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Abstract

In modern information markets, buyers routinely combine signals from multiple sellers.

We develop a model of “portfolio competition” to analyze this distinctive feature. We show

that the combinability of information overturns standard oligopoly intuition. Unlike traditional

markets, competitive pressure does not necessarily protect buyers: when signals are comple-

ments, sellers can leverage the buyer’s desire for the joint portfolio to extract the full social

surplus, regardless of the number of competitors. We characterize the precise conditions for

rent extraction, which reduce to a simple geometric test for symmetric sellers. Furthermore,

we find that the canonical logic of market entry fails. Entry is never socially excessive because

efficient portfolio choices eliminate business-stealing effects. Paradoxically, entry can reduce

competitive pressure: when entrants provide strong complementarities, they shift the buyer’s

threat point, allowing all sellers to extract higher rents.
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1 Introduction

As modern economies become increasingly information-driven, information has become a trad-

able commodity. Financial analysts sell earnings forecasts to investors, data brokers sell consumer

profiles to marketers, and rating agencies sell credit assessments to lenders. A defining insti-

tutional feature of these information markets is that buyers routinely combine information from

multiple sources. Institutional investors assemble forecasts from distinct financial data providers;

e-commerce firms aggregate fraud scores from multiple risk intelligence vendors; pharmaceutical

companies integrate clinical trial data from different research organizations.

To reflect this empirical reality, we develop the first model of oligopolistic pricing in infor-

mation markets that explicitly captures the combinability of signals. Modeling price competition

in the traditional sense of Bertrand, we show that this combinability creates a distinctive com-

petitive structure: sellers price-compete not just against individual rivals but against all possible

combinations of rivals that buyers might assemble. We term this competitive structure portfolio

competition.

Analyzing portfolio competition reveals that the economics of information markets overturns

standard oligopoly intuition. In traditional markets, competition protects buyers: as the number of

sellers increases, prices fall toward marginal cost, and buyers capture the surplus. We show that in

information markets, this logic frequently breaks down.

Our first main result establishes that competitive pressure does not necessarily protect buyers

from full rent extraction. The intuition relies on the distinction between substitutes and comple-

ments in information. When signals are substitutes (e.g., overlapping forecasts), sellers compete

intensely to be included in the portfolio, driving prices down. However, when signals are comple-

ments (e.g., distinct data points that reveal a pattern only when combined), the buyer’s value of the

whole portfolio exceeds the sum of the parts. In this scenario, sellers can collectively leverage the

buyer’s fear of losing the entire portfolio to extract the full social surplus, leaving the buyer with

nothing. We characterize the precise boundary between these outcomes using a “balancedness”

condition, which formally captures the degree of complementarity in the market and generalizes

the complements-versus-substitutes dichotomy to arbitrary market sizes.

Our second set of results challenges the canonical view of market entry. In standard models of

free entry with substitute differentiated products, entrants impose a business-stealing externality,

so equilibrium entry is socially excessive. We prove that in information markets, excessive entry

never occurs. Because buyers combine signals to form efficient portfolios, there is no ”business

stealing” in equilibrium—every active seller contributes unique value.

Paradoxically, we find that entry can actually reduce competitive pressure. In standard markets,

a new entrant improves the buyer’s outside option. In information markets with strong complemen-
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tarities, a new entrant can increase the value of the ”grand coalition” so significantly that it renders

the buyer’s threat to exclude individual sellers non-credible. Consequently, the entry of a new firm

can shift the equilibrium from one where the buyer retains surplus to one where sellers extract

everything.

These findings suggest that traditional antitrust heuristics are ill-suited for the data economy.

Because market failures arise from insufficient entry (coordination failures) rather than excessive

entry, and because competition does not guarantee consumer surplus, regulators must look beyond

concentration indices like HHI. The structure of information complementarity, not the number of

firms, determines welfare.

The remainder of the paper is organized as follows. Section 2 discusses related literature. Sec-

tion 3 develops our portfolio competition framework that captures the combinability of competitive

information signals. In Section 4, we first study the duopoly case of two firms, obtaining the result

that the complementarity of signals determines the equilibrium degree of rent extraction. Section

5 extends this analysis to the general oligopoly model, obtaining the insight that in this more gen-

eral framework the correct defining notion is a balancedness condition. Section 6 shows that with

symmetric sellers, this balancedness condition has a simple geometric interpretation. Section 7

characterizes the free-entry equilibrium, showing that it never exhibits any excess entry. Section 8

concludes.

2 Related Literature

The theoretical literature on information markets focuses on monopolistic settings. Bergemann

et al. (2018); Ali et al. (2022); Yang (2022) analyze how a monopolist designs optimal information-

selling mechanisms. Certification models like Lizzeri (1999); Stahl and Strausz (2017); DeMarzo

et al. (2019) analyze information provision in monopolistic certification markets. While Gentzkow

and Kamenica (2017a,b); Li and Norman (2021); Wu (2023) study Bayesian persuasion with com-

peting senders, their framework excludes transferable utility and thus price competition.

These frameworks abstract from oligopolistic price competition where buyers combine signals

from multiple sellers. We fill this gap by developing the first model of oligopolistic information

provision with portfolio competition.

Our portfolio competition model connects to the multi-product pricing literature of Tauman

et al. (1997) and Arribas and Urbano (2005), who characterize equilibrium prices when buyers as-

semble portfolios. Information markets constitute a special case of their framework: they naturally

satisfy strict monotonicity, where each seller provides value not fully replicated by others.

Leveraging strict monotonicity allows us to achieve a full characterization of the conditions

under which competitive pressure protects buyers from rent extraction— weak and strong bal-
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ancedness. These conditions generalize the duopoly complements-versus-substitutes dichotomy to

oligopoly with arbitrary numbers of sellers. Strict monotonicity ensures (i) buyers purchase from

all efficient sellers in equilibrium, and (ii) the cooperative game’s core is non-empty, enabling our

balancedness analysis.

This extends Arribas and Urbano (2005, Section 5), who analyze concave and convex (but

not strictly monotone) value functions. Their analysis shows that without strict monotonicity, the

core may be empty and total revenue varies across equilibria. Our strict monotonicity assump-

tion guarantees core non-emptiness via the Bondareva-Shapley theorem and unique total revenue

across all equilibria, though individual price divisions remain indeterminate. This enables our

complete characterization of buyer surplus: weak balancedness determines when full extraction

is achievable (Proposition 4), while strong balancedness (equivalently, supermodularity) ensures

every equilibrium extracts full surplus (Propositions 6-7). For solution concepts like the Shapley

value or nucleolus, our strict monotonicity ensures both always exist and lie in the core, whereas

in Arribas et al.’s non-monotone setting, these concepts may fall outside the (possibly empty) core.

Our analysis also reveals a fundamental distinction between entry dynamics in markets for

divisible versus indivisible goods. The classical oligopoly literature on differentiated products

(Singh and Vives, 1984; Dixit and Stiglitz, 1977) analyzes competition where firms produce divis-

ible goods and buyers choose continuous quantities from each seller. In such settings, the entry

externalities literature (Mankiw and Whinston, 1986; Spence, 1976) establishes that substitutes

generate business-stealing effects, where each entrant captures demand from incumbents, lead-

ing to socially excessive entry. Conversely, with complements, entry creates business-enhancing

effects that entrants do not fully internalize, potentially leading to insufficient entry.

By contrast, our framework with indivisible information signals exhibits neither effect. Entry

is never excessive because the buyer purchases from all firms from whom it is efficient to buy, and

this holds in any equilibrium regardless of entry. This eliminates business-stealing and business-

enhancing effects entirely. When insufficient entry occurs, it arises from coordination failures

in pricing rather than uninternalized business-enhancing externalities. This demonstrates that the

canonical entry externalities from divisible goods markets do not extend to unit-demand settings,

where the indivisibility of goods fundamentally alters competitive dynamics.

Focusing on a buyer without any private information, we abstract from issues studied in mo-

nopolistic models of information selling such as Bergemann et al. (2018); Yang (2022). Incorpo-

rating such private information in a competitive model is non-trivial as it would require a model of

competing mechanism design as pioneered in McAfee (1993).

Modeling the demand side by a representative buyer allows us to abstract from information

externalities between buyers, which is the focus of, for example, Admati and Pfleiderer (1986);

Choi et al. (2019); Acemoglu et al. (2022); Bergemann et al. (2022).
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Our model of portfolio competition is orthogonal to the literature on information sharing be-

tween competing firms (Vives, 1984, 1988; Raith, 1996), where the focus is on firms exchanging

information with each other.

3 Model

Following Raiffa and Schlaifer (1961), we study a market where information helps a representative

buyer make decisions under uncertainty. In particular, the buyer faces an unknown state of the

world ω , drawn from a finite set

ω ∈ Ω = {ω1, . . . ,ωm},

according to a commonly known prior distribution p0 ∈ ∆(Ω). The buyer must decide which

information sources to purchase before making a decision that will determine both the quality of

her eventual choice and the total cost of information acquisition.

Information is provided by n independent sellers, indexed by N = {1, ...,n}, each possessing

private signals correlated with the true state ω . This creates the portfolio competition environment

identified in the introduction: the buyer can purchase information from any subset, S ¦ N, of the

N sellers and combine their signals to form better posterior beliefs. The key economic tension

emerges because each seller’s value to the buyer depends not only on the quality of that seller’s

own signal but critically on which other sellers the buyer also includes in her information portfolio.

Each seller i observes a private signal σi drawn from a finite space Σi, with the joint signal pro-

file σ = (σ1, . . . ,σn) ∈ Σ = ΠiΣi distributed according to a Blackwell experiment P(σ |ω) condi-

tional on the state. While sellers share common knowledge of this joint distribution, each observes

only her own signal realization, ensuring that different sellers may provide genuinely different, and

potentially complementary, information about the underlying state.

The buyer’s willingness to pay for information reflects how improved posterior beliefs translate

into higher payoffs in her operational environment. We capture this through the buyer’s belief-

based value function

v : ∆(Ω) −→ R,

which assigns to each posterior belief p ∈ ∆(Ω) the maximum expected payoff the buyer can

achieve when making decisions based on that belief. This belief-based value function is central to

understanding portfolio competition: when the buyer considers purchasing from multiple sellers,

she evaluates not just the cost of each information source, but how different combinations of signals

affect her posterior beliefs and thus her decision-making value.

We assume v is strictly convex, reflecting the property that information has decision-making
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value. It implies that information becomes more valuable when combined with other information

sources, a key driver of the complementarity patterns discussed in the introduction. The convexity

assumption ensures that the marginal value of any seller’s signal depends on which other signals

the buyer also acquires, formalizing the economic intuition that sellers face portfolio competition

rather than simple head-to-head rivalry.

Portfolio competition arises because buyers can combine signals from multiple sellers while

sellers cannot observe competitors’ information. Each seller’s value to the buyer depends not

only on signal quality, but on how that signal interacts with others in the buyer’s information

portfolio. Whether sellers compete as substitutes or complements depends on the buyer’s value

function v. When combining information sources yields diminishing returns, sellers’ information

is substitutable; when information sources reinforce each other, sellers compete as complements

and can sustain higher prices.

Timing The timing of the portfolio selection game is as follows:

1. Simultaneous Pricing. Each seller simultaneously sets a nonnegative price ti g 0 for access

to their private signal. These prices represent binding commitments; sellers cannot condition

their pricing on the buyer’s eventual portfolio choices or on competitors’ pricing decisions.

2. Portfolio Selection. The buyer observes all posted prices t = (t1, . . . , tn) and selects which

subset S ¦ N of sellers to buy from, paying the total cost ∑i∈S ti. This decision is made ex

ante, before any information content is revealed, so the buyer must evaluate the expected

value of different information portfolios based on the known signal structure and her value

function v.

3. Information Realization and Payoffs. Nature draws the true state ω ∼ p0 and the correspond-

ing signal profile σ ∼ P(.|ω). Each purchased seller i ∈ S observes their signal realization

σi and discloses it to the buyer. The buyer then updates her beliefs based on the observed

signal profile and realizes her final payoff v(pm), where pm represents her posterior belief

after observing signals from her chosen portfolio S.

The buyer’s portfolio selection problem requires evaluating the expected value of different

information combinations. For any subset S ¦ N of sellers, the buyer must assess how signals

from that specific portfolio will improve her decision-making. This valuation process lies at the

heart of portfolio competition: sellers compete not just on individual signal quality, but on their

marginal contribution to the buyer’s preferred information portfolio. When the buyer purchases

information from sellers in set S, she receives signal realizations that allow Bayesian updating

from her prior p0 to posterior beliefs pσS
.
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Strategic Payoffs To formalize this evaluation process, we let

V/0 = ∑
ω∈Ω

p0(ω)v(p0) = v(p0),

represent the buyer’s outside option value of making decisions based solely on the prior distribu-

tion. We define the portfolio value VS as the buyer’s expected payoff from purchasing information

from subset S net of V/0:

VS = ∑
ω∈Ω

∑
σS∈ΣS

p0(ω)P(σS|ω)v(pσS
)−V/0,

where pσS
denotes the buyer’s posterior and P(σS | ω) the marginal probability of observing the

signal profile when the state is ω . The portfolio value VS represents the buyer’s willingness to pay

for information portfolio S, which directly determines each seller’s market value and competitive

position; it captures the strategic essence of portfolio competition. Crucially, a seller’s individual

worth depends not only on their signal quality, but on how their information complements or

substitutes for others in the buyer’s optimal portfolio choice.

To avoid confusion, we distinguish terminology: v(p) is the buyer’s value function mapping

beliefs to decision payoffs, while VS denotes the portfolio value—the expected value (measured

via v) from purchasing signals from coalition S rather than none.

The buyer’s net benefit from purchasing information portfolio S at prices t is her information

value minus the total cost:

VS −∑
i∈S

ti.

Assumption 1 (Strict Monotonicity). Each seller provides strictly positive incremental informa-

tional value: for all coalitions S ¦ N and all sellers i ∈ N \S,

VS∪{i} >VS.

This assumption reflects markets where information providers differentiate to avoid direct re-

dundancy. While incremental value may be arbitrarily small (capturing near-redundant signals),

we rule out perfect redundancy. As we discuss in the related literature, strict monotonicity ensures

efficient equilibrium portfolios, active participation by all sellers when signals are costless, and

unique total revenue across equilibria.

Sellers face strategic interdependence in portfolio competition: each earns their posted price ti
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only if the buyer includes them in her chosen portfolio, and zero otherwise, yielding payoff

Πi(t,S) =







ti, if i ∈ S,

0, otherwise.

This creates the strategic pressure that drives our analysis: sellers must price competitively

enough to gain inclusion, yet cannot directly observe the competitive threats they face from alter-

native seller combinations.

Equilibrium Concept We analyze pure-strategy subgame perfect Nash equilibria of the portfolio

selection game. An equilibrium consists of prices t∗ = (t∗1 , . . . , t
∗
n) and a buyer portfolio choice

function S∗(t), mapping prices t into a portfolio selection S ¦ N, such that:

(i) (Buyer Optimization) Given posted prices t, the buyer selects the portfolio that maximizes

her net benefit:

S∗(t) ∈ argmax
S¦N

{

VS −∑
i∈S

ti

}

.

(ii) (Seller Optimization) No seller can improve their payoff by unilaterally changing their price,

taking the buyer’s optimal response as given:

Πi(t
∗,S∗(t∗))g Πi((ti, t

∗
−i),S

∗(ti, t
∗
−i)) ∀ti g 0;∀i ∈ N.

This equilibrium concept captures the essence of portfolio competition: sellers must anticipate not

just direct rivalry, but the buyer’s ability to substitute entire portfolios of competing information

sources.

Running example We introduce a running example that illustrates our results throughout the

paper. The example microfounds the value function v(p) and yields a tractable portfolio value VS.

Example. Our buyer is a monopolist who produces quantity q g 0 in a downstream market with

a cost function C(q). Suppose the monopolist’s inverse demand function, P(q|p), depends on the

posterior beliefs p = P(ω = h) about a binary state ω ∈ Ω = {l,h} with prior p0 = 1/2. Given a

posterior belief p, the monopolist maximizes profits, resulting in the monopolist’s value function

v(p) = max
qg0

[

P(q|p) ·q−C(q)
]

.
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For our running example, we specify linear demand P(q|p) = 2p−q and no costs of production

C(q) = 0. The first-order condition yields optimal quantity q∗ = p, giving:

v(p) = (2p−q∗) ·q∗ = (2p− p) · p = p2.

The quadratic value function has an important implication: the expected value from signals

equals the variance of the induced posterior distribution. From p0 = 1/2 and v(p) = p2, it follows

that V/0 = v(p0) = 1/4, which together with the law of iterated expectations, E[p̂] = p0, yields

VS = E[p̂2]−V/0 = E[p̂2]− (E[p̂])2 = Var(p̂). (1)

Concerning the informative signals of the sellers in S, we assume that each seller i observes

an independently drawn binary signal si ∈ {l,h} with identical signal accuracy α , that is P(si =

ω|ω) = α ∈ (1/2,1) for all i. This framework of independent and symmetric signals is a natural

benchmark and yields a distribution of posteriors, p̂, that is tractable.

The resulting example is canonical because it yields closed-form solutions while capturing the

essence of information markets: each seller provides an independent but imperfect signal about

a common underlying state. We use this example to illustrate our main results, beginning with

duopoly in Section 4.

4 Duopoly

We begin by considering the case of two sellers, n = 2. For simplicity, we write Vi = V{i} and

Vn =V{1,2}. We also focus on the case that each experiment is individually valuable. We therefore

assume that V is strictly increasing in the following sense: Vi > 0, and Vn >max{V1,V2}. The latter

means that, conditional on each state, the sellers’ experiments are at most partially correlated.

Informational Complements and Substitutes. The sellers are said to be informational comple-

ments (see Börgers et al., 2013), if the joint value exceeds the sum of the parts:

Vn gV1 +V2.

This means that each seller provides unique insights that are not replaceable by the other. Con-

versely, the sellers are informational substitutes if:

Vn fV1 +V2.
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Here, the information from each seller overlaps, and their combined contribution is less than the

sum of their individual values.

Using the common convention that −i ∈ {1,2}\{i}, we define i’s marginal contribution, ∆Vi,

to Vn as

∆Vi =Vn −V−i.

Our monotonicity assumption on V implies that the marginal contributions are strictly positive:

∆Vi =Vn −V−i > max{V1,V2}−V−i gV−i −V−i = 0.

Demand for Information. After each seller i = 1,2 sets their price ti, the buyer chooses among

four options: obtaining no signal and paying 0; obtaining a signal only from seller 1 and paying

t1; obtaining a single signal from seller 2 and paying t2; or obtaining a signal from both sellers,

paying t1 + t2.

1. Two signals: The buyer optimally buys from both sellers if and only if it holds

t1 + t2 fVn ' t1 fVn −V2 = ∆V1 ' t2 fVn −V1 = ∆V2. (2)

The first inequality ensures that the joint surplus from two signals exceeds the cost. The

second and third inequalities ensure that the buyer does not strictly prefer purchasing from

just one seller. If either seller charges too much relative to the other’s value, the buyer would

deviate to buying only one signal. Hence, all three constraints must be satisfied for two

signals to be optimal.

2. A single signal from seller i = 1,2: The buyer optimally purchases only from seller i and not

from −i if and only if it holds

ti fVi ' t1 + t2 >Vn ' V−i − t−i fVi − ti.

The first condition ensures that seller i alone provides positive net value. The second set

of conditions guarantees that the buyer does not prefer two signals or a single signal of the

opponent.

3. No signal: The buyer optimally declines to purchase any signal if and only if it holds

t1 gV1 ' t2 gV2 ' t1 + t2 gVn.

Each condition eliminates one of the possible choices. If buying either single signal does

not yield a surplus, and purchasing both signals together is also too costly, then the buyer is

better off relying on the prior and not buying any signal.
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Figure 1: The left panel of the diagram illustrates the complementary case V1+V2 <Vn, the right panel the alternative,

substitute case. The orange line depicts prices such that the buyer is indifferent between buying two or one signal; in

the area below it the buyer strictly prefers the option to buy both signals. The olive line depicts pairs such that the buyer

is indifferent between two signals and no signal; in the area below it the buyer strictly prefers the two signals. The

blue line depicts prices so that the buyer is indifferent between a single signal and no signal; in the area below it the

buyer strictly prefers the option to buy one signal. The red line (left) and the red dot (right) show the set of equilibrium

prices. In equilibrium, the buyer buys both signals, and each seller extracts at most its marginal contribution.

These inequalities define the buyer’s demand correspondence over the price space. In partic-

ular, the regions partition the (t1, t2) plane into areas where different combinations of signals are

optimal. The key takeaway is that the buyer’s decision hinges on comparing net surpluses—the

improvement in market value induced by the purchased information, minus the price charged.

The following proposition characterizes the equilibrium when the signals are incomplete —

that is, even after purchasing all available signals, the buyer does not learn the state with certainty.

Proposition 1. Suppose Vi > 0 and Vn > max{V1,V2}. In every equilibrium, the buyer purchases

both signals. The equilibrium prices are as follows.

(i) If the signals are substitutes, each seller sets a price equal to its marginal contribution, ti =

∆Vi.

(ii) If the signals are complements, then the set of equilibrium prices is given by the budget line

t1 + t2 =Vn, subject to the individual surplus constraints ti f ∆Vi.

The proposition’s proof which we provide in the appendix is straightforward. It directly for-

malizes the intuitive idea that any excluded seller can profitably deviate by lowering her price to

capture positive demand, forcing purchasing from all sellers in equilibrium. For signals that are

substitutes it then follows that each seller faces direct competitive pressure limiting prices to indi-

vidual marginal contributions, whereas for signals that are complements, equilibrium prices lie on

the buyer’s budget constraint since neither seller can be easily replaced by the other.
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This result illustrates how strategic pricing in a duopolistic market of information depends on

the informational landscape. When sellers provide complementary signals, they can extract the

full value they jointly create, leaving no rents to the buyer. The exact division of rents between

the two sellers is indeterminate: any sharing rule satisfying the buyer’s participation and incentive

constraints can be sustained in equilibrium. By contrast, when the sellers’ signals are substitutes,

the interaction becomes more competitive. In the substitute case, each seller’s marginal contri-

bution ∆Vi is constrained by competitive pressure from the alternative seller, creating a binding

constraint that prevents full surplus extraction and ensures the buyer retains positive surplus. This

competitive pressure disciplines pricing and ensures that no seller extracts more than its marginal

contribution to total value. As a result, the buyer obtains a strictly positive rent from consuming

the signals.

Example. We analyze the duopoly case (n = 2) for our running example. When the buyer pur-

chases from only one seller, Bayes’ rule yields posterior beliefs:

p̂(h) = P(ω = h | s1 = h) =
p0 ·α

p0 ·α +(1− p0)(1−α)
= α

By symmetry, p̂(l) = P(ω = h | s1 = l) = 1−α . Since each posterior occurs with probability 1/2,

the portfolio value is

V1 =V2 =

(

α −
1

2

)2

.

Portfolio value increases quadratically with signal accuracy α .

With two independent signals, let m denote the number of high signals. The distribution of m

is Binomial(2,α) when ω = h and Binomial(2,1−α) when ω = l. Applying Bayes’ rule for each

realization yields posterior beliefs:

p̂0 ≡ P(h|0) =
(1−α)2

(1−α)2 +α2
; p̂1 ≡ P(h|1) =

1

2
; p̂2 ≡ P(h|2) =

α2

α2 +(1−α)2
.

Note that contradictory signals (m = 1) yield no information beyond the prior, while agreement

reinforces belief in either direction. The probabilities are:

P(0) = P(2) =
α2 +(1−α)2

2
, P(1) = 2α(1−α).

The expected posterior squared equals:

E[p̂2] = P(0) p̂2
0 +P(1)p̂2

1 +P(2)p̂2
2 =

3α2 −3α +1

4α2 −4α +2
.
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The value of the complete portfolio of both signals is therefore:

Vn = E[p̂2]−V/0 =
3α2 −3α +1

4α2 −4α +2
−

1

4
.

Direct calculation shows signals are substitutes:

V1 +V2 −Vn =
(1−2α)4

4−8(1−α)α
> 0.

The signals provide overlapping information about the same state, so acquiring both yields less

than twice the value of a single signal. By Proposition 1, each seller charges ti = ∆Vi = Vn −V−i

in the unique equilibrium, and the buyer retains positive surplus Vn − (2Vn −V1 −V2)> 0.

5 Oligopoly

The duopoly analysis revealed that buyers always purchase the socially efficient portfolio, i.e., from

both sellers, and that whether the buyer obtains a positive surplus depends on whether signals are

complements or substitutes. A natural question arises: which of these insights extend to markets

with n > 2 sellers, and where do new complexities emerge?

The structural difference is stark. In duopoly, the buyer has only two effective deviations:

exclude seller 1 or exclude seller 2. With n sellers, however, the buyer can potentially switch

to any of 2n − 1 alternative coalitions. These additional alternatives fundamentally change the

competitive problem.

A simple complements-versus-substitutes dichotomy does not suffice to determine surplus di-

vision. With two sellers, each faced competition only from the other individual seller. With n

sellers, seller i competes not just against individual rivals, but against all possible coalitions of ri-

vals that the buyer might assemble. This portfolio competition creates a new analytical challenge:

characterizing when coalition-based competitive pressure is sufficient to protect buyers from rent

extraction.

Despite this added complexity, some fundamental insights from duopoly extend naturally. Most

notably, the buyer’s portfolio choice remains socially efficient in any equilibrium: the competitive

pressure that forced inclusion of both sellers continues to operate with any number of sellers. The

underlying logic remains the same: any excluded seller has a strong incentive to lower her price to

reenter the bundle. Since sellers set prices while their cost of providing information is zero, sellers

can ensure inclusion by setting sufficiently low but positive prices.

To address the surplus division question, we develop a new characterization based on the con-

cept of exposure. A seller is exposed when the buyer can profitably switch to some alternative
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coalition, creating competitive pressure on that seller’s price. Unlike duopoly, where exposure to

individual competitors fully determined outcomes, oligopoly exposure to coalitions requires new

analytical tools from linear programming and cooperative game theory.

Definition 1 (Exposure). Seller i is said to be exposed to a subset S−i ¦ N \ {i} at price vector

t = (t1, . . . , tn) if

∑
j∈N\S−i

t j =VN −VS−i
.

Intuitively, a price vector t exposes seller i if the buyer would refuse to purchase from seller i

when i raises her price above ti. In this sense, exposure formalizes the competitive pressure that

disciplines seller i’s price.

Note that in duopoly, every seller with positive price was necessarily exposed to the single

alternative of the other seller. The exposure condition thus generalizes this competitive pressure

to encompass the much richer set of coalition-based threats that emerge with multiple sellers.

This more general condition captures the idea that seller i is exposed when the buyer is exactly

indifferent between the current arrangement and switching to subset S−i, excluding seller i (and

possibly others not in S−i).

Exposure is a local condition: it depends on the configuration of prices and values that make

a specific alternative bundle S−i the buyer’s next-best option. Intuitively, a seller is exposed if she

must keep her price pinned just below a threshold, beyond which the buyer would defect.

Having defined exposure, we can now provide a complete characterization of an oligopoly

equilibrium. Unlike duopoly where equilibrium conditions were relatively simple, oligopoly re-

quires two types of constraints: buyer incentive compatibility (which generalizes from duopoly)

and seller exposure (which captures the new oligopoly complexity)

Proposition 2 (Equilibrium prices via buyer-optimality and exposure). (S∗, t∗) is a pure-strategy

subgame perfect Nash equilibrium if and only if:

1. (S∗, t∗) exhibits “portfolio-efficiency”: The buyer prefers to buy from all sellers over any

strict subset:

S∗ = N and ∑
i∈N\S

t∗i fVN −VS, ∀S ¦ N. (3)

2. t∗ exhibits “seller-exposure”: For each seller i ∈ N, there exists a subset S−i ¦ N \{i} such

that

∑
j∈N\S−i

t j =VN −VS−i
. (4)

Note that when n = 2, condition (3) reduces to the familiar constraints t1+ t2 fVN and ti f ∆Vi
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in (2), while condition (4) becomes the exposure to individual competitors that we saw in the

duopoly analysis.

Our baseline analysis assumes zero production costs for expositional clarity. With per-sale

costs ci g 0, the framework extends naturally by identifying the set of efficient sellers. Define the

efficient portfolio

N∗ ∈ argmax
S¦N

{

VS −∑
i∈S

ci

}

.

If for all S ¦ N∗ and all i ∈ N∗ \S, seller i’s incremental informational value exceeds its cost,

VS∪{i}−VS > ci,

then the portfolio value VS remains strictly monotone on N∗. In this case, our complete analysis

applies to the game among the |N∗| viable sellers: all our equilibrium and surplus characterization

results hold with N replaced by N∗ and prices ti interpreted as gross prices (buyer payments) from

which sellers earn profits πi = ti − ci. Sellers in N \N∗ optimally remain inactive as their costs

exceed their incremental value in any portfolio.

This framework accommodates heterogeneous costs while preserving the portfolio competition

structure. The market endogenously selects which sellers participate, and among efficient sellers,

competition operates exactly as characterized in our zero-cost baseline.

5.1 Cooperative Benchmark and Equilibrium Existence

In duopoly, equilibrium analysis was relatively straightforward because we could directly char-

acterize prices through individual marginal contributions and simple budget constraints. With

oligopoly, however, the exponential growth in buyer deviation possibilities (from 2 to 2n −1 alter-

native coalitions) makes direct equilibrium characterization unwieldy. This complexity forces us

to employ more sophisticated analytical tools that were unnecessary in the two-seller case.

To better understand the structure of oligopoly equilibrium prices, we now consider a central-

ized, cooperative version of the pricing problem. This representation of the problem was already

established in Arribas and Urbano (2005), who derived it in the broader context of a general mul-

tiproduct price competition. Applying this result to our context serves three purposes: (1) as

a benchmark for evaluating competitive outcomes, (2) as a technical tool for characterizing the

complete set of equilibria and connecting to our later analysis of when balancedness conditions

determine surplus division, and (3) as a bridge connecting our information market analysis to the

broader multiproduct price competition literature in industrial organization.

Oligopoly sellers must defend against an exponentially large set of buyer deviations. The

cooperative framework allows us to capture this full competitive landscape through a systematic
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linear programming approach. Suppose that instead of setting prices independently, the sellers

coordinate to choose prices jointly in order to maximize their total revenue. They take the buyer’s

preferences as given, and design prices so that the buyer voluntarily purchases the full bundle N,

while extracting as much value from her as possible.

The buyer still chooses her bundle by maximizing net utility, so the sellers must ensure that the

buyer prefers the full bundle over any strict subset. That is, the buyer’s net value from purchasing

from N must weakly exceed the net value of any S ¦ N. These constraints define the feasible set

of prices. Formally, the sellers solve the following LP-problem:

max
t∈RN

g0

∑
i∈N

ti s.t. ∑
i∈N\S

ti fVN −VS for all S ¢ N. (5)

We refer to this as the Primal (Revenue) LP. Its objective captures the sellers’ joint revenue.

The constraints ensure that the buyer is willing to purchase from all sellers. The feasible region

defined by this LP is a polytope in Rn, bounded by one linear inequality for each strict subset S¦N.

Since there are 2n − 1 such subsets, the polytope is defined by exponentially many halfspaces, a

complexity that duopoly entirely avoided with its simple triangular feasible region.

Each inequality reflects the condition that the buyer must not prefer to exclude the sellers in

N\S. Geometrically, each constraint slices off a part of the price space where the buyer would de-

fect to a smaller bundle. This geometric complexity explains why the duopoly’s simple marginal

contribution bounds become insufficient: with multiple sellers, the buyer’s deviation threats create

a much richer constraint structure that requires linear programming techniques to analyze system-

atically.

This has an important implication that generalizes our duopoly exposure insight: for any seller i

who receives a strictly positive price in the optimal solution, there must be some subset Si ¦ N\{i}

such that the constraint corresponding to Si binds with equality:

∑
j∈N\Si

t j =VN −VSi
.

This binding constraint condition is precisely what we termed ”exposure” in our equilibrium char-

acterization: seller i is exposed to coalition Si when the buyer’s threat to switch to Si becomes

binding. For duopoly (n = 2), this reduces to each seller being exposed to their individual rival,

recovering the familiar competitive pressure we analyzed earlier.

The buyer’s incentive constraints are acting as resource constraints from the sellers’ point of

view. The solution must stretch those resources to their limits, and each seller who extracts revenue

must be “pushed back” against one of the buyer’s constraints. The seller cannot raise her price

further, because she is already exposed to a binding deviation.
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Most remarkably, and in line with Arribas and Urbano (2005), this cooperative revenue max-

imization problem identifies a set of prices that are exactly the same price profiles that arise in

equilibrium in the strategic game. Even though sellers do not coordinate their prices in the actual

game, competition leads them to an outcome that mirrors the outcome of this centralized optimiza-

tion. This equivalence between cooperative and competitive outcomes, while intuitive in duopoly,

becomes a powerful and non-obvious result in oligopoly markets.

Proposition 3. The cooperative revenue maximization problem (5) has a solution set T ∗ ¦ Rn

which is non-empty, where T ∗ denotes the set of optimal price vectors that solve the revenue max-

imization LP (5). Every solution in T ∗ constitutes a subgame perfect Nash equilibrium. Moreover,

any price profile in T ∗ minimizes the buyer’s surplus across all subgame perfect Nash equilibria.

The claims provided by Proposition 3 are a central finding in Arribas and Urbano (2005) and

are contained within the combination of their Propositions 2 and 4 and, most pointedly, Corollary

2. We therefore refer to Arribas and Urbano (2005) for a formal proof of our proposition. We only

remark that to see existence, it suffices to note that the feasible region is always non-empty (e.g.,

t = 0 is trivially feasible), and bounded above by the total value VN . Therefore, an optimal solution

always exists.

5.2 Buyer Surplus

Having characterized oligopoly equilibria through the LP framework, we now address a fundamen-

tal question: when do buyers retain surplus in oligopoly markets? In duopoly, this question had a

clean answer through the complements-vs.-substitutes dichotomy. Does this simple logic extend

to markets with n > 2 sellers, or do new complexities emerge?

In duopoly, competitive pressure came from exactly two sources, making surplus division de-

pend solely on whether the sum of marginals exceeds the total value. With n sellers, however,

competitive pressure can emerge from any of 2n−1 alternative coalitions, fundamentally changing

how we must analyze surplus division. This exponential growth in competitive threats forces us be-

yond the elementary tools that sufficed for duopoly, requiring more sophisticated techniques from

linear programming and cooperative game theory, particularly the theory of balanced collections

and core existence.

We now investigate how much surplus the buyer retains in a competitive equilibrium. The buyer

surplus U∗ is the difference between joint value of information VN and the sum of equilibrium

prices:

U∗ =VN −
n

∑
i=1

t∗i .
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Since all equilibrium outcomes are portfolio-efficient (the buyer purchases from every seller), this

question then reduces to identifying the maximum revenue the sellers can charge in equilibrium.

Insufficiency of the Marginal Contributions Test. The duopoly analysis provided an elegant

test for buyer surplus: compare the sum of individual marginal contributions, ∆V1 +∆V2, to the

total value VN . When ∑i ∆Vi < VN , competitive pressure from individual rivals ensures buyers

retain surplus.

As Proposition 1 showed, this reduces to the simple complements-vs.-substitutes dichotomy:

U∗ > 0 if and only if V1 +V2 >VN .

The economic logic was transparent. Each seller’s price was constrained by their individual

marginal contribution—the loss in buyer value if that seller were excluded. If individual marginal

contributions summed to less than total value, then competitive pressure from individual exclusion

threats forced total prices below the buyer’s value, preserving surplus.

The two-seller case suggests a natural generalization. Following the duopoly template exactly,

we would test whether:

n

∑
i=1

(

VN −VN\{i}

)

< VN . (6)

This duopoly-inspired test asks: can oligopoly sellers extract more than their individual contribu-

tions to total value, just as in the two-seller case?

It is indeed easy to see that condition (6) is a sufficient condition for positive buyer surplus.

Since the buyer’s value is monotonic in coalition size, each seller’s individual marginal contribution

VN −VN\{i} provides the loosest possible constraint on their pricing. Any exposure to a smaller

subset Si ¢ N \{i} would impose a tighter bound VN −VSi
>VN −VN\{i}.

This duopoly-inspired test captures one important source of competitive pressure. But oligopoly

reveals a fundamental difference: with n g 3, sellers face not just individual rivals but entire coali-

tions of alternatives. While duopoly sellers could only be threatened with individual exclusion,

oligopoly sellers must defend against buyers switching to any subset of competitors; a form of

competitive pressure that simply cannot exist when n = 2. However, this duopoly-inspired test has

a critical limitation. For n g 3, sellers may be exposed to smaller sets of competitors, not just the

grand coalition minus themselves. This means that even when the simple sum-of-marginals test

fails, the buyer may still retain surplus due to coalition-based competitive pressure. The following

example makes this concrete.

Example (Coalition-based threats). Consider three sellers and a buyer whose portfolio value is
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given by:

V{1,2,3} = 1, V{2,3} =V{1,3} =V{1,2} = 0.5, V{1} =V{2} =V{3} = 0.4, V/0 = 0.

The individual marginal contributions to the full bundle sum to

(1−0.5)+(1−0.5)+(1−0.5) = 1.5 > 1.

In duopoly, marginal contributions summing to 1.5 > 1 would imply zero buyer surplus. However,

the buyer-optimality (exposure) constraints for the oligopoly case n = 3 are:

t2 + t3 f V{1,2,3}−V{1} = 0.6,

t1 + t3 f V{1,2,3}−V{2} = 0.6,

t1 + t2 f V{1,2,3}−V{3} = 0.6,

t1 + t2 + t3 f V{1,2,3} = 1.

Summing the first three constraints gives

(t1 + t3)+(t1 + t2)+(t2 + t3) = 2(t1 + t2 + t3)f 1.8,

implying t1 + t2 + t3 f 0.9. Thus total seller revenue cannot exceed 0.9 in equilibrium. Since

equilibrium portfolio-efficiency implies t1+ t2+ t3 fVN = 1, the buyer retains a surplus of at least

0.1.

The duopoly sum-of-marginals test fails because oligopoly introduces coalition-based compet-

itive pressure. The constraint t1 + t2 f 0.6 represents the buyer’s threat to exclude seller 3 and

purchase the portfolio {1,2}. This form of competition is absent in duopoly where only individual-

exclusion threats exist.

The example clarifies that the elementary tools that sufficed for duopoly become inadequate.

Duopoly required checking just one inequality; oligopoly requires systematically analyzing expo-

nentially many coalition-based threats. We now develop this more sophisticated condition through

the mathematical theory of balancedness; a framework unnecessary in duopoly but essential for

oligopoly surplus division.

Balancedness and Buyer Surplus. The failure of duopoly’s simple marginal-contributions test

reveals why oligopoly requires fundamentally different analytical tools. While duopoly needed

to check only one inequality (V1 +V2 vs VN), oligopoly must systematically analyze exponentially

many coalition-based threats. This complexity leads naturally to the theory of balanced collections.
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The key insight is that competitive pressure from different coalitions must be systematically

weighted to determine whether full surplus extraction is possible. A balanced collection assigns

weights to each potential deviation coalition such that every seller is ’covered’ by these threats in

balanced proportion—no seller is over-threatened or under-threatened relative to others.

Definition 2 (Balanced collection). A collection of nonnegative weights {γS} indexed by all non-

empty, proper subsets S ¢ N is called a balanced collection if for each seller i ∈ N,

∑
S¢N
i∈S

γS = 1.

When n = 2, this condition becomes trivial: with only subsets {1} and {2}, any balanced

collection must assign γ{1} = γ{2} = 1, recovering exactly the duopoly setup where each seller

faces one exclusion threat. For n > 2, however, balanced collections capture the exponentially

richer structure of coalition-based competitive pressure that emerges only in oligopoly.

With this framework, we can precisely characterize when full surplus extraction is achievable:

Definition 3 (Weak balancedness). The portfolio function V is weakly balanced for N if for every

balanced collection {γS}SªN , the following holds:

∑
SªN

γS

(

VN −VN\S

)

gVN .

We now show that weak balancedness is both necessary and sufficient for the existence of a

zero-surplus equilibrium.

Proposition 4. The following are equivalent:

(i) There exists an equilibrium in which the buyer’s surplus is zero.

(ii) The portfolio function V is weakly balanced.

Proposition 4 characterizes when full extraction is achievable, but says nothing about whether

it occurs in every equilibrium. The following example shows that when weak balancedness holds

but additional structure is absent, multiple equilibria can coexist with different surplus levels.

Example (Multiplicity of Equilibria). Consider three sellers and a buyer whose portfolio value is

given by:

V{1,2,3} = 1, V{2,3} =V{1,3} =V{1,2} = 0.4, V{1} =V{2} =V{3} = 0.3, V/0 = 0.

The symmetric price vector (1/3,1/3,1/3) supports an equilibrium with zero buyer surplus. How-

ever, the asymmetric price vector (0.1,0.1,0.6) also supports an equilibrium, yielding buyer sur-

plus of 0.2. Sellers 1 and 2 compete intensely (each exposed by the other), while seller 3 exploits
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their rivalry to charge a high price. This demonstrates that weak balancedness alone does not

guarantee universal extraction.

Strong Balancedness and Universal Extraction. The previous example illustrates why weak

balancedness is insufficient for universal full extraction. Weak balancedness restricts competitive-

ness only at the aggregate level: it guarantees that the grand coalition N can defend total revenue

VN against any proper subcoalition. What it does not regulate is the structure of competition within

subcoalitions. If some subcoalition is itself highly competitive relative to its own sub-subcoalitions,

sellers inside it may be forced to set prices strictly below their balancedness levels even though the

grand coalition remains protected. This is exactly what happened in the example: the grand coali-

tion was weakly balanced, but the subcoalitions imposed strong internal competitive pressure that

allowed a positive-surplus equilibrium.

To ensure full extraction in every equilibrium, competitive pressure must be uniformly weak

across all subcoalitions, not just at the top level. This leads to the following strengthening of

balancedness:

Definition 4 (Strong balancedness). The portfolio function V is strongly balanced if it is weakly

balanced for every subset N′ ¦ N.

Strong balancedness requires that the balancedness inequality holds not just for the full set of

sellers, but for every possible sub-market. This seemingly technical strengthening has profound

implications: it turns out to be equivalent to a familiar economic property.

Proposition 5. The following are equivalent:

(i) V is strongly balanced,

(ii) V is supermodular (i.e., VS∪T +VS∩T gVS +VT for all S,T ¦ N),

(iii) The marginal contribution function G(S) :=VN −VN\S is submodular.

This equivalence reveals that strong balancedness captures gross complementarity at all levels.

When information sources are supermodular (gross complements everywhere), no coalition-based

competitive pressure can emerge to sustain positive buyer surplus. Submodularity of marginal

contributions means that larger coalitions provide weaker competitive threats, preventing the com-

petitive stalemate observed in our three-seller example.

With this equivalence established, we can characterize universal extraction:

Proposition 6. Suppose V is strongly balanced (or equivalently, supermodular). Then in every

subgame perfect Nash equilibrium, the buyer has zero surplus.
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Our result recovers, in our information-market environment, the full-extraction result for con-

vex games in Tauman et al. (1997) (and its reformulation in Arribas and Urbano (2005)). Their

convexity assumption corresponds to supermodularity of V , and hence to strong balancedness in

our terminology. Our argument is slightly different, and exploits a key property of supermod-

ular value functions: if two coalitions bind exposure constraints (are ”tight”), their union must

also bind. This closure property forces all equilibria to achieve the same total revenue through a

telescoping argument along chains of tight coalitions.

Combining our results, we obtain a complete characterization of surplus extraction in oligopoly:

• Existence: Full extraction is achievable (in some equilibrium) if and only if V is weakly

balanced (Proposition 4).

• Universality: Full extraction occurs in every equilibrium if V is strongly balanced/supermodular

(Propositions 5 and 6).

Whether the converse holds—zero surplus in all equilibria implies supermodularity—remains

an open question. Our counterexample shows that weak balancedness without supermodularity

allows multiplicity, but does not rule out the possibility that universal extraction always implies

supermodularity.

For duopoly (n = 2), weak and strong balancedness coincide: both reduce to the complemen-

tarity condition VN g V1 +V2. This explains why our duopoly analysis showed unique surplus

division across all equilibria. For n g 3, the conditions diverge, with weak balancedness character-

izing achievability and strong balancedness ensuring inevitability.

The Core and the Bondareva–Shapley Theorem. The balancedness characterization reveals an

even deeper connection that highlights oligopoly’s analytical complexity. While duopoly surplus

division required only elementary analysis, oligopoly connects directly to fundamental results in

cooperative game theory—a connection that simply cannot arise when n = 2.

This bridge between competitive pricing and cooperative stability demonstrates another dimen-

sion of complexity that duopoly concealed. We now explore this connection through the core and

the Bondareva-Shapley Theorem.

A transferable utility (TU) game is defined by a portfolio value v : 2N → R, where v(S) gives

the value that coalition S ¦ N can generate independently. The key insight is to define such a game

where each coalition’s value represents its marginal contribution to the buyer’s information value:

v(S) =VN −VN\S.

This transforms our competitive pricing problem into a question about whether sellers can

form a ’stable’ allocation of the total value they create. This construction differs from Arribas
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and Urbano (2005), who use the buyer’s value function directly as the primitive. Our marginal-

contribution formulation represents a change of scale that, combined with strict monotonicity,

ensures the Bondareva-Shapley theorem always applies: the core is never empty, and balancedness

conditions fully characterize buyer surplus.

Indeed, the core of this game is the set of allocations (φi)i∈N satisfying:

• Efficiency: ∑i∈N φi = v(N),

• Coalitional rationality: ∑i∈S φi g v(S) for all S ¦ N.

An allocation in the core is stable in the sense that no coalition has an incentive to deviate.

This cooperative framework becomes relevant because oligopoly’s exponential constraint struc-

ture has the same mathematical form as core existence problems. In duopoly, such connections

never arose because the constraint system was too simple to exhibit the geometric complexity that

characterizes core theory. The Bondareva–Shapley Theorem (Bondareva, 1963; Shapley, 1967)

provides a complete characterization of core-nonemptiness:

Theorem 1 (Bondareva–Shapley Theorem). The core of the transferable utility (TU) game (N,v)

is nonempty if and only if for every balanced collection λ = (λS),

∑
S¦N

λSv(S)g v(N).

This connection between competitive equilibrium and cooperative stability has no duopoly

analogue. With n = 2, the constraint system was elementary enough that core-theoretic concepts

were unnecessary.

Combining Proposition 4 with the Bondareva-Shapley Theorem, we find that the buyer earns

zero surplus if and only if the core of this TU-game is nonempty. This reframes buyer surplus

as a signal of instability in an associated cooperative problem: when no balanced mixture of

marginal contributions can replicate the grand coalition’s value, the competitive constraint sys-

tem lacks the geometric consistency needed for full surplus extraction. This connection illustrates

how oligopoly analysis requires tools from entirely different areas of game theory that were unnec-

essary in duopoly. The simple complements-vs.-substitutes test gave way to balancedness condi-

tions, which in turn connect to core existence—a hierarchy of increasing sophistication that reflects

oligopoly’s fundamental complexity.

For duopoly (n = 2), weak and strong balancedness coincide: both reduce to the complemen-

tarity condition VN g V1 +V2. This explains why our duopoly analysis showed unique surplus

division across all equilibria. For n g 3, the conditions diverge, with weak balancedness character-

izing achievability and strong balancedness ensuring inevitability.
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6 Symmetric Sellers

While the general oligopoly analysis captures the full complexity of information markets, it ob-

scures several key economic insights about how portfolio competition differs from traditional prod-

uct competition. In particular, we show that when all sellers are symmetric, oligopolistic compe-

tition may still completely fail to protect buyers against full rent extraction. The symmetric case,

where sellers provide statistically identical information sources, not only yields sharper analytical

results but also reveals fundamental economic forces that are harder to detect in the asymmetric

setting. This case is empirically relevant for markets like financial data providers, credit rating

agencies, or consulting firms within the same tier, where sellers offer similar-quality but indepen-

dent information sources.

Moreover, the symmetric framework allows us to address two critical questions that the gen-

eral analysis leaves open: (1) How does the endogenous market structure compare to the social

optimum? and (2) How do information market dynamics differ from conventional oligopoly pre-

dictions?

The symmetric case is a setting in which the buyer’s information value depends only on the

number of sellers from whom she purchases signals, not on their specific composition. That is, for

any seller set S, the value to the buyer is determined by the number of active sellers. Formally, the

portfolio value VS is symmetric if there is a function V̂ : {0,1, . . . ,n}→ R such that

VS = V̂|S|, V̂0 = 0, V̂s is nondecreasing in s and bounded.

This symmetry assumption captures markets where sellers have achieved similar technological

capabilities or market positions, but each provides independent draws from the same information

structure. Unlike traditional symmetric oligopoly where firms sell identical products, informa-

tion symmetry preserves the fundamental portfolio competition dynamic: buyers still benefit from

purchasing multiple signals because independent sources reduce uncertainty even when they have

identical statistical properties.

Our first insight is that, in a symmetric setting, the covering dual condition boils down to a

simple and geometric interpretation. Recall the dual condition characterizing zero buyer surplus in

equilibrium:

∑
S¦N

γS (VN −VN\S) g VN for every balanced collection γ.

In the symmetric case, a balanced collection assigns equal weight to all subsets of the same size.

That is, for each k = 1, . . . ,n−1, let γk denote the weight assigned to each subset of size k. Then,

since there are
(

n
k

)

such subsets, the total contribution of subsets of size k to the dual sum is
(

n
k

)

γk(V̂n −V̂n−k) = bk(V̂n −V̂n−k), where bk =
(

n
k

)

γk.
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The balancedness condition imposes that the total weight falling on coalitions that include any

fixed seller equals 1. In this symmetric case, this leads to the constraint:

n−1

∑
k=1

(

n−1

k−1

)

γk = 1,

which, in terms of the bk, becomes
n−1

∑
k=1

k bk = n.

This has a natural interpretation: the total ”mass” of weights distributed across coalitions must sum

to n, when measured by how many sellers each coalition includes.

Now consider the objective of the dual problem:

n−1

∑
k=1

bk (V̂n −V̂n−k).

Let us reparametrize the sum by substituting j = n− k, and define c j := bn− j. Then the objective

becomes:
n−1

∑
j=1

c j (V̂n −V̂j), where
n−1

∑
j=1

(n− j)c j = n.

That is, we are forming a convex combination of marginal contributions V̂n − V̂j, weighted by

c j, with the weights summing (in a shifted sense) to n. Since ∑ j(n− j)c j = n, you can think of

distributing ”mass” n across the indices j, and then the weighted sum is minimized by pouring all

the mass onto the j that makes
(

V̂n −V̂j

)

/(n− j) smallest. Therefore:

n−1

∑
j=1

c j(V̂n −V̂j) g V̂n for all such c j ⇐⇒
V̂n −V̂j

n− j
g

V̂n

n
∀ j,

which is equivalent to:

V̂j f
j

n
V̂n for all j = 1, . . . ,n−1.

This is a purely geometric condition: the function k 7→ V̂k must lie on or below the straight

line connecting (0,0) and (n,V̂n). In economic terms, this captures when early portfolio sizes

provide relatively little value compared to the full portfolio, eliminating credible threats that would

create competitive pressure. This pattern arises when portfolio value exhibits increasing returns

(convexity) or mixed curvature with initially low marginal value, as illustrated in the convex and

mixed cases (Panels 2 and 3 of Figure 2).

Hence, in the symmetric setting, the complex condition involving all balanced weights simpli-
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fies to a single geometric check: the buyer receives no surplus in any equilibrium if and only if the

function k 7→ V̂k lies below the line segment connecting the origin to (n,V̂n).

This geometric insight immediately suggests how to characterize equilibrium pricing. Since

the buyer’s optimal deviation determines competitive pressure, we can identify equilibrium prices

by finding the coalition size that provides the buyer’s best outside option.

Defining

k∗n ≡ argmink∈{0,...,n−1}
V̂n −V̂k

n− k
and t̄n ≡

V̂n −V̂k∗n

n− k∗n

we obtain the following result.

Proposition 7. Consider an information market with n symmetric firms. Then, the following holds:

(i) In a symmetric equilibrium, the unique fee per seller equals t̄n.

(ii) Sellers extract full surplus in the symmetric equilibrium if k∗n = 0.

(iii) The sellers extract full surplus in every equilibrium if V̂k is strictly convex.

For part (i), the proof uses contradiction to show that any price below the critical slope allows

sellers to profitably raise prices since the buyer still prefers the full portfolio, while any price

above this slope makes the buyer want to switch to a smaller, more cost-effective portfolio size.

The equilibrium price must therefore equal the smallest rate of value loss per excluded seller,

which represents the buyer’s most credible threat to reduce her information portfolio when facing

symmetric pricing.

Part (ii) is a corollary: if k∗n = 0, then the buyer’s most attractive deviation from the full portfolio

is to drop all sellers. In that case, the critical slope t̄n coincides with the average value per seller

in the grand coalition, so the symmetric equilibrium price satisfies nt̄n = VN . Thus the buyer is

exactly indifferent between buying from all sellers and walking away entirely, and the symmetric

equilibrium leaves her with zero surplus while sellers extract the full value VN .

For part (iii), note that with symmetric firms, supermodularity of V is equivalent to strict con-

vexity of the sequence (V̂k)
n
k=0; that is, strict gross complementarity among signals corresponds

exactly to V̂k+1 − V̂k being strictly increasing in k. Proposition 6 shows that supermodularity of V

implies universal extraction: in every equilibrium, the buyer’s surplus is zero and sellers capture

the entire value VN . Combining these observations, strict convexity of (V̂k) is equivalent to super-

modularity in the symmetric environment, and therefore implies that sellers extract full surplus in

every equilibrium, not just in the symmetric one.

The proposition shows that, in the symmetric equilibrium, each seller gets t̄ which corresponds

to the minimum slope of any line segment connecting a point (k,V̂k) to (n,V̂n). Equivalently, the
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Figure 2: Symmetric equilibrium pricing when n = 6. The equilibrium price t̄n equals the smallest

slope from any point (k,V̂k) to (n,V̂n). The first panel illustrates the concave case, where this slope

is smallest for k∗ = n− 1 = 5. The second panel illustrates the convex case, where this slope is

smallest for k∗ = 0. The third panel illustrates the mixed case, where the smallest slope is in the

interior.

buyer’s threat is to drop from n to k∗, the point that gives the best average value per seller left out:

k∗n = argmin
k<n

V̂n −V̂k

n− k
.

Figure 2 highlights the geometric representation, illustrating how k∗n and t̄n depend on the cur-

vature of Vi and leads to the following corollary.

Corollary 1. Suppose V̂s is concave in s. Then, in any oligopolistic market outcome, the buyer

receives positive rents. Suppose V̂s is convex in s. Then, in any oligopolistic market outcome, the

buyer does not receive any rents.

The fact that the oligopolistic market outcome fully extracts the buyer’s surplus reveals a funda-

mental difference between information and traditional product markets. In conventional oligopoly,

symmetry typically leads to uniform marginal costs determining prices, leaving all rents to the

buyer rather than the sellers. Here, the cost of providing information is zero, but the value depends

on the buyer’s entire information portfolio. The geometric condition captures when competitive

pressure from alternative portfolio configurations can sustain full surplus extraction.

Example. We return to our running example, which considers symmetric sellers. When the buyer

purchases from k f n sellers, let m denote the number of high signals, si = h, she observes. The

posterior belief is:

p̂m = P(ω = h | m) =
1

1+
(

1−α
α

)2m−k
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The probability of observing m equals:

P(m) =
1

2

(

k

m

)

[αm(1−α)k−m +(1−α)mαk−m]

so that the information value from k sellers is:

V̂k =
k

∑
m=0

P(m) · p̂2
m −

1

4

The portfolio value V̂k is concave in k, exhibiting the substitute property kV̂1 > V̂k for all k g 2.

This generalizes the duopoly result where we verified 2V1 >V2. The law of large numbers implies:

lim
k→∞

V̂k =
1

4
,

showing that the buyer achieves the full information outcome, as the number of sellers approaches

infinity.

By Proposition 7, concavity ensures k∗n = n−1 for all n, and the buyer retains positive surplus.

This illustrates how portfolio value curvature determines surplus division: concave values protect

buyers through competitive pressure, while convex structures enable complete rent extraction.

7 Endogenous Entry

The analysis thus far has taken the number of information sellers as given. A complete theory

of oligopolistic information markets requires endogenizing market structure: What determines the

equilibrium number of firms? How does the combinability of information provision affect entry

incentives?

To address these questions, we extend our model of oligopolistic information markets by en-

dogenous entry. The subsequent model demonstrates that information markets depart from stan-

dard oligopoly theory with respect to entry. First, entry can reduce competitive pressure rather

than intensify it, with the relationship between market structure and efficiency depending critically

on the curvature of the portfolio value. Second, contrary to oligopolistic models which typically

display excessive entry due to business stealing externalities, information markets exhibit no exces-

sive entry—there is no business stealing, since the buyer’s equilibrium portfolio choice is always

socially efficient. While efficient entry is always an equilibrium outcome, additional equilibria

with insufficient entry may exist due to coordination failures at the pricing stage, suggesting that

regulatory interventions such as price regulation and entry subsidies could improve market effi-

ciency.
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Before developing the general framework, we illustrate with an extreme but straightforward

example the result that entry in information markets can display a strong anti-competitive effect—

in this example, entry results in the buyer losing all consumption rents.

Example (Anti-Competitive Entry). Consider a market with two symmetric sellers where V̂1 = 10,

V̂2 = 15. By Proposition 5, the equilibrium price is: t2 = min{15/2,(15− 10)/1} = 5. At this

price, the buyer purchases both signals, obtaining surplus 15−2 ·5 = 5.

Now suppose a third seller enters with V̂3 = 36. The new equilibrium price becomes: t3 =

min{36/3,(36−10)/2,(36−15)/1}= 12. At this price t3, the buyer now obtains surplus 36−3 ·

12 = 0, despite having access to strictly more information.

The example illustrates that entry can eliminate the buyer’s surplus entirely while benefiting

all sellers. This contradicts the standard intuition that entry intensifies competition and benefits

buyers. The driving mechanism is complementarities in information provision: the entrant pro-

vides such strong complementarities that the buyer’s best threat point shifts from excluding one

seller (yielding V̂2 = 15) to excluding all sellers (yielding V̂0 = 0). As a result, the entrant weakens

rather than strengthens competitive pressures. Empirically, such strong complementarities could

arise when an entrant introduces novel information technology that amplifies the value of existing

signals—for instance, an AI-powered analytics firm that not only provides its own data but enables

buyers to extract far more value from previously purchased information through advanced pattern

recognition and synthesis.

This phenomenon cannot arise in traditional product markets where goods are rivalrous and en-

try typically intensifies competition. It emerges precisely because of the combinability of information—

buyers combine signals from multiple sources, creating portfolio competition where entry can

paradoxically weaken competitive constraints. Understanding when and why such effects arise

requires a systematic analysis of endogenous market structure.

7.1 The Entry Model

To analyze entry systematically, we consider a market with unlimited potential entrants. The natu-

ral framework extends our symmetric seller analysis by allowing the number of active sellers to be

determined endogenously through entry decisions.

We maintain the symmetric structure of Section 6 where all sellers provide statistically identical

but independent signals. The buyer’s value from s active sellers is V̂s, which is strictly increasing

and bounded:

V̂0 = 0 < V̂1 < V̂2 < ... < V̂∞ ≡ lim
s→∞

V̂s ∈ R.

Each potential entrant must pay fixed cost F > 0 to enter the market. This cost captures the
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infrastructure required for data collection, processing, and distribution. The boundedness of V∞

ensures that for sufficiently large s, the marginal value of additional sellers becomes negligible.

Extending earlier definitions, we define two key concepts. First, the marginal contribution

∆V̂s ≡ V̂s −V̂s−1,

which measures the value added by the s-th seller. By the strict monotonicity of V̂s, marginal

contributions are strictly positive. Second, the social surplus

Ŝs ≡ V̂s − sF,

captures total welfare with a market entry of s sellers. The socially optimal number of sellers, s∗

maximizes total surplus:

s∗ = argmax
sg0

Ŝs = argmax
sg0

{V̂s − sF}.

A necessary condition for s∗ is the (discrete) first-order condition

∆V̂s∗+1 f F f ∆V̂s∗ . (7)

For a concave V̂s, this condition is also sufficient for s∗ because of the differences ∆V̂s being de-

creasing. For this case, the usual optimality condition marginal value equals marginal cost deter-

mines s∗.

Finally, we extend the timing as presented in Section 3 with a prior stage in which sellers first

decide whether to pay F to enter the information market:

1. Entry. Sellers simultaneously decide whether to pay F and enter

2. Pricing. Active sellers observe the number of entrants s and set prices

3. Portfolio Selection. The buyer observes prices and selects her information portfolio

4. Information Realization and Payoffs. Signals are realized and payoffs determined

This resulting framework models the following three aspects of entry. First, it captures com-

petitive entry pressure through free entry with identical potential entrants. Second, it endogenizes

market structure as an equilibrium outcome rather than an exogenous parameter. Third, it enables

clean welfare comparisons between market outcomes and social optima by explicitly modeling the

resource cost of entry.
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7.2 Equilibrium Entry under Symmetric Pricing

We first analyze entry following Section 6 that with symmetric firms, the unique symmetric equi-

librium price is:

t̄s = min
k∈{0,...,s−1}

V̂s −V̂k

s− k
.

It directly follows that sm represent an equilibrium number of sellers sm if and only if it satisfies:

t̄sm+1 f F f t̄sm . (8)

The first inequality ensures that if an additional firm enters, it would not recoup its entry costs.

The second inequality ensures that each entering firm recoups its entry costs, making entry a best

response when expecting exactly sm −1 other firms to enter.

We first establish that the symmetric equilibrium price when entry is efficient, t̄s∗ , exceeds the

entry costs F . To see this, note first that the efficiency of s∗ implies that for all s, the following two

(equivalent) inequalities hold

V̂s∗ − s∗F g V̂s − sF ô
V̂s∗ −V̂s

s∗− s
g F.

In particular, the latter inequality holds for all k < s∗, so that it also holds for the minimum among

all k < s∗. We therefore obtain

t̄s∗ = min
k

V̂s∗ −V̂k

s∗− k
g F.

Moreover, note that taking s = s∗+1, the two inequalities reduce to

V̂s∗+1 −V̂s∗ f F.

In the words of the previous section, the slope of the line-segment from (s∗,V̂s∗) to (s∗+1,V̂s∗+1)

lies below F . By contrast, all slopes of the line-segments from (k,V̂k) to (s∗,V̂s∗) exceed F for all

k < s∗, as already established. Taken together, this implies that of all the slopes of the line-segment

from (k,V̂k) to (s∗+1,V̂s∗+1), the smallest slope obtains for k = s∗. Hence,

k∗s∗+1 = s∗ and t̄s∗+1 =
V̂s∗+1 −V̂s∗

s∗+1− s∗
= V̂s∗+1 −V̂s∗ f F.

Thus we obtain

t̄s∗+1 f F f t̄s∗ ,

which by (8) implies that with symmetric pricing efficient entry is, independent of the curvature of
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V̂s, an equilibrium outcome.

Now suppose ŝ > s∗ is not efficient, then this implies

V̂ŝ −V̂s∗

ŝ− s∗
< F,

which leads to

t̄ŝ = min
k<ŝ

V̂ŝ −V̂k

ŝ− k
f

V̂ŝ −V̂s∗

ŝ− s∗
< F.

So that if ŝ would enter the market, the equilibrium price t̄ŝ is too low for the firms to recoup their

entry costs. As a result ŝ cannot be part of an equilibrium with endogenous entry.

We thus have proven the following proposition

Proposition 8. Suppose firms anticipate that when n symmetric firms enter, the symmetric equilib-

rium t̄n obtains. Then efficient entry (sm = s∗) is an equilibrium, whereas excessive entry (sm > s∗)

is not.

Contrary to standard oligopoly models where business-stealing creates excessive entry, entry

in information markets is therefore never excessive.

The proposition leaves open the possibility of insufficient entry as an equilibrium. We next

argue that this possibility depends on the curvature of V̂i. Following our analysis in Section 5,

the shape of V̂s determines how equilibrium prices evolve with market size. If V̂s is concave, then

t̄s = ∆V̂s is decreasing in s. As a result, sm is unique and follows the intuitive interpretation that

sellers enter until the marginal entrant cannot recover the entry cost. By contrast, if V̂s exhibits

increasing returns initially, t̄s may increase over some range. This may lead to non-monotonicity

in pricing, generating multiple locally stable market structures.

Proposition 9. Under symmetric pricing, the curvature of V̂s determines equilibrium entry as fol-

lows: i) If V̂s is strictly concave then entry is efficient: sm = s∗. ii) If V̂s is strictly convex, then no

entry (sm = 0) is an equilibrium for F > V̂1/1, despite potentially large social value from entry.

iii) If V̂s has non-constant curvature, then entry may be insufficient (sm < s∗) but not excessive

(sm > s∗).

7.3 Entry under Alternative Pricing Equilibria

The symmetric pricing assumption, while being based on a straightforward extension of Section

6 and yielding unique predictions, is not the unique subgame perfect equilibrium outcome of the

entry game. We clarify this by examining how relaxing this assumption affects our results.

32



The entry game admits multiple subgame perfect equilibria through coordination on different

pricing expectations. Consider any market size ŝ satisfying:

t̄ŝ g F > t̄ŝ+1.

We can sustain ŝ as an equilibrium by designating a set Ŝ with ŝ = |Ŝ| sellers, and focusing

on the following pricing equilibrium in the subgames where a set S of seller enters: For any of

these pricing subgames, the entering firms play the symmetric pricing equilibrium t̄|S| except for

the subgames with both |S| = ŝ+ 1 and Ŝ ¢ S. For these specific subgames, the ŝ+ 1 entering

sellers play the asymmetric pricing equilibrium in which seller s′ ∈ S\Ŝ charges a price ts′ below

F . Under such equilibrium behavior, it is a subgame perfect equilibrium outcome of the overall

free-entry game that exactly the sellers from set Ŝ and no other sellers s ̸∈ Ŝ enter; a seller in Ŝ

expects a non-negative payoff from entering, so that not entering, leading to a payoff of zero, is not

a profitable deviation; a seller not in Ŝ receives zero from not entering, while expecting a negative

payoff from the deviation to enter.

This multiplicity is not merely a technical curiosity. By contrast, it reflects genuine coordi-

nation challenges in information markets. Unlike manufacturing where marginal costs pin down

a unique competitive price, information’s zero marginal cost creates a coordination game with

multiple Nash equilibria in the pricing subgame.

Hence, the consideration of alternative pricing equilibrium outcomes exacerbates inefficient

entry.

We however next argue that alternative pricing equilibrium outcomes does not affect the impos-

siblity of excessive entry. To see this, consider any equilibrium with ŝ active firms and asymmetric

prices. Order the prices in descending order: t1
ŝ g t2

ŝ g ...g t ŝ
ŝ . For the buyer to prefer purchasing

from all ŝ firms rather than excluding the r most expensive ones, it must hold that:

r

∑
i=1

t i
ŝ f V̂ŝ −V̂ŝ−r for all r ∈ {1, ..., ŝ}

In equilibrium, at least one of these inequalities must bind (otherwise some seller could prof-

itably raise their price). This implies that each of the top r prices satisfies:

1

r

r

∑
i=1

t i
ŝ f

V̂ŝ −V̂ŝ−r

r

Now suppose ŝ > s∗, where s∗ maximizes social surplus. From the efficiency of s∗, we have:

V̂ŝ − ŝF < V̂s∗ − s∗F
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which can be rewritten as:
V̂ŝ −V̂s∗

ŝ− s∗
< F

Setting r = ŝ− s∗ in the buyer’s constraint yields:

1

ŝ− s∗

ŝ−s∗

∑
i=1

t i
ŝ f

V̂ŝ −V̂s∗

ŝ− s∗
< F

Therefore, the average of the top ŝ− s∗ prices is strictly less than F , which implies that at

least one of these prices must be below F . But cost recovery requires t i
ŝ g F for all active firms

i. This contradiction shows that ŝ > s∗ cannot be sustained as an equilibrium under any pricing

arrangement. As a result ŝ > s∗ is also not sustainable as an entry equilibrium with asymmetric

equilibrium prices.

In addition to this robustness result, we mention two further such results. First, the buyer

purchases from all active sellers. This result follows directly from Proposition 2, which establishes

that any equilibrium is portfolio-efficient. Second, the possibility of anti-competitive entry as

illustrated in our example above is also robust. Whenever V̂s+1/(s+1)> (V̂s −V̂k)/(s− k) for the

relevant k, entry reduces buyer surplus under any equilibrium pricing.

By contrast, we mention that the following results are specific to symmetric pricing. First,

efficiency under concavity. Alternative pricing equilibria can destroy the alignment between pri-

vate and social incentives even with concave V̂s. Second, the monotone comparative statics in the

entry cost F . With asymmetric pricing, increases in F might not monotonically reduce entry if

sellers coordinate on different equilibria. Third, uniqueness of market structure. As argued, the

multiplicity of locally stable points relies on the specific functional form of t̄s.

Finally, we emphasize that the multiplicity of equilibria has important welfare consequences,

justifying regulatory intervention. Total surplus V̂s−sF is maximized at s∗, but the market may co-

ordinate on inefficient equilibria. A social planner could potentially improve outcomes through the

following two means. First, the planner may use entry subsidies: When t̄s∗ < F < ∆V̂s∗ , subsidies

of F − t̄s∗ ensure efficient entry. Second, the planner may use pricing regulation. By mandating

symmetric pricing, the planner eliminates asymmetric equilibria that deter efficient entry. How-

ever, a practical implementation of these tools requires the regulator to observe V̂s, which may

be informationally demanding. Whenever regulators cannot observe such information directly, a

proper analysis requires explicitly modeling firms possessing private information about the value

of their signal vis-à-vis a regulator, which is beyond the scope of the current paper.

34



8 Conclusion

This paper develops a comprehensive framework for oligopolistic price competition in information

markets, revealing fundamental differences from traditional product markets. The combinability

of information sources transforms competition from classical Bertrand rivalry into portfolio com-

petition, where sellers compete against all possible coalitions of rivals.

Contributions. Our analysis yields three core insights. First, we provide a complete character-

ization of when sellers can extract full surplus through weak and strong balancedness conditions,

which generalizes the duopoly complements-versus-substitutes dichotomy to arbitrary numbers

of sellers. Weak balancedness determines when full extraction is achievable in some equilib-

rium, while strong balancedness (equivalent to supermodularity) ensures it occurs in every equi-

librium. When weak but not strong balancedness holds, multiple equilibria coexist with different

surplus levels. Second, we demonstrate that information markets exhibit fundamentally different

entry dynamics than traditional oligopoly: whereas standard models predict excessive entry due

to business-stealing, information markets never exhibit excessive entry under any pricing equilib-

rium. Portfolio competition eliminates business-stealing, as buyers purchase from all (efficient)

sellers in equilibrium. Third, for symmetric sellers, we derive a geometric characterization show-

ing that universal surplus extraction occurs when portfolio value lies below the line connecting the

origin to the full-market value, a condition arising when information sources exhibit convexity or

mixed curvature patterns.

The endogenous entry analysis reveals striking departures from standard oligopoly theory.

While efficient entry is always an equilibrium outcome, markets may coordinate on inefficient

equilibria with insufficient entry. Moreover, entry can paradoxically reduce competitive pressure:

when new sellers provide strong complementarities, they shift the buyer’s threat point in ways that

allow all sellers—incumbents and entrants alike—to extract higher prices. This anti-competitive

effect of entry cannot arise in traditional markets with rivalrous goods.

Policy Implications. Our findings carry clear implications for policy and regulation. Traditional

antitrust approaches focusing on market concentration may be misguided when applied to infor-

mation markets. The number of competitors matters less than the structure of information com-

plementarities. Many sellers may still fail to protect buyers when strong complementarities exist.

Regulatory intervention should prioritize addressing coordination failures that lead to insufficient

entry, with targeted tools such as entry subsidies or pricing regulation. Such implementation re-

quires, however, that regulators can observe the portfolio value.

We also stress the importance of maintaining open access in information markets. Exclusivity
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clauses, where sellers condition access to their signals on buyers not purchasing from others, are

especially harmful. Such restrictions block the formation of informative portfolios, undermine

competition, and erode buyer surplus—nullifying the protective mechanisms portfolio competition

can otherwise provide. Regulators should prohibit these practices to safeguard efficient information

aggregation and market performance.

Scope of Applicability. While our framework is tailored to information markets, the portfolio

competition structure extends to any market where buyers combine differentiated products from

multiple sellers. The underlying mathematical apparatus—linear programming, cooperative core

conditions, balancedness—applies whenever portfolio values are defined over subsets.

However, our universal surplus characterization relies critically on strict monotonicity of port-

folio values, which naturally arises in information markets but not generally elsewhere. In markets

for heterogeneous goods or platform services, non-monotonic values and perfect substitutes re-

quire the more general framework of Arribas and Urbano (2005), which introduces empty cores

and revenue multiplicity and precludes complete surplus characterization.

Nonetheless, our analysis applies directly to examples such as non-overlapping software mod-

ules or independent consulting services, provided each seller’s value is non-replicable. The eco-

nomic structure, rather than generality, enables comprehensive surplus characterization: just as

monopoly theory presupposes market power, our results presuppose differentiated sources.

Extensions. Our results open several research directions. Extending the model to heteroge-

neous buyers would clarify how diversity shapes information provision. Dynamic considera-

tions—information obsolescence, learning effects, reputation—could reveal further dimensions of

portfolio competition. The geometric surplus division predictions invite empirical tests in financial

information services, credit rating agencies, and related markets. Relaxing strict monotonicity to

allow redundant signals would require new equilibrium characterizations, broadening the relevance

of the framework.

In summary, portfolio competition provides a robust foundation for analyzing modern markets

where buyers combine multiple products, including platform markets, data services, and bundled

goods. The interplay between competitive pricing and cooperative stability, governed by balanced-

ness, is central in information economies. Explicitly prohibiting exclusivity clauses is essential to

preserve these benefits. As information markets proliferate, understanding and regulating portfolio

competition will be vital for both theory and policy.
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Online Appendix – Not for Publication

Proof of Proposition 1: We split the argument into two parts. First, we show that no equilibrium

can involve the buyer purchasing nothing or only one signal, so in any equilibrium (S∗, t∗) it holds

that S∗ = N. Second, we derive the necessary and sufficient conditions on prices t∗ depending on

whether signals are substitutes or complements.

1. Ruling out “no signal” and “single signal” outcomes.

Suppose, by contradiction, that in some candidate equilibrium the buyer does not buy both

signals.

(a) Case A: No signal. Then both sellers earn zero profit at (t1, t2). But each seller i can

profitably deviate by setting a sufficiently low price, say t̃i =Vi/2. Because Vi > 0, this

guarantees Vi − t̃i > 0, so the buyer strictly prefers buying signal i alone to remaining

with no signal. Hence, seller i’s deviation in its price ti yields strictly positive profit,

contradicting the seller optimization condition in our equilibrium definition.

(b) Case B: A single signal from seller i. Then seller −i makes zero profit but can deviate

to a price

t̃−i = ∆V−i/2 > 0.

At (ti, t̃−i), the incremental surplus from adding signal −i is

(Vn − ti − t̃−i)− (Vi − ti) =Vn −Vi − t̃−i = ∆V−i − t̃−i = ∆V−i/2 > 0,

so the buyer strictly prefers purchasing both. Seller −i thus secures a strictly positive

profit of ∆V−i/2, contradicting the seller optimization condition for t−i in our equilib-

rium definition.

Hence, in any equilibrium (t∗,S∗), the buyer purchases both signals, S∗ = N = {1,2}, and

equilibrium prices t∗ = (t∗1 , t
∗
2) satisfy (2).

2. Equilibrium price characterization. Having established that in any equilibrium (t∗,S∗), the

equilibrium prices t∗ satisfy

t1 + t2 fVn ' t1 f ∆V1 ' t2 f ∆V2, (9)

we now show that, in any equilibrium, the latter two inequalities must hold with equality

under substitutes, whereas under complements, the first inequality must hold with equality

while at most one of latter two inequalities holds with equality.
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(a) Substitutes: Vn f V1 +V2. In this case, the latter two inequalities in (9) imply the first

inequality in (9):

t1 + t2 f ∆V1 +∆V2 = (Vn −V2)+(Vn −V1) =Vn +(Vn −V1 −V2)fVn.

It follows that any price vector t = (t1, t2) with one of the two inequalities in (9) slack,

contradicts the seller optimization condition in our equilibrium definition, because the

seller i for whom it holds ti < ∆Vi has the profitable deviation to raise its price by

ε ∈ (0,∆Vi − ti) so that his profits are raised strictly. Hence, under substitutes the equi-

librium (S∗, t∗) is unique:

(S∗, t∗1 , t
∗
2) = (N,∆V1,∆V2).

(b) Complements: Vn gV1 +V2. We first show that in this case, the latter two inequalities

in (9) cannot both hold with equality, because this would violate the first inequality:

t1 + t2 = ∆V1 +∆V2 = (Vn −V1)+(Vn −V2) = (Vn −V1 −V2)+Vn gVn.

In other words, complements means that the sum of the marginal contributions exceeds

the buyers value from purchasing both signals. Hence, in any equilibrium (S∗, t∗) we

must have some seller i for whom it holds ti < ∆Vi. Fix this seller i. We next show

that we then must have that the first inequality in (9) binds (holds with equality). For

suppose not, then seller i can raise its price by ε ∈ (0,∆Vi − t∗i ) so that (2) remains to

holds, implying that the buyer buys both signals. This strictly raises seller i’s profits,

which would contradict seller i’s optimization condition in our equilibrium definition.

Hence, any equilibrium (S∗, t∗) must exhibit t1 + t2 = Vn, t1 f ∆V1, t2 f ∆V2. To see

that any such combination is indeed an equilibrium, note that given that seller i sets a

price ti f ∆Vi, seller −i best response is setting t−i =Vn − ti, which satisfies t−i f ∆V−i

due to complementarity condition Vn g V1 +V2. Indeed, increasing t−i beyond Vn − ti

leads the buyer not to buy from seller −i, lowering the price lowers seller −i’s profits.

Hence, with complements, any equilibrium (S∗, t∗) satisfies S∗ = N and t∗1 + t∗2 = Vn,

and t∗1 f ∆V1 and t∗2 f ∆V2 with one of the latter two inequalities being slack. This

implies that the set of equilibrium prices is a line segment on the budget line t1+t2 =Vn,

bounded by individual surplus constraints ti f ∆Vi.

□

Proof of Proposition 2: (Only if ) We first show that if (S∗, t∗) is a subgame perfect Nash equilib-
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rium, then (S∗, t∗) satisfies portfolio-efficiency (S∗ = N) and t∗ exhibits seller-exposure.

(i) Suppose to the contrary that S∗ ª N. Then there exists at least one seller j /∈ S∗ who has been

excluded. By optimality of S∗, we then must have:

VS∗∪{ j}− ∑
i∈S∗∪{ j}

t∗i fVS∗ − ∑
i∈S∗

t∗i ,

otherwise the buyer would have preferred S∗∪{ j}. This inequality simplifies to:

t∗j gVS∗∪{ j}−VS∗ > 0.

Now suppose seller j lowers her price to:

t̃ j = (VS∗∪{ j}−VS∗)/2 > 0.

With all other prices unchanged, the buyer now evaluates S∗∪{ j} at:

VS∗∪{ j}−

(

t̃ j + ∑
i∈S∗

t∗i

)

=VS∗∪{ j}− (VS∗∪{ j}−VS∗)/2− ∑
i∈S∗

t∗i >VS∗ − ∑
i∈S∗

t∗i .

Thus the buyer strictly prefers S∗∪{ j}, and seller j earns t̃ j > 0. This is a profitable deviation,

contradicting equilibrium. Hence, S∗ = N.

(ii) Fix i ∈ N. Suppose, by contradiction, that t∗ is such that no subset S ¦ N \ {i} satisfies the

binding condition ∑ j∈N\S t∗j =VN −VS. The assumption implies that

ε ≡ min
S¦N\{i}

(

VN −VS − ∑
j∈N\S

t∗j

)

,

is strictly positive.

Fix some δ ∈ (0,ε) and consider seller i deviating to price t̃i = t∗i +δ .

For any subset S ¦ N \{i}, the buyer obtains VN −∑ j∈N\{i} t∗j − (t∗i +δ ) from purchasing N,

whereas she obtains VS −∑ j∈S t∗j from purchasing S. Hence, the buyer prefers N to S if and

only if:

VN − ∑
j∈N\{i}

t∗j − (t∗i +δ )gVS − ∑
j∈S

t∗j ,
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which by rearranging is equivalent to

δ fVN −VS − ∑
j∈N\S

t∗j .

Since δ < ε , and ε is the minimum over all such S, this inequality holds for all S ¦ N \{i}.

For any subset T containing seller i, the deviation increases the cost of both N and T by δ ,

leaving their relative attractiveness unchanged. Hence, the buyer continues to prefer N over

T .

It follows that the deviation increases seller i’s profit from t∗i to t∗i + δ > t∗i , while the buyer

still chooses N. This contradicts the assumption that t∗i was optimal for seller i.

Therefore, there must exist some S−i ¦ N \{i} such that the exposure condition binds.

(If ) Conversely, suppose (S∗, t∗) = (N, t∗) and t∗ satisfies both full-bundle-optimality (3) and

seller-exposure (4). Then (3) ensures the buyer weakly prefers to buy from all n sellers so that

S∗ = N satisfies the equilibrium requirement of buyer optimization, while (4) ensures no seller can

profitably raise prices so that t∗ satisfies the equilibrium requirement of seller optimization. To see

the latter, note that for any seller i, the binding constraint with S−i ensures that raising ti slightly

would lead the buyer to no longer buy from i. Therefore, no profitable deviation exists, as all sellers

sell their signals (as S∗ = N) and deviating from their price t∗i strictly lowers their profit. Hence,

(S∗, t∗) = (N, t∗) is a subgame perfect Nash equilibrium. □

Proof of Proposition 4: We prove the equivalence using LP duality.

(i) ⇒ (ii): Suppose there exists an equilibrium with zero buyer surplus. By Proposition 3, the

revenue-maximizing LP achieves optimal value VN :

max
tg0

∑
i∈N

ti subject to ∑
i∈N\S

ti fVN −VS ∀S ª N.

The dual LP is:

min
γg0

∑
SªN

γS(VN −VS) subject to ∑
S:i/∈S

γS g 1 ∀i ∈ N.

By strong duality, the dual optimal value also equals VN . Through the change of variables

λT = γN\T , the dual constraints become ∑T :i∈T λT g 1. By complementary slackness, since all

primal variables are strictly positive (due to strict monotonicity of V ), the dual constraints bind at

optimum: ∑T :i∈T λT = 1, defining a balanced collection that achieves the dual minimum VN . Since
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any balanced collection is feasible for the dual (as = 1 implies g 1), and the dual minimum is VN ,

every balanced collection must satisfy ∑S γS(VN −VN\S)gVN , establishing weak balancedness.

(ii) ⇒ (i): Suppose V is weakly balanced. Since all dual objective coefficients VN −VN\T are

strictly positive (by strict monotonicity), any optimal dual solution can be taken to have all con-

straints binding, i.e., to be a balanced collection. Therefore, the dual LP minimum can be computed

over balanced collections with ∑T :i∈T λT = 1. Since every balanced collection satisfies

∑
SªN

γS(VN −VN\S)gVN ,

the dual optimal value is at least VN . Since the primal LP has constraint ∑i∈N ti fVN (from S = /0),

its optimal value is at most VN . By strong duality, both optima are equal, hence both equal VN .

Therefore, there exists a feasible price vector t∗ with ∑i t
∗
i =VN satisfying all buyer optimality

constraints. By Proposition 3, this constitutes an equilibrium with buyer surplus VN −VN = 0. □

Proof of Proposition 5: We establish the equivalence through submodularity of complement-

difference functions. For each H ¦ N, define GH
S :=VH −VH\S for all S ¦ H.

Step 1: V is supermodular ⇐⇒ GH is submodular for every H ¦ N.

Fix any H ¦ N and T1,T2 ¦ H. Submodularity of GH requires:

[VH −VH\T1
]+ [VH −VH\T2

]g [VH −VH\(T1∪T2)]+ [VH −VH\(T1∩T2)].

Simplifying:

2VH −VH\T1
−VH\T2

g 2VH −VH\(T1∪T2)−VH\(T1∩T2).

Using set identities H \(T1∪T2) = (H \T1)∩(H \T2) and H \(T1∩T2) = (H \T1)∪(H \T2),

this reduces to:

VH\T1
+VH\T2

fV(H\T1)∩(H\T2)+V(H\T1)∪(H\T2).

Setting A := H \T1 and B := H \T2:

VA +VB fVA∩B +VA∪B,

which is exactly supermodularity of V . Since H, T1, T2 were arbitrary, the equivalence holds.

Step 2: GH submodular for all H =⇒ V is strongly balanced.

Fix H ¦ N. By assumption GH is normalized (GH
/0 = 0), nondecreasing, and submodular.
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Consider the linear program:

max{w¦x

∣

∣

∣
x g 0, x(U)f GH(U) ∀U ¦ H }

and its dual:

min
{

∑
T¦H

y(T )g(T )
∣

∣

∣
y g 0, ∑

T∋i

y(T ) g wi ∀i ∈ H
}

.

Let x∗(w) be the solution to the primal LP. Set w = 1H = (1, . . . ,1)¦. and fix any chain

/0 = U0 ¢ S1 ¢ ·· · ¢ S|H| = H with |Sm| = m. Since GH is submodular, it follows from

Theorem 44.3 in Schrijver (2003), that

x∗(1H) = GH
Sm

−GH
Sm−1

(m = 1, . . . , |H|).

and the value of the primal LP is equal to the value of the dual LP. From the primal LP, we

further obtain that

(1H)¦x∗(1H) =
|H|

∑
m=1

(

GH
Sm

−GH
Sm−1

)

= GH
H −GH

/0 = GH
H ,

which says that the primal LP equals GH(H) and hence the dual minimum (over fractional

covers of H) equals g(H):

min
{

∑
T¦H

y(T )g(T ) : y g 0, ∑
T∋i

y(T ) g 1 ∀i ∈ H
}

= g(H).

This is precisely the balancedness inequality on H.

Step 3: V is strongly balanced =⇒ GH is submodular on all H.

Fix H, and define the dual minimum

DH(r) := min
γg0

{

∑
T¦N

γT GH(T ) : ∑
T∋i

γT g ri ∀i ∈ N
}

.

The dual minimum DH satisfies the following properties which are immediate from the def-

inition:

1. Monotonicity: if r′ f r coordinatewise, then DH(r′)f DH(r).

2. Superadditivity: for any r,s ∈ RN
+,

DH(r+ s) g DH(r)+DH(s). (10)
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Monotonicity holds, because relaxing the constraint can only reduce the dual minimum. Su-

peradditivity holds because any collection of weights γ that feasible for r+ s is also feasible

for r and for s.

Now, fix any two sets A,B ¦ N. Using the identity of indicator vectors

1A +1B = 1A∪B +1A∩B,

we bound DH(1A +1B) from above and below.

• Upper bound. Take γA = 1, γB = 1, and γT = 0 otherwise. Then ∑T∋i γT = (1A +1B)i

for every i, so γ is feasible for 1A +1B, with cost

∑
T

γT GH(T ) = GH(A)+GH(B).

Hence

DH(1A +1B) f GH(A)+GH(B). (11)

• Lower bound. By superadditivity (10) and the indicator identity,

DH
(

1A +1B
)

= DH
(

1A∪B +1A∩B
)

g DH(1A∪B)+DH(1A∩B).

Since V is strongly balanced, it is weakly balanced on both A∪B and A∩B, and hence

DH(1A +1B) g GH(A∪B)+GH(A∩B). (12)

Combining (11) and (12) gives

GH(A)+GH(B) g D(1A +1B) g GH(A∪B)+GH(A∩B),

which is exactly the definition of submodularity of GH on H.

□

Proof of Proposition 6: Fix any subgame perfect Nash equilibrium with price vector t =(t1, . . . , tn).

Define the complement-difference function on the grand market:

GS :=VN −VN\S for all S ¦ N.

By Proposition 5, strong balancedness implies G = GN is submodular. From the equilibrium

characterization:
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• Buyer-optimality: For all S ¦ N, ∑i∈S ti f GS.

• Exposure: For each seller i ∈ N, there exists Si ¦ N with i ∈ Si such that ∑ j∈Si
t j = GSi

.

For any set S with ∑ j∈S ti = GS, we say S is tight.

Step 1: Tight sets are closed under union. Let A,B ¦ N be tight sets: ∑i∈A ti = G(A) and ∑i∈B ti =

G(B). By submodularity of G:

G(A)+G(B)g G(A∪B)+G(A∩B).

By inclusion-exclusion for the additive function t(·):

∑
i∈A

ti +∑
i∈B

ti = ∑
i∈A∪B

ti + ∑
i∈A∩B

ti.

Combining these:

∑
i∈A∪B

ti + ∑
i∈A∩B

ti g G(A∪B)+G(A∩B).

By buyer-optimality (feasibility):

∑
i∈A∪B

ti f G(A∪B) and ∑
i∈A∩B

ti f G(A∩B).

Therefore both inequalities are equalities, so ∑i∈A∪B ti = G(A∪B).

Thus A∪B is tight. By induction, the union of finitely many tight sets is tight.

Step 2: Construct a chain of tight sets. By exposure, for each seller i ∈ N, there exists a tight set

Ti with i ∈ Ti. Pick any ordering i1, . . . , in of the sellers and define:

Sk :=
k
⋃

r=1

Tir for k = 1, . . . ,n, S0 := /0.

By Step 1, each Sk is tight. Moreover:

• S0 ¦ S1 ¦ ·· · ¦ Sn = N (nested structure)

• Each Sk satisfies ∑i∈Sk
ti = G(Sk) (tight)

• Sn =
⋃

i∈N Ti = N (since each Ti ∋ i)
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Removing redundancies where Sk = Sk−1, we obtain a strictly increasing chain:

/0 = S0 ¢ S1 ¢ ·· · ¢ Sm = N

where each S j is tight and m f n.

Step 3: Telescope along the chain. For each j ∈ {1, . . . ,m}, define the block B j := S j \ S j−1.

Since S j−1 and S j are both tight:

∑
i∈B j

ti = ∑
i∈S j

ti − ∑
i∈S j−1

ti = G(S j)−G(S j−1).

Summing over all blocks:

∑
i∈N

ti =
m

∑
j=1

∑
i∈B j

ti =
m

∑
j=1

[G(S j)−G(S j−1)].

This is a telescoping sum:

= G(Sm)−G(S0) = G(N)−G( /0) = (VN −V/0)− (VN −VN) =VN .

Therefore, the total revenue equals VN , so the buyer’s surplus is zero. □

Proof of Proposition 7:

(i) Suppose to the contrary that there is a symmetric equilibrium at fee t ̸= t̄.

• If t < t̄ , sellers want to raise their fee. Let k∗ ∈ argmink<n(V̂n −V̂k)/(n− k). Since

t < t̄ =
V̂n −V̂k∗

n− k∗
,

we have

(n− k∗) t < V̂n −V̂k∗ =⇒ V̂n −nt > V̂k∗ − k∗ t.

Thus the buyer strictly prefers the full n-seller bundle at price t over the k∗-seller bundle

at the same price t. In particular, there exists t ′ ∈ (t, t̄) such that if one seller unilaterally

increases her fee to some t ′, the buyer still strictly prefers to keep all n. That seller’s

profit rises from t to t ′, a profitable deviation. This deviation is profitable because the

buyer’s portfolio choice remains unchanged (she still purchases from all n sellers), so
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the deviating seller’s revenue increases while all other sellers’ revenues remain constant.

Hence t < t̄ cannot be an equilibrium.

• If t > t̄ , the buyer wants to drop sellers. Again let k∗g 0 be the smallest k that minimizes

(V̂n −V̂k)/(n− k). Now

t > t̄ =
V̂n −V̂k∗

n− k∗
=⇒ V̂n −nt < V̂k∗ − k∗ t.

Thus the buyer strictly prefers contracting only with k∗ sellers at fee t rather than all n.

She would refuse the n-bundle, breaking the putative equilibrium.

Combining (i) and (ii), the only possible symmetric equilibrium fee is t = t̄.

(ii) Omitted.

(iii) Assume (V̂k)
n
k=0 is convex in the sense that

V̂k+2 −V̂k+1 g V̂k+1 −V̂k for all k = 0, . . . ,n−2.

Fix integers k g ℓ and j g 0. Since the increments are nondecreasing in the index, we have

V̂k+ j −V̂ℓ+ j =
k−ℓ−1

∑
r=0

(

V̂ℓ+ j+r+1 −V̂ℓ+ j+r

)

g
k−ℓ−1

∑
r=0

(

V̂ℓ+r+1 −V̂ℓ+r

)

= V̂k −V̂ℓ.

Thus, convexity of V̂k implies that

V̂k+ j +V̂ℓ g V̂ℓ+ j +V̂k. (∗)

To show V is supermodular, we must prove that for all S,T ¦ N,

VS∪T +VS∩T g VS +VT .

By symmetry of V , this is equivalent to

V̂|S∪T |+V̂|S∩T | g V̂|S|+V̂|T |. (†)

Now, in inequality (∗), set

k = |T |, ℓ= |S∩T |, j = |S|− |S∩T | g 0.

Substituting these into (∗) and, using that |S∪ T | = |S|+ |T | − |S∩ T |, yields exactly the
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definition of supermodularity (†) when V is symmetric. The claim now follows directly from

Proposition (6).

□

Proof of Proposition 9: Under strict concavity, Proposition 7 implies k∗ = s−1 for all s, yielding:

t̄s =
V̂s −V̂s−1

1
= ∆V̂s

Therefore, sellers enter if ∆V̂s > F and stop entering if ∆V̂s+1 < F , which coincides with the

social optimality condition (7), which for a concave V̂s is also sufficient.

Under strict convexity, k∗ = 0 for all s, yielding t̄s = V̂s/s. Entry occurs when V̂s/s g F . But so-

cial efficiency requires ∆V̂s g F . Since convexity implies ∆V̂s > V̂s/s for all s, there exist parameter

regions where entry is socially valuable (∆V̂s > F) but unprofitable (V̂s/s < F).

With mixed curvature, t̄s may exceed or fall short of ∆V̂s depending on the location of curvature

changes, creating divergence between private and social entry incentives. □
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