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Abstract

We propose a new approach to estimate selection-corrected quantiles of the
gender wage gap. Our method employs instrumental variables that explain
variation in the latent variable but, conditional on the latent process, do not
directly affect selection. We provide semiparametric identification of the quan-
tile parameters without imposing parametric restrictions on the selection prob-
ability, derive the asymptotic distribution of the proposed estimator based on
constrained selection probability weighting, and demonstrate how the approach
applies to the Roy model of labor supply. Using German administrative data,
we analyze the distribution of the gender gap in full-time earnings. We find
pronounced positive selection among women at the lower end, especially those
with less education, which widens the gender gap in this segment, and strong
positive selection among highly educated men at the top, which narrows the
gender wage gap at upper quantiles.
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1 Introduction

In all countries, men continue to earn higher wages than women. Crucially, the
gender wage gap spans the entire wage distribution and affects all educational groups
(e.g., Goldin [2014], Blau and Kahn [2017], Olivetti et al. [2024]). To meaningfully
quantify and analyze this gap, it is essential to account not only for gender differences
in observable characteristics such as education and labor market experience, but also
differences in selection into employment. The impact of selection on the gender wage
gap is ambiguous and depends on the sign and magnitude of gender-specific selection
patterns (see, e.g., Mulligan and Rubinstein [2008], Arellano and Bonhomme [2017],
or Blau et al. [2024]). Understanding why men consistently out-earn women and
designing policies to address this disparity requires tackling the challenging task of
identifying and quantifying the role of employment selection in shaping the wage
distribution, and of deriving a selection-corrected measure of the gender wage gap
distribution.

In this paper, we propose a new strategy to derive the selection-corrected wage
distribution and to quantify the full distribution of the gender wage gap. Identifica-
tion relies on exogenous variation that affects latent wages but, conditional on the
latent wages and other observed variables, provides no additional information on the
selection mechanism. In the context of a Roy model [Roy, 1951], as applied to labor
supply decisions by Gronau [1974] and Heckman [1974], where individuals choose to
work if their potential wage exceeds their reservation wage, we show that our exogene-
ity requirements have the interpretation of a rank invariance condition: Conditional
on potential wages, the instrument does not provide additional information about an
individual’s position in the reservation wage distribution.

An important contribution of our paper is that we do not restrict the functional
form of the conditional selection probability. We provide semiparametric identifi-
cation of selection-corrected quantile regression when the outcome is selectively ob-
served and selection depends on unobservables. Identification is achieved by inverse
probability weighting, where selection probabilities may depend on latent potential
outcomes but are otherwise unaffected by the excluded variable. We establish identi-
fication of linear quantile regression even when nonparametric selection probabilities
are not identified via conditional moment restrictions implied by the exclusion re-
striction. The constructive identification arguments motivate a flexible B-spline esti-
mator, combined with cone projection, to estimate the initial selection probabilities.
The resulting inverse probability quantile regression exhibits excellent finite-sample
properties, and we establish its asymptotic behavior.

We apply the proposed estimation strategy to derive selection-corrected wage dis-
tributions for men and women into full-time employment and to quantify the distri-
bution of the selection-corrected gender wage gap among full-time workers. The em-
pirical analysis is based on administrative social security data from Germany (SIAB),
which provides detailed information on the complete employment and earnings histo-
ries of individuals in the labor force. We use the initial wage as the instrument, which
captures persistent individual heterogeneity, such as ability, motivation or social skills,
that affect potential earnings over the life cycle. This is in line with previous stud-
ies showing that initial wages have persistent effects on future outcomes (see, e.g.,
Devereux [2002], Oreopoulos et al. [2012], Schwandt and von Wachter [2019]). In
the Roy model, the exclusion restriction implies that the instrument conditional on
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the potential wage provides no additional information about an individual’s position
in the reservation wage distribution. Intuitively, once potential wages and observed
characteristics are held fixed, individuals with the same rank in the distribution of
reservation wages remain comparable regardless of their value of the initial wage.

Our results highlight the critical role of selection in shaping the gender wage
gap. Women are positively selected into full-time employment across the wage dis-
tribution, with the strongest effects for lower and median wages. For men, selection
effects are smaller but still positive and statistically significant. Conditional analyses
yield a more nuanced picture. After controlling for education, experience, age, and
workplace characteristics, selection correction consistently lowers women’s estimated
wages, particularly at lower quantiles and among the less educated. This indicates
that full-time working women in these groups tend to possess unobserved attributes
(e.g., motivation, ability) associated with higher wages, leading to a positively se-
lected sample. The selection effect diminishes at higher quantiles and is weakest
among highly educated women, implying that top female earners are less affected
by unobserved selection and that full-time workers in this group more closely repre-
sent the broader female population. For men, positive selection is also present across
education groups but follows a different pattern. Among the highly educated, me-
dian wages decline by about 10.7 euros after correction, compared with 5.6 euros for
women, resulting in a 21% selection-corrected gender wage gap, which is 2 percent-
age points lower than the gender wage gap without selection correction. In contrast,
selection effects are minimal among less educated men. These different selection pat-
terns have important implications for the distribution of the gender wage gap. While
the gender wage gap among the low educated increases from 3.6% to 10.7% at the
median after correcting for selection, the selection-corrected gender wage gap for the
high educated is slightly lower than the uncorrected wage gap. Overall, these results
underscore the importance of accounting for selection heterogeneity across quantiles
and education levels. Ignoring selection biases can mask substantial differences in the
gender wage gap, particularly in the lower part of the wage distribution. In robust-
ness checks, we impose stricter requirements on the lag structure of the instrument
and find that the results remain virtually unchanged; see Appendix E.

Related Literature. Our approach extends the existing literature on endogenous
selection and nonignorable nonresponse, where instrumental variables are used to
restore identification when selection depends on the outcome variable itself. IV-
based strategies similar in spirit to ours have been developed in both the statistics
(see, e.g., Tang et al. [2003], Zhao and Shao [2015]) and econometrics (see, e.g.,
D’Haultfoeuille [2010], Ramalho and Smith [2013], Breunig et al. [2018]) literatures,
as well as by Breunig and Haan [2020] for the case of selectively missing covariates.
More recent contributions by Zhang and Wang [2020] and Yu et al. [2023] extend these
ideas to quantile regression, proposing likelihood-based estimators under nonignorable
selection that rely on parametric assumptions about the selection mechanism. In
contrast, our method avoids such parametric restrictions, offering greater flexibility
and robustness to model misspecification. While most applications of these statistical
methods have focused on medical or clinical settings, we demonstrate their potential
for economic contexts, particularly in analyzing labor supply and wage inequality.

By using an exclusion restriction for the underlying latent process, our strategy
extends the existing literature analyzing the gender wage gap. Most previous studies
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focus on the average wage and address selection using the classical Heckman correction
[Heckman, 1979], which requires an exclusion restriction for the selection into employ-
ment. Typically, researchers have relied on variables such as the number and age of
children (e.g., Mulligan and Rubinstein [2008]) or on variation in the tax and transfer
system, as suggested by Blundell et al. [2023].1 However, these exclusion restrictions
are often difficult to justify in practice, particularly when analyzing selection among
men. Several studies have extended the classical Heckman model. Das et al. [2003],
for example, develop a nonparametric approach and apply it to estimate returns to
schooling among young Australian females. Of particular importance for our paper
is the extension by Arellano and Bonhomme [2017], who propose a framework that
allows for selection correction across the entire wage distribution, recognizing that
selection patterns and their effects may vary across wage levels. Using UK data, they
find positive selection for both men and women – more pronounced for men – and
therefore report that the selection-corrected gender wage gap is smaller than the un-
corrected one. Their identification strategy relies on the assumption that out-of-work
benefit income is independent of unobserved determinants of wages.

Maasoumi and Wang [2019] apply a similar approach for the US and show that
selection-corrected gender wage gaps have increased over time, both at the mean and
across various quantiles of the wage distribution. Blundell et al. [2023] focus on gender
differences in the distribution of lifetime earnings. They find that gender disparities
widened during the first half of individuals’ working lives but that substantial conver-
gence occurred after age 40 for more recent cohorts, particularly compared to those
born before the 1950s. Several alternative approaches have been proposed to study
the distributional aspects of the gender wage gap (for an overview, see Blau et al.
[2024]).

Blundell et al. [2007] develop and estimate bounds on the wage distribution to
address non-random selection into employment. Although this method does not yield
point identification, the resulting bounds are relatively tight. Their findings suggest
a narrowing of the gender wage gap among the less educated. Relatedly, Honoré
and Hu [2020] examine identification in classical semiparametric sample selection
models without exclusion restrictions. They derive sharp bounds for the parameters
of interest and show that, even in the absence of valid instruments, the identified set
can be narrow in practice.

Blau et al. [2024] further propose imputation-based methods to address missing
wage information, following techniques similar to those in Olivetti and Petrongolo
[2008]. This approach has the advantage of correcting for selection across the full
wage distribution. However, imputation methods rely solely on observed character-
istics and are therefore based on the Missing at Random (MAR) assumption. Using
such techniques, Blau et al. [2024] show that the reduction in the gender wage gap
in the US over time becomes more pronounced when accounting for selection effects,
although substantial disparities persist.

The paper is structured as follows. Section 2 outlines the modeling framework
and establishes semiparametric identification, introducing the main assumptions. We
also illustrate the identification strategy using the Roy model and show under which
conditions it is nested within our sample selection framework. Section 3 details the
estimation procedure and derives the asymptotic properties of the estimator, as well

1For a survey of studies using this approach, see Blau and Kahn [2017] and Blau et al. [2024].
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as its finite-sample performance based on Monte Carlo simulations. The empirical
application is discussed in Section 4, including a description of the data, the empir-
ical specification, and the instrument. Section 5 reports the empirical findings, and
Section 6 concludes. All proofs are provided in Appendices A1–A3. Appendix B
describes the data preparation process and reports summary statistics for the wage
variable at different stages of data cleaning. Appendix C illustrates the application of
our estimator to the estimation of the distribution function. Appendix D contains ad-
ditional simulation results and a detailed description of the simulation design. Finally,
Appendix E reports robustness checks.

2 Semiparametric Identification

This section begins by outlining the assumptions required for identification. We then
establish the identification of the quantile function using inverse selection probability
weighting. We further extend our identification results more specifically to the Roy
model of labor supply.

2.1 Setup and Identification

Given a latent outcome Y ∗ (for example, potential earnings from employment) and
the participation indicator D (e.g., employment), we consider the following model for
τ ∈ (0, 1):

Y ∗ = Z>θτ + Uτ , where P(Uτ ≤ 0 | Z) = τ (2.1)

D = 1{V ≤ p(Y ∗, X)} (2.2)

Y = Y ∗ if D = 1,

for some function p(·) that maps to the unit interval and where 1{·} denotes the in-
dicator function. Here, Uτ and V are unobservable variables, and Z = (1, X>,W>)>,
where X is a vector of covariates and the random vector W is excluded from the
selection equation, which will be formally imposed below. We refer to W as instru-
ments. Throughout the paper, we assume that a random sample of (Y,D,X>,W>)
is available. In the following, we provide sufficient conditions to identify the quantile
regression coefficient θτ , which is the dz–dimensional parameter of interest.

Identification is based on instrumental variables W that explain variations in the
latent variable Y ∗ but are not directly related to the selection mechanism. This
contrasts with parametric and semiparametric versions of the sample selection model
of Heckman [1979], which use variables that explain the selection equation but not the
outcome (wage) equation, for example Ahn and Powell [1993], Donald [1995], Chen
and Khan [2003], Das et al. [2003] and Arellano and Bonhomme [2017], the latter
extending Heckman’s framework to quantile selection models.

Assumption 1. (i) V ⊥⊥ W | (Y ∗, X) and V | (Y ∗, X) ∼ U(0, 1); (ii) the selection
probability p is uniformly bounded away from zero on its support; (iii) p is identified
through the conditional moment restriction E[D/p(Y,X) | W,X] = 1.

Assumption 1(i) imposes conditional independence of the instrument W and the
unobservables V in the selection equation. This assumption further imposes a uniform
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distribution of the conditional distribution of V , which is an innocuous normalization
condition. Under Assumption 1(i) we conclude that

P(D = 1 | Y ∗, X,W ) = P(V ≤ p(Y ∗, X) | Y ∗, X) = p(Y ∗, X).

In particular, p(Y ∗, X) = P(D = 1 | Y ∗, X) by the law of iterated expectations, and
thus we refer to p as the selection probability in the remainder of the paper.

Also note that Assumption 1(i) excludes any relation betweenW and the selection
variable D that is not channeled through (Y ∗, X). Assumption 1(ii) extends to the
usual assumption of overlap required for the identification of population parameters
under data missing at random, since herein the probability of selection can depend
on the latent outcome.

Throughout the paper, we define the inverse selection probability function as
g(y, x) := 1/P(D = 1 | Y ∗ = y,X = x). Under Assumption 1(i)(ii), this definition
directly implies the following conditional moment restriction:

E[Dg(Y,X) | W,X] = 1, (2.3)

which, importantly, only involves observable random variables. Assumption 1(iii)
ensures identifiability of the selection probability through this moment condition.
In parametric settings, this requirement corresponds to the familiar rank condition,
whereas in the nonparametric case it relies on a bounded completeness assumption,
as shown by D’Haultfoeuille [2010], which can be more challenging to justify. While
our first result establishes identification of the quantile regression coefficient θτ un-
der Assumption 1(iii), we show below that this assumption can also be avoided by
imposing a mild variational condition on the quantile of interest.

Under the standard quantile regression assumption that, for a given τ ∈ (0, 1), the
conditional quantile function satisfies QY ∗(τ | Z = z) = z>θτ for some θτ ∈ R

dz , the
parameter θτ can be characterized, following the check function argument of Koenker
and Bassett [1978], as the solution to

θτ = argmin
θ∈Rdz

E[ρτ (Y
∗ − Z>θ)], (2.4)

where ρτ (u) = u(τ−1{u < 0}) denotes the check function. Under Assumption 1, this
parameter is identified and uniquely determined, as stated in the following proposi-
tion.

Proposition 2.1. Suppose Assumption 1 holds. Then for any τ ∈ (0, 1), the quantile
regression coefficient θτ is uniquely determined as the solution to

θτ = argmin
θ∈Rdz

E
[
D g(Y,X) ρτ

(
Y − Z>θ

)]
. (2.5)

The next theorem establishes identification of our quantile selection model even if
the inverse selection probability function g is not identified through the conditional
moment condition (2.3), as imposed in Assumption 1(iii). For this result, we adopt an
insight from Severini and Tripathi [2012] regarding point identification of functionals
of partially identified structural functions.

Theorem 2.2. Suppose Assumption 1(i)(ii) holds. Then, for any τ ∈ (0, 1) for which
a square integrable function µτ exists that satisfies

E [µτ (W,X) | Y ∗, X] = E
[
ρτ
(
Y ∗ − Z>θτ

) ∣∣ Y ∗, X
]
, (2.6)

the quantile regression coefficient θτ is identified by (2.5).
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Equation (2.6) requires that the instrument W carry sufficient information so
that the conditional expectation E

[
ρτ

(
Y ∗ − Z>θτ

)
| Y ∗, X

]
can be expressed as an

expectation of some measurable function of (W,X) given (Y ∗, X). In other words,
the assumption postulates the existence of a bridge function linking the residual loss
function to the observed variables. This corresponds to a proximal identification
requirement, where, conditional on X, the instrument W spans the same information
space for the relevant conditional moment as the latent outcome Y ∗ does.

2.2 Application to the Roy Model

To illustrate identification, we use the Roy model [Roy, 1951] applied to the decision
on labor supply by Gronau [1974] and Heckman [1974].2 In this model, Y ∗ is the
potential wage of employment and D is the indicator of labor market participation.
According to the model, individuals choose employment if their potential wage Y ∗

exceeds their reservation wage R:

D = 1{Y ∗ ≥ R}. (2.7)

In the following, we explicitly derive under which conditions the Roy model is nested
within our sample selection framework.

We assume that the reservation wage R is continuously distributed conditional on
the potential wage Y ∗ and the observed characteristics X. Formally, the cumulative
distribution function FR|Y ∗,X(·) is continuous and strictly increasing.

In the Roy model, labor market participation is determined by the comparison of
potential and reservation wages:

P(D = 1 | Y ∗, X) = P(Y ∗ ≥ R | Y ∗, X) = FR|Y ∗,X(Y
∗).

Since FR|Y ∗,X(·) is strictly increasing, we can interpret FR|Y ∗,X(R) as the conditional
rank (or quantile position) of the reservation wage within the distribution of reserva-
tion wages among individuals with the same (Y ∗, X). Under the continuity assump-
tion, this rank is uniformly distributed on (0, 1) conditional on (Y ∗, X).

Our key independence condition is that this reservation-wage rank is indepen-
dent of the instrument W once we condition on the potential wage and observed
characteristics:

FR|Y ∗,X(R) ⊥⊥ W | (Y ∗, X). (2.8)

This assumption states that, conditional on productive ability and observable charac-
teristics, the instrument does not provide information about unobserved determinants
of labor supply decisions. It thus rules out selection on unobservables with respect
to the instrument while allowing for rich and continuous heterogeneity in reservation
wages. This condition can be interpreted as a rank invariance assumption (on the
reservation wage), analogous to that used in quantile IV models (see Chernozhukov
and Hansen [2005]). It relaxes the conditional independence assumption on the reser-
vation wage itself, imposed in Example 2 in D’Haultfoeuille [2010]. The rank in-
variance condition (2.8) implies that, given (Y ∗, X), the instrument W does not

2Mulligan and Rubinstein [2008] define this model as the Gronau-Heckman-Roy (GHR) labor
supply model.
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provide additional information about an individual’s position in the reservation wage
distribution. Intuitively, once the potential wages and observed characteristics are
fixed, individuals with the same rank in the distribution of reservation wages remain
comparable regardless of their value of W . Consequently, we obtain the following
identification result.

Corollary 2.3. For the Roy model (2.7), suppose that Assumption 1(ii) holds and
that R given (Y ∗, X) is continuously distributed. In addition, assume that the rank
invariance condition (2.8) is satisfied. Then, for any τ ∈ (0, 1) that satisfies (2.6) the
quantile regression coefficient θτ is identified by (2.5).

In our empirical application (see Section 4), we use an individual’s initial wage
as the instrument W . The initial wage captures unobserved individual heterogeneity,
such as ability, diligence, and both hard (education, technical expertise) and soft
(teamwork, communication, negotiation) skills, that shape potential wages over the
life cycle. This argument is consistent with explanations in the literature showing
that initial wages have persistent effects on future outcomes (see, e.g., Devereux
[2002], Oreopoulos et al. [2012], Schwandt and von Wachter [2019]). For example,
Oreopoulos et al. [2012] show that career development models or models of human
capital accumulation can explain why high initial wages lead to persistent higher
wages.

The exclusion restriction in Corollary 2.3 implies that, once we fix (Y ∗, X), the
initial wage W does not carry further information on an individual’s position in
the conditional distribution of reservation wages. In other words, among individuals
with the same potential wage and observable characteristics, the initial wage does
not predict whether someone is at a high or low quantile of the reservation wage
distribution. Note that this exclusion restriction is far less restrictive than assuming
that the initial wage has no effect on the reservation wage. In fact, the exclusion
restriction is not violated if the initial wage would shift the level of the conditional
reservation wage while not changing the rank distribution.

In the empirical application, we discuss in detail how we construct the initial wage
and argue that it is important to use wage information of the distant past to relax
strong assumptions of a static labor supply model. For details, see Section 4.2.

3 Estimation and Inference

In this section, we sketch an estimation procedure that builds on the identification
result. We then analyze the asymptotic properties of the estimator and evaluate its
finite-sample performance through simulation evidence.

3.1 Estimation

Following the identification result, the estimation of the conditional quantiles of the
latent outcome variable Y ∗ proceeds in three steps, summarized in Algorithm 1.

The first step estimates the inverse selection probability function g(Y,X) using
the moment condition:

E [Dg(Y,X) | W,X] = 1, where Y = DY ∗.
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Let φJ(·) and bK(·) be vectors of basis functions of dimensions J and K ≥ J ,
respectively. Denote by ΦJ the linear span of {φ1, . . . , φJ}. We assume that the func-
tion g(Y,X) lies in this linear span, i.e., g(Y,X) = φJ(Y,X)>β for some coefficient
vector β ∈ R

J , where φJ(Y,X) denotes a transformation of (Y,X). Multiplying both
sides of the moment condition by the spline basis functions of (W,X) yields:

E
[
DbK(W,X)φJ(Y,X)>

]
β = E

[
bK(W,X)

]
. (3.1)

In the second step, we enforce a lower bound on the estimated inverse selection
probabilities by projecting the unconstrained estimator ĝu onto the cone of functions
bounded below by 1. This ensures ĝ(y, x) ≥ 1 for all (y, x). The projection is imple-
mented using the coneproj package in R. Cone projection of series TSLS estimators
for constrained hypothesis testing was also considered by Breunig and Chen [2024].

In the last step, we estimate the conditional quantile function of the latent out-
come variable Y ∗ via weighted quantile regression, using weights D ĝ(Y,X). This
extends the quantile regression framework of Koenker and Bassett [1978] to ac-
count for selection, with inverse probability weights that depend jointly on the se-
lection indicator and the outcome. For the algorithm, let Y × X denote the sup-
port of (Y,X), and let En[·] denote the empirical mean. For (Y,X), we define
L2(Y,X) = {h : ‖h‖L2(Y,X) < ∞}, where ‖h‖L2(Y,X) :=

√
E[h2(Y,X)]. The con-

ditional probability density function of a random variable Y given Z is denoted by
fY |Z(·). Throughout the paper, we assume that a sample {Si}ni=1 is observed, where
Si = (Di, Yi,W

>
i , X

>
i ).

Algorithm 1 Estimation Procedure with Inverse Probability Weighting

Input: Sample data {Si}ni=1 and quantile level τ ∈ (0, 1).

1: Estimate the inverse selection probability function. Obtain the uncon-
strained estimator ĝu(·) = φJ(·)>β̂, where β̂ is the 2SLS coefficient regressing the
constant 1 on DφJ(Y,X) with bK(W,X) as instruments.

2: Impose the shape restriction. Project ĝu onto the cone C := {g ∈ L2(Y,X) :
g(y, x) ≥ 1 for all (y, x) ∈ Y × X} by solving

ĝ = argmin
h∈C∩ΦJ

En

[(
ĝu(Y,X)− h(Y,X)

)2]
.

3: Estimate the conditional quantile function of Y ∗. Estimate the quantile
parameter θτ by

θ̂τ = argmin
θ∈Rdz

En

[
D ĝ(Y,X) ρτ (Y − Z>θ)

]
. (3.2)

Output: Estimates θ̂τ and conditional quantile function Q̂Y ∗(τ | Z = z) = z>θ̂τ .

3.2 Asymptotic Properties

In this subsection, we present the asymptotic distribution for the quantile selection es-
timator θ̂τ . To establish the result, we introduce some notation. Let Ωg := Dg(Y,X)
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be the selection weights and let ψτ (u) := τ −1{u < 0} be the quantile score function.
Define T := E

[
φJ(Y,X)DZ>ψτ (Uτ )

]
, where Uτ = Y ∗ − Z>θτ .

3 The matrices G and
H capture key population moments involving the basis functions and the first-stage
estimation errors: G := E[bK(W,X)bK(W,X)>], H := E[DφJ(Y,X)bK(W,X)>]. Let
UJ := 1 − DφJ (Y,X)> β be the first-stage residual. To obtain our asymptotic dis-
tribution result, we assume that the coefficient β is identified through the moment
condition (3.1). Under additional assumptions as specified in Appendix A2, the in-
fluence function, as derived in the next theorem, can be written as:

χτg(Si) :=M−1
1τg

(
ZiΩgiψτ (Uτi) + T>(HG−1H>)−1HG−1bK(Wi, Xi)UJi

)
,

where M1τg := E
[
ΩgfY |Ωg ,Z

(
Z>θτ

)
ZZ>

]
. We now present the asymptotic distribu-

tion of our quantile selection estimator θ̂τ .

Theorem 3.1. Suppose Assumptions 1(i)(ii), A2, and A3 hold. Then, for any τ ∈
(0, 1) that satisfies (2.6) we have

√
n
(
θ̂τ − θτ

)
=

1√
n

n∑

i=1

χτg∗(Si) + op(1)

and in particular

√
n
(
θ̂τ − θτ

)
d−→ N

(
0,E

[
χτg∗(S)χ

>
τg∗(S)

])
,

where g∗ satisfies (2.3) and minimizes E
[
χτg(S)χ

>
τg(S)

]
.

This result provides the asymptotic distribution of the quantile regression estima-
tor. The detailed regularity conditions required to establish this asymptotic result,
together with its proof, are given in Appendix A2. The asymptotic covariance esti-
mator used in our implementation is presented in Appendix A3.4

3.3 Monte Carlo Studies

We evaluate the finite-sample properties of the estimator compared to existing ap-
proaches, using 1,000 replications with n = 1,000 observations per replication.

We consider the outcome model

Y ∗
i = β0 + β1Wi + β2Xi + εi(τ), i = 1, . . . , n,

where (Wi, Xi)
> ∼ N

((
2
1

)
,

(
1 0.5
0.5 1

))
and (β0, β1, β2) = (1, 1, 2). The error term

εi(τ) ensures a zero conditional τ -quantile. In this section, we present results for εi(τ)
drawn from a t-distribution with 3 degrees of freedom, scaled by 0.7, while sensitivity
to alternative error distributions is presented in Appendix D.

3Note that we can replace Y
∗ by Y whenever Uτ is multiplied by D, as Y = DY

∗

4In our application, we estimate the conditional densities using the npcdens package in R, which
implements the method of Racine and Li [2004], with bandwidths selected via the cross-validation
procedure of Hall et al. [2004].
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Selection into the observed sample is modeled through a binary indicator Di,
which equals one if individual i is observed and zero otherwise. Conditional on the
latent outcome Y ∗

i and covariates Xi, we assume a logistic selection model:

Di ∼ Bernoulli(p(Y ∗
i , Xi)), where p(Y ∗

i , Xi) =
1

1 + exp(−s(Y ∗
i , Xi))

.

The function s(·) determines the selection mechanism. We consider three specifi-
cations that differ in how selection depends on observed covariates and the latent
outcome. In the first mechanism (M1, MAR), selection depends only on observed
covariates, with s(Y ∗

i , Xi) = α1 + γ1Xi. The second (M2, MNAR-linear) introduces
dependence on the latent outcome in a linear form, s(Y ∗

i , Xi) = α2 + γ2Xi + ξ2Y
∗
i .

The third mechanism (M3, MNAR-nonlinear) allows for nonlinear dependence on
the covariate, s(Y ∗

i , Xi) = α3 + γ3 sin
2(Xi) + ξ3Y

∗
i . The parameters (αj, γj, ξj) are

chosen such that the average missing-data rate is approximately 35%. The design
mirrors our empirical application: W serves as an instrumental variable that affects
the latent outcome but is excluded from the selection equation, paralleling the role
of initial wages as instruments in our application. The exact parameter values and
further implementation details are provided in Appendix D.

We compare four estimation methods at the median quantile, τ = 0.5. First, the
uncorrected complete-case estimator relies solely on the observed outcomes, ignoring
the missing-data mechanism and therefore serving as a naive benchmark. Second,
the MAR correction assumes that selection depends only on observable characteris-
tics and is implemented through a two-step inverse probability weighting procedure.
Third, we include the joint estimating equations (JEE) method of Yu et al. [2023],
which, similar in spirit to ours, employs an IV but specifies a parametric form for the
selection probability and jointly estimates the quantile and selection equations via an
augmented likelihood framework. Finally, our semiparametric IV method corrects for
selection using an instrument without imposing any parametric restrictions on the
selection probability, providing greater flexibility and robustness to model misspeci-
fication.

Our estimation procedure follows Algorithm 1. In the first step, we estimate
ĝu(Y,X) using quadratic B-splines – without interior knots for Y and with two in-
terior knots for X – yielding three and five basis functions, respectively. Including
one control variable, this yields dimensions J = 4 and K = 6. In the second step, we
impose the lower-bound shape constraint using the coneproj package in R to obtain
the constrained estimate ĝ(Y,X). Finally, quantile coefficients are estimated using
weighted quantile regression with weights Dĝ(Y,X). The covariance matrix and con-
fidence intervals are computed using the plug-in estimators detailed in Appendix A3.

While the full set of simulation results and the detailed description of the setup
– covering all error distributions and selection mechanisms – are provided in Ap-
pendix D, Table 1 summarizes results for a representative setting with heavy-tailed
errors: t-distributed errors with 3 degrees of freedom, scaled by 0.7. The proposed
semiparametric IV estimator exhibits negligible bias and low RMSE across all selec-
tion mechanisms. Under M1, where selection is independent of the latent outcome
given covariates, all estimators perform comparably. The proposed method tends
to produce slightly wider confidence intervals, reflecting its robustness against more
complex forms of selection. In contrast, when selection depends on the latent out-
come (M2 and M3), both the MAR-assumed and complete-case estimates suffer from
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Table 1: (Setting C) Simulation results by method with (τ, n) = (0.5, 1000) and 35%
missing in the outcome

Method
M1 M2 M3

β0 β1 β2 β0 β1 β2 β0 β1 β2

Mean biases

Uncorrected 0.005 -0.002 0.001 0.249 -0.025 -0.076 0.255 -0.025 -0.077
MAR-assumed 0.004 -0.001 0.001 0.317 -0.033 -0.108 0.296 -0.034 -0.089
JEE 0.001 -0.004 0.005 0.010 -0.012 0.000 0.005 0.001 -0.008
Semiparametric IV -0.033 0.009 0.012 0.042 0.005 -0.018 0.056 0.003 -0.029

RMSE

Uncorrected 0.094 0.044 0.043 0.271 0.048 0.090 0.275 0.050 0.090
MAR-assumed 0.100 0.047 0.047 0.377 0.072 0.156 0.362 0.077 0.135
JEE 0.120 0.102 0.125 0.841 0.362 0.330 0.714 0.265 0.179
Semiparametric IV 0.110 0.047 0.048 0.131 0.050 0.060 0.133 0.049 0.064

CI lengths

Uncorrected 0.355 0.170 0.178 0.408 0.170 0.186 0.402 0.171 0.184
MAR-assumed 0.371 0.175 0.191 0.668 0.230 0.382 0.663 0.250 0.357
JEE 0.716 0.306 0.332 1.063 0.406 0.495 0.994 0.360 0.447
Semiparametric IV 0.701 0.344 0.318 0.636 0.316 0.256 0.674 0.327 0.263

Coverage probabilities

Uncorrected 0.943 0.944 0.963 0.343 0.921 0.639 0.302 0.903 0.626
MAR-assumed 0.935 0.932 0.961 0.409 0.891 0.657 0.480 0.885 0.709
JEE 0.941 0.935 0.955 0.879 0.927 0.882 0.854 0.924 0.882
Semiparametric IV 0.989 1.000 0.990 0.965 0.994 0.956 0.977 0.993 0.948

substantial bias, high RMSE, and poor coverage. The joint EE method also fails
under M2 and M3, with sharp increases in RMSE and confidence interval length.
Overall, the semiparametric IV method demonstrates the most robust performance,
consistently achieving the lowest RMSE and the highest coverage even in the pres-
ence of selection dependent on the latent outcome. Moreover, the joint EE method
is computationally more intensive, as it relies on bootstrapping to estimate standard
deviations. For large samples, as in our empirical application, this makes it difficult
to implement the estimator, whereas our method is considerably faster.

4 Empirical Application

In this section, we present the empirical application and outline the implementation
procedure. We begin by describing the data and providing summary statistics of the
key variables. Next, we discuss the construction and choice of the instrumental vari-
able. We then detail the implementation of our proposed selection correction method,
explaining how it is applied to the data alongside the benchmark estimations – both
the uncorrected model and the selection correction under the MAR assumption.
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4.1 Data Description and Summary Statistics

The empirical analysis is based on administrative social security data from Germany.5

The data include individuals who have held employment subject to social security
contributions or marginal part-time employment at least once during the observation
period, as well as benefit recipients and job seekers.6 It provides comprehensive
information on the employment history, including employment spells, daily wages, and
various demographic characteristics such as gender, age, education, work experience,
and occupation.

Our analysis is based on the 2017 wave of the dataset. We focus on individuals
between the ages of 25 and 50 who have held German nationality throughout their
entire recorded labor history. Our sample includes i) individuals in part-time and full-
time employment, ii) recipients of unemployment benefits and means-tested transfers,
and iii) job seekers not receiving unemployment benefits. We exclude individuals
who are still in education or vocational training, and those who are partially retired.
Additionally, our analysis excludes self-employed individuals and civil servants, as
the administrative records do not cover these employment groups. Finally, we do not
observe individuals who are part of the working-age population but are not in the
labor force because they are not actively seeking employment. Thus, we analyze the
effects of non-random selection only of the individuals who are in the labor force.

The administrative records offer three major advantages for analyzing gender-
specific wage distributions, and the distribution of the gender wage gap for full-time
workers. First, the data cover a broad and representative segment of the population
with a large sample size, enabling the use of nonparametric estimation techniques,
which typically require larger datasets than parametric methods.7 Second, the data
are extensive and precise. Unlike self-reported survey data, these records avoid issues
of misreporting and non-random missing observations in wage data. Finally, the data
include information about the full earnings and working history with occupational
details, which is required to construct the instrument.

Our key variable of interest is the gross daily wage in full-time employment, which
is recorded for every spell of full-time employment.8 To construct a panel by year and
individual, we closely follow Dauth and Eppelsheimer [2020]: we record individuals
with spells spanning June 30th of each year in the panel and use the wage from the
longest employment spell within the respective year as the gross daily earnings for
that year. The gross daily wage is top-coded due to social security insurance limits,
meaning wages above this threshold are not fully observed.9 This censoring restricts
the analysis of the full wage distribution. Therefore, we trim the top 5% of the wage
distribution by gender, year, and region, removing individuals whose earnings ever

5We use the factually anonymous version of the Regional File of the Sample of Integrated Labor
market Biographies 1975-2017 (SIAB-R 7517), a 2% random sample drawn from the Integrated
Employment Biographies (IEB), provided by the Institute for Employment Research (IAB) [Antoni
et al., 2019].

6Marginal part-time employment is recorded from 1999 onward. Following the German unifica-
tion, for East Germany recorded information is assumed to be complete from 1993 onward.

7While the large sample size is beneficial, our estimation strategy remains applicable even in
smaller samples.

8The data do include information about working hours. Therefore, we focus on the gender wage
gap in full-time employment.

9The limit’s assessment ceiling varies by year and between East and West Germany. In 2017, it
was 76,200 euros in West Germany and 68,400 euros in East Germany.
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fall within the top 5%. Additionally, to avoid outliers, we trim the bottom 5% of
the wage distribution. The data preparation process and the sample restriction are
discussed in detail in Appendix B. Overall, we use 119,930 observations for females
and 124,588 observations for males in our empirical analysis.

Table 2 provides information about gross daily wages in full-time employment
and an overview of the sample’s descriptive statistics.10 Consistent with previous
evidence, we observe a clear raw gender wage gap in full-time earnings. On average,
men earn about 30 euros more per day than women, corresponding to a raw gender
wage gap of approximately 25%. The median wage gap is slightly smaller, around
20%.11

Education is classified into three groups based on the completion of a university
degree or vocational training.12 Educational attainment is generally similar across
genders: the majority have completed vocational training, while a smaller proportion
hold a university degree.

The employment status is derived from mandatory social security notifications
submitted by employers. The distinction between full- and part-time work is based
on a comparison of contracted hours with the standard working hours at the re-
spective establishment. Non-employment spells are identified through the receipt of
unemployment benefits or means-tested transfers. A notable disparity in employment
status is observed: more than half of women (52%) work part-time, compared to only
10% of men. In contrast, the majority of men (83%) are employed full-time, while
only 42% of women are. The share of individuals in the labor force but currently out
of employment is similar for men and women. To account for regional differences in
labor market trajectories, we classify individuals by workplace region, distinguishing
between East and West Germany, which evolved differently after reunification. In
2017, around 76% of both men and women in our sample were employed in West
Germany.

The data enable us to reconstruct detailed employment and wage histories for all
individuals. We aggregate past employment into part-time and full-time experience
and account for periods of non-employment.13 Table 2 shows that women have signif-
icantly more part-time work experience – five years on average compared to one year
for men – while men have more full-time experience, averaging 11.6 years versus 7.3
years for women. The median part-time experience for men is zero, whereas women
have accumulated a median of three years.14 To account for initial career starting
points, occupational differences, and potential variation in wage trajectories across
occupations, we classify individuals based on the difficulty level of their earliest job.
This job also determines their initial wage, which we use as an instrument in our

10Wages are adjusted for inflation, using 2015 as the base year.
11The gender gap in full-time earnings in our data is slightly higher than that reported in Ilieva

and Wrohlich [2022], who focus on hourly wages based on SOEP data.
12For more details, see Dauth and Eppelsheimer [2020]. Note that the proportion of university

graduates in the general population is higher than in our sample, as the top 5% of the wage distri-
bution has been trimmed, potentially excluding individuals with higher educational qualifications.

13Some unrecorded periods or data gaps may reflect time spent abroad or other forms of employ-
ment. Since we cannot verify these activities, we do not classify them as full-time, part-time, or
non-employment.

14In the empirical analysis, we control for experience but do not interpret the coefficients. Expe-
rience is highly correlated with age, and part-time employment is often linked to the presence and
age of children, which are not observed in the data, making a meaningful interpretation challenging.
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Table 2: Descriptive Statistics

Women Men

Mean/Share Median Mean/Share Median

Gross Daily Full-Time Wage (in Euro) 91.26 91.18 112.86 107.84

Employment Status (%)
Non-employed 6.23 6.67
Part-time 52.18 X 10.09
Full-time 41.59 83.24 X

Age 38.74 39.00 37.95 38.00
Education Level (%)
No vocational training 5.18 5.55
Vocational training 77.88 X 77.79 X

University 16.94 16.66
Workplace (%)
Non-employed 6.23 6.67
Employed in East Germany 17.70 17.35
Employed in West Germany 76.07 X 75.97 X

Experience (in years)
Non-employed 0.77 0.00 0.87 0.00
Part-time 4.86 3.00 0.96 0.00
Full-time 7.30 6.00 11.59 10.00

Earliest job difficulty (%)
Unskilled/semiskilled task 6.38 6.75
Skilled task 80.03 X 82.11 X

Complex task 4.22 3.65
Highly complex task 9.37 7.49

Individuals 119,930 124,588

Notes: SIAB-R data, 2017 cross-section. The sample includes individuals aged 25-50, all
German nationals. Education reflects the highest degree attained. Employment status is based
on employers’ mandatory social security notifications. Wages represent gross daily full-time
earnings from each individual’s longest employment spell in 2017.

analysis.

4.2 Instrument

As mentioned above, we use an instrument W based on the individual’s wage history
constructed to satisfy the exclusion restriction. The instrument explains variation
in the potential wage but, conditional on this latent outcome and observable char-
acteristics, does not directly affect the employment decision. We argue that early
wage history satisfies this restriction because it captures persistent individual hetero-
geneity – such as ability, diligence, and both hard (education, technical knowledge)
and soft (teamwork, communication, negotiation) skills – that shape potential wages
over the life cycle. Under this assumption, the initial wage influences labor market
participation only indirectly, through its effect on the potential wage. This interpre-
tation aligns with theories of career development, which suggest that higher initial
wages provide greater opportunities for human capital accumulation and are there-
fore positively correlated with future skill acquisition and long-term earning potential
[Oreopoulos et al., 2012].

Arguably, the assumptions of a static labor supply model may be violated due
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Table 3: Instrument: Initial wage

Women Men

Mean Min Max Mean Min Max

Initial wage (in euro) 50.26 4.29 150.00 60.25 4.46 192.81
Age at initial wage 22.22 17 48 21.97 17 48
Years to 2017 16.52 2 33 15.97 2 33.00
Share full-time (%) 93.26 98.38

Individuals 119,930 124,588

Notes: SIAB-R data, 1975-2017. The initial wage is the daily wage at the
earliest available point in the individual’s wage history within the SIAB dataset.

to factors such as state dependence in preferences [Heckman, 1991], labor market
dynamics, wage persistence [Meghir and Pistaferri, 2011], or intertemporal financial
incentives. Specifically, wages from recent periods may influence current employment
decisions. For example, unemployment insurance payments or other transfers are
often determined by recent earnings and employment histories, which can directly
affect reservation wages and thereby the selection process in the current period. Sim-
ilarly, persistent earnings shocks or mean reversion may directly influence the current
period’s offered wage, again linking recent wages to labor market participation.

To address these dynamic channels within our identification strategy, we exploit
detailed information on each individual’s employment and wage history. Specifically,
we use the earliest observed wage as our main instrument, referring to it as the initial
wage. This choice mitigates concerns that contemporaneous or short-lagged wages
could directly affect current employment decisions.15 When constructing the instru-
ment, we prioritize full-time earnings from the earliest available date; if an individual
has never worked full-time, we instead use their earliest part-time earnings.16 Finally,
we require that the initial wage be observed in 2015 or earlier, i.e., at least two peri-
ods before the current observation t− 2, to ensure that the conditional independence
assumption underlying our identification is plausibly satisfied.

15In Appendix E, we show that our results are robust when considering only wages from 2011 or
earlier (i.e., at least five years back) as valid instruments.

16Ancillary analyses in Appendix E confirm that our results are robust when restricting the in-
strument to only past full-time wages.
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Figure 1: Years of initial wages
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Note: The figure shows the histogram and density of the earliest job years, with dashed lines
representing women and dotted lines representing men.

Table 3 summarizes key characteristics of the instrumental variable, which cap-
tures each individual’s earliest observed wage in the dataset. On average, men’s initial
wages are higher than women’s, at approximately 60 and 50 euros per day, respec-
tively. The instruments originate from an average age of 22 and reach back around
16 years for both genders. Moreover, 98% of men’s and 93% of women’s instruments
are based on full-time wages, reflecting the higher incidence of part-time employment
among women. Figure 1 displays the distribution of the instrument years, indicating
that women’s wage histories extend slightly further back in time than men’s.

In Table 4, we assess the relevance of the instrument by regressing log full-time
wages observed in 2017 on the initial wage variable. We additionally control for
age, educational attainment, workplace region, and total experience, all measured
as of 2017, as well as the difficulty level of the earliest job. Total experience is
calculated as the sum of full-time experience and half the part-time experience (i.e.,
one year of part-time work counts as 0.5 years). The coefficient on the initial wage is
strongly positive and statistically significant for both men and women, underscoring
the predictive power of early labor market conditions for later-life earnings.

4.3 Implementation Details

We implement quantile regression using three different approaches. First, we apply
our proposed IV-based selection correction method. Second, we consider a commonly
used selection correction approach that relies on the MAR assumption. Third, we
estimate quantile regressions based solely on the observed full-time wages, without
correcting for selection. These three methods were compared in detail in the simula-
tion study presented in Section 3.3.
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Table 4: OLS Regression Results

Women: Men:

Initial Wage (log) 0.216 0.183 0.272 0.183
(0.004) (0.004) (0.004) (0.002)

Age -0.012 -0.011
(0.000) (0.000)

Education Level 0.197 0.250
(0.004) (0.002)

Workplace 0.078 0.205
(0.004) (0.003)

Total Experience 0.018 0.019
(0.000) (0.000)

Earliest Job Difficulty 0.029 0.066
(0.003) (0.002)

Constant 3.580 3.327 3.537 3.017
(0.016) (0.021) (0.010) (0.012)

Observations 49,876 103,703
R2 0.103 0.130 0.058 0.285

Note: The dependent variable is the log of full-time wages in 2017.
The regression sample includes only individuals who were in full-
time employment in 2017.

IV-based selection correction We apply our three-stage procedure described in
Section 3.1 to estimate selection-corrected wage quantiles separately for men and
women. As outlined in Algorithm 1, the first two stages involve estimating the con-
strained inverse selection probabilities using the initial wage (log) as an instrument,
while controlling for the same covariates X as in Table 4. In the third stage, we use
the estimated weights to recover the selection-corrected conditional quantile function
of the latent outcome, based on the observed full-time wages. This estimation is
carried out conditional on both the covariates X and the instrument, in line with
Equation (2.1). For unconditional quantile estimation, no covariates are included in
the third stage. All estimations are conducted separately by gender. Since our anal-
ysis focuses on selection into full-time employment, we define D = 1 when full-time
wage information is observed. Wages of part-time workers and the absence of labor
earnings among non-employed individuals are treated as unobserved, corresponding
to D = 0.

Comparison to MAR correction and uncorrected estimates A common ap-
proach assumes that, conditional on covariates, data are missing at random (MAR),
as described in Section 3.3. Under this assumption, selection depends only on observ-
able characteristics and not on unobserved outcomes. We implement the MAR-based
selection correction using a two-step procedure: first, we estimate inverse probability
weights via a probit model; second, we use these weights to estimate the quantile
functions. Following prior studies that apply imputation-based methods to address
selection, such as Olivetti and Petrongolo [2008] and Blau et al. [2024], we use the
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same set of variables as in the IV correction but exclude the instrument (initial wage)
and its related variable (earliest job difficulty) from both stages of the MAR correction
method. For comparison, we also report uncorrected estimates based solely on indi-
viduals with observed wages. These are obtained from standard quantile regressions
using the same covariates as in the MAR specification. Although straightforward to
implement, such estimates may be biased if sample selection is non-random.

5 Results

We begin by presenting the overall patterns in the unconditional wage quantiles of
men and women, comparing our IV-based selection-corrected estimates to both un-
corrected estimates and those derived under the MAR assumption. We then turn
to the conditional wage quantiles, which account for gender differences in education,
experience, and other relevant covariates. These analyses allow us to assess how se-
lection operates across the wage distribution within and between groups. Finally, we
quantify the magnitudes of the selection effects and their implications for the gender
wage gap across three selected quantiles.

5.1 Selection Effects in the Unconditional Wage Quantiles

The results document sizable and statistically significant positive selection effects for
both men and women throughout the wage distribution. Figure 2 displays estimated
wage quantiles for men and women, comparing our IV-based selection-corrected es-
timates with both the uncorrected and MAR-corrected counterparts. The corre-
sponding uncorrected and IV-corrected wage estimates at the 25th, 50th, and 75th
percentiles, along with the implied gender wage gaps, are presented in the first panel
of Table 5.

The selection-corrected unconditional wage quantiles for both women and men lie
consistently below the empirical quantiles of wages of observed full-time workers. This
indicates positive selection into full-time employment for both genders: individuals
who work full-time tend to have higher potential wages than those who do not. As a
result, the observed distribution overstates overall wage levels by disproportionately
reflecting high-earners.

Among women, the selection effect is strongest at the lower quantiles and around
the median, gradually tapering off toward the upper tail. For example, the empir-
ical median daily wage for women is approximately 91 euros, while the IV-based
selection-corrected estimate is about 88 euros, reflecting a 3.2% reduction. At the
25th percentile, the correction lowers wages by 5.8%, whereas at the 75th percentile
the effect is more modest at 1.7%. For men, the magnitude of selection is more
uniform across the distribution, averaging around 3.5%. This pattern of positive se-
lection echoes classic insights from Heckman [1979] and empirical findings such as
those by Wang et al. [2014]. It is consistent with the Roy model of labor supply, ac-
cording to which individuals with higher potential earnings are more likely to select
into full-time work, while those with lower potential wages tend to work part-time
or remain non-employed. Since both men and women are positively selected, but
to different degrees across the distribution, the gender wage gap tends to increase
below the median and decrease above it. The findings generally align with and refine
the distributional evidence in Arellano and Bonhomme [2017], who also find positive
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selection for both genders but with a larger bias for men in the UK. Our German
data reveal that selection among women is particularly influential in the lower half of
the distribution, which helps explain why the median gap barely changes while the
25th-percentile gap widens.

Comparing the MAR and IV correction results, we find that both correction meth-
ods indicate positive selection for women, with stronger effects in the MAR correc-
tion. For men, both approaches imply positive selection effects of similar magnitude.
Discrepancies between the methods’ result can arise because the MAR approach as-
sumes that selection depends only on observed characteristics, ignoring unobserved
factors that jointly affect wages and labor supply decisions. The problem is amplified
for women, who exhibit substantially higher rates of non-employment and part-time
work. As shown in the Monte Carlo simulations in Section 3.3, the MAR approach
performs well only when selection is driven solely by observables, but fails when
unobserved heterogeneity plays a role. Consequently, the MAR correction tends to
over-adjust in the presence of unobserved selection, producing biased estimates, as
illustrated in Figure 2.

Figure 2: Quantile Selection Effects (Unconditional)
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Note: SIAB-R data, 2017. Curves display wage point estimates from unconditional quantile regres-
sions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR correction
(dashed), and IV correction (solid). The IV correction uses initial log wage as an instrument and
controls for education, age, workplace region, total experience, and earliest job difficulty in the first
two stages. The MAR correction uses the same controls except earliest job difficulty. The final-stage
regressions include no covariates for all methods. Shaded areas represent 95% pointwise confidence
intervals.

5.2 Selection Effects in the Conditional Wage Quantiles

Unconditional wage analyses offer only limited insights, as they do not control for
differences in observable characteristics like education, experience, or workplace fac-
tors. This can confound true wage disparities with compositional differences across
groups. To address this, we turn to conditional quantile regression, which allows us
to examine how wages vary across the distribution while accounting for important
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covariates. Thus, this method captures heterogeneous effects and selection patterns
that are often hidden in mean-based or unconditional approaches, providing a more
detailed understanding of wage inequality.
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Figure 3: Conditional wage quantiles by education groups
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Note: SIAB-R data, 2017. Curves show wage point estimates from unconditional quantile regres-
sions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR correction
(dashed), and IV correction (solid). The IV correction uses initial log wage as an instrument
and controls for education, age, workplace region, total experience, and earliest job difficulty.
The MAR correction uses the same controls, excluding the instrument and earliest job difficulty.
The uncorrected estimates include the same controls as in MAR. Shaded areas represent 95%
pointwise confidence intervals.
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Figure 3 displays the conditional wage quantiles by gender and education level,
comparing uncorrected estimates based on observed full-time wages with selection-
corrected estimates obtained under the MAR assumption and our IV-based method.
For women, both correction methods yield broadly similar results across most of
the distribution, except at the upper quantiles among the highly educated, where the
MAR correction indicates a small negative selection effect beyond the 60th percentile,
while the IV-based approach still points to positive selection. For men, selection
patterns differ by education level. Among those with low or medium education,
differences between the MAR and IV-based methods are relatively minor and occur
primarily in the upper parts of the wage distribution. The MAR correction indicates
little to no selection effect, while our IV-based method reveals a substantial and
statistically significant positive selection.

Overall, wage estimates for women based on the IV method are consistently lower
than the uncorrected values across all education groups, with the largest corrections
observed among low-educated women and smaller adjustments among the highly ed-
ucated. This pattern suggests that unobserved characteristics strongly influence se-
lection into full-time employment, especially among lower-educated women. Women
in these groups who are observed working full-time appear to have unobserved traits
associated with higher wages, leading to a positively selected sample. The IV correc-
tion adjusts for this by providing a more representative picture of the full population,
including women not observed in full-time work who likely earn lower wages due to
their unobserved characteristics.

Men exhibit a distinctly different pattern. For low-educated men, selection effects
are modest and become even smaller among those with middle education. By con-
trast, highly educated men experience substantial positive selection, suggesting that
those with higher earning potential are disproportionately represented among full-
time workers. This aligns with a setting where full-time participation among highly
educated men reflects stronger labor market attachment and career-oriented incen-
tives rather than financial necessity. For this group, employment decisions are likely
influenced by unobserved traits such as ambition, productivity, or access to high-
return jobs that amplify the benefits of continuous full-time work. In contrast, for
less educated men, participation decisions may be driven more by short-term income
needs or local labor demand conditions, making selection less sensitive to unobserved
earning potential.

While the IV-based and MAR corrections yield broadly similar results for low-
and medium-educated women and men, the two approaches diverge most clearly at
the top of the wage distribution among the highly educated. This pattern suggests
that unobserved factors such as ambition or career orientation play a stronger role
in shaping high-end wages, particularly for highly educated men and women. In this
group, the MAR correction misestimates selection effects because it fails to account
for selection driven by such unobservables, whereas the IV-based approach corrects
for them more effectively.

5.3 Gender wage gaps by education and wage quantile

Table 5 reports predicted daily wages for men and women and the corresponding
wage gaps at selected quantiles (25th, 50th, and 75th), setting education to one of
three levels (low, middle, high) while averaging over all other covariates. The first
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Table 5: The distribution of the gender wage gap by education

Uncorrected IV selection correction

25th 50th 75th 25th 50th 75th

Unconditional

Men
83.33 107.84 140.20 80.39 103.92 135.29

[83.06,83.60] [107.55,108.13] [139.74,140.65] [80.08,80.71] [103.47,104.37] [134.54,136.05]

Women
67.65 91.18 113.73 63.73 88.24 111.76

[67.24,68.06] [90.77,91.58] [113.42,114.03] [62.96,64.50] [87.50,88.97] [110.99,112.54]

% Difference 18.82 15.45 18.88 20.73 15.09 17.39

Low Education

Men
56.26 70.44 93.15 54.88 67.57 86.02

[55.83,56.68] [69.90,70.99] [92.37,93.93] [54.27,55.49] [66.91,68.23] [85.12,86.94]

Women
50.71 67.90 87.94 46.80 60.32 78.10

[50.04,51.40] [67.08,68.74] [87.16,88.73] [45.44,48.21] [59.04,61.62] [76.84,79.37]

% Difference 9.86 3.60 5.59 14.72 10.73 9.22

Middle Education

Men
86.44 106.85 133.13 84.25 103.17 127.07

[86.19,86.69] [106.55,107.16] [132.72,133.55] [83.87,84.63] [102.70,103.65] [126.44,127.70]

Women
68.23 89.61 110.59 63.85 82.81 103.01

[67.83,68.63] [89.18,90.06] [110.18,111.00] [62.46,65.27] [81.83,83.79] [102.23,103.80]

% Difference 21.07 16.13 16.93 24.21 19.74 18.93

High Education

Men
116.47 143.16 169.18 107.70 132.48 158.57

[115.73,117.21] [142.43,143.89] [168.38,169.99] [106.70,108.70] [131.50,133.46] [157.53,159.63]

Women
87.38 110.24 128.90 82.42 104.61 125.00

[86.47,88.31] [109.39,111.09] [128.19,129.61] [80.78,84.08] [103.14,106.10] [123.32,126.70]

% Difference 24.97 23.00 23.81 23.47 21.04 21.17

Note: SIAB-R data, 2017. The table presents quantile regression estimates for the 0.25, 0.50, and
0.75 quantiles. The IV correction uses initial log wage as an instrument and controls for education,
age, workplace region, total experience, and earliest job difficulty in the first two stages. In the first
panel (unconditional) quantile regressions include no covariates. In the remaining panels (condi-
tional), the IV correction carries the same variables to the third stage. The uncorrected estimates
use the same controls, excluding the instrument and earliest job difficulty. Conditional estimates fix
controls at their median within each education group. 95% confidence intervals are shown in square
brackets.

panel of the table additionally presents the unconditional results, providing a baseline
comparison before adjusting for observable characteristics. We compare estimates
that do not correct for selection and selection corrected estimates using the proposed
IV method. A central and straightforward observation is that men consistently earn
higher wages than women across all quantiles and education groups, indicating a
persistent gender wage gap that holds regardless of educational attainment, quantiles,
and estimation method. However, there exist interesting differences between the
groups.

The unconditional estimates in the first panel, corresponding to Figure 2, capture
the differences in wage distributions without adjusting for covariates. At the median,
men earn about 108 euros per day, compared to 91 euros for women, implying a
raw wage gap of 15.5%. After IV-based selection correction, median wages fall to
104 euros for men and 88 euros for women, leaving the gap virtually unchanged.
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At the lower quantile, however, the correction increases the wage gap by roughly 2
percentage points to 20.7%, while at the upper quantile it reduces the gap by about
1.5 percentage points to 17.4%.

In the second panel, where education is set to no vocational training (low educa-
tion), we find strong positive selection for women and significant but less pronounced
positive selection for men. The uncorrected daily wages for men are 56 euros, 70
euros, and 93 euros at the 25th, 50th, and 75th percentiles, respectively. For women,
the corresponding figures are 51, 68, and 88 euros. After applying the IV-based se-
lection correction, median wages fall to 68 euros for men and 60 euros for women,
increasing the gender wage gap from 3.6% to 10.7%. At the 25th percentile, strong
positive selection for both genders widens the gap by 4.8 percentage points, whereas
at the 75th percentile the effect is smaller, raising the gap by only 3.6 percentage
points.

Among workers with vocational training (middle education), the gender wage gap
widens across all quantiles, although the changes are less dramatic than for the low-
education group. At the median, men’s wages fall from 107 to 103 euros and women’s
from 90 to 83 euros, widening the gender wage gap by 3.6 percentage points to 19.7%.
At the lower end of the distribution, the gap increases by 3.1 percentage points to
24.2%, while at the 75th percentile, the correction adds only 2 percentage points.

For university graduates, selection patterns differ sharply between men and women.
Women with higher education are only marginally affected by selection, whereas
highly educated men experience the strongest positive selection in the sample. At
the upper quantiles, men’s daily wages are about 11 euros lower after correction,
compared to a smaller decline of 4–5 euros for women. These opposing effects even
reduce the gender wage gap at the top of the distribution, by roughly 1–2 percentage
points.

Relative to the results of Blau et al. [e.g., 2024], our IV-based estimates attribute
more of the observed female advantage among full-time workers to selection on un-
observables, especially at the bottom of the distribution. In this sense, our results
caution against interpreting MAR-corrected improvements as purely structural con-
vergence: once non-ignorable selection is accommodated, distributional gaps at the
lower tail are larger, while top-end gaps can be smaller due to stronger male selection.

Taken together, our estimates both reconcile and extend existing literature. In
addition to documenting positive selection throughout the wage distribution, we un-
cover two distinctive patterns: (i) pronounced selection at the lower end for women,
especially those with less education, which widens the gender gap in this segment;
and (ii) strong positive selection among highly educated men at the top of the dis-
tribution, which narrows the gender wage gap at upper quantiles. These findings
rationalize why selection-corrected gender wage gaps can widen, as shown by Maa-
soumi and Wang [2019], while in other cases they may narrow at the upper end of
the distribution, consistent with Arellano and Bonhomme [2017].

6 Conclusion

In this paper, we propose a novel estimation strategy to recover the selection-corrected
wage distribution and to quantify the full distribution of the gender wage gap. Iden-
tification is obtained from exogenous variation that shifts latent wages but does not,
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conditional on these latent and other observed variables, provide additional informa-
tion on the selection mechanism. The approach does not impose parametric restric-
tions on the selection probability and, within the Roy model, can be interpreted as a
rank invariance condition on conditional reservation wages.

We formally derive an estimation strategy for selection-corrected quantile regres-
sion when the outcome is selectively observed and selection depends on unobservables.
We use inverse probability weighting in combination with an instrumental variable
approach, thereby relaxing the MAR assumption that selection depends only on ob-
servables. We use shape constraints via cone projection and B-spline approximations
in the estimation of inverse probabilities, which stabilize the weights and improve
inference.

Using administrative social security data from Germany, we apply the proposed es-
timation strategy to derive selection-corrected wage distributions for men and women
in full-time employment. The results of our analysis highlight the critical role of se-
lection in shaping the gender wage gap. We document substantial selection at the
lower tail for women, amplifying gaps specifically among the less educated, and strong
positive selection among highly educated men, compressing gaps at the top. Despite
these differences in the selection pattern, men consistently earn higher full-time wages
than women across all quantiles and education groups. Thus, the gender wage gap
persists regardless of educational attainment, quantiles, and selection patterns.
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A1 Proofs of the Identification Results in Section 2

Proof of Proposition 2.1. For any τ ∈ (0, 1), it is well known (see Koenker and
Bassett [1978]) that the quantile regression coefficient θτ minimizes the check function
as given in Equation (2.4), i.e.,

θτ = argmin
θ∈Rdz

E
[(
Y ∗ − Z>θ

) (
τ − 1{Y ∗ < Z>θ}

)]
.

Multiplying and dividing by P (D = 1 | Y ∗, X) gives

θτ = argmin
θ∈Rdz

E

[(
Y ∗ − Z>θ

) (
τ − 1{Y ∗ < Z>θ}

) P (D = 1 | Y ∗, X)

P (D = 1 | Y ∗, X)

]
.

By the exclusion restriction onW , we have P (D = 1 | Y ∗, X,W ) = p (Y ∗, X), so that

θτ = argmin
θ∈Rdz

E

[(
Y ∗ − Z>θ

) (
τ − 1{Y ∗ < Z>θ}

) P (D = 1 | Y ∗, X,W )

P (D = 1 | Y ∗, X)

]
.

Applying the law of iterated expectations and noting that Y = Y ∗ whenever D = 1,
with p (Y ∗, X) = p (Y,X) on this support, we obtain

θτ = argmin
θ∈Rdz

E

[(
Y − Z>θ

) (
τ − 1{Y < Z>θ}

) D

p (Y,X)

]

= argmin
θ∈Rdz

E

[
D

p (Y,X)
ρτ
(
Y − Z>θ

)]
,

which proves the claim.

Proof of Theorem 2.2. We first introduce the linear operator T by T : f 7→
E[Df(Y ∗, X) | W,X] for any square integrable function f . Then, the conditional
mean equation in (2.3), that is, E[Dg(Y ∗, X) | W,X] = 1, can be written as the oper-
ator equation Tg = 1. Furthermore, the quantile regression coefficient θτ minimizes
a population criterion as in Equation (2.5) which can be rewritten as

E [g(Y ∗, X)mτ (Y
∗, X)] , with mτ (Y

∗, X) := E
[
Dρτ

(
Y ∗ − Z>θτ

) ∣∣ Y ∗, X
]
.

This population criterion thus immediately implies uniqueness of the quantile regres-
sion coefficient θτ .

We can now apply Lemma 3.1 in Severini and Tripathi [2012]: Identification of
the population criterion E [g(Y ∗, X)mτ (Y

∗, X)] requires only that mτ belongs to the
orthogonal complement (in the L2 sense) of the operator T . Equivalently, there
exists a function µτ such that T ∗µτ = mτ , where the adjoint operator is defined as
T ∗ : φ 7→ E[Dφ(W,X) | Y ∗, X]. This condition can be written as

E [Dµτ (W,X) | Y ∗, X] = E
[
Dρτ

(
Y ∗ − Z>θτ

)
| Y ∗, X

]
.

Using the selection equation D = 1{V ≤ p(Y ∗, X)} and the conditional independence
V ⊥⊥ W | (Y ∗, X), we can factor out the probability of selection p(Y ∗, X) = E[D |
Y ∗, X], yielding

p(Y ∗, X)E [µτ (W,X) | Y ∗, X] = p(Y ∗, X)E
[
ρτ
(
Y ∗ − Z>θτ

)
| Y ∗, X

]
.
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By the overlap condition p(Y ∗, X) > 0, we divide both sides by p(Y ∗, X) to obtain
the equivalent expression

E [µτ (W,X) | Y ∗, X] = E
[
ρτ
(
Y ∗ − Z>θτ

)
| Y ∗, X

]
,

which completes the proof.

Proof of Corollary 2.3. Since R conditional on (Y ∗, X) is continuously dis-
tributed, the conditional cdf. FR|Y ∗,X(·) is strictly increasing. Consequently, we
may write the Roy selection rule as

D = 1 {Y ∗ ≥ R}
= 1

{
FR|Y ∗,X(Y

∗) ≥ FR|Y ∗,X(R)
}

= 1
{
p(Y ∗, X) ≥ FR|Y ∗,X(R)

}
.

This corresponds exactly to the general selection model (2.2) with V = FR|Y ∗,X(R).
Hence, we can apply the proof of Theorem 2.2, replacing V by FR|Y ∗,X(R) to obtain
identification of the quantile regression coefficients θτ .

A2 Technical Assumptions and Proof of Theorem 3.1

The following conditions are required to establish Theorem 3.1. We observe a random
sample {Si}ni=1, where Si = (Di, Yi,W

>
i , X

>
i ). Define the identified set of inverse

selection probability functions as I := {g ∈ L2(Y,X) : E[Dg(Y,X) | W,X] = 1}.
Let H = E[DφJ(Y,X)bK(W,X)>] and define the quantile score function ψτ (u) =
τ − 1{u < 0}. Recall that M1τg = E

[
ΩgfY |Ωg ,Z

(
Z>θτ

)
ZZ>].

Assumption A2. (i) H is of full rank for all J,K ∈ N; (ii) The conditional distri-
bution function FY |Ωg ,Z is absolutely continuous, with continuous densities fY |Ωg ,Z(ξ)
uniformly bounded away from 0 and ∞ at the points Z>

i θτ , i = 1, . . . , n, uniformly for
g ∈ I; (iii) E[ZZ>] is positive definite.

Assumption A2(i) ensures that the matrix H is invertible and that the projection
of the inverse selection functions onto the sets of basis functions considered is unique.
Assumption A2(ii) requires the conditional distribution of the outcome to be smooth
and well-behaved at the linear quantile model points. Together, Assumptions A2(ii)
and A2(iii) imply that the matrix M1τg is invertible.

For each g ∈ I recall the definition Ωg = Dg(Y,X) of the selection weights. Note
that by Assumption A2(i) is uniquely determined when the function g belongs to the

sieve space under consideration. The corresponding estimator is denoted by Ω̂ :=
Dĝ(Y,X). From Equation (2.1), Uτ = Y ∗ − Z>θτ , which reduces to Uτ = Y − Z>θτ
whenever multiplied by D, since Y = Y ∗ holds for D = 1. We write ‖ · ‖∞ for the
supremum norm and, for any δ ∈ R

dz , define

Rg(δ) :=
(
β>φJ(Y,X)− g(Y,X)

)
DZ>δ ψτ (Uτ ),

which captures the weighted approximation remainder from replacing g(Y,X) by its
series approximation β>φJ(Y,X).
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Assumption A3. (i) sup(y,x)∈Y×X ‖φJ(y, x)‖ = O(
√
J) such that J log(J)/n = o(1),

and K = cJ for some constant c ≥ 1; (ii)
√
nE[Rg(δ)] = o

(√
Var(Rg(δ))

)
uniformly

for g ∈ I; (iii) E
[(
1−DφJ(Y,X)>β)2 | W,X

)]
is bounded away from zero and in-

finity, and E

[(
1−DφJ(Y,X)>β

)4]
< ∞; (iv) max1≤i≤n ‖ΩgiZi‖ = o(

√
n) almost

surely, uniformly for g ∈ I; (v) supg∈I ‖ĝ − g‖∞ = op(1).

Assumption A3 captures standard regularity conditions for establishing inference
for semi-/nonparametric series estimators (see, e.g., Chen [2007], Koenker [2005],
Knight [1998], Hjørt and Pollard [1993]). Assumption A3(i) imposes an upper bound
on the growth of the series dimension J . This ensures that the series approximation
remains well-behaved as the sample size grows. Assumption A3(ii) controls the rel-
ative size of approximation errors when g(Yi, Xi) is approximated by β>φJ(Yi, Xi),
ensuring they vanish as the sample grows. Assumption A3(iii) guarantees the ex-
istence of key moments and that certain conditional variances are positive, which
underpins the asymptotic normality of β̂. Assumption A3(iv) ensures that no single
observation dominates the weighted sums, effectively satisfying a Lindeberg condition.
Finally, Assumption A3(v) controls the estimation error of the inverse probabilities
and the resulting weights, ensuring that the estimated weights converge uniformly to
the true weights (see Chen and Christensen [2018]).

Proof of Theorem 3.1. Consider an objective function

Sn (δ) =
n∑

i=1

Ω̂i

[
ρτ
(
Uτi − Z>

i δ/
√
n
)
− ρτ (Uτi)

]

where Uτi = Yi − Z>
i θτ . The function Sn (δ) is convex and is minimized at

δ̂ =
√
n
(
θ̂τ − θτ

)

as we know from Equation (3.2) that

min
θ∈Rdz

n∑

i=1

Ω̂i ρτ
(
Yi − Z>

i θ
)
=

n∑

i=1

Ω̂i ρτ
(
Yi − Z>

i θ̂τ
)
,

which is equivalent to
∑n

i=1 Ω̂i ρτ
(
Uτi − Z>

i δ̂/
√
n
)
.

Following Knight [1998], it can be shown that the asymptotic distribution of δ̂ is
determined by the limiting behavior of the function Sn (δ). Using Knight’s identity,

ρτ (u− v)− ρτ (u) = −v (τ − 1{u < 0}) +
∫ v

0

(1{u ≤ s} − 1{u ≤ 0}) ds

we may write
Sn (δ) = S1n (δ) + S2n (δ) ,

where

S1n (δ) = − 1√
n

n∑

i=1

Ω̂iZ
>
i δ (τ − 1{Uτi < 0})

S2n (δ) =
n∑

i=1

Ω̂i

∫ Z>

i δ/
√
n

0

(1{Uτi ≤ s} − 1{Uτi ≤ 0}) ds =:
n∑

i=1

Ω̂iS2ni (δ)

and we control each term separately in the following.
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The first term We can write S1n (δ) as

S1n (δ) = − 1√
n

n∑

i=1

ΩgiZ
>
i δ (τ − 1{Uτi < 0})− 1√

n

n∑

i=1

(
Ω̂i − Ωgi

)
Z>

i δ (τ − 1{Uτi < 0})

= −
(

1√
n

n∑

i=1

ΩgiZ
>
i δψτ (Uτi) +

1√
n

n∑

i=1

(
Ω̂i − Ωgi

)
Z>

i δψτ (Uτi)

)

=: −(A1 + A2),

where we used the definition ψτ (u) = τ − 1{u < 0} in the second line.
Consider A1. From the definition of θτ in Equation (2.4), Proposition 2.1 ensures

that θτ minimizes the expected weighted check-loss function E
[
Ωgρτ

(
Y − Z>θ

) ]
for

all g ∈ I. This implies E
[
ΩgZψτ (Uτ )

]
= 0, and, in particular, for some vector δ and

any g ∈ I, that
E
[
ΩgZ

>δψτ (Uτ )
]
= 0.

Now consider A2. We write A2 as

A2 =
1√
n

n∑

i=1

(
Ω̂i − Ωgi

)
Z>

i δψτ (Uτi) =
1√
n

n∑

i=1

(
Ω̂i − Ω̃i + Ω̃i − Ωgi

)
Z>

i δψτ (Uτi) ,

where Ω̃i := β>φJ(Yi, Xi)Di. By writing Ω̂i = β̂>φJ(Yi, Xi)Di, we can further write

A2 =
1√
n

n∑

i=1

[
(β̂ − β)>φJ(Yi, Xi) +

(
β>φJ(Yi, Xi)− g(Yi, Xi)

)
DiZ

>
i δψτ (Uτi)

]

=
√
n(β̂ − β)>

(
1

n

n∑

i=1

Diφ
J(Yi, Xi)Z

>
i δψτ (Uτi)

)

+
1√
n

n∑

i=1

(
β>φJ(Yi, Xi)− g(Yi, Xi)

)
DiZ

>
i δψτ (Uτi).

By Assumption A3(ii), the last summand vanishes asymptotically. For the first sum-
mand we have

1

n

n∑

i=1

φJ(Yi, Xi)DiZ
>
i ψτ (Uτi) = E

[
φJ(Y,X)DZ>ψτ (Uτ )

]
+ op(1) = T + op(1),

and thus A2 becomes

A2 = δ>T>(HG−1H>)−1HG−1bK(Wi, Xi)
1√
n

n∑

i=1

UJi + op(1).

Hence, S1n(δ) becomes

S1n(δ) = − 1√
n
δ>

n∑

i=1

M0τg(Si) + op(1),

where we define M0τg(Si) := ZiΩgiψτ (Uτi) + T>(HG−1H>)−1HG−1bK(Wi, Xi)UJi.
In particular, for all g ∈ I we obtain that

S1n (δ)
d−→ −δ>Zτg,

where Zτg ∼ N
(
0,E

[
M0τg(S)M

>
0τg(S)

])
.
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The second term We write the second term for all g ∈ I as

S2n (δ) =
n∑

i=1

ΩgiS2ni (δ) +
n∑

i=1

(
Ω̂i − Ωgi

)
S2ni (δ)

=
n∑

i=1

E[ΩgiS2ni (δ) | Ωgi, Zi] +
n∑

i=1

(ΩgiS2ni (δ)− E[ΩgiS2ni (δ) | Ωgi, Zi])

+
n∑

i=1

(
Ω̂i − Ωgi

)
S2ni (δ)

=: T1 + T2 + T3.

Consider T1. Under Assumption A2(ii), we have for g ∈ I
n∑

i=1

E[ΩgiS2ni (δ) | Ωgi, Zi]

=
n∑

i=1

ΩgiE

[∫ Z>

i δ/
√
n

0

(
1{Yi ≤ Z>

i θτ + s} − 1{Yi ≤ Z>
i θτ}

)
ds

∣∣∣∣ Ωgi, Zi

]

=
n∑

i=1

Ωgi

∫ Z>

i δ/
√
n

0

(
FY |Ωg ,Z

(
Z>

i θτ + s
)
− FY |Ωg ,Z

(
Z>

i θτ
))
ds

=
1√
n

n∑

i=1

Ωgi

∫ Z>

i δ

0

(
FY |Ωg ,Z

(
Z>

i θτ + t/
√
n
)
− FY |Ωg ,Z

(
Z>

i θτ
))
dt

= n−1

n∑

i=1

Ωgi

∫ Z>

i δ

0

√
n
(
FY |Ωg ,Z

(
Z>

i θτ + t/
√
n
)
− FY |Ωg ,Z

(
Z>

i θτ
))
dt,

where in the second line we plugged in Uτi = Yi − Z>
i θτ , and in the third line we

used the fact that E[1{Yi ≤ Z>
i θτ + s} | Ωgi, Zi] = FY |Ωg ,Z

(
Z>

i θτ + s
)
. The fourth

line follows from substitution. Next, by applying a Taylor expansion to the term
FY |Ωg ,Z

(
Z>

i θτ + t/
√
n
)
, we get

n∑

i=1

E[ΩgiS2ni (δ) | Ωgi, Zi] = n−1

n∑

i=1

Ωgi

∫ Z>

i δ

0

fY |Ωg ,Z

(
Z>

i θτ
)
tdt+ op (1)

= (2n)−1
n∑

i=1

ΩgifY |Ωg ,Z

(
Z>

i θτ
)
δ>ZiZ

>
i δ + op (1)

= op

(
1

2
δ>M1τgδ

)

for all g ∈ I, where we define M1τg := E
[
ΩgfY |Ωg ,Z

(
Z>θτ

)
ZZ>].

Now consider T2. We obtain

E|T2|2 =
n∑

i=1

E[(ΩgiS2ni (δ)− E[ΩgiS2ni (δ) | Ωgi, Zi])
2] ≤

n∑

i=1

E
[
(ΩgiS2ni (δ))

2] .

Since ΩgiS2ni (δ) ≥ 0 and S2ni (δ) ≤ Ziδ/
√
n for all i = 1, . . . , n, we can further bound
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T2 by

E|T2|2 ≤ max
i

{ΩgiS2ni (δ) : 1 ≤ i ≤ n}
n∑

i=1

E [ΩgiS2ni (δ)]

≤ 1√
n
max

i

∣∣ΩgiZ
>
i δ
∣∣

n∑

i=1

E [ΩgiS2ni (δ)] .

For the sum we have

n∑

i=1

E [ΩgiS2ni (δ)] = E

[
n∑

i=1

E [ΩgiS2ni (δ) | Ωgi, Zi]

]
,

which can be controlled in the same way as in T1. Hence, by Assumption A3(iv), T2
converges in probability to zero for all g ∈ I.

Now consider the final summand T3. Since S2ni (δ) ≥ 0 for all i = 1, . . . , n, the
bias due to the estimated weights vanishes as:

n∑

i=1

E

[(
Ω̂i − Ωgi

)
S2ni (δ)

]
≤ sup

(y,x)∈Y×X

∣∣∣Ω̂ (y, x)− Ωg (y, x)
∣∣∣

n∑

i=1

E [S2ni (δ)] ,

where the difference sup(y,x)∈Y×X |Ω̂ (y, x) − Ωg (y, x) | p−→ 0 uniformly for g ∈ I by
Assumption A3(v). The second factor converges to a finite limit as in T1:

n∑

i=1

E[S2ni (δ) | Zi] = (2n)−1
n∑

i=1

fY |Z
(
Z>

i θτ
)
δ>ZiZ

>
i δ + op (1)

p−→ 1

2
δ>E

[
fY |Z

(
Z>

i θτ
)
ZiZ

>
i

]
δ.

Thus, T3
p−→ 0.

Combining all three terms we obtain S2n (δ) = T1 + T2 + T3
p−→ 1

2
δ>M1τgδ, and

consequently,

Sn (δ) = − 1√
n
δ>

n∑

i=1

M0τg(Si) +
1

2
δ>M1τgδ + op(1)

d−→ S0 (δ) = −δ>Zτg +
1

2
δ>M1τgδ.

The convexity of the limiting objective function, S0 (δ), assures the uniqueness of the
minimizer and, consequently, that

√
n
(
θ̂τ − θτ

)
= δ̂ = argminSn (δ)

d−→ argminS0 (δ) .

(See, Koenker [2005]; Pollard [1991]; Knight [1998]). Finally, we conclude the proof
by noting that the limiting objective function Sn(δ) is minimized at

1√
n

n∑

i=1

χτg (Si) + op(1),

35



recalling the definition of the influence function

χτ,g(Si) =M−1
1τgM0τg(Si).

Therefore, the asymptotic distribution results hold for all g ∈ I, in particular for
g = g∗, where g∗ minimizes E

[
χτg(S)χ

>
τg(S)

]
, that is,

√
n
(
θ̂τ − θτ

)
d−→ N

(
0,E

[
χτg∗(S)χ

>
τg∗(S)

])
.

This completes the derivation of the asymptotic distribution of the quantile selection
estimator θ̂τ under the stated regularity conditions.

A3 Estimation of Covariance Matrix

In finite samples, the asymptotic covariance matrix E
[
χτg∗(S)χ

>
τg∗(S)

]
is estimated

using the corresponding sample analogs. Note that the estimators are based on an
empirical analog of sieve projections and are thus identified and do not vary with the
inverse selection probability g. Let

Ûiτ := Yi − Z>
i θ̂τ ,

and let f̂Y |Ωg ,Z(·) denote a kernel estimator of the conditional density of Y given
(Ωg, Z). The first component is estimated by

M̂1τ = En

[
Ω̂i f̂Y |Ωg ,Z

(
Z>

i θ̂τ

)
ZiZ

>
i

]
.

The second component of the influence function is

M̂0τ (Si) = ZiΩ̂i ψτ (Ûiτ ) + T̂>(ĤĜ−1Ĥ>)−1
ĤĜ−1bK(Wi, Xi) ÛJ,i.

The first-stage quantities are estimated as

Ĥ = En

[
Di φ

J(Yi, Xi) b
K(Wi, Xi)

>] ,
Ĝ = En

[
bK(Wi, Xi) b

K(Wi, Xi)
>] ,

ÛJ,i = 1−Di φ
J(Yi, Xi)

>β̂.

The plug-in covariance estimator of E
[
χτg∗(S)χ

>
τg∗(S)

]
is then

Σ̂τ = M̂−1
1τ En

[
M̂0τ (Si) M̂0τ (Si)

>
]
M̂−1

1τ .

Consistency of the plug-in estimators follows from the standard large-sample argu-
ments for quantile regression in Koenker [2005], together with the rate condition on
J in Assumption A3(i).
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B Outcome variable

The empirical analysis focuses on the full-time daily wages of German men and
women who are active in the labor force, excluding individuals in education, the
self-employed, and civil servants. The construction of the wage variable for individ-
uals employed in 2017 follows a multi-stage procedure, largely based on Dauth and
Eppelsheimer [2020], with additional modifications tailored to the analysis in this
paper. Table B.1 reports summary statistics for the relevant daily wage variables at
each stage of data preparation. All values are conditional on full-time employment.
Only the most pertinent wage variables from each step are shown, without repeating
intermediate versions.

• Stage I : Raw data – tentgelt, the original SIAB daily earnings variable
(Tagesentgelt / täglicher Leistungssatz).

• Stage II : Inflation adjustment – wage defl, the daily wage deflated to 2015
euros using the CPI.

• Stage III : Censoring and ceiling adjustment — wage, top-coded at four euros
below the contribution assessment ceiling. Also, the censored wage ln wage cens

equals the log wage if uncensored and 0 otherwise.

• Stage IV : Trimmed wage – tln wage, obtained after excluding non-German
individuals and trimming at the 5th and 95th percentiles.

• Stage V : Panel construction — transformation of the dataset into a yearly
panel format.

• Stage VI : Final sample selection — ln wage 2017, restricted to individuals
aged 25–50 in 2017 with a valid instrument available.
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Table B.1: Data preparation

Men Women

Mean Median Max SD Obs. Mean Median Max SD Obs.

Stage I

tentgelt gr 75.30 67.00 208 40.19 16,394,987 58.33 51.00 208 36.39 8,613,552

Stage II

tentgelt 75.30 67.00 208 40.19 16,394,987 58.33 51.00 208 36.39 8,613,552
wage defl 97.91 93.02 203.92 42.36 16,394,987 74.77 70.50 208 38.83 8,613,552

Stage III

wage 97.37 93.02 203.92 41.53 16,394,987 74.61 70.50 203.92 38.46 8,613,552
ln wage cens 4.42 4.48 5.32 0.48 14,497,003 4.18 4.25 5.32 0.56 8,143,881

Stage IV

wage 100.73 96.37 203.92 42.54 13,488,223 75.91 71.93 203.92 38.79 7,376,056
ln wage 4.53 4.57 5.32 0.49 13,324,958 4.22 4.29 5.32 0.57 7,180,494
ln wage cens 4.45 4.52 5.32 0.47 11,751,680 4.20 4.27 5.32 0.55 6,961,682
tln wage 4.48 4.52 5.30 0.41 11,453,354 4.17 4.25 5.05 0.47 6,333,783

Stage V

wage 108.78 103.48 200.75 38.48 9,129,764 81.48 77.93 200.75 37.19 4,830,944
ln wage 4.63 4.64 5.30 0.39 9,088,967 4.30 4.36 5.30 0.50 4,769,570
ln wage cens 4.55 4.58 5.30 0.36 7,784,179 4.28 4.35 5.30 0.48 4,615,327
tln wage 4.56 4.59 5.30 0.34 7,736,565 4.24 4.31 5.05 0.43 4,231,846

Stage VI

ln wage 2017 4.65 4.67 5.30 0.37 112,826 4.45 4.21 5.05 0.39 52,506

Notes: SIAB-R, 1975 - 2017. Summary statistics of the daily earnings variable at each stage of
the data preparation. All values are conditional on being full-time employed. Only relevant wage
variables from each step, without repeating everything again, are shown.
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C Estimation of the Distribution Function

Using the estimator ĝn(y, x) from the first stage as discussed in Section 3.1 we can
estimate

F̂n(y) =
n∑

i=1,Di=1

1{Yi ≤ y}ω̂n(Yi, Xi) (C.1)

where the normalized inverse probability estimators are given by

ω̂n(y, x) =
ĝn(y, x)∑n

i=1,Di=1 ĝn(Yi, Xi)
, (C.2)

which accounts for potential selection bias by weighing the contribution of each ob-
servation based on its probability of being observed.

In Figure C.1, we illustrate the empirical full-time wage distribution for women
(left panel) and men (right panel), alongside the selection-corrected distributions
shown in lighter colors, which are estimated using the inverse probability weighting
method described in Equation C.1. The controls used in the first stage are detailed
in Section 4.3. The comparison between the two distributions highlights important
differences in the wage structure for men and women.

Figure C.1: Empirical and selection-corrected distributions by gender
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Note: SIAB-R data, 2017 cross-section. The gray lines represent the empirical distributions
of observed full-time wages, while the black lines depict the selection-corrected unconditional
distributions, estimated using the IV-based selection correction method. All results are shown
with 95% confidence bands.
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D Simulation Design and Full Results

This section provides a detailed description of the Monte Carlo study introduced
in Section 3.3. We compare its finite-sample performance to existing approaches in
the literature. For each scenario, we conduct 1,000 Monte Carlo replications with a
sample size of n = 1, 000.

We consider the following model for the outcome:

Y ∗
i = β0 + β1Wi + β2Xi + εi(τ), i = 1, 2, . . . , n,

where (Wi, Xi)
> ∼ N

((
2
1

)
,

(
1 0.5
0.5 1

))
. The true parameter vector is set to

(β0, β1, β2) = (1, 1, 2). The error term ε(τ) is defined as εi(τ) = εi − F−1
ε (τ), where

Fε(τ) is the τ -quantile of the error distribution. Following closely the simulation de-
sign of Zhang and Wang [2020], we consider five different error distributions: (A) εi is
distributed as N (0, 1); (B) εi follows a mixture of normals 0.4N (0, 1.52)+0.6N (0, 1);
(C) εi follows a t-distribution with 3 degrees of freedom, scaled by 0.7; (D) εi follows
a uniform distribution ∼ U(−1.5, 1.5); (E) εi is distributed as N (0, (0.5 · (1+ |Xi|))2).
Note that settings (A)-(D) are homoskedastic errors and (E) is heteroskedastic error.

We generate Di from the Bernoulli distribution with probability p(Y ∗
i , Xi), con-

sidering three selection mechanisms:

M1 p(Y ∗
i , Xi) = 1/(1 + exp(−(α1 + γ1Xi))) with (α1, γ1) = (−0.1, 0.8)

M2 p(Y ∗
i , Xi) = 1/(1+exp(−(α2+γ2Xi+ξ2Y

∗
i ))) with (α2, γ2, ξ2) = (−2.4, 0.6, 0.6)

M3 p(Y ∗
i , Xi) = 1/(1+exp(−(α3+γ3 sin

2(Xi)+ξ3Y
∗
i ))) with (α3, γ3, ξ3) = (−2.6, 1.2, 0.6).

The coefficients in the selection models are calibrated to achieve an average missing
data rate of approximately 35%. In M1, the selection probability is independent of
the latent outcome Y ∗

i , reflecting a missing-at-random scenario. In contrast, M2
and M3 introduce dependence on the latent outcome, representing a missing-not-at-
random setting. Notably,Wi serves as an instrumental variable, influencing the latent
outcome but being excluded from the selection equation.

We consider the four estimators as described in Section 3.3 at the median quan-
tile (τ = 0.5): the uncorrected estimator, the MAR-assumed correction, the joint
estimating equations (JEE) approach of Yu et al. [2023], and our proposed semi-
parametric IV estimator. For completeness, we briefly summarize them here. The
uncorrected estimator uses only observed outcomes; the MAR-assumed estimator cor-
rects for selection under the MAR assumption via inverse probability weighting; the
JEE method employs an IV and specifies a parametric selection model, jointly es-
timating the quantile and selection equations; and the semiparametric IV estimator
proposed in this paper avoids parametric restrictions on the selection mechanism.

We assess the finite-sample estimation performance in terms of the mean biases
and the RMSE. Additionally, we report the coverage probabilities of the 95% confi-
dence intervals along with their average lengths. The uncorrected and MAR-assumed
correction methods are implemented using the quantreg package in R, while the
JEE method follows the implementation described in Yu et al. [2023]. Tables D.1-D.4
present the simulation results.
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Table D.1: (Setting A) Simulation results by method with (τ, n) = (0.5, 1000) and
35% missing in the outcome

Method
M1 M2 M3

β0 β1 β2 β0 β1 β2 β0 β1 β2

Mean biases

Uncorrected 0.000 -0.002 0.003 0.342 -0.035 -0.106 0.351 -0.039 -0.101
MAR-assumed 0.002 -0.002 0.001 0.391 -0.040 -0.128 0.386 -0.045 -0.112
JEE 0.002 -0.001 0.000 0.051 -0.009 -0.012 0.055 -0.011 -0.008
Semiparametric IV -0.047 0.010 0.022 0.048 0.007 -0.027 0.082 0.001 -0.045

RMSE

Uncorrected 0.122 0.057 0.057 0.365 0.064 0.122 0.376 0.068 0.118
MAR-assumed 0.126 0.059 0.061 0.439 0.085 0.175 0.444 0.092 0.169
JEE 0.134 0.06 0.063 0.273 0.083 0.134 0.318 0.102 0.137
Semiparametric IV 0.137 0.059 0.068 0.156 0.062 0.079 0.170 0.062 0.086

CI lengths

Uncorrected 0.464 0.223 0.233 0.523 0.219 0.241 0.519 0.220 0.237
MAR-assumed 0.485 0.230 0.250 0.612 0.226 0.326 0.519 0.198 0.183
JEE 0.527 0.240 0.263 0.934 0.314 0.418 0.972 0.341 0.444
Semiparametric IV 0.696 0.342 0.317 0.683 0.325 0.272 0.735 0.347 0.282

Coverage probabilities

Uncorrected 0.939 0.956 0.963 0.256 0.917 0.600 0.252 0.899 0.620
MAR-assumed 0.923 0.948 0.955 0.377 0.892 0.651 0.431 0.883 0.702
JEE 0.941 0.949 0.944 0.886 0.935 0.884 0.853 0.900 0.872
Semiparametric IV 0.979 0.995 0.968 0.948 0.959 0.955 0.958 0.989 0.877
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Table D.2: (Setting B) Simulation results by method with (τ, n) = (0.5, 1000) and
35% missing in the outcome

Method
M1 M2 M3

β0 β1 β2 β0 β1 β2 β0 β1 β2

Mean biases

Uncorrected 0.006 -0.003 0.000 0.246 -0.022 -0.079 0.257 -0.026 -0.078
MAR-assumed 0.005 -0.003 -0.001 0.287 -0.026 -0.099 0.294 -0.032 -0.092
JEE 0.004 -0.002 -0.002 0.020 -0.001 -0.008 0.044 -0.009 -0.010
Semiparametric IV -0.029 0.005 0.016 0.044 0.002 -0.019 0.055 0.003 -0.034

RMSE

Uncorrected 0.101 0.050 0.051 0.272 0.054 0.095 0.280 0.055 0.093
MAR-assumed 0.106 0.051 0.056 0.338 0.073 0.136 0.352 0.077 0.138
JEE 0.111 0.052 0.057 0.233 0.076 0.103 0.269 0.084 0.118
Semiparametric IV 0.110 0.050 0.056 0.135 0.052 0.063 0.139 0.053 0.068

CI lengths

Uncorrected 0.393 0.189 0.197 0.446 0.187 0.206 0.446 0.189 0.203
MAR-assumed 0.408 0.194 0.211 0.672 0.268 0.414 0.710 0.275 0.377
JEE 0.437 0.204 0.222 0.758 0.264 0.344 0.803 0.291 0.376
Semiparametric IV 0.622 0.308 0.287 0.599 0.280 0.237 0.642 0.304 0.245

Coverage probabilities

Uncorrected 0.933 0.936 0.946 0.415 0.918 0.703 0.374 0.922 0.666
MAR-assumed 0.941 0.943 0.942 0.509 0.896 0.723 0.517 0.895 0.744
JEE 0.939 0.946 0.937 0.887 0.921 0.906 0.842 0.920 0.899
Semiparametric IV 0.985 0.996 0.981 0.961 0.992 0.949 0.968 0.992 0.917
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Table D.3: (Setting D) Simulation results by method with (τ, n) = (0.5, 1000) and
35% missing in the outcome

Method
M1 M2 M3

β0 β1 β2 β0 β1 β2 β0 β1 β2

Mean biases

Uncorrected 0.004 -0.002 -0.001 0.381 -0.035 -0.123 0.377 -0.037 -0.113
MAR-assumed 0.006 -0.002 -0.001 0.434 -0.039 -0.151 0.403 -0.043 -0.118
JEE 0.003 -0.002 0.000 0.059 -0.004 -0.025 0.054 -0.009 -0.013
Semiparametric IV -0.045 0.012 0.023 0.062 0.007 -0.033 0.079 0.004 -0.049

RMSE

Uncorrected 0.135 0.065 0.071 0.409 0.073 0.140 0.405 0.074 0.134
MAR-assumed 0.144 0.069 0.077 0.487 0.093 0.192 0.467 0.101 0.178
JEE 0.152 0.069 0.080 0.318 0.101 0.143 0.345 0.112 0.155
Semiparametric IV 0.160 0.071 0.078 0.192 0.077 0.088 0.194 0.071 0.098

CI lengths

Uncorrected 0.543 0.262 0.274 0.604 0.255 0.281 0.603 0.257 0.277
MAR-assumed 0.568 0.271 0.294 0.855 0.326 0.480 0.850 0.351 0.472
JEE 0.621 0.285 0.311 1.005 0.355 0.448 1.021 0.379 0.465
Semiparametric IV 0.661 0.328 0.301 0.722 0.336 0.284 0.781 0.361 0.298

Coverage probabilities

Uncorrected 0.944 0.962 0.936 0.289 0.924 0.597 0.294 0.922 0.633
MAR-assumed 0.938 0.951 0.934 0.383 0.900 0.633 0.484 0.888 0.697
JEE 0.935 0.953 0.923 0.863 0.924 0.866 0.817 0.906 0.828
Semiparametric IV 0.952 0.965 0.940 0.922 0.960 0.874 0.935 0.979 0.847
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Table D.4: (Setting E) Simulation results by method with (τ, n) = (0.5, 1000) and
35% missing in the outcome

Method
M1 M2 M3

β0 β1 β2 β0 β1 β2 β0 β1 β2

Mean biases

Uncorrected 0.007 -0.004 0.002 0.231 -0.037 -0.033 0.247 -0.045 -0.021
MAR-assumed 0.006 -0.004 0.002 0.279 -0.038 -0.075 0.311 -0.044 -0.080
JEE 0.006 -0.003 0.001 0.061 -0.011 -0.016 0.068 -0.016 -0.010
Semiparametric IV -0.032 0.007 0.037 -0.052 0.024 0.045 -0.016 0.018 0.001

RMSE

Uncorrected 0.108 0.059 0.069 0.265 0.070 0.079 0.284 0.078 0.076
MAR-assumed 0.109 0.058 0.070 0.349 0.086 0.155 0.381 0.096 0.161
JEE 0.113 0.058 0.070 0.260 0.086 0.125 0.287 0.094 0.146
Semiparametric IV 0.118 0.058 0.081 0.155 0.067 0.106 0.151 0.069 0.092

CI lengths

Uncorrected 0.370 0.214 0.211 0.479 0.232 0.246 0.464 0.231 0.222
MAR-assumed 0.370 0.207 0.201 0.768 0.288 0.468 0.687 0.296 0.356
JEE 0.452 0.230 0.286 0.764 0.296 0.398 0.866 0.325 0.453
Semiparametric IV 0.698 0.398 0.337 0.717 0.410 0.294 0.767 0.419 0.308

Coverage probabilities

Uncorrected 0.901 0.928 0.862 0.527 0.900 0.867 0.466 0.855 0.856
MAR-assumed 0.891 0.927 0.844 0.530 0.888 0.743 0.525 0.864 0.714
JEE 0.946 0.941 0.944 0.889 0.947 0.915 0.859 0.911 0.885
Semiparametric IV 0.995 0.998 0.956 0.975 0.989 0.852 0.977 0.991 0.900
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E Robustness

This section presents several robustness checks. In these analyses, we impose stricter
requirements on the lag structure of the instrument. In the main specification, the
initial wage instrument includes wages observed up to 2015, using full-time wages
where available and part-time wages when no full-time record exists. The robustness
checks restrict the instrument in two alternative ways: (i) by using only wages from
2011 or earlier (i.e., at least five years before the outcome period) as valid instruments,
and (ii) by limiting the instrument to the earliest observed full-time wage only.

E.1 Instrument based on wage history from 2011 or prior

Figures E.1 and E.2 replicate Figures 2 and 3, respectively. The estimated quantile
patterns remain virtually unchanged, with effect sizes and gender differences closely
mirroring those in the main specification. This confirms that the results are robust
to using earlier wage information as the instrument.

Figure E.1: Quantile Selection Effects (Unconditional) – only IV up to 2011
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Note: SIAB-R data, 2017. Curves display wage point estimates from unconditional quantile
regressions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR
correction (dashed), and IV correction (solid). The IV correction uses initial log wage as an
instrument and controls for education, age, workplace region, total experience, and earliest job
difficulty in the first two stages. The MAR correction uses the same controls except earliest
job difficulty. The final-stage regressions include no covariates for all methods. Shaded areas
represent 95% pointwise confidence intervals.
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Figure E.2: Conditional wage quantiles by education groups – only IV up to 2011
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(b) Middle Education
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(c) High Education
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Note: SIAB-R data, 2017. Curves show wage point estimates from unconditional quantile regres-
sions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR correction
(dashed), and IV correction (solid). The IV correction uses initial log wage as an instrument
and controls for education, age, workplace region, total experience, and earliest job difficulty.
The MAR correction uses the same controls, excluding the instrument and earliest job difficulty.
The uncorrected estimates include the same controls as in MAR. Shaded areas represent 95%
pointwise confidence intervals.

46



E.2 Instrument based on only full-time wage history

Figures E.3 and E.4 replicate Figures 2 and 3, respectively. The estimated quantile
patterns remain virtually unchanged, with effect sizes and gender differences closely
mirroring those in the main specification. This confirms that the results are robust
to using only full-time wage information as the instrument.

Figure E.3: Quantile Selection Effects (Unconditional) – only full-time instruments
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Note: SIAB-R data, 2017. Curves display wage point estimates from unconditional quantile regres-
sions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR correction
(dashed), and IV correction (solid). The IV correction uses initial log wage as an instrument and
controls for education, age, workplace region, total experience, and earliest job difficulty in the first
two stages. The MAR correction uses the same controls except earliest job difficulty. The final-stage
regressions include no covariates for all methods. Shaded areas represent 95% pointwise confidence
intervals.
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Figure E.4: Conditional wage quantiles by education – only full-time instruments
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(b) Middle Education
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(c) High Education
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Note: SIAB-R data, 2017. Curves show wage point estimates from unconditional quantile regres-
sions across quantiles, connected by lines for visualization: uncorrected (dotted), MAR correction
(dashed), and IV correction (solid). The IV correction uses initial log wage as an instrument
and controls for education, age, workplace region, total experience, and earliest job difficulty.
The MAR correction uses the same controls, excluding the instrument and earliest job difficulty.
The uncorrected estimates include the same controls as in MAR. Shaded areas represent 95%
pointwise confidence intervals.
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