-proofness. This is be-
cause probabilistic monotonicity can be seen as a natural strengthening of strategy-
proofness, as we argue in our second proposition. In fact, on a general social choice
domain with strict preferences, probabilistic monotonicity and strategy-proofness are
equivalent – hence our characterisation of random priority may be seen as the counter-
part to the classic characterisation of random dictatorship as the only random social
choice rule on such domains satisfying (ex post) efficiency and strategy-proofness
due to Gibbard [1977].

Many authors have recognized the exceptional position that RP occupies among
random assignment rules. Abdulkadiroğlu and Sönmez [1998] and Knuth [1996]
independently showed that it is not only implemented by a random serial dictatorship
as described above but equivalently as the core from random endowments.1 Following
up on this surprising result, several authors have shown how randomization over
certain deterministic rules, so as to symmetrize the treatment agents, yields the
random priority rule [Pathak and Sethuraman, 2011, Lee and Sethuraman, 2011,
Carroll, 2014, Bade, 2020]:2 in the most general formulation, due to Bade [2020],
symmetrizing any strategy-proof, non-bossy, and ex post efficient rule yields RP .

1For this, they assume an equal number of agents and distinct objects.
2All these assume a unit supply of objects, i.e., do not consider the possibility of copies of

objects between which agents are indifferent.
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Interestingly, strategy-proofness and non-bossiness are equivalent to group-strategy-
proofness [Pycia and Ünver, 2023] and thus equivalent to Maskin monotonicity
[Takamiya, 2007].3

Thus, as randomization over Maskin monotonic and ex post efficient rules yields a
rule that still satisfies probabilistic monotonicity (and preserves ex post efficiency),
our characterization implies and unifies the previous equivalence results from Ab-
dulkadiroğlu and Sönmez [1998] to Bade [2020].

Further, Bade [2016] shows any ex post efficient and symmetric random assign-
ment rule to necessarily violate group-strategy-proofness4 so that randomizing over
group strategy proof (and ex post efficient) rules to arrive at a symmetrized random
assignment rule entails a loss of group strategy-proofness. In contrast, Maskin mono-
tonicity, equivalent to group strategy proofness, naturally generalizes to probabilistic
monotonicity and is in that form preserved under randomization.

Erdil [2014] was the first to show that RP is not characterized by symmetry, ex-post
efficiency and strategy-proofness in the presence of outside options – a longstanding
conjecture since Bogomolnaia and Moulin [2001] proved this to be the case for 3
agents and 3 acceptable objects. Basteck and Ehlers [2024] show RP not to be
characterized by these properties even in the absence of outside options. Hence, to
characterize RP in conjunction with symmetry and ex post efficiency, we are forced
to strengthen strategy-proofness, for example to probabilitic monotonicity.

Pycia and Troyan [2021] consider another strengthening of strategy-proofness – they
show that an obviously strategy-proof mechanism is symmetric and (ex post) efficient
if and only if it implements RP . In other word, their characterization strengthens
strategy-proofness to obvious strategy proofness (OSP)[Li, 2017]. OSP and prob-
abilistic monotonicity are logically independent. Note that the characterization or
RP provided by Pycia and Troyan [2021] refers to the possibility of implementing
it in an obviously strategy-proof way – if instead agents are asked to submit their
preferences in advance before the outcome is then computed by means of the random
priority rule, obvious strategy proofness will no longer be satisfied.5 Nonetheless, the
latter procedure still ensures probabilistic monotonicity.

Finally, (weak) Maskin monotonicity allows to characterize two of the most promi-
nent families of deterministic assignment rules. Kojima and Manea [2010] characterize

3Pycia and Ünver [2023] and Takamiya [2007] consider domains that are general enough to
allow for the possibility of multiple object copies; the same is the case for our characterization.
For a setting with unit supplies, the first equivalence was shown by Pápai [2000] (allowing for an
unequal number of objects and agents) and the second by Takamiya [2001] (assuming an equal
number of objects and agents, i.e., a housing market as in Shapley and Scarf [1974]).

4Zhang [2019] strengthens this implication by showing that such rules are strongly group
manipulable under some mild additional fairness axioms.

5For example, this procedure is used to assign students to secondary schools in the city of
Amsterdam: https://schoolkeuze020.nl/plaatsing/

https://schoolkeuze020.nl/plaatsing/
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deferred acceptance (with respect to some priority) by non-wastefulness, weak Maskin
monotonicity,6 and population monotonicity. Moreover, if weak Maskin monotonicity
is strengthened to Maskin monoticity, the only assignment rules satisfying the three
properties are efficient deferred acceptance rules.7 Morrill [2013] characterizes top-
trading-cycles (with respect to any priority) by efficiency, weak Maskin monotonicity,
independence of irrelevant rankings, and mutual best. Note that, a fortiori, both
deferred acceptance and top trading cycle rules satisfy Maskin monotonicity and
hence probabilistic monotonicity. However, neither satisfies OSP.

The paper is organized as follows: Section 2 introduces the model; Section 3
presents the results and discusses probabilistic monotonicity in more detail; Section
4 concludes with some remarks on non-symmetric assignment rules.

2. Model

2.1. Agents, objects, preferences. Let N be a set of agents and O be a set of distinct
objects (or object types), possibly including a null-object, denoted by ∅.8 For each
object x ∈ O, let qx denote the number of copies; if ∅ ∈ O, we set q∅ = ∣N ∣. Taking into
account a possible null-object, it is without loss of generality to assume ∑x∈O qx ≥ ∣N ∣.

Each agent i ∈ N holds strict preferences over the set of objects O, represented
by a linear order9 Ri whose asymmetric part we denote by Pi.10 Let Ri denote the
set of all strict preferences of agent i over O and let R = ×i∈NRi denote the set of
all preference profiles R = (R1, . . . , Rn). For a given object x and given Ri we write
U(x, Ri) = {y ∈ O∣yPix} for i’s (strict) upper contour set at x and denote the (strict)
lower contour set as L(x, Ri) = {y ∈ O∣xPiy}.

For any Ri ∈ R
i and any x, y ∈ O adjacent in Ri

11 we say that R′i differs from Ri by
a swap of x and y if R′i∣O/{x} = Ri∣O/{x}, R′i∣O/{y} = Ri∣O/{y} and yR′ix⇔ xRiy.
Let NRi

⊂ Ri denote the set or preferences in the neighbourhood of Ri, i.e., the set
of all preferences that differ from Ri by a swap of two objects adjacent in Ri.

2.2. Random Assignments. A (deterministic) assignment is a mapping µ ∶ N → O12

such that each object x ∈ O is assigned to at most qx agents, i.e., ∣{i ∈ N ∣µi = x}∣ ≤ qx.
6An assignment rule satisfies weak Maskin monotonicity if an assignment that is chosen at some

preference profile R and ranked weakly higher by all agents at another profile R′ will either still be
chosen or replaced by another assignment that Pareto-dominates it, i.e., ranked even higher by all
agents.

7I.e., deferred acceptance rules where priorities are Ergin-acyclic [Ergin, 2002] or that satisfy
bounded invariance Basteck and Ehlers [2024].

8Thus, our setup allows agents to not receive any (proper) object, be it because there are not
enough objects or because agents can reject an assigned object that they deem unacceptable in
comparison to some outside option.

9I.e., complete, transitive, and antisymmetric (xRiy and yRix together imply x = y).
10That is, xPiy whenever xRiy and x ≠ y.
11Two objects x, y ∈ O are adjacent in Ri, if U(x, Ri)/{x, y} = U(y, Ri)/{x, y}.
12We will write µi instead of µ(i) for any i ∈ N .
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Let M denote the set of all assignments. An assignment µ ∈ M is efficient under R

if there exists no µ′ ∈ M such that µ′iRiµi for all i ∈ N and µ′jPjµj for some j ∈ N .
Let PO(R) denote the set of all assignments efficient under R.

Let ∆(M) denote the set of all probability distributions over M to which we
refer to as random assignments. For a given p ∈ ∆(M) and µ ∈ M, let pµ denote
the probability assigned to µ under p and refer to supp(p) = {µ ∈ M∣pµ > 0} as the
support of p. We say that a random assignment p ∈∆(M) is ex-post efficient under
R if all assignments in its support are efficient, i.e., supp(p) ⊆ PO(R).

A random assignment p satisfies (assignment-)symmetry if for any two agents
i, j ∈ N such that Ri = Rj and any two deterministic assignments µ, µ′ such that
µi = µ′j, µj = µ′i and µk = µ′k for all k ∈ N/{i, j} we have pµ = pµ′ . In other words,
deterministic assignments that merely permute the roles of agents with identical
preferences arise with the same probability.13

A random assignment rule f maps preference profiles to random assignment, i.e.,
f ∶ R → ∆(M). We say that f is ex-post efficient, if f(R) is ex-post efficient for every
R ∈ R. It is symmetric, if f(R) is symmetric for every R ∈ R. It is deterministic, if
∣supp(f(R))∣ = 1 for every R ∈ R.

For our last axiom, consider two preference profiles R, R′ ∈ R and a deterministic
assignment µ. We say that R′ is a µ-monotonic transformation of R if for agents’
upper contour sets we have U(µi, R′i) ⊆ U(µi, Ri) for all i, i.e., if all agents rank
their assignment under µ weakly higher under R′i than under Ri. We say that a
random assignment rule f satisfies probabilistic (Maskin) monotonicity if for any
R, R′ ∈ R and µ ∈ M such that R′ is a µ-monotonic transformation of R we have
f(R′)µ ≥ f(R)µ.

Note that if f is deterministic, probabilistic monotonicity reduces to Maskin
monotonicity for deterministic, single valued rules.14

One of the most prominent random assignment rules is the Random Priority rule
(RP ), also known as random serial dictatorship. For that let ⊳ denote a strict priority
order over N and let Π denote the set of all strict priority orders. Given ⊳∈ Π, let
f⊳ denote the deterministic priority (or serial dictatorship) rule where agents are
assigned their most-preferred among all available objects in order of their priority.15

Then the Random Priority rule is defined by RP (R) = 1
n! ∑⊳∈Π f⊳(R) for all R ∈ R.

13One may also define symmetry, often referred to as equal-treatment-of-equals, with respect to
agents’ individual object assignment probabilities rather than the probabilities of choosing complete
assignment – see Section 2.3.

14A deterministic assignment rule f is said to satisfy Maskin montonicity if for any two profiles
R, R′ ∈ R and assignment µ ∈ M such that R′ is a µ-monotonic transformation of R, we have that
f(R) = µ implies f(R′) = µ.

15For any R ∈ RN and i1 ⊳ i2 ⊳ ⋯ ⊳ in, i1 receives her Ri1-most-preferred object in O (denoted
by f⊳i1

(R)), and for l = 2, . . . , n, il receives her Ril
-most-preferred object in O/{f⊳i1

(R), . . . , f⊳il−1
(R)}

(denoted by f≻il
(R)).
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Note that any f⊳ satisfies Maskin montonicity [Kojima and Manea, 2010], and hence,
RP satisfies probabilistic monotonicity.

2.3. Individual random assignments and welfare equivalence. Since agents’ prefer-
ences are only over their own assigned object, the literature on random assignments
has often focussed on agents’ individual object assignment probabilities, rather than
on the probabilities with which complete deterministic assignments are chosen.

Formally, for a given random assignment p, let pia denote the probability with
which agent i is assigned object a and let pi = (pia)a∈O denote i’s individual random
assignment. Two random assignments p, q are said to be (ex-ante) welfare-equivalent
if pi = qi for all i ∈ N , i.e., if they agree on agents’ individual object assignment
probabilities.16 Similarly, two random assignment rules, f and g, are welfare equivalent,
if f(R) and g(R) are welfare equivalent for every R.

A random assignment p is said to satisfy individual-assignment-symmetry if for
all i, j ∈ N , Ri = Rj implies pi = pj. It is clear that any random assignment that
satisfies assignment-symmetry (with respect to underlying deterministic assignments)
also satisfies individual-assignment-symmetry (with respect to agents’ individual
object assignment probabilities). Moreover, for any random assignment that satisfies
individual-assignment-symmetry, there exists a welfare equivalent assignment p′

that satisfies assignment-symmetry. Hence, if one is only interested in pinning
down random assignments up to welfare equivalence, rather than the exact convex
combination of deterministic assignments, assignment-symmetry is no more restrictive
than individual-assignment-symmetry.

Moreover, given any two random assignments p, q ∈∆(M) as well as some agent
i’s preference Ri, we say that pi stochastically Ri-dominates qi if for all x ∈ O,

∑
y∈U(x,Ri)

piy ≥ ∑
y∈U(x,Ri)

qiy.

A random assignment p stochastically R-dominates another random assignment q if
pi Ri-dominates qi for all i ∈ N . It is stochastic dominance (sd)-efficient, given R, if
there is no random assignment q ≠ p that stochastically R-dominates it.17

16Some papers directly define a random assignment as a matrix (pia)i∈N,a∈O rather than as a
convex combination of deterministic assignments. To the extend that on is interested in analysing
random assignments only up to welfare equivalence, this is well defined as any such matrix
(pia)i∈N,a∈O can be represented as a convex combination of deterministic assignments by (a slight
generalization of) the Birkhoff-von Neumann Theorem [Birkhoff, 1946].

17Bogomolnaia and Moulin [2001] refer to this as “ordinal efficiency”. It is equivalent to (ex
ante) Pareto-efficiency with respect to expected utilities for some von Neumann–Morgenstern utility
function representation of agents’ ordinal preferences over objects [McLennan, 2002].
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A random assignment rule f is said to be (sd)-strategy-proof if for all R ∈ R, all
i ∈ N and all R′i ∈ R

i, f i(R) stochastically Ri-dominates f i(R′i, R−i).18 Since the
definition relies only on agents’ individual random assignments and preferences, every
random assignment rules g that is welfare equivalent to a strategy-proof rule f will
itself be strategy-proof. Moreover, strategy-proofness can be decomposed into the
following three axioms [Mennle and Seuken, 2021]: A random assignment rule f

satisfies
● swap monotonicity iff for all i ∈ N , R ∈ R and R′i ∈ NRi

such that xPiy

and yP ′i x, we have (i) f iy(R′i, R−i) ≥ f iy(R) and (ii) f iy(R′i, R−i) = f iy(R) ⇒

f i(R′i, R−i) = f i(R).
● upper invariance iff for all i ∈ N , R ∈ R and R′i ∈ NRi

such that xPiy and
yP ′i x, we have f iz(R′i, R−i) = f iz(R) for all z ∈ U(x, Ri).
● lower invariance iff for all i ∈ N , R ∈ R and R′i ∈ NRi

such that xPiy and
yP ′i x, we have f iz(R′i, R−i) = f iz(R) for all z ∈ L(y, Ri).
● strategy proofness iff it satisfies swap monotonicity, upper-, and lower invari-

ance [Mennle and Seuken, 2021, Theorem 1].

3. Results

3.1. Axiomatisation. We are now set to state our main result: symmetry, ex-post
efficiency and probabilistic monotonicity characterize the Random Priority Rule.

Theorem 1. Let f be a random assignment rule. Then f satisfies symmetry, ex post
efficiency, and probabilistic monotonicity if and only if f is the Random Priority
Rule.

To prove the Theorem, let us first consider a preference profile R∗ where all agents’
preferences coincide. In that case symmetry and ex post efficiency require that f(R∗)

assigns equal probability to all Pareto efficient deterministic assignments – and hence
agrees with RP (R∗). We then proceed by induction: measuring the distance of a
preference profile R to R∗ by the number of necessary pairwise swaps of objects
in agents’ preference rankings to move from R to R∗ – i.e., the Kemeny distance
of R and R∗ – and assuming that for all profiles with a smaller distance to R∗ we
know that f and RP coincide (induction hypothesis), we show that this implies
f(R) = RP (R) (induction step).

To illustrate the induction step, suppose, towards a contradiction, that we have
a profile R where f(R) ≠ RP (R). Since the probabilities over all Pareto efficient
assignments sum to one, there must be a Pareto efficient assignment µ that is chosen

18Sd-strategy-proofness is equivalent to the requirement that for any von Neumann–Morgenstern
utility function compatible with a given ordinal ranking of objects, submitting the true ordinal
ranking maximizes an agent’s expected utility.
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with higher probability under f than under RP , i.e., for which fµ(R) > RPµ(R), as
well as another Pareto efficient assignment µ′ for which fµ′(R) < RPµ′(R). Since both
assignments are Pareto efficient, they must differ in the assignment of at least two
agents. Hence, to illustrate the proof by means a minimal example, assume that for
two agents i, j ∈ N we have µi = µ′j = x, µj = µ′i = y while for all k ∈ N/{i, j} we have
µk = µ′k and for all µ̂ ∈ M/{µ, µ′} we have fµ̂(R) = RPµ̂(R).

Then we must have that i’s upper contour set U(x, Ri) is ranked as under R∗i ,
i.e., Ri∣U(x, Ri) = R∗i ∣U(x, Ri) – otherwise we could move to R′ = (R′i, R−i) where
compared to Ri, R′i reorders objects in U(x, Ri) in the same order as they appear
in R∗i . Since R′ is closer to R∗ than R while probabilistic monotonicity ensures
that fµ(R′) = fµ(R) ≠ RPµ(R) = RPµ(R′) this contradicts the induction hypothesis.
In the same way, via µ′, we find that Ri∣U(y, Ri) = R∗i ∣U(y, Ri). Symmetrically,
for the lower contour sets of x at Ri, we find that Ri∣L(x, Ri) = R∗i ∣L(x, Ri) and
Ri∣L(y, Ri) = R∗i ∣L(y, Ri). Thus, either Ri = R∗i or Ri differs from R∗i by a pairwise
swap of x and y.

The same is true for j – either Rj = R∗j = R∗i or Rj differs from R∗j by a pairwise
swap of x and y. Now, since in µ we have µi = x and µj = y while the assignment
of x and y is reversed under µ′ – and since both assignments are Pareto effcient –
we must have that i and j rank x and y in the same order. Thus Ri = Rj. But then
symmetry or RP demands that fµ(R) > RPµ(R) = RPµ′(R) > fµ′(R), contradicting
symmetry of f .

To complete the proof we establish the induction step for general µ and µ′, i.e.,
assignments that arise with different probabilities under f and RP and that may
differ by more than the assignment of two agents and objects. Moreover, we verify the
converse direction, i.e., the fact that RP (R) satisfies not only symmetry and ex post
efficiency but also probabilistic monotonicity. Both can be found in the Appendix.

3.2. Expected utility and preference intensities. Instead of assuming that agents’
preferences are given by linear orders over the set of objects O, we may also assume
that they are described by von Neumann–Morgenstern utility functions, i.e., that
there exist ui ∶ O → R for each i ∈ N . Depending on the interpretation attached, we
may thus capture preference intensities or complete agents’ preferences over lotteries
of objects by assuming that they compare different lotteries by their corresponding
expected utility. Restricting attention to strict preferences over objects, we require
that ui(x) ≠ ui(y) for all i ∈ N , x, y ∈ O, and x ≠ y. Let U i denote the set of all such
utility functions of agent i and let U = ×i∈NU i denote the set of all utility profiles
u = (u1, ..., un). The associated strict preference relations and preference profiles are
denoted Ru

i and Ru = (Ru
1 , ..., Ru

n).19

19I.e. for all x, y ∈ O we have xRu
i y ∶⇔ ui(x) ≥ ui(y).
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A random assignment rule on the domain U then maps utility profiles to random
assignments, i.e., f ∶ U → ∆(M). It satisfies probabilistic monotonicity, if probabilistic
monotonicity is satisfied for the associated strict preferences Ru20 and ex post efficient
if f(u) is ex post efficient for all u ∈ U .

A random assignment p is symmetric with respect to u ∈ U if for any two agents
i, j ∈ N such that ui = uj and any two deterministic assignments µ, µ′ such that
µi = µ′j, µj = µ′i and µk = µ′k for all k ∈ N/{i, j} we have pµ = pµ′ . In other words,
deterministic assignments that merely permute the roles of agents with identical
utility functions arise with the same probability. Note that this allows for unequal
treatment of agents with identical ordinal preferences over objects, Ru

i = Ru
j , and

thus weakens symmetry as defined with respect to R. A random assignment rule is
symmetric on U if f(u) is symmetric for any u ∈ U .

Despite the fact that symmetry with respect to u is weaker than symmetry with
respect to Ru, it gives rise to a characterization of the Random Priority rule RP on
the domain of (profiles of) von Neumann–Morgenstern utiltity functions in analogy
to Theorem 1.

Proposition 1. Let f be a random assignment rule on U . Then f satisfies symmetry
on U , ex post efficiency, and probabilistic monotonicity if and only if f is the Random
Priority Rule.

Proof. Crucially, observe that probabilistic monotonicity implies ordinality of f , i.e.,
that for any µ ∈ M and any two u, u′ ∈ U such that Ru = Ru′ , we have fµ(u) = fµ(u′):
since Ru is a µ-monotonic transformation of Ru′ , probabilistic monotonicity demands
fµ(u) ≥ fµ(u′) and, by a symmetric argument, fµ(u) ≤ fµ(u′).

Hence f takes into account only agents’ ordinal preferences Ru rather than the
richer information encoded in their von Neumann–Morgenstern utility functions u.
Thus, to be symmetric with respect to any u ∈ U , f has to be symmetric with respect
to the associated preference profiles Ru. The claim then follows from Theorem 1. □

3.3. Probabilistic monotonicity. Given the crucial rule of probabilistic monotonicity
in the characterizations above, we complement Theorem 1 and Proposition 1 with
some observations on the nature of the axiom. In particular we find that, anal-
ogous to strategy-proofness, probabilistic monotonicity can be decomposed into
swap monotonicity, upper-, and lower invariance, where each of the three axioms is
strengthened in that we require it to apply to the probability weights of separate
deterministic assignment, rather than to sums of probability weights over several
deterministic assignments (that correspond to agents’ individual object assignment

20I.e., f satisfies probabilistic monotonicity if for any u, u′ ∈ U and µ ∈ M such that Ru′ is a
µ-monotonic transformation of Ru, we have fµ(u′) ≥ fµ(u).
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probabilities). Hence, for random assignment problems, probabilistic monotonicity
implies strategy-proofness.

A random assignment rule f satisfies

● assignment swap monotonicity iff for all i ∈ N , R ∈ R and R′i ∈ NRi
such that

xPiy and yP ′i x, we have (i) fµ(R′i, R−i) ≥ fµ(R) for all µ with µi = y, and (ii)
fµ(R′i, R−i) = fµ(R) for all µ with µi = y implies f(R′i, R−i) = f(R).
● upper assignment invariance iff for all i ∈ N , R ∈ R and R′i ∈ NRi

such that
xPiy and yP ′i x, we have fµ(R′i, R−i) = fµ(R) for all µ where µi ∈ U(x, Ri).
● lower assignment invariance iff for all i ∈ N , R ∈ R and R′i ∈ NRi

such that
xPiy and yP ′i x, we have fµ(R′i, R−i) = fµ(R) for all µ where µi ∈ L(y, Ri).

Proposition 2. A random assignment satisfies probabilistic monotonicity if and only
if it satisfies assignment swap monotonicity, upper assignment invariance, and lower
assignment invariance.

Proof. First observe that any violation of upper- or lower assignment invariance also
constitutes a violation of probabilistic monotonicity. The same holds if assignment
swap monotonicity is violated in that for some i ∈ N , R ∈ R, R′i ∈ NRi

such that xPiy

and yP ′i x, and µ with µi = y we have fµ(R′i, R−i) < fµ(R). If instead fµ(R′i, R−i) =

fµ(R) for all µ with µi = y, yet f(R′i, R−i) ≠ f(R), there is some µ′ with µ′i ≠ y

such that fµ′(R′i, R−i) > fµ′(R) – again, this constitutes a violation of probabilistic
monotonicity. Hence, to satisfy probabilistic monotonicity, a random assignment rule
must satisfy all three properties.

For the other direction, consider a violation of probabilistic monotonicity, i.e., two
preference profiles R, R′ ∈ R and an assignment µ ∈ M such that R′ is a µ-monotonic
transformation of R21 for which we have fµ(R′) < fµ(R). Note that we can move
from R to R′ in a sequence of profiles R = R1, R2, R3..., Rm = R′ where at each step
two consecutive profiles differ only by a pairwise swap of two adjacent objects in one
agents’ preferences and where the successor profile is a µ-monotonic transformation
of its predecessor. Thus, at some point of the sequence, there are Rk and Rk+1 such
that fµ(Rk+1) < fµ(Rk). Let i be the agent for whom Rk

i and Rk+1
i differ and denote

the two objects adjacent in Rk
i that are swapped as we move to Rk+1

i as x and y;
without loss of generality assume that xRk

i y and yRk+1
i x. Since Rk+1 is a µ-monotonic

transformation of Rk, we have µi ≠ x.
Now, if µi ∈ U(x, Rk

i ), the fact that fµ(Rk+1) < fµ(Rk) implies that f violates
upper assignment invariance. Similarly, if µi ∈ L(y, Rk

i ), we find that f violates
lower assignment invariance while if µi = y, f violates assignment swap monotonicity.

21I.e., U(µi, R′i) ⊆ U(µi, Ri) for all i ∈ N .
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Hence, any rule that violates probabilistic monotonicity must violate one of the three
properties. □

Corollary 1. Probabilistic monotonicity implies strategy-proofness. The converse does
not hold: there exist strategy-proof random assignment rules for which the rule itself,
as well as any other random assignment rule welfare equivalent to it, fails to satisfy
probabilistic monotonicity

The first part is an immediate consequence of Proposition 2 above and Theorem 1
in [Mennle and Seuken, 2021], that decomposes strategy-proofness into (i) swap
monotonicity, (ii) upper invariance, and (iii) lower invariance, each of which is
weaker than their counterpart referring to assignments. The fact that probabilistic
monotonicity is in fact stronger than strategy-proofness (rather than equivalent to)
follows from Theorem 1 above as well as Proposition 3 in [Erdil, 2014] that shows
RP not to be characterized by symmetry, ex post efficiency, and strategy-proofness.
While the construction in Erdil [2014] relies on the possibility that agents may remain
unassigned (or, equivalently, assumes that there is a (null-)object with at least ∣N ∣
copies), Basteck and Ehlers [2024] show that RP is not characterized by symmetry,22

ex post efficiency, and strategy-proofness even in the absence of outside options.

If we do not confine ourself to the domain of random assignment problems –
where agents have strict preferences over their own assigned object but are otherwise
indifferent regarding the assignment – but instead consider general social choice
problems with strict preferences over all possible outcomes, probabilistic monotonicity
and strategy proofness are equivalent. Formally, let N be the finite set of agents, O be
the finite set of outcomes, let Ri denote agent i’s strict preferences over all outcomes,
and denote a (strict) preference profile as R = (Ri)i∈N . The set of all possible profiles
is denoted R and a (random) social choice rule is a mapping f ∶ R →∆(O) where
∆(O) denotes the set of probability distributions over O.23 Refer to this as a general
social choice domain (given N and O). A random social choice rule f is strategy-
proof if for all Ri, R′i and R−i we find that f(Ri, R−i) stochastically Ri-dominates
f(R′i, R−i).24 Equivalently, Gibbard [1977] defines strategy-proofness such that, for
any underlying von Neumann–Morgenstern utility function compatible with Ri,
reporting Ri truthfully maximizes an agents expected utility. A random social choice
rule satisfies probabilistic monotonicity if for any two R, R′ and o ∈ O, such that R′

22Both Erdil [2014] and Basteck and Ehlers [2024] consider individual-assignment-symmetry,
but the constructed rules also satisfies symmetry with respect to complete assignments.

23Gibbard [1977] refers to these as decision schemes.
24I.e., if ∑y∈U(x,Ri) piy ≥ ∑y∈U(x,Ri) qiy where U(x, Ri) = {y ∈ O/{x}∣yRix} denotes the strict

upper contour set at x.
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is an o-monotonic transformation of R we find that f(R′) chooses o with weakly
higher probability than f(R).

Fact 1. A random social choice rule f , defined on on a general social choice domain,
is strategy-proof if and only if it satisfies probabilistic monotonicity.

This follows, upon closer inspection, from Lemma 2 in Gibbard [1977] (where ‘non-
perverseness’ corresponds to swap monotonicity and ‘localizedness’ can be shown to
be equivalent to lower- and upper- invariance).25 Hence, in the classic characterization
of Random Dictatorship as the only social choice rule on a general social choice
domain satisfying ex post efficiency and strategy-proofness,26 we may replace the last
axiom by the equivalent requirement of probabilistic monotonicity. Interestingly, as
we leave the domain of general social choice problems (with strict preferences) and
move to the domain of random assignment problems, probabilistic monotonicity and
strategy-proofness diverge – and it turns out that only probabilistic monotonicity,
rather than strategy-proofness, yields a characterization of the Random Priority Rule
in analogy to Gibbard’s and Sonnenschein’s characterization of Random Dictatorship.

Finally, let us compare probabilistic monotonicity to obvious-strategy-proofness
(OSP) [Li, 2017]. Both strengthen strategy-proofness, with the caveat that OSP
applies not to random assignment rules per se, but to possible extensive form
mechanisms implementing them.27 We find that both are logically independent:
there exist OSP-implementable random assignment rules that violate probabilistic
monotonicity and vice versa.

Example 1. An OSP-implementable (random) assignment rule violating probabilistic
monotonicity. Consider N = {1, 2, 3}, O = {a, b, c} and a rule f that (i) awards 1
their most preferred object among O according to R1, (ii) if 1’s second and third
most preferred objects are ranked alphabetically, i.e., aR1b, aR1c, or bR1c, then 2
receives their most preferred among the remaining objects28 while otherwise (iii) 3
receives their most preferred of the remaining objects before (iv) the last remaining
agent is assigned the last remaining object. This rule can be readily implemented via

25For deterministic, singleton valued social choice rules on the domain of strict preferences, Muller
and Satterthwaite [1977] show strategy-proofness to be equivalent to ‘strong positive association’,
i.e., Maskin monotonicity.

26Gibbard [1977] reports this result as Corollary 1 and credits Hugo Sonnenschein. It is straight-
forward to see that once we assume anonymity, i.e., require agents to be treated symmetrically, the
randomization needs to be uniform.

27More precisely, a random assignment rule is OSP-implementable, if there exists an extensive
form mechanism that implements the rule in obviously dominant strategies. Since any obviously
dominant strategy is, a fortiori, a dominant strategy, any OSP-implentable rule is strategy proof.

28The example does not rely on randomization, but instead constructs a deterministic rule. It can
be readily generalized to non-degenerate random assignment rules, e.g., by making the probability
with which 2 gets to choose dependent on R1.
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sequential barter [Bade and Gonczarowski, 2016] and is hence OSP-implementable
(as well as efficient). To see that it violates probabilistic monotonicity, consider the
preference profile R such that aRibRic for all i ∈ N . Then f returns the assignment
µ = (µ1, µ2, µ3) = (a, b, c) (with probability 1). If instead we have R′ such that
aR′1cR′1b, while as before aR′ibR

′
ic for all i ∈ {2, 3}, then f returns µ′ = (a, c, b) –

despite the fact that R′ constitutes a µ-monotonic transformation of R.

For the other direction, Li [2017] shows that the core in Shapley-Scarf housing
markets [Shapley and Scarf, 1974], while implementable in dominant strategies by a
top-trading-cycle mechanism, is not OSP-implementable. Nonetheless, it is (Maskin)
monotonic [Sönmez, 1996, Takamiya, 2001]. Similarly, deferred acceptance satisfies
monotonicity [Kojima and Manea, 2010] but fails to be OSP-implementable [Ashlagi
and Gonczarowski, 2018].

4. Concluding remarks

Besides being easily implementable and commonly used, the Random Priority
Rule (RP ) is the only random assignment rule satisfying probabilistic monotonicity,
symmetry, and ex post efficiency (Theorem 1). Probabilistic monotonicity has not
been considered in the literature so far, but constitutes a natural strengthening of
strategy-proofness (Proposition 2) on the domain of assignment problems.

The fact that our characterisation of RP relies on strengthening strategy proofness
may be considered particularly compelling given that strategy proofness, together
with symmetry and ex post efficiency, is insufficient to characterise RP [Erdil, 2014,
Basteck and Ehlers, 2024]29 – there are other random assignment rules on the domain
of ordinal preferences that satisfy strategy-proofness, symmetry and ex post efficiency
but are not welfare equivalent to RP .

Our characterizations of Random Priority assumes that agents with identical
preferences should be treated symmetrically, which may be viewed as a fairness
requirement and indeed the main motivation to consider randomization. However,
depending on the application, equal treatment may not be desired – instead we
may want to prioritize some agents over others and restrict symmetry to apply only
between agents of equal priority. For example, dormitories may be assigned based on
seniority, or school seats by favouring applicants with better grades.

If such priorities are given by a weak priority order of agents ⊵ and we consider
fairness to require that (i) no agent of strictly higher priority should (ex post) envy
an agent of lower priority (i.e., prefer the other agent’s assignment over their own),
and (ii) between agents of equal priority assignment symmetry should hold, then our

29The construction by Erdil [2014] relies on the existence of outside options; Basteck and Ehlers
[2024] eliminate this domain restriction.
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characterizations are readily adapted in that a random assignment rule is ex post
efficient, probabilistically monotonic and fair in the above sense if and only if it is a
non-uniform random priority rule where we randomize uniformly over the subset of
deterministic priority rules compatible with ⊵. Put differently, ties in ⊵ need to be
broken uniformly at random if one wants to satisfy all three requirement.

It seems plausible that probabilistic monotonicity can similarly inform market
designers’ choices when agents’ priorities are weak and object specific, e.g., in cases
where some agent should be prioritized over another at some school while the reverse
may hold at another – a setting in which the question of how to break ties has long
been debated [Erdil and Ergin, 2008, Abdulkadiroğlu et al., 2009, Ashlagi et al.,
2019, De Haan et al., 2023].

Appendix

Proof of Theorem 1. We first establish that the random priority rule RP satisfies the
three properties in question. For symmetry and ex post efficiency this is immediate; for
probabilistic monotonicity, this follows from the fact that RP is a convex combination
of the n! serial dictatorships f⊳ associated with all possible strict priority orders
over agents, ⊳∈ Π. Each such deterministic rule f⊳ constitutes a Pareto efficient
deferred acceptance rule (with objects’ priorities over agents uniform) and hence
satisfies Maskin monotonicity [Kojima and Manea, 2010]. As probabilistic (Maskin)
monotonicity is preserved for convex combinations, this completes the if part of the
proof.

For the other direction consider a preference profile where all agents share the
same preferences, i.e., R∗ such that R∗i = R∗j for all i, j ∈ N . Then symmetry and
ex post efficiency of f and RP imply that f(R∗) = RP (R∗) as each Pareto efficient
assignment is chosen with equal probability under both rules. Now, for an arbitrary
preference profile R ∈ R let dR denote the Kemeny-distance between R and R∗, i.e.,
the number of pairwise swaps of adjacent objects that are necessary to move from
R to R∗. Define R≠ as the set of those profile for which f(⋅) and RP (⋅) differ and,
towards a contradiction, assume that R≠ ≠ ∅. Let δ be the minimal distance to R∗

among profiles in R≠, i.e.,
δ = min

R∈R≠
dR,

and define Rδ as the set of profiles R ∈ R≠ with dR = δ.
Next, for any profile R ∈ Rδ consider those assignments where f and PR differ,

i.e., MR,+ ∶= {µ∣fµ(R) > RPµ(R)} and MR,− ∶= {µ∣fµ(R) < RPµ(R)}. Any two
assignments µ ∈ MR,+, µ′ ∈ MR,− will differ in the assignment of some objects to
some agents, i.e., there will be a set of agents Iµ,µ′ ⊂ N such that µi ≠ µ′i if and only
if i ∈ Iµ,µ′ .
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Finally, let us consider a specific R ∈ Rδ with two assignments µ ∈ MR,+, µ′ ∈ MR,−

such that ∣Iµ,µ′ ∣ is minimal, i.e., such that for any R̃ ∈ Rδ and µ̃ ∈ MR̃,+, µ̃′ ∈ MR̃,−

we have ∣Iµ,µ′ ∣ ≤ ∣Iµ̃,µ̃′ ∣. If R≠ is indeed non-empty, such a profile R, together with
two assignments, exists – conversely, towards the desired contradiction, we will show
that such an R does not exists.

For that, let us first define the set of objects assigned to different agents in µ and
µ′ as Z = {z ∈ O∣∃ i ∈ Iµ,µ′ ∶ z = µi or z = µ′i}. Moreover, let us label the objects in Z

as Z = {z1, z2, ..., zm} such that zpR∗i zq if and only if 1 ≤ p ≤ q ≤ m. For each agent
i ∈ Iµ,µ′ denote their Ri-most preferred object among all objects in Z as zi, i.e., ziRix

for all x ∈ Z. Next, since f is ex post efficient and since fµ(R) > RPµ(R) ≥ 0, µ is a
Pareto-efficient assignment given R; by a symmetric argument, so is µ′. Thus, there
is some agent i ∈ Iµ,µ′ who receives their Ri-most preferred among all objects in Z

under µ, i.e., µi = zi: first, for each k ∈ Iµ,µ′ with µk ≠ zk it must be that all copies
of zk are assigned, i.e., ∣{l ∈ N ∣µl = zk}∣ = qzk as otherwise there would be a possible
Pareto improvement on µ; second, this implies that there is some l ∈ Iµ,µ′/{k} for
whom µl = zk; third, if there was no agent i ∈ Iµ,µ′ receiving object zi under µ, there
would then be a top-trading cycle of agents in Iµ,µ′ and objects Z that would allow
for a Pareto-improvement – a contradiction. Analogously some agent j ∈ Iµ,µ′ receives
their Rj-most preferred object among objects in Z in µ′, i.e., µ′j = zj . Note that i ≠ j

as, by the definition of Iµ,µ′ , µi ≠ µ′i. Thus ∣Iµ,µ′ ∣ ≥ 2. We consider three cases.

Case 1: µi = zi = z1, µ′j = zj = z1. Then µ′i = zp ≠ z1 for some p, and z1R∗i zp.
Since R ∈ Rδ, it must be that for the strict upper contour set U(zp, Ri) we have
Ri∣U(zp, Ri) = R∗i ∣U(zp, Ri) – otherwise we could move to R′i by reordering objects
in U(zp, Ri) as in R∗i , reducing the Kemeny distance to dR′ < δ while keeping
fµ′(R′i, R−i) = fµ′(R) < RPµ′(R) = RPµ′(R′i, R−i) (where the equalities follow from
probabilistic monotonicity). Symmetrically, we find Ri∣L(z1, Ri) = R∗i ∣L(z1, Ri) and
hence Ri = R∗i . In the same way, we find that Rj = R∗j = R∗i .

Now, if ∣Iµ,µ′ ∣ = 2 so that µ and µ′ differ only in the assignment of two individuals,
then µ′i = µj as Pareto efficiency demands that µ′i is the R∗i -most preferred object
among all those still available given µ′j = z1 and µ′k, k ≠ i, j while the same holds for
µj (given µi = z1 and µk = µ′k for all k ≠ i, j). Hence this falls under the sub-case we
considered in the main text.

If instead ∣Iµ,µ′ ∣ ≥ 3 consider µ̂ that differs from µ′ only in that the roles of i and
j are reversed, i.e., µ̂i = µ′j, µ̂j = µ′i, and µ̂k = µ′k for k ≠ i, j. By symmetry we still
have fµ̂(R) = fµ′(R) < RPµ′(R) = RPµ̂(R) so that µ̂ ∈ MR,−, yet µ and µ̂ differ in the
assignment of fewer agents than µ and µ′ (as i is assigned the same object z1 under
both µ and µ̂) – hence µ and µ′ were not chosen so as to minimize ∣Iµ,µ′ ∣ after all, a
contradiction.
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Case 2: µi = zi = z1, µ′j = zj = zq ∈ Z with q > 1. As in case 1, this implies Ri = R∗i
while for j we find that Rj ∣L(zq, Ri) = R∗j ∣L(zq, Ri). Hence z1 is ranked adjacent
and immediately below zq in Rj. Moreover, this implies that in µ, j is assigned z1

– otherwise µj = zp ranked below z1 in Rj and we could move to R′j by reordering
objects in U(zp, Ri) as in R∗j , reducing the Kemeny distance to dR′ < δ while keeping
fµ(R′j, R−j) ≠ RPµ(R′j, R−i). Pareto efficiency of µ implies that all copies of zq = zj

must be assigned to some agent in µ so that there is some k ∈ Iµ,µ′ for whom we have
µk = zq. Further, once more by Pareto efficency of µ, we have zqPkz1, as otherwise
a trade by j and k would constitute a Pareto improvement on µ. But then, as for
j, we find that z1 is ranked adjacent and immediately below zq in Rk and that in
µ′, k is assigned z1. As in Case 1, we may then consider µ̂ that differs from µ′ only
in that the roles of j and k are reversed, i.e., µ̂j = z1 = µ′k, µ̂k = zq = µ′j and arrive
at a contradiction in that µ̂ ∈ MR,−, yet µ and µ̂ differ in the assignment of fewer
agents than µ and µ′. In the same way, the case µi = zp ∈ Z with p > 1, µ′j = z1 can
be shown to lead to a contradiction.

Case 3: µi = zi = zp ∈ Z, µ′j = zj = zq ∈ Z with p, q > 1. As in case 2, we find
that Rj ∣L(zq, Ri) = R∗j ∣L(zq, Ri), that z1 is ranked adjacent and immediately below
zq in Rj, as well as that in µ, j is assigned z1. In the same way, we find that
Ri∣L(zp, Ri) = R∗i ∣L(zp, Ri), that z1 is ranked adjacent and immediately below zp in
Ri, as well as that in µ′, i is assigned z1.

If zp = zq then i and j have identical preferences. Thus, as in case 1, if ∣Iµ,µ′ ∣ = 2, this
falls under the sub-case considered in the main text. If instead ∣Iµ,µ′ ∣ ≥ 3 consider µ̂

that differs from µ′ only in that the roles of i and j are reversed, i.e., µ̂i = µ′j , µ̂j = µ′i,
and µ̂k = µ′k for k ≠ i, j. By symmetry we still have fµ̂(R) = fµ′ < RPµ′ = RPµ̂(R), yet
µ and µ̂ differ in the assignment of fewer agents than µ and µ′ – a contradiction.

If instead zp ≠ zq, then as in Case 2 there exist another agent k in Iµ,µ′ with
µk = zq. Since µ is Pareto efficient, and zqPjz1, we have zqPkz1. In the same way
as before, this implies that z1 is ranked adjacent and immediately below zq in Rk

and that µ′k = z1. As in Case 2, we may then consider µ̂ that differs from µ′ only in
that the roles of j and k are reversed, i.e., µ̂j = z1 = µ′k, µ̂k = zq = µ′j and arrive at a
contradiction in that µ and µ̂ differ in the assignment of fewer agents than µ and µ′.

□
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