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Abstract

This paper integrates tail aversion, implemented via a one-period entropic
tilt, with rare disasters in a consumption-based asset pricing model with CRRA
utility to jointly address the equity premium and risk-free rate puzzles. The model
delivers closed-form expressions for the risk-free rate and asset moments, pushes
out the Hansen-Jagannathan bound, implies a low risk-free rate via diffusion and
disaster channels, and delivers natural upper and lower bounds of risk aversion.
Calibrated to long-run return data and disciplined by disaster evidence, the model
matches average returns, volatility, and a low real risk-free rate with very modest

risk aversion.
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1 Introduction

The size of the equity premium and the low real risk-free rate are among the most
persistent puzzles in macro-finance. Standard consumption-based models with con-
stant relative risk aversion (CRRA) utility and lognormal consumption growth imply
Sharpe ratios and risk-free rates that are far removed from those observed in the data
unless one adopts counterfactually high risk aversion (Mehra and Prescott, 1985, 2003;
Cochrane, 2005). The literature has responded with a range of mechanisms that either
raise the price of risk, depress the risk-free rate, or do both while preserving plausible
preferences and endowment dynamics. Surveys such as Cochrane (2017) emphasize
that, despite different microfoundations, many successful models share the common
theme that the market’s capacity to bear risk varies with macroeconomic conditions.

This paper proposes a simple synthesis that nests two empirically salient ingredi-
ents: (a) rare disasters in consumption in the spirit of Barro (2006, 2009), and (b) an
entropic (risk-sensitive) tilt that overweights bad consumption states in the one-period
stochastic discount factor (SDF), which shares the reduced-form implication of over-
weighting bad states with Benartzi and Thaler (1995). Formally, consumption growth
combines a Gaussian diffusion with a Bernoulli disaster captured by parameter j < 0
occurring with probability p. The SDF equals the CRRA kernel with risk aversion -y
scaled by an exponential change of measure in consumption growth with “tail aversion”
. The resulting pricing kernel loads on diffusion through < + 6 and on disasters
through a cojump parameter g > 1 that captures valuation compression (e.g., leverage,
default, discount-rate spikes) at disaster times.

The model delivers transparent analytical expressions for the risk-free rate, asset
return moments, and the Sharpe ratio. The rare-disaster and tail aversion components
push out the Hansen-Jagannathan bound and generate equity premia consistent with
the data while maintaining modest within-period curvature y. The risk-free rate falls
through two channels: an interaction term —8¢? in diffusion (where ¢ is the variance
of consumption growth), and a jump ratio that implies a negative drag when j < 0
and 6 > 0. Intuitively, tail aversion acts like a state-contingent increase in marginal
utility during downturns without altering the period utility function.

The framework is intentionally parsimonious. I maintain CRRA period utility and
use the entropic tilt that generates tail aversion only for one-period pricing. A simple
derivation shows how the SDF arises from a standard robust control problem that
entails an exponential change of measure. This microfoundation facilitates comparisons
with recursive-preference and robust-control literatures (Epstein and Zin, 1989, 1991;
Hansen and Sargent, 2001, 2008; Maenhout, 2004), but does not rely on separating
risk aversion and intertemporal elasticity of substitution. To make the strength of

tail aversion transparent, I compute three quantitatively interpretable measures: the



one-period Kullback-Leibler divergence, the implied total-variation bound, and the
risk-neutral disaster probability. These statistics separate informational distortions
from market prices and help gauge whether the extent of the tilt is economically
meaningful yet informationally modest.

Two theoretical results pin down the range of plausible levels of risk aversion. First,
if the risk-free rate is held fixed, there is an upper bound for risk aversion that the
model can accommodate. This bound occurs exactly when tail aversion is set to zero.
Second, imposing that equity values compress on impact in the event of disasters
generates both a lower and an upper admissible level of risk aversion. The global upper
bound is the smaller value of this new ceiling and the one implied by the risk-free rate.
Within that admissible interval, the size of valuation compression the model needs is
hump-shaped in risk aversion: it rises when risk aversion is very low and falls when
risk aversion is very high. The intuition is straightforward. Holding the observed
mean and variance of equity returns fixed, stronger compression reallocates risk from
the smooth, diffusive part of returns to rare jumps. At the same time, matching the
same risk-free rate forces tail aversion to decline as risk aversion increases, so the
model’s loading on the diffusion component first falls and then rises. Taken together,
the required compression therefore reaches a unique interior maximum.

To explore the quantitative implications of the model, I calibrate preference and
consumption parameters to standard values and set (p,j) using disaster evidence
(Barro, 2006; Barro and Ursua, 2008a; Nakamura, Steinsson, Barro, and Ursuaa, 2013).
Three parameters are then inferred from three moments: 6 from the risk-free rate,
co-jump ¢q and the volatility of the diffusion part of asset return ¢; from the mean and
variance of equity returns, and the drift of the diffusion part of the asset return y,
from the asset pricing equation. The mapping from moments to parameters is analytic
and exploits the mixture-lognormal structure of returns. The baseline fit reproduces
average market returns and volatility as well as the low real risk-free rate found in
the data by construction, implying realistic Sharpe ratios. The calibration reconciles
the puzzles with modest risk aversion. The implied one-period Kullback-Leibler
divergence, total-variation, and risk-neutral disaster probability show that the model
is informationally hard to distinguish from a standard CRRA model while creating
substantial tail aversion.

Three simple exercises help clarifying mechanics. First, shutting down either the
tilt (0 = 0) or disasters (p = 0) reveals that both channels are needed to match the
risk-free rate and premia without implausible parameters. Second, sensitivity analyses
show that premia reallocate between the diffusion covariance and disaster co-jumps.
Raising the diffusion covariance reduces the required co-jump size, while lowering the
diffusion covariance raises it. These patterns echo broader macro-finance findings on
time variation in the price of risk (Cochrane, 2017) and links to state variables such



as the consumption-wealth ratio (Lettau and Ludvigson, 2001). Last, I also examine
how the calibration responds quantitatively to changes in < by recomputing 6 (y) from
the risk-free rate equation and then solving jointly for (g (y), pr (), 07 (7)) using the
return moments and the asset pricing equation. Two robust patterns emerge. First,
holding the risk-free rate fixed, 6 () is decreasing in < in the empirically relevant
range. Lower -y necessitates larger tail aversion to depress the risk-free rate, while
higher 7 requires smaller tail aversion. Second, to keep the equity mean and variance
fixed, q adjusts to reallocate risk between diffusion and disasters. In line with the
theoretical results, both higher and lower <y permit a smaller g with almost no change in
0. In the baseline calibration, the admissible range for risk aversion is ¢y € (0.46,7.08).
Thus, incorporating tail aversion generates a natural range for risk aversion that is
quantitatively consistent with empirically observed values.

This paper makes several novel contributions. First, it offers a compact SDF that
integrates rare disasters and an entropic tilt while maintaining CRRA period utility,
with a clean microfoundation from a risk-sensitive recursion. Second, it is able to derive
closed-form expressions for key moments (risk-free rate, Sharpe ratio, H] bound) and
an analytic inversion that maps moments to parameters (g, jir, ;). Third, it presents
a quantitative calibration disciplined by disaster evidence that reconciles the equity
premium and risk-free rate puzzles with potentially very low v, even ¢ < 1 found in
some microeconomic settings (e.g., Holt and Laury, 2002; Chetty, 2006; Cohen and
Einav, 2007; Chiappori and Paiella, 2011; Barseghyan, Molinari, O'Donoghue, and
Teitelbaum, 2018). Last, it provides new empirical guidance on the magnitudes of
equity losses based on historical equity losses versus consumption drops. The approach
builds on the rare-disaster channel (Rietz, 1988; Barro, 2006) and is complementary to
habit formation (Campbell and Cochrane, 1999) and long-run risks (Bansal and Yaron,
2004). The tail aversion via entropic tilt connects to robust-control and multiplier-
preference pricing (Hansen and Sargent, 2001, 2008; Maenhout, 2004) and is consistent
with recursive utility foundations (Epstein and Zin, 1989, 1991). Intermediary-based
models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014) achieve
similar macro-finance patterns via capital constraints rather than household marginal
utility. In the context of the proposed model the co-jump parameter g > 1 can be
interpreted as the valuation compression at crisis times.

The rest of this paper is organized as follows. Section 2 reviews related literature,
Section 3 introduces the model and microfoundation of tail aversion, Section 4 derives
analytical results and discusses economic intuition, Section 5 derives the bounds on
risk aversion implied by a model with tail aversion, Section 6 presents the quantitative
evaluation and sensitivity exercises, including the mapping from data to (g, yr, 07),
Section 7 concludes.



2 Related literature

The equity premium puzzle highlights that representative-agent, time-additive models
with plausible risk aversion cannot match the observed spread between equity and
safe returns, while the companion risk-free rate puzzle emphasizes that the same
models imply counterfactually high real short rates without implausible discounting
or intertemporal elasticity of substitution. These facts catalyzed a large literature that
proposes mechanisms to raise risk compensation, depress the risk-free rate, or do
both in a disciplined way (Mehra and Prescott, 1985; Weil, 1989; Cochrane, 2005, 2017).
A unifying theme is that the economy’s capacity to bear risk varies over time with
macroeconomic conditions, so models that embed state dependence in marginal utility
(or in the representative “marginal investor”) perform better in matching the data.

One prominent class of models is external habit formation (surplus consumption),
which makes effective risk aversion countercyclical. When surplus consumption is
low, marginal utility responds strongly to consumption, raising premia and lowering
the risk-free rate. This framework matches pro-cyclical valuation ratios and return
predictability (Campbell and Cochrane, 1999). A common concern is that it can imply
very low and too-smooth risk-free rates and relies on sizable cyclical movements in the
surplus-consumption ratio that are hard to discipline empirically (Cochrane, 2017).

A second class of models uses recursive preferences. The widely used Epstein-Zin-
Weil preferences separate risk aversion from the intertemporal elasticity of substitution
so that high prices of risk can co-exist with a low risk-free rate. When paired with
small, persistent components in expected consumption growth and volatility, this
yields the long-run risks framework, which connects premia to macro volatility and
low-frequency growth movements (Epstein and Zin, 1989, 1991; Bansal and Yaron,
2004). Empirically, identification and estimation of low-frequency components are
non-trivial (see Bansal, Kiku, and Yaron, 2012, for evidence and discussion).

A third class of models introduces rare disasters. A small probability of large
consumption contractions increases premia and lowers the risk-free rate (Rietz, 1988;
Barro, 2006). Allowing disaster intensity to vary across time produces volatile premia,
return predictability, and a wide set of macro-finance regularities (Gabaix, 2012). Cross-
country and long-horizon datasets provide measures for the size and frequency of
disasters and the mapping from consumption drops to asset market losses (Barro and
Urstia, 2008a; Nakamura, Steinsson, Barro, and Urstia, 2013). In practice, reconciling
equity losses with consumption drops typically requires “valuation compression”
at disaster times (e.g., leverage/default or higher discount rates). Martin (2008)
quantifies the welfare cost of disaster risk. The co-jump parameter g > 1 introduced
in the current paper provides a parsimonious asset-market counterpart by capturing

valuation compression at disaster times. Beyond matching premia and the risk-free



rate, rare-disaster models have implications for welfare costs. Barro (2009) shows
that observed disaster risk can generate sizable welfare costs and helps connect the
asset-pricing evidence in Barro (2006) to macro quantities. Allowing the disaster
probability to vary over time improves the fit to volatility and predictability. Gabaix
(2012) provides an exactly solved framework with variable disaster risk, and Wachter
(2013) shows that time-varying rare-disaster risk can account for high equity volatility
and a low, smooth risk-free rate.

A complementary strand emphasizes uninsurable idiosyncratic risk and incomplete
markets. In Aiyagari-Bewley-Huggett environments, precautionary saving against
persistent idiosyncratic income shocks raises the demand for safe assets, lowering
the risk-free rate. Incorporating realistic heterogeneity and survival risk allows the
stochastic discount factor of the marginal investor to be volatile even when aggregate
risk is modest (Aiyagari, 1994). Building on this insight, Constantinides and Duffie
(1996) show that cross-sectional heterogeneity in consumption growth and limited
insurance can reconcile a high equity premium with moderate risk aversion by making
the marginal investor’s intertemporal marginal rate of substitution more sensitive
to bad idiosyncratic outcomes. Heaton and Lucas (1996) quantify how idiosyncratic
labor-income risk and limited participation reduce risk sharing and push down the
risk-free rate in otherwise standard calibrations. Using panel evidence, Storesletten,
Telmer, and Yaron (2004) document large and countercyclical idiosyncratic income
risk over the life cycle, strengthening these mechanisms in quantitatively disciplined
settings. On the cross-sectional side, the idiosyncratic volatility literature finds that
higher firm-level volatility is typically not rewarded in average returns. Portfolios
with high idiosyncratic volatility earn lower expected returns (Ang, Hodrick, Xing,
and Zhang, 2006). Moreover, firm-level idiosyncratic volatility has increased over
time (Campbell, Lettau, Malkiel, and Xu, 2001). While these facts do not directly
resolve the aggregate puzzles, they reinforce the view that incomplete risk sharing
and idiosyncratic tail exposure shape the supply of safe assets (risk-free rates) and
the pricing of risky cash flows in bad states. This interpretation is consistent with the
presented framework. As mentioned above, the co-jump parameter g4 > 1 can be read
as valuation compression that is more severe for firms or intermediaries whose owners
are especially exposed to idiosyncratic downside risk, while the entropic tilt magnifies
the price impact of such left-tail states.

A different set of approaches uses risk-sensitive tilts and robustness. Multiplier (KL)
preferences tilt probability weights toward adverse states, effectively assigning more
weight to left-tail outcomes without changing within-period curvature when period
utility is CRRA (Hansen and Sargent, 2001, 2008; Maenhout, 2004). In a one-period
pricing kernel this appears as an exponential change of measure in consumption
growth. The resulting state dependence raises the price of risk precisely when the



economy is weak. The present paper adopts exactly this device via an entropic tilt and
shows how it can be microfounded from a risk-sensitive recursion.

Similarly, Martin (2013) develops a cumulant-generating-function (CGF) approach
to consumption-based asset pricing, highlighting that higher cumulants of consumption
growth can have first-order effects on asset prices. The mixture-lognormal/disaster
setting presented in this paper yields tractable CGFs, and the entropic tilt exponentially
reweights the left tail of consumption growth, thereby increasing the SDF’s sensitivity to
left-tail cumulants while leaving period-utility curvature at y. In this sense, the derived
closed-form Sharpe ratio and HJ bound can be viewed as a CGF-based specialization
with explicit jump and tilt components.

Related to these approaches, Benartzi and Thaler (1995) explain the equity pre-
mium by combining loss aversion with narrow framing (i.e. frequent evaluation). The
entropic tilt presented in the current paper shares the reduced-form implication of
overweighting bad states but differs in mechanism and microfoundations. Specifically,
the entropic tilt is a smooth change-of-measure on consumption growth with a robust-
control interpretation rather than a reference-dependent kink at a gain/loss boundary.
As a result, 0 raises the price of downside risk without invoking a reference point or
probability weighting. For one-period (lognormal) benchmarks, an increase in evalua-
tion frequency in the Benartzi and Thaler (1995) framework is numerically akin to a
larger effective 6 at short horizons, but the two approaches remain conceptually distinct.
Likewise, prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992) explains high risk premia by combining loss aversion with probability weighting
that overemphasizes bad, low-probability outcomes. In contrast, the present approach
generates higher disaster-state weights via the risk-neutral probabilities implied by the
SDF’s entropic tilt, delivering a similar pricing implication while maintaining CRRA
period utility (see also Barberis, Huang, and Santos, 2001).

Finally, intermediary-based asset pricing models emphasize that the marginal
investor is a constrained financial intermediary. That is, premia are high when interme-
diary capital is scarce and risk-bearing capacity is low (He and Krishnamurthy, 2013).
Embedding a financial sector generates non-linear amplification and state-dependent
risk-taking, providing a complementary resolution outside representative-household
models (Brunnermeier and Sannikov, 2014).

Across these strands, the common remedy is to raise the covariance of the pricing
kernel with bad states and/or lower the unconditional risk-free rate in those same
states. The approach in this paper sits at the intersection of rare disasters and risk-
sensitive tilting. Rare disasters contribute large negative realizations for consumption
and returns. The entropic tilt increases the weight on those realizations in pricing,
pushing out the Hansen-Jagannathan bound while preserving modest CRRA curvature.

This combination offers a parsimonious route to reconciling the equity premium and



the low risk-free rate with quantitatively disciplined parameters.

3 Model

The following section presents the model economy. After recapping the basic house-
hold problem in consumption-based asset pricing models it introduces two simple
modifications to the generic model: rare disasters in endowments and returns as well

as tail aversion in the preference structure.

3.1 Recap of the household problem

The generic consumption-based asset pricing problem in the spirit of Lucas Jr. (1978)
and Cochrane (2005) is given by maximizing the expected discounted utility from

consumption

max Eg
{CS}S:()

where u (+) is a strictly increasing, strictly concave utility function. The objective is

t=0

i Btu (ct)] with g € (0,1) (1)

maximized subject to the flow budget constraints

Wi+ i1 Xt > Ct + pi Py (2)

where W; is an exogenous endowment, ¢, is the quantity of a risky asset purchased, P
is the price of the asset and X; is the asset’s payoff. Payoffs are random variables given
by the future price of the assets as well as dividend payments D;_ 1, that is

X1 = Pry1+ D 3)

The basic model can be extended to multiple assets and portfolio choice between
riskless and risky assets. However, for the following analysis it suffices to assume a
single risky asset and a single riskless alternative that can be bought and sold.! Setting
up the Lagrangian of (1) subject to (2) and taking first-order conditions with respect to
Ct and ¢ gives the core asset pricing equation

Py = Et [My11X¢41] (4)

where M; 1 = [B% is the stochastic discount factor (SDF), which ultimately links

consumption growth to asset returns. That is, individuals adjust consumption today
relative to tomorrow until prices and expected returns align. Define the gross return to

IExtending to multiple assets and portfolio choice leaves the qualitative results unaffected.
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an asset as Ry 11 = XIZT with the net return defined as R;;; — 1. This allows re-writing
(4) as

1 =t [My1R44] %)

As the asset is risky, a risk-free benchmark to compare asset returns to is required. If
the asset were to pay out a risk-free return Ry ;| tomorrow then Ry, is given by
re-arranging (5)

Rppin = s ©

' E¢ [M44]

That is, a risk-free asset either pays out X;1 = Ry ;1 units of consumption tomorrow
with certainty while costing one unit of consumption today or is sold at discounted
price Py = Rf,1t+1 today and pays out one unit of consumption tomorrow with certainty.
Using (6) and the fact that [E[AB] = E [A]E [B] + Cov [A, B] for two (correlated)
random variables A and B allows re-arranging (5) for the risky asset to obtain the

Sharpe ratio of mean excess return over standard deviation as

SR = E¢ [Ri1] — Rppq1 __ Covs [Miy1, Riva] 0 [Migq]
B 0 [Rey1] 0t [My11] 0t [Rey1] Bt [Mii4]

-

=pmrE(—11)

(7)

where ppr is the correlation coefficient between the SDF and the asset return, o} [M;1]
is the standard deviation of the SDF, and 0 [Ry41] is the standard deviation of the asset
return. As the correlation coefficient between the SDF and the asset return cannot be

larger than one in absolute value (7) can be simplified to

(8)

which constitutes the upper envelope of the Sharpe ratio, also known as the Hansen-
Jagannathan (HJ) bound (see Hansen and Jagannathan, 1991). Expressions (6) and (7)
are the main moments of interest to be matched to the data. The average real annual
long-run net equity return is around 7.1% while exhibiting a standard deviation of
around 22% (see Jorda, Knoll, Kuvshinov, Schularick, and Taylor, 2019). Short-term
bills have an average real annual long-run net return of about 1.3% in the same data.
That is, the model’s Sharpe ratio has to fulfill

7.1% —1.3% 0t [My41]

~0.26 <
22% — [E; [Mt—H]

©)
The “equity premium puzzle” (Mehra and Prescott, 1985) arises as the standard
consumption-based asset pricing model with lognormally distributed consumption

growth and CRRA utility cannot match the left-hand side of (9) by a sizable amount.



That is, for period utility and consumption growth given by

G- Cip1 iid. )
—ﬁ and lnTt ~ N(}l,a’)

the moments on the right-hand side of (9) are given by

u(C)

IEt [Mt—|—1] = ﬁ€77y+%72¢72 and 0 [Mt—‘rl] — ﬁe*'YVJF%’)/ZUZ /87202 1

where 1 is mean consumption growth and ¢ is the variance of consumption growth.

This yields the log risk-free rate and HJ bound as

1
In Rf,t-l-l =0+ YU — E’)/ZO'z
|SRimax| =0
where § = —InB. Long-run growth in (non-durable) consumption per capita has a

standard deviation of around 2% per year. This implies

026 <y x002 <« 2>13

which is an unreasonably high degree of risk aversion. Additionally, this assumes
perfect correlation between the SDF and asset returns. The general case given by

E¢ [Ri1] — Ry
0t [Req1]

requires y ~ 65 for ppr ~ 0.2 (as is typically the correlation between consumption

= PMRYO

growth and asset returns). Furthermore, even if y = 65 were acceptable, the log
risk-free rate is then given by

InRs;1~6+0.78

for u = 0.025 and ¢ = 0.02. This in turn implies a negative rate of time preference if
the model is to match the data on observed risk-free rates and constitutes the “risk-free
rate puzzle” (Weil, 1989). The following parts of this section describe the structure
imposed on the SDF M; 1 and asset return Ry, 1. The approach combines rare disasters
with an entropic tilt. Together they expand the HJ bound while maintaining modest
curvature.

3.2 Endowments and returns

Let consumption growth be characterized by



C
Sty1 =In %tl = Zip1 + Jr1 (10)

where z;41 N (#,0?) and J;+1 € {0;j} is a Bernoulli disaster jump with j < 0 that
occurs with probability p € [0,1], that is

Pr(Jey1=j)=p (11)

which follows Barro (2006). For simplicity, the risky asset has diffusive log return
Tra1 - (pr, 0?) with

Corr(res1,2e41) = p

Assume that jumps and diffusion are uncorrelated, i.e.

Jiv1 L (ze41,7e41)

However, if the consumption disaster occurs, the asset return co-jumps by gj < 0 with

g > 1.2 As a result, the (gross) asset return is given by

elt+1 if [ =0,
Rt = . (12)

eltv1td)  if J= ]
There are three noteworthy aspects about this specification. First, the specification of
g > 1 implies that the price-dividend ratio moves at the consumption disaster. If the
representative asset pays an aggregate dividend D; equal to a claim on consumption
(i.e. Dy = Cy), then in the case of a constant price-dividend ratio P; = xD; the gross
return is given by

Pry1+Diy1 _ k+1 Diyy
Pt K Dt

Ripq1 =

Hence InR;y1 = 1n <KTH> +In Dlg—tl. A disaster multiplies Dy, by e/, 50 AInR;, 1 = j.
That is, the consumption (and hence dividend) disaster translates one-to-one into the
return and thus g = 1. If the price-dividend ratio moves at the consumption disaster
(e.g., discount rates rise, risk premia spike etc.), then

Al
AInRiy1 =j+AlInky; and g = 1—0—&

Since Alnx;,1 < 0 in downturns as valuation compresses, this implies g > 1.> Sub-

2For further empirical evidence on this channel see Barro and Ursta (2008a); Nakamura, Steinsson, Barro,
and Ursta (2013) among others.
3Appendix A contains a simple model for valuation compression using standard asset pricing arguments.
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sequently, the asset price falls by more than the one-period dividend shortfall. More
specifically, if a disaster cuts consumption by a fraction x € [0,1], i.e. j = In(1 —x),
and the equity loss on impact is given by the fraction L € [0, 1], then

_In(1-1L)

gj=n(1-1) = ﬁl—m

(13)

Second, even though this specification contains disastrous jumps it does not imply
a fat-tailed distribution of the return. To see this note that log returns are given by
InRy41 = 7441 + g Ji+1. The moment generating function of In R,y is finite for all
teR

)= B[] <4 (1) <o

implying that its tail probabilities decay at least exponentially for some t > 0. Therefore,
although the model increases the chances of an “outlier” relative to a single normal
distribution, the far-tail decay rate is still governed by the Gaussian diffusion. Hence,
the results do not rely on a fat-tailed distribution of returns.

Third, the model adopts a one-period, on-impact disaster realization for simplicity
and transparency. This choice preserves a closed-form mixture-lognormal solution for
the return moments as well as a compact risk-free rate without adding a persistence

state.

3.3 Preferences

Let period utility be given by standard CRRA preferences with coefficient of relative
risk aversion 7y > 0. Further, let the subjective discount rate be § > 0. In isolation this
implies an inter-temporal marginal rate of substitution given by

/ =
IMRSt,H—l = ‘B% — e_‘s (Cé_':1> — e_(s—')/gt-&-l

To characterize the importance of avoiding large losses in utility, let period utility be
adjusted by an entropic tilt that replaces the standard conditional expectation. Let
St+1 be a shock (or vector of shocks) whose left-tail realizations are overweighted by
the household for a given choice of future consumption C;;. The entropic tilt is then

given by

E [Cppq e 05t1]
E; [¢051]

E [Cp ]

The interpretation q > 1 is also consistent with the evidence that stock-price declines during disasters
typically exceed the contemporaneous drop in consumption/dividends (e.g. Barro and Urstia, 2008b)
and with frameworks where disaster news raises required returns (Gabaix, 2012; Wachter, 2013). It is
also compatible with the levered /unlevered distinction stressed in Barro (2006, 2009).

11



where 0 > 0 governs the degree of tail aversion. This is equivalent to a normalized
exponential change of measure associated with KL (“multiplier”) preferences (see
Kullback and Leibler, 1951; Hansen and Sargent, 2001, 2008; Maenhout, 2004). If one

restricts Sy 1 to consumption growth, the one-period pricing operator is defined by

E; [CH—l 6—98t+1]
E; [e—98t+1}

]EEQ) [Ciy1] = (14)

which implies an inter-temporal marginal rate of substitution given by

u (Ct—l—l) e 0811
IMRS =
t,t+1 r8 u' (Ct) \IE't [e—egt+1j|

utility MRS tail adjustment

There are two equivalent routes to microfound the tilt. First, one can axiomatize
a one-period entropic change of measure that depends only on consumption growth.
This yields an exact SDF immediately. Second, one can adopt a risk-sensitive recursion
with multiplier (KL) preferences under full information, which yields a general SDF.
When the continuation value is (locally) affine in consumption growth, the two are
observationally equivalent at one period. The following Proposition describes how an
exponential change of measure yields an exact tail-adjusted SDF in closed-form.

Proposition 1. For any F;,1-measurable X;1 : QO — R, let the one-period pricing operator
be defined by

E; [XtJrl 3*98t+1}

E{” [Xi1] = B [Xis1] = Ey [e-051]

with Radon-Nikodym derivative

dQy e 0841

A= 22—
+ dlP Fina E; [6798#1}

where Qg is the entropic-tilt measure and IP is the physical (i.e. data-generating) measure. Then
the recursion
U = u (Ct) + BE: [Ap1 Upta]

yields the exact SDF

u' (Cpyq) e 981 B e 0= (r+0)8+1
u' (Ci) E;[e08m1] - [e=08141]

My =P
given CRRA period utility and provided that E; [e~%++1] € (0, 00) almost surely.

Proof. Follows immediately from the Radon-Nikodym derivative A1 on (Q, Fri1)

12



and the FOC for asset demand. By construction E; [A;11] =1 and A;y1 > 0,50 Qg is a

well-defined probability kernel on (€, Fi41).

]

For the robust-control (risk-sensitive) recursion below I impose no measurability

restriction: the worst-case density m is allowed to be F;-measurable (full information).

The following definition lays out the robust-control operator.

Definition 1. For any F; . -measurable X, 1, define

To (Xi11) { E; [m Xp1] + %Et [m Inm] } s.t. Byfm] =1

= inf
meM
where M := {m >0 : m is Fy1-measurable }.

The solution to this operator is summarized in the following Lemma.

Lemma 1. Let X; 1 € L' (Fy11) and By [e9%+1] € (0, 00) almost surely, then

To (Xi41) = —% InIE; [e_ext“]
while the unique minimizer is given by

e*QXH—l
T E [e %]

m*

Proof. Consider the Lagrangian given by

L(m,A)=E; |mX;yq + %m Inm—A(m—1)

(15)

(16)

where A is the Lagrange multiplier. The integrand m — mX + § m Inm is strictly

convex on [0,00). As a result, the conditional first-order condition is necessary and

sufficient. Differentiating pointwise and setting to zero yields

Xt +% l+Inm]—A=0
Solving for m* gives

3_9 Xi1
Z

o — PA1-0X 1

with Z = !9, Satisfying the constraint E; [m*] = 1 requires Z = E; [e %+1] and

thus yields

6_9 Xt+1

- E; [3_9 Xt+1}

m*

13



Substituting back into the objective gives the optimal value as

1 —0 X1
7—9 (Xt+1) = ]Et m* Xt+1 + — m* ln ¢ ]

— 1 —0 X,
0 E; [e0Xe1] = —gnE [e M}

0

Strict convexity of m Inm ensures uniqueness of the result.
O

The next Proposition summarizes how the robust control problem embedded in a

risk-sensitive recursion generates a tilted SDF in general.

Proposition 2. Consider the risk-sensitive recursion Uy = u (C¢) + B To (Up41) with
E; [e=%Ur1] € (0, 00) almost surely. Then the one-period SDF is given by

W (Cipq) e 9t

Mip1 =8 w (Cr) By [e0Ur]

(17)

Proof. Let P; be the price of a payoff X;,; in one period. Embed the payoff into the
period-t budget and consider a marginal variation. The envelope theorem for the

recursion
t t >0, [m] =1 t t+1 0 t

implies that the marginal value of one extra unit of payoff at t + 1 is given by

dCt11 }
0Xt+1

BE: {m* u’ (Cit1)

evaluated at the optimizer m* from Lemma 1. A one-to-one mapping between payoff

and consumption implies g%ﬁ = 1, while the marginal cost today is given by u’ (C¢).

Hence the SDF is given by

W (Cipq) e Pl
u' (Cy) [6_9 Ut+1]

Mi1 =8

which is equivalent to (17).
O

If one keeps the risk-sensitive recursion and projects U;1 = a; + by g1+1, then the
effective tilt is given by 6* = 6b; The following Lemma lays out simple sufficient
conditions for this to hold.

Lemma 2. Let the future state (or state vector) be given by

St41 = ¢St + Pgit1 + €111

14



with E; [€t+1] =0. If UtH =X+ TSH—L then UtH =a; + bt gr+1 + €441 is aﬁ‘ine in 8t+1
with IEt [St—H] =0.

Proof. Follows immediately from substitution and linearity of expectations, that is
U1 = X+ T@St +TYG111 + Te€ry1, withap = x + T ¢St, by = T, €441 = T€41, and
E; [€t+l] =0.

O

The last Proposition establishes the existence of an exact one-period SDF in this
general case.

Proposition 3. Suppose U1 = a; + by g41. With CRRA period utility (17) reduces to

6_5_(7+9 br)gt1
E; [3*9 by gm]

M =

with effective tilt 6* = 6 by.

Proof. Follows from inserting U;11 = a; + by g44+1 in (17), applying ﬁ% = 078,

and collecting terms.
O]

A few aspects are noteworthy about this result. First, write the exact projection
as U1 = ar + by 441 + €441 with Ey [e449] = 0. If €447 is conditionally sub-Gaussian
given F; with variance proxy 02, e.g., e.41|F¢ ~ N (0,072), then the risk-free rate from
the affine projection (without the error term) has the following projection error

1
|AInRg| < EGZVart [er41]

while the distance to the HJ bound shifts by at most O (6? Var; [¢;11]). Hence accuracy
is governed by the residual variance left after projecting U1 on g;4+1. If the projection
captures a fraction R? of the variation in U, attributable to g;,1, then Var; [e;, 1] =
bflyz—ézZVart [gr11]. Itis reasonable to assume that R? is at least moderate as consumption
growth shocks are small at annual frequency and the continuation value is a smooth
functional of the states. Therefore R? > 0.5 is appropriate which implies, combined
with Var; [g;11] = (0.02)?, that the error is quantitatively negligible even for medium
0*. Additionally, if ;1 is conditionally independent of g;.1 then

Mexact 679 €111 !
e = = B MY = Er M7
M?Jfrﬁlne E; [e_GStH]

and there is no projection error in the risk-free rate. Altogether, retaining the risk-
sensitive recursion and projecting onto g;; yields a stochastic discount factor with tail

aversion 0* = 0b; and a tightly bounded approximation error. In contrast, Proposition
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1 justifies the tail-adjusted one-period SDF exactly under the o [g:11] entropic pricing
restriction.

Second, analogous possible microfoundations include ambiguity aversion with
worst-case re-weighting as well as ruin or survival constraints approximated by expo-
nential tilting of bad tail probabilities. All approaches yield “truly” stochastic subjective
discounting that is negatively correlated with consumption growth in reduced form.

Third, without uncertainty in the marginal utility generated from consumption
growth the tail adjustment collapses to one in expectations. As a result, the tail-adjusted
SDF is given by

e 0—(r+0)8111

Mt+1 = IEt [efegt—}—l]

(18)

Note that the one-period SDF applies an entropic tilt 8 > 0 to bad consumption
states (i.e. a larger 6 implies more weight on low C;1) while the aggregator remains
CRRA. That is, only the one-period SDF is tilted. Therefore, the local log-SDF loading
on consumption growth is —( + @), but the relative risk aversion remains . Put
differently, the tail adjustment raises the price of consumption risk but does not alter

utility curvature.

4 Analytic results

The following section presents the analytic results from the model and their economic
intuition. To lighten notation, I drop time subscripts as the price is always defined for
period t, the payoff is always defined for period t + 1, and expectations are conditional

on time-f information.

4.1 Risk-free rate, return moments, and equity premia
Since consumption growth is given by a lognormal component and a Bernoulli jump
its expectation is given by

E [eftxg] — e*lX}lJr%zxztﬂ (1 —p+ peftxj> (19)

Under the specified mixture-normal consumption growth, the denominator of the SDF
for all 6 > 0 is finite by (19). Combining (6) with (18) and using (19) gives the log
risk-free rate as

_ —0j
1—p+pe } 20)

1
IRy =5+ =370 =780 +In [1—P+pe—(7+9)1‘
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Combining (5), (12), and (18) while using (19) implies the following for the mean
log (diffusive) return implied by the asset pricing equation

1 1
Mt 507 =6t = oyt =y 00+ (y+0)poo

1—p+pe_9f (21)
1— p+ pe‘('Y"‘G_Q)]}

+ln{

Return moments are given by

E [R] =elr 2% (1 —p+ peqj) (22)
E [RZ} — 2207 (1 —p+ peij)
Var [R] =E [RZ} — (E[R])? (23)

Combining (7), (21), (22), and (23) yields the Sharpe ratio as

+1g2 ' Styu—1202 92 1—p+pe ¥
elr 2r(1_p+peW)_g TH—37 Y m

SR = (24)

\/62Hr+2(7r2 (1 _ p + peZq]) _ |:e,ur+%0'r2 (1 _ p + peq]):|2
For small risks this can be approximated by
(v+0)corp—p (e —1) <e_(7+9)f - 1)

VR p(1—p) (e —1)°
Finally, the HJ bound is given by using (18) and applying (19)

SR ~

2 _ ~2(y+6)j
SRpax = E M ; 1= |02 L=pHpe — -1 (25)
E [M] (1 —p+p e_('H‘G)])

4.2 Measures of tail aversion

In order to quantify the impact of tail aversion I compute two measures of its strength:
one from the preference-side, one from the market-side. By (18), the entropic-tilt
measure and the one-period pricing operator are characterized by

ng - e 98
dP E [(3—98}

E [Xe %]
E [e—%]

and E [X] =

Then the one-period Kullback-Leibler divergence of Qy from IP is given by
Di. (QulP) = 5% [in 22| —E® [~0g] ~InEE [e %] (26)
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In order to express (26) in closed-form note the following equivalence

oo E[ge®]  dInE [e%]
BVl = Flew —

(27)

Plugging (27) back into (26) while using (19) gives the one-period Kullback-Leibler

divergence as

poje

1 Y
Du (@17) = 6t (1= e ) - 2

: 28)

where Dgp (Qgl|IP) measures (in nats) how far the entropically tilted preference mea-
sure Qg is from the physical measure IP. Numerically, small per-period values mean
the preference distortion is informationally modest. As a rule of thumb, under in-
~ 1
dependence across years it takes P (QaTP)
between 6 > 0 and 0 = 0 from an information perspective. Pinsker’s bound is given by

/1
|Q9 - ]P|TV < 5 DKL € [0/1] (29)

This statistic measures the total-variation distance, which the change in probability of

years in a yearly setting to distinguish

an event (in percentage points). Both statistics constitute a preference-side gauge of
how strong the tail aversion is.
An orthogonal measure is given by risk-neutral probabilities. Let Qn denote the

one-period risk-neutral measure associated with the SDF M. By definition

iQy M
iP ~ E[M]

Combining (18) with (10) yields

_ d I]: - y4
Poy = J=1j)= E [ﬂ{]:j}%] [ﬂ{f:j}e ()t +])}
oy =On(J=])) = /

’ E [_d(%v] E [e (’H@)(ZH)}

_ pe_('7+9)j
_1 —p+ pe_(’H‘B)f

(30)

where the last line follows from the fact that z and | are independent. This yields
the risk-neutral disaster-state probability (or jump mass). Intuitively it measures how
high the market treats the probability of an event occurring relative to its physical
(“true”) probability. That is, pg, > p implies the market treats the probability of a
disaster occurring higher as it is due to tail aversion.* This constitutes a market-side

perspective of how strong tail aversion is. As pg,, overweights rare losses relative to the

*Note that disasters are over-weighted under Qy whenever 7 + 6 > 0 and more so the more negative j is.
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physical measure this endogenous reweighting parallels the probability weighting in
cumulative prospect theory (Tversky and Kahneman, 1992). It is also closely related in
spirit to the prospect-theory asset-pricing mechanisms in Barberis, Huang, and Santos
(2001). However, in the given context it arises from an entropic change of measure in
an expected-utility setting.

4.3 Intuition
To recap, prices satisfy 1 = [E; [M;1R;1] with

o—0—(1+6)g141

My = W

where ¢;11 = In % is consumption growth, <y is relative risk aversion, and 6 > 0
implements an entropic tilt that overweights bad consumption states (“left tails”).
Intuitively, 6 acts like an additional sensitivity of marginal utility to g;+1. More
precisely, the tilt increases the local loading of In M;;1 on g;+1 from —v to — (7 +6)
without altering period utility curvature. Consumption growth itself has a Gaussian
diffusive part z;,1 EY (#,0?) and a rare-disaster jump J;+1 € {0;j} with j < 0
occurring with probability p. Log asset returns co-move with the diffusive part of
consumption growth with coefficient p and co-jump by qj < 0 in disasters. Thus two
channels create negative Cov [M;1, Ry41]

1. Diffusive channel: when z;., is low, M;; is high and (for p > 0) R;1; is low,

increasing risk compensation.

2. Jump channel: in rare disasters C;1 and prices drop. If valuation ratios compress
on impact, the co-jump gj magnifies equity losses beyond the one-period dividend
shortfall (g > 1), so payoffs are particularly poor exactly when M, is large.

Both channels can be seen immediately in the log risk-free rate, given by

_ L 22 2 1—p+pe?
lan—(S—t—'yy—E’y(r —y00 +In 1= pt pe (0]
—— N ~ )
diffusion interaction jump ratio

The first three terms are the standard CRRA /lognormal elements of the consumption-
based asset pricing model. The two new ingredients lower InRy. First, the cross
term —v00? lowers the log risk-free rate because the tilt and curvature interact under
diffusion. Second, the jump ratio lowers the log risk-free rate as for § > 0 and j < 0
the denominator is larger than the numerator. Hence the model naturally produces a

low risk-free rate when p > 0 and 0 > 0, echoing the risk-free rate puzzle. Intuitively,
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a high tail aversion 6 implies investors preferring the “safe haven” of the risk-free rate
over risky assets.
For the risky asset, the small-risk approximation again highlights both channels

-1

SR~ | (y+0)cop —p (eqj - 1> (e_(%Lg)j - 1) [\/Jrz +p(1—p) (e — 1)2

'

Ve
diffusive covariance jump covariance

The diffusion part scales with (7 + 0) and the exposure p. The jump covariance term
also raises the Sharpe ratio as (e?/ — 1) (e—(’Y+9)j — 1) < 0.°> Subsequently, the jump
part is positive whenever qj < 0 and <y + 6 > 0, because returns fall in disasters while
the SDF spikes. Thus either higher 6 (more tail aversion) or larger g (stronger valuation
compression on impact) raises required premia and Sharpe ratios. This can most

clearly be observed in the HJ bound

: - =2(y+0)j
SRpax = \/MH‘JZ 1= |elrt0)c? 1—-p+pe (r ?]2

where both the tilt 8 and rare disasters (p > 0, j < 0) increase the volatility of M; 4
relative to its mean, thus pushing out the H] bound and helping reconcile observed

Sharpe ratios while maintaining modest 7.

5 Bounds on risk aversion in the presence of tail aversion

The model also implies natural bounds on risk aversion given non-negative values for
the tail aversion parameter 6 and at least proportional valuation compression 4. The
following Lemma establishes an upper bound on risk aversion implied by the risk-free

rate.

Lemma 3. Let In R¢ < & and fix parameters (u, 0, p,j). Then the risk-free rate implies the
existence and uniqueness of an upper bound on risk aversion . The maximum admissible
value is attained when tail aversion is zero, i.e. 0 = 0.

Proof. See Appendix B.1.
O

The intuition behind this result is straightforward. Increasing either risk aversion
or tail aversion always lowers the risk-free rate. Hence the largest level of risk aversion

consistent with the observed risk-free rate occurs when tail aversion is shut down. The

5To see this, note that j < 0,9 > 1, and thus gqj <0, el —1<0,and e~ (119 —1 > 0.
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following Proposition establishes the functional relationship between tail aversion and
risk aversion.

Proposition 4. Let In Ry < & and fix parameters (u, o, p, j). Then for each v € (0, v") there
exists a unique 0 () > 0 solving the risk-free rate equation (20) with ' () < 0 and

/ 5—lan
0 (1)~~~ fory Lo

V202
Proof. See Appendix B.2.
O

That is, in order to match the same risk-free rate, a reduction in risk aversion must
be offset by stronger tail aversion. Conversely, higher risk aversion requires less tail
aversion. Thus the mapping from risk aversion to tail aversion is downward sloping.
Taken together, the risk-free rate pins down a mapping of 6 () > 0 for a given set
of parameters within the domain ¢ € (O, 'y*). To obtain the bounds on 7 define
A(Q) =1—-p+peV,Blg) =1—p+pe*, m = E[R], and s> = Var [R]. Applying
these definitions and re-arranging (22) and (23) yields

2
or(q) = \/ln (1—{— %) +2InA(q) —InB(g) and u,+ %0’,,2 =Inm—InA(g)

The following Lemma ensures positive volatility of the diffusive part of asset returns.

Lemma 4. A sufficient condition that ensures o > 0 for all ¢ > 1 is given by

5 p
= - 1
T (31)
Proof. See Appendix B.3.
O

The inequality ensures that, even if jump risk absorbs a lot of the overall volatility,
the lognormal diffusion still carries strictly positive volatility. Intuitively, the observed
equity volatility cannot be “too low” relative to its mean if the diffusion part is to
remain active. Substituting the results into the asset pricing equation, given by (21),

collecting terms, and applying Proposition 4 yields



1
F(q,7)=6+7p— 570" —70(y) 0?

+(’y+9(’y))p(7\/ln <1—|—;—22) +2In A(g) —InB(q) (32)

—Inm+InA(g) =0

Feasibility requires jointly solving (20) and (32) for v and 0 () over the admissible
range of values v € (0, 'y+), conditional on g4 > 1 and ¢; > 0. The following

assumption ensures non-degeneracy

Assumption 1. Let 0 () be the unique mapping solving the risk-free equation (20) for
v € (0, 7", and define the feasible set

FE{’)/E (O, 'y+>:5|q21withF(q,'y):0}

On any connected component of the branch

B={(r.q9) €' x[l,00):F(q,7) =0}

I assume non-degeneracy in the partial derivative, that is

oF (g,
% #0 forall (v,q) € B
This regularity condition rules out knife-edge cases in which the co-jump parameter
is locally indeterminate. On any feasible branch, the asset-pricing equation then selects
a unique co-jump level for a given risk aversion. The following Proposition establishes

the functional relationship between co-jump and risk aversion.

Proposition 5. Under the restriction implied by Lemma 4, y > —pj, and p > 0 let 6 (7y) be
given by Proposition 4 and let q () > 1 solve (32) wherever a solution exists. Then on any
connected component of the feasible set T := {y € (0, 7") : 3q > 1 with F (q,y) =0} the
map vy v+ q (7y) is C! and single-peaked. That is, there exists a unique v* € (0, ") such that
g (7v*) = 0, and g’ (vy) switches sign once on each component.

Proof. See Appendix B.4.
[

Intuitively, holding the equity mean and variance fixed, a larger co-jump g shifts risk
from the smooth diffusion to rare jumps. To keep the same Sharpe-relevant moments,
0y(q) must fall with g, so the diffusion price-of-risk component (y +60) poo:(g) de-
clines as g rises, given p > 0. Since the risk-free rate is held fixed, Proposition 4 implies
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that tail-aversion 6 (vy) is decreasing in 7. At very low v, the required 6 to match a
given risk-free rate is high, so the SDF’s diffusion loading w (y) = v + 6 (y) is already
large. Additionally, disasters are heavily priced via the large 6 (7). Consequently,
little additional valuation compression is needed and g sits near its lower bound. As
7 increases from this region, 6 (y) falls sharply in accordance with Proposition 4,
so w (7) initially declines. To keep the same equity mean and variance, the model
compensates by shifting risk into jumps, which raises the required 4. Once 6 () has
fallen enough, w () begins to rise with o and the diffusion channel regains strength,
so the needed co-jump falls again. This interaction, i.e. high 6 at low 7 and then
strengthening diffusion at higher -y, generates a non-monotonic relation between vy
and g with a single interior maximum for g (7). Finally, the results for the admissible

bounds on risk aversion are summarized in the following Proposition.

Proposition 6. For given moments (Rf, m,s) with InRf < 6, m > 0,8 >0, = >

%, w > —pj, and p > 0 the system consisting of (20) and (32) admits a solution
(0(y) >0,q(y) >1)ifand only if v € (Ymin, Ymax), Where the endpoints are unique and
characterized as follows:

1. Ymin is the unique smallest root of F (1,) = 0 with 0 (vy) given by solution to (20)

2. Ymax = min {y", 4"}, where

i) " solves (20) for = 0

ii) T is the unique largest root of F (1,y) = 0 with 6 (vy) given by the solution to
(20)

Proof. See Appendix B.5.
O

Proposition 6 pins down a strict admissible band for risk aversion. A feasible pair
(0(y) >0,g9(y) > 1) exists if and only if 7y lies between a lower root where valuation
compression just vanishes (i.e., 4 = 1) and an upper bound determined either by the
upper root where valuation compression just vanishes or the ceiling 4" implied by
Lemma 3, whichever is smaller. Economically, because the risk-free rate condition
forces tail aversion 6 () to fall with v, the compression needed to match equity
moments first rises above one and then falls back to one, so feasibility fails outside

(’)’min/ ’Ymax) .
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Table 1: exogenous parameters

Parameter Value Target

o 0.03 discount rate (implies annual 8 = ¢~ ~ 0.97)

v 3 risk aversion

0 0.2 diffusion correlation consumption growth and returns
1 0.025 consumption growth p.a. outside of disasters

o 0.02 consumption growth volatility p.a. outside of disasters
p 0.017 disaster probability p.a.

j In(1—-0.29) consumption drop in disaster

6 Quantitative analysis

The following section presents a quantitative evaluation of the model. After disciplining
the model to rare disaster data by Barro (2006) an indirect inference strategy backs
out the size of the tail-aversion parameter 6 along with the size of the valuation
compression g and the diffusion volatility of returns ;. Remaining preference and
diffusion parameters are set to long-run benchmarks and kept within conventional
ranges. As the model also nests standard cases, the analysis proceeds via neutralizing
parts of the newly introduced modifications via either setting 6 or p to zero thus
obtaining information on the importance of the model’s channels in isolation. Last, I
perform sensitivity checks to show that the results are robust to changing the diffusive
correlation and the degree of risk aversion.

6.1 Calibration and indirect inference

I calibrate the model to long-run moments from Jorda, Knoll, Kuvshinov, Schularick,
and Taylor (2019), who construct a long-run series of returns for 16 developed countries
and construct averages weighted by GDP. The unit of observation is one year. The
values of J, v, and p are taken directly from standard values of the literature. The
parameters of consumption growth, namely the diffusive mean and volatility (# and
o) as well as the probability of disaster occurrence and the associated average drop
in consumption are taken from Barro (2006) and set to 2.5%, 2%, 1.7%, and 29%,
respectively. Table 1 summarizes the values.

Equations (18)—(23) imply a convenient inversion to match return mean/variance
while keeping (p, j) fixed. To obtain a value for 6 I solve (20) for 6 given the calibrated
parameter values targeting a real net risk-free rate of 1.3%. Defining the gross mean
m = E [R] with net return m — 1 and variance s*> = Var [R] re-arranging (22) and (23)
yields
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Table 2: baseline results

Parameter/Statistic Value Data/Targets

6 3.267 -
oy 0.2 -
Implied equity loss ~ 44% -
Net risk-free rate 0.013* 0.013
Net asset return 0.071* 0.071
Asset volatility 0.22* 0.22
Sharpe ratio 0.264 0.264
HJ bound 0.881 > 0.264
D1, 0.024 -
TV 11pp -
pQN 13% -

s2 1
or(q) = \/ln (1 + W) +2InA(q) —InB(g) and u.(q) + E(Tr(q)z =Inm—1InA(q)

where again A(q) =1—p+pe¥ and B(q) = 1 — p + pe*¥ while u,(q) + %Ur(q)z is
given by (21) as

1 1
ur(q) + 5%(07)2 =5+ yu — 57202 — 700>+ (y+0)poa(q)

1—p+pe?

+in 1-p+ pe‘('Y"‘e—Q)]'

The values of g, 0;, and y, are then obtained via solving this system of equations for

asset market moments targeting a real net equity return of 7.1% with 22% volatility.

6.2 Results and discussion

Table 2 summarizes the core results. The chosen parameterization matches the market
return and volatility as well as the risk-free rate by construction. As a result, the Sharpe
ratio implied by the model is identical to the one provided by the data. Note that the
one-period Kullback-Leibler divergence implied by the model is only 0.024 nats. That
is, from an information perspective the tail aversion is almost not detectable and the
model is informationally virtually indistinguishable from the non-tail adjusted (CRRA)
case. However, from a market perspective the tail aversion is substantial as pg, ~ 13%
and thus almost an order of magnitude larger than the physical probability p = 1.7%.

To achieve this for the given parameterization the model requires the following

quantitative features
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1. The tail adjustment parameter has to be similar in size to baseline risk aversion.
2. The implied equity loss on impact from a disaster has to be around 44%.
3. The contribution of the diffusion part to overall asset volatility is around 92% as
2
EVar [R7]] _ B (7 ~1)

_ ~ 92%
Var [R] B(q)e’ — A(q)2

Taken together this implies that a model with tail adjustment in the SDF and the
potential for extreme events is able to quantitatively reconcile both the equity premium
puzzle and the risk-free rate puzzle without the need to resort to unreasonably high
degrees of risk aversion. Note that in addition to the low Dgj, even the combined
local log-SDF loading on the diffusion part, i.e. v + 6 ~ 6.27, does not imply a very
high value of risk aversion. Using (13) allows evaluating the size of losses implied by
the co-jump parameter g as L = 1 — 7. Historical episodes suggest j between 15%
and ~ 60% in major crises (Barro and Ursta, 2008a; Nakamura, Steinsson, Barro, and
Ursta, 2013), while equity drawdowns on impact range widely. Peak-to-trough losses
of 40% - 60% are common in major crashes. Hence, L ~ 44% is well within values

consistent with large crisis episodes.

6.3 Channels

In order to explore the channels highlighted in Section 4 I run additional experiments
that neutralize parts of the model. As a first pass, I re-run the model without tail
adjustment or extreme events (i.e. 8 = p = 0) to obtain the standard benchmark of the
consumption-based asset pricing model. Table 3 presents the results of this experiment
in column 1. The parameter o; is calibrated to match asset volatility, which is matched
by construction. The remaining moments in column 1 highlight the well-known
problems of the standard consumption-based asset pricing model. The risk free-rate
is an order of magnitude too high for standard parameters and the Sharpe ratio is
missed by more than an order of magnitude. As there are neither tail events nor tail
adjustment all tail aversion measures are zero.

As shown in column 2, allowing for a tail adjustment in the SDF that is calibrated
to match the risk-free rate fixes most of these issues. However, the model has to resort
to an unreasonably high degree of adjustment (0 ~ 75) to achieve this. This result
is not surprising as in the absence of truly extreme events the aversion to left-tail
realizations has to be profoundly high in order to justify a net risk-free rate of 1.3% in
real terms. Naturally, this causes the one-period Kullback-Leibler divergence to grow
substantially such that tail aversion is now easily detectable while pg,, does not move

as this specification contains no disaster events.
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Table 3: importance of channels

(@ G (4

)
Parameter/Statistic Standard model p=0 6=0  Full Data/Targets

0 0 75.236 0 3267 -
p 0 0 5.27% 1.7% -
oy 0.2 0.2 0.18 0.2 -
Implied equity loss 0 0 44%  44% —
Net risk-free rate 0.109 0.013* 0.013* 0.013* 0.013
Net asset return 0.111 0.079 0.054 0.071* 0.071
Asset volatility 0.22* 022  0.22* 0.22* 0.22
Sharpe ratio 0.012 03 0186 0.264 0.264
H]J bound 0.06 3251 0.372 0.881 > 0.264
Dx1. 0 1.132 0 0.024 -
TV Opp 75pp Opp 1lpp -
POy 0% 0% 13% 13% -

* denotes statistic that the parameters were chosen to replicate

Conversely, column 3 shows that allowing for disasters, whose probability is again
calibrated to match the risk-free rate, while abstracting from tail adjustment in the
SDF and retaining the same degree of asset losses as in the baseline results, also
improves the Sharpe ratio considerably. However, as can be inferred from column 3
this comes at the cost of a very high probability of disaster (p ~ 5.3%) while generating
lower volatility of the diffusion process (0, ~ 0.18%). Again, these results are not
surprising as a high probability of disaster is required to suppress the net risk-free
rate to 1.3%. Subsequently, as the disaster probability is now higher, more of asset
volatility will stem from the disaster jumps occurring with a higher probability instead
of from the diffusion process. As with column (1) there is no tail adjustment and
thus all information criteria detecting tail aversion are zero. However, pg,, increases
substantially due to the presence of disasters.

Finally, column 4 shows that the results of a low risk-free rate and a high Sharpe
ratio can be reconciled by allowing a moderate tail adjustment paired with a low

probability of disaster that generates large asset losses.

6.4 Sensitivity

The quantitative results are robust to variation in p, i.e. the correlation between the
diffusion parts of consumption growth and asset returns. As the risk-free rate is
independent of p variation in the parameter does not alter it and hence also does
not influence the size of 6. Conversely, (21) shows that equity premia increase with

(v +0)poo,. Consequently, lowering p forces more weight on disaster co-jumps,
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Table 4: sensitivity

(1) (2) G« 6
Parameter/Statistic Benchmark p=005 p=08 y=1 =7

0 3.267 3.267 3.267 5405 0.461
oy 0.2 0.19 0.2 0.2 0.2
Implied equity loss 44% 47% 31%  42%  29%
D1 0.024 0.024 0.024 0.102 0.0003
TV 11pp 11pp 11pp 23pp l1pp
PQx 13% 13% 13% 13% 18%

raising g and making equity losses more front-loaded in bad states as can be seen in
column 2 of Table 4. On the other hand, raising p shifts premia to the diffusion channel
and reduces the g needed to match m and s (column 3 in Table 4). In order to ensure
that the shift to diffusion does not give rise to g4 < 1 in the indirect inference approach
the following additional restriction is needed

_ —0j
Inm—In A1) = (5474 — 31202 = 700%) —In| AL AECY
< —
o= (v+6) o/5(1)

where 0 is obtained by solving for the risk-free rate, which is independent of p.

(33)

For the baseline parameterization this yields pmax ~ 0.9, which is larger than any
empirical value typically associated with this correlation. Within the admissible range
of p € (0, pmax) the quantitative importance of this channel is muted as indicated by
the results in columns 2 and 3 in Table 4. That is, the results do not strongly depend on
any specific size of the correlation between the diffusion parts of consumption growth
and asset returns.

The results are also robust to variation in risk aversion 7 within the admissible
bounds derived in Section 5. Under the baseline parameters solving (32) conditional
on (20) yields ymax ~ 7.08 and ymin ~ 0.46, which are in line with standard conjectures
about the upper and lower bound of risk aversion. Taken together the admissible
range of risk aversion is given by v € (Ymin =~ 0.46, Ymax =~ 7.08). Within those values
(6,9, 0v) exist and match (Rg,m,s). As derived in Proposition 4, the expression for the
risk-free rate implies that, holding Ry fixed, 0 (7y) is decreasing in -y for j < 0Oand p > 0
in the empirically relevant range. This pattern is shown by columns 4 and 5 in Table 4.
For v = 1 the calibration requires 6 ~ 5.4, while for v = 7 it requires 6 ~ 0.46 (both
with unchanged o, ~ 0.2). At the same time, the asset pricing equation (32) shows that
a rise in vy increases the diffusion loading (7y 4 0) p o 0; but simultaneously lowers 6,

so the net effect on (y + 6) is muted in practice. To keep the equity mean and variance
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Figure 1: Reaction of valuation compression and tail aversion to risk aversion

fixed, the system rebalances by adjusting g. Columns 4 and 5 of Table 4 as well as
panel (a) of Figure 1 illustrate the non-monotonic behavior of the adjustment of ¢ laid
out in Proposition 5.

A large microeconomic literature finds values of relative risk aversion at or below
one in laboratory and field settings. For instance, Holt and Laury (2002) estimate CRRA
well below unity at moderate stakes (with pronounced incentive effects) while the
calibration critique of Rabin (2000) implies that small-stakes curvature must be modest
if one wishes to avoid counterfactual large-stakes behavior. Surveying field data,
Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2018) conclude that moderate
risk aversion and substantial heterogeneity are the norm across insurance and portfolio
contexts. At the other end of the spectrum, macroeconomic evidence sometimes implies
large curvature when CRRA also proxies the intertemporal elasticity of substitution. As
an example, Best, Cloyne, Ilzetzki, and Kleven (2020) estimate an average intertemporal
elasticity of substitution near 0.1 using quasi-experimental “mortgage notches”, which
under CRRA maps to y =~ 10. The bounds-based exercise here is qualitatively consistent
with both possibilities. As can be observed from comparing panel (2) and panel (b)
of Figure 1 the implied valuation compression (and hence implied loss) is highest at
intermediate ranges of risk aversion. A higher 7 permits a smaller g (less valuation
compression) while maintaining the same (1, s) as high risk aversion suffices to match
the moments of interest. On the other hand, a low < is also consistent with less
valuation compression as higher tail aversion 0 depresses the risk-free rate and raises
the equity return. Simultaneously, raising 0 implies a stronger penalty on the one-
period Kullback-Leibler divergence while lowering reduces it. Thus strong tail aversion

combined with low risk aversion is more easily detectable than moderate/high risk
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aversion paired with moderate/low tail aversion. Taken together, the quantitative fit is
robust to a large range of admissible values of -y and admits fitting the data even for

very low levels of risk aversion.

7 Concluding remarks

This paper offers a compact asset-pricing model that unifies two empirically grounded
mechanisms: rare consumption disasters and an entropic, risk-sensitive tilt in the
pricing kernel. Analytically, the SDF’s diffusion loading 7y + 6 and the disaster co-jump
parameter g deliver closed-form expressions for the risk-free rate, the Sharpe ratio, and
the HJ bound. The model explains why premia are high exactly when the economy
is weak. The tilt raises the price of diffusion risk in bad times, and disaster co-jumps
depress payoffs precisely when marginal utility is high.

The quantitative exercise shows that a small probability of sizable disasters, paired
with moderate tail aversion 6, can match equity premia and the low real risk-free rate
without extreme curvature. In fact, from an information perspective the model is almost
indistinguishable from CRRA preferences. The implied equity loss on impact, 1 — 7,
is in line with large historical crashes, and the decomposition of premia into diffusion
and jump components clarifies the role of correlation and valuation compression at
disaster times.

There are natural next steps. On the empirical side, the magnitudes of (p,,q) can
be further disciplined with cross-country disaster data and event-based measures of
valuation compression. On the theoretical side, embedding the one-period tilt into a
model with endogenous investment and intermediaries would allow joint study of the
term structure, credit spreads, and cross-sectional asset pricing. Moreover, the analysis
intentionally models disasters as one-period events. This abstraction preserves closed-
form mixture-lognormal pricing for key moments and keeps the SDF transparent. This
comes with the cost of not being able to account for crisis dynamics, term-structure
patterns during slumps, or volatility clustering. A natural next step here is to allow
time variation in pricing states. Allowing partial recoveries and time-varying disaster
intensities (e.g., Nakamura, Steinsson, Barro, and Urstia, 2013), variable disaster risk
pt in the spirit of Gabaix (2012), or a time-varying tail aversion 6; that tightens in bad
times would generate countercyclical prices of risk, return predictability, and more
realistic volatility dynamics, while preserving the parsimony of the one-period tilt and
the closed-form conditional moments developed here. Finally, formal estimation could
exploit the analytic inversion mapping moments to structural parameters.

Overall, the results support the simple message that accounting for tail risk and for
state-dependent pricing weights suffices to reconcile first-order asset-pricing moments

while preserving parsimony and interpretability.
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A A simple model of valuation compression

Let x; = % denote the price-dividend ratio and Ad;1 = InD;y1 — In D; dividend-

growth. Then the standard Campbell-Shiller log-linearization implies

InRypq = k41 Inkp —Inke + Adyyq (A1)

where k and 77 € (0,1) are log-linearization constants determined by the unconditional
mean of Inx;. For the reduced form disaster mapping, a consumption (and dividend)
contraction of fractional size x € (0,1) is given by j = In(1 — x) < 0. If equity loses a

fraction L € (0,1) on impact, then g is defined by

_ In(1-1L)
17 (1 —x)

Assume that at date t a disaster-news shock arrives. Let Z; be the information set just

gj=mn(l1-1L) = (A.2)

after arrival. Additionally, assume that expected returns follow an AR(1) process given
by

AE; IRy 114] = ¢ AE; In Ry ]
for i > 0 with ¢ € [0,1). The news shock may affect dividend growth at time t, but is
not persistent, that is

AE; [Adii14i] =0 foralli>1

As a result, iterating (A.1) forward, taking expectations conditional on Z;, subtracting
the pre-arrival counterpart, and summing the discounted differences yields the on-

impact change in valuation

Alnx; =Ink; —Inx, =~ Z ;7i (AE; [Adyyq4i] — AE¢ [InRyyq44]) (A.3)
i>0

where Inx; denotes the pre-arrival value. Inserting AE; [In R, 1,;] = ¢ AE; [In Ry 1]
and AE; [Ad;;14i] =0 for i > 1 into (A.3) yields

+ AE; [Ady 4] (A.4)

If AE; [Adi11] = 0, i.e. no cash-flow news beyond the realized one-step drop j recorded
att + 1, then

Let the disaster at f be realized at t + 1 with contraction j < 0. Furthermore, let the
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on-impact change in valuation be Alnx;. Then the co-jump in log returns at t + 1 is

given by
AlnRipy =InRpyy —InR ;= j+ Alnk

Applying the definition of g, given by (A.2), yields

_ AlnR; 14 _ 1+A1n1ct

i =1In(1—L —
qj ( ) ; ;

Plugging back (A.4) gives

g~1-— 1 AE:[In Ry n AE; [Ady 4]
jooo1-n¢ j

If dividend-growth news is transient at impact, i.e. AE; [Ad;;1] = 0, then

(A.5)

g1 1 AE;[InRyiq]

oo 1=n¢

Simple inspection of (A.5) reveals that g > 1 if AE; [In Ry;1] > 0 and AE; [Ad;11] < 0.
If either effect is strict, then g > 1 holds. Moreover, for a fixed j < 0, g is increasing in

both the persistence ¢ and the size of the expected-return jump AE; [In R;11].
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B Proof complements

B.1 Proof of Lemma 3
Proof. Define | (x) =1In (1 — p+ pe /). Then the log risk-free rate, given by (20), can
be re-written as follows
L 2o 2
lan:c5—|—'y;4—§'y o- =00 +](0) =] (y+0)
Note that In Ry is strictly decreasing in 6

alan 2 / /
5 = Yo T (0) =] (v+8) <0

as J” () > 0 and thus J' (v +6) > J' (6). Furthermore, the cross-partial derivative is

also negative

82 In Rf _
00

—0?—J" (Y +6) <0

since J” (-) > 0. Subsequently, +y attains its highest admissible value if 6 is zero. Define

1
fr)=d+ap—570" =] (7) —InR; =0

Then f is strictly concave on (0, %) as

f'(y)==0>=]"(v) <0

with limits lim. o f (7) =6 —In Ry > 0 and limy e f (7) = —co. As aresult, f has a
unique root 7" > 0 via the Intermediate Value Theorem.
U

B.2 Proof of Proposition 4

Proof. Define

1
G(7,0) 5(54—7]/1—572(72—7002—1—](9) —J(y+6) —InR; =0
where G (7, 0) again is strictly decreasing in 6

G (7,0 , ,
W) _ iy @)1 (r+0) <0
as J”(-) > 0 and thus J'(y+6) > J'(0). By Lemma 3 G(v,0) = f(y) > 0 for

v € (0, 7") while
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lim G (,0) = —c0

00— 00
as J(0) = J (y+80) = vj < 0 for § — oo. Thus for each v € (0, 7") there exists
a unique 0 () > 0 solving G (,6) = 0 via the Intermediate Value Theorem. The

Implicit Function Theorem gives 6 € C! with

) 9G(7,6) [9G (1,0)]"
dURE

As already established, the denominator is strictly negative, while the numerator is
given by
9G (7,9)
oY
Note that convexity of J (-) implies

=u—y0*—00*—] (y+0)

J'(y+60)y>T(v+0)—7](6)

Solving the weak inequality for J' (v +6) and substituting J(y+6) — J (6) from
G (7,0) gives

(S—IIIRf 1 5

J'(y+6) > tp—570°=0(7) 0

Plugging this result back yields

6—InR

oY 2 g
as InR¢ < 6. Subsequently, the Implicit Function Theorem implies 6 () < 0. Last,
note that as y | 0 the mean-value identity | (v +6) —J (6) = J' ({) ywith{ € (6,0 + )
and J' (¢) T —j implies 76 (y) 0> — 6 — In Ry and thus
6—1InR f
v0?

(5—1an

and 0" (y) ~— g

0 (r) ~

B.3 Proof of Lemma 4

Proof. For g > 1 define u = % € (0,1) and v = e~ (799 = ¢~ (1+0)iy > 1. Differenti-

ating o, with respect to g gives




where S(g) and S'(g) are given by

$2
S(g) =In (1 + W) +2In A(g) —InB(q)

u uz

l—p+pu 1—p+pu?

5'(a) =20 |
Collecting the bracket in §'(g) yields

u B u? B (1—p)u(l—u)
T—p+pu 1—p+p>  (1—p+pu)(l—p+pw?)
for u € (0,1). Since pj < 0, it follows that S’(g) < 0. In the limit S(g) is given by

. s>
lim S(g) =In <1 + W) +In(1—p)

g—o0

Solving for o,(q) > 0 as g4 — oo yields the sufficient condition. If (31) is violated, the
range of feasible g is restricted to g € [1,7), where 7 solves S (§) = 0. This guarantees
07(q) > 0 on the feasible set.

U

B.4 Proof of Proposition 5

Proof. By the Implicit Function Theorem there is a unique g (7y) solving F (g,77) = 0
for each y € (0, 7"). Totally differentiating the identity F (g (y),~) = 0 yields

v [OF(q,%) v, OF(q,7)] [0F(g.,7)] "
Define h(x) = W, which is increasing for x > 0. Differentiating (32) with respect
to g gives
IF (q,7) ),
=(y+0) poc——==+pj [h(u) —h(v
o0 (r+0) po 5(0) pi [h(u) = h(v)]

Lemma 4 shows that S’(g) < 0. Subsequently, the first term in %@’7) is strictly negative.

The second term satisfies pj [h(u) — h(v)] > 0 because h is increasing, v > u, and

j < 0. Consequently, the sign of %’;’7) is ambiguous. Nevertheless, Assumption 1

and continuity of %’;’7) on the branch imply the sign is constant on each connected

component. Differentiating (32) with respect to 7y gives

oF (9,7)
Y

+0'(7) aFgZ”Y) =[1+0 (V] {poo(@)+] (y+6)~T (v +6-1q)}
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where J' (y+0) —J' (y+60 —g) > 0. Thus the curly bracket is strictly positive for

p > 0. Since % has constant sign it follows that

sign {q' ()} = —¢ sign{1+6'(7)}

where ¢ € {+1, —1} is the constant sign of %‘Z]’v). By Proposition 4, 6’ () < 0 and is
continuous. Furthermore, if v | 0, 6’ (v) — —oo, implying 1+ 6’ (y) < 0. Conversely,
asy T "

' / —K—pj
lim {1+ 6 = 0
#ﬂ{ +6'(7)} 0 T )

as the denominator is strictly negative and the numerator is strictly negative given
u > —pj. Thus there exists a unique 7* € (0, 7") with 1+ 6’ (4*) = 0 while q () is
single-peaked on the admissible interval.

O

B.5 Proof of Proposition 6

Proof. Let w (y) = v+ 0 (7). Since j <0, A(g) > 1—pand B(q) = 1—pasqg —
co. Subsequently, 0;(q) — \/ln (1 + ;—Z) +1In(1—p) and In [1 —p+pew-ai|
In(1— p) as g — 0. As a result, the limit of (32) for § — oo is given by

. _ 1550 2
Lim F(q,v) =0+yp—37°0" —10(7) 0
2
+w ('y)pa\/ln (1 + %) +1In(1—p) (B.1)

+1n [1 —p+ pe_emj] —Inm

For fixed v, define Q(y) ={g >1:F(q,7) =0} and ' = {y > 0: Q () # @}. Con-
tinuity of F in (g, y) and the end-values F (1, ) and (B.1) ensure that Q () # @ when-
ever those end-values have opposite signs (or one equals zero). Define Yy := infI.
From Proposition 4, 6 (y) — oo as 7y | 0, implying lim,, o lim; .« F (g, ) = co. Hence
I' is nonempty and ymin > 0.

Take any decreasing sequence ¥, | Ymin With Q (yx) # @, and pick g, € Q (yn)-
The sequence {g,} is bounded: if g, — oo then F (g, ¥») converges to (B.1), which is
greater than zero for n large, contradicting F (g4, y») = 0. Thus, along a subsequence,
gn — § € [1,00) and by continuity F (4, Ymin) = 0. If § > 1, the point (4, Ymin) is
interior to {g > 1}. By Assumption 1 and Proposition 5 the Implicit Function Theorem
solves the local zero set {F = 0} either as g = q () or as v = 7(g), producing solutions
with v < Ymin, a contradiction. Hence 4 = 1 and
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F (1/ 'Ymin) =0 and q (’Ymin) =1

Next, using (20) to eliminate the risk-free terms in (32) at ¢ = 1 gives the boundary
identity

F(l,9) =InRy —Inm+InA(1) + (v +0 (7)) poor(1)
+J(r+0(r) —T(r+6(y)-1)

Differentiating yields

oF (1,7)
dy

+6'(7) W =[1+0 M) {pca()+] (v+6) =] (v +6 1)}

where as shown in Proposition 5 the curly bracket is strictly positive for p > 0.
Proposition 5 gives 1+ 6’ () < O near v | 0, so F(1,7) is strictly decreasing there.
Because F (1, Ymin) = 0 and F(1,7) — oo as ¢ | 0 from 60 (y) — 00, Ymin is the
unique smallest root of F (1,) = 0. Note, that the same argument can be applied for
Ymax := sup I' with the increasing sequence 7, 1 7t, which obtains ¢ as the unique
largest root of F (1,7) = 0.

Last, by Proposition 5 the risk-free equation (20) implies a unique risk-free upper
bound 7 at § = 0. Any feasible branch must satisfy v < 77, so the feasible set is an
interval I' = (Ymin, Ymax) With ymax < 7T

O
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