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Abstract

This paper integrates tail aversion, implemented via a one-period entropic

tilt, with rare disasters in a consumption-based asset pricing model with CRRA

utility to jointly address the equity premium and risk-free rate puzzles. The model

delivers closed-form expressions for the risk-free rate and asset moments, pushes

out the Hansen-Jagannathan bound, implies a low risk-free rate via diffusion and

disaster channels, and delivers natural upper and lower bounds of risk aversion.

Calibrated to long-run return data and disciplined by disaster evidence, the model

matches average returns, volatility, and a low real risk-free rate with very modest

risk aversion.
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1 Introduction

The size of the equity premium and the low real risk-free rate are among the most

persistent puzzles in macro-finance. Standard consumption-based models with con-

stant relative risk aversion (CRRA) utility and lognormal consumption growth imply

Sharpe ratios and risk-free rates that are far removed from those observed in the data

unless one adopts counterfactually high risk aversion (Mehra and Prescott, 1985, 2003;

Cochrane, 2005). The literature has responded with a range of mechanisms that either

raise the price of risk, depress the risk-free rate, or do both while preserving plausible

preferences and endowment dynamics. Surveys such as Cochrane (2017) emphasize

that, despite different microfoundations, many successful models share the common

theme that the market’s capacity to bear risk varies with macroeconomic conditions.

This paper proposes a simple synthesis that nests two empirically salient ingredi-

ents: (a) rare disasters in consumption in the spirit of Barro (2006, 2009), and (b) an

entropic (risk-sensitive) tilt that overweights bad consumption states in the one-period

stochastic discount factor (SDF), which shares the reduced-form implication of over-

weighting bad states with Benartzi and Thaler (1995). Formally, consumption growth

combines a Gaussian diffusion with a Bernoulli disaster captured by parameter j < 0

occurring with probability p. The SDF equals the CRRA kernel with risk aversion γ

scaled by an exponential change of measure in consumption growth with “tail aversion”

θ. The resulting pricing kernel loads on diffusion through γ + θ and on disasters

through a co-jump parameter q > 1 that captures valuation compression (e.g., leverage,

default, discount-rate spikes) at disaster times.

The model delivers transparent analytical expressions for the risk-free rate, asset

return moments, and the Sharpe ratio. The rare-disaster and tail aversion components

push out the Hansen-Jagannathan bound and generate equity premia consistent with

the data while maintaining modest within-period curvature γ. The risk-free rate falls

through two channels: an interaction term −γθÃ2 in diffusion (where Ã2 is the variance

of consumption growth), and a jump ratio that implies a negative drag when j < 0

and θ > 0. Intuitively, tail aversion acts like a state-contingent increase in marginal

utility during downturns without altering the period utility function.

The framework is intentionally parsimonious. I maintain CRRA period utility and

use the entropic tilt that generates tail aversion only for one-period pricing. A simple

derivation shows how the SDF arises from a standard robust control problem that

entails an exponential change of measure. This microfoundation facilitates comparisons

with recursive-preference and robust-control literatures (Epstein and Zin, 1989, 1991;

Hansen and Sargent, 2001, 2008; Maenhout, 2004), but does not rely on separating

risk aversion and intertemporal elasticity of substitution. To make the strength of

tail aversion transparent, I compute three quantitatively interpretable measures: the
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one-period Kullback–Leibler divergence, the implied total-variation bound, and the

risk-neutral disaster probability. These statistics separate informational distortions

from market prices and help gauge whether the extent of the tilt is economically

meaningful yet informationally modest.

Two theoretical results pin down the range of plausible levels of risk aversion. First,

if the risk-free rate is held fixed, there is an upper bound for risk aversion that the

model can accommodate. This bound occurs exactly when tail aversion is set to zero.

Second, imposing that equity values compress on impact in the event of disasters

generates both a lower and an upper admissible level of risk aversion. The global upper

bound is the smaller value of this new ceiling and the one implied by the risk-free rate.

Within that admissible interval, the size of valuation compression the model needs is

hump-shaped in risk aversion: it rises when risk aversion is very low and falls when

risk aversion is very high. The intuition is straightforward. Holding the observed

mean and variance of equity returns fixed, stronger compression reallocates risk from

the smooth, diffusive part of returns to rare jumps. At the same time, matching the

same risk-free rate forces tail aversion to decline as risk aversion increases, so the

model’s loading on the diffusion component first falls and then rises. Taken together,

the required compression therefore reaches a unique interior maximum.

To explore the quantitative implications of the model, I calibrate preference and

consumption parameters to standard values and set (p, j) using disaster evidence

(Barro, 2006; Barro and Ursúa, 2008a; Nakamura, Steinsson, Barro, and Ursúa, 2013).

Three parameters are then inferred from three moments: θ from the risk-free rate,

co-jump q and the volatility of the diffusion part of asset return Ãr from the mean and

variance of equity returns, and the drift of the diffusion part of the asset return µr

from the asset pricing equation. The mapping from moments to parameters is analytic

and exploits the mixture-lognormal structure of returns. The baseline fit reproduces

average market returns and volatility as well as the low real risk-free rate found in

the data by construction, implying realistic Sharpe ratios. The calibration reconciles

the puzzles with modest risk aversion. The implied one-period Kullback–Leibler

divergence, total-variation, and risk-neutral disaster probability show that the model

is informationally hard to distinguish from a standard CRRA model while creating

substantial tail aversion.

Three simple exercises help clarifying mechanics. First, shutting down either the

tilt (θ = 0) or disasters (p = 0) reveals that both channels are needed to match the

risk-free rate and premia without implausible parameters. Second, sensitivity analyses

show that premia reallocate between the diffusion covariance and disaster co-jumps.

Raising the diffusion covariance reduces the required co-jump size, while lowering the

diffusion covariance raises it. These patterns echo broader macro-finance findings on

time variation in the price of risk (Cochrane, 2017) and links to state variables such
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as the consumption-wealth ratio (Lettau and Ludvigson, 2001). Last, I also examine

how the calibration responds quantitatively to changes in γ by recomputing θ (γ) from

the risk-free rate equation and then solving jointly for (q (γ) , µr (γ) , Ãr (γ)) using the

return moments and the asset pricing equation. Two robust patterns emerge. First,

holding the risk-free rate fixed, θ (γ) is decreasing in γ in the empirically relevant

range. Lower γ necessitates larger tail aversion to depress the risk-free rate, while

higher γ requires smaller tail aversion. Second, to keep the equity mean and variance

fixed, q adjusts to reallocate risk between diffusion and disasters. In line with the

theoretical results, both higher and lower γ permit a smaller q with almost no change in

Ãr. In the baseline calibration, the admissible range for risk aversion is γ ∈ (0.46, 7.08).

Thus, incorporating tail aversion generates a natural range for risk aversion that is

quantitatively consistent with empirically observed values.

This paper makes several novel contributions. First, it offers a compact SDF that

integrates rare disasters and an entropic tilt while maintaining CRRA period utility,

with a clean microfoundation from a risk-sensitive recursion. Second, it is able to derive

closed-form expressions for key moments (risk-free rate, Sharpe ratio, HJ bound) and

an analytic inversion that maps moments to parameters (q, µr, Ãr). Third, it presents

a quantitative calibration disciplined by disaster evidence that reconciles the equity

premium and risk-free rate puzzles with potentially very low γ, even γ < 1 found in

some microeconomic settings (e.g., Holt and Laury, 2002; Chetty, 2006; Cohen and

Einav, 2007; Chiappori and Paiella, 2011; Barseghyan, Molinari, O’Donoghue, and

Teitelbaum, 2018). Last, it provides new empirical guidance on the magnitudes of

equity losses based on historical equity losses versus consumption drops. The approach

builds on the rare-disaster channel (Rietz, 1988; Barro, 2006) and is complementary to

habit formation (Campbell and Cochrane, 1999) and long-run risks (Bansal and Yaron,

2004). The tail aversion via entropic tilt connects to robust-control and multiplier-

preference pricing (Hansen and Sargent, 2001, 2008; Maenhout, 2004) and is consistent

with recursive utility foundations (Epstein and Zin, 1989, 1991). Intermediary-based

models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014) achieve

similar macro-finance patterns via capital constraints rather than household marginal

utility. In the context of the proposed model the co-jump parameter q > 1 can be

interpreted as the valuation compression at crisis times.

The rest of this paper is organized as follows. Section 2 reviews related literature,

Section 3 introduces the model and microfoundation of tail aversion, Section 4 derives

analytical results and discusses economic intuition, Section 5 derives the bounds on

risk aversion implied by a model with tail aversion, Section 6 presents the quantitative

evaluation and sensitivity exercises, including the mapping from data to (q, µr, Ãr),

Section 7 concludes.
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2 Related literature

The equity premium puzzle highlights that representative-agent, time-additive models

with plausible risk aversion cannot match the observed spread between equity and

safe returns, while the companion risk-free rate puzzle emphasizes that the same

models imply counterfactually high real short rates without implausible discounting

or intertemporal elasticity of substitution. These facts catalyzed a large literature that

proposes mechanisms to raise risk compensation, depress the risk-free rate, or do

both in a disciplined way (Mehra and Prescott, 1985; Weil, 1989; Cochrane, 2005, 2017).

A unifying theme is that the economy’s capacity to bear risk varies over time with

macroeconomic conditions, so models that embed state dependence in marginal utility

(or in the representative “marginal investor”) perform better in matching the data.

One prominent class of models is external habit formation (surplus consumption),

which makes effective risk aversion countercyclical. When surplus consumption is

low, marginal utility responds strongly to consumption, raising premia and lowering

the risk-free rate. This framework matches pro-cyclical valuation ratios and return

predictability (Campbell and Cochrane, 1999). A common concern is that it can imply

very low and too-smooth risk-free rates and relies on sizable cyclical movements in the

surplus-consumption ratio that are hard to discipline empirically (Cochrane, 2017).

A second class of models uses recursive preferences. The widely used Epstein-Zin-

Weil preferences separate risk aversion from the intertemporal elasticity of substitution

so that high prices of risk can co-exist with a low risk-free rate. When paired with

small, persistent components in expected consumption growth and volatility, this

yields the long-run risks framework, which connects premia to macro volatility and

low-frequency growth movements (Epstein and Zin, 1989, 1991; Bansal and Yaron,

2004). Empirically, identification and estimation of low-frequency components are

non-trivial (see Bansal, Kiku, and Yaron, 2012, for evidence and discussion).

A third class of models introduces rare disasters. A small probability of large

consumption contractions increases premia and lowers the risk-free rate (Rietz, 1988;

Barro, 2006). Allowing disaster intensity to vary across time produces volatile premia,

return predictability, and a wide set of macro-finance regularities (Gabaix, 2012). Cross-

country and long-horizon datasets provide measures for the size and frequency of

disasters and the mapping from consumption drops to asset market losses (Barro and

Ursúa, 2008a; Nakamura, Steinsson, Barro, and Ursúa, 2013). In practice, reconciling

equity losses with consumption drops typically requires “valuation compression”

at disaster times (e.g., leverage/default or higher discount rates). Martin (2008)

quantifies the welfare cost of disaster risk. The co-jump parameter q > 1 introduced

in the current paper provides a parsimonious asset-market counterpart by capturing

valuation compression at disaster times. Beyond matching premia and the risk-free
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rate, rare-disaster models have implications for welfare costs. Barro (2009) shows

that observed disaster risk can generate sizable welfare costs and helps connect the

asset-pricing evidence in Barro (2006) to macro quantities. Allowing the disaster

probability to vary over time improves the fit to volatility and predictability. Gabaix

(2012) provides an exactly solved framework with variable disaster risk, and Wachter

(2013) shows that time-varying rare-disaster risk can account for high equity volatility

and a low, smooth risk-free rate.

A complementary strand emphasizes uninsurable idiosyncratic risk and incomplete

markets. In Aiyagari-Bewley-Huggett environments, precautionary saving against

persistent idiosyncratic income shocks raises the demand for safe assets, lowering

the risk-free rate. Incorporating realistic heterogeneity and survival risk allows the

stochastic discount factor of the marginal investor to be volatile even when aggregate

risk is modest (Aiyagari, 1994). Building on this insight, Constantinides and Duffie

(1996) show that cross-sectional heterogeneity in consumption growth and limited

insurance can reconcile a high equity premium with moderate risk aversion by making

the marginal investor’s intertemporal marginal rate of substitution more sensitive

to bad idiosyncratic outcomes. Heaton and Lucas (1996) quantify how idiosyncratic

labor-income risk and limited participation reduce risk sharing and push down the

risk-free rate in otherwise standard calibrations. Using panel evidence, Storesletten,

Telmer, and Yaron (2004) document large and countercyclical idiosyncratic income

risk over the life cycle, strengthening these mechanisms in quantitatively disciplined

settings. On the cross-sectional side, the idiosyncratic volatility literature finds that

higher firm-level volatility is typically not rewarded in average returns. Portfolios

with high idiosyncratic volatility earn lower expected returns (Ang, Hodrick, Xing,

and Zhang, 2006). Moreover, firm-level idiosyncratic volatility has increased over

time (Campbell, Lettau, Malkiel, and Xu, 2001). While these facts do not directly

resolve the aggregate puzzles, they reinforce the view that incomplete risk sharing

and idiosyncratic tail exposure shape the supply of safe assets (risk-free rates) and

the pricing of risky cash flows in bad states. This interpretation is consistent with the

presented framework. As mentioned above, the co-jump parameter q > 1 can be read

as valuation compression that is more severe for firms or intermediaries whose owners

are especially exposed to idiosyncratic downside risk, while the entropic tilt magnifies

the price impact of such left-tail states.

A different set of approaches uses risk-sensitive tilts and robustness. Multiplier (KL)

preferences tilt probability weights toward adverse states, effectively assigning more

weight to left-tail outcomes without changing within-period curvature when period

utility is CRRA (Hansen and Sargent, 2001, 2008; Maenhout, 2004). In a one-period

pricing kernel this appears as an exponential change of measure in consumption

growth. The resulting state dependence raises the price of risk precisely when the
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economy is weak. The present paper adopts exactly this device via an entropic tilt and

shows how it can be microfounded from a risk-sensitive recursion.

Similarly, Martin (2013) develops a cumulant-generating-function (CGF) approach

to consumption-based asset pricing, highlighting that higher cumulants of consumption

growth can have first-order effects on asset prices. The mixture-lognormal/disaster

setting presented in this paper yields tractable CGFs, and the entropic tilt exponentially

reweights the left tail of consumption growth, thereby increasing the SDF’s sensitivity to

left-tail cumulants while leaving period-utility curvature at γ. In this sense, the derived

closed-form Sharpe ratio and HJ bound can be viewed as a CGF-based specialization

with explicit jump and tilt components.

Related to these approaches, Benartzi and Thaler (1995) explain the equity pre-

mium by combining loss aversion with narrow framing (i.e. frequent evaluation). The

entropic tilt presented in the current paper shares the reduced-form implication of

overweighting bad states but differs in mechanism and microfoundations. Specifically,

the entropic tilt is a smooth change-of-measure on consumption growth with a robust-

control interpretation rather than a reference-dependent kink at a gain/loss boundary.

As a result, θ raises the price of downside risk without invoking a reference point or

probability weighting. For one-period (lognormal) benchmarks, an increase in evalua-

tion frequency in the Benartzi and Thaler (1995) framework is numerically akin to a

larger effective θ at short horizons, but the two approaches remain conceptually distinct.

Likewise, prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman,

1992) explains high risk premia by combining loss aversion with probability weighting

that overemphasizes bad, low-probability outcomes. In contrast, the present approach

generates higher disaster-state weights via the risk-neutral probabilities implied by the

SDF’s entropic tilt, delivering a similar pricing implication while maintaining CRRA

period utility (see also Barberis, Huang, and Santos, 2001).

Finally, intermediary-based asset pricing models emphasize that the marginal

investor is a constrained financial intermediary. That is, premia are high when interme-

diary capital is scarce and risk-bearing capacity is low (He and Krishnamurthy, 2013).

Embedding a financial sector generates non-linear amplification and state-dependent

risk-taking, providing a complementary resolution outside representative-household

models (Brunnermeier and Sannikov, 2014).

Across these strands, the common remedy is to raise the covariance of the pricing

kernel with bad states and/or lower the unconditional risk-free rate in those same

states. The approach in this paper sits at the intersection of rare disasters and risk-

sensitive tilting. Rare disasters contribute large negative realizations for consumption

and returns. The entropic tilt increases the weight on those realizations in pricing,

pushing out the Hansen-Jagannathan bound while preserving modest CRRA curvature.

This combination offers a parsimonious route to reconciling the equity premium and
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the low risk-free rate with quantitatively disciplined parameters.

3 Model

The following section presents the model economy. After recapping the basic house-

hold problem in consumption-based asset pricing models it introduces two simple

modifications to the generic model: rare disasters in endowments and returns as well

as tail aversion in the preference structure.

3.1 Recap of the household problem

The generic consumption-based asset pricing problem in the spirit of Lucas Jr. (1978)

and Cochrane (2005) is given by maximizing the expected discounted utility from

consumption

max
{Cs}

∞
s=0

E0

[
∞

∑
t=0

´tu (Ct)

]
with ´ ∈ (0, 1) (1)

where u (·) is a strictly increasing, strictly concave utility function. The objective is

maximized subject to the flow budget constraints

Wt + ϕt−1Xt g Ct + ϕtPt (2)

where Wt is an exogenous endowment, ϕt is the quantity of a risky asset purchased, Pt

is the price of the asset and Xt is the asset’s payoff. Payoffs are random variables given

by the future price of the assets as well as dividend payments Dt+1, that is

Xt+1 = Pt+1 + Dt+1 (3)

The basic model can be extended to multiple assets and portfolio choice between

riskless and risky assets. However, for the following analysis it suffices to assume a

single risky asset and a single riskless alternative that can be bought and sold.1 Setting

up the Lagrangian of (1) subject to (2) and taking first-order conditions with respect to

Ct and ϕt gives the core asset pricing equation

Pt = Et [Mt+1Xt+1] (4)

where Mt+1 ≡ ´
u′(Ct+1)

u′(Ct)
is the stochastic discount factor (SDF), which ultimately links

consumption growth to asset returns. That is, individuals adjust consumption today

relative to tomorrow until prices and expected returns align. Define the gross return to

1Extending to multiple assets and portfolio choice leaves the qualitative results unaffected.

7



an asset as Rt+1 ≡ Xt+1
Pt

with the net return defined as Rt+1 − 1. This allows re-writing

(4) as

1 = Et [Mt+1Rt+1] (5)

As the asset is risky, a risk-free benchmark to compare asset returns to is required. If

the asset were to pay out a risk-free return R f ,t+1 tomorrow then R f ,t+1 is given by

re-arranging (5)

R f ,t+1 =
1

Et [Mt+1]
(6)

That is, a risk-free asset either pays out Xt+1 = R f ,t+1 units of consumption tomorrow

with certainty while costing one unit of consumption today or is sold at discounted

price Pt =
1

R f ,t+1
today and pays out one unit of consumption tomorrow with certainty.

Using (6) and the fact that E [AB] = E [A]E [B] + Cov [A, B] for two (correlated)

random variables A and B allows re-arranging (5) for the risky asset to obtain the

Sharpe ratio of mean excess return over standard deviation as

SR ≡
Et [Rt+1]− R f ,t+1

Ã [Rt+1]
= −

Covt [Mt+1, Rt+1]

Ãt [Mt+1] Ãt [Rt+1]︸ ︷︷ ︸
≡ρMR∈(−1,1)

Ãt [Mt+1]

Et [Mt+1]
(7)

where ρMR is the correlation coefficient between the SDF and the asset return, Ãt [Mt+1]

is the standard deviation of the SDF, and Ãt [Rt+1] is the standard deviation of the asset

return. As the correlation coefficient between the SDF and the asset return cannot be

larger than one in absolute value (7) can be simplified to

|SRmax| f
Ãt [Mt+1]

Et [Mt+1]
(8)

which constitutes the upper envelope of the Sharpe ratio, also known as the Hansen-

Jagannathan (HJ) bound (see Hansen and Jagannathan, 1991). Expressions (6) and (7)

are the main moments of interest to be matched to the data. The average real annual

long-run net equity return is around 7.1% while exhibiting a standard deviation of

around 22% (see Jordà, Knoll, Kuvshinov, Schularick, and Taylor, 2019). Short-term

bills have an average real annual long-run net return of about 1.3% in the same data.

That is, the model’s Sharpe ratio has to fulfill

7.1% − 1.3%
22%

≈ 0.26 f
Ãt [Mt+1]

Et [Mt+1]
(9)

The “equity premium puzzle” (Mehra and Prescott, 1985) arises as the standard

consumption-based asset pricing model with lognormally distributed consumption

growth and CRRA utility cannot match the left-hand side of (9) by a sizable amount.

8



That is, for period utility and consumption growth given by

u (Ct) =
C

1−γ
t − 1
1 − γ

and ln
Ct+1

Ct

i.i.d.
∼ N

(
µ, Ã2

)

the moments on the right-hand side of (9) are given by

Et [Mt+1] = ´e−γµ+ 1
2 γ2Ã2

and Ãt [Mt+1] = ´e−γµ+ 1
2 γ2Ã2

√
eγ2Ã2 − 1

where µ is mean consumption growth and Ã2 is the variance of consumption growth.

This yields the log risk-free rate and HJ bound as

ln R f ,t+1 =δ + γµ −
1
2

γ2Ã2

|SRmax| ≈γÃ

where δ = − ln ´. Long-run growth in (non-durable) consumption per capita has a

standard deviation of around 2% per year. This implies

0.26 f γ × 0.02 ⇐⇒ γ g 13

which is an unreasonably high degree of risk aversion. Additionally, this assumes

perfect correlation between the SDF and asset returns. The general case given by

∣∣∣∣
Et [Rt+1]− R f ,t+1

Ãt [Rt+1]

∣∣∣∣ = ρMRγÃ

requires γ ≈ 65 for ρMR ≈ 0.2 (as is typically the correlation between consumption

growth and asset returns). Furthermore, even if γ = 65 were acceptable, the log

risk-free rate is then given by

ln R f ,t+1 ≈ δ + 0.78

for µ = 0.025 and Ã = 0.02. This in turn implies a negative rate of time preference if

the model is to match the data on observed risk-free rates and constitutes the “risk-free

rate puzzle” (Weil, 1989). The following parts of this section describe the structure

imposed on the SDF Mt+1 and asset return Rt+1. The approach combines rare disasters

with an entropic tilt. Together they expand the HJ bound while maintaining modest

curvature.

3.2 Endowments and returns

Let consumption growth be characterized by
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gt+1 ≡ ln
Ct+1

Ct
= zt+1 + Jt+1 (10)

where zt+1
i.i.d.
∼ N

(
µ, Ã2

)
and Jt+1 ∈ {0; j} is a Bernoulli disaster jump with j < 0 that

occurs with probability p ∈ [0, 1], that is

Pr (Jt+1 = j) = p (11)

which follows Barro (2006). For simplicity, the risky asset has diffusive log return

rt+1
i.i.d.
∼ N

(
µr, Ã2

r

)
with

Corr(rt+1, zt+1) ≡ ρ

Assume that jumps and diffusion are uncorrelated, i.e.

Jt+1 §§ (zt+1, rt+1)

However, if the consumption disaster occurs, the asset return co-jumps by qj < 0 with

q > 1.2 As a result, the (gross) asset return is given by

Rt+1 =





ert+1 if J = 0,

ert+1+qj if J = j
(12)

There are three noteworthy aspects about this specification. First, the specification of

q > 1 implies that the price-dividend ratio moves at the consumption disaster. If the

representative asset pays an aggregate dividend Dt equal to a claim on consumption

(i.e. Dt = Ct), then in the case of a constant price-dividend ratio Pt = »Dt the gross

return is given by

Rt+1 =
Pt+1 + Dt+1

Pt
=

» + 1
»

Dt+1

Dt

Hence ln Rt+1 = ln
(

»+1
»

)
+ ln Dt+1

Dt
. A disaster multiplies Dt+1 by ej, so ∆ ln Rt+1 = j.

That is, the consumption (and hence dividend) disaster translates one-to-one into the

return and thus q ≡ 1. If the price-dividend ratio moves at the consumption disaster

(e.g., discount rates rise, risk premia spike etc.), then

∆ ln Rt+1 = j + ∆ ln »t+1 and q = 1 +
∆ ln »t+1

j

Since ∆ ln »t+1 < 0 in downturns as valuation compresses, this implies q > 1.3 Sub-

2For further empirical evidence on this channel see Barro and Ursúa (2008a); Nakamura, Steinsson, Barro,
and Ursúa (2013) among others.

3Appendix A contains a simple model for valuation compression using standard asset pricing arguments.
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sequently, the asset price falls by more than the one-period dividend shortfall. More

specifically, if a disaster cuts consumption by a fraction x ∈ [0, 1], i.e. j = ln(1 − x),

and the equity loss on impact is given by the fraction L ∈ [0, 1], then

qj = ln(1 − L) =⇒ q =
ln(1 − L)

ln(1 − x)
(13)

Second, even though this specification contains disastrous jumps it does not imply

a fat-tailed distribution of the return. To see this note that log returns are given by

ln Rt+1 = rt+1 + q Jt+1. The moment generating function of ln Rt+1 is finite for all

t ∈ R

MR(t) ≡ E

[
et ln Rt+1

]
= etµr+

1
2 t2Ã2

(
1 − p + p etqj

)
< ∞

implying that its tail probabilities decay at least exponentially for some t > 0. Therefore,

although the model increases the chances of an “outlier” relative to a single normal

distribution, the far-tail decay rate is still governed by the Gaussian diffusion. Hence,

the results do not rely on a fat-tailed distribution of returns.

Third, the model adopts a one-period, on-impact disaster realization for simplicity

and transparency. This choice preserves a closed-form mixture-lognormal solution for

the return moments as well as a compact risk-free rate without adding a persistence

state.

3.3 Preferences

Let period utility be given by standard CRRA preferences with coefficient of relative

risk aversion γ > 0. Further, let the subjective discount rate be δ > 0. In isolation this

implies an inter-temporal marginal rate of substitution given by

IMRSt,t+1 ≡ ´
u′ (Ct+1)

u′ (Ct)
= e−δ

(
Ct+1

Ct

)−γ

= e−δ−γgt+1

To characterize the importance of avoiding large losses in utility, let period utility be

adjusted by an entropic tilt that replaces the standard conditional expectation. Let

St+1 be a shock (or vector of shocks) whose left-tail realizations are overweighted by

the household for a given choice of future consumption Ct+1. The entropic tilt is then

given by

E
(θ)
t [Ct+1] ≡

Et

[
Ct+1 e−θ St+1

]

Et

[
e−θ St+1

]

The interpretation q > 1 is also consistent with the evidence that stock-price declines during disasters
typically exceed the contemporaneous drop in consumption/dividends (e.g. Barro and Ursúa, 2008b)
and with frameworks where disaster news raises required returns (Gabaix, 2012; Wachter, 2013). It is
also compatible with the levered/unlevered distinction stressed in Barro (2006, 2009).
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where θ > 0 governs the degree of tail aversion. This is equivalent to a normalized

exponential change of measure associated with KL (“multiplier”) preferences (see

Kullback and Leibler, 1951; Hansen and Sargent, 2001, 2008; Maenhout, 2004). If one

restricts St+1 to consumption growth, the one-period pricing operator is defined by

E
(θ)
t [Ct+1] ≡

Et

[
Ct+1 e−θ gt+1

]

Et

[
e−θ gt+1

] (14)

which implies an inter-temporal marginal rate of substitution given by

IMRSt,t+1 ≡ ´
u′ (Ct+1)

u′ (Ct)︸ ︷︷ ︸
utility MRS

e−θ gt+1

Et

[
e−θ gt+1

]
︸ ︷︷ ︸
tail adjustment

There are two equivalent routes to microfound the tilt. First, one can axiomatize

a one-period entropic change of measure that depends only on consumption growth.

This yields an exact SDF immediately. Second, one can adopt a risk-sensitive recursion

with multiplier (KL) preferences under full information, which yields a general SDF.

When the continuation value is (locally) affine in consumption growth, the two are

observationally equivalent at one period. The following Proposition describes how an

exponential change of measure yields an exact tail-adjusted SDF in closed-form.

Proposition 1. For any Ft+1-measurable Xt+1 : Ω → R, let the one-period pricing operator

be defined by

E
(θ)
t [Xt+1] ≡ E

Qθ
t [Xt+1] =

Et

[
Xt+1 e−θgt+1

]

Et

[
e−θgt+1

]

with Radon-Nikodym derivative

Λt+1 ≡
dQθ

dP

∣∣∣∣
Ft+1

=
e−θgt+1

Et

[
e−θgt+1

]

where Qθ is the entropic-tilt measure and P is the physical (i.e. data-generating) measure. Then

the recursion

Ut = u (Ct) + ´ Et [Λt+1 Ut+1]

yields the exact SDF

Mt+1 = ´
u′ (Ct+1)

u′ (Ct)

e−θ gt+1

Et

[
e−θ gt+1

] =
e−δ−(γ+θ)gt+1

Et

[
e−θ gt+1

]

given CRRA period utility and provided that Et

[
e−θgt+1

]
∈ (0, ∞) almost surely.

Proof. Follows immediately from the Radon-Nikodym derivative Λt+1 on (Ω,Ft+1)

12



and the FOC for asset demand. By construction Et [Λt+1] = 1 and Λt+1 g 0, so Qθ is a

well-defined probability kernel on (Ω,Ft+1).

For the robust-control (risk-sensitive) recursion below I impose no measurability

restriction: the worst-case density m is allowed to be Ft+1-measurable (full information).

The following definition lays out the robust-control operator.

Definition 1. For any Ft+1-measurable Xt+1, define

Tθ (Xt+1) ≡ inf
m∈M

{
Et [m Xt+1] +

1
θ

Et [m ln m]

}
s.t. Et[m] = 1

where M := {m g 0 : m is Ft+1-measurable }.

The solution to this operator is summarized in the following Lemma.

Lemma 1. Let Xt+1 ∈ L1 (Ft+1) and Et

[
e−θXt+1

]
∈ (0, ∞) almost surely, then

Tθ (Xt+1) = −
1
θ

ln Et

[
e−θ Xt+1

]
(15)

while the unique minimizer is given by

m⋆ =
e−θ Xt+1

Et

[
e−θ Xt+1

] (16)

Proof. Consider the Lagrangian given by

L (m, ¼) = Et

[
mXt+1 +

1
θ

m ln m − ¼(m − 1)
]

where ¼ is the Lagrange multiplier. The integrand m 7→ mX + 1
θ m ln m is strictly

convex on [0, ∞). As a result, the conditional first-order condition is necessary and

sufficient. Differentiating pointwise and setting to zero yields

Xt+1 +
1
θ
[1 + ln m⋆]− ¼ = 0

Solving for m⋆ gives

m⋆ = eθ ¼−1−θ Xt+1 =
e−θ Xt+1

Z

with Z = e1−θ ¼. Satisfying the constraint Et [m⋆] = 1 requires Z = Et

[
e−θ Xt+1

]
and

thus yields

m⋆ =
e−θ Xt+1

Et

[
e−θ Xt+1

]

13



Substituting back into the objective gives the optimal value as

Tθ (Xt+1) = Et

[
m⋆ Xt+1 +

1
θ

m⋆ ln
e−θ Xt+1

Et

[
e−θ Xt+1

]
]
= −

1
θ

ln Et

[
e−θ Xt+1

]

Strict convexity of m ln m ensures uniqueness of the result.

The next Proposition summarizes how the robust control problem embedded in a

risk-sensitive recursion generates a tilted SDF in general.

Proposition 2. Consider the risk-sensitive recursion Ut = u (Ct) + ´ Tθ (Ut+1) with

Et

[
e−θUt+1

]
∈ (0, ∞) almost surely. Then the one-period SDF is given by

Mt+1 = ´
u′ (Ct+1)

u′ (Ct)

e−θ Ut+1

Et

[
e−θ Ut+1

] (17)

Proof. Let Pt be the price of a payoff Xt+1 in one period. Embed the payoff into the

period-t budget and consider a marginal variation. The envelope theorem for the

recursion

Ut = u (Ct) + ´ inf
mg0,Et[m]=1

{
Et [mUt+1] +

1
θ

Et [m ln m]

}

implies that the marginal value of one extra unit of payoff at t + 1 is given by

´ Et

[
m⋆ u′ (Ct+1)

∂Ct+1

∂Xt+1

]

evaluated at the optimizer m⋆ from Lemma 1. A one-to-one mapping between payoff

and consumption implies ∂Ct+1
∂Xt+1

= 1, while the marginal cost today is given by u′ (Ct).

Hence the SDF is given by

Mt+1 = ´
u′ (Ct+1)

u′ (Ct)

e−θ Ut+1

Et

[
e−θ Ut+1

]

which is equivalent to (17).

If one keeps the risk-sensitive recursion and projects Ut+1 = at + bt gt+1, then the

effective tilt is given by θ⋆ = θ bt The following Lemma lays out simple sufficient

conditions for this to hold.

Lemma 2. Let the future state (or state vector) be given by

St+1 = φSt + ψgt+1 + ϵt+1

14



with Et [ϵt+1] = 0. If Ut+1 = χ + ÄSt+1, then Ut+1 = at + bt gt+1 + εt+1 is affine in gt+1

with Et [εt+1] = 0.

Proof. Follows immediately from substitution and linearity of expectations, that is

Ut+1 = χ + Ä φSt + Ä ψgt+1 + Ä ϵt+1, with at = χ + Ä φSt, bt = Ä ψ, εt+1 = Ä ϵt+1, and

Et [εt+1] = 0.

The last Proposition establishes the existence of an exact one-period SDF in this

general case.

Proposition 3. Suppose Ut+1 = at + bt gt+1. With CRRA period utility (17) reduces to

Mt+1 =
e−δ−(γ+θ bt)gt+1

Et

[
e−θ bt gt+1

]

with effective tilt θ⋆ = θ bt.

Proof. Follows from inserting Ut+1 = at + bt gt+1 in (17), applying ´
u′(Ct+1)

u′(Ct)
= e−δ−γgt+1 ,

and collecting terms.

A few aspects are noteworthy about this result. First, write the exact projection

as Ut+1 = at + bt gt+1 + εt+1 with Et [εt+1] = 0. If εt+1 is conditionally sub-Gaussian

given Ft with variance proxy Ã2
ε , e.g., εt+1|Ft ∼ N

(
0, Ã2

ε

)
, then the risk-free rate from

the affine projection (without the error term) has the following projection error

∣∣∆ ln R f

∣∣ f 1
2

θ2Vart [εt+1]

while the distance to the HJ bound shifts by at most O
(
θ2 Vart [εt+1]

)
. Hence accuracy

is governed by the residual variance left after projecting Ut+1 on gt+1. If the projection

captures a fraction R2 of the variation in Ut+1 attributable to gt+1, then Vart [εt+1] =

b2
t

1−R2

R2 Vart [gt+1]. It is reasonable to assume that R2 is at least moderate as consumption

growth shocks are small at annual frequency and the continuation value is a smooth

functional of the states. Therefore R2
> 0.5 is appropriate which implies, combined

with Vart [gt+1] = (0.02)2, that the error is quantitatively negligible even for medium

θ⋆. Additionally, if εt+1 is conditionally independent of gt+1 then

Mexact
t+1

Maffine
t+1

=
e−θ εt+1

Et

[
e−θ εt+1

] =⇒ Et

[
Mexact

t+1
]
= Et

[
Maffine

t+1

]

and there is no projection error in the risk-free rate. Altogether, retaining the risk-

sensitive recursion and projecting onto gt+1 yields a stochastic discount factor with tail

aversion θ⋆ = θbt and a tightly bounded approximation error. In contrast, Proposition
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1 justifies the tail-adjusted one-period SDF exactly under the Ã [gt+1] entropic pricing

restriction.

Second, analogous possible microfoundations include ambiguity aversion with

worst-case re-weighting as well as ruin or survival constraints approximated by expo-

nential tilting of bad tail probabilities. All approaches yield “truly” stochastic subjective

discounting that is negatively correlated with consumption growth in reduced form.

Third, without uncertainty in the marginal utility generated from consumption

growth the tail adjustment collapses to one in expectations. As a result, the tail-adjusted

SDF is given by

Mt+1 =
e−δ−(γ+θ)gt+1

Et

[
e−θ gt+1

] (18)

Note that the one-period SDF applies an entropic tilt θ > 0 to bad consumption

states (i.e. a larger θ implies more weight on low Ct+1) while the aggregator remains

CRRA. That is, only the one-period SDF is tilted. Therefore, the local log-SDF loading

on consumption growth is −(γ + θ), but the relative risk aversion remains γ. Put

differently, the tail adjustment raises the price of consumption risk but does not alter

utility curvature.

4 Analytic results

The following section presents the analytic results from the model and their economic

intuition. To lighten notation, I drop time subscripts as the price is always defined for

period t, the payoff is always defined for period t + 1, and expectations are conditional

on time-t information.

4.1 Risk-free rate, return moments, and equity premia

Since consumption growth is given by a lognormal component and a Bernoulli jump

its expectation is given by

E
[
e−³g

]
= e−³µ+ 1

2 ³2Ã2
(

1 − p + p e−³j
)

(19)

Under the specified mixture-normal consumption growth, the denominator of the SDF

for all θ > 0 is finite by (19). Combining (6) with (18) and using (19) gives the log

risk-free rate as

ln R f = δ + γµ −
1
2

γ2Ã2 − γ θ Ã2 + ln
[

1 − p + p e−θ j

1 − p + p e−(γ+θ)j

]
(20)
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Combining (5), (12), and (18) while using (19) implies the following for the mean

log (diffusive) return implied by the asset pricing equation

µr +
1
2

Ã2
r =δ + γµ −

1
2

γ2Ã2 − γ θ Ã2 + (γ + θ) ρ Ã Ãr

+ ln
[

1 − p + p e−θ j

1 − p + p e−(γ+θ−q)j

] (21)

Return moments are given by

E [R] =eµr+
1
2 Ã2

r

(
1 − p + p eqj

)
(22)

E

[
R2

]
=e2µr+2Ã2

r

(
1 − p + p e2qj

)

Var [R] =E

[
R2

]
− (E [R])2 (23)

Combining (7), (21), (22), and (23) yields the Sharpe ratio as

SR =
eµr+

1
2 Ã2

r
(
1 − p + p eqj

)
− eδ+γµ− 1

2 γ2Ã2−γ θ Ã2 1−p+p e−θ j

1−p+p e−(γ+θ)j

√
e2µr+2Ã2

r
(
1 − p + p e2qj

)
−

[
eµr+

1
2 Ã2

r
(
1 − p + p eqj

)]2
(24)

For small risks this can be approximated by

SR ≈
(γ + θ) Ã Ãr ρ − p

(
eqj − 1

) (
e−(γ+θ)j − 1

)

√
Ã2

r + p (1 − p)
(
eqj − 1

)2

Finally, the HJ bound is given by using (18) and applying (19)

SRmax =

√
E [M2]

E [M]2
− 1 =

√√√√e(γ+θ)2Ã2 1 − p + p e−2(γ+θ)j

(
1 − p + p e−(γ+θ)j

)2 − 1 (25)

4.2 Measures of tail aversion

In order to quantify the impact of tail aversion I compute two measures of its strength:

one from the preference-side, one from the market-side. By (18), the entropic-tilt

measure and the one-period pricing operator are characterized by

dQθ

dP
=

e−θg

E
[
e−θg

] and EQθ [X] =
E
[
X e−θg

]

E
[
e−θg

]

Then the one-period Kullback-Leibler divergence of Qθ from P is given by

DKL (Qθ∥P) = EQθ

[
ln

dQθ

dP

]
= EQθ [−θ g]− ln E

[
e−θg

]
(26)
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In order to express (26) in closed-form note the following equivalence

EQθ [g] =
E
[
g e−θg

]

E
[
e−θg

] = −
d ln E

[
e−θg

]

dθ
(27)

Plugging (27) back into (26) while using (19) gives the one-period Kullback-Leibler

divergence as

DKL (Qθ∥P) =
1
2

θ2 Ã2 − ln
(

1 − p + p e−θ j
)
−

p θ j e−θ j

1 − p + p e−θ j
(28)

where DKL (Qθ∥P) measures (in nats) how far the entropically tilted preference mea-

sure Qθ is from the physical measure P. Numerically, small per-period values mean

the preference distortion is informationally modest. As a rule of thumb, under in-

dependence across years it takes 1
DKL(Qθ∥P)

years in a yearly setting to distinguish

between θ > 0 and θ = 0 from an information perspective. Pinsker’s bound is given by

|Qθ − P|TV f

√
1
2

DKL ∈ [0, 1] (29)

This statistic measures the total-variation distance, which the change in probability of

an event (in percentage points). Both statistics constitute a preference-side gauge of

how strong the tail aversion is.

An orthogonal measure is given by risk-neutral probabilities. Let QN denote the

one-period risk-neutral measure associated with the SDF M. By definition

dQN

dP
=

M

E [M]

Combining (18) with (10) yields

pQN
=QN (J = j) =

E

[
1{J=j}

dQN
dP

]

E

[
dQN
dP

] =
E

[
1{J=j}e−(γ+θ)(z+J)

]

E
[
e−(γ+θ)(z+J)

]

=
p e−(γ+θ)j

1 − p + p e−(γ+θ)j
(30)

where the last line follows from the fact that z and J are independent. This yields

the risk-neutral disaster-state probability (or jump mass). Intuitively it measures how

high the market treats the probability of an event occurring relative to its physical

(“true”) probability. That is, pQN
> p implies the market treats the probability of a

disaster occurring higher as it is due to tail aversion.4 This constitutes a market-side

perspective of how strong tail aversion is. As pQN
overweights rare losses relative to the

4Note that disasters are over-weighted under QN whenever γ + θ > 0 and more so the more negative j is.
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physical measure this endogenous reweighting parallels the probability weighting in

cumulative prospect theory (Tversky and Kahneman, 1992). It is also closely related in

spirit to the prospect-theory asset-pricing mechanisms in Barberis, Huang, and Santos

(2001). However, in the given context it arises from an entropic change of measure in

an expected-utility setting.

4.3 Intuition

To recap, prices satisfy 1 = Et [Mt+1Rt+1] with

Mt+1 =
e−δ−(γ+θ)gt+1

Et

[
e−θ gt+1

]

where gt+1 = ln Ct+1
Ct

is consumption growth, γ is relative risk aversion, and θ > 0

implements an entropic tilt that overweights bad consumption states (“left tails”).

Intuitively, θ acts like an additional sensitivity of marginal utility to gt+1. More

precisely, the tilt increases the local loading of ln Mt+1 on gt+1 from −γ to − (γ + θ)

without altering period utility curvature. Consumption growth itself has a Gaussian

diffusive part zt+1
i.i.d.
∼ N

(
µ, Ã2

)
and a rare-disaster jump Jt+1 ∈ {0; j} with j < 0

occurring with probability p. Log asset returns co-move with the diffusive part of

consumption growth with coefficient ρ and co-jump by qj < 0 in disasters. Thus two

channels create negative Cov [Mt+1, Rt+1]

1. Diffusive channel: when zt+1 is low, Mt+1 is high and (for ρ > 0) Rt+1 is low,

increasing risk compensation.

2. Jump channel: in rare disasters Ct+1 and prices drop. If valuation ratios compress

on impact, the co-jump qj magnifies equity losses beyond the one-period dividend

shortfall (q > 1), so payoffs are particularly poor exactly when Mt+1 is large.

Both channels can be seen immediately in the log risk-free rate, given by

ln R f = δ + γµ −
1
2

γ2Ã2 −γ θ Ã2

︸ ︷︷ ︸
diffusion interaction

+ ln
[

1 − p + p e−θ j

1 − p + p e−(γ+θ)j

]

︸ ︷︷ ︸
jump ratio

The first three terms are the standard CRRA/lognormal elements of the consumption-

based asset pricing model. The two new ingredients lower ln R f . First, the cross

term −γθÃ2 lowers the log risk-free rate because the tilt and curvature interact under

diffusion. Second, the jump ratio lowers the log risk-free rate as for θ > 0 and j < 0

the denominator is larger than the numerator. Hence the model naturally produces a

low risk-free rate when p > 0 and θ > 0, echoing the risk-free rate puzzle. Intuitively,
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a high tail aversion θ implies investors preferring the “safe haven” of the risk-free rate

over risky assets.

For the risky asset, the small-risk approximation again highlights both channels

SR ≈


 (γ + θ) Ã Ãr ρ

︸ ︷︷ ︸
diffusive covariance

− p
(

eqj − 1
) (

e−(γ+θ)j − 1
)

︸ ︷︷ ︸
jump covariance



[√

Ã2
r + p (1 − p)

(
eqj − 1

)2
]−1

The diffusion part scales with (γ + θ) and the exposure ρ. The jump covariance term

also raises the Sharpe ratio as
(
eqj − 1

) (
e−(γ+θ)j − 1

)
< 0.5 Subsequently, the jump

part is positive whenever qj < 0 and γ + θ > 0, because returns fall in disasters while

the SDF spikes. Thus either higher θ (more tail aversion) or larger q (stronger valuation

compression on impact) raises required premia and Sharpe ratios. This can most

clearly be observed in the HJ bound

SRmax =

√
E
[
M2

t+1

]

E [Mt+1]
2 − 1 =

√√√√e(γ+θ)2Ã2 1 − p + p e−2(γ+θ)j

(
1 − p + p e−(γ+θ)j

)2 − 1

where both the tilt θ and rare disasters (p > 0, j < 0) increase the volatility of Mt+1

relative to its mean, thus pushing out the HJ bound and helping reconcile observed

Sharpe ratios while maintaining modest γ.

5 Bounds on risk aversion in the presence of tail aversion

The model also implies natural bounds on risk aversion given non-negative values for

the tail aversion parameter θ and at least proportional valuation compression q. The

following Lemma establishes an upper bound on risk aversion implied by the risk-free

rate.

Lemma 3. Let ln R f < δ and fix parameters (µ, Ã, p, j). Then the risk-free rate implies the

existence and uniqueness of an upper bound on risk aversion γ†. The maximum admissible

value is attained when tail aversion is zero, i.e. θ = 0.

Proof. See Appendix B.1.

The intuition behind this result is straightforward. Increasing either risk aversion

or tail aversion always lowers the risk-free rate. Hence the largest level of risk aversion

consistent with the observed risk-free rate occurs when tail aversion is shut down. The

5To see this, note that j < 0, q > 1, and thus qj < 0, eqj − 1 < 0, and e−(γ+θ)j − 1 > 0.
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following Proposition establishes the functional relationship between tail aversion and

risk aversion.

Proposition 4. Let ln R f < δ and fix parameters (µ, Ã, p, j). Then for each γ ∈
(
0, γ†

)
there

exists a unique θ (γ) > 0 solving the risk-free rate equation (20) with θ′ (γ) < 0 and

θ′ (γ) ∼ −
δ − ln R f

γ2 Ã2 for γ ³ 0

Proof. See Appendix B.2.

That is, in order to match the same risk-free rate, a reduction in risk aversion must

be offset by stronger tail aversion. Conversely, higher risk aversion requires less tail

aversion. Thus the mapping from risk aversion to tail aversion is downward sloping.

Taken together, the risk-free rate pins down a mapping of θ (γ) > 0 for a given set

of parameters within the domain γ ∈
(
0, γ†

)
. To obtain the bounds on γ define

A(q) ≡ 1 − p + p eqj, B(q) ≡ 1 − p + p e2qj, m ≡ E [R], and s2 ≡ Var [R]. Applying

these definitions and re-arranging (22) and (23) yields

Ãr(q) =

√

ln
(

1 +
s2

m2

)
+ 2 ln A(q)− ln B(q) and µr +

1
2

Ã2
r = ln m − ln A(q)

The following Lemma ensures positive volatility of the diffusive part of asset returns.

Lemma 4. A sufficient condition that ensures Ãr > 0 for all q g 1 is given by

s

m
>

√
p

1 − p
(31)

Proof. See Appendix B.3.

The inequality ensures that, even if jump risk absorbs a lot of the overall volatility,

the lognormal diffusion still carries strictly positive volatility. Intuitively, the observed

equity volatility cannot be “too low” relative to its mean if the diffusion part is to

remain active. Substituting the results into the asset pricing equation, given by (21),

collecting terms, and applying Proposition 4 yields
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F (q, γ) ≡δ + γµ −
1
2

γ2Ã2 − γ θ (γ) Ã2

+ (γ + θ (γ)) ρ Ã

√

ln
(

1 +
s2

m2

)
+ 2 ln A(q)− ln B(q)

+ ln
[
1 − p + p e−θ(γ) j

]
− ln

[
1 − p + p e−(γ+θ(γ)−q)j

]

− ln m + ln A(q) = 0

(32)

Feasibility requires jointly solving (20) and (32) for γ and θ (γ) over the admissible

range of values γ ∈
(
0, γ†

)
, conditional on q g 1 and Ãr > 0. The following

assumption ensures non-degeneracy

Assumption 1. Let θ (γ) be the unique mapping solving the risk-free equation (20) for

γ ∈
(
0, γ†

)
, and define the feasible set

Γ ≡
{

γ ∈
(

0, γ†
)

: ∃ q g 1 with F (q, γ) = 0
}

On any connected component of the branch

B ≡ {(γ, q) ∈ Γ × [1, ∞) : F (q, γ) = 0}

I assume non-degeneracy in the partial derivative, that is

∂F (q, γ)

∂q
̸= 0 for all (γ, q) ∈ B

This regularity condition rules out knife-edge cases in which the co-jump parameter

is locally indeterminate. On any feasible branch, the asset-pricing equation then selects

a unique co-jump level for a given risk aversion. The following Proposition establishes

the functional relationship between co-jump and risk aversion.

Proposition 5. Under the restriction implied by Lemma 4, µ > −p j, and ρ > 0 let θ (γ) be

given by Proposition 4 and let q (γ) g 1 solve (32) wherever a solution exists. Then on any

connected component of the feasible set Γ :=
{

γ ∈
(
0, γ†

)
: ∃ q g 1 with F (q, γ) = 0

}
the

map γ 7→ q (γ) is C1 and single-peaked. That is, there exists a unique γ⋆ ∈
(
0, γ†

)
such that

q′ (γ⋆) = 0, and q′ (γ) switches sign once on each component.

Proof. See Appendix B.4.

Intuitively, holding the equity mean and variance fixed, a larger co-jump q shifts risk

from the smooth diffusion to rare jumps. To keep the same Sharpe-relevant moments,

Ãr(q) must fall with q, so the diffusion price-of-risk component (γ + θ) ρ Ã Ãr(q) de-

clines as q rises, given ρ > 0. Since the risk-free rate is held fixed, Proposition 4 implies
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that tail-aversion θ (γ) is decreasing in γ. At very low γ, the required θ to match a

given risk-free rate is high, so the SDF’s diffusion loading ω (γ) ≡ γ + θ (γ) is already

large. Additionally, disasters are heavily priced via the large θ (γ). Consequently,

little additional valuation compression is needed and q sits near its lower bound. As

γ increases from this region, θ (γ) falls sharply in accordance with Proposition 4,

so ω (γ) initially declines. To keep the same equity mean and variance, the model

compensates by shifting risk into jumps, which raises the required q. Once θ (γ) has

fallen enough, ω (γ) begins to rise with γ and the diffusion channel regains strength,

so the needed co-jump falls again. This interaction, i.e. high θ at low γ and then

strengthening diffusion at higher γ, generates a non-monotonic relation between γ

and q with a single interior maximum for q (γ). Finally, the results for the admissible

bounds on risk aversion are summarized in the following Proposition.

Proposition 6. For given moments (R f , m, s) with ln R f < δ, m > 0, s > 0, s
m >√

p
1−p , µ > −p j, and ρ > 0 the system consisting of (20) and (32) admits a solution

(θ (γ) g 0, q (γ) g 1) if and only if γ ∈ (γmin, γmax), where the endpoints are unique and

characterized as follows:

1. γmin is the unique smallest root of F (1, γ) = 0 with θ (γ) given by solution to (20)

2. γmax = min
{

γ†, γ+
}

, where

i) γ† solves (20) for θ = 0

ii) γ+ is the unique largest root of F (1, γ) = 0 with θ (γ) given by the solution to

(20)

Proof. See Appendix B.5.

Proposition 6 pins down a strict admissible band for risk aversion. A feasible pair

(θ (γ) g 0, q (γ) g 1) exists if and only if γ lies between a lower root where valuation

compression just vanishes (i.e., q = 1) and an upper bound determined either by the

upper root where valuation compression just vanishes or the ceiling γ† implied by

Lemma 3, whichever is smaller. Economically, because the risk-free rate condition

forces tail aversion θ (γ) to fall with γ, the compression needed to match equity

moments first rises above one and then falls back to one, so feasibility fails outside

(γmin, γmax).
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Table 1: exogenous parameters

Parameter Value Target

δ 0.03 discount rate (implies annual ´ = e−δ ≈ 0.97)
γ 3 risk aversion
ρ 0.2 diffusion correlation consumption growth and returns
µ 0.025 consumption growth p.a. outside of disasters
Ã 0.02 consumption growth volatility p.a. outside of disasters

p 0.017 disaster probability p.a.
j ln(1 − 0.29) consumption drop in disaster

6 Quantitative analysis

The following section presents a quantitative evaluation of the model. After disciplining

the model to rare disaster data by Barro (2006) an indirect inference strategy backs

out the size of the tail-aversion parameter θ along with the size of the valuation

compression q and the diffusion volatility of returns Ãr. Remaining preference and

diffusion parameters are set to long-run benchmarks and kept within conventional

ranges. As the model also nests standard cases, the analysis proceeds via neutralizing

parts of the newly introduced modifications via either setting θ or p to zero thus

obtaining information on the importance of the model’s channels in isolation. Last, I

perform sensitivity checks to show that the results are robust to changing the diffusive

correlation and the degree of risk aversion.

6.1 Calibration and indirect inference

I calibrate the model to long-run moments from Jordà, Knoll, Kuvshinov, Schularick,

and Taylor (2019), who construct a long-run series of returns for 16 developed countries

and construct averages weighted by GDP. The unit of observation is one year. The

values of δ, γ, and ρ are taken directly from standard values of the literature. The

parameters of consumption growth, namely the diffusive mean and volatility (µ and

Ã) as well as the probability of disaster occurrence and the associated average drop

in consumption are taken from Barro (2006) and set to 2.5%, 2%, 1.7%, and 29%,

respectively. Table 1 summarizes the values.

Equations (18)–(23) imply a convenient inversion to match return mean/variance

while keeping (p, j) fixed. To obtain a value for θ I solve (20) for θ given the calibrated

parameter values targeting a real net risk-free rate of 1.3%. Defining the gross mean

m ≡ E [R] with net return m − 1 and variance s2 ≡ Var [R] re-arranging (22) and (23)

yields
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Table 2: baseline results

Parameter/Statistic Value Data/Targets

θ 3.267 –
Ãr 0.2 –
Implied equity loss 44% –

Net risk-free rate 0.013∗ 0.013
Net asset return 0.071∗ 0.071
Asset volatility 0.22∗ 0.22
Sharpe ratio 0.264 0.264
HJ bound 0.881 g 0.264

DKL 0.024 –
TV 11 pp –
pQN

13% –

Ãr(q) =

√

ln
(

1 +
s2

m2

)
+ 2 ln A(q)− ln B(q) and µr(q) +

1
2

Ãr(q)
2 = ln m − ln A(q)

where again A(q) ≡ 1 − p + p eqj and B(q) ≡ 1 − p + p e2qj while µr(q) +
1
2 Ãr(q)2 is

given by (21) as

µr(q) +
1
2

Ãr(q)
2 =δ + γµ −

1
2

γ2Ã2 − γ θ Ã2 + (γ + θ) ρ Ã Ãr(q)

+ ln
[

1 − p + p e−θ j

1 − p + p e−(γ+θ−q)j

]

The values of q, Ãr, and µr are then obtained via solving this system of equations for

asset market moments targeting a real net equity return of 7.1% with 22% volatility.

6.2 Results and discussion

Table 2 summarizes the core results. The chosen parameterization matches the market

return and volatility as well as the risk-free rate by construction. As a result, the Sharpe

ratio implied by the model is identical to the one provided by the data. Note that the

one-period Kullback-Leibler divergence implied by the model is only 0.024 nats. That

is, from an information perspective the tail aversion is almost not detectable and the

model is informationally virtually indistinguishable from the non-tail adjusted (CRRA)

case. However, from a market perspective the tail aversion is substantial as pQN
≈ 13%

and thus almost an order of magnitude larger than the physical probability p = 1.7%.

To achieve this for the given parameterization the model requires the following

quantitative features
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1. The tail adjustment parameter has to be similar in size to baseline risk aversion.

2. The implied equity loss on impact from a disaster has to be around 44%.

3. The contribution of the diffusion part to overall asset volatility is around 92% as

E [Var [R|J]]
Var [R]

=
B(q)

(
eÃ2

r − 1
)

B(q)eÃ2
r − A(q)2

≈ 92%

Taken together this implies that a model with tail adjustment in the SDF and the

potential for extreme events is able to quantitatively reconcile both the equity premium

puzzle and the risk-free rate puzzle without the need to resort to unreasonably high

degrees of risk aversion. Note that in addition to the low DKL even the combined

local log-SDF loading on the diffusion part, i.e. γ + θ ≈ 6.27, does not imply a very

high value of risk aversion. Using (13) allows evaluating the size of losses implied by

the co-jump parameter q as L = 1 − eqj. Historical episodes suggest j between 15%

and ≈ 60% in major crises (Barro and Ursúa, 2008a; Nakamura, Steinsson, Barro, and

Ursúa, 2013), while equity drawdowns on impact range widely. Peak-to-trough losses

of 40% - 60% are common in major crashes. Hence, L ≈ 44% is well within values

consistent with large crisis episodes.

6.3 Channels

In order to explore the channels highlighted in Section 4 I run additional experiments

that neutralize parts of the model. As a first pass, I re-run the model without tail

adjustment or extreme events (i.e. θ = p = 0) to obtain the standard benchmark of the

consumption-based asset pricing model. Table 3 presents the results of this experiment

in column 1. The parameter Ãr is calibrated to match asset volatility, which is matched

by construction. The remaining moments in column 1 highlight the well-known

problems of the standard consumption-based asset pricing model. The risk free-rate

is an order of magnitude too high for standard parameters and the Sharpe ratio is

missed by more than an order of magnitude. As there are neither tail events nor tail

adjustment all tail aversion measures are zero.

As shown in column 2, allowing for a tail adjustment in the SDF that is calibrated

to match the risk-free rate fixes most of these issues. However, the model has to resort

to an unreasonably high degree of adjustment (θ ≈ 75) to achieve this. This result

is not surprising as in the absence of truly extreme events the aversion to left-tail

realizations has to be profoundly high in order to justify a net risk-free rate of 1.3% in

real terms. Naturally, this causes the one-period Kullback-Leibler divergence to grow

substantially such that tail aversion is now easily detectable while pQN
does not move

as this specification contains no disaster events.
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Table 3: importance of channels

(1) (2) (3) (4)
Parameter/Statistic Standard model p = 0 θ = 0 Full Data/Targets

θ 0 75.236 0 3.267 –
p 0 0 5.27% 1.7% –
Ãr 0.2 0.2 0.18 0.2 –
Implied equity loss 0 0 44% 44% –

Net risk-free rate 0.109 0.013∗ 0.013∗ 0.013∗ 0.013
Net asset return 0.111 0.079 0.054 0.071∗ 0.071
Asset volatility 0.22∗ 0.22∗ 0.22∗ 0.22∗ 0.22
Sharpe ratio 0.012 0.3 0.186 0.264 0.264
HJ bound 0.06 3.251 0.372 0.881 g 0.264

DKL 0 1.132 0 0.024 –
TV 0 pp 75 pp 0 pp 11 pp –
pQN

0% 0% 13% 13% –

* denotes statistic that the parameters were chosen to replicate

Conversely, column 3 shows that allowing for disasters, whose probability is again

calibrated to match the risk-free rate, while abstracting from tail adjustment in the

SDF and retaining the same degree of asset losses as in the baseline results, also

improves the Sharpe ratio considerably. However, as can be inferred from column 3

this comes at the cost of a very high probability of disaster (p ≈ 5.3%) while generating

lower volatility of the diffusion process (Ãr ≈ 0.18%). Again, these results are not

surprising as a high probability of disaster is required to suppress the net risk-free

rate to 1.3%. Subsequently, as the disaster probability is now higher, more of asset

volatility will stem from the disaster jumps occurring with a higher probability instead

of from the diffusion process. As with column (1) there is no tail adjustment and

thus all information criteria detecting tail aversion are zero. However, pQN
increases

substantially due to the presence of disasters.

Finally, column 4 shows that the results of a low risk-free rate and a high Sharpe

ratio can be reconciled by allowing a moderate tail adjustment paired with a low

probability of disaster that generates large asset losses.

6.4 Sensitivity

The quantitative results are robust to variation in ρ, i.e. the correlation between the

diffusion parts of consumption growth and asset returns. As the risk-free rate is

independent of ρ variation in the parameter does not alter it and hence also does

not influence the size of θ. Conversely, (21) shows that equity premia increase with

(γ + θ) ρ Ã Ãr. Consequently, lowering ρ forces more weight on disaster co-jumps,
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Table 4: sensitivity

(1) (2) (3) (4) (5)
Parameter/Statistic Benchmark ρ = 0.05 ρ = 0.8 γ = 1 γ = 7

θ 3.267 3.267 3.267 5.405 0.461
Ãr 0.2 0.19 0.2 0.2 0.2
Implied equity loss 44% 47% 31% 42% 29%

DKL 0.024 0.024 0.024 0.102 0.0003
TV 11 pp 11 pp 11 pp 23 pp 1 pp
pQN

13% 13% 13% 13% 18%

raising q and making equity losses more front-loaded in bad states as can be seen in

column 2 of Table 4. On the other hand, raising ρ shifts premia to the diffusion channel

and reduces the q needed to match m and s (column 3 in Table 4). In order to ensure

that the shift to diffusion does not give rise to q f 1 in the indirect inference approach

the following additional restriction is needed

ρ < ρmax =
ln m − ln A(1)−

(
δ + γµ − 1

2 γ2Ã2 − γ θ Ã2
)
− ln

[
1−p+p e−θ j

1−p+p e−(γ+θ−1)j

]

(γ + θ) Ã
√

S(1)
(33)

where θ is obtained by solving for the risk-free rate, which is independent of ρ.

For the baseline parameterization this yields ρmax ≈ 0.9, which is larger than any

empirical value typically associated with this correlation. Within the admissible range

of ρ ∈ (0, ρmax) the quantitative importance of this channel is muted as indicated by

the results in columns 2 and 3 in Table 4. That is, the results do not strongly depend on

any specific size of the correlation between the diffusion parts of consumption growth

and asset returns.

The results are also robust to variation in risk aversion γ within the admissible

bounds derived in Section 5. Under the baseline parameters solving (32) conditional

on (20) yields γmax ≈ 7.08 and γmin ≈ 0.46, which are in line with standard conjectures

about the upper and lower bound of risk aversion. Taken together the admissible

range of risk aversion is given by γ ∈ (γmin ≈ 0.46, γmax ≈ 7.08). Within those values

(θ, q, Ãr) exist and match (R f , m, s). As derived in Proposition 4, the expression for the

risk-free rate implies that, holding R f fixed, θ (γ) is decreasing in γ for j < 0 and p > 0

in the empirically relevant range. This pattern is shown by columns 4 and 5 in Table 4.

For γ = 1 the calibration requires θ ≈ 5.4, while for γ = 7 it requires θ ≈ 0.46 (both

with unchanged Ãr ≈ 0.2). At the same time, the asset pricing equation (32) shows that

a rise in γ increases the diffusion loading (γ + θ) ρ Ã Ãr but simultaneously lowers θ,

so the net effect on (γ + θ) is muted in practice. To keep the equity mean and variance
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Figure 1: Reaction of valuation compression and tail aversion to risk aversion

fixed, the system rebalances by adjusting q. Columns 4 and 5 of Table 4 as well as

panel (a) of Figure 1 illustrate the non-monotonic behavior of the adjustment of q laid

out in Proposition 5.

A large microeconomic literature finds values of relative risk aversion at or below

one in laboratory and field settings. For instance, Holt and Laury (2002) estimate CRRA

well below unity at moderate stakes (with pronounced incentive effects) while the

calibration critique of Rabin (2000) implies that small-stakes curvature must be modest

if one wishes to avoid counterfactual large-stakes behavior. Surveying field data,

Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2018) conclude that moderate

risk aversion and substantial heterogeneity are the norm across insurance and portfolio

contexts. At the other end of the spectrum, macroeconomic evidence sometimes implies

large curvature when CRRA also proxies the intertemporal elasticity of substitution. As

an example, Best, Cloyne, Ilzetzki, and Kleven (2020) estimate an average intertemporal

elasticity of substitution near 0.1 using quasi-experimental “mortgage notches”, which

under CRRA maps to γ ≈ 10. The bounds-based exercise here is qualitatively consistent

with both possibilities. As can be observed from comparing panel (a) and panel (b)

of Figure 1 the implied valuation compression (and hence implied loss) is highest at

intermediate ranges of risk aversion. A higher γ permits a smaller q (less valuation

compression) while maintaining the same (m, s) as high risk aversion suffices to match

the moments of interest. On the other hand, a low γ is also consistent with less

valuation compression as higher tail aversion θ depresses the risk-free rate and raises

the equity return. Simultaneously, raising θ implies a stronger penalty on the one-

period Kullback-Leibler divergence while lowering reduces it. Thus strong tail aversion

combined with low risk aversion is more easily detectable than moderate/high risk
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aversion paired with moderate/low tail aversion. Taken together, the quantitative fit is

robust to a large range of admissible values of γ and admits fitting the data even for

very low levels of risk aversion.

7 Concluding remarks

This paper offers a compact asset-pricing model that unifies two empirically grounded

mechanisms: rare consumption disasters and an entropic, risk-sensitive tilt in the

pricing kernel. Analytically, the SDF’s diffusion loading γ + θ and the disaster co-jump

parameter q deliver closed-form expressions for the risk-free rate, the Sharpe ratio, and

the HJ bound. The model explains why premia are high exactly when the economy

is weak. The tilt raises the price of diffusion risk in bad times, and disaster co-jumps

depress payoffs precisely when marginal utility is high.

The quantitative exercise shows that a small probability of sizable disasters, paired

with moderate tail aversion θ, can match equity premia and the low real risk-free rate

without extreme curvature. In fact, from an information perspective the model is almost

indistinguishable from CRRA preferences. The implied equity loss on impact, 1 − eqj,

is in line with large historical crashes, and the decomposition of premia into diffusion

and jump components clarifies the role of correlation and valuation compression at

disaster times.

There are natural next steps. On the empirical side, the magnitudes of (p, j, q) can

be further disciplined with cross-country disaster data and event-based measures of

valuation compression. On the theoretical side, embedding the one-period tilt into a

model with endogenous investment and intermediaries would allow joint study of the

term structure, credit spreads, and cross-sectional asset pricing. Moreover, the analysis

intentionally models disasters as one-period events. This abstraction preserves closed-

form mixture-lognormal pricing for key moments and keeps the SDF transparent. This

comes with the cost of not being able to account for crisis dynamics, term-structure

patterns during slumps, or volatility clustering. A natural next step here is to allow

time variation in pricing states. Allowing partial recoveries and time-varying disaster

intensities (e.g., Nakamura, Steinsson, Barro, and Ursúa, 2013), variable disaster risk

pt in the spirit of Gabaix (2012), or a time-varying tail aversion θt that tightens in bad

times would generate countercyclical prices of risk, return predictability, and more

realistic volatility dynamics, while preserving the parsimony of the one-period tilt and

the closed-form conditional moments developed here. Finally, formal estimation could

exploit the analytic inversion mapping moments to structural parameters.

Overall, the results support the simple message that accounting for tail risk and for

state-dependent pricing weights suffices to reconcile first-order asset-pricing moments

while preserving parsimony and interpretability.
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A A simple model of valuation compression

Let »t ≡ Pt
Dt

denote the price-dividend ratio and ∆dt+1 ≡ ln Dt+1 − ln Dt dividend-

growth. Then the standard Campbell-Shiller log-linearization implies

ln Rt+1 ≈ k + η ln »t+1 − ln »t + ∆dt+1 (A.1)

where k and η ∈ (0, 1) are log-linearization constants determined by the unconditional

mean of ln »t. For the reduced form disaster mapping, a consumption (and dividend)

contraction of fractional size x ∈ (0, 1) is given by j = ln(1 − x) < 0. If equity loses a

fraction L ∈ (0, 1) on impact, then q is defined by

qj = ln(1 − L) =⇒ q =
ln(1 − L)

ln(1 − x)
(A.2)

Assume that at date t a disaster-news shock arrives. Let It be the information set just

after arrival. Additionally, assume that expected returns follow an AR(1) process given

by

∆Et [ln Rt+1+i] = ϕi ∆Et [ln Rt+1]

for i g 0 with ϕ ∈ [0, 1). The news shock may affect dividend growth at time t, but is

not persistent, that is

∆Et [∆dt+1+i] = 0 for all i g 1

As a result, iterating (A.1) forward, taking expectations conditional on It, subtracting

the pre-arrival counterpart, and summing the discounted differences yields the on-

impact change in valuation

∆ ln »t ≡ ln »t − ln »−t ≈ ∑
ig0

ηi (∆Et [∆dt+1+i]− ∆Et [ln Rt+1+i]) (A.3)

where ln »−t denotes the pre-arrival value. Inserting ∆Et [ln Rt+1+i] = ϕi ∆Et [ln Rt+1]

and ∆Et [∆dt+1+i] = 0 for i g 1 into (A.3) yields

∆ ln »t ≈ −
∆Et [ln Rt+1]

1 − ηϕ
+ ∆Et [∆dt+1] (A.4)

If ∆Et [∆dt+1] = 0, i.e. no cash-flow news beyond the realized one-step drop j recorded

at t + 1, then

∆ ln »t ≈ −
∆Et [ln Rt+1]

1 − ηϕ

Let the disaster at t be realized at t + 1 with contraction j < 0. Furthermore, let the

35



on-impact change in valuation be ∆ ln »t. Then the co-jump in log returns at t + 1 is

given by

∆ ln Rt+1 ≡ ln Rt+1 − ln R−
t+1 ≈ j + ∆ ln »t

Applying the definition of q, given by (A.2), yields

qj = ln(1 − L) =⇒ q =
∆ ln Rt+1

j
= 1 +

∆ ln »t

j

Plugging back (A.4) gives

q ≈ 1 −
1
j
·

∆Et [ln Rt+1]

1 − ηϕ
+

∆Et [∆dt+1]

j
(A.5)

If dividend-growth news is transient at impact, i.e. ∆Et [∆dt+1] = 0, then

q ≈ 1 −
1
j
·

∆Et [ln Rt+1]

1 − ηϕ

Simple inspection of (A.5) reveals that q g 1 if ∆Et [ln Rt+1] g 0 and ∆Et [∆dt+1] f 0.

If either effect is strict, then q > 1 holds. Moreover, for a fixed j < 0, q is increasing in

both the persistence ϕ and the size of the expected-return jump ∆Et [ln Rt+1].

36



B Proof complements

B.1 Proof of Lemma 3

Proof. Define J (³) ≡ ln
(
1 − p + p e−³j

)
. Then the log risk-free rate, given by (20), can

be re-written as follows

ln R f = δ + γµ −
1
2

γ2Ã2 − γ θ Ã2 + J (θ)− J (γ + θ)

Note that ln R f is strictly decreasing in θ

∂ ln R f

∂θ
= −γ Ã2 + J′ (θ)− J′ (γ + θ) < 0

as J′′ (·) > 0 and thus J′ (γ + θ) > J′ (θ). Furthermore, the cross-partial derivative is

also negative

∂2 ln R f

∂γθ
= −Ã2 − J′′ (γ + θ) < 0

since J′′ (·) > 0. Subsequently, γ attains its highest admissible value if θ is zero. Define

f (γ) ≡ δ + γµ −
1
2

γ2Ã2 − J (γ)− ln R f = 0

Then f is strictly concave on (0, ∞) as

f ′′ (γ) = −Ã2 − J′′ (γ) < 0

with limits limγ³0 f (γ) = δ − ln R f > 0 and limγ→∞ f (γ) = −∞. As a result, f has a

unique root γ†
> 0 via the Intermediate Value Theorem.

B.2 Proof of Proposition 4

Proof. Define

G (γ, θ) ≡ δ + γµ −
1
2

γ2Ã2 − γ θ Ã2 + J (θ)− J (γ + θ)− ln R f = 0

where G (γ, θ) again is strictly decreasing in θ

∂G (γ, θ)

∂θ
= −γÃ2 + J′ (θ)− J′ (γ + θ) < 0

as J′′ (·) > 0 and thus J′ (γ + θ) > J′ (θ). By Lemma 3 G (γ, 0) = f (γ) > 0 for

γ ∈
(
0, γ†

)
while
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lim
θ→∞

G (γ, θ) = −∞

as J (θ) − J (γ + θ) → γ j < 0 for θ → ∞. Thus for each γ ∈
(
0, γ†

)
there exists

a unique θ (γ) > 0 solving G (γ, θ) = 0 via the Intermediate Value Theorem. The

Implicit Function Theorem gives θ ∈ C1 with

θ′ (γ) = −
∂G (γ, θ)

∂γ

[
∂G (γ, θ)

∂θ

]−1

As already established, the denominator is strictly negative, while the numerator is

given by

∂G (γ, θ)

∂γ
= µ − γÃ2 − θÃ2 − J′ (γ + θ)

Note that convexity of J (·) implies

J′ (γ + θ) γ g J (γ + θ)− J (θ)

Solving the weak inequality for J′ (γ + θ) and substituting J (γ + θ) − J (θ) from

G (γ, θ) gives

J′ (γ + θ) g
δ − ln R f

γ
+ µ −

1
2

γÃ2 − θ (γ) Ã2

Plugging this result back yields

∂G (γ, θ)

∂γ
f −

1
2

γÃ2 −
δ − ln R f

γ
< 0

as ln R f < δ. Subsequently, the Implicit Function Theorem implies θ′ (γ) < 0. Last,

note that as γ ³ 0 the mean-value identity J (γ + θ)− J (θ) = J′ (ζ) γ with ζ ∈ (θ, θ + γ)

and J′ (ζ) ↑ −j implies γ θ (γ) Ã2 → δ − ln R f and thus

θ (γ) ∼
δ − ln R f

γ Ã2 and θ′ (γ) ∼ −
δ − ln R f

γ2 Ã2

B.3 Proof of Lemma 4

Proof. For q g 1 define u ≡ eqj ∈ (0, 1) and v ≡ e−(γ+θ−q)j = e−(γ+θ)ju > u. Differenti-

ating Ãr with respect to q gives

Ã′
r(q) =

S′(q)

2
√

S(q)
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where S(q) and S′(q) are given by

S(q) = ln
(

1 +
s2

m2

)
+ 2 ln A(q)− ln B(q)

S′(q) =2pj

[
u

1 − p + pu
−

u2

1 − p + pu2

]

Collecting the bracket in S′(q) yields

u

1 − p + pu
−

u2

1 − p + pu2 =
(1 − p) u(1 − u)

(1 − p + pu)(1 − p + pu2)
> 0

for u ∈ (0, 1). Since pj < 0, it follows that S′(q) < 0. In the limit S(q) is given by

lim
q→∞

S(q) = ln
(

1 +
s2

m2

)
+ ln(1 − p)

Solving for Ãr(q) > 0 as q → ∞ yields the sufficient condition. If (31) is violated, the

range of feasible q is restricted to q ∈ [1, q), where q solves S (q) = 0. This guarantees

Ãr(q) > 0 on the feasible set.

B.4 Proof of Proposition 5

Proof. By the Implicit Function Theorem there is a unique q (γ) solving F (q, γ) = 0

for each γ ∈
(
0, γ†

)
. Totally differentiating the identity F (q (γ) , γ) ≡ 0 yields

q′ (γ) = −

[
∂F (q, γ)

∂γ
+ θ′(γ)

∂F (q, γ)

∂θ

] [
∂F (q, γ)

∂q

]−1

Define h(x) ≡ x
1−p+px , which is increasing for x > 0. Differentiating (32) with respect

to q gives

∂F (q, γ)

∂q
= (γ + θ) ρ Ã

S′(q)

2
√

S(q)
+ pj [h(u)− h(v)]

Lemma 4 shows that S′(q) < 0. Subsequently, the first term in ∂F(q,γ)
∂q is strictly negative.

The second term satisfies pj [h(u)− h(v)] > 0 because h is increasing, v > u, and

j < 0. Consequently, the sign of ∂F(q,γ)
∂q is ambiguous. Nevertheless, Assumption 1

and continuity of ∂F(q,γ)
∂q on the branch imply the sign is constant on each connected

component. Differentiating (32) with respect to γ gives

∂F (q, γ)

∂γ
+ θ′(γ)

∂F (q, γ)

∂θ
=

[
1 + θ′ (γ)

] {
ρ Ã Ãr(q) + J′ (γ + θ)− J′ (γ + θ − q)

}
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where J′ (γ + θ) − J′ (γ + θ − q) > 0. Thus the curly bracket is strictly positive for

ρ > 0. Since ∂F(q,γ)
∂q has constant sign it follows that

sign
{

q′ (γ)
}
= −ς sign

{
1 + θ′ (γ)

}

where ς ∈ {+1,−1} is the constant sign of ∂F(q,γ)
∂q . By Proposition 4, θ′ (γ) < 0 and is

continuous. Furthermore, if γ ³ 0, θ′ (γ) → −∞, implying 1 + θ′ (γ) < 0. Conversely,

as γ ↑ γ†

lim
γ↑γ†

{
1 + θ′ (γ)

}
=

−µ − p j

−γÃ2 + J′ (0)− J′ (γ)
> 0

as the denominator is strictly negative and the numerator is strictly negative given

µ > −p j. Thus there exists a unique γ⋆ ∈
(
0, γ†

)
with 1 + θ′ (γ⋆) = 0 while q (γ) is

single-peaked on the admissible interval.

B.5 Proof of Proposition 6

Proof. Let ω (γ) = γ + θ (γ). Since j < 0, A(q) → 1 − p and B(q) → 1 − p as q →

∞. Subsequently, Ãr(q) →

√
ln

(
1 + s2

m2

)
+ ln(1 − p) and ln

[
1 − p + p e−(ω(γ)−q)j

]
→

ln(1 − p) as q → ∞. As a result, the limit of (32) for q → ∞ is given by

lim
q→∞

F (q, γ) ≡δ + γµ −
1
2

γ2Ã2 − γ θ (γ) Ã2

+ ω (γ) ρ Ã

√

ln
(

1 +
s2

m2

)
+ ln(1 − p)

+ ln
[
1 − p + p e−θ(γ) j

]
− ln m

(B.1)

For fixed γ, define Q (γ) = {q g 1 : F (q, γ) = 0} and Γ ≡ {γ > 0 : Q (γ) ̸= ∅}. Con-

tinuity of F in (q, γ) and the end-values F (1, γ) and (B.1) ensure that Q (γ) ̸= ∅ when-

ever those end-values have opposite signs (or one equals zero). Define γmin := inf Γ.

From Proposition 4, θ (γ) → ∞ as γ ³ 0, implying limγ³0 limq→∞ F (q, γ) = ∞. Hence

Γ is nonempty and γmin > 0.

Take any decreasing sequence γn ³ γmin with Q (γn) ̸= ∅, and pick qn ∈ Q (γn).

The sequence {qn} is bounded: if qn → ∞ then F (qn, γn) converges to (B.1), which is

greater than zero for n large, contradicting F (qn, γn) = 0. Thus, along a subsequence,

qn → q̃ ∈ [1, ∞) and by continuity F (q̃, γmin) = 0. If q̃ > 1, the point (q̃, γmin) is

interior to {q g 1}. By Assumption 1 and Proposition 5 the Implicit Function Theorem

solves the local zero set {F = 0} either as q = q (γ) or as γ = γ(q), producing solutions

with γ < γmin, a contradiction. Hence q̃ = 1 and
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F (1, γmin) = 0 and q (γmin) = 1

Next, using (20) to eliminate the risk-free terms in (32) at q = 1 gives the boundary

identity

F (1, γ) = ln R f − ln m + ln A(1) + (γ + θ (γ)) ρ Ã Ãr(1)

+ J (γ + θ (γ))− J (γ + θ (γ)− 1)

Differentiating yields

∂F (1, γ)

∂γ
+ θ′(γ)

∂F (1, γ)

∂θ
=

[
1 + θ′ (γ)

] {
ρ Ã Ãr(1) + J′ (γ + θ)− J′ (γ + θ − 1)

}

where as shown in Proposition 5 the curly bracket is strictly positive for ρ > 0.

Proposition 5 gives 1 + θ′ (γ) < 0 near γ ³ 0, so F (1, γ) is strictly decreasing there.

Because F (1, γmin) = 0 and F (1, γ) → ∞ as γ ³ 0 from θ (γ) → ∞, γmin is the

unique smallest root of F (1, γ) = 0. Note, that the same argument can be applied for

γmax := sup Γ with the increasing sequence γn ↑ γ†, which obtains γ+ as the unique

largest root of F (1, γ) = 0.

Last, by Proposition 5 the risk-free equation (20) implies a unique risk-free upper

bound γ† at θ = 0. Any feasible branch must satisfy γ f γ†, so the feasible set is an

interval Γ = (γmin, γmax) with γmax f γ†.
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