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Abstract

A large supplier (principal) contracts with a small firm (agent) to re-
peatedly provide working capital in return for payments. The total factor
productivity of the agent is private and follows a Markov process. More-
over, the agent is less patient than the principal. We solve for the opti-
mal contract in this environment. Distortions are pervasive and efficiency
unattainable. The optimal contract is characterized by two key properties:
restart and shutdown, which capture various aspects of contracts offered in
the marketplace. The optimal distortions are completely pinned down by
the number of low TFP shocks since the last high shock. Once a high shock
arrives, the contract loses memory and repeats the same cycle, we call this
endogenous resetting feature restart. If ex ante agency frictions are high,
the principal commits to not serving the low type, we call this shutdown.
The principal prefers a patient agent if the interim agency friction, as mea-

sured by the persistence of the private information is large, and she prefers
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an impatient agent if it is small. Finally, when global incentive constraints
bind, we (i) provide the complete recursive solution, and (ii) characterize

a simpler incentive compatible contract that is approximately optimal.

1 Introduction

Ever so often, as the juggernaut of a literature ferries along, we must stop it in
the tracks, to evaluate certain assumptions that we may then consider standard.
One such assumption in dynamic models of mechanism design and agency models
of dynamic contracting is that all parties have an equal rate of time preference.
A significant parametric restriction, it is at times a simplifying device and at
other times a modeling habit. Allowing for unequal discounting reveals to the
economist the robustness of her results to the wider parametric range, and in the
process she may uncover hitherto unexplored dynamic tradeoffs.

This paper studies a dynamic screening model with persistent private infor-
mation where the principal is more patient than the agent. One may think of
a venture capitalist investing in a startup, a government deciding on tax sched-
ules with objective of redistribution amongst a population, or an intermediary
supplying a vital input to a firm to produce a final good. We focus on the last
interpretation, but urge the reader to think of the framework more broadly, dis-
tilling through it two key economic forces: unequal discounting and persistent
agency frictions. The interaction of the two produces intertemporal gains from
time scripted trade and intertemporal costs of incentive provision.

There are at least three motivations for analyzing the said model. First, in
many long-term contractual situations constrained by private information one
party is “financially bigger” or more integrated in capital markets than the other;
an easy way of capturing this asymmetry is unequal discounting[l] In fact, the
literature is rife with evidence of limited access to finance as a binding constraint

in economic transactions] What kind of contracts do we expect to observe in

'We have p = e™" and 4 = e~° where r and s are respectively the interest rates faced

by the principal and agent in the market with s > r, and the exponential representation
approximates a continuously compounded principal amount.

2In a survey of 1050 CFOs across the US, Europe and Asia, (Campello et al|(2010) find a
considerable impact of credit constraints on real firm behavior in the aftermath of the Great
Recession. [Deaton| (1991) and |Carroll (1992) make the theoretical and empirical case respec-
tively of the importance of liquidity constraints in analyzing consumption. In the celebrated



such environments? Second, behaviorally speaking, it is natural for two parties
in a contract to have different time horizons, or different assessment of the proba-
bility survival of the transaction; both situations can be represented, at least to a
reduced form, by unequal discounting| And, third, from a more theoretical per-
spective, how robust are the predictions in the burgeoning literature on dynamic
mechanism design to the violations of the assumption of equal discounting? How
do allocative distortions evolve and influence long-term efficiency 7

We are not the first ones to study dynamic contracting with unequal discount-
ing, however, to the best of our knowledge, this is the first paper to explore its
implications in a dynamic screening or adverse selection model with persistent
private informationE] The word persistent is imperative for it adds a realistic di-
mension to the underlying agency frictiong’, and as we will see later, it also adds
memory to allocative distortions. The realism though comes with a technical
challenge- it introduces potentially binding global incentive constraints.

The formal model entails a “small” firm (agent) with a private production
technology, its total factor productivity (TFP) changes periodically according to
a two state Markov process, and a “large” supplier (principal) of capital that is
critical for production. The principal is more patient than the agent. A contract
here is a dynamic menu of capital allocations to the agent in return for payments
to the principal. We solve for the profit maximizing contract of the principal
subject to incentive compatibility and individual rationality constraints for the
agent.

In order to relax future incentive constraints and thereby reduce information

rents, the large supplier wants to backload payoffs for the small firm as much

Eaton and Gersovitz| (1981), the borrower faces a higher interest rate spread with incomplete
markets and defaulting risk.

3For example, Edmans et al. (2017) document misaligned intertemporal incentives in cor-
porations between the shareholders and CEOs.

4See excellent surveys by [Vohra| (2012)), Krihmer and Strausz (2015), Pavan| (2016), and
Bergemann and Valiméki| (2017) on dynamic mechanism design models where the principal
and agent(s) have the same rate of time preference.

®The question has been studied in relational contracting by |Opp and Zhu| (2015), in dynamic
moral hazard by DeMarzo and Sannikov| (2006) and Biais et al.| (2007), and in the public finance
literature with risk averse consumers by [Farhi and Werning| (2007) and |Acemoglu et al.| (2008).
See section [7] for further details.

8Imrohoroglu and Tiizel (2014) find the average persistence in total factor productivity of
firms in Compustat data from 1962 to 2009 to be 0.7. |Gomes| (2001) estimates firm productivity
in Compustat data from 1979 to 1998 through an AR(1) process and pegs the autocorrelation
coefficient to be at 0.62.
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Figure 1: Sample of allocations across time

as current incentive and individual rationality constraints would permit. On the
other hand, unequal discounting ensures that the supplier wants to frontload
payoffs of the small firm to arbitrage from the difference in interest rates to the
extent future incentive and individual rationality constraints would allow. These
two forces work in opposite directions leading to a cyclical pattern in optimal
distortions. The efficient amount of capital is supplied for the high TFP shock;
however, the low type is distorted and extent of this distortion, viz. its distance
from efficiency, is governed by this cyclical property we call restart.

Dynamic distortions under the restart property are a function of the number
of consecutive low shocks, once a high shock arrives the process repeats again.
Figure [1] plots a sample of optimal allocations where the two horizontal lines
depict the efficient levels for the high and low TFP shocks, respectively. In each
case the first period type is high. With persistent (or Markovian) types and equal
discounting the allocation is exclusively efficient. With independent types and
unequal discounting, the distortions persist but they do not have any memory.
Finally, with persistent types and unequal discounting, distortions have infinite
memory along consecutive low shocks, but these are revised every time a high
shock arrives/[]

As can be inferred from Figure for consecutive low shocks the optimal
allocation first falls and then rises to converge to a fixed value. In the figure
this convergent value clearly lies above zero. However, if the agency problem is
acute, the distortions do not decrease enough for the allocation to converge to a
positive number. In such a situation the optimal contract shuts down for the low

TFP shock, it gets zero supply across time. Both restarts and shutdowns capture

"Note that in all three cases in Figure the optimal contract is restart, but in the first two
it is trivially so since distortions along the low sequence of shocks have no memory.



certain salient features of real world contractsf] Both features are absent in the
equal discounting model.

The nature of dynamic distortions poses a question to the literature on dy-
namic (Myersonian) mechanism design- a slight perturbation of the standard
model of equal discounting renders long-term efficiency unachievable, distortions
are pervasive. With equal discounting, Besanko (1985) and Battaglini (2005))
show that ex post distortions converge to zero in the long run for the AR(1) and
two type Markov models respectively. (Garrett et al. (2018)) show that distortions
converge to zero on average for more general types’ processes’| Our results make
clear that these predictions will not hold for unequal discounting. In the language
of financial economics, the Modigliani-Miller theorem does not hold even asymp-
totically; capital structure is perennially relevant and long-run value of economic
surplus follows a non-trivial invariant distribution [’

Does the principal prefer a patient or impatient agent? Using ex ante profit
as the objective, we show that the answer to this question depends on the extent
of interim agency friction as measured by the persistence in the agent’s private
information. For limited agency problems (when private information is almost
independent), the principal prefers a patient agent. However, for large levels of
agency frictions (when private information is highly correlated), the principal
actually prefers the agent to be myopic. The principal incurs two costs: dynamic
information rent and intertemporal cost of incentive provision. For limited agency
friction the first component is small, and the latter is a decreasing function of the
difference in discounting- so a patient agent decreases the overall cost of incentive

provision. However, when agency friction is large, the first component dominates

8Restart contracts exposit a natural environment in which an endogenous resetting of the
terms is optimal. Debt contracts such as for home loans or insurance contracts often feature
such properties (see [Fuster and Willen| (2017)). Some supply manufacturing contracts allow
for revisiting terms as part of the ex ante agreement (see [Lyon| (1996)). Shutdown exhibits
a situation where the big party to the contract commits to not supplying capital to an agent
with inferior technology. It represents an endogenous decision of dissolution of a small firm or
a business model of sorting by the principal in which she finds it profitable only to contract
with a high quality client. There is a fairly large literature on the dynamics of firm growth and
survival (see Evans|(1987)) and |Clementi and Hopenhayn|(2006))). There is also a rich discussion
of screening along the quality dimension in industrial organization (see Tirole| (1988)).

9See also Bergemann and Strack (2015) for the evolution of dynamic distortions in the
continuous time setting.

10This is in contrast to Krasikov and Lambal (2017) who show that with hard financial
constraints modeled through the limited liability restriction and equal discounting, efficiency is
achieved almost surely in the long-run.



the second, and therefore having an impatient agent aids in reducing the overall
cost of incentives, even though it increases the second intertemporal part.

Finally we tackle what we regard as an important challenge for dynamic
contracting- binding global incentive constraints (see Battaglini and Lamba| (2017))
and [Sannikov| (2014)). Unequal discounting leads to the downward and upward
incentive constraints binding simultaneously for certain parameters. The optimal
contract then looses the restart feature and can have a very complicated form.
We do two things. First we completely characterize the optimal recursive con-
tract and exposit the basic intuition through simple pictures. Second we look for
the optimal restart contract, that is we restrict our search to a subclass of incen-
tive compatible contracts that have the restart property. When the first-order
approach is valid, it coincides with the optimum, and when global incentives bind
it provides an approximately optimal alternative that is incentive compatible and
relatively easy to characterize. Our theoretical bounds on the performance of op-
timal restart contracts depend only on the fundamentals, and show a moderate
loss of the ex ante objective.

The technical arguments we develop to provide theoretical bounds could have
a more general appeal in solving such models. In a nutshell, the value of the
objective under the first-order approach, say A, is always (weakly) higher than
the value of the global optimum, say B, since the latter is calculated under a strict
superset of constraints. The former ignores all the “upward” incentive constraints.
The main problem is that when the first-order approach fails, B is endogenous
to the set of binding constraints, and generally hard to calculate. Therefore,
we restrict attention to restart contracts and calculate the optimal value of the
objective, say C'. When the first-order approach is valid, A = B = (', and when

it is not, A > B > (', so we can evaluate A — C' (or %) which forms an upper

bound on the gap we are interested in, viz. B — C' (or g) This gap A — C'is

generated by sensitivity analysis: a method of approximating the amount of slack
that needs to be added to the “upward” incentive constraints so that the value of
the objective in the new auxiliary problem coincides with that in the first-order

optimum.



2 Model

2.1 Primitives

A firm (agent) with access to a production technology approaches a supplier
(principal) of a key input; the former is a “small player” while the latter is a
“big player” in the market[]] The total factor productivity (TFP) of the firm
is its private information. They agree to sign a (dynamic) contract whereby
endogenous levels of input are supplied by the principal every period, in return
for monetary payments by the agent. Formally, the agent’s stage (or per-period)
preferences are given by O R(k) — p where k is the input supplied by the principal,
p is the payment made by the agent, 6 is the total factor productivity, and
R(:) is a concave production function that satisfies Inada conditions[?] TFP
or technology “shocks” can take values in © = {0y,0.}, where 0,0, > 0 and
Oy — 0, = Af > 0. We will often refer to it as the agent’s type. The first period
type is drawn from a prior g = {upy, pr }, and then evolves according to a Markov
process: f(0yl0;) = i, f(0L|0;) =1 — «, for i = H, L, which satisfies first-order
stochastic dominance: oy > ay. The principal does not observe the output, and
therein lies the asymmetric information or agency friction. Her stage preference
is simply p — k.

The contract lasts for T' discrete periods, where for the most part we will
consider T" = 2 and T' = oo. Both principal and agent discount future utility,
but importantly we do not restrict them to have the same discount factor; these
are denoted by dp and 4 respectively where dp > d4. The principal can commit
to a long-term contract. The set of all parameters of the model is given by
I'={R(),0,u, f,op,0a}.

Invoking the revelation principle, a direct mechanism is denoted by m =
(k,p) = (k(ét]ht_l), p(étlht_1)>tT_l, where h=! and 6, are, respectively, the his-
tory of reports up to t — 1 and current report at time ¢[7°| The reported history h*
is recursively defined as hf = (h'™!, 6,) starting with 2° = (. The set of all history
paths is denoted by H*~!, with H° = ). Tn what follows #!~! stands for the history

"1 Throughout the agent will be referred to as a he and the principal as a she.
2Technically: (i) R'(k) > 0, R”(k) < 0 for all £ > 0, (ii) R(0) = 0 and (iii) %irr%) R'(k) = oo,
—

lim R'(k) =0.
k—o0

13 At the cost of minimal confusion, the subscript will be used interchangeably for time and
H/L. Also, as is standard, a contract is restricted to lie in [*°.



with ¢ — 1 consecutive reports of type 6;. The principal’s objective is to maximize
her profit subject to incentive compatibility and participation constraints for the
agent. The private history of the agent is given by h%y = (h';!, 0,, 011), starting
from h% = 60, where 0, and 6, are the reported and actual types, respectively.
For a fixed mechanism, the agent faces a dynamic decision problem in which
her strategy, (o;)L,, is simply a function that maps his private history into an
announcement every period: hYy — oy(hYy) € O]

Finally for any ¢, partition the set of histories till that time H" into {H%, 6" },
where 0% is the “lowest history” of ¢ consecutive realizations of type 6, and Hj
is the set of all histories where type 6y is realized at least once. For reasons that

will be clear later, we refer to Hf, as the “restart phase”.

2.2 Constraints
Define the stage and expected utility of the agent (under truthful reporting) at
any history of the contract tree to be

w(0h'~1) = 0, R(k(6: /') — p(6e|n" ),

U0, h) = w(Byh™Y) 4+ 04E |U(Bpga | W11, 0,)164|

It is straightforward to note that a contract can then be expressed as (k,u) or
(k,U). We shall use the three formulations interchangeably.

A contract is said to be incentive compatible if truthful reporting by the agent
is always profitable for him. Using the one shot deviation principle, formally, for
i=H,L and Vh'™!, Vt

IC(R'Y) 2 U(GIR'Y) = 0:R((0;|A ) = p(Os11 ) + 64E [U(Bra 17,65 | 6]
with j # i.

A contract is said to be almost incentive compatible if IC;(h'™1) is required to hold
for i = H, L and Vh'™ # 0. The difference is that we ignore the agent’s incen-

MNote that other dynamic screening models can mapped into our framework and all the
results in the paper can be analogously stated. For example, we can also consider the regulation
model a la |[Laffont and Tirole| (1993) where the principal and agent have preferences V (k) — p
and p— 0k respectively, or the monopolistic screening model & 1la Mussa and Rosen| (1978]) where
the principal and agent have preferences p — k?/2 and 0k — p, respectively.



tives along the lowest history. ICy(h'™!) will be referred to as the “downward”
incentive constraint, and ICp(h'™!) as the “upward” incentive constraint.

A contract is said to be individually rational if it offers each type of the agent a
non-negative expected utility after every history, formally, for i = H, L and Vh! ™!,
vt

IR;(h™1) - U(G;]h'1) > 0.

Individual rationality ensures that the agent is provided with a minimum ex-

pected utility at each stage; its normalization to zero is done for simplicity.

2.3 Optimization problem

Define s(k,0) = OR(k) — k to be the static surplus, written as s(6;|h™1) =
0, R(k(0:|h*~1)) — k(0|h*~ 1) for the direct mechanism. The efficient input supply
that maximizes the surplus is independent of history and is given by OR'(k¢(0)) =
_ T ~
1. Let S =Y 04 'E [S(9t|ht’1)} be the (ex ante) expected surplus generated by
t=1

a given contract. Moreover, define

T T
Up = 04'E [u(étmt*l)} and Uy =Y 67'E [u(e}yiﬁ*l)] .
t=1 t=1
For §p = 04, we have Up = U,. However, in our framework, the principal and
agent evaluate the net present value of agent’s utility stream differently. This
core departure from the standard model will generate novel dynamic tradeoffs.

The principal’s problem, say (x), can be stated as

subject to k > 0, and
[Cy (W), ICL(h*Y), IR (R 1), IRL(hY), ¥ bt e H'™, Wi,

where IC;(h*™') and IR;(h'™') are the incentive compatibility and individual
rationality constraints, respectively, for type 6; in period t after history h!~!.
The first step is to identify the subset of constraints that bind at the optimum.

These are then used to substitute Up, and express the objective only in terms of



k. Pointwise optimization of allocations along all histories then yields the optimal

contract.

3 Sequential first-order approach

3.1 Two period problem

We start with 7" = 2 and invoke the so-called first-order approach, wherein we
maximize the objective subject to the “downward” incentive constraints and the
individual rationality constraint of the “low” type. It is easy to show that all
the incentive and individual rationality constraints in the relaxed problem can

be assumed to hold as equalities.

subject to k > 0,
ICy(h) and IRy (h), for h=0,H, L.

The economic force here, different than in the standard model, is that for the
same sequence of stage utilities, the agent and the principal evaluate expected
utility differently. Thus, in order to employ the Myersonian pointwise maximiza-
tion of virtual surplus (that is, surplus minus information rents), evaluation of
Uy, will not do. Instead, we need to calculate the vector of stage payoffs u and
then aggregate them to Up using the principal’s discount factor.

The second period incentive and individual rationality constraints give
u(0glb;)) = AOR(k(0L]60;)) and w(fp|0;) =0, fori=H,L.
Through binding ICy; and I R, constraints, we get
UOn) = AR(k(01)) + dalag — ap)AOR(k(0.]0)) and U(f) = 0.

Let P(h) be the ex ante probability of history h. Parsing out the two types of

10



costs incumbent on the principal, we have Up = Uy + I, where

U = iU On) + iU (OL) = par | AOR(K(6L)) + 6a(am — ar) AOR(k(01161))|

= " NOR(K(0L))P(0,) + 5p" L ( Oaom—or

K pr \ Op 1 —ap

)AQR(I‘;(QLWL))P(Q%)’ (1)

=:b

1=(6p—0a) Y wi (su(Bil6r) + (1~ a)u(6r]6,))

i=H,L

_ 5P[< or —0a_am >AeR(k(9L|9H))P(9H9L)
op 1l—apg

=ap

4 (51’ —0a )A@R(k(eLwL))P(e%)]. (2)

op 1—aqap

=:ay,

Here, Uy is the standard (dynamic) information rent that the principal has to
provide the agent, and I is the additional intertemporal cost of incentive provi-
sion. Since the amount of surplus that principal has to part with is expressible in

terms of quantities, we can now calculate the first-order optimal contract. Define
Kp(z)=(R)™" <;> for xtAf < 01, and zero otherwise.

0, —axA0
Proposition 1. The following supply contract characterizes the solution to the

relaxed problem:

K (0u|h) = k*(0m),
K (0,1h) = KL(p(0L]h)), for h =0,0u,01,

where p(6) = &2, p(0.]01,) = p(0)b + ar, and p(0L|0n) = an.

This result precisely pins down dynamic distortions in the two period screening
contract with unequal discounting. The high type is always supplied the efficient
allocation, the supply to the low one is distorted downwards. Distortions are
pervasive in that k(0.|h) < k°(0L) for all h. To grasp the intuition, consider the
following chain of arguments. Assume that rent of the type 0y after history h = ()
is increased by AQ»SE] The expected utility of the agent goes up by P(0y)Abe,

15This is done by increasing the first period allocation of #; by an amount z such that

11



which is the principal’s cost for providing the agent with the requisite incentives.
Concomitantly, the expected surplus changes by P(0,)AS(e) where AS(e) is the

associated change in expected surplus. Thus, the net change in marginal cost-

POwn) _ po
P(0L) pr'
Next, assume that a rent of type 0y after history h = 0y is increased by Afe.

marginal benefit ratio is proportional to p(6;) =

This increase costs the principal dpP(6%)Afs. Moreover, the ex ante expected
utility of the agent increases by d4P(6%)Abe, all of which can then be extracted
by the principal. Therefore, the aggregate cost to the principal of this change is
given by (0p — 04)P(0%)Afe. As before, the benefit of this change is given by
increase in surplus generated by increasing the allocation to type 0, (after history
h = 0g), which in a slight abuse of notation can be given by §pP(050.)AS(¢).
The net change in marginal cost-marginal benefit ratio is therefore proportional
to p(0L|0n) = an [

Finally, assume that the rent of type 0 after history h = 0, increases by Afe.
As before, aggregate incentive cost to the principal equals (dp — 34)P(0.05)Abe.
The change also leads to an increase in the ex ante utility of the low type agent
by daP(0,01)Abe all of which can be extracted upfront by the principal through
the binding I R, constraint. However, in order to maintain the /Cy constraint,
she also needs to provide the high type agent with an additional utility worth
daP(0%)A0e. Therefore, the total cost to the principal of this change is given
by [(51: — 04)P(0L01) + da(P(6%) — IP’(HLHH))] Afe. The benefit of this change
is of course pP(62)AS(e). The expected net change in marginal cost-marginal
benefit ratio is proportional to p(6.]0L) = p(0L)b+ ar.

Coefficients b and a in equations and represent the distortions with
respect to the intertemporal cost of incentive provision and standard information
rent; the former is purely a manifestation of differential discounting. In addition,
transfers are uniquely pinned down. This is in striking contrast to the standard
quasilinear model of dynamic screening with equal discounting where aggregate
utility (that is U(fy) and U(6)) is uniquely pinned down up to a constant, but

a continuum of transfers implement the optimum.

Remark 1. Given k¥, the vector of optimal utilities U# with a cardinality of

six, is uniquely pinned down by the set of six binding constraints.

R(k(0L) +x) — R(k(01)) = e.
16For context, note that P(0%) = ppou,P(0nfL) = pu(1 — ap),P(0L0y) = prarn,P(02) =
pr(l —ar).

12



The intuition for this is fairly straightforward. Even with an arbitrarily small
difference in discounting, the principal wants to lend an infinite amount of money
in the first period, only to demand it back in the second. He is however restricted
in this “arbitrage” by the agent’s individual rationality constraint. Therefore,
irrespective of the history, the agent’s individual rationality, and hence incentive
compatibility constraints bind, leading to a system of six equalities. All six prices,
which enter linearly in this optimization problem, are thus uniquely determined.

We also note that the first-order approach may not always be valid, that is
(k#, U#) may violate the first period “upward” incentive constraint /Cy. In the
static model k% (0y) > k¥ (0.) is a necessary and sufficient condition for the va-
lidity of the first-order approach, and this condition is always satisfied. In the
dynamic model, for the first-order optimal contract to satisfy ICp, a weighted
average of allocation that follow the “high” type (k# (0 ), k* (05 |0x), k7 (01|01))
must be greater than the corresponding weighted average of the allocations that
follow the “low” type (k#(0L), k¥ (0x|0L), k¥ (01|01)), where the weights are de-
termined by the Markov matrix["| With equal discounting this three dimensional
vector is pointwise greater for the “high” history. However, with unequal discount-
ing, if ay is very large, that is k% (0|0 ) is highly distorted and significantly less
than k% (0,]01), then the desired average notion of monotonicity fails culminating
in a failure of the first-order approach. Parametrically speaking, IC;, binds for
low levels of ex ante agency friction and high levels of interim agency friction,
that is smaller values of k(0y) — k(A1) and larger values of ay respectively.

To end the description of the two period model, we provide a simple sufficient
condition for the validity of the fist-order approach. Although there are much

weaker sufficient conditions, Corollary [1| provides one that is easy to state.

Corollary 1. Suppose R(k°(0g)) > 2R(k°(61)). Then, the first-order optimal

contract solves (x).

3.2 Infinite horizon problem

We extend the relaxed problem (or first-order) approach adopted in the two
period model to the infinite number of periods- here all “upward” incentive con-

straints are ignored. In the appendix, we show that for all h'~!, ICyx(h*™1) and

17See for example Corollary 1 in Pavan et al.| (2014).

13



IRy (h*~1) bind at the optimum, and IRy (h'™!) is trivially satisfied. Using the

binding I Ry (h'™1) constraints, we have

U(QH|ht_1) = U(QH|ht_1) - 5A()5HU<0H‘ht_1,9H) and
U(0L|ht_1) = —(5AOJLU(QH|ht_17QL>. (3)

In addition, the following identity is generated by the inductive application of
binding ICx(h'™') and IRy (h'™') constraints:

o0

UOulh'™") =Y (Salan —ar))*AGR(k(0L |, 6})) (4)

s=0

Equations and give the expression for Up in terms of the allocation. As

before, we can parse it out into two components: Up = Uy + I, such that

Ua = puaU(0n) + urU(0r) = 3 85" Z—Hbt‘l - AOR(k(0,|01)P(6Y), and
t=1 L
(5)

6P — 64 o 4 5y
1= ;5; IE [U(thht 1)}

6P — A o= w1 < HH t—l) t—1 t
== £ 0t ——b -AOR(k(01,|0 P(6
o (e k(62161 )P(0))

op —da
op

SN 6 py - AOR(K(OLIRT, 05,05))P(RT 0, 05Th),  (6)
ht—1 s=0

where p; and p; are functions of (ay, ar,dp, 04, ). We are now ready to provide

the closed form expression for the first-order optimal contract.
Proposition 2.
KO h) = k4 (0), WAE,

ICL(lat)v 1f htil = 02_17

K7 (0L|h ") =
Kr(ps), ifhtt= (A1 0,051, st. 7+s=t,

where p, = bp,_1 +ar, p1 = Z—}LI and p;1 = bpy +ar, pr = apy.
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Persistence in private information leads to the propagation of distortions.
Each consecutive low shock produces a sequence of distortions that infinitely
propagates along the lowest history from that point on. Thus after any history
of types, along a sequence of low shocks new distortions are recursively added
at each point. Perhaps surprisingly, their aggregate effect can be exactly pinned
down. Proposition 2| points to two immediately observable properties: first the
high type is always provided the efficient allocation, and second, the distortion
for the low type is a function of the number of consecutive low shocks. These can

be formalized through the following definition.

Definition 1. A contract m is restart if for all ¢t and At~!
k(9H|ht_1) =k(0y) and k(QL’ht_l,QH,Qi_l) = ]{:(QL‘QH,Q}?_I), Vs.

Note that allocation in a restart contract can be succinctly expressed by two
sequences, one that represents the optimal allocation along the lowest history,

and the other that represents it in the restart phase.

Remark 2. Suppose m is a restart contract. Then, 3 two sequences {l%t} and
{k;} such that for all £ and h=1, k(0,|05") = k, and k(0L|h", 0y, 057Y) = k.

From Proposition 2] we can conclude that the first-order optimal contract sat-
isfies the restart property with k, = Kr(p) and k, = K (p;), where p; documents
the distortions along the lowest history, and p; documents those in the restart
phase. Figure [2] explains the dynamics. The contract starts in the white circle.
The first period type draw initializes the contract leading it to one of two gray
circles, labeled 0y and 6. From then on, the contract transits among the grey
circles depending on whether a high or low type is realized. The allocation (and
expected utility) supplied to the agent is printed on each gray circle.

We also show that the distortions in the restart phase are monotonically
decreasing, implying k;q > k; with a strict inequality for k&, > 0. If ky = 0
and there exists a 7 such that k, > 0, then the contract features temporary
shutdwon. It is also possible that lim;_,, k; = 0, then we say that the contract is
permanently shutdown for the low type. More generally, we can define shutdown

as follows.

15



Figure 2: The evolution of allocation and expected utility in a restart contract. A
red/blue arrow indicates a transition, because of a high/low draw. A solid/dashed
arrow corresponds to the probability of transition a;/1 — a; where j = H/L if the
arrow is solid /dashed.

Definition 2. A contract m is (permanently) shutdown if for all ¢ and all
ht=1 #£ 0071 k(0p|h 1) = 0. Shutdowns are temporary if k(6 |h!~!) = 0 only for
some ht~1 £ 041 [

The following list consolidates the key properties exhibited by the dynamic

distortions of the first-order optimal contract.
Corollary 2. The first-order optimal contract satisfies the following properties:
(a) Distortions are monotonically decreasing in the restart phase: p; > pyyq VE.

(b) Distortions are monotone along the lowest history: p; 2 pyy1 Vt whenever

BH > ar

pr < 1-b
(c) Distortions are pervasive: lim p, = lim p; = 4 > 0.
t—00 t—00 -

(d) There are shutdowns in the restart phase: ICr(p;) = 0 for some ¢ whenever
0p < p1AD.

(e) Shutdowns are permanent: Kp(p;) = 0 for all ¢ whenever 6, < tlim prAG.
—00

8Note that we can extend the defintion to include the lowest history as well. As we will
see in Corollary [2| distortions along the lowest history are either monotonically increasing or
decreasing. If the distortions converge to a value that keeps the allocation at zero, then the
contract feature shutdown at the lowest history too. We ignore the lowest history here for
simplicity of exposition.
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What about transfers? As we explained in the two period model, the princi-
pal’s desire to frontload agent’s payoff as much as possible leads to all individual
rationality and hence incentive compatibility constraints in the relaxed problem
to bind. Therefore despite quasi-linearity the set of optimal expected utilities and
transfers is unique. Along with allocations made every period, Figure [2| depicts
the expected utility promised to the agent on the realization of a high type in

the next period.

Remark 3. For all histories U#(6|h'~!) = 0, and the expected utilities (and
transfers) of the high type inherit the restart property- U#(0y|651) = U, and
UH(Op|htY, 0,057 ") = U# (0|0, 05 ") = U, for two unique sequences of values
{U,} and {U,}.

Finally, we register some simple results for specific parametric constellations
that follow directly from Proposition 2| First, note that the first-order optimal
contract is never efficient. Unequal discounting renews the potency of private
information periodically so that even far into the future the distortions do not
disappear. Second, for the iid model, the first-order approach is valid, and distor-
tions are still pervasive though they do not have any memory. Third, for perfect
persistence too the first-order approach is valid, the optimal contract has infinite
memory and it converges to the efficient allocation in the long-run. Each of these

produce the opposing conclusion for the equal discounting model.

Corollary 3. Optimal distortions in special cases of the Markov process are as

follows.

(a) Correlated types (1 > ay > «ar). For dp > &4, the first-order optimal
contract is never efficient. For dp = 04 the first-order optimal contract
is optimal and it converges to the efficient allocation along every history:
ag =ar =0,and p, =0,p, = &4 (My_l v t.

KL l—ar

(b) iid types (g = a, < 1). The first-order optimal contract is optimal. For
O0p > 04, the optimal contract is never efficient but distortions have limited
memory: b=0, p; = p; = ar ¥Vt > 2. For §p = )4 the optimal contract is
efficient starting period 2: p, =0V ¢, p, =0Vt > 2.

(c) Constant types (ay = 1 — ay = 1). The first-order optimal contract is

optimal. For dp > §4, the optimal contract is efficient in the long run:
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t—1
Py = Z—f (g—g) V t. For 0p = 04 an optimal contract is the repetition of

the static optimum, it is never efficient: p, = p; V ¢.

3.3 Connection to primitives

When is the first-order approach valid, and is it a necessary condition for the
optimal contract to satisfy the restart property? The parametric space for which
the “upward” incentive constraint binds can further by divided into two regions-
one where it binds for finite time, and another where it binds perennially. It turns
out, as is intuitive, that the optimal contract looses the restart property when the
“upward” incentive constraint binds. So, corresponding to the two aforementioned
parametric regions, the optimal contract is either eventually restart or never

restart.

Definition 3. A contract m is eventually restart if there exists a t* < oo, a

constant kz and a sequence {k;} such that for all ¢ > t* and h'™!,
k(9H|ht71) = k'H and k(@L\htfl,QH,Gfl) = k’s, Vs.

In contrast, a contract that is not eventually restart is succinctly referred to as

never restart.

It is easy to see that the first-order optimal contract is immediately restart,
t* = 1. Almost incentive compatibility, that is incentive compatible along all his-
tories except potentially the lowest one, precisely characterizes eventually restart

contracts.

Proposition 3. Suppose the first-order optimal contract is almost incentive com-
patible. Then, the optimal contract is eventually restart: there exists t* < oo
such that for all ¢+ > t* and h'~1,

k’*(QHVLt_l) = ke(é’H) and k*(9L|ht_1,9H,92_1) = /CL(pS), \V/S,

where p; = bp,_1 + ar, p1 = ay. The converse is also true: if the first-order
optimal contract is not almost incentive compatible, then the optimal contract is

never restart.
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Therefore, if the first-order approach fails, it is either still valid eventually or
it is not valid at all. Our next result identifies eventually restart contracts in

terms of the primitives.

Corollary 4. Let C = R(k°(Oy)) + da(ag — ar)U#(0g|0x). The first-order
optimal contract is optimal if and only if max {U#(QH), Jim U#(9H|9tL_1)} <C.
—00
Moreover, the optimal contract is eventually restart if and only if tlim U (0y]051)
—00

< C.

Since U# is uniquely pinned down, Corollary 4| presents a condition on the
primitives of the environment. Recollect from Corollary [2(b) that distortions
along the lowest history are either decreasing or increasing, therefore, the tight-
est upward incentive constraint is either the one in the first period or “the one at
infinity”, hence max {U#(HH), tlgélo U#(HH\HtL’l)} < C ensures that the first-order
optimal contract is incentive compatible along the lowest history. Next, distor-
tions in the restart phase are monotonically decreasing along consecutive low
cost realizations (Corollary [2(a)); moreover, distortions along the lowest history
and in the restart phase converge to the same value (Corollary [2(c)). Putting
these together we get that lim U#(05]0) < C ensures almost incentive com-
patibility, that is incentive compatibility in the restart phase. Therefore, if the
first-order optimal contract satisfies tllglo U#(0y]05) < C, it is almost incentive
compatible and hence eventually restart.

Figure (3| partitions the parameter space along the set of binding constraints
for a specific example. White and yellow regions represent the validity of the
first-order approach where the optimal contract is immediately restart, the dark
region is the space where the optimal contract is never restart, and the region in
between represents cases where the first-order approach is valid after finite time
and the optimal contract is eventually restart. Moreover, the white portion in
the southwest corner represents the case of (permanent) shutdown, no capital
is supplied to the low type. For larger values of A#, signifying greater ex ante
agency friction, it is easier to separate the two types, and hence the first-order
approach is more likely to be satisfied.

Discounting and persistence interact in a non-linear fashion. For d4 = 0
and dp, the first-order approach is valid, the same is true for the iid model

(g = 1 — o) and perfect persistence (ag = 1 — ay = 1). More generally, high
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levels of discounting and persistence are required for the first-order approach to
fail.

(a) A =0.25 (b) A6 =1.25 (c) AG =225

Figure 3: Partitioning parameter space into set of binding constraints. White & yellow:
first-order approach works and optimal contract is restart. White: low type is shutdown.
Black: upward constraint binds ad infinitum. ag = 1 — a5, = « on the x-axis, d4 on
the y-axis. 0p ~ 1, R(k) = 2vVk, O = 1.

4 Recursive approach: a full characterization

4.1 A restatement of the problem

In order to fully characterize the optimal contract, even when it is never restart,
we turn to the recursive approach. It is well known that in order recursify a
dynamic contracting sequence problem with an N-state Markov chain of types,
the state variable of promised utility is required to be N-dimensional (Fernandes
and Phelan| (2000)). In our model, it is easy to show that IC7(h'™!) will always
bind for the optimal contract, hence, U*(6,|ht™!) = 0 V h*~!. Thus, even though
agent’s type follows a two state Markov process, a one dimensional state vari-
able, viz. U(fg|h'™') = w € Ry, will suffice to encode all the required history
dependence.

In the appendix, we show that the following recursive formulation is equivalent
to the sequence problem described in (x). From the second period onwards, for

a promised expected utility of w to the high type and last period type 7, define
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the objective as follows:

(RP) SJ(IU) = Inax «; [8(]€H,(9H) — ((SP — (SA)OéHZH + 5PSH(ZH)}+

(zk)eRY
+ (1 —«j) [s(kL, 0r) — (0p — da)apzp + 5PSL(ZL)] s.t.
w > AOR(kr) + dalag — arp)zr
w < AOR(kg) + 0alag — ap)zy

The objective is to maximize the surplus when expected utility promised to
the agent is fixed at (w,0) or aw + (1 — ;)0 in expectation. There are four
choice variables: working capital advances k = (ky, k1) and expected utilities z =
(zm, z1); note that z; represents the utility promised to the high TFP type next
period if the current type is 6;. The term (dp —d4)a;z; captures the intertemporal
cost of incentive provision incurred by the principal in providing a continuation
value of z;. The two constraints are the “downward” and “upward” incentive
constraints, respectively. The participation constraint of g type is subsumed in
the recursive domain.

At date t = 1, the problem is different for two reasons: the belief equals
the prior and contract has not yet been initialized. To initialize the contract,

w = U(0y) — U(f.) must be chosen. The problem reads as follows:

(<>) I = ( mka))G(R5 —UEW + Ug [S(kH,(gH) — (5p — 5A)CVHZH + 5PSH(ZH)]+
w,z, T
+ ur [S(/CL, 6’L) — (5]3 — 5A)QLZL + 6PSL(ZL)} s.t.
w Z A@R(/’CL) + 5A(O-/H — OéL)ZL

w < AHR(kH) + (SA(CKH — OéL)ZH

We show that the value functions in (x) and (¢) coincide, justifying our focus
on the recursive problem. In what follows the recursive contract is informally

characterized, formal details can be found in the appendix.

4.2 Optimal recursive contract

In this subsection, we exposit the properties of the optimal recursive contract,
(w*,k(+),z(-)), where (k(w),z(w)) solves (RP) for each w > 0, and (o) is solved
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by (w*, k(w*),z(w*))['] We start with registering the monotonicity of allocation
with respect to expected utility given to the high type.

For the optimal recursive contract, allocations for the high and low TFP
shocks are increasing in the state variable, w. Intuitively speaking, the downward
incentive constraint binds only for low values of w. In this case, the allocation
and promised expected utility upon announcing the low type (that is, k; and
arzp) must be distorted downwards to prevent the high type from misreporting.
Indeed, there exists a critical value w} so that the downward incentive constraint
binds only for w < wj. The incentive problem is more severe for low values of w,
there exists another threshold wj below which the contract does not supply 0.

By the similar reasoning, the allocation and promised expected utility upon
announcing the high type (that is, kg and ayzg) must be distorted upwards if
the upward incentive constraint binds. And, there exists a critical value wj; such
that this constraint binds if and only if w > wj;. Figure plots the optimal
allocation as the function of agent’s expected utility. We have the following simple

result.

Proposition 4. Allocation in the optimal recursive contract satisfies the follow-

ing:

(a) Jwy, such that ky(w) = k(0y) if and only if w < wy, kg(-) is strictly

increasing on [w};, 00).

(b) Jwg, w; such that k(w) = 0 if and only if w < wg, kr(w) = k() if and

only if w > wj, kr(-) is strictly increasing on [wg, w3 ].

The dynamics of promised expected utility are described in Figure |4l In each
case zg and zy, are plotted as functions of w. The 45° line partitions the quadrant
into regions where expected utility increases or decreases in the next period. wj;
and wj are the thresholds as defined above. And the bold dots represent some

points in the support of the invariant distribution of the optimal contract. @

19 As in the sequential first-order optimal contract, the allocation and transfers are uniquely
pinned down. To be precise, we formally show in the appendix that only zg could fail to be
unique at a single point. The details are provided in the appendix (Claim .

20The optimal contract induces a Markov process on the recursive domain. Formally, the
Markov process is defined by FiTj(A|w) = 1(z;(w) € A)f(6;]6,) that is the probability that the
expected utility promised to the agent in the next period lies in some Borel measurable set
A C Ry when the type realized is 0;, given that the current expected utility and last period’s
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For example, in all the figures the point 2§, at which zy(-) intersects the 45°
line constitutes a bold dot. Each time a high shock arrives it is possible for the
optimal contract to stay at the same expected utility, and it surely does so if the

upward constraint is not binding.

* 0k
wy, Wi Wiy
(a) allocation
z . 45°
,I
,I
d
,I
/’l
//

wf F---- o ‘/}

<d |

76 |
“H | {
/, ! !
. I !
/, ! !
L |

wy W
(c) eventually restart (d) never restart

Figure 4: Optimal recursive contract

Consider first the situation depicted in Figure Here 2§, = 0. Since both
curves lie below the 45° line, the recursive contract continually shrinks in expected
value. It quickly converges, most often immediately, to the bold point at zero
which implies an expected utility of zero and a complete shutdown of the low TFP
type. In Figures [Ad and [4d], we portray the optimal restart contract which does
not feature shutdowns. The realization of a high shock pushes the expected utility

towards z%. On the realization of a low shock, promised expected utility above w”

shock are given by w and 0;, respectively. By the standard mixing argument, the Markov
process can be shown to have the unique invariant distribution, see Theorem 12.12 of |Stokey
et al.| (1989).
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contracts, and below w/ it expands. The key condition that characterizes Figure
is w/ < wj. It implies that the upward incentive constraint does not bind
in the interval [2¢;,w”], and the invariant distribution of the promised expected
utility rests therein.@ In contrast, Figure exposits the case with perennial
binding of the “upward” incentive constraint which is captured by the condition
w! > w.

Finally, the only missing piece is initialization- where does the optimal re-
cursive contract start? We show that the recursive contract is initialized at a
unique point w* € [0, w}]. Therefore, at the inception the downward incentive
constraint always binds, while the upward constraint may or may not bind. The
next proposition summarizes the evolution of expected utility in the optimal re-

cursive contract.

Proposition 5. Expected utility of the agent in the optimal recursive contract

satisfies the following:

(a) Jw?, 2¢ such that z(w) = 0 if and only if w < w?, z(w) = 2§ if and only

if w>wj, z,(+) is strictly increasing on [w?, w}].

(b) 3z§ such that zg(w) = 2§ if and only if w < wj;, zg(+) is strictly increasing

on [w}y, 00).

¢) zr(-) has a unique globally stable fixed point w/ € [2%,2F], and 2y has a
Hs 2L

unique fixed point zf which is positive if and only if 0, > {5 Af.

(d) The thresholds satisfy 2§, < w/ < 2§ < w}, 2§ < wy, and 2§ # 2§ if and
only if 27 > 0.

(e) Jw* € [0,w}] such that the optimal contract starts at this point, and it

always stays within [0, wj].

Propositions [] and [5] precisely characterize the optimal contract. Starting
at w*, each subsequent realization of the agent’s type determines the optimal
allocation according to Proposition [4] and the optimal expected utility for the

next period, the state variable, according to Proposition 5

21To find the support, we repeatedly apply z1(-) to 2%, the bold points in Figure {dc| depict
this set.
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There is of course a one-to-one relationship between the optimal recursive
contract, and the sequential optimum. First of all, the “downward” incentive
constraints always bind, and the low type always gets the promised utility of
zero. The high type allocation can be distorted only upwards, whereas the low
type allocation is always distorted downwards.

Moreover, the realization of each 0y decreases the promised utility offered
to the high type in the next period which reduces distortion for the high type
allocation, but increases a distortion in the low type. It takes an endogenous
number of consecutive g for the “upward” incentive constraint to stop binding.
After a finite number of periods, 0, always increases the promised utility offered
to the high type in the next period which tightens the distortion for the high
type allocation, but relaxes distortions for the low type allocation. It takes an
endogenous number of consecutive 6 for the “upward” incentive constraint to

start binding.

5 Optimal restart contract

When the upward incentive constraint binds forever, the optimal contract is never
restart, and it is quite hard to exactly pin down in terms of the sequential formu-
lation. In this section we construct an approximately optimal sequential contract
by restricting our search to the class of all incentive compatible restart contracts.
There are two reasons for this restriction: (i) it is a fairly intuitive criterion and
simple to describe, and (ii) the first-order optimal contract falls within this class,
and so if it is indeed globally optimal there is no loss. Our approach is similar
in spirit to |Chassang| (2013) in that it emphasizes the search for approximately
optimal contracts by constraining the instruments available to the principal, but
it is also different in that we do still demand incentive compatibility.

The “downward” incentive constraint always bind for the optimal restart con-
tract.@ This immediately implies (see Figure [2) that the optimal restart con-
tract takes the following form: there exist sequences (k;, U;) and (/%t,Ut) and
a number k(fy) such that V¢, k(0,051 = k,, U0x]05") = U, and Vhi,

22This could be shown by the argument similar to Lemma [2[in the appendix.
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k(0m|ht=) = k(0) and U(0|ht=1) =0,
k(0L|h,05,057Y) =k, and U(Og|h™,0y,057Y) = U, Vs.

The optimal restart contract can now be characterized.

Proposition 6. The following supply contract characterizes the restart optimum:

K (Or|h'™") = K" (0n) = k(0n),

kR(e ‘htfl) _ ICL(ﬁt)a lf ht_l = 6271,
’ B Kr(ps), ifh=1=(h""10g,05), st. T+s=1t—1,

where p; = max{bp;_1 + ar,v}, p1 > ‘;—’Z and p; = max{bp;_1 +ar,v}, ¥ < p1 <

ay for some v € [%, H} .

The optimal restart contract resembles the first-order optimal one (see Propo-
sition [2)), but there are three noticeable differences: (i) the high type allocation
is (potentially) distorted upwards, (ii) the initial distortion at the lowest his-
tory is higher and that in the restart phase is lower, and (iii) there is a floor
on distortions, so the contract has a finite memory along consecutive low TFP
shocks ¥ Closed form expressions of the distortions and the floor are determined
by analyzing the complementary slackness of “upward” incentive constraints.

How well does the optimal restart contract perform? By definition, the princi-
pal’s profit from the optimal restart contract is lower than the optimal contract,
II% < II*. Unfortunately, the gap between the two is very hard to theoreti-
cally compute when the first-order approach is not valid. However, we can still
bound the loss by using the expression for the first-order optimum, IT#, which is
calculable in closed form. Since IT* < IT#, we must have IT* — TI% < TT# — IT7 |

We use sensitivity analysis to assess the gap. Attach a Lagrange multiplier

to each “upward” incentive constraint and evaluate the multipliers at the restart

23Tn fact, it is easy to show that 1% < ay holds for any parameter constellations of d4, dp,
ag and ay. Hence, the interval is never empty.

24However, it must be noted that the optimal restart contract has positive memory in that
it is not the same as the static optimum, it does strictly better than the repetition of the static
optimum.

25 Calculating the first-order optimum involves the maximization of the same objective in (x)
but with a strict subset of constraints, so even if the first-order approach is not valid it gives

an upper bound on the optimal value of the objective, IT*.
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optimum. Quantify how much slack needs to be added to these constraints so
that the solution then coincides with the first-order optimum. P°?"| The general

estimate can then be written as
1% — 11" < Lagrange multipliers - Slack.

Proposition 7. There exist two bounds, B, and B,, function of primitives I,
such that IT* — T < B,(T) and 1 — 1L < B.(I).

One is an additive bound, and the other is a bound on the ratio. In the
appendix we provide closed form expressions in terms of fundamentals. Figure
depicts the loss from using the optimal restart contract for a specific example- as
before we set §, = 1, §p = 0.8 and R(k) = 2v/k. The unshaded region represents
the validity of the first-order approach so the optimal restart contract coincides
with the first-order optimum. When the first-order approach is not valid the
analytical bound never exceeds 3.5 percent and the actual loss is never more
than 2 percent [

6 Comparative Statics

Does the principal favor the impatient agent or the patient agent and what de-

termines the ranking if there exists any? Broadly speaking, if the Markov process

26Formally, we look at the problem of maximizing principal’s profit II over the class of restart
contracts subject to two sets of incentive constrains, namely “downward” (ICy) and “upward”
(ICL): maXym.m is restart 11(m) subject ICy(m) > 0 and ICf(m) > 0. Here, we use the notation
IC;(m) > 0 to indicate that agent’s utility if truth-telling minus his utility if deviating is nonneg-
ative. Our goal is to quantify principal’s profit at the solution, say mf. To do this, consider the
relaxed problem when IC}, was not present. In this case, the solution is the so-called first-order
optimal contract m#. Next, consider the auxiliary problem: max,.m is restart II(m) subject to
ICg(m) > 0 and IC(m) > —¢, and denote its solution by m“ () with the corresponding La-
grange multiplier A(¢). Clearly, m*(0) = m® and mA[IC(m#)] = m#, that is e = ICp(m¥) is
the “minimal” slack needed for IO, not to bite. It turns out that II[m* ()] viewed as a function
of € is convex, therefore by the envelope argument: II(m#) — II(mf) < \(0) - ICL(m*).

2TQur approach of slacking upward incentive constraints and quantifying the loss associated
from the exercise has a flavor of Madarasz and Prat| (2017) where a robust approach to multi-
dimensional screening entails the principal giving up profits in order to relax global incentive
constraints.

28By actual loss, we mean the exact numerical value of the loss associated with using the
optimal restart contract as opposed to the optimal contract, and by analytical loss we mean
the value of the theoretical bound, B,, for which no optimization is required, it is simply a
function of the fundamentals of the model.
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Figure 5: Percentage loss, (1 — ) x100. g = 1 — o, = o on the z-axis and d4 on

the y-axis.

is not too persistent (in the neighborhood of iid), then the principal prefers the
patient agent, and if it is very persistent (in the neighborhood of constant types),
the principal prefers the impatient agent. While a global comparative static is
elusive, we can find a theoretical result for the limit cases and provide clear

numerical arguments for the intermediate ones.

Proposition 8. Let ay = 1—aj, = a. Principal’s ex ante payoff in the first-order

optimal, optimal and optimal restart contracts varies with §4 as follows:
(a) principal prefers patient agent (64 = dp) for a sufficiently close to 3.
(b) principal prefers myopic agent (64 = 0) for « sufficiently close to 1.

Figure @ plots principal’s profit in the first-order optimal contract (dotted
blue), optimal contract (red) and the optimal restart contract (blue) as a func-
tion of 94 for the different persistence levels of symmetric Markov chain, o €
{0.7,0.8,0.9,0.95,0.99}, all other parameters are the same as before. Conceptu-
ally, the principal has to internalize two types of costs — standard information rent
and intertemporal cost of incentive provision, and two types of benefits — standard
surplus generated by the transaction and the gain from differential discounting.

At very low levels of persistence the standard information rent the principal
has to pay is quite low, she extracts a large part of the surplus as profit, and does
not find it worthwhile to pay the extra intertemporal cost of incentive provision
to benefit from differential interest rates. As persistence increases the traditional

information rent goes up and the intertemporal cost of incentive provision goes
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Figure 6: Principal’s profit

down. Therefore, the principal’s preference for the forward-looking aptitude of
the agent is proportional to the strength of the agent as measured by the extent
of his private information. Interestingly, for intermediate levels of persistence,
say a = 0.9, the princpal prefer either a completely myopic agent (64 = 0) or
completely forward looking one (d4 = dp), but not goldilocks, see Figure . The
non-monotonicity is generated by the rate of change of benefits- standard eco-
nomic surplus and gains from differential discounting- as a function of discounting

and persistence.

29



7 Concluding remarks

We analyzed a dynamic principal-agent model with persistent private information
and unequal discounting. Unequal discounting creates intertemporal gains from
trade, and its interaction with Markovian private information produces intertems-
poral costs of incentive provision. The optimal contract is completely charac-
terized; two key properties underlying the dynamics are restart and shutdown.
When the first-order approach does not work, we also characterize the optimal
restart contract which provides a simpler and approximately optimal alternative.

Unequal discounting has been explored to varying degrees in dynamic games
and contracts. It is well known that in repeated interactions with differential rate
of time preference, payoffs for the impatient player can be frontloaded and the
set of equilibria expands favoring the patient player (see the classic Lehrer and
Pauzner| (1999)). In a very elegant paper, |Opp and Zhu| (2015) analyze the gen-
eral relational contracting model of |[Ray (2002) with unequal discounting. They,
however, do not deal with agency frictions, all actions and information are pub-
licly observable. Incentive constraints therein are the equivalent of punishment
phase in repeated games, a resort to autarky on deviation from the prescribed
plan. The threat of autarky generates backloading of payments and unequal
discounting does the frontloading, leading to a cyclical pattern similar to our
paper.

Biais et al. (2007) explored the implications of unequal discounting in a dy-
namic model of moral hazard with limited liability and the possibility of liquida-
tion. There exists a reflective boundary below the efficient level that pushes the
optimal contract back towards the liquidation region, and the contract is liqui-
dated almost surely in the long-run. The propagation of distortions is sustained
in our model through persistence in agency frictions whereas the same is done in
their framework by limited liability and the threat of liquidation 7|

Our paper is also related to the political economy and public finance literature
that uses unequal discounting as a motivation for long-run distortions. Acemoglu
et al. (2008) show that when politicians are less patient than the citizens, positive

aggregate labor and capital taxes are charged forever to correct for political econ-

29Biais et al.| (2007) also invoke unequal discounting for a technical reason- the continuous
time limit of their discreet time model is not well defined for equal discounting. No such problem
exists in our framework.
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omy distortions. [Farhi and Werning (2007) find that with risk averse agents in an
overlapping generations model when the social discount factor is higher than the
private one, consumption exhibits mean reversion with no immiserationff] While
the former contains the long-run inefficiency flavor of our results, the latter shows
dynamics similar to the optimality of restarts.

One can also ask the question — what if the agent is more patient than the
principal? Though most of our applications fit the patient principal model, this
is an interesting theoretical question in its own right. It turns the model as stated
is then not “compact”; the lack of an upper bound on transfers that the principal
can pay means that the agent will lend the principal an unbounded amount of
money in a hope to claw it back in the future. Imposing an upper bound rectifies
the problem — the optimal allocation rule in the equal discounting case continues
to be the optimum for the model with 64 > dp, and transfers are uniquely pinned
down through the upper bound.

Going forward, we believe it will be useful to study the dynamics generated by
the interaction of persistent private and unequal discounting under the presence
of one or some combination of the following economics forces: privately known

discounting, hidden savings, risk aversion and limited liability.

8 Appendix

8.1 Sequential approach

First, we establish the set of binding constraints in Lemmata[I]and 2l The former
says that the individual rationality constraints of the low type bind in (x). The
latter claims that the “downward” incentive compatibility constraints bind in the

relaxed problem.

Lemma 1. Let m be any incentive compatible and individually rational contract
with U(AL|h'™') > 0 for some h'~!. There exists another incentive compatible
and individually rational contract m’ with U’(0|hi™') > 0, and it delivers higher

ex-ante profit to the principal.

30A similar mechanism is generated through the interaction of aggregate shocks and unequal
discounting in |Aguiar et al.| (2009) with an application to foreign direct investment and sovereign
debt.
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Proof. Suppose h'™! # (). Alter m by decreasing U(f.|h'™!) by small € > 0, but
keeping U (0 |ht™') —U (0 |h'™1) fixed. The new contract is still incentive-feasible
and the net change of objective is proportional to 6% ?(6p — 54)P(h'™!) > 0. The

similar argument applies to hi~! = (). O

The bottom line of Lemma [I] is that there is no loss of generality to set
U(0rlht=t) = 0 for any h'~!, which we implicitly impose slightly abusing our

notations.

Lemma 2. Take an individually rational contract satisfying the “downward”
incentive constraints with ICyx(h'™!) being slack for some h'~'. There exists
another incentive compatible and individually rational contract with binding

ICyH(h'~!) that delivers higher ex-ante profit to the principal.

Proof. Suppose hi=! = (). Decrease U(0y|h'~1) by small € > 0 so that ICy(hi™1)
still holds. The new contract is individually rational, and it satisfies the “down-
ward” incentive constraints. Moreover, the net change of principal’s revenue is
proportional to 65 %(6p — 64)P(h'~") > 0. The case of h'™' = is obvious. O

Proof of Proposition [l By Lemmata[l]and [2] the solution to the relaxed problem
satisfies the downward incentive constraint and individually rationality of the
low type as equalities. Using the binding constraints, the objective could be
expressed only in terms of allocation as the surplus minus the information rent and
intertemporal cost of incentive provision. The precise expressions are derived in
the main text in Equations(l|and [2l Clearly, the objective is strictly concave, thus
the first-order conditions are sufficient to characterize the first-order optimum.

m

Proof of Corollary[]l For the first-order optimal contract, the second period “up-
ward” incentive constraints are trivially satisfied as k(0g(0;) > k(0.|0;) for i =
H,L. The first period “upward” incentive constraint is implied by k#(0y) =
k¢(0y) and 2A0R(k4(01)) > U7 (0y). ]

Proof of Proposition[ The case of T = oo is essentially similarly to the two

period model, although calculations are heavier. Recall that the cost of imple-
T

menting an allocation is Up = Y 6% 'E [u(§t|l~zt_1)}, and it could be parsed into
t=1
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the information rent and intertemporal cost of incentive provision:

UP_Zét 11@[ (@,)ht 1)]
- E [U(él)] + 5P5;5A§:]E [U@W*l)]

J/

Uj: agent’s ex ante utility _\ N~ - -
I: intertemporal cost of incentive provision

The key is to invoke the binding constraint to obtain the expression for
U(@r|ht=Y) = 0 and U(Ox|ht™") as a function of k(O-|h™1,605) with s > 0 as
given in Equation [4] Equation [5| directly follows from

Ua = unU(0n) = pr y_(0alon — or))* AOR(K(01]0})).

s=0

To obtain Equation [0 notice that

Z]E[ (0,17t ] =3 5P ) i Salan — ap)) AOR(k(O|hY,05)).
ht—1 5=0

We will simplify this expression by fixing the position of the last #5. In particular,

for the lowest history, exchange the order of summation to get

S0 B0 0) D (Galam — ar)PAOR(K(O: 165 )) =
=2 s=0

t—2

SNSPE _ daag —ap\’
=N IR (0) AOR(K(0, 0% 1)) — L S (AL L)
>0 P ARG 2 3 (5 T,
which is exactly the first term in Equation [6] defining I. The second term is
50 for fixed
ht=1, and then over h*~1. O

derived similarly by first summing over the histories {(h*~!, 05, 605)}

Proof of Corollary[d Consider f(x) = bxr + ay with b = %42H=9% and q; =

plOé

for i = H, L. So, the distortions satisty p;.1 = f(p:) and py1 = f(pr)

6P_5A [e77
op l—ay

for all t. It is easy to see that f has only one non-zero fixed point, namely
c= {5, and it is globally stable. So, (a), (b) and (c) are established. To see (d)

and (e), recall the definition of Kp(z) = (R')™" (0,;——19[:A9> for A0 < 01, and zero
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otherwise. O

8.2 Recursive approach

In this subsection, we simplify (x) and formulate its recursive analogue mentioned
in the main text. We introduce an auxiliary sequential problem to derive (RP).
Let TI(6;|h'~!) be the expected lifetime profit at the end of date ¢, assuming
truthful reporting at date ¢ and further

H(etlhtil) = S(k)(et‘htil), 9,5) — U(et‘htil) + 5PE H(éﬂrl‘htil, 6,5)’915 .

Suppose that the agent truthfully reported (h'~', 6;) before date ¢ > 2. In
addition, the principal committed to deliver exactly w to the high type at this
date. Then, if possible, define S;(w) by

(S,P) Sj(w) = %%alg Oéj [H(9H|ht_1, 0]) + w] + (1 — ozj)H(QL\ht_l, 0j)7

s.t. U(0n|h'™",0;) = w, and IC(h"**), IRy (h"™**), Vh'™* € H'* Vs.

(h1=1,6;)’
Notice that the optimal value is independent of 2™, thus we simply write S;(w).
Let W be the largest set of w such that the constraints set in (SP) is non-
empty. W is the familiar recursive domain described in [Spear and Srivastaval

(1987) and it has a very simple structure.
Claim 1 (Recursive domain). W =R, .

Proof. First of all, w > 0 by IRy(h'™',0;). To see that the program is feasi-
ble for w > 0, take k(0y|h'™,6;) = R (£5) and k(0u|h"5) = k(OL|h") =

U(Og|h'**) = 0 for any h'*s € H”S‘(htl , )Vs # 0. O

It is easy to see that (SP) could be restated as (RP), and the problem at
the initial date is equivalent to (¢). To formally show equivalence of the se-
quential and recursive formulations, we need to introduce auxiliary definitions.
The policy correspondence is a correspondence which maps w into (Z(w), K(w))
that is the set of optimal choices in (RP). We say that a contract is gener-
ated from the policy correspondence if k(6;|60;,h'™1) € K;(U(0y|0;,h'"1)) and
UOulb;,h'=1,0;) € Z;(U (0 |0;,h'™1)) for i, j = H, L and Vh'™!, Vt.
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Claim 2.

(a) There exists a unique continuous bounded function satisfying the Bellman
equation in (RP).

(b) The policy correspondence is non-empty, compact-valued and upper hemi-

continuous.

(c) A contract is generated from the policy correspondence if and only if it
solves (RP) with w = U(0y|6;) for j = H, L.

(d) Value functions in (SP) and (RP), as well as in () and (¢) coincide.
Proof. The result follows from Exercises 9.4, 9.5 in Stokey et al. (1989). O

In the rest of the subsection, we outline several standard properties of the

value function (Claim [3), establish uniqueness of transfers (Claim []) and prove
Propositions

Claim 3 (Properties of the value function).
(a) Each S; is concave.
(b) Each S; is continuously differentiable on R, ..
(c) Each S; is locally strictly concave at w satisfying S%(w) > 0.

Proof.

Part (a). The argument is standard, we need to show that the Bellman
operator, implicitly defined in (RP), preserves concavity. Indeed, the constraints
set is convex and s(-, ) is concave. So, concavity is preserved by the Bellman
operator. Since the set of concave functions is closed in the space of continuous
bounded functions, the result follows from Theorem 3.1 and its Corollary 1 in
Stokey et al.| (1989).

Part (b). We established concavity of the value function using the standard
argument. As for differentiability, the standard argument of [Benveniste and
Scheinkman| (1979) is not applicable in our context, because it might not to be
possible to change k keeping z constant. We give a different argument that
is close to |Rincon-Zapatero and Santos (2009) in its spirit. We shall use the

fact S; is concave, thus it is subdifferentiable. Take m* which solves (SP) with
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U*(0u|0;) = w. Using the generalized first-order and envelope conditions for
(RP), we argue that there exists some finite time s such that the value function
is differentiable at U*(0g|0;,057"). Then, the value function turns out to be
differentiable at the original point, w.

Before we show differentiability, we shall validate that the first-order condi-
tions are sufficient to characterize a solution. In particular, we show that Slater’s
condition holds which is sufficient to guarantee that the first-order approach with
Lagrange multipliers in /! is valid in (SP), because of concavity and boundedness
of these problems (see Morand and Reffett (2015))).

We claim that, for any w > 0, there exists a feasible point such that the
constraint map is uniformly bounded away from 0. The argument is constructive.

Since w > 0, there exists kg > kr > 0 satisfying:

Ad Ad
R(kr) <w <
1—(5A<04H—C¥L) ( L) 1_5A<04H_04L)

R(kn)

Take k(0|0;, h'™) = ku, k(0.10;, ') =k and U(0x]60;, h'™1) = w VAL V.

Now, we are in a position to show that S; is continuously differentiable. Let
m* be a solution to (SP) at t = 2. It is clear that the capital supplied to 0y
can be distorted only upwards, thus k*(6x|6;, k') > 0 is uniquely defined Vh*~!
by strict concavity of the objective. In addition, if k*(0.]6;, h'~") > 0, then it is
unique by strict concavity of the objective.

Next, consider (RP), its solution exists and coincides with one found in (SP)
by the previous claim. Since S; is concave, its subdifferential at w > 0 is well-
defined and it equals to 9S;(w) = [S] (w), S; (w)], and at w = 0t is S;(0) where
a plus/minus denotes a right /left subderivative.

Let a;jpy and (1 —«;)pr, be Lagrange multipliers for the “upward” and “down-
ward” incentive constraints, respectively. And, p;(w) be some Lagrange multi-
plier supporting a solution, whereas p; (w)/p} (w) be the highest/smallest such
Lagrange multiplier. Finally, denote by (z(w),k(w)) some point in the optimal
correspondence.

The first-order conditions with respect to k are k;(w) = K;(pi(w)) fori = H, L
where Ky (z) = (R <9H+—le6) and Cp(-) is defined as before. By the above
argument, Ky (w) is a singleton and pj;(w) = pp(w) = pg(w) for any w. In

addition, if kz(w) > 0, then K (w) is a singleton and p; (w) = p; (w) = pr(w).
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So, for w > 0, the Lagrange multipliers might be not unique only if there exists
some pr(w) > 0,/A0 > 0. Given this pr(w) > 0, the “downward” incentive
constraint binds and we have that zp(w) = NCT

ag—ar)
defined.

Then, the envelope conditions give S; (w) =S} (w) = (1—ay)(pg (w) —py (w)).

> w > 0 is uniquely

It is immediate that S; is differentiable at w if and only if pz(w) is unique. The

first-order condition with respect to z;, when zz(w) > 0 reads as follows:

0pST (z0(w)) > ap(0p — 64) + (am — ap)dapr(w) > 6pST (21 (w))

If pr(z(w)) is unique, then pr(w) is so and S; is differentiable at w. Now, define
recursively 2§ = zp(25") with 29 = w > 0 for some selection from z;. There are
two potential cases, namely pr(z7) is unique for some s or it is not for all s. In
the former case, S; is differentiable at w by our previous argument. In the latter

case, 2] = - 5 > 00 as s — 00 which is impossible, because any solution

55 (am—ar)®
must be in [*°.

Finally, continuous differentiability of S; is implied by differentiability and
concavity.

Part (c¢). Suppose that S%(w) = Sj(w+¢) > 0 for some w, e > 0. Consider m*
and m° solving (SP) at w and w+¢, respectively. Since s(-, 6) is strictly concave,
it must be that k* = k. Otherwise, it would be the case that Sj(w) < S%(w +¢),

Now, since Si(w) = Sj(w + ¢) > 0, the envelope theorem implies that the
“downward” incentive constraint binds in each case. By the first-order and en-
velope conditions, see Equations [7], [§ and [9], it will continue to bind along the
sequence of 0, ’s, thus

w=A0 (Salan —ap))*R(k* (6L 2,0;,07)) = w+e.
s=0

The last assertion is a clear contradiction. The similar argument establishes that
Siw —¢€) > S(w). O

Now, we derive the optimality conditions which are useful for our characteri-
zation of the optimal contract. Let (1 —«;)py and a;pr, be Lagrange multipliers
on the constraints in (RP). And, let pgpy and pppr be Lagrange multipliers
on the constraints in (¢). We denote by (z(w),k(w)) some selection from the

optimal correspondence and by p(w) some corresponding Lagrange multipliers.
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So, the first-order conditions are k;(w) = K;(p;(w)) for i = H, L and

, op— 0 5 =0, if zy(w) > 0,
Su(zr(w)) — an P(s 2+ (o — OZL)(S—APH(UJ " (7)

P P <0, if zy(w) =0,

, op— 0 5 =0, if z,(w) > 0,
S (zn(w)) —ar P(S 2 — (o — OéL)(S—APL(w (8)

P P <0, if z(w) = 0.

In addition, the Envelope theorem gives

Si(w) = (1 = aj)pr(w) — ajpu(w), for j = H, L. (9)

We proceed by characterizing properties of the recursive optimum. Although,
S; might be not globally strictly concave, we are able to identify next period
promised utilities when the incentive constraints do not bind. To be specific,
zr(w) = 2§ if the “downward” constraint is slack and zy(w) = 2§ if the “upward”
constraint is slack. By part (c) of Claim |2, there exists unique z§ satisfying
2§ > 0 and S}(25) = q; 5P5;§A or z§ = 0 and Sj(0) < aj%. Then, define two
thresholds w} = AOR(k(0;)) + dalam — ar)z§ > 0.

We also argue that the Lagrange multipliers are unique. Let m* be a solution
to (SP) at t = 2. Tt is clear that the capital supplied to 0y can be distorted only
upwards, thus k*(0y|h'~2,60;) > 0 is uniquely defined by strict concavity of the
objective. It follows from Claim [2|that py(w) = K' (k*(0u|ht=2,0,)), and p(-) is

continuous in w, because m* changes continuously with w. It remains to select

pr(w) to satisfy the envelope condition.

Proof of Proposition[f] We shall characterize p, because its properties translate
into k by the first-order condition k;(w) = IC;(p(w)) for i = H, L.

Part (b). If there is no “upward” incentive constraint, then ky(w) = k°(0y)
and zy = 2§ by the first-order conditions and definition of z§. Since this choice
is feasible if and only if w > wj;, the result for py follows. To see monotonicity
of pu(+), take w' > w > wj; and suppose that pgy(w) > py(w’). Concavity
and the first-order conditions imply that zgy(w) > zy(w') which contradicts to
AO(R o Ky)(pu(w)) + dalay —ap)zp(w) = w < w' = A(R o Ky)(pu(w')) +

38



dalag — ap)zg(w').
Part (a). By the similar argument to part (b), pr(+) is strictly decreasing on
[0, w3} ], and it is zero afterwards. Finally, since the only feasible choice at w =0
is k,(0) =0, w) = sup{w € W : kp(w) = 0} is well-defined.
[

Now, we turn our attention to z and start by pointing out uniqueness of

transfers.

Claim 4 (Uniqueness of transfers). Zy, is single-valued, and 3 unique w such that
Zy; is single-valued whenever wj > wj; or w # w. w solves (ay — ar)dapy (W) =

OéH((SP — (5,4)

Proof. zp is unique which follows from the last part of Claim [3, whereas zgy
might fail to be unique. Intuitively, zy could be not unique only when there are
multiple zy with pp, (zH(w)) = pH (zH(w)) = (. Such values of zy are elements
of the correspondence Zy.

Define w by (ay — ap)dapu(w) = ag(dp — da). Clearly, it exists and it is
unique, because of monotonicity of py as shown in the proof of Proposition

Suppose that wj > wi;, then Si(w) = (1 — a;)pr(w) — ajpu(w) is strictly
decreasing on R, . So, zy is single-valued by strict concavity of 5.

If wi < w};, then the envelope conditions (Equation @ imply that S}(w) >
0 on [0,wi], Sj(w) < 0 on [wf,+o0) and Si(w) = 0 for any w € [w},w].
Therefore, Zy is single-valued on [0, @) by the last part of Claim B} and Zy(w) =
[w},w?};] by construction. To see that Zy is single-valued on (w, +00), notice
that w = AO(Ro Kg)(pu(w)) + da(ag — ar)zu(w) whenever pg(w) > 0. Since
pu(w) > 0 for any w > w, zg(w) could be uniquely identified from the “upward”

incentive constraint. O

To sum up, zg(w) is not unique only when w} < wj and w = w. In what

follows, by zg () we mean an arbitrary selection from Zg(-).

Proof of Proposition 9
Part (d). Equation @ says that Sy (w)/ag — ST (w)/ap = “L="Ep; (w) < 0.

agor,

Therefore, 2§ < 2§ with 2§ # 2% if and only if S7(0) > aL‘SP(S;P‘SA by their

definitions and part (c) of Claim [3| For 2§ = 0, wj > 2§ is trivially satisfied.

Suppose that 27 > 0, then S%(w}) = —a;pu(w}) < 0 < Sj(z7), thus wy > 2.
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Moreover, notice that wj; = AGR(k*(0n)) + 0a(ay — ap)z$ < 2§ if and only
: AQ AQ
if Z?_I > mR(ke(eH)) On the other hand, Z]e;l < mR(k’e(eL)),
because of 2§, < 2§ < wj. So, we can not have 2§, > wj;.

It remains to establish that 2%, < w/. Of course, it is vacuously true whenever
26 = 0. So, suppose that 2§ > 0. In this case, 2 < w/ whenever 4 < ay. To
see this, notice that py(w’) > £ with an equality if and only if py(w') =0, as
shown in part (c). Suppose that z§ < w’, which is equivalent to pr(w') > pr(2%)
by monotonicity of pr(-). Since z§; < wi;, pg(w’) = %, which contradicts to
pr(w!) > pr(z5) > 0.

Recall that {45 < ay if and only if ;24 < 22 (1— 2oL ) which is
always satisfied.

Parts (a) and (b). We established above that 25 € [0,wj] for j = H, L.
Monotonicity of p(-) as shown in Proposition [ combined with Equations [7] and
yields the result of parts (a) and (b).

Part (c). First, we study fixed points of Zg(-). In the previous part, we

showed that 2§, < wj; which implies that 2§ is a fixed point of Zy(-). Suppose
that there exists w # 2§ > 0 with w € Zg(w). By definition, it must be the case
that py(w) > 0.

Consider the equation w = m (RoKy) (pu(w)) > %R(k‘%)
which is necessary for w € Zy(w) > 0 with py(w) > 0. Equation [7] and [9] imply
that (1 — ag)dppr(w) = ay(dp —04) + (aHép — (ag — aL)(SA)pH(w) > 0.

Since pr(w) > 0, the “downward” constraint binds this period and it will keep
binding along the sequence of §;’s. Formally, let z5(w) be defined by z§ (w) =
2 (27 (w)) with 2f(w) = w. By Equation , p(z5 (w)) > 0 for any s. Then,
iterating along this sequence, we arrive at the following contradiction by using

monotonicity of R:

Ad

(g —az)

w= A0 Z(éA(ozH —ap)) (RoK)(pr(zf(w))) < = R(k7)

7=0
So, 2% is the unique fixed point of Zy.
Now, we turn our attention to fixed points of z;. Of course, 0 is always a
fixed point, and our goal is to identify a positive fixed point. Suppose there
exists 0 < w = zp(w). First of all, z;(w) = 2§ < wj < w whenever pr(w) = 0,

therefore it must be the case that w < 2§ and pp(w) > 0.
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Af
1-04(ag—ar)
when w = zp(w) > 0 with py(w) > 0. One more necessary condition, due to

the Equations |8 and |§|7 is that ((1 —ap)dp — dalag — aL))pL(w) = ap(dp —
da) +ardppy(w) > 0. By monotonicity of p (shown in Proposition [4)), these two

Consider the equation w = (R o Kpr)(pr(w)) which is necessary

equations have a root if and only if 7 > {4 Af. And, if such a root exists, then
it is unique.

Let w’ be the root of the aforementioned equations for 6; > A0, and
w! = 0, otherwise. For 0, > <A, global stability follows from z.(-) crossing
the 45-degree line only once and from above, because w/ < 2$. For 6;,/Af < c,
global stability is trivial, because 0 is the unique fixed point.

Part (e). At the initial date, the first-order conditions with respect to z coin-
cide with Equations |7 and [8] The extra first condition is pppr(w) — pgpg(w) =
(<)pug whenever w > (=)0. Existence and uniqueness directly follows from
monotonicity of p, see proof of Proposition [df To see that the contract always
stays within [0, w}], notice that S} (zr(w)) > 0, due to Equation 8] implying that
pr(w) > 0. For w < wj, |zp(w) — 25| < |w — 2§ vields zy(w) < wj, because

2% < w?t as shown before. O
H L

8.3 Connection to primitives

Proof of Proposition[3 and Corollary[{]. First, we show that the first-order opti-
mal contract is optimal if and only if maX{U#(GH)’}E& U#(GH\GE’l)} <C=
AOR(k(0r)) + da(ap — ar) U (05 |0y). Given history hi=1 U#(0y|ht~!) — C is
the expected utility which 6 could obtain by misreporting his type once, and
the “upward” incentive constraint requires this object to be non-positive.

By Corollary , U (0y|h*~1, 0, 051) is increasing in ¢ with Jim U (0y|01) =
Jim U (0 |h>=Y, 05,051 for all A*~! and s. In addition, U# (0|05 ") is either
globally decreasing or increasing in ¢ depending on the primitives. Obtain the
result by combining these two observations.

Next, we establish Proposition [3] and the second part of Corollary [4 Let w*
be the point chosen at initialization. Clearly, 2§ is attained in finite time, say t*,
along the sequence of 0y’s starting from any w*. Since z§, < w{, Proposition
yields that the optimal contract never leaves the interval [z, w/].

Suppose that w/ < w};, then the “upward” incentive constraints do not have
a bite after ¢t* periods with probability one. Equations [7], [§ and [9] yield that
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for any w € [2%, w!], pr(zp(w)) = ag and pr(zp(w)) = ar + bpr(w). In other
words, the optimal contract will follow the first-order optimal contract described
in Proposition , and w’/ = Jim U (0|05, wi = C.

Conversely, suppose w/ > wj} and that the optimal contract is eventu-
ally restart with some t*. By Proposition there exists ¢ > t* such that
wy < 24(24) < w' implying that zp(2(2%)) # 2% where zt(-) is a product

of t consecutive applications of zy () to w. This is a clear contradiction. 0

8.4 Optimal restart contract

In this subsection, we characterize the optimal restart contract and assess its
performance. Extending Lemma[2] one can show that not only agent’s allocation,
but his expected utility also follows a restart pattern for the optimal restart
contract. Therefore, we represent a restart contract by a pair of sequences {Uy, k; }
and {U,, k,} as in Remark 3.

Proof of Proposition[f. First, we adjust our previous definitions to respect a
structure of restart contracts. A restart contract satisfies the “downward” in-

centive constraints if for all ¢,

Ut Z AQR(]Q) + 5A(OZH — OéL)Ut_H,
Ut 2 AOR(I;'t) + (SA(OKH — aL)UtJrl.

A restart contract satisfies the “upward” incentive constraints if for all ¢,

Ut < AHR(k(QH)) + 5,4(06]-] — OéL)Ul,
U, < AOR(k(0)) + 0a(ay — ap)Uy.

Now, we derive principal’s expected revenue of a restart contract. Let S; be the
surplus in the restart phase given that 6, was drawn ¢t — 1 times since since the
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last 0.

S1 = ay [S(k(eH), QH) — OzH((Sp — 5A)U1 + (5p51}
+(1-an) [s(kl, 01) — ar(6p — 54)Us + 5p52} ,
S, = ar, [s(k(GH), O) — ar(6p — 3.)Us + 5p51}

+ (1 — aL) [S(kt, GL) — OéL(ép — (5A)Ut+1 + (5]3515_;,_1}.

Next, we solve for principal’s expected revenue:

O =—pgUs+pr Y (0p(1—ar) ™ (s(k,01) — ar(6p — 64) i)+
t=1

+ g[s(k(eH), Or) — an(8p — 84)Us

+0p(l —ag) Z op(l —ayr)) (s(k:t,HL)—aL((Sp—&A)UH_l)}
t=1

ardp+pm(1-dp)
(1-6p)(1—-dp(ag—ar))”

second term is expected surplus along the lowest history and the third is expected

where ( = The first term is agent’s expected utility, the
surplus of the restart phase.

First, we ignore the “upward” incentive constraints and maximize II in the
set of restart contracts respecting the “downward” incentive constraints. By
Proposition [2, the unique solution is the first-order optimal contract which has
U = ANR(E])+04(ay — aL)Uﬁl and U7 = A@R(l;:f)JréA(aH—aL)Uil with
= K($5 (1= b1 + apb'™") and & = Kp($5(1 = b'=") + “2b1). Let TT#
be principal’s expected revenue for this contract, then II# > II* with equality if
and only if this contract satisfies the “upward” incentive constraints.

Now, we impose the “upward” incentive constraints and maximize II in the
set of restart contracts respecting IC. Let II¥ be principal’s expected revenue
for this contract, then II¥ < IT* with equality if and only if this contract satisfies
the “upward” incentive constraints. Define the following Lagrange multipliers for

each t:

1. ¢op(1 — ay)(0p(1 —ar)) ' p; is the multiplier on U; > AR(k;)
+6alag — ap)Uip

2. ¢op(1 — ay)(dp(1 — ag))tn, is the multiplier on U; < AR(k(0y))
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+ 5,4(0[]-[ — ()éL)Ul
3. ur(6p(1 — ar))=1p; is the multiplier on U, > AR(ky) 4+ da(ay — aL)UtH
4. pr(0p(1 — o)), is the multiplier on U, < AR(k(0g)) + 64(ay — ar)Uy

The first-order conditions are given by k(0g) = Kg(§) and Vit

ke =Kp(p), for pua=ar+bpe+my  with py = ag — ————& +m,
(sp 1-— ag
k= Ki(p), for pus = ap +bpe+ e with py = S 4y,

where £ = i(ép(l —ag))! (%ﬁt +¢o(1 — OéH)m)-

If the “upvéz;;d” incentive constraints do not bind, then ¢ = 0 and the first-
order contract is optimal. This contract has an infinite memory along the se-
quence of 0;’s.

So, consider the case that some “upward” incentive constraints bind that is
¢ > 0. Using complementary slackness, it is easy to see that an optimal restart

contract is such that

prr1 = max{y,ar, + bp:},
Pry1 = max{y,ar + bp},

for some {4 < v < p; < ay. The constant v is a floor on the distortions
along the sequence of 6;’s. In addition, 77; = 0 meaning that the optimal restart
contract always has some memory, and it is not a static one. To see it, suppose
that 7, > 0, then Uy = AOR(k(0n)) + da(ag — arp)Uy. Since {5 < v < py, p; is
a non-increasing, therefore U, is a non-decreasing sequence. Then, the “upward”
incentive constraints always bind in the restart phase, and U; = Uy, k = Kp(7).
Combing both incentince constraints obtain that R(k(0y)) = (R o Kp)(vy) which

is a contradiction, because k(0y) > k°(0g) and Kr(y) < k°(0L). O

Proof of Proposition[]. First, we shall bound II# — II# > 0. Define the slack
variables for the upward incentive constraints by ¢, = (Ut# — AR(k°(0g)) —

+ ~ +
5A<aH — aL)Ul#) and ét = <Ut# — AR(k:e(QH)) — 6A(aH - OéL>Uf%> . By the

44



standard perturbation argument,
# — 117 <) “(p(1 — ap))'™ [Mmtét +¢o(1 — ozH)ntat],
t=1

because the “downward” incentive constraints always bind.
Our first bound takes ™% = max {éo, <#/C (%) — AR(k*(0r)) —

1-da(ag—ar)
+
dalay — ozL)Ufﬂ } > ¢4, & for all t. Using the first-order condition for U; and
<

ar, .
1-b = P1:

7 — 11 < (EeM < 6P(1 — OéH) (aH o C)Cgmaaz —. Bi
daloy —ar)

Our second bound limits 7, and 7. Notice that p; 1 —ap — bpy = 1 <

Y1 —=0b)—ar < (1—-0) (aH - “—L) and the same is true for 7,1 for any ¢ > 2.

-5
Fort =1, < (ay — ’;-f)i

aL)

H# — HR S uL(aH — 'LL—H)+§1 +/LL(1 — b)(aH -
209 1-b

t=2

Our last bound relies on the optimal static contract. A static contract is such
that k; = k, = k(0r) and U, = U, = U(fy) for all t. It is easy to show that the
optimal static contract has k°(0y) = k¢(0y) and k°(01) = K1 (p) where

(e +¢(6p = da)ag)(1 = dp(1 —ayr)) ar(dp —04)

 (pr+C0p(1 = an))(1 = dalam —ar)) 1 —dalam —ar)’
The profit of the optimal static contract can be found in the closed form, IT°, using
the binding “downward” incentive constraints. And, we have IT# —II% < IT# —II°.
Then,

IT* — 1% < min{B!, B2 1* —11°} =: B, and

117 B, /IT#
1-— < =: B,.
IT* — max{l — B, /II#, 115}
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8.5 Comparative statics

Proof of Proposition[8 We start by looking at the first-order optimal contract.

By Corollary , then the first-order optimal contract is essentially static for o = %
5”6;6"‘ for any ¢, p; = 5”5;5“‘ for t > 2, and p; = ‘:L—’Z Importantly,

Uy is independent of 64, so 64 = Jp uniquely maximizes the surplus and min-

Formally, p, =

imizes the cost of incentive provision at the same time. Since the profit in the
first-order optimal contract is continuous with respect o and d4 = dp is a strict
1

maximizer for a = 1, it is still a maximizer for a ~ 3.

If « — 1, then p;, — ’;—’L{ <§—2)t_1 Vt, the intertemporal cost of incentive
provision goes to zero. Therefore, Clyﬂ Up = iﬂ Uga, and the limit is strictly
increasing in d4. By continuity, 64 = 0 is a maximizer for a ~ 1.

Finally, by Corollary [2|the first-order optimal contract is incentive compatible
for either iid or constant types. Therefore, the proposition is true for the optimal

and optimal restart contracts as well. O
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