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Abstract

In modern information markets, buyers routinely combine signals from multiple sellers.
We develop a model of “portfolio competition” to analyze this distinctive feature. We show
that the combinability of information overturns standard oligopoly intuition. Unlike traditional
markets, competitive pressure does not necessarily protect buyers: when signals are comple-
ments, sellers can leverage the buyer’s desire for the joint portfolio to extract the full social
surplus, regardless of the number of competitors. We characterize the precise conditions for
rent extraction, which reduce to a simple geometric test for symmetric sellers. Furthermore,
we find that the canonical logic of market entry fails. Entry is never socially excessive because
efficient portfolio choices eliminate business-stealing effects. Paradoxically, entry can reduce
competitive pressure: when entrants provide strong complementarities, they shift the buyer’s

threat point, allowing all sellers to extract higher rents.
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1 Introduction

As modern economies become increasingly information-driven, information has become a trad-
able commodity. Financial analysts sell earnings forecasts to investors, data brokers sell consumer
profiles to marketers, and rating agencies sell credit assessments to lenders. A defining insti-
tutional feature of these information markets is that buyers routinely combine information from
multiple sources. Institutional investors assemble forecasts from distinct financial data providers;
e-commerce firms aggregate fraud scores from multiple risk intelligence vendors; pharmaceutical
companies integrate clinical trial data from different research organizations.

To reflect this empirical reality, we develop the first model of oligopolistic pricing in infor-
mation markets that explicitly captures the combinability of signals. Modeling price competition
in the traditional sense of Bertrand, we show that this combinability creates a distinctive com-
petitive structure: sellers price-compete not just against individual rivals but against all possible
combinations of rivals that buyers might assemble. We term this competitive structure portfolio
competition.

Analyzing portfolio competition reveals that the economics of information markets overturns
standard oligopoly intuition. In traditional markets, competition protects buyers: as the number of
sellers increases, prices fall toward marginal cost, and buyers capture the surplus. We show that in
information markets, this logic frequently breaks down.

Our first main result establishes that competitive pressure does not necessarily protect buyers
from full rent extraction. The intuition relies on the distinction between substitutes and comple-
ments in information. When signals are substitutes (e.g., overlapping forecasts), sellers compete
intensely to be included in the portfolio, driving prices down. However, when signals are comple-
ments (e.g., distinct data points that reveal a pattern only when combined), the buyer’s value of the
whole portfolio exceeds the sum of the parts. In this scenario, sellers can collectively leverage the
buyer’s fear of losing the entire portfolio to extract the full social surplus, leaving the buyer with
nothing. We characterize the precise boundary between these outcomes using a “balancedness”
condition, which formally captures the degree of complementarity in the market and generalizes
the complements-versus-substitutes dichotomy to arbitrary market sizes.

Our second set of results challenges the canonical view of market entry. In standard models of
free entry with substitute differentiated products, entrants impose a business-stealing externality,
so equilibrium entry is socially excessive. We prove that in information markets, excessive entry
never occurs. Because buyers combine signals to form efficient portfolios, there is no ”business
stealing” in equilibrium—every active seller contributes unique value.

Paradoxically, we find that entry can actually reduce competitive pressure. In standard markets,

a new entrant improves the buyer’s outside option. In information markets with strong complemen-



tarities, a new entrant can increase the value of the ”grand coalition” so significantly that it renders
the buyer’s threat to exclude individual sellers non-credible. Consequently, the entry of a new firm
can shift the equilibrium from one where the buyer retains surplus to one where sellers extract
everything.

These findings suggest that traditional antitrust heuristics are ill-suited for the data economy.
Because market failures arise from insufficient entry (coordination failures) rather than excessive
entry, and because competition does not guarantee consumer surplus, regulators must look beyond
concentration indices like HHI. The structure of information complementarity, not the number of
firms, determines welfare.

The remainder of the paper is organized as follows. Section 2 discusses related literature. Sec-
tion 3 develops our portfolio competition framework that captures the combinability of competitive
information signals. In Section 4, we first study the duopoly case of two firms, obtaining the result
that the complementarity of signals determines the equilibrium degree of rent extraction. Section
5 extends this analysis to the general oligopoly model, obtaining the insight that in this more gen-
eral framework the correct defining notion is a balancedness condition. Section 6 shows that with
symmetric sellers, this balancedness condition has a simple geometric interpretation. Section 7
characterizes the free-entry equilibrium, showing that it never exhibits any excess entry. Section 8

concludes.

2 Related Literature

The theoretical literature on information markets focuses on monopolistic settings. Bergemann
etal. (2018); Ali et al. (2022); Yang (2022) analyze how a monopolist designs optimal information-
selling mechanisms. Certification models like Lizzeri (1999); Stahl and Strausz (2017); DeMarzo
et al. (2019) analyze information provision in monopolistic certification markets. While Gentzkow
and Kamenica (2017a,b); Li and Norman (2021); Wu (2023) study Bayesian persuasion with com-
peting senders, their framework excludes transferable utility and thus price competition.

These frameworks abstract from oligopolistic price competition where buyers combine signals
from multiple sellers. We fill this gap by developing the first model of oligopolistic information
provision with portfolio competition.

Our portfolio competition model connects to the multi-product pricing literature of Tauman
et al. (1997) and Arribas and Urbano (2005), who characterize equilibrium prices when buyers as-
semble portfolios. Information markets constitute a special case of their framework: they naturally
satisfy strict monotonicity, where each seller provides value not fully replicated by others.

Leveraging strict monotonicity allows us to achieve a full characterization of the conditions

under which competitive pressure protects buyers from rent extraction— weak and strong bal-



ancedness. These conditions generalize the duopoly complements-versus-substitutes dichotomy to
oligopoly with arbitrary numbers of sellers. Strict monotonicity ensures (i) buyers purchase from
all efficient sellers in equilibrium, and (ii) the cooperative game’s core is non-empty, enabling our
balancedness analysis.

This extends Arribas and Urbano (2005, Section 5), who analyze concave and convex (but
not strictly monotone) value functions. Their analysis shows that without strict monotonicity, the
core may be empty and total revenue varies across equilibria. Our strict monotonicity assump-
tion guarantees core non-emptiness via the Bondareva-Shapley theorem and unique total revenue
across all equilibria, though individual price divisions remain indeterminate. This enables our
complete characterization of buyer surplus: weak balancedness determines when full extraction
is achievable (Proposition 4), while strong balancedness (equivalently, supermodularity) ensures
every equilibrium extracts full surplus (Propositions 6-7). For solution concepts like the Shapley
value or nucleolus, our strict monotonicity ensures both always exist and lie in the core, whereas
in Arribas et al.’s non-monotone setting, these concepts may fall outside the (possibly empty) core.

Our analysis also reveals a fundamental distinction between entry dynamics in markets for
divisible versus indivisible goods. The classical oligopoly literature on differentiated products
(Singh and Vives, 1984; Dixit and Stiglitz, 1977) analyzes competition where firms produce divis-
ible goods and buyers choose continuous quantities from each seller. In such settings, the entry
externalities literature (Mankiw and Whinston, 1986; Spence, 1976) establishes that substitutes
generate business-stealing effects, where each entrant captures demand from incumbents, lead-
ing to socially excessive entry. Conversely, with complements, entry creates business-enhancing
effects that entrants do not fully internalize, potentially leading to insufficient entry.

By contrast, our framework with indivisible information signals exhibits neither effect. Entry
is never excessive because the buyer purchases from all firms from whom it is efficient to buy, and
this holds in any equilibrium regardless of entry. This eliminates business-stealing and business-
enhancing effects entirely. When insufficient entry occurs, it arises from coordination failures
in pricing rather than uninternalized business-enhancing externalities. This demonstrates that the
canonical entry externalities from divisible goods markets do not extend to unit-demand settings,
where the indivisibility of goods fundamentally alters competitive dynamics.

Focusing on a buyer without any private information, we abstract from issues studied in mo-
nopolistic models of information selling such as Bergemann et al. (2018); Yang (2022). Incorpo-
rating such private information in a competitive model is non-trivial as it would require a model of
competing mechanism design as pioneered in McAfee (1993).

Modeling the demand side by a representative buyer allows us to abstract from information
externalities between buyers, which is the focus of, for example, Admati and Pfleiderer (1986);
Choi et al. (2019); Acemoglu et al. (2022); Bergemann et al. (2022).



Our model of portfolio competition is orthogonal to the literature on information sharing be-
tween competing firms (Vives, 1984, 1988; Raith, 1996), where the focus is on firms exchanging

information with each other.

3 Model

Following Raiffa and Schlaifer (1961), we study a market where information helps a representative
buyer make decisions under uncertainty. In particular, the buyer faces an unknown state of the

world o, drawn from a finite set
e Q={w,...,0n},

according to a commonly known prior distribution py € A(Q). The buyer must decide which
information sources to purchase before making a decision that will determine both the quality of
her eventual choice and the total cost of information acquisition.

Information is provided by n independent sellers, indexed by N = {1,...,n}, each possessing
private signals correlated with the true state @. This creates the portfolio competition environment
identified in the introduction: the buyer can purchase information from any subset, S C N, of the
N sellers and combine their signals to form better posterior beliefs. The key economic tension
emerges because each seller’s value to the buyer depends not only on the quality of that seller’s
own signal but critically on which other sellers the buyer also includes in her information portfolio.

Each seller i observes a private signal o; drawn from a finite space X;, with the joint signal pro-
file 0 = (01,...,0,) € X = I1,%; distributed according to a Blackwell experiment P(c|®) condi-
tional on the state. While sellers share common knowledge of this joint distribution, each observes
only her own signal realization, ensuring that different sellers may provide genuinely different, and
potentially complementary, information about the underlying state.

The buyer’s willingness to pay for information reflects how improved posterior beliefs translate
into higher payoffs in her operational environment. We capture this through the buyer’s belief-
based value function

viAQ) — R,

which assigns to each posterior belief p € A(Q) the maximum expected payoff the buyer can
achieve when making decisions based on that belief. This belief-based value function is central to
understanding portfolio competition: when the buyer considers purchasing from multiple sellers,
she evaluates not just the cost of each information source, but how different combinations of signals
affect her posterior beliefs and thus her decision-making value.

We assume v is strictly convex, reflecting the property that information has decision-making



value. It implies that information becomes more valuable when combined with other information
sources, a key driver of the complementarity patterns discussed in the introduction. The convexity
assumption ensures that the marginal value of any seller’s signal depends on which other signals
the buyer also acquires, formalizing the economic intuition that sellers face portfolio competition
rather than simple head-to-head rivalry.

Portfolio competition arises because buyers can combine signals from multiple sellers while
sellers cannot observe competitors’ information. Each seller’s value to the buyer depends not
only on signal quality, but on how that signal interacts with others in the buyer’s information
portfolio. Whether sellers compete as substitutes or complements depends on the buyer’s value
function v. When combining information sources yields diminishing returns, sellers’ information
is substitutable; when information sources reinforce each other, sellers compete as complements

and can sustain higher prices.

Timing The timing of the portfolio selection game is as follows:

1. Simultaneous Pricing. Each seller simultaneously sets a nonnegative price t; > 0 for access
to their private signal. These prices represent binding commitments; sellers cannot condition

their pricing on the buyer’s eventual portfolio choices or on competitors’ pricing decisions.

2. Portfolio Selection. The buyer observes all posted prices t = (¢1,...,t,) and selects which
subset S C N of sellers to buy from, paying the total cost ) ;cs#;. This decision is made ex
ante, before any information content is revealed, so the buyer must evaluate the expected
value of different information portfolios based on the known signal structure and her value

function v.

3. Information Realization and Payoffs. Nature draws the true state ® ~ pg and the correspond-
ing signal profile 6 ~ P(.|m). Each purchased seller i € S observes their signal realization
o; and discloses it to the buyer. The buyer then updates her beliefs based on the observed
signal profile and realizes her final payoff v(p,,), where p,, represents her posterior belief

after observing signals from her chosen portfolio S.

The buyer’s portfolio selection problem requires evaluating the expected value of different
information combinations. For any subset S C N of sellers, the buyer must assess how signals
from that specific portfolio will improve her decision-making. This valuation process lies at the
heart of portfolio competition: sellers compete not just on individual signal quality, but on their
marginal contribution to the buyer’s preferred information portfolio. When the buyer purchases
information from sellers in set S, she receives signal realizations that allow Bayesian updating

from her prior pg to posterior beliefs pg.



Strategic Payoffs To formalize this evaluation process, we let

Vo=Y_ po(@)v(po) =v(po),
0eQ
represent the buyer’s outside option value of making decisions based solely on the prior distribu-
tion. We define the portfolio value Vs as the buyer’s expected payoff from purchasing information

from subset S net of Vp:

Vs=Y Y po(®)P(cs|o)v(pss) — Vo,

weQ ogely

where pg, denotes the buyer’s posterior and P(oys | @) the marginal probability of observing the
signal profile when the state is @. The portfolio value Vg represents the buyer’s willingness to pay
for information portfolio S, which directly determines each seller’s market value and competitive
position; it captures the strategic essence of portfolio competition. Crucially, a seller’s individual
worth depends not only on their signal quality, but on how their information complements or
substitutes for others in the buyer’s optimal portfolio choice.

To avoid confusion, we distinguish terminology: v(p) is the buyer’s value function mapping
beliefs to decision payoffs, while Vg denotes the portfolio value—the expected value (measured
via v) from purchasing signals from coalition S rather than none.

The buyer’s net benefit from purchasing information portfolio S at prices ¢ is her information

Vg — Zli.

icS

value minus the total cost:

Assumption 1 (Strict Monotonicity). Each seller provides strictly positive incremental informa-

tional value: for all coalitions S C N and all sellers i € N\ S,
Vsugin > Vs.

This assumption reflects markets where information providers differentiate to avoid direct re-
dundancy. While incremental value may be arbitrarily small (capturing near-redundant signals),
we rule out perfect redundancy. As we discuss in the related literature, strict monotonicity ensures
efficient equilibrium portfolios, active participation by all sellers when signals are costless, and
unique total revenue across equilibria.

Sellers face strategic interdependence in portfolio competition: each earns their posted price ¢;



only if the buyer includes them in her chosen portfolio, and zero otherwise, yielding payoff

t;, ifies,
Hi(l‘,S> =
0, otherwise.

This creates the strategic pressure that drives our analysis: sellers must price competitively
enough to gain inclusion, yet cannot directly observe the competitive threats they face from alter-

native seller combinations.

Equilibrium Concept We analyze pure-strategy subgame perfect Nash equilibria of the portfolio
selection game. An equilibrium consists of prices t* = (],...,#;) and a buyer portfolio choice

function S*(¢), mapping prices ¢ into a portfolio selection S C N, such that:

(1) (Buyer Optimization) Given posted prices ¢, the buyer selects the portfolio that maximizes

her net benefit:

S*(t) € Ve—)Y t; 5.
(t) argrsngﬁ{s l;,}

(i1) (Seller Optimization) No seller can improve their payoff by unilaterally changing their price,

taking the buyer’s optimal response as given:

IL(¢*,S*(t%)) > ILi((4;,£%;), 8™ (t;,t%;))  Vt; > 0;¥ie N.

This equilibrium concept captures the essence of portfolio competition: sellers must anticipate not
just direct rivalry, but the buyer’s ability to substitute entire portfolios of competing information

sources.

Running example We introduce a running example that illustrates our results throughout the

paper. The example microfounds the value function v(p) and yields a tractable portfolio value V.

Example. Our buyer is a monopolist who produces quantity g > 0 in a downstream market with
a cost function C(q). Suppose the monopolist’s inverse demand function, P(q|p), depends on the
posterior beliefs p =P(®w = h) about a binary state ® € Q = {l,h} with prior po = 1/2. Given a

posterior belief p, the monopolist maximizes profits, resulting in the monopolist’s value function

v(p) = max [P(qlp)-q—C(q)].



For our running example, we specify linear demand P(q|p) = 2p — q and no costs of production
C(q) = 0. The first-order condition yields optimal quantity ¢* = p, giving:
v(p)=(2p—q*)-4"=(2p—p)-p=p".
The quadratic value function has an important implication: the expected value from signals

equals the variance of the induced posterior distribution. From py = 1/2 and v(p) = p?, it follows

that Vo = v(po) = 1/4, which together with the law of iterated expectations, E|p| = po, yields
Vs = E[p*] — Vo = E[p] - (E[p])* = Var(p). (D

Concerning the informative signals of the sellers in S, we assume that each seller i observes
an independently drawn binary signal s; € {1,h} with identical signal accuracy a., that is P(s; =
o|w) = a € (1/2,1) for all i. This framework of independent and symmetric signals is a natural
benchmark and yields a distribution of posteriors, p, that is tractable.

The resulting example is canonical because it yields closed-form solutions while capturing the
essence of information markets: each seller provides an independent but imperfect signal about
a common underlying state. We use this example to illustrate our main results, beginning with

duopoly in Section 4.

4 Duopoly

We begin by considering the case of two sellers, n = 2. For simplicity, we write V; = Vy;; and
Va = V(12). We also focus on the case that each experiment is individually valuable. We therefore
assume that V is strictly increasing in the following sense: V; > 0, and V,, > max{V},V, }. The latter

means that, conditional on each state, the sellers’ experiments are at most partially correlated.

Informational Complements and Substitutes. The sellers are said to be informational comple-

ments (see Borgers et al., 2013), if the joint value exceeds the sum of the parts:
Vo > Vi+ Vs

This means that each seller provides unique insights that are not replaceable by the other. Con-

versely, the sellers are informational substitutes if:

Vo <Vi+Wo.



Here, the information from each seller overlaps, and their combined contribution is less than the
sum of their individual values.
Using the common convention that —i € {1,2}\{i}, we define i’s marginal contribution, AV;,
toV, as
AV, =V, —V_,.

Our monotonicity assumption on V implies that the marginal contributions are strictly positive:
AV, =V, —V_; > max{V1 ,Vz} —V_i>V_;—V_;=0.

Demand for Information. After each seller i = 1,2 sets their price #;, the buyer chooses among
four options: obtaining no signal and paying 0; obtaining a signal only from seller 1 and paying
t1; obtaining a single signal from seller 2 and paying t,; or obtaining a signal from both sellers,
paying t; + 2.

1. Two signals: The buyer optimally buys from both sellers if and only if it holds

H+H <V, ANt1 <V, —WVo=AV] A b <V,—V]; =AV,. )

The first inequality ensures that the joint surplus from two signals exceeds the cost. The
second and third inequalities ensure that the buyer does not strictly prefer purchasing from
just one seller. If either seller charges too much relative to the other’s value, the buyer would
deviate to buying only one signal. Hence, all three constraints must be satisfied for two

signals to be optimal.
2. A single signal from seller i = 1,2: The buyer optimally purchases only from seller i and not
from —i if and only if it holds

LSViNnyh+H >V, ANV_j—t_; <Vi—t.

The first condition ensures that seller i alone provides positive net value. The second set
of conditions guarantees that the buyer does not prefer two signals or a single signal of the

opponent.

3. No signal: The buyer optimally declines to purchase any signal if and only if it holds
nH>2ViANu>2Vo ANti+16 2V,

Each condition eliminates one of the possible choices. If buying either single signal does
not yield a surplus, and purchasing both signals together is also too costly, then the buyer is

better off relying on the prior and not buying any signal.
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Figure 1: The left panel of the diagram illustrates the complementary case V; + V5 < V,,, the right panel the alternative,
substitute case. The orange line depicts prices such that the buyer is indifferent between buying two or one signal; in
the area below it the buyer strictly prefers the option to buy both signals. The olive line depicts pairs such that the buyer
is indifferent between two signals and no signal; in the area below it the buyer strictly prefers the two signals. The
blue line depicts prices so that the buyer is indifferent between a single signal and no signal; in the area below it the
buyer strictly prefers the option to buy one signal. The red line (left) and the red dot (right) show the set of equilibrium
prices. In equilibrium, the buyer buys both signals, and each seller extracts at most its marginal contribution.

These inequalities define the buyer’s demand correspondence over the price space. In partic-
ular, the regions partition the (¢1,,) plane into areas where different combinations of signals are
optimal. The key takeaway is that the buyer’s decision hinges on comparing net surpluses—the
improvement in market value induced by the purchased information, minus the price charged.

The following proposition characterizes the equilibrium when the signals are incomplete —

that is, even after purchasing all available signals, the buyer does not learn the state with certainty.

Proposition 1. Suppose V; > 0 and V,, > max{V|,V,}. In every equilibrium, the buyer purchases

both signals. The equilibrium prices are as follows.

(i) If the signals are substitutes, each seller sets a price equal to its marginal contribution, t; =
AV

(ii) If the signals are complements, then the set of equilibrium prices is given by the budget line

t + 1ty =V, subject to the individual surplus constraints t; < AV,.

The proposition’s proof which we provide in the appendix is straightforward. It directly for-
malizes the intuitive idea that any excluded seller can profitably deviate by lowering her price to
capture positive demand, forcing purchasing from all sellers in equilibrium. For signals that are
substitutes it then follows that each seller faces direct competitive pressure limiting prices to indi-
vidual marginal contributions, whereas for signals that are complements, equilibrium prices lie on

the buyer’s budget constraint since neither seller can be easily replaced by the other.
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This result illustrates how strategic pricing in a duopolistic market of information depends on
the informational landscape. When sellers provide complementary signals, they can extract the
full value they jointly create, leaving no rents to the buyer. The exact division of rents between
the two sellers is indeterminate: any sharing rule satisfying the buyer’s participation and incentive
constraints can be sustained in equilibrium. By contrast, when the sellers’ signals are substitutes,
the interaction becomes more competitive. In the substitute case, each seller’s marginal contri-
bution AV; is constrained by competitive pressure from the alternative seller, creating a binding
constraint that prevents full surplus extraction and ensures the buyer retains positive surplus. This
competitive pressure disciplines pricing and ensures that no seller extracts more than its marginal
contribution to total value. As a result, the buyer obtains a strictly positive rent from consuming

the signals.

Example. We analyze the duopoly case (n = 2) for our running example. When the buyer pur-

chases from only one seller, Bayes’ rule yields posterior beliefs:

p(h) =P(@=h|si=h) = Po-& —q

"~ po-o+(1—po)(1—a)

By symmetry, p(l) =P(@ = h|s; =1) = 1— a. Since each posterior occurs with probability 1/2,

1 2
V1=V2=(OC—§) .

Portfolio value increases quadratically with signal accuracy «.

the portfolio value is

With two independent signals, let m denote the number of high signals. The distribution of m
is Binomial(2, &) when @ = h and Binomial(2,1 — &) when @ = . Applying Bayes’ rule for each
realization yields posterior beliefs:

(1—a)? 1 o?

o =P(h|0)=—————=; p1=Ph|l)==; pp=Ph|2) = ———"——.
Po (‘) (l_a)2+a2 P1 (’) ) p2 (l) oc2+(l—oc)2

Note that contradictory signals (m = 1) yield no information beyond the prior, while agreement

reinforces belief in either direction. The probabilities are:

P+ (1-a)?

P(0) =P(2) = 5 , P(1)=2a(l—a).

The expected posterior squared equals:

302 —30+1

E[5") = BO)5 +B()5 + PR = Jr—g -

12



The value of the complete portfolio of both signals is therefore:

32 —3a+1 1

b ey v s

Direct calculation shows signals are substitutes:

(1-20)*

—————>0.
4-8(l—a)a

Vi+Vh, -V, =
The signals provide overlapping information about the same state, so acquiring both yields less
than twice the value of a single signal. By Proposition 1, each seller charges t; = AV; =V, —V_;
in the unique equilibrium, and the buyer retains positive surplus V,, — (2V, — V| —V,) > 0.

5 Oligopoly

The duopoly analysis revealed that buyers always purchase the socially efficient portfolio, i.e., from
both sellers, and that whether the buyer obtains a positive surplus depends on whether signals are
complements or substitutes. A natural question arises: which of these insights extend to markets
with n > 2 sellers, and where do new complexities emerge?

The structural difference is stark. In duopoly, the buyer has only two effective deviations:
exclude seller 1 or exclude seller 2. With n sellers, however, the buyer can potentially switch
to any of 2" — 1 alternative coalitions. These additional alternatives fundamentally change the
competitive problem.

A simple complements-versus-substitutes dichotomy does not suffice to determine surplus di-
vision. With two sellers, each faced competition only from the other individual seller. With n
sellers, seller i competes not just against individual rivals, but against all possible coalitions of ri-
vals that the buyer might assemble. This portfolio competition creates a new analytical challenge:
characterizing when coalition-based competitive pressure is sufficient to protect buyers from rent
extraction.

Despite this added complexity, some fundamental insights from duopoly extend naturally. Most
notably, the buyer’s portfolio choice remains socially efficient in any equilibrium: the competitive
pressure that forced inclusion of both sellers continues to operate with any number of sellers. The
underlying logic remains the same: any excluded seller has a strong incentive to lower her price to
reenter the bundle. Since sellers set prices while their cost of providing information is zero, sellers
can ensure inclusion by setting sufficiently low but positive prices.

To address the surplus division question, we develop a new characterization based on the con-

cept of exposure. A seller is exposed when the buyer can profitably switch to some alternative

13



coalition, creating competitive pressure on that seller’s price. Unlike duopoly, where exposure to
individual competitors fully determined outcomes, oligopoly exposure to coalitions requires new

analytical tools from linear programming and cooperative game theory.

Definition 1 (Exposure). Seller i is said to be exposed to a subset S_; C N\ {i} at price vector
t=(t1,... ty) if
Y t=Vn-Vs,
JEN\S-;

Intuitively, a price vector ¢ exposes seller i if the buyer would refuse to purchase from seller i
when i raises her price above #;. In this sense, exposure formalizes the competitive pressure that
disciplines seller i’s price.

Note that in duopoly, every seller with positive price was necessarily exposed to the single
alternative of the other seller. The exposure condition thus generalizes this competitive pressure
to encompass the much richer set of coalition-based threats that emerge with multiple sellers.
This more general condition captures the idea that seller i is exposed when the buyer is exactly
indifferent between the current arrangement and switching to subset S_;, excluding seller i (and
possibly others not in S_;).

Exposure is a local condition: it depends on the configuration of prices and values that make
a specific alternative bundle S_; the buyer’s next-best option. Intuitively, a seller is exposed if she
must keep her price pinned just below a threshold, beyond which the buyer would defect.

Having defined exposure, we can now provide a complete characterization of an oligopoly
equilibrium. Unlike duopoly where equilibrium conditions were relatively simple, oligopoly re-
quires two types of constraints: buyer incentive compatibility (which generalizes from duopoly)

and seller exposure (which captures the new oligopoly complexity)

Proposition 2 (Equilibrium prices via buyer-optimality and exposure). (S*,t*) is a pure-strategy

subgame perfect Nash equilibrium if and only if:

1. (S*,t*) exhibits “portfolio-efficiency”: The buyer prefers to buy from all sellers over any
strict subset:

S*=Nand Y tf <Vy—Vs, VSCN. (3)
iEN\S

2. t* exhibits “seller-exposure”: For each seller i € N, there exists a subset S_; C N \ {i} such
that

Z tj:VN_VS,,-- “4)
JEN\S_;

Note that when n = 2, condition (3) reduces to the familiar constraints 11 +# < Vy and t; < AV;

14



in (2), while condition (4) becomes the exposure to individual competitors that we saw in the
duopoly analysis.

Our baseline analysis assumes zero production costs for expositional clarity. With per-sale
costs ¢; > 0, the framework extends naturally by identifying the set of efficient sellers. Define the
efficient portfolio

N* e argr&aﬁ Vs — %Ci

If for all S C N* and all i € N*\ S, seller i’s incremental informational value exceeds its cost,
Vsugiy — Vs > cis

then the portfolio value Vs remains strictly monotone on N*. In this case, our complete analysis
applies to the game among the |N*| viable sellers: all our equilibrium and surplus characterization
results hold with N replaced by N* and prices ¢; interpreted as gross prices (buyer payments) from
which sellers earn profits m; = #; — ¢;. Sellers in N \ N* optimally remain inactive as their costs
exceed their incremental value in any portfolio.

This framework accommodates heterogeneous costs while preserving the portfolio competition
structure. The market endogenously selects which sellers participate, and among efficient sellers,

competition operates exactly as characterized in our zero-cost baseline.

5.1 Cooperative Benchmark and Equilibrium Existence

In duopoly, equilibrium analysis was relatively straightforward because we could directly char-
acterize prices through individual marginal contributions and simple budget constraints. With
oligopoly, however, the exponential growth in buyer deviation possibilities (from 2 to 2" — 1 alter-
native coalitions) makes direct equilibrium characterization unwieldy. This complexity forces us
to employ more sophisticated analytical tools that were unnecessary in the two-seller case.

To better understand the structure of oligopoly equilibrium prices, we now consider a central-
ized, cooperative version of the pricing problem. This representation of the problem was already
established in Arribas and Urbano (2005), who derived it in the broader context of a general mul-
tiproduct price competition. Applying this result to our context serves three purposes: (1) as
a benchmark for evaluating competitive outcomes, (2) as a technical tool for characterizing the
complete set of equilibria and connecting to our later analysis of when balancedness conditions
determine surplus division, and (3) as a bridge connecting our information market analysis to the
broader multiproduct price competition literature in industrial organization.

Oligopoly sellers must defend against an exponentially large set of buyer deviations. The

cooperative framework allows us to capture this full competitive landscape through a systematic
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linear programming approach. Suppose that instead of setting prices independently, the sellers
coordinate to choose prices jointly in order to maximize their total revenue. They take the buyer’s
preferences as given, and design prices so that the buyer voluntarily purchases the full bundle N,
while extracting as much value from her as possible.

The buyer still chooses her bundle by maximizing net utility, so the sellers must ensure that the
buyer prefers the full bundle over any strict subset. That is, the buyer’s net value from purchasing
from N must weakly exceed the net value of any S C N. These constraints define the feasible set

of prices. Formally, the sellers solve the following LP-problem:

max Z t; st Z t; <Vy—Vg forall S CN. &)
t€RY,  jen iEN\S

We refer to this as the Primal (Revenue) LP. Its objective captures the sellers’ joint revenue.
The constraints ensure that the buyer is willing to purchase from all sellers. The feasible region
defined by this LP is a polytope in R”, bounded by one linear inequality for each strict subset S C N.
Since there are 2" — 1 such subsets, the polytope is defined by exponentially many halfspaces, a
complexity that duopoly entirely avoided with its simple triangular feasible region.

Each inequality reflects the condition that the buyer must not prefer to exclude the sellers in
N\S. Geometrically, each constraint slices off a part of the price space where the buyer would de-
fect to a smaller bundle. This geometric complexity explains why the duopoly’s simple marginal
contribution bounds become insufficient: with multiple sellers, the buyer’s deviation threats create
a much richer constraint structure that requires linear programming techniques to analyze system-
atically.

This has an important implication that generalizes our duopoly exposure insight: for any seller i
who receives a strictly positive price in the optimal solution, there must be some subset S; C N\ {i}

such that the constraint corresponding to S; binds with equality:

Y, ti=Vw—Vs.
JEN\S;

This binding constraint condition is precisely what we termed “exposure” in our equilibrium char-
acterization: seller i is exposed to coalition S; when the buyer’s threat to switch to S; becomes
binding. For duopoly (n = 2), this reduces to each seller being exposed to their individual rival,
recovering the familiar competitive pressure we analyzed earlier.

The buyer’s incentive constraints are acting as resource constraints from the sellers’ point of
view. The solution must stretch those resources to their limits, and each seller who extracts revenue
must be “pushed back™ against one of the buyer’s constraints. The seller cannot raise her price

further, because she is already exposed to a binding deviation.
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Most remarkably, and in line with Arribas and Urbano (2005), this cooperative revenue max-
imization problem identifies a set of prices that are exactly the same price profiles that arise in
equilibrium in the strategic game. Even though sellers do not coordinate their prices in the actual
game, competition leads them to an outcome that mirrors the outcome of this centralized optimiza-
tion. This equivalence between cooperative and competitive outcomes, while intuitive in duopoly,

becomes a powerful and non-obvious result in oligopoly markets.

Proposition 3. The cooperative revenue maximization problem (5) has a solution set T* C R"
which is non-empty, where T* denotes the set of optimal price vectors that solve the revenue max-
imization LP (5). Every solution in T* constitutes a subgame perfect Nash equilibrium. Moreover,

any price profile in T* minimizes the buyer’s surplus across all subgame perfect Nash equilibria.

The claims provided by Proposition 3 are a central finding in Arribas and Urbano (2005) and
are contained within the combination of their Propositions 2 and 4 and, most pointedly, Corollary
2. We therefore refer to Arribas and Urbano (2005) for a formal proof of our proposition. We only
remark that to see existence, it suffices to note that the feasible region is always non-empty (e.g.,
t = 0 1s trivially feasible), and bounded above by the total value V. Therefore, an optimal solution

always exists.

5.2 Buyer Surplus

Having characterized oligopoly equilibria through the LP framework, we now address a fundamen-
tal question: when do buyers retain surplus in oligopoly markets? In duopoly, this question had a
clean answer through the complements-vs.-substitutes dichotomy. Does this simple logic extend
to markets with n > 2 sellers, or do new complexities emerge?

In duopoly, competitive pressure came from exactly two sources, making surplus division de-
pend solely on whether the sum of marginals exceeds the total value. With n sellers, however,
competitive pressure can emerge from any of 2"~ ! alternative coalitions, fundamentally changing
how we must analyze surplus division. This exponential growth in competitive threats forces us be-
yond the elementary tools that sufficed for duopoly, requiring more sophisticated techniques from
linear programming and cooperative game theory, particularly the theory of balanced collections
and core existence.

We now investigate how much surplus the buyer retains in a competitive equilibrium. The buyer
surplus U* is the difference between joint value of information Vy and the sum of equilibrium

prices:

U*:VN_Zti*'
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Since all equilibrium outcomes are portfolio-efficient (the buyer purchases from every seller), this

question then reduces to identifying the maximum revenue the sellers can charge in equilibrium.

Insufficiency of the Marginal Contributions Test. The duopoly analysis provided an elegant
test for buyer surplus: compare the sum of individual marginal contributions, AV] + AV,, to the
total value Vy. When Y} ;AV; < Vi, competitive pressure from individual rivals ensures buyers
retain surplus.

As Proposition 1 showed, this reduces to the simple complements-vs.-substitutes dichotomy:
U*>0 ifandonlyif V;+V,>Vy.

The economic logic was transparent. Each seller’s price was constrained by their individual
marginal contribution—the loss in buyer value if that seller were excluded. If individual marginal
contributions summed to less than total value, then competitive pressure from individual exclusion
threats forced total prices below the buyer’s value, preserving surplus.

The two-seller case suggests a natural generalization. Following the duopoly template exactly,

we would test whether:

N

(VN_VN\{i}) < Wn. (6)
=1

~

This duopoly-inspired test asks: can oligopoly sellers extract more than their individual contribu-
tions to total value, just as in the two-seller case?

It is indeed easy to see that condition (6) is a sufficient condition for positive buyer surplus.
Since the buyer’s value is monotonic in coalition size, each seller’s individual marginal contribution
VN — Vi (iy provides the loosest possible constraint on their pricing. Any exposure to a smaller
subset S; C N\ {i} would impose a tighter bound Vy — Vs, > Viy — Vy\ 33

This duopoly-inspired test captures one important source of competitive pressure. But oligopoly
reveals a fundamental difference: with n > 3, sellers face not just individual rivals but entire coali-
tions of alternatives. While duopoly sellers could only be threatened with individual exclusion,
oligopoly sellers must defend against buyers switching to any subset of competitors; a form of
competitive pressure that simply cannot exist when n = 2. However, this duopoly-inspired test has
a critical limitation. For n > 3, sellers may be exposed to smaller sets of competitors, not just the
grand coalition minus themselves. This means that even when the simple sum-of-marginals test
fails, the buyer may still retain surplus due to coalition-based competitive pressure. The following

example makes this concrete.

Example (Coalition-based threats). Consider three sellers and a buyer whose portfolio value is
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given by:
Vi =1, Vs =Viuz =V =05, Vi =V =V, =04, Vp=0.
The individual marginal contributions to the full bundle sum to
(1-0.5)+(1-0.5)+(1-05)=15>1.

In duopoly, marginal contributions summing to 1.5 > 1 would imply zero buyer surplus. However,

the buyer-optimality (exposure) constraints for the oligopoly case n = 3 are:

h+13

H+1t3

IN

V{17273} - V{l} - 06,

A

V1233 —Vizy = 0.6,
h+n < V{172’3} — V{3} = 0.6,

IA

+n+ts V{17273} = 1.

Summing the first three constraints gives
(t1+83)+(t+0)+(2+tk)=2(t +0+1) < 1.8,

implying t| + 1ty +1t3 < 0.9. Thus total seller revenue cannot exceed 0.9 in equilibrium. Since
equilibrium portfolio-efficiency implies t| +1t, +t3 < Vy = 1, the buyer retains a surplus of at least
0.1.

The duopoly sum-of-marginals test fails because oligopoly introduces coalition-based compet-
itive pressure. The constraint t| +ty < 0.6 represents the buyer’s threat to exclude seller 3 and
purchase the portfolio {1,2}. This form of competition is absent in duopoly where only individual-

exclusion threats exist.

The example clarifies that the elementary tools that sufficed for duopoly become inadequate.
Duopoly required checking just one inequality; oligopoly requires systematically analyzing expo-
nentially many coalition-based threats. We now develop this more sophisticated condition through
the mathematical theory of balancedness; a framework unnecessary in duopoly but essential for

oligopoly surplus division.

Balancedness and Buyer Surplus. The failure of duopoly’s simple marginal-contributions test
reveals why oligopoly requires fundamentally different analytical tools. While duopoly needed
to check only one inequality (V| 4+ V; vs Vi), oligopoly must systematically analyze exponentially

many coalition-based threats. This complexity leads naturally to the theory of balanced collections.
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The key insight is that competitive pressure from different coalitions must be systematically
weighted to determine whether full surplus extraction is possible. A balanced collection assigns
weights to each potential deviation coalition such that every seller is *covered’ by these threats in

balanced proportion—no seller is over-threatened or under-threatened relative to others.

Definition 2 (Balanced collection). A collection of nonnegative weights {Ys} indexed by all non-

empty, proper subsets S C N is called a balanced collection if for each seller i € N,

Y =1

s
When n = 2, this condition becomes trivial: with only subsets {1} and {2}, any balanced
collection must assign Y1y = Y2y = 1, recovering exactly the duopoly setup where each seller
faces one exclusion threat. For n > 2, however, balanced collections capture the exponentially
richer structure of coalition-based competitive pressure that emerges only in oligopoly.

With this framework, we can precisely characterize when full surplus extraction is achievable:

Definition 3 (Weak balancedness). The portfolio function V is weakly balanced for N if for every
balanced collection {Ys}scn, the following holds:

Y v (Vv —Vns) > Vv
SCN

We now show that weak balancedness is both necessary and sufficient for the existence of a
zero-surplus equilibrium.
Proposition 4. The following are equivalent:

(i) There exists an equilibrium in which the buyer’s surplus is zero.

(ii) The portfolio function V is weakly balanced.

Proposition 4 characterizes when full extraction is achievable, but says nothing about whether
it occurs in every equilibrium. The following example shows that when weak balancedness holds

but additional structure is absent, multiple equilibria can coexist with different surplus levels.

Example (Multiplicity of Equilibria). Consider three sellers and a buyer whose portfolio value is
given by:

V{17273} =1, V{273} = V{173} = V{LZ} =04, V{l} = V{Z} = V{3} =0.3, Vp=0.

The symmetric price vector (1/3,1/3,1/3) supports an equilibrium with zero buyer surplus. How-
ever, the asymmetric price vector (0.1,0.1,0.6) also supports an equilibrium, yielding buyer sur-

plus of 0.2. Sellers 1 and 2 compete intensely (each exposed by the other), while seller 3 exploits
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their rivalry to charge a high price. This demonstrates that weak balancedness alone does not

guarantee universal extraction.

Strong Balancedness and Universal Extraction. The previous example illustrates why weak
balancedness is insufficient for universal full extraction. Weak balancedness restricts competitive-
ness only at the aggregate level: it guarantees that the grand coalition N can defend total revenue
Vy against any proper subcoalition. What it does not regulate is the structure of competition within
subcoalitions. If some subcoalition is itself highly competitive relative to its own sub-subcoalitions,
sellers inside it may be forced to set prices strictly below their balancedness levels even though the
grand coalition remains protected. This is exactly what happened in the example: the grand coali-
tion was weakly balanced, but the subcoalitions imposed strong internal competitive pressure that
allowed a positive-surplus equilibrium.

To ensure full extraction in every equilibrium, competitive pressure must be uniformly weak
across all subcoalitions, not just at the top level. This leads to the following strengthening of

balancedness:

Definition 4 (Strong balancedness). The portfolio function V is strongly balanced if it is weakly
balanced for every subset N' C N.

Strong balancedness requires that the balancedness inequality holds not just for the full set of
sellers, but for every possible sub-market. This seemingly technical strengthening has profound

implications: it turns out to be equivalent to a familiar economic property.
Proposition 5. The following are equivalent:

(i) V is strongly balanced,

(ii) V is supermodular (i.e., Vsur + Vsar > Vs + Vr for all S,T C N),
(iii) The marginal contribution function G(S) := Vi — Viy\s is submodular.

This equivalence reveals that strong balancedness captures gross complementarity at all levels.
When information sources are supermodular (gross complements everywhere), no coalition-based
competitive pressure can emerge to sustain positive buyer surplus. Submodularity of marginal
contributions means that larger coalitions provide weaker competitive threats, preventing the com-
petitive stalemate observed in our three-seller example.

With this equivalence established, we can characterize universal extraction:

Proposition 6. Suppose V is strongly balanced (or equivalently, supermodular). Then in every

subgame perfect Nash equilibrium, the buyer has zero surplus.
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Our result recovers, in our information-market environment, the full-extraction result for con-
vex games in Tauman et al. (1997) (and its reformulation in Arribas and Urbano (2005)). Their
convexity assumption corresponds to supermodularity of V, and hence to strong balancedness in
our terminology. Our argument is slightly different, and exploits a key property of supermod-
ular value functions: if two coalitions bind exposure constraints (are tight”), their union must
also bind. This closure property forces all equilibria to achieve the same total revenue through a
telescoping argument along chains of tight coalitions.

Combining our results, we obtain a complete characterization of surplus extraction in oligopoly:

» Existence: Full extraction is achievable (in some equilibrium) if and only if V is weakly

balanced (Proposition 4).

* Universality: Full extraction occurs in every equilibrium if V' is strongly balanced/supermodular
(Propositions 5 and 6).

Whether the converse holds—zero surplus in all equilibria implies supermodularity—remains
an open question. Our counterexample shows that weak balancedness without supermodularity
allows multiplicity, but does not rule out the possibility that universal extraction always implies
supermodularity.

For duopoly (n = 2), weak and strong balancedness coincide: both reduce to the complemen-
tarity condition Viy > V| + V,. This explains why our duopoly analysis showed unique surplus
division across all equilibria. For n > 3, the conditions diverge, with weak balancedness character-

izing achievability and strong balancedness ensuring inevitability.

The Core and the Bondareva—Shapley Theorem. The balancedness characterization reveals an
even deeper connection that highlights oligopoly’s analytical complexity. While duopoly surplus
division required only elementary analysis, oligopoly connects directly to fundamental results in
cooperative game theory—a connection that simply cannot arise when n = 2.

This bridge between competitive pricing and cooperative stability demonstrates another dimen-
sion of complexity that duopoly concealed. We now explore this connection through the core and
the Bondareva-Shapley Theorem.

A transferable utility (TU) game is defined by a portfolio value v : 2V — R, where v(S) gives
the value that coalition § C N can generate independently. The key insight is to define such a game

where each coalition’s value represents its marginal contribution to the buyer’s information value:
V(S) = VN — VN\S-

This transforms our competitive pricing problem into a question about whether sellers can

form a ’stable’ allocation of the total value they create. This construction differs from Arribas
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and Urbano (2005), who use the buyer’s value function directly as the primitive. Our marginal-
contribution formulation represents a change of scale that, combined with strict monotonicity,
ensures the Bondareva-Shapley theorem always applies: the core is never empty, and balancedness
conditions fully characterize buyer surplus.

Indeed, the core of this game is the set of allocations (¢;);cy satisfying:

* Efficiency: Y ey 9i = v(N),
* Coalitional rationality: ¥ ;cs ®; > v(S) for all S C N.

An allocation in the core is stable in the sense that no coalition has an incentive to deviate.

This cooperative framework becomes relevant because oligopoly’s exponential constraint struc-
ture has the same mathematical form as core existence problems. In duopoly, such connections
never arose because the constraint system was too simple to exhibit the geometric complexity that
characterizes core theory. The Bondareva—Shapley Theorem (Bondareva, 1963; Shapley, 1967)

provides a complete characterization of core-nonemptiness:

Theorem 1 (Bondareva—Shapley Theorem). The core of the transferable utility (TU) game (N,v)
is nonempty if and only if for every balanced collection A = (Ag),

Z Asv(S) > v(N).
SCN

This connection between competitive equilibrium and cooperative stability has no duopoly
analogue. With n = 2, the constraint system was elementary enough that core-theoretic concepts
were unnecessary.

Combining Proposition 4 with the Bondareva-Shapley Theorem, we find that the buyer earns
zero surplus if and only if the core of this TU-game is nonempty. This reframes buyer surplus
as a signal of instability in an associated cooperative problem: when no balanced mixture of
marginal contributions can replicate the grand coalition’s value, the competitive constraint sys-
tem lacks the geometric consistency needed for full surplus extraction. This connection illustrates
how oligopoly analysis requires tools from entirely different areas of game theory that were unnec-
essary in duopoly. The simple complements-vs.-substitutes test gave way to balancedness condi-
tions, which in turn connect to core existence—a hierarchy of increasing sophistication that reflects
oligopoly’s fundamental complexity.

For duopoly (n = 2), weak and strong balancedness coincide: both reduce to the complemen-
tarity condition Viy > V; + V,. This explains why our duopoly analysis showed unique surplus
division across all equilibria. For n > 3, the conditions diverge, with weak balancedness character-

izing achievability and strong balancedness ensuring inevitability.
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6 Symmetric Sellers

While the general oligopoly analysis captures the full complexity of information markets, it ob-
scures several key economic insights about how portfolio competition differs from traditional prod-
uct competition. In particular, we show that when all sellers are symmetric, oligopolistic compe-
tition may still completely fail to protect buyers against full rent extraction. The symmetric case,
where sellers provide statistically identical information sources, not only yields sharper analytical
results but also reveals fundamental economic forces that are harder to detect in the asymmetric
setting. This case is empirically relevant for markets like financial data providers, credit rating
agencies, or consulting firms within the same tier, where sellers offer similar-quality but indepen-
dent information sources.

Moreover, the symmetric framework allows us to address two critical questions that the gen-
eral analysis leaves open: (1) How does the endogenous market structure compare to the social
optimum? and (2) How do information market dynamics differ from conventional oligopoly pre-
dictions?

The symmetric case is a setting in which the buyer’s information value depends only on the
number of sellers from whom she purchases signals, not on their specific composition. That is, for
any seller set S, the value to the buyer is determined by the number of active sellers. Formally, the

portfolio value Vg is symmetric if there is a function V : {0, 1,...,n} — R such that
Vg = \7| S| Vo= 0, V, is nondecreasing in s and bounded.

This symmetry assumption captures markets where sellers have achieved similar technological
capabilities or market positions, but each provides independent draws from the same information
structure. Unlike traditional symmetric oligopoly where firms sell identical products, informa-
tion symmetry preserves the fundamental portfolio competition dynamic: buyers still benefit from
purchasing multiple signals because independent sources reduce uncertainty even when they have
identical statistical properties.

Our first insight is that, in a symmetric setting, the covering dual condition boils down to a
simple and geometric interpretation. Recall the dual condition characterizing zero buyer surplus in
equilibrium:

Z Ys (VN —Viw\s) = Vv for every balanced collection y.
SCN

In the symmetric case, a balanced collection assigns equal weight to all subsets of the same size.
That is, for each k = 1,...,n— 1, let % denote the weight assigned to each subset of size k. Then,
since there are (Z) such subsets, the total contribution of subsets of size k£ to the dual sum is

(D)% WV = Vi) = b (Vs — Vi), where by = () %
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The balancedness condition imposes that the total weight falling on coalitions that include any

fixed seller equals 1. In this symmetric case, this leads to the constraint:

which, in terms of the b;, becomes
n—1
Y kb =n.
k=1

This has a natural interpretation: the total “mass” of weights distributed across coalitions must sum
to n, when measured by how many sellers each coalition includes.

Now consider the objective of the dual problem:

n—1 . R
Z bk (Vn - Vn—k)
k=1

Let us reparametrize the sum by substituting j = n — k, and define c¢; := b, ;. Then the objective

becomes:
n—1

Zc] (Vu—V;), where Z(n—j)cj =n.
j=1
That is, we are forming a convex combination of marginal contributions Vn — Vj, weighted by
cj» with the weights summing (in a shifted sense) to n. Since ¥ ;(n — j)c; = n, you can think of
distributing “mass” n across the indices j, and then the weighted sum is minimized by pouring all
the mass onto the j that makes (Vn — Vj) /(n— j) smallest. Therefore:

Y o0 % \/ V A] Vn .
ch(Vn—Vj) >V, forallsuchc; <= p > - v,
J=1 _

which is equivalent to:

V, < L0, forallj=1,....n—1.

S

This is a purely geometric condition: the function k — V; must lie on or below the straight
line connecting (0,0) and (n,V,). In economic terms, this captures when early portfolio sizes
provide relatively little value compared to the full portfolio, eliminating credible threats that would
create competitive pressure. This pattern arises when portfolio value exhibits increasing returns
(convexity) or mixed curvature with initially low marginal value, as illustrated in the convex and
mixed cases (Panels 2 and 3 of Figure 2).

Hence, in the symmetric setting, the complex condition involving all balanced weights simpli-
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fies to a single geometric check: the buyer receives no surplus in any equilibrium if and only if the
function k — V lies below the line segment connecting the origin to (n,V,,).

This geometric insight immediately suggests how to characterize equilibrium pricing. Since
the buyer’s optimal deviation determines competitive pressure, we can identify equilibrium prices

by finding the coalition size that provides the buyer’s best outside option.

Defining S V. —V
‘ V., — Vk _ Vn - Vk;;
kZ = argmiyceo -1} Z_ k and 1, = n—ki

n

we obtain the following result.

Proposition 7. Consider an information market with n symmetric firms. Then, the following holds:
(i) In a symmetric equilibrium, the unique fee per seller equals T,.
(ii) Sellers extract full surplus in the symmetric equilibrium if k;; = 0.

(iii) The sellers extract full surplus in every equilibrium if V is strictly convex.

For part (i), the proof uses contradiction to show that any price below the critical slope allows
sellers to profitably raise prices since the buyer still prefers the full portfolio, while any price
above this slope makes the buyer want to switch to a smaller, more cost-effective portfolio size.
The equilibrium price must therefore equal the smallest rate of value loss per excluded seller,
which represents the buyer’s most credible threat to reduce her information portfolio when facing
symmetric pricing.

Part (ii) is a corollary: if k; = 0, then the buyer’s most attractive deviation from the full portfolio
is to drop all sellers. In that case, the critical slope 7, coincides with the average value per seller
in the grand coalition, so the symmetric equilibrium price satisfies nf, = Viy. Thus the buyer is
exactly indifferent between buying from all sellers and walking away entirely, and the symmetric
equilibrium leaves her with zero surplus while sellers extract the full value Vy.

For part (iii), note that with symmetric firms, supermodularity of V is equivalent to strict con-
vexity of the sequence (Vk)zzo; that is, strict gross complementarity among signals corresponds
exactly to Vi, — V. being strictly increasing in k. Proposition 6 shows that supermodularity of V
implies universal extraction: in every equilibrium, the buyer’s surplus is zero and sellers capture
the entire value Vyy. Combining these observations, strict convexity of (V}) is equivalent to super-
modularity in the symmetric environment, and therefore implies that sellers extract full surplus in
every equilibrium, not just in the symmetric one.

The proposition shows that, in the symmetric equilibrium, each seller gets f which corresponds

to the minimum slope of any line segment connecting a point (k, V;) to (n,V,). Equivalently, the
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Figure 2: Symmetric equilibrium pricing when n = 6. The equilibrium price 7, equals the smallest
slope from any point (k,V;) to (n,V,,). The first panel illustrates the concave case, where this slope
is smallest for k&* =n — 1 = 5. The second panel illustrates the convex case, where this slope is
smallest for k* = 0. The third panel illustrates the mixed case, where the smallest slope is in the
interior.

buyer’s threat is to drop from n to k*, the point that gives the best average value per seller left out:

V-
kyy = ==
A Tk
Figure 2 highlights the geometric representation, illustrating how &, and 7, depend on the cur-

vature of V; and leads to the following corollary.

Corollary 1. Suppose Vy is concave in s. Then, in any oligopolistic market outcome, the buyer
receives positive rents. Suppose Vy is convex in s. Then, in any oligopolistic market outcome, the

buyer does not receive any rents.

The fact that the oligopolistic market outcome fully extracts the buyer’s surplus reveals a funda-
mental difference between information and traditional product markets. In conventional oligopoly,
symmetry typically leads to uniform marginal costs determining prices, leaving all rents to the
buyer rather than the sellers. Here, the cost of providing information is zero, but the value depends
on the buyer’s entire information portfolio. The geometric condition captures when competitive

pressure from alternative portfolio configurations can sustain full surplus extraction.

Example. We return to our running example, which considers symmetric sellers. When the buyer
purchases from k < n sellers, let m denote the number of high signals, s; = h, she observes. The

posterior belief is:
1

1+ (&2

a

pm=P(@="h|m)=

)2m—k
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The probability of observing m equals:

Pm) = 5 (;) (1 — )+ (1 — )"k

so that the information value from k sellers is:

k
N R 1
U= Y Bon) 72—
m=0
The portfolio value V. is concave in k, exhibiting the substitute property kVi > Vi for all k > 2.
This generalizes the duopoly result where we verified 2V > V,. The law of large numbers implies:

N 1
lim V = —
e KT g

showing that the buyer achieves the full information outcome, as the number of sellers approaches
infinity.

By Proposition 7, concavity ensures k;, = n— 1 for all n, and the buyer retains positive surplus.
This illustrates how portfolio value curvature determines surplus division: concave values protect

buyers through competitive pressure, while convex structures enable complete rent extraction.

7 Endogenous Entry

The analysis thus far has taken the number of information sellers as given. A complete theory
of oligopolistic information markets requires endogenizing market structure: What determines the
equilibrium number of firms? How does the combinability of information provision affect entry
incentives?

To address these questions, we extend our model of oligopolistic information markets by en-
dogenous entry. The subsequent model demonstrates that information markets depart from stan-
dard oligopoly theory with respect to entry. First, entry can reduce competitive pressure rather
than intensify it, with the relationship between market structure and efficiency depending critically
on the curvature of the portfolio value. Second, contrary to oligopolistic models which typically
display excessive entry due to business stealing externalities, information markets exhibit no exces-
sive entry—there is no business stealing, since the buyer’s equilibrium portfolio choice is always
socially efficient. While efficient entry is always an equilibrium outcome, additional equilibria
with insufficient entry may exist due to coordination failures at the pricing stage, suggesting that
regulatory interventions such as price regulation and entry subsidies could improve market effi-

ciency.
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Before developing the general framework, we illustrate with an extreme but straightforward
example the result that entry in information markets can display a strong anti-competitive effect—

in this example, entry results in the buyer losing all consumption rents.

Example (Anti-Competitive Entry). Consider a market with two symmetric sellers where V| = 10,
Vo = 15. By Proposition 5, the equilibrium price is: t, = min{15/2,(15 —10)/1} = 5. At this
price, the buyer purchases both signals, obtaining surplus 15—2-5 = 5.

Now suppose a third seller enters with V3 = 36. The new equilibrium price becomes: t3 =
min{36/3,(36 —10)/2,(36 — 15)/1} = 12. At this price t3, the buyer now obtains surplus 36 — 3 -

12 = 0, despite having access to strictly more information.

The example illustrates that entry can eliminate the buyer’s surplus entirely while benefiting
all sellers. This contradicts the standard intuition that entry intensifies competition and benefits
buyers. The driving mechanism is complementarities in information provision: the entrant pro-
vides such strong complementarities that the buyer’s best threat point shifts from excluding one
seller (yielding V, =15) to excluding all sellers (yielding Vo = 0). As a result, the entrant weakens
rather than strengthens competitive pressures. Empirically, such strong complementarities could
arise when an entrant introduces novel information technology that amplifies the value of existing
signals—for instance, an Al-powered analytics firm that not only provides its own data but enables
buyers to extract far more value from previously purchased information through advanced pattern
recognition and synthesis.

This phenomenon cannot arise in traditional product markets where goods are rivalrous and en-
try typically intensifies competition. It emerges precisely because of the combinability of information—
buyers combine signals from multiple sources, creating portfolio competition where entry can
paradoxically weaken competitive constraints. Understanding when and why such effects arise

requires a systematic analysis of endogenous market structure.

7.1 The Entry Model

To analyze entry systematically, we consider a market with unlimited potential entrants. The natu-
ral framework extends our symmetric seller analysis by allowing the number of active sellers to be
determined endogenously through entry decisions.

We maintain the symmetric structure of Section 6 where all sellers provide statistically identical
but independent signals. The buyer’s value from s active sellers is V,, which is strictly increasing
and bounded:

Vo=0<Vi <V, <..<Vio=1limV, eR.

§—>0

Each potential entrant must pay fixed cost ' > 0 to enter the market. This cost captures the
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infrastructure required for data collection, processing, and distribution. The boundedness of V.,
ensures that for sufficiently large s, the marginal value of additional sellers becomes negligible.

Extending earlier definitions, we define two key concepts. First, the marginal contribution

A

AV

A

VS_Vs—la

which measures the value added by the s-th seller. By the strict monotonicity of V, marginal

contributions are strictly positive. Second, the social surplus

§s ‘ZV_SFa

captures total welfare with a market entry of s sellers. The socially optimal number of sellers, s*
maximizes total surplus:

. A .
sT = argmax S, = aremax{V, —sF'}.
gszo s gszo{ s }

A necessary condition for s* is the (discrete) first-order condition
AV | < F < AV, (7

For a concave V;, this condition is also sufficient for s* because of the differences AV, being de-
creasing. For this case, the usual optimality condition marginal value equals marginal cost deter-
mines s*.

Finally, we extend the timing as presented in Section 3 with a prior stage in which sellers first

decide whether to pay F' to enter the information market:
1. Entry. Sellers simultaneously decide whether to pay F and enter
2. Pricing. Active sellers observe the number of entrants s and set prices
3. Portfolio Selection. The buyer observes prices and selects her information portfolio
4. Information Realization and Payoffs. Signals are realized and payoffs determined

This resulting framework models the following three aspects of entry. First, it captures com-
petitive entry pressure through free entry with identical potential entrants. Second, it endogenizes
market structure as an equilibrium outcome rather than an exogenous parameter. Third, it enables
clean welfare comparisons between market outcomes and social optima by explicitly modeling the

resource cost of entry.
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7.2 Equilibrium Entry under Symmetric Pricing

We first analyze entry following Section 6 that with symmetric firms, the unique symmetric equi-

librium price is:
_ ) Vs =V
fy=  min .
ke{0,....s—1} s—k

It directly follows that s represent an equilibrium number of sellers s™ if and only if it satisfies:
fgmi1 < F <. (®)

The first inequality ensures that if an additional firm enters, it would not recoup its entry costs.
The second inequality ensures that each entering firm recoups its entry costs, making entry a best
response when expecting exactly s” — 1 other firms to enter.

We first establish that the symmetric equilibrium price when entry is efficient, 7+, exceeds the
entry costs F'. To see this, note first that the efficiency of s* implies that for all s, the following two
(equivalent) inequalities hold
Vi — Vs

Ve —s*F >V, — sF & =
st —g

> F

In particular, the latter inequality holds for all £ < s*, so that it also holds for the minimum among
all k < s*. We therefore obtain

) . Ve =V,
f+ = min — kZF.
Kk s*—k

Moreover, note that taking s = s* + 1, the two inequalities reduce to

A A

Vs*—i—l — Vg < F.

In the words of the previous section, the slope of the line-segment from (s*, Vy+) to (s* + 1, Ve, 1)
lies below F. By contrast, all slopes of the line-segments from (k,V;) to (s*,V,+) exceed F for all
k < s*, as already established. Taken together, this implies that of all the slopes of the line-segment
from (k,V;) to (s* + 1,V 1), the smallest slope obtains for k = s*. Hence,

Vot~V o

* % - A~
kg y1=s" and fpy g = Sl _s =Vsqp1 — Ve <F.

Thus we obtain
fs*—H <F< fs*y

which by (8) implies that with symmetric pricing efficient entry is, independent of the curvature of
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Vs, an equilibrium outcome.

Now suppose § > s* is not efficient, then this implies

which leads to R . N .
_  Ve=Vi VeV
¢ = min <

~ < — < F.
k<s S—k §—s*

So that if § would enter the market, the equilibrium price #; is too low for the firms to recoup their
entry costs. As a result § cannot be part of an equilibrium with endogenous entry.

We thus have proven the following proposition

Proposition 8. Suppose firms anticipate that when n symmetric firms enter, the symmetric equilib-
rium t, obtains. Then efficient entry (s™ = s*) is an equilibrium, whereas excessive entry (s™ > s*)

is not.

Contrary to standard oligopoly models where business-stealing creates excessive entry, entry
in information markets is therefore never excessive.

The proposition leaves open the possibility of insufficient entry as an equilibrium. We next
argue that this possibility depends on the curvature of V;. Following our analysis in Section 5,
the shape of V, determines how equilibrium prices evolve with market size. If V; is concave, then
7, = AV, is decreasing in 5. As a result, s is unique and follows the intuitive interpretation that
sellers enter until the marginal entrant cannot recover the entry cost. By contrast, if V exhibits
increasing returns initially, 7, may increase over some range. This may lead to non-monotonicity

in pricing, generating multiple locally stable market structures.

Proposition 9. Under symmetric pricing, the curvature of Vs determines equilibrium entry as fol-
lows: i) If Vy is strictly concave then entry is efficient: s = s*. ii) If V is strictly convex, then no
entry (s™ = 0) is an equilibrium for F > Vi /1, despite potentially large social value from entry.
iii) If Vi has non-constant curvature, then entry may be insufficient (s™ < s*) but not excessive
(8™ > s%).

7.3 Entry under Alternative Pricing Equilibria

The symmetric pricing assumption, while being based on a straightforward extension of Section
6 and yielding unique predictions, is not the unique subgame perfect equilibrium outcome of the

entry game. We clarify this by examining how relaxing this assumption affects our results.
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The entry game admits multiple subgame perfect equilibria through coordination on different

pricing expectations. Consider any market size § satisfying:
fs>F >3y,

We can sustain § as an equilibrium by designating a set § with § = |§ | sellers, and focusing
on the following pricing equilibrium in the subgames where a set S of seller enters: For any of
these pricing subgames, the entering firms play the symmetric pricing equilibrium 75 except for
the subgames with both |S| = §+ 1 and S C S. For these specific subgames, the §+ 1 entering
sellers play the asymmetric pricing equilibrium in which seller s’ € S\S charges a price 7y below
F. Under such equilibrium behavior, it is a subgame perfect equilibrium outcome of the overall
free-entry game that exactly the sellers from set $ and no other sellers s ¢ S enter; a seller in S
expects a non-negative payoff from entering, so that not entering, leading to a payoff of zero, is not
a profitable deviation; a seller not in S receives zero from not entering, while expecting a negative
payoff from the deviation to enter.

This multiplicity is not merely a technical curiosity. By contrast, it reflects genuine coordi-
nation challenges in information markets. Unlike manufacturing where marginal costs pin down
a unique competitive price, information’s zero marginal cost creates a coordination game with
multiple Nash equilibria in the pricing subgame.

Hence, the consideration of alternative pricing equilibrium outcomes exacerbates inefficient
entry.

We however next argue that alternative pricing equilibrium outcomes does not affect the impos-
siblity of excessive entry. To see this, consider any equilibrium with § active firms and asymmetric
prices. Order the prices in descending order: tsl > tsg > .2 ts‘ . For the buyer to prefer purchasing

from all § firms rather than excluding the » most expensive ones, it must hold that:

IR

A

s, forallred{l,...,s}

MW.

In equilibrium, at least one of these inequalities must bind (otherwise some seller could prof-

itably raise their price). This implies that each of the top r prices satisfies:

NEE

V§ r

h)N

1
r

Now suppose § > s*, where s* maximizes social surplus. From the efficiency of s*, we have:
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which can be rewritten as:

Vs_vs*

*

° <F
S—S

Setting r = § — s* in the buyer’s constraint yields:

<=2 <F

Therefore, the average of the top § — s* prices is strictly less than F, which implies that at
least one of these prices must be below F. But cost recovery requires t;; > F for all active firms
i. This contradiction shows that § > s* cannot be sustained as an equilibrium under any pricing
arrangement. As a result § > s* is also not sustainable as an entry equilibrium with asymmetric
equilibrium prices.

In addition to this robustness result, we mention two further such results. First, the buyer
purchases from all active sellers. This result follows directly from Proposition 2, which establishes
that any equilibrium is portfolio-efficient. Second, the possibility of anti-competitive entry as
illustrated in our example above is also robust. Whenever V; /(s +1) > (V; — V;)/(s — k) for the
relevant k, entry reduces buyer surplus under any equilibrium pricing.

By contrast, we mention that the following results are specific to symmetric pricing. First,
efficiency under concavity. Alternative pricing equilibria can destroy the alignment between pri-
vate and social incentives even with concave \75 Second, the monotone comparative statics in the
entry cost F. With asymmetric pricing, increases in F might not monotonically reduce entry if
sellers coordinate on different equilibria. Third, uniqueness of market structure. As argued, the
multiplicity of locally stable points relies on the specific functional form of 7.

Finally, we emphasize that the multiplicity of equilibria has important welfare consequences,
justifying regulatory intervention. Total surplus V; — sF is maximized at s*, but the market may co-
ordinate on inefficient equilibria. A social planner could potentially improve outcomes through the
following two means. First, the planner may use entry subsidies: When 7+ < F < AV, subsidies
of F — 1 ensure efficient entry. Second, the planner may use pricing regulation. By mandating
symmetric pricing, the planner eliminates asymmetric equilibria that deter efficient entry. How-
ever, a practical implementation of these tools requires the regulator to observe V;, which may
be informationally demanding. Whenever regulators cannot observe such information directly, a
proper analysis requires explicitly modeling firms possessing private information about the value

of their signal vis-a-vis a regulator, which is beyond the scope of the current paper.
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8 Conclusion

This paper develops a comprehensive framework for oligopolistic price competition in information
markets, revealing fundamental differences from traditional product markets. The combinability
of information sources transforms competition from classical Bertrand rivalry into portfolio com-

petition, where sellers compete against all possible coalitions of rivals.

Contributions. Our analysis yields three core insights. First, we provide a complete character-
ization of when sellers can extract full surplus through weak and strong balancedness conditions,
which generalizes the duopoly complements-versus-substitutes dichotomy to arbitrary numbers
of sellers. Weak balancedness determines when full extraction is achievable in some equilib-
rium, while strong balancedness (equivalent to supermodularity) ensures it occurs in every equi-
librium. When weak but not strong balancedness holds, multiple equilibria coexist with different
surplus levels. Second, we demonstrate that information markets exhibit fundamentally different
entry dynamics than traditional oligopoly: whereas standard models predict excessive entry due
to business-stealing, information markets never exhibit excessive entry under any pricing equilib-
rium. Portfolio competition eliminates business-stealing, as buyers purchase from all (efficient)
sellers in equilibrium. Third, for symmetric sellers, we derive a geometric characterization show-
ing that universal surplus extraction occurs when portfolio value lies below the line connecting the
origin to the full-market value, a condition arising when information sources exhibit convexity or
mixed curvature patterns.

The endogenous entry analysis reveals striking departures from standard oligopoly theory.
While efficient entry is always an equilibrium outcome, markets may coordinate on inefficient
equilibria with insufficient entry. Moreover, entry can paradoxically reduce competitive pressure:
when new sellers provide strong complementarities, they shift the buyer’s threat point in ways that
allow all sellers—incumbents and entrants alike—to extract higher prices. This anti-competitive

effect of entry cannot arise in traditional markets with rivalrous goods.

Policy Implications. Our findings carry clear implications for policy and regulation. Traditional
antitrust approaches focusing on market concentration may be misguided when applied to infor-
mation markets. The number of competitors matters less than the structure of information com-
plementarities. Many sellers may still fail to protect buyers when strong complementarities exist.
Regulatory intervention should prioritize addressing coordination failures that lead to insufficient
entry, with targeted tools such as entry subsidies or pricing regulation. Such implementation re-
quires, however, that regulators can observe the portfolio value.

We also stress the importance of maintaining open access in information markets. Exclusivity
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clauses, where sellers condition access to their signals on buyers not purchasing from others, are
especially harmful. Such restrictions block the formation of informative portfolios, undermine
competition, and erode buyer surplus—nullifying the protective mechanisms portfolio competition
can otherwise provide. Regulators should prohibit these practices to safeguard efficient information

aggregation and market performance.

Scope of Applicability. While our framework is tailored to information markets, the portfolio
competition structure extends to any market where buyers combine differentiated products from
multiple sellers. The underlying mathematical apparatus—Ilinear programming, cooperative core
conditions, balancedness—applies whenever portfolio values are defined over subsets.

However, our universal surplus characterization relies critically on strict monotonicity of port-
folio values, which naturally arises in information markets but not generally elsewhere. In markets
for heterogeneous goods or platform services, non-monotonic values and perfect substitutes re-
quire the more general framework of Arribas and Urbano (2005), which introduces empty cores
and revenue multiplicity and precludes complete surplus characterization.

Nonetheless, our analysis applies directly to examples such as non-overlapping software mod-
ules or independent consulting services, provided each seller’s value is non-replicable. The eco-
nomic structure, rather than generality, enables comprehensive surplus characterization: just as

monopoly theory presupposes market power, our results presuppose differentiated sources.

Extensions. Our results open several research directions. Extending the model to heteroge-
neous buyers would clarify how diversity shapes information provision. Dynamic considera-
tions—information obsolescence, learning effects, reputation—could reveal further dimensions of
portfolio competition. The geometric surplus division predictions invite empirical tests in financial
information services, credit rating agencies, and related markets. Relaxing strict monotonicity to
allow redundant signals would require new equilibrium characterizations, broadening the relevance
of the framework.

In summary, portfolio competition provides a robust foundation for analyzing modern markets
where buyers combine multiple products, including platform markets, data services, and bundled
goods. The interplay between competitive pricing and cooperative stability, governed by balanced-
ness, is central in information economies. Explicitly prohibiting exclusivity clauses is essential to
preserve these benefits. As information markets proliferate, understanding and regulating portfolio

competition will be vital for both theory and policy.
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Online Appendix — Not for Publication

Proof of Proposition 1: We split the argument into two parts. First, we show that no equilibrium

can involve the buyer purchasing nothing or only one signal, so in any equilibrium (S$*,7*) it holds

that $* = N. Second, we derive the necessary and sufficient conditions on prices * depending on

whether signals are substitutes or complements.

1. Ruling out “no signal” and “single signal” outcomes.

Suppose, by contradiction, that in some candidate equilibrium the buyer does not buy both

signals.

(a)

(b)

Case A: No signal. Then both sellers earn zero profit at (¢1,#;). But each seller i can
profitably deviate by setting a sufficiently low price, say 7; = V;/2. Because V; > 0, this
guarantees V; —#; > 0, so the buyer strictly prefers buying signal i alone to remaining
with no signal. Hence, seller i’s deviation in its price ¢; yields strictly positive profit,

contradicting the seller optimization condition in our equilibrium definition.

Case B: A single signal from seller i. Then seller —i makes zero profit but can deviate
to a price
_i=AV_;j/2>0.

At (t;,7_;), the incremental surplus from adding signal —i is
(Vn—l‘i—f,i) — (Vi—li) = Vn—Vi—f,i = AV,i—f,i = AV,I'/Z > O,

so the buyer strictly prefers purchasing both. Seller —i thus secures a strictly positive
profit of AV_;/2, contradicting the seller optimization condition for ¢_; in our equilib-

rium definition.

Hence, in any equilibrium (t*,5*), the buyer purchases both signals, S* = N = {1,2}, and

equilibrium prices * = (¢{,1}) satisty (2).

2. Equilibrium price characterization. Having established that in any equilibrium (£*,5*), the

equilibrium prices t* satisfy

n+n <V, Nty <AV] A 1 <AV, )

we now show that, in any equilibrium, the latter two inequalities must hold with equality

under substitutes, whereas under complements, the first inequality must hold with equality

while at most one of latter two inequalities holds with equality.
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(a) Substitutes: V, <V +V,. In this case, the latter two inequalities in (9) imply the first
inequality in (9):

t1+1 <AV +AV, = (Vn—V2)+(Vn—V1) = Vn+(Vn—V1 —Vz) <V,.

It follows that any price vector t = (t1,;) with one of the two inequalities in (9) slack,
contradicts the seller optimization condition in our equilibrium definition, because the
seller i for whom it holds #; < AV; has the profitable deviation to raise its price by
€ € (0,AV; —1,) so that his profits are raised strictly. Hence, under substitutes the equi-

librium (S*,¢*) is unique:
(S*,11,t5) = (N, AV}, AVs).

(b) Complements: V,, > Vi +V,. We first show that in this case, the latter two inequalities
in (9) cannot both hold with equality, because this would violate the first inequality:

t1+t =AVi+AV, = (Vn—V1)+(Vn—V2) = (Vn—Vl —V2)+Vn >V,.

In other words, complements means that the sum of the marginal contributions exceeds
the buyers value from purchasing both signals. Hence, in any equilibrium (S*,7*) we
must have some seller i for whom it holds #; < AV;. Fix this seller i. We next show
that we then must have that the first inequality in (9) binds (holds with equality). For
suppose not, then seller i can raise its price by € € (0,AV; —¢7) so that (2) remains to
holds, implying that the buyer buys both signals. This strictly raises seller i’s profits,
which would contradict seller i’s optimization condition in our equilibrium definition.

Hence, any equilibrium (S*,7*) must exhibit ¢} +#, =V, t; < AVy, 1, < AV,. To see
that any such combination is indeed an equilibrium, note that given that seller i sets a
price t; < AV, seller —i best response is setting _; = V,, — t;, which satisfies r_; < AV_;
due to complementarity condition V,, > V| + V5. Indeed, increasing ¢_; beyond V,, —t;
leads the buyer not to buy from seller —i, lowering the price lowers seller —i’s profits.

Hence, with complements, any equilibrium (S*,#*) satisfies Sx* = N and 4t =V,,
and 1 < AVj and #; < AV, with one of the latter two inequalities being slack. This
implies that the set of equilibrium prices is a line segment on the budget line t; +1, =V,

bounded by individual surplus constraints #; < AV;.

0]
Proof of Proposition 2: (Only if) We first show that if (§*,*) is a subgame perfect Nash equilib-
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rium, then (S*,1*) satisfies portfolio-efficiency (S* = N) and r* exhibits seller-exposure.

(@)

(i)

Suppose to the contrary that S* C N. Then there exists at least one seller j ¢ S* who has been

excluded. By optimality of S*, we then must have:

* *
VS*U{j} - Z ti S VS* - Z ti 5
i€s*U{j} i€s*

otherwise the buyer would have preferred S* U {j}. This inequality simplifies to:
Now suppose seller j lowers her price to:
fj = (VS*U{j} —Vs*)/z > 0.

With all other prices unchanged, the buyer now evaluates S* U {j} at:

icS* icS* icS*

VS*U{j}_ (fj—l— le) :VS*U{j}_(VS*U{j}_VS*)/z_ Z l‘;< > Vg« — Ztl*

Thus the buyer strictly prefers $*U{ j}, and seller j earns 7; > 0. This is a profitable deviation,
contradicting equilibrium. Hence, S* = N.

Fix i € N. Suppose, by contradiction, that #* is such that no subset S C N\ {i} satisfies the
binding condition }. ;e\ s t;‘ = Vy — V. The assumption implies that

Esg“&i\%}(VN_VS_ 2 tj)’

JEN\S

is strictly positive.
Fix some 0 € (0, €) and consider seller i deviating to price #; =t + 9.

For any subset § C N\ {i}, the buyer obtains Vy — ¥ jen\ (i3 17 — (] + 8) from purchasing N,
whereas she obtains Vg — Y jcg t]’.‘ from purchasing S. Hence, the buyer prefers N to S if and
only if:

W— Y 6—(+8)>Vs—) 1],
JEN\{i} jEs
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which by rearranging is equivalent to

0 <Vy—Vg— Z l‘;f.
JEN\S

Since d < €, and € is the minimum over all such S, this inequality holds for all S C N\ {i}.

For any subset 7' containing seller i, the deviation increases the cost of both N and T by 9,
leaving their relative attractiveness unchanged. Hence, the buyer continues to prefer N over
T.

It follows that the deviation increases seller i’s profit from ¢ to 7 4+ 8 > ¢, while the buyer

still chooses N. This contradicts the assumption that ¢/ was optimal for seller i.

Therefore, there must exist some S_; C N\ {i} such that the exposure condition binds.

(If) Conversely, suppose (S*,t*) = (N,t*) and t* satisfies both full-bundle-optimality (3) and
seller-exposure (4). Then (3) ensures the buyer weakly prefers to buy from all n sellers so that
S* = N satisfies the equilibrium requirement of buyer optimization, while (4) ensures no seller can
profitably raise prices so that t* satisfies the equilibrium requirement of seller optimization. To see
the latter, note that for any seller 7, the binding constraint with S_; ensures that raising #; slightly
would lead the buyer to no longer buy from i. Therefore, no profitable deviation exists, as all sellers
sell their signals (as $* = N) and deviating from their price ¢ strictly lowers their profit. Hence,

(S*,1*) = (N,t*) is a subgame perfect Nash equilibrium. O

Proof of Proposition 4: We prove the equivalence using LP duality.

(i) = (ii): Suppose there exists an equilibrium with zero buyer surplus. By Proposition 3, the

revenue-maximizing LP achieves optimal value Vy:

mathi subject to Z <Vy—Vs VSCN.

120 jen iEN\S

The dual LP is:

min Z ¥s(Vy —Vs) subject to Z Ys>1 VieN.
20 g S:igS

By strong duality, the dual optimal value also equals Vyy. Through the change of variables
Ar = Yv\r» the dual constraints become }.7.;c7 Ar > 1. By complementary slackness, since all
primal variables are strictly positive (due to strict monotonicity of V'), the dual constraints bind at

optimum: Y 7.;,c7 Ar = 1, defining a balanced collection that achieves the dual minimum Vy. Since
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any balanced collection is feasible for the dual (as = 1 implies > 1), and the dual minimum is Vy,

every balanced collection must satisfy Y ¢ 75(Vy — Van s) > V, establishing weak balancedness.

(ii) = (i): Suppose V is weakly balanced. Since all dual objective coefficients Vy — Va\r are
strictly positive (by strict monotonicity), any optimal dual solution can be taken to have all con-
straints binding, i.e., to be a balanced collection. Therefore, the dual LP minimum can be computed

over balanced collections with Y 7.;c7 Ar = 1. Since every balanced collection satisfies

Y (Vv —Vis) > Vv,
SCN

the dual optimal value is at least V. Since the primal LP has constraint } ;e t; < Vy (from S = 0),
its optimal value is at most V. By strong duality, both optima are equal, hence both equal Vy.
Therefore, there exists a feasible price vector t* with } ;¢ = Vy satisfying all buyer optimality

constraints. By Proposition 3, this constitutes an equilibrium with buyer surplus Vy —Vy =0. [

Proof of Proposition 5: We establish the equivalence through submodularity of complement-
difference functions. For each H C N, define Ggl =Vy— VH\ gforall SCH.

Step 1: 'V is supermodular <= G is submodular for every H C N.

Fix any H C N and T;,T> C H. Submodularity of G¥ requires:

Vi = Vingy ] + Vi = Ving| 2 Vi = Vin s + Vi = Vi i) |-

Simplifying:
2V =V, = Ve, 2 2V — Vi\un) — Va\ninn)-

Using set identities H\ (T1UT2) = (H\T1)N(H\T») and H\ () NT>) = (H\T;) U(H\ T),
this reduces to:

Vinn + Vg < Vier)n@\n) + Ve nueEn)-
Setting A :=H\ T and B:=H\ T»:
Va+Ve < Vang +Vaus,

which is exactly supermodularity of V. Since H, T;, T, were arbitrary, the equivalence holds.

Step 2: GH submodular for all H = V is strongly balanced.

Fix H C N. By assumption G is normalized (GH = 0), nondecreasing, and submodular.
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Consider the linear program:
max{wa’ x>0, x(U) < GH(U) YU CH)

and its dual:

min{ y y(T)g(T)‘yZO, Y 0(1) > inieH}.
TCH T3i

Let x*(w) be the solution to the primal LP. Set w =17 = (1,...,1)". and fix any chain
0=UyC S C-- CSp =H with |S,u| = m. Since G¥ is submodular, it follows from
Theorem 44.3 in Schrijver (2003), that

SNy =6{ -Gf  (m=1,... |H]).

-1

and the value of the primal LP is equal to the value of the dual LP. From the primal LP, we
further obtain that

|H|
(1) ' (") =} (G5, - G5, ) = G — Gy = G,

m=1

which says that the primal LP equals G" (H) and hence the dual minimum (over fractional

covers of H) equals g(H):

min{ ¥ y(T)g(T): y20, Y o(T) > 1VicH} = g(H).
TCH T>i

This is precisely the balancedness inequality on H.

Step 3: 'V is strongly balanced => G is submodular on all H.

Fix H, and define the dual minimum

DH(r) = min{ Z yr G(T) - ZYT > ViEN}.

v20 Lrcn T5i

The dual minimum D' satisfies the following properties which are immediate from the def-

inition:
1. Monotonicity: if ¥’ < r coordinatewise, then D¥ (') < D (r).

2. Superadditivity: for any r,s € RY
DH(r+s) > D" (r)+ D" (s). (10)
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Monotonicity holds, because relaxing the constraint can only reduce the dual minimum. Su-
peradditivity holds because any collection of weights 7y that feasible for »+ s is also feasible

for r and for s.

Now, fix any two sets A,B C N. Using the identity of indicator vectors
lA + lB — lAUB + lAﬂB

we bound D’ (14 + 12) from above and below.

s Upper bound. Take Y4 = 1, ¥ = 1, and yr = 0 otherwise. Then Y 7-; yr = (14 +15);

for every i, so 7 is feasible for 14 4- 12, with cost

;YTGH(T) = G"(A)+G"(B).

Hence
D (11 +18) < GH(A)+G*(B). (11)

* Lower bound. By superadditivity (10) and the indicator identity,
pH (lA 4 lB) _ pH (lAUB 4 lAﬂB) > DH(14YB) 4 pH (14NB),
Since V is strongly balanced, it is weakly balanced on both A UB and AN B, and hence
D (11 +18) > G*(AUB)+G"(ANB). (12)
Combining (11) and (12) gives
G"(A)+G"(B) > DA*+18) > G"(AUB)+G"(ANB),

which is exactly the definition of submodularity of G” on H.

O

Proof of Proposition 6: Fix any subgame perfect Nash equilibrium with price vector r = (11, ... ,1,).
Define the complement-difference function on the grand market:

Gs:=Vy —VN\S forall S C N.

By Proposition 5, strong balancedness implies G = GV is submodular. From the equilibrium

characterization:
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* Buyer-optimality: Forall SC N, Y ;csti < Gs.
* Exposure: For each seller i € N, there exists S; C N with i € §; such that ) ;5,2 = Gg;.
For any set § with }_ ;c¢fi = Gg, we say S is tight.

Step 1: Tight sets are closed under union. Let A,B C N be tight sets: Y ;coti = G(A) and Y ;cpt; =
G(B). By submodularity of G:

G(A) +G(B) > G(AUB) +G(ANB).

By inclusion-exclusion for the additive function #(-):

Zti—i—Zti: Z t+ Z L.

icA icB iCAUB i€CANB

Combining these:

Y u+ Y t>GAUB)+G(ANB).
i€cAUB i€cANB

By buyer-optimality (feasibility):

Y #<GAUB) and Y 1 <G(ANB).
i€EAUB i€EANB

Therefore both inequalities are equalities, so Y ;c4pti = G(AUB).

Thus A U B is tight. By induction, the union of finitely many tight sets is tight.
Step 2: Construct a chain of tight sets. By exposure, for each seller i € N, there exists a tight set
T; with i € T;. Pick any ordering iy, ...,i, of the sellers and define:

k
Sy = UTir fork=1,...,n, Sp:=0.
r=1

By Step 1, each Sy is tight. Moreover:

* S0 C S C---CS§, =N (nested structure)
* Each S satisfies Y g, t; = G(Sk) (tight)
* Sy =UienT: = N (since each T; > i)
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Removing redundancies where Sy = S;_1, we obtain a strictly increasing chain:
=S cCcS Cc---CS,,=N

where each §; is tight and m < n.

Step 3: Telescope along the chain. For each j € {1,...,m}, define the block B; := S;\ S;_i.
Since §;_ and S; are both tight:

Yo=Yt~ Y ti=G(S)—G(S;-1)

i€B; i€S; €5

Summing over all blocks:

Y=Y Y u=YIG(S) - G(S;1)l

iEN  j=li€B; j=1
This is a telescoping sum:

= G(Sm) —G(S0) =G(N) = G(0) = (Vv — Vo) — (Vv — V) = V.

Therefore, the total revenue equals Vi, so the buyer’s surplus is zero. U

Proof of Proposition 7:

(i) Suppose to the contrary that there is a symmetric equilibrium at fee ¢ # 7.

A

o Ift <1, sellers want to raise their fee. Let k* € argming_,,(V, — V;)/(n — k). Since

D=V
A

we have
(n—ikt < V,—Vie = V,—nt > Viu—k't.

Thus the buyer strictly prefers the full n-seller bundle at price ¢ over the k*-seller bundle
at the same price ¢. In particular, there exists ¢’ € (¢,7) such that if one seller unilaterally
increases her fee to some ¢/, the buyer still strictly prefers to keep all n. That seller’s
profit rises from ¢ to ¢/, a profitable deviation. This deviation is profitable because the

buyer’s portfolio choice remains unchanged (she still purchases from all n sellers), so
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the deviating seller’s revenue increases while all other sellers’ revenues remain constant.

Hence ¢ < f cannot be an equilibrium.

o Ift > 1, the buyer wants to drop sellers. Again let k* > 0 be the smallest k that minimizes
(Vi = Vi)/(n—k). Now
— Vn - Vk*

t>7 = — V,—nt < V= —k*t.
n—k*

Thus the buyer strictly prefers contracting only with k* sellers at fee ¢ rather than all n.

She would refuse the n-bundle, breaking the putative equilibrium.
Combining (i) and (ii), the only possible symmetric equilibrium fee is ¢t = 1.
(ii) Omitted.
(iii) Assume (Vj)P_, is convex in the sense that

Vk+2_‘7k+1 > Vk+1—Vk forallk=0,...,n—2.

Fix integers k > ¢ and j > 0. Since the increments are nondecreasing in the index, we have

k—{—1

k—0—1
Virj = Vg = Z (V£+j+r+1 Vs jir) > Z (Vé+r+1 - V£+r) =V — V..
r=0 r=0

Thus, convexity of V; implies that

Vir i+ Ve > Vi j+ Vi (%)
To show V is supermodular, we must prove that for all S,7 C N,

Vsur +Vsnr 2 Vs+Vr.
By symmetry of V, this is equivalent to

Visur+Visar) = Vi + V- ()
Now, in inequality (), set
k=1T|, (=|SNT|, j=IS|—|SnT| >0.

Substituting these into () and, using that [SUT| = [S|+ |T| — [SNT|, yields exactly the
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definition of supermodularity (1) when V is symmetric. The claim now follows directly from

Proposition (6).
O

Proof of Proposition 9: Under strict concavity, Proposition 7 implies k* = s — 1 for all s, yielding:
LAY,

Therefore, sellers enter if AV, > F and stop entering if AV, ; < F, which coincides with the
social optimality condition (7), which for a concave V, is also sufficient.

Under strict convexity, k* = 0 for all s, yielding 7, = Vv, /s. Entry occurs when \7S /s > F. But so-
cial efficiency requires AV, > F. Since convexity implies AV, > V; /s for all s, there exist parameter
regions where entry is socially valuable (AV; > F) but unprofitable (V;/s < F).

With mixed curvature, 7; may exceed or fall short of AV depending on the location of curvature

changes, creating divergence between private and social entry incentives. 0
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