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Abstract

Contrary to classical theory, we provide experimental evidence that pref-
erence reports in a strategy-proof school-choice mechanism systematically
depend on beliefs. We employ a “hard-easy gap” to exogenously vary stu-
dents’ beliefs about their priority rank. As predicted, underconfidence in-
duces more manipulation and thus more justified envy than overconfidence.
The effect of priority information on justified envy crucially depends on the
initial beliefs and the real priority ranks: while top students always gain,
non-top students lose from this information. In total, correcting overconfi-
dence/underconfidence increases/decreases justified envy. Finally, we con-
firm that additionally providing information on school availability through a
dynamic implementation of the mechanism reduces justified envy compared
to priority information alone.
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1 Introduction

In school choice, market designers typically advocate for centralized assignment

mechanisms, in which students (or parents) submit their privately known prefer-

ences over schools and schools rank students according to priorities. While it is

natural to wonder whether students should learn their priority rank and to what

degree it matters if their beliefs about priorities are distorted, strategy-proof mech-

anisms seem to circumvent these questions: since the straightforward strategy to

rank schools according to match values is dominant, it theoretically seems irrele-

vant what students know or believe about priorities. However, non-straightforward

play is prevalent in the field and in the lab (Rees-Jones and Shorrer, 2023). In

this light, we revisit seemingly naive questions about strategy-proof mechanisms

through the lens of modern behavioral theory, and we experimentally test its impli-

cations. Our research questions are: Does over- or underconfidence systematically

impact students’ actions? Does the arising non-straightforward play impact the

stability of assignments? Does it help students if the provided information corrects

this misconfidence? Does additional information on remaining capacity help? In

short, our answers are: Yes, yes, it depends, and partly yes.

Our study consists of a 2×3 between-subject design laboratory school-choice ex-

periment where test scores determine a priority ranking shared by all schools.

Each subject took the role of a different student in a market consisting of eight

students and four schools with two seats each. We induced private and heteroge-

neous preferences over schools, and students submitted a rank-ordered list (ROL)

to a centralized mechanism. We described a deferred-acceptance (DA) mechanism,

but due to the priority structure, this mechanism collapses to a serial dictatorship.

To exogenously induce over- and underconfidence, we employed a “hard-easy gap”

(Lichtenstein et al., 1982; Dargnies et al., 2019): students in the Hard condition

faced a more difficult priority test (more complicated Raven matrices) than those

in the Easy condition. Next, subjects played five rounds of the school-choice

game, where a new vector of match values was drawn for each round. In one-third

of the sessions, participants did not learn their priority rank (Info-0); in another,

they were informed about it (priority information, Info-1); and in the remaining

third of sessions, the mechanism was executed sequentially so that participants

additionally learned the remaining capacities of schools (availability information,

Info-2).

Our hypotheses are founded in the behavioral matching literature that has emerged
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recently to explain non-straightforward (NSF) behavior, i.e., not ranking schools

according to the induced valuations. First, we verify the fundamental assumption

of our setup, Hypothesis 0. That is, we find that subjects in Easy have more

optimistic beliefs about their relative performance compared to subjects in Hard.

Within the taxonomy of overconfidence according to Moore and Healy (2008),

we study overplacement, i.e., participants overestimate their position relative to

others, and we find this phenomenon to be more prevalent in Easy, whereas

subjects in Hard tend to underplace themselves. Behavioral theory predicts that

NSF play is more prevalent among students who believe to have low priority, but

such manipulations are not necessarily consequential in the sense that they lead

to a worse assignment than the straightforward ROL (holding the ROLs of other

players constant).

In our setting, any consequential manipulation of a student i leads to justified

envy, i.e., another student j with lower priority is assigned to a school that i prefers

over the school she is assigned to. Rather than simply studying whether students

play the straightforward strategy, we focus on whether the unique stable and

efficient assignment is implemented for several reasons. First, as we discuss below,

NSF play is already well-documented, but this phenomenon is only economically

relevant if it is consequential, which is still debated (see, e.g., Artemov et al.,

2020). Second, as a defining feature of stability, the absence of justified envy is

not only a property of theoretical interest, but it is also a key desideratum in

many applications because it reflects fairness. Third, it is a crucial ingredient of

state-of-the-art empirical strategies to estimate preferences so that its interaction

with information provision is important to understand.

Guided by the theory, our Hypothesis 1 is that more justified envy occurs in

treatment Hard×Info-0 than in Easy×Info-0, while the difficulty condition

should not have an effect when priority information is provided. In Hypothesis

2, we predict that providing priority information alone, Info-1, in treatment

condition Easy increases justified envy, while it leads to less justified envy in

treatment condition Hard. Specifically, the argument here is that beliefs in Easy

are pooled at the top so that a correction triggers more NSF play among non-top

students (ranked third or worse); in contrast, beliefs in Hard are pooled at the

bottom so that a correction triggers more straightforward play among top students

(ranked first or second). Finally, Hypothesis 3 predicts that the lowest rates of

justified envy are obtained in information condition Info-2, where both priority

and availability information are provided, because all students essentially select
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their assignment under certainty.

In line with Hypothesis 1, we observe significantly more consequential manipula-

tions when uninformed students hold more pessimistic beliefs about their priority.

In contrast, justified envy does not vary significantly with the difficulty in informa-

tion conditions Info-1 and Info-2. Moreover, we document that informing top

students about their true priority rank significantly reduced their justified envy in

Hard, but not in Easy. As predicted, priority information significantly increased

justified envy among non-top students in Easy. Seemingly against our prediction,

this effect is, to a lesser degree, also present in Hard, where it dominates the ef-

fect on the top students. Nevertheless, when we differentiate students by priority

ranks, we find support for our theoretical argument. Perhaps surprisingly, the

dynamic implementation of Info-2 did not push justified envy to zero.

Evidence from the field and the lab consistently shows NSF play, see Hakimov

and Kübler (2021) and Rees-Jones and Shorrer (2023) for excellent reviews of

this literature. The literature on NSF play can be grouped into preference-based

and complexity-based explanations. For instance, the former branch suggests

disappointment aversion (Dreyfuss et al., 2022; Meisner and von Wangenheim,

2023; Dreyfuss et al., 2025; Chen et al., 2024), ranking-dependent preferences

(Meisner, 2023; Kloosterman and Troyan, 2022), reciprocal preferences (Opitz and

Schwaiger, 2023), ego utility (Moscariello, 2024), or preference discovery (Grenet

et al., 2022) as possible drivers. The latter branch aims to make the strategy-

proofness more apparent, e.g., by making the mechanism obviously strategy-

proof (Li, 2017) or by employing a different mechanism description (Katuščák

and Kittsteiner, 2024; Gonczarowski et al., 2023) because participants may falsely

perceive a strategic trade-off as in an immediate-acceptance (Boston) mechanism.

Identifying the source of NSF play is not the goal of this paper. Rather, we exploit

that the systematic belief-based behavior we hypothesize is consistent with most

of the theories above.

In contrast to, for example, Rees-Jones and Skowronek (2018) who document a cor-

relation between overconfidence and straightforward play, we can also make causal

claims because we randomly assign subjects to treatment conditions that exoge-

nously vary confidence. Pan (2019) studies overconfidence and priority informa-

tion in centralized assignment mechanisms. However, her focus lies on “aptitude-

stability,” and she is mainly concerned with the impact of overconfidence on the

immediate-acceptance mechanism. In contrast to us, she finds little variance in

NSF play and stability in serial dictatorship. We believe her design with com-
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mon values is conducive to this observation. In the context of expectation-based

loss aversion, (Dreyfuss et al., 2025) find belief-dependent play in DA. Labora-

tory experiments with settings similar to our information condition Info-2 typi-

cally study them as a different dynamic mechanism rather than in the context of

availability information. In contrast to, e.g., pick-an-object mechanisms (Bó and

Hakimov, 2023), we study a dynamic implementation in which participants must

still submit complete ROLs.

Confidence has also been studied in the field. Hakimov et al. (2022) combine

survey and administrative data to estimate the impact of informing college ap-

plicants in France1 of their real rank in the grade distribution on their college

application behavior. Their intervention voids the impact of confidence on ap-

plications, making grades the dominant factor. Similarly, Bobba and Frisancho

(2022) find that correcting miscalibrated priors of Mexican students influences

application behavior. We further discuss the empirical literature on the interplay

between overconfidence, availability information, and non-placement in Section 6.

We are not the first to study priority information in matching mechanisms in the

lab. To the best of our knowledge, Pais and Pintér (2008) are the first to record

that rates of NSF play, efficiency and justified envy vary in different informational

settings, but it is not clear how their specific school-choice setting generalizes.

Most importantly, their research is rather exploratory than founded in theory

because the theory described in the next paragraph did not exist at the time. Since

we elicit participants’ priority beliefs and differentiate between priority ranks,

we are able to provide more nuanced hypotheses. Specifically, follow-up work

(Pais et al., 2011; Hu and Yao, 2024) confirms their finding that the amount of

information has a negative effect on straightforward play, but we identify that

the opposite is true for high-priority students, particularly if they underplaced

themselves. In Section 6, we continue to discuss this seminal paper.

Our paper makes four main contributions. First, we establish a causal link be-

tween confidence and consequential manipulations in a strategy-proof school choice

mechanism by exogenously varying participants’ beliefs about their priority rank.

Second, we introduce a structured variation in information provision, distinguish-

ing between no information, only priority information, and combined priority and

availability information. Third, we document heterogeneous effects of information

1French students are allocated via a dynamic implementation of college-proposing DA with
constrained lists, where colleges are free to determine their own priority ranking as long as grades
are a dominant factor. This mechanism is not strategy-proof.
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across participants with different actual priority ranks. Finally, we identify limits

to the dynamic implementation of the mechanism, showing that justified envy still

exists.

The rest of the paper is structured as follows. Section 2 describes the experimental

design. Section 3 explains the theory guiding our hypotheses, which are laid down

in the following Section 4. Section 5 introduces the results, which we discuss in

more detail in Section 6. We conclude with Section 7.

2 Experimental design

In our experiment, we employ a 2×3 between-subject design, where we have two

conditions for the exogenous confidence shock, {Easy, Hard}, and three condi-

tions for the information variations in the assignment mechanism, {Info-0, Info-

1, Info-2}. Participants are assigned to one condition in each of these dimen-

sions, creating six unique treatment combinations, Easy×Info-0, Easy×Info-1,

Easy×Info-2, Hard×Info-0, Hard×Info-1, and Hard×Info-2. In this sec-

tion, we first explain the general structure of the experimental design, then the

hard-easy dimension, and finally the second dimension used for the information

variations of our assignment mechanism. We conclude the section with procedural

details.

General overview: Our experiment consisted of three parts, 1) the real-effort

task, 2) the school-choice game, and 3) an exit questionnaire.

In the first part of the experiment, participants solved a total of 24 incentivized

Raven’s Advanced Progressive Matrices (Raven, 1962) split into two consecutive

sections. The first twelve matrices in part 1 were taken from the 12-item short

form developed by Bors and Stokes (1998), consisting of (in that order) items 3,

10, 12, 15, 16, 18, 21, 22, 30, 28, 31, and 34.

Next, the participants were informed that they were randomly grouped with seven

other participants and took the role of one of eight students facing four schools

having a two-seat capacity each. They were instructed about the rules of the

assignment mechanism and that their priority rank in their group would be deter-

mined by how well they performed in solving the subsequent twelve Raven matrices

compared to other group members. The remaining twelve Raven matrices, sec-

tion 2 of part 1, were assigned based on the group’s difficulty condition. After

completion of this section, participants answered two belief elicitation questions
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regarding their relative and absolute performances in this section. The real effort

task was incentivized per correctly solved matrix, and we elicited beliefs with a

binarized scoring rule (Hossain and Okui, 2013).

Part 2 was the school-choice game. Here, the participants took part in five rounds

of rank-ordered list (ROL) submission to a given assignment mechanism, whose

description was printed out. After the participants read the printout, they were

asked to answer four comprehension questions, two about how the assignment

mechanism works and two about the construction of their priority rank. In each

round, they privately learned a new vector of match values determining their

earnings when matched with each of the four schools, and then they submitted

their ROL. While the match values were new independent draws for each round,

the priority rank of participants (and their group) remained fixed. To prevent

learning, participants did not get any feedback about the assignment outcome

between rounds.

Finally, in part 3, they answered an exit questionnaire and then received their final

monetary payoff. This payoff was the sum of their part 1 earnings, the outcome of

one randomly chosen round of the school-choice game, and the participation fee.

Figure 1: Examples of the Raven matrices in difficulty condition Easy (left) and
Hard (right).

Hard-easy gap and priorities: Each student group was randomly assigned to

one of the difficulty conditions, Easy or Hard. These two conditions differed in

the real effort tasks of the second section of part 1. Compared to the twelve matri-

ces concerning the first section, the twelve matrices in Easy were easier, while the

twelve matrices in Hard were more difficult. Specifically, the matrices in Easy

were the first 12 items (in order of increasing difficulty) that were not part of the

12-item short-form questionnaire: items 1, 2, 5, 6, 7, 8, 9, 11, 4, 14, 17, and 19.

The matrices in Hard were the last 12 items (in order of increasing difficulty) that
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were not part of the 12-item short-form questionnaire: items 13, 20, 23, 25, 26,

24, 27, 29, 32, 33, 35, and 36.2 The idea behind the hard-easy gap method (Licht-

enstein et al., 1982; Dargnies et al., 2019) is to create overconfidence in the Easy

condition and underconfidence in the Hard condition. In this paper, we always

mean overplacement (Moore and Healy, 2008) when we mention overconfidence,

i.e., the situation in which subjects overestimate their priority rank.

The first section of part 1 is a novelty over the earlier papers, and it served a dual

purpose: first, these matrices provide a measure of cognitive ability that is not

linked to the priority rank; second, they created a reference point for the difficulty

of the matrices subject to priority ranking. In both difficulty conditions, partic-

ipants received a point for each correct solution in the second section, and their

priority ranks were determined according to the total number of points received.

The time spent solving matrices served as a tie-breaker. Subjects knew that all

other students in their group were presented with the same set of matrices.

School-choice game and match values: A market consisted of eight students

(the participants) and four schools. A participant’s payoff from a round was de-

termined by the assignment outcome. Each of the schools s ∈ S = {△,□,⃝,⋆}

had a capacity for two students. In each round, each student i was presented a

new vector of match values vi = (vi,s)s∈S. Students knew the distribution from

which all participants’ values were drawn, but they only learned their own realiza-

tion vi. The match values vi,s were drawn in advance, and the same set of values

was used in all sessions. They were i.i.d draws from a uniform distribution on dif-

ferent discrete supports from intervals of integers, Vs = JV s, V sK := [V s, V s] ∩ Z.

Specifically, these intervals were

V△ = J7, 10K, V□ = J5, 10K, V⃝ = J2, 7K, and V⋆ = J2, 5K.

That is, subjects were aware that, for all participants, (ex-ante) the match values

for school △ tended to be the highest and the match values for school ⋆ tended

to be the lowest. Moreover, the possible ordinal preferences (“straightforward

ROLs”) were

(△, □, ⃝, ⋆), (□, △, ⃝, ⋆), (△, □, ⋆, ⃝), (□, △, ⋆, ⃝), (△, ⃝, □, ⋆).

The idea behind this design was to reflect that preferences over schools in real-life

2We follow the item reordering suggested by Bors and Stokes (1998), who validated the test
with more than 1,000 students.

8



settings are similar across students, but not perfectly correlated.

Information conditions: Our experiment employed three information condi-

tions, Info-0, Info-1, and Info-2. The difference between the first two informa-

tion conditions was that in condition Info-1, the participants learned about their

own priority rank, while in Info-0, they were not informed. Hence, condition

Info-1 aimed to correct misconfidence. In contrast to the other two conditions,

the participants in Info-2 were assigned sequentially in priority order among their

group, and, at the time of their own ROL submission, they could see the remain-

ing capacity of each school so that this condition eliminated the uncertainty about

seat availability.

Assignment Mechanism: In the information conditions Info-0 and Info-1,

participants received a description of the static deferred-acceptance (DA) mech-

anism with common priorities: In step 1 of the mechanism, each student applies

to the first-ranked school in their ROL, and schools then temporarily accept the

two highest-priority applicants and reject all others; in the next step, all rejected

students automatically apply to the next-ranked school in their ROL, and schools

again temporarily accept the two highest-priority applicants and reject all others;

this process is repeated until no student is rejected and then the assignment is

finalized. In Info-2, the participants submitted their ROL sequentially following

the priority ranks, and their assignment was finalized immediately afterwards so

that the remaining capacity could be updated for the following students to see.

Importantly, the participants needed to submit a complete ROL in all conditions,

including Info-2. Finally, we did not explain or even mention strategy-proofness

in the mechanism description.

Belief elicitation: Before part 2 started, we asked our participants to submit an

estimation of their absolute and relative performance in the second section of part

1. Both questions were incentivized. The exact details of incentivization for the

relative performance question, i.e., binary scoring rule, were not provided (Danz

et al., 2022).

Questionnaire: The experiment concluded with an exit questionnaire. At the

end of the experiment, we also provided a free text field for participants to describe

their decision process when entering their ROL.

Procedures: We conducted the experiment in November 2023 at the WZB-TU

lab of the Technical University of Berlin, and our participants were recruited from

the lab’s recruitment pool, mainly consisting of undergraduate students (N =
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384). Approximately 45% of participants self-identified as female, 53% as male,

and 2% as non-binary. The average payment per subject was 15.56 Euro. The

experiment was programmed in z-Tree (Fischbacher, 2007). Each session took on

average 60 minutes.

Each session consisted of 16 subjects, split into two 8-student groups. In total, we

ran eight sessions per information condition. The information conditions were de-

termined randomly at the session level. In each session, one group was randomly

assigned to the difficulty condition Easy, while the other group was assigned to

Hard. Each subject played five rounds of the school-choice game corresponding

to their randomly assigned treatment. Consequently, we obtained 1.920 observa-

tions in total. That is, for each of the six treatment combinations, we have 320

observations comprised of five rounds of 64 participants.

3 Theory

Setting: Let a student i be labeled according to their (true) priority rank, i ∈

I := J1, 8K. Each student has a type θi, learns some information γi depending on

the information condition, and submits a rank-ordered list (ROL) ri over schools

s ∈ S = {△,□,⃝,⋆} to the mechanism. We describe type θi and information

γi in more detail later. Let Θ be the type space, Γ be the space of learned

information, and let R be the space of possible (complete) ROLs, i.e., the space

of all permutations of set S. A (pure) strategy is a mapping σi : Θ × Γ → R.

We consider different behavior models, but in each one, student i maximizes an

expected utility function

U(ri|θi, γi) = Er−i,i[ui(ri, r−i|θi)|θi, γi].

Let us call the two students with the highest priority, i ∈ {1, 2}, top students, the

next two, i ∈ {3, 4}, medium students, and all other, i g 5, bottom students.

Students i g 3 are called non-top students.

Type θi = (vi,bi): Participant i privately observes the value vector that con-

tains the match payoff for each school, vi = (vi,s)s∈S, and she forms a priority

belief bi about the common priority ranking. A priority belief is a probability

distribution, bi = (bi,j)j∈I where bi,j is the probability with which i believes to

have priority rank j and
∑

j∈I bi,j = 1. For point beliefs, we abuse notation such

that bi = j means that i believes to have priority rank j with certainty. Note
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that our experimental setup induces students’ preferences vi and provides correct

beliefs over v−i, but students form their own beliefs bi. Our experiment does not

ask participants for full distributions bi, but only for an estimated rank.

Assignment: Let M be the space of possible assignments, where an assignment

µ : I → S maps a student into their assigned school. Our assignment mechanism

maps ROLs into assignments, m : R → M. For ease of exposition, we use the

notation µi = µ(i) and mi(r) = m(r)(i). Because in our setting all feasible

assignments are individually rational and non-wasteful, we call an assignment

stable if and only if no student has justified envy. Student i has justified envy in

assignment µ if there is another student j > i and vi,µj
> vi,µi

, i.e., i has justified

envy when a lower-priority student j > i is assigned to a school µj that i prefers

over their own assignment µi. An assignment µ is efficient if there exists no other

assignment µ′ ̸= µ such that for all students i vi,µ′

i
g vi,µi

, i.e., there exists no

Pareto-improving trading cycle.

Information conditions Γ: Our three information conditions manipulate what

information a student i learns. In Info-0, γi = ∅ for all i ∈ I. That is, no student

gets any additional information and submits an ROL solely based on their values

vi and belief bi. In information condition Info-1, γi = i for all i ∈ I. That is, each

student learns their priority rank (=their index in our labeling convention) and

updates their belief to the correct point belief bi = i. In Info-2, γi = (qis)s∈S for all

i ∈ I, where qis is the remaining capacity of school s at step i of the mechanism.

Clearly, student i can also infer their own priority rank from this information. In

this information condition, student i learns which schools are available to i, i.e.,

the set S(γi) := {s : qsi > 0}.

Straightforward ROLs and consequential manipulations: For each student

i, the unique straightforward ROL is

r̂i(vi) = (s1, s2, s3, s4), where vs1,i > vs2,i > vs3,i > vs4,i

Let ri ̸= r̂i(vi) be a consequential manipulation for student i for a given vector

r−i if and only if

mi(ri, r−i) ̸= mi(r̂i(vi), r−i),

i.e., whenever the assigned school under ri differs from the assigned school under

the straightforward ROL.
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Behavior models: We consider four behavior models that differ in the underlying

expected utility function U : Classic, IA, EBLA, and RDP. For any belief about r−i

(or, alternatively, any belief about σ−i and belief about θ−i) and any priority belief

bi, define the assignment beliefs pi,s(ri|bi, γi) = Ei,r−i
[Pr(mi(ri, r−i) = s)|bi, γi] as

the probability that our mechanism assigns student i to school s when i submits

ROL ri. Similarly, let pIAi,s (ri|bi) be the corresponding probability for the Imme-

diate Acceptance (Boston) mechanism. In the classic behavior model, students

maximize

UClassic(ri|θi, γi) =
∑

s∈S

pi,s(ri|bi, γi)vi,s. (1)

In the immediate-acceptance (IA) behavior model, students maximize

U IA(ri|θi, γi) =
∑

s∈S

pIAi,s (ri|bi, γi)vi,s, (2)

where the only difference from the classical model is that the student misspecifies

how ROLs and priorities map into assignments. In the expectation-based loss

aversion (EBLA) and the ranking-dependent preferences (RDP) behavior

models, students maximize

UEBLA(ri|θi, γi) =
∑

s∈S

pi,s(ri|bi, γi)u
EBLA(s|ri, θi, γi) and (3)

URDP (ri|θi, γi) =
∑

s∈S

pi,s(ri|bi, γi)u
RDP (s|ri, θi, γi), respectively. (4)

In both these models, students have a correct understanding of the mechanism.

In addition to the classic component, the EBLA model incorporates a gain-loss

utility that reflects a possible disappointment with respect to a reference point,

and the RDP model incorporates a component that reflects a direct extra utility

from an assignment that is ranked high in the submitted ROL. We provide more

details in the appendix.

Given a behavior model X, an ROL r∗(θi, γi) is optimal given (θi, γi) if

UX(r∗(θi, γi)|θi, γi) g UX(r|θi, γi) for all r ∈ R. (5)

We now state some theoretical insights.

Insight 1. In our setting, there is a unique stable assignment µ∗ = m((r̂(vi))i∈I),

and this assignment is also efficient. Therefore, we call µ∗ the optimal assignment.
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This insight applies in any setting with a single priority ranking common to all

schools. Our mechanism implements this optimal assignment when all students

report straightforwardly.

Insight 2. Student i has justified envy if and only if their ROL ri is a consequential

manipulation.

This insight follows from the strategy-proofness of our mechanism and the unique-

ness of the stable assignment. Since the straightforward ROL leads to the best

possible assignment given any r−i, ri must lead to a worse assignment. Moreover,

another student j > i must get this better assignment mi(r̂(vi), r−i). Since j

has lower priority, i’s envy is justified. Similarly, student j > i can only get a

placement that i prefers if i’s ROL is a consequential manipulation.

A consequential manipulation is neither necessary nor sufficient for being part of

a Pareto-improving trading cycle. That is, there can be another assignment that

all students weakly prefer over a given assignment and student i prefers it strictly,

but student i reported her preferences straightforwardly. However, since the only

assignment that lacks justified envy is efficient, some consequential manipulation

must have occurred for inefficiency to arise.

Insight 3. Consider behavior model Classic and any vi. The ROL ri is optimal

for every assignment belief pi,s if and only if ri is straightforward.

In other words, the assignment mechanism is strategy-proof in the classical model,

and the straightforward equilibrium implements the optimal assignment µ∗. It is

easy to see that NSF ROLs can be strictly optimal in behavioral models IA, EBLA,

and RDP.

Insight 4. Consider behavior model IA, EBLA, or RDP, and any vi. If a stu-

dent believes that a match with their most-preferred school is unlikely, a non-

straightforward ROL leads to a strictly larger expected payoff than the straight-

forward ROL.

It is well-known that the IA (Boston) mechanism is not strategy-proof (Abdulka-

diroğlu and Sönmez, 2003) and that ranking the most-preferred school first is

strictly suboptimal if a match is very unlikely. Under EBLA, the insight follows

from Meisner and von Wangenheim (2023, Proposition 2). Under RDP, it follows

from Meisner (2023, Proposition 1). While such a manipulation by a pessimistic
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student can be consequential, no potentially consequential manipulation can be

optimal for a student who believes to be top.

Insight 5. Consider information condition Info-0 and any of the behavior mod-

els. If bi assigns a sufficiently large probability to ranks 1 and 2, the straightforward

ROL leads to a higher expected payoff than any ROL that does not rank the school

with the highest match value first.

Insight 6. Consider information condition Info-1 or Info-2 and any of the be-

havior models. A consequential manipulation is never optimal for any top student

i ∈ {1, 2}.

If top students are aware that they are top students, they understand that they

are assigned with certainty to whatever school they rank first: because all schools

have two seats, it is not possible (neither in DA, nor in IA) that their first-ranked

school is taken by higher-priority students. Essentially, submitting an ROL boils

down to selecting whatever school they rank first with certainty. In Info-0, some

students may incorrectly believe to be top students and submit the straightforward

ROL, while they would have submitted a potentially consequential manipulation

otherwise. That is, in behavior models other than the classic model, being over-

confident can lead to a preferred assignment.

Insight 7. Consider information condition Info-2 and any of the behavior mod-

els. A consequential manipulation is never optimal for any student. Consequently,

the optimal assignment µ∗ is implemented.

What only holds for top students in information condition Info-1, holds for every-

one in information condition Info-2: students choose their school under certainty.

They know that they can never be assigned to an unavailable school (one where

all seats are taken by higher-priority students), and they know that, at the time

of their action, the higher-priority students have already been assigned. Because

ranking the final assignment first has an inherent benefit for students under the

behavior model RDP, students will rank the most preferred available school first

and will be assigned to it. Under the classic or the EBLA model, students know

that any manipulation involving an unavailable school will not affect their as-

signment and so they may rank such a school first. As long as the most-preferred

available school is ranked first among the available schools in their ROL, this ROL

is a non-consequential manipulation and therefore optimal as it yields the maxi-
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mal obtainable payoff, equivalent to the straightforward ROL. In the IA model,

students may believe that at their turn an IA mechanism is executed just involving

them and the available schools, which would be equivalent to our mechanism.

Insight 7 relies not only on the behavioral theories we consider. In fact, the strate-

gic simplicity of the dynamic implementation can be formalized: it is strongly ob-

viously strategy-proof. A strategy is obviously dominant (Li, 2017) if it prescribes

at each information set an action such that the worst-case payoff from this action

is at least as large as the best-case payoff under any deviation at this information

set. Here, this obvious dominance is strong (Pycia and Troyan, 2023) because

each student is called to play exactly once and no foresight is required to calculate

payoffs. Any strategy that only prescribes weakly straightforward ROLs at each

information set is strongly obviously dominant.

Insight 8. In Info-0, no student has an obviously dominant strategy. In Info-1,

the straightforward ROL is an obviously dominant strategy only for top students.

In Info-2, the straightforward ROL is an obviously dominant strategy for all

students.

General insights regarding non-top students i g 3 are more involved because they

depend on unobserved parameters of the model, such as Λ in the EBLA model or

ρ in the RDP model. Moreover, students will likely make different assumptions

about the behavior of higher-priority students in the information conditions Info-

1 and Info-0. In Info-1, the behavior of top students is pinned down by the

insights above, but they may have incorrect beliefs in information condition Info-

0 and therefore behave differently. Consequently, it is not clear that, for instance,

a student who believes to have priority rank 4 in Info-0 behaves the same as a

student who knows to have this rank in information condition Info-1. However,

our theory predicts two students with the same priority to behave the same in

Easy×Info-1 and in Hard×Info-1. Similarly, the difficulty condition should

not matter in information condition Info-2.

4 Hypotheses

In this section, we spell out our hypotheses and explain how they are guided by

the theoretical insights discussed above.

Beliefs: Hypothesis 0 is the “hard-easy gap” in beliefs, a fundamental assumption
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to develop the arguments behind our main hypotheses. In other words, a verifica-

tion of Hypothesis 0 is necessary for our predictions on behavior and assignments

and thus needs to be tested first. According to the non-classical behavioral the-

ories, submission behavior depends on beliefs. Consequently, a change in beliefs

leads to a change in actions, which can be consequential for final assignments.

Hypothesis 0. Compared to subjects in Hard, subjects in Easy have more

positively biased beliefs about their relative performance, exhibiting greater over-

placement and less underplacement.

The hard-easy gap is a technique to exogenously manipulate participants’ beliefs.

It is a stylized fact that participants who perform well in an easy test tend to

overplace themselves in relative rankings without fully accounting for the fact

that all other participants took the same easy test and likely also did well. Vice-

versa, the beliefs about the relative performance in a hard test are shifted in the

other direction. That is, participants overweight their own absolute performance,

and they neglect the correlation with the objective difficulty of the test. In the

context of our experiment, this misconfidence translates into a biased perception

of students’ priority.

Impact of confidence shock: We continue our argument and move from beliefs

to actions in information condition Info-0. Since we expect students’ beliefs to

pool at the top in the difficulty condition Easy, we also expect their actions to

be similar. Specifically, and in line with Insight 5, we expect mostly straight-

forward play. In contrast, in difficulty condition Hard, we expect only a few

subjects to believe they have high priority so that, according to Insight 4, fewer

straightforward ROLs should be observed. Since we expect (some of) our sub-

jects’ behavior to be belief-dependent, priority information should eliminate the

differences between the difficulty conditions.

Our hypotheses on assignments are an implication of the predicted behavior. As

a consequence of their predicted straightforward reporting in Easy×Info-0, top

students are assigned to their destined school µ∗
i . Similarly, we predict medium stu-

dents to be assigned to one of the two high-value schools, △ or □. On the contrary,

any manipulation at the top of a top student’s ROL immediately leads to justified

envy, because they are always assigned to their first-ranked school, see Insight

2. Hence, we predict more justified envy among top students in Hard×Info-0,

and the benefactors of these consequential manipulations are necessarily non-top
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students.3 Because of the effect of priority information on actions, we predict

no difference in justified envy between Easy×Info-1 and Hard×Info-1, nor

between Easy×Info-2 and Hard×Info-2.

Hypothesis 1. In information condition Info-0, there is more justified envy in

Hard than in Easy. In information conditions Info-1 and Info-2, there is no

systematic difference in justified envy between Hard and Easy.

Impact of priority information: Because priority information aligns the be-

havior across the difficulty conditions, its impact depends on the initial beliefs and

the true priority of the informed student. In particular, Insight 6 predicts that,

regardless of the difficulty condition, all top students in Info-1 (or in Info-2)

reveal their true favorite school to be assigned to it. Consequently, it should have

little effect on top students’ justified envy in the difficulty condition Easy as their

initial priority belief is expected to be accurate. The opposite is true in difficulty

condition Hard where the positive belief update should lead to a difference in

the behavior and assignment of top students in Hard×Info-0 and Hard×Info-

1. In contrast, the initial beliefs of non-top students are more accurate in the

difficulty condition Hard. In difficulty condition Easy, we predict that priority

information reduces straightforward play among non-top students because it cor-

rects their overplacement. In sum, we expect more justified envy in Easy×Info-1

than in Easy×Info-0, and this increase is driven by non-top students. In dif-

ficulty condition Hard, we expect the effect of priority information to go in the

other direction, and this decrease in justified envy is driven by top students.

Hypothesis 2. There is more justified envy inEasy×Info-1 than inEasy×Info-

0. There is less justified envy in Hard×Info-1 than in Hard×Info-0.

Impact of availability information: When students obtain availability infor-

mation, they essentially select schools under certainty. While a non-straightforward

ROL can be optimal, a consequential manipulation never is, see Insight 7. Since all

our behavioral theories clearly predict the optimal matching µ∗ to arise, we expect

the lowest rates of justified envy in information condition Info-2. Because the

dynamic implementation might be easier to understand, justified envy may even

reduce among top students from Info-1 to Info-2, although our models predict

3The scope for justified envy among non-top students is smaller. For instance, for student
i = 6 any manipulation involving △ or □ is likely to be inconsequential because they are likely
to be taken by higher-priority students i < 6.
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no consequential manipulations by top students in both information conditions.

Hypothesis 3. No other information condition exhibits lower rates of justified

envy than Info-2.

Table 1 summarizes our predictions on justified envy (JE) in plain language. To

a lesser degree, these predictions also apply to inefficiency. By Insight 1, the

assignment of the straightforward equilibrium is efficient. Hence, a consequential

manipulation is necessary for inefficiency to arise. However, as discussed, it is not

sufficient because the student who obtained a better assignment as a result may

not want to trade it away.

Easy Hard

Top Non-top Top Non-top

Info-0 Little JE Tiny JE Big JE Some’ JE
Info-1 No JE Some JE No JE Some JE
Info-2 No JE No JE No JE No JE

Table 1: Our predictions about justified envy (JE) are rooted in behavioral theory.
The classical model predicts no JE for each cell in the table. Here, No < Tiny <

Little < Some ≈ Some’ < Big.

5 Results

In this section, we test our hypotheses and report the results. We first examine the

induced hard-easy gap in beliefs for all information conditions and then whether

it translates into a difference in actions and assignments. We begin our analysis

with the information condition Info-0, and we then compare these results to the

expected null results in the information conditions Info-1 and Info-2. Finally,

we test whether increasing the information level mitigates the effects of the hard-

easy gap and, in particular, whether these effects differ between top and non-top

students. While the main part of our analysis is based on our hypotheses and

therefore focuses on justified envy, we also study inefficiency at the end of this

section.

Figure 2 shows the induced hard-easy gap pooled over all information conditions.

First of all, this figure suggests that we selected appropriate matrices for the

difficulty conditions in the sense that participants in condition Easy indeed solved

and believed to have solved more matrices correctly. Participants believe that they
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Figure 2: Means of beliefs about number of solved matrices (left) and achieved
rank (right) by Easy and Hard with standard deviations for all information
conditions.

solved around 10 out of 12 matrices (M = 9.77, SD = 1.98) correctly in Easy and

about 5 out of 12 in Hard (M = 5.16, SD = 1.78). The difference is significant,

t(382) = 23.96, p < 0.01. For our design, it is not necessary that participants

over- or underestimate their absolute performance. What is crucial is that their

beliefs about their relative performance are distorted. As the right sub-figure

shows, participants believe that they rank on average between rank 3 and 4 in

Easy (M = 3.51, SD = 1.32) and at rank 5 in Hard (M = 5.14, SD = 1.39).

Again, the difference is significant, t(382) = −11.74, p < 0.01.4

Underconfident – Overconfident

Easy 25.52% 16.67% 57.81%
Hard 56.25% 16.15% 27.60%

Table 2: Under- and overconfidence by Easy and Hard for all information con-
ditions.

From the believed ranks, we deduce whether participants over- or underplace them-

selves. To this end, we define the variable confidence as the difference between

real and believed rank. That is, a positive realization reflects overconfidence, i.e.,

overplacement. Figure 3 shows the distribution of believed ranks and the corre-

sponding confidence for both difficulty conditions. Table 2 presents the proportion

4All tests hold with p < 0.01 for each information condition, respectively.
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Figure 3: Distribution of believed priorities and confidence by Easy and Hard

for all information conditions.

of overconfident and underconfident participants. While the majority of partic-

ipants in the Easy condition were overconfident (M = 0.98, SD = 0.16), the

majority in the Hard condition was underconfident (M = −0.64, SD = 0.17).

Indeed, we confirm that the Easy (Hard) condition induces significant overplace-

ment (underplacement), as evidenced by the mean confidence being significantly

below (above) zero, confirmed by a two-sided t-test for both (Easy: t = 3.64,

p < 0.01; Hard: t = −3.80, p < 0.01).5

Result 0. Participants in Easy believe to have significantly better priority ranks

than participants in Hard. Easy (Hard) induces significant overplacement (un-

derplacement).

We now turn our attention to differences in justified envy (JE) in the difficulty

conditions. In keeping with Insight 2, we define the variable JE to be 1 for each in-

dividual participant who submitted a consequential manipulation and 0 otherwise.

Table 3 provides descriptive evidence that the hard-easy gap in beliefs corresponds

to a gap in JE in information condition Info-0, but not in information condition

Info-1. This observation is in line with our theory, which predicts behavior (and

thus the resulting assignments) to be belief-dependent, because the priority in-

formation eliminates the belief distortions triggered by the difficulty conditions.

That is, our evidence is consistent with Hypothesis 1. Surprisingly, this alignment

seems to be less pronounced in information condition Info-2, where priority in-

5All tests hold with p < 0.01 for each information condition, respectively.
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formation is also provided along with the availability information. However, this

difference is not significant as discussed below. Nevertheless, the presence of JE

in Info-2 is puzzling, and we return to it later in this text.

Info-0 Info-1 Info-2

Easy 8.13% 15% 6.56%
Hard 15.31% 16.25% 10.00%

Table 3: Share of consequential manipulations (JE) by Easy and Hard and the
information conditions.

In Table 4, we show by means of a random-effects regression in specifications (1)

and (2) of Panel A that there is a direct treatment effect of Hard in Info-0

(without controls: p = 0.048; with controls: p = 0.044). Specifications (3) to

(6) in all panels show that the unveiled effects vanish when priority information

is provided, i.e., the effects are not present in the information conditions Info-1

(without controls: p = 0.799; with controls: p = 0.911) and Info-2 (without

controls: p = 0.262; with controls: p = 0.303).6 In Panel B, we employ an in-

strumental variable approach to show that the difficulty conditions causally affect

justified envy via the confidence measure in Info-0 (without controls: p = 0.051;

with controls: p = 0.051). Again, this neither holds in Info-1 (without controls:

p = 0.797; with controls: p = 0.911) nor in Info-2 (without controls: p = 0.270;

with controls: p = 0.327).7

Result 1. In information condition Info-0, there is significantly more justified

envy in Hard than in Easy. In information conditions Info-1 and Info-2, there

is no significant difference between justified envy in Hard and Easy.

From the perspective of Hypothesis 2, the verdict of Table 3 appears to be unclear

at first glance: while an increase in information is accompanied by an increase in

JE in difficulty condition Easy, there does not seem to be an effect in difficulty

condition Hard (if anything, this effect would be in the “wrong” direction). That

is, the evidence is consistent with the first part of Hypothesis 2, but we do not

seem to see the predicted decrease in JE in Hard. To get a better understanding,

let us delve into the details of our argument behind Hypothesis 2, which predicts

the increase in Easy to be driven by non-top students and the decrease in Hard

6Results hold qualitatively when analyzing the intensive margin, i.e., the loss of payoffs due
to JE, instead of the extensive margin, i.e., the presence of JE, see Table 8 in the appendix.

7Results are consistent when instrumenting the believed rank instead of the confidence.

21



Info-0 Info-1 Info-2

(1) (2) (3) (4) (5) (6)

Panel A: Random-effects model
Hard 0.082∗∗ 0.080∗∗ 0.014 0.006 0.039 0.036

(0.042) (0.040) (0.056) (0.054) (0.035) (0.035)
Constant 0.093∗∗∗ 0.153 0.171∗∗∗ 0.312∗∗∗ 0.075∗∗∗ 0.058

(0.031) (0.104) (0.038) (0.079) (0.017) (0.083)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 560 560 560 560 560 560

Panel B: Instrumental variable model
Confidence -0.048∗ -0.048∗ -0.008 -0.003 -0.027 -0.024

(0.025) (0.024) (0.032) (0.029) (0.024) (0.024)
Constant 0.121∗∗∗ 0.220∗∗∗ 0.176∗∗∗ 0.319∗∗∗ 0.090∗∗∗ 0.104

(0.023) (0.079) (0.029) (0.075) (0.016) (0.100)

Controls No Yes No Yes No Yes
Observations 560 560 560 560 560 560

The dependent variable is Justified Envy ∈ {0, 1}. Estimation by random-effects regres-
sion in Panel A and by two-stage least squares random-effects estimator in Panel B, where
Believed rank is instrumented by Hard. Standard errors clustered on group-level in paren-
theses. Controls are performance in baseline Raven test, gender, and the true ROL. ∗, ∗∗

and ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

Table 4: The effect of confidence on JE by information condition.

to be driven by top students.

Table 5 differentiates between top and non-top students. It juxtaposes the ob-

served rates of JE with the predictions in Table 1. Let us first consider top

students, i.e., the left side of each table in both difficulty conditions. As pre-

dicted, priority information reduced consequential manipulations among top stu-

dents, and, also as predicted, this reduction is large in Hard and small in Easy.

Surprisingly, the rates of JE among top students in both difficulty conditions in

Info-1 remain larger than zero. Specifications (3) to (6) of Panel A in Table 6

further scrutinize this discussion. All in all, the observed effect of priority infor-

mation on top students’ justified envy is consistent with our theory: there is no

significant effect of Info-1 in Easy (specifications (3) and (4), p = 0.806 and

p = 0.950), whereas this effect is (marginally) significant in Hard (specifications

(5) and (6), p = 0.090 and p = 0.084). Note that significance only at the 10%

level may in part be due to the small sample size of top students.

On the other hand, Table 5 suggests that priority information increases JE for non-
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Easy

Top Non-top

Info-0 18.75% (Little) 5.50% (Tiny)
Info-1 16.25% (None) 17.50% (Some)
Info-2 2.50% (None) 9.50% (None)

Hard

Top Non-top

Info-0 26.25% (Big) 14.00% (Some’)
Info-1 8.75% (None) 22.50% (Some)
Info-2 2.50% (None) 15.00% (None)

Table 5: Instances of consequential manipulations (justified envy) for top and
non-top ranked students with theoretical predictions in brackets.

top students, and, notably, this is the case in both difficulty conditions. While

we predicted a stark increase in Easy, we only expected a negligible effect in

Hard. Figure 4 suggests that this observation is driven by medium students,

while bottom students barely seem to be affected by priority information.
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Figure 4: Prevalence of justified envy for each rank for all information conditions.

Focusing on non-top students, specifications (3) and (4) of Panel B in Table 6

document the predicted increase in justified envy due to priority information,

and this effect is statistically significant in Easy (p < 0.01 both with and without

controls), while specifications (5) and (6) show that it is not statistically significant

in Hard (p = 0.172 and p = 0.166, respectively).

Taken together, these findings qualitatively confirm our theoretical arguments

both for top and non-top students. However, quantitatively, we underestimated

the effect of priority information on medium students in the difficulty condition

Hard. Put in the words of Table 1 and 5, we seem to have misjudged the differ-

ence between Some and Some’. In Section 6, we continue the discussion of this

observation. In light of this caveat, we present our results regarding Hypothesis 2

separately for top and non-top students.
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Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel A: Top students
Info-1 -0.100 -0.075 -0.025 -0.007 -0.175∗ -0.164∗

(0.073) (0.073) (0.102) (0.104) (0.103) (0.095)
Info-2 -0.200∗∗∗ -0.176∗∗∗ -0.163∗∗ -0.138 -0.237∗∗∗ -0.208∗∗

(0.057) (0.056) (0.075) (0.087) (0.086) (0.093)
Constant 0.225∗∗∗ 0.445∗∗∗ 0.188∗∗ 0.432∗∗ 0.262∗∗∗ 0.404∗∗∗

(0.056) (0.138) (0.074) (0.219) (0.085) (0.139)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 480 480 240 240 240 240

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.03 p = 0.04 p = 0.06 p = 0.04 p = 0.30 p = 0.44

Panel B: Non-top students
Info-1 0.103∗∗∗ 0.103∗∗∗ 0.120∗∗∗ 0.125∗∗∗ 0.085 0.087

(0.038) (0.037) (0.037) (0.034) (0.062) (0.063)
Info-2 0.025 0.024 0.040 0.045∗ 0.010 0.004

(0.030) (0.029) (0.029) (0.025) (0.047) (0.047)
Constant 0.097∗∗∗ 0.106∗∗ 0.055∗∗∗ 0.094∗ 0.140∗∗∗ 0.108

(0.018) (0.047) (0.018) (0.051) (0.024) (0.079)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 1200 1200 600 600 600 600

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.06 p = 0.05 p = 0.04 p = 0.04 p = 0.29 p = 0.25

The dependent variable is Justified Envy ∈ {0, 1}. Estimation by random-effects regression.
Standard errors clustered on group-level in parentheses. Controls are performance in baseline
Raven test, gender, and the true ROL. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%
level, respectively.

Table 6: The effect of information on JE for top and non-top students.

Result 2. Among top students there is less justified envy in Info-1 than in Info-

0 in the difficulty condition Hard. Among non-top students there is significantly

more justified envy in Info-1 than in Info-0 in the difficulty condition Easy.

We now study the effect of the availability information provided in condition Info-

2. A glance at Table 5 reveals that this information reduces JE close to zero for

top students, but surprisingly not for non-top students. Returning to Table 6

allows us to elaborate further on this observation. Here, we see in specifications

(1) and (2) of Panel A that there is significantly less JE under Info-2 compared

to Info-0 and Info-1 for top students. Unraveling the effect of availability in-
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formation for non-top students requires extra care in reading Panel B of Table 6.

Here, we see small positive coefficients in all specifications. While this suggests a

null effect over baseline Info-0, it is important to understand that the coefficient

reflects the effect of both priority and availability information. Accordingly, the

post-estimation Wald test comparing Info-1 and Info-2 is significant in specifi-

cations (1) to (4), indicating that the effect is most pronounced in difficulty level

Easy. In other words, we can interpret the result on non-top students’ JE as

the addition of availability information in Info-2 partially undoing the harm of

priority information seen in the coefficient of Info-1.

Result 3. Among top students, there is significantly less justified envy in Info-2

than in Info-0 and Info-1 in both difficulty conditions. Among non-top students

there is significantly less justified envy in Info-2 than in Info-1 in the difficulty

condition Easy.

Efficiency: There are multiple ways to measure efficiency. To this end, we define

the dummy variable PITC ∈ {0, 1} that takes value 1 for a given student if there

exists a Pareto-improving trading cycle involving this student, and zero otherwise.

That is, this binary variable is defined on an individual level for a fixed group and

round. Note that this measure is related to (but distinct from) JE, since a Pareto-

improving trading cycle always implies that at least one participant involved in

the trading cycle has JE (but not vice versa). Moreover, the mere existence

of Pareto-improving trading cycles would be remarkable because we constructed

students’ preferences to be quite similar. For instance, if all students had the

same ordinal preferences, such cycles would be impossible. That is, in addition to

a misallocation we also need a double coincidence of wants in the preferences.

We check for the occurrences of Pareto-improving trading cycles and the impact

of information on PITC for top and non-top students separately. We present

the regression results in Table 10 in the appendix. First of all, the significant

constants in specifications (1) and (2) (combined sample Easy and Hard) in both

panels (top and non-top students) reveal that Pareto-improving trading cycles

exist. Next, we see in specifications (5) and (6) in Panel A that the observed

reduction of justified envy of top students in Hard due to priority information

does not translate into significant efficiency gains. In contrast, specifications (1)

and (2) of Panel B show that priority information creates significant inefficiency

for non-top students in the combined sample, and, as predicted, this inefficiency is

driven by the difficulty condition Easy. Surprisingly, the additional provision of
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availability information in Info-2 only reverses this effect, but does not eliminate

inefficiency. This is puzzling because it means that multiple students have not

selected their most preferred school from a certain choice menu.

6 Discussion

We did not only choose a setting with a central test score for simplicity, but also

because such a priority structure is prevalent in real-life matching markets (see,

e.g., Fack et al., 2019, Table 1). It is well-known that the pattern of NSF play

that we document is not only an artifact of laboratory behavior, but it also oc-

curs in the field. Because the true preferences are not observable, only “obvious

manipulations” (Artemov et al., 2020; Shorrer and Sóvágó, 2023) are identifiable

in the data, e.g., when preferences are expressed that rank attending school s and

paying full tuition higher than attending the same school with a tuition waiver.

Even when limiting attention to this lower bound, significant costs of manipulation

can be observed. Moreover, survey data (Rees-Jones, 2018) is an additional piece

of evidence suggesting that NSF play is a phenomenon not limited to the lab.

Finally, Rees-Jones and Skowronek (2018) find that participants of the real-life

National Resident Matching Program, which matches doctors to residency posi-

tions in hospitals in the United States exhibit the same behavior pattern in the

lab as our participants.

To estimate participants’ preferences in strategy-proof mechanisms, state-of-the-

art econometrics (Fack et al., 2019; Artemov et al., 2023) does not rely on the

assumption of straightforward play. Instead, these approaches rely on the (asymp-

totic) stability of the assignment, and they allow estimations that are robust to

non-consequential manipulations. Here, it is crucial that students are able to iden-

tify the set of schools available to them (Che et al., 2023, show how to account for

uncertainty in the priorities). While the prevalence of justified envy in our small-

market setting does not necessarily cast doubt on this identifying assumption, our

study shows that biased (and usually unobserved) beliefs can trigger unstable al-

locations, and it is not obvious that these biases vanish in large markets. However,

econometricians can leverage this systematic dependence on the beliefs to improve

preference estimation techniques.

Our results suggest that providing (certain) availability information leads to the

most desirable assignments, even if it does not work perfectly. However, a dy-

namic implementation is necessary to provide this information, and, in large mar-
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kets, such an implementation may not be practicable. With Croatian data, Kovač

et al. (2025) analyze a setting with fuzzy availability information and document

that applicants tend to overreact to the information. The German students in

Grenet et al. (2022) also overreact to early offers instead of waiting for an accep-

tance from a preferred program. Kang et al. (2025) study a dynamic matching

mechanism in Inner Mongolia where students are ranked according to a central-

ized score, are grouped into batches accordingly, and can revise their choices with

fuzzy availability information before a deadline. The higher-scoring batches final-

ize their choices earlier because the deadlines are staggered. Kang et al. (2025)

observe that the students just below a batch cutoff who have almost perfect avail-

ability information are more likely to apply to “reach schools,” while those just

above a cutoff who face more availability uncertainty do so less. These insights

emphasize that our results on certain availability information have to be treated

with caution, as they may not extend to fuzzy availability information.

In our setting, availability information makes the mechanism obviously strategy-

proof. However, an obviously strategy-proof stable mechanism is not guaranteed

to exist (Ashlagi and Gonczarowski, 2018), and also the robustness to expectation-

based loss aversion relies on a particular priority structure (Dreyfuss et al., 2025).

Our intention behind including this treatment was to understand the impact of

eliminating uncertainty in the choice. The gap between the belief-based predic-

tions and the actual assignment outcomes suggests further work on mechanism

descriptions along the lines of Katuščák and Kittsteiner (2024), Gonczarowski

et al. (2023), and Nagel and Saitto (2023) is required, because alternative mech-

anism descriptions seem to be more promising to improve the performance of the

mechanism compared to simply giving advice (Ding and Schotter, 2017, 2019;

Guillen and Hakimov, 2018).

A common takeaway from Pais and Pintér (2008) is that providing participants

with more information leads them to attempt to utilize this information to strate-

gize without noticing that NSF behavior can only be costly in a strategy-proof

mechanism. In contrast, uninformed participants have no starting point for any

attempt to game the system and revert to a straightforward heuristic. Since we ob-

serve that the difficulty condition has an impact on participants’ ROLs in Info-0,

this logic cannot explain all of the variation and belief-based explanations appear

plausible. However, Figure 4 documents that students ranked third and fourth in

Info-1 or those ranked second in Info-2 were specifically prone to consequen-

tial manipulations. Therefore, the strategic use of priority information seems too
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excessive to be explained only by belief-based theories.

We prohibit the submission of incomplete ROLs, and, hence, our study abstracts

from non-placement. However, this problem has received considerable attention

in the empirical literature, and the risk of non-placement is clearly associated

with overconfidence. Arteaga et al. (2022) combine school choice with a search

model and test their predictions using data from the Chilean national school-

choice system (unconstrained DA) and the school-choice system in New Haven,

Connecticut (truncated DA). The value of search crucially depends on admission

chances, such that overestimating admission can reduce search and increase the

risk of remaining unassigned. They find that targeted warnings about this risk to

respective applicants are an effective intervention leading to longer rankings and a

reduction in non-placement. While they stress that the strategy-proofness of the

mechanism does not extend to strategy-proofness in the broader choice process,

we stress that strategy-proof mechanisms may fail even absent such search costs

and absent the risk of non-placement. Similarly, Fabre et al. (2021) and Kovač

et al. (2025) record in Chilean and Croatian data, respectively, that applicants’

risk of non-placement can be reduced by providing personalized information.

Finally, we find it valuable to highlight gender differences in our setting. Result 1,

which documents the effect of confidence on justified envy, is primarily driven by

women in the Info-0 condition. That is, in the absence of information, women

who are underconfident are more likely to consequentially manipulate their pref-

erence reports. In contrast, men in the same condition do not exhibit a similarly

systematic relationship between confidence and JE. For the information conditions

Info-1 and Info-2, the results hold for both men and women (see Appendix Table

11). Moreover, the result that priority information increases JE among non-top

students is mainly driven by men. Lastly, our observation that availability in-

formation in Info-2 mitigates the harm done by priority information holds for

both top-performing men and women (see Appendix Tables 13 and ??). These

ex-post findings reveal potential systematic gender differences in how confidence

and information interact with preference reports in a strategy-proof school-choice

mechanism.

7 Conclusion

The purpose of this research should not be misunderstood as attempting to demon-

strate how poorly strategy-proof mechanisms perform, as they fail to fully induce
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the predicted straightforward play and do not implement the desirable assign-

ments they are designed for. On the contrary, we believe they often work very

well, just not as well as classically predicted. We use modern theory to predict

behavior and to inform about policy interventions where classical theory is silent.

That is, while we want to shatter confidence in perfectly working strategy-proof

market design, we also want to emphasize the hope to further improve assignment

outcomes through seemingly irrelevant details of the market design.

Our experiment suggests that submission behavior in a strategy-proof assignment

mechanism systematically depends on beliefs about priority. By means of a hard-

easy gap, we exogenously induce participants to overplace or underplace them-

selves in a common priority ranking. Behavioral theory predicts that overconfident

students are less likely to manipulate their preferences compared to underconfi-

dent students. We confirm this prediction, and we also document that this pattern

leads to significantly more justified envy in the underconfident treatment condi-

tion. Moreover, we show that informing top students about their true priority

rank significantly reduces their justified envy in the underconfident treatment con-

dition. In contrast, this information significantly increases justified envy among

non-top students in the overconfident condition. Surprisingly, making the assign-

ment mechanism obviously strategy-proof by providing availability information in

a dynamic implementation does not eliminate justified envy entirely.
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Appendix

Details of the behavioral models EBLA and RDP

Our version of the expectation-based loss aversion (EBLA) model is based

on Meisner and von Wangenheim (2023) and Kőszegi and Rabin (2007), where

students maximize

UEBLA(ri|θi, γi) =
∑

s∈S

pi,s(ri|bi, γi)u
EBLA(s|ri, θi, γi), with

uEBLA(s|·) =
∑

x: vi,xfvi,s

pi,x(ri|·)(vi,s + (vi,s − vi,x)) +
∑

x: vi,x>vi,s

pi,x(ri|·)(vi,s + λ(vi,s − vi,x)).

Here, λ > 2 captures a degree of loss aversion with respect to a reference school x,

and all pairwise comparisons are weighted by the rational assignment probabilities.

If λ is sufficiently large, a student can have preferences that violate first-order

stochastic dominance. The classical model obtains when λ = 0.

The ranking-dependent preferences (RDP) model is based on Meisner (2023),

where students maximize

URDP (ri|θi, γi) =
∑

s∈S

pi,s(ri|bi, γi)u
RDP (s|ri, θi, γi), with

uRDP (s|·) = vi,s + ρ(s|ri),

and ρ(s|ri) is a function that is decreasing in the rank that ROL ri assigns to

school s. A strategic trade-off immediately arises when the ranking-dependent

component for first-ranked options is larger than for second-ranked options so

that the student would not want to rank first their most-preferred school first

if an assignment is unlikely. The classical model obtains when ρ is a constant

function.
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Additional regressions

Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel C: Top and non-top
Info-1 0.045 0.047 0.079 0.087∗ 0.011 0.009

(0.036) (0.035) (0.049) (0.047) (0.049) (0.047)
Info-2 -0.039 -0.035 -0.018 -0.008 -0.061 -0.058

(0.029) (0.029) (0.035) (0.032) (0.040) (0.042)
Constant 0.134∗∗∗ 0.200∗∗∗ 0.093∗∗∗ 0.177∗∗ 0.175∗∗∗ 0.219∗∗∗

(0.023) (0.050) (0.031) (0.081) (0.027) (0.055)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 1680 1680 840 840 840 840

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.01 p = 0.01 p = 0.02 p = 0.02 p = 0.16 p = 0.19

The dependent variable is Justified Envy ∈ {0, 1}. Estimation by random-effects regression.
Standard errors clustered on group-level in parentheses. Controls are performance in base-
line Raven test, gender, and the true ROL. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5%
and 1% level, respectively.

Table 7: The effect of information on JE for all students.
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Intensive margin regressions

Info-0 Info-1 Info-2

(1) (2) (3) (4) (5) (6)

Panel B: Random-effects model
Hard 0.318∗∗ 0.315∗∗ 0.196 0.171 0.171∗ 0.162∗

(0.153) (0.147) (0.198) (0.193) (0.100) (0.098)
Constant 0.179∗ 0.529∗ 0.407∗∗∗ 0.895∗∗∗ 0.121∗∗∗ 0.182

(0.091) (0.305) (0.125) (0.320) (0.030) (0.278)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 560 560 560 560 560 560

Panel D: Instrumental variable model
Confidence -0.187∗∗ -0.187∗∗ -0.112 -0.093 -0.116∗ -0.107

(0.091) (0.091) (0.110) (0.103) (0.070) (0.070)
Constant 0.289∗∗∗ 0.791∗∗∗ 0.471∗∗∗ 1.083∗∗∗ 0.188∗∗∗ 0.390

(0.074) (0.257) (0.094) (0.313) (0.042) (0.330)

Controls No Yes No Yes No Yes
Observations 560 560 560 560 560 560

The dependent variable is the loss in payoffs due to Justified Envy ∈ {1, . . . , 8}. Estimation
by random-effects regression in Panel A and by two-stage least squares random-effects esti-
mator in Panel B, where Believed rank is instrumented by Hard. Standard errors clustered
on group-level in parentheses. Controls are performance in baseline Raven test, gender, and
the true ROL. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively.

Table 8: The effect of confidence on payoffs by information condition.
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Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel A: Top students
Info-1 -0.219 -0.132 0.075 0.153 -0.512 -0.450

(0.311) (0.298) (0.332) (0.342) (0.516) (0.512)
Info-2 -0.619∗∗∗ -0.521∗∗ -0.350 -0.234 -0.887∗∗ -0.738∗

(0.216) (0.209) (0.223) (0.248) (0.350) (0.419)
Constant 0.662∗∗∗ 1.577∗∗∗ 0.388∗ 1.342∗ 0.937∗∗∗ 1.714∗∗∗

(0.215) (0.462) (0.222) (0.694) (0.348) (0.552)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 480 480 240 240 240 240

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.08 p = 0.08 p = 0.09 p = 0.07 p = 0.33 p = 0.38

Panel B: Non-top students
Info-1 0.322∗∗ 0.323∗∗ 0.290∗∗ 0.304∗∗∗ 0.355 0.355

(0.134) (0.131) (0.113) (0.109) (0.227) (0.228)
Info-2 0.065 0.065 0.060 0.069 0.070 0.052

(0.093) (0.091) (0.057) (0.050) (0.160) (0.159)
Constant 0.208∗∗∗ 0.345∗∗ 0.095∗∗ 0.255∗∗ 0.320∗∗∗ 0.372

(0.061) (0.163) (0.040) (0.105) (0.103) (0.303)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 1200 1200 600 600 600 600

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.06 p = 0.06 p = 0.04 p = 0.04 p = 0.23 p = 0.21

The dependent variable is the loss in payoffs due to Justified Envy ∈ {1, . . . , 8}. Estima-
tion by random-effects regression. Standard errors clustered on group-level in parentheses.
Controls are performance in baseline Raven test, gender, and the true ROL. ∗, ∗∗ and ∗∗∗

denote significance at the 10%, 5% and 1% level, respectively.

Table 9: The effect of information on JE for top and non-top students (intensive
margin).
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Efficiency regressions

Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel A: Top students
Info-1 0.006 0.018 0.037 0.047 -0.025 -0.035

(0.044) (0.051) (0.077) (0.084) (0.035) (0.032)
Info-2 -0.056∗ -0.042 -0.075 -0.064 -0.037 -0.025

(0.029) (0.033) (0.051) (0.072) (0.028) (0.025)
Constant 0.069∗∗ 0.181∗∗∗ 0.088∗ 0.231∗∗ 0.050∗ 0.088∗∗

(0.028) (0.068) (0.049) (0.114) (0.026) (0.040)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 480 480 240 240 240 240

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.07 p = 0.08 p = 0.06 p = 0.03 p = 0.64 p = 0.66

Panel B: Non-top students
Info-1 0.067∗∗ 0.068∗∗ 0.095∗ 0.098∗∗ 0.040 0.039

(0.031) (0.030) (0.050) (0.047) (0.036) (0.036)
Info-2 0.002 0.002 0.005 0.006 0.000 -0.002

(0.030) (0.030) (0.045) (0.043) (0.040) (0.040)
Constant 0.108∗∗∗ 0.126∗∗∗ 0.095∗∗∗ 0.131∗∗ 0.120∗∗∗ 0.119∗∗

(0.018) (0.036) (0.030) (0.052) (0.022) (0.046)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 1200 1200 600 600 600 600

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.06 p = 0.05 p = 0.09 p = 0.08 p = 0.36 p = 0.35

The dependent variable is part of Pareto-improving Trading Cycle ∈ {0, 1}. Estimation by
random-effects regression. Standard errors clustered on group-level in parentheses. Controls
are performance in baseline Raven test, gender, and the true ROL. ∗, ∗∗ and ∗∗∗ denote
significance at the 10%, 5% and 1% level, respectively.

Table 10: The effect of information on efficiency for top and non-top students.
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Gender regressions

Info-0 Info-1 Info-2

(1) (2) (3) (4) (5) (6)

Panel A: Random-effects model (Female Sample)
Hard 0.121∗∗ 0.120∗∗ 0.078 0.074 0.030 0.028

(0.059) (0.056) (0.077) (0.077) (0.059) (0.062)
Constant 0.095∗∗ 0.229∗∗ 0.100∗∗∗ 0.161∗ 0.104∗∗∗ -0.042

(0.039) (0.106) (0.037) (0.083) (0.033) (0.136)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 225 225 275 275 255 255

Panel B: Random-effects model (Male Sample)
Hard 0.052 0.055 -0.050 -0.072 0.052 0.057

(0.054) (0.052) (0.079) (0.083) (0.047) (0.048)
Constant 0.091∗∗ 0.106 0.243∗∗∗ 0.420∗∗∗ 0.048∗∗∗ 0.120∗

(0.037) (0.121) (0.069) (0.155) (0.016) (0.068)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 335 335 285 285 305 305

Panel C: Instrumental-variable model (Female Sample)
Confidence -0.060∗ -0.059∗∗ -0.043 -0.040 -0.032 -0.026

(0.031) (0.030) (0.044) (0.042) (0.065) (0.058)
Constant 0.127∗∗∗ 0.306∗∗∗ 0.103∗∗∗ 0.245∗ 0.111∗∗∗ 0.017

(0.033) (0.095) (0.035) (0.132) (0.029) (0.111)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 335 335 285 285 305 305

Panel D: Instrumental-variable model (Male Sample)
Confidence -0.036 -0.038 0.029 0.042 -0.026 -0.030

(0.036) (0.035) (0.049) (0.052) (0.026) (0.027)
Constant 0.114∗∗∗ 0.151 0.212∗∗∗ 0.378∗∗∗ 0.072∗∗∗ 0.170∗

(0.026) (0.098) (0.038) (0.128) (0.023) (0.101)

Baseline Easy Easy Easy Easy Easy Easy
Controls No Yes No Yes No Yes
Observations 335 335 285 285 305 305

The dependent variable is justified envy, JE ∈ {0, 1}. Estimation by random-effects regres-
sion. Standard errors clustered on group-level in parentheses. Controls are performance in
baseline Raven test, and the true ROL. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5%
and 1% level, respectively.

Table 11: The effect of confidence on JE by information condition (split by female
and male sample).
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Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel A: Top students
Info-1 -0.167∗ -0.159 -0.175 -0.217 -0.160 -0.093

(0.091) (0.104) (0.130) (0.139) (0.130) (0.169)
Info-2 -0.202∗∗∗ -0.200∗∗ -0.160 -0.175 -0.230∗∗ -0.145

(0.078) (0.080) (0.130) (0.127) (0.106) (0.143)
Constant 0.244∗∗∗ 0.259∗ 0.200 -0.016 0.280∗∗∗ 0.477∗∗∗

(0.074) (0.134) (0.127) (0.126) (0.095) (0.136)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 205 205 110 110 95 95

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.54 p = 0.54 p = 0.69 p = 0.33 p = 0.48 p = 0.60

Panel B: Non-top students
Info-1 0.029 0.030 0.059 0.058 0.012 0.007

(0.064) (0.065) (0.058) (0.060) (0.110) (0.111)
Info-2 0.007 0.011 0.071 0.071 -0.050 -0.048

(0.051) (0.050) (0.059) (0.054) (0.073) (0.075)
Constant 0.139∗∗∗ 0.152∗ 0.071∗∗ 0.053 0.200∗∗∗ 0.221∗

(0.036) (0.085) (0.029) (0.088) (0.048) (0.118)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 550 550 270 270 280 280

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.74 p = 0.76 p = 0.88 p = 0.86 p = 0.58 p = 0.61

The dependent variable is Justified Envy ∈ {0, 1}. Estimation by random-effects
regression. Standard errors clustered on group-level in parentheses. Controls are
performance in baseline Raven test and the true ROL. ∗, ∗∗ and ∗∗∗ denote signifi-
cance at the 10%, 5% and 1% level, respectively.

Table 12: The effect of information on JE for top and non-top students (female
sample).
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Easy and Hard Only Easy Only Hard

(1) (2) (3) (4) (5) (6)

Panel A: Top students
Info-1 -0.032 -0.061 0.117 0.048 -0.221∗ -0.210

(0.119) (0.108) (0.177) (0.153) (0.129) (0.131)
Info-2 -0.206∗∗∗ -0.182∗∗ -0.183∗∗ -0.180∗ -0.238∗ -0.228∗

(0.074) (0.073) (0.083) (0.104) (0.127) (0.122)
Constant 0.217∗∗∗ 0.621∗∗∗ 0.183∗∗ 0.634∗∗ 0.255∗∗ 0.447

(0.073) (0.227) (0.083) (0.315) (0.126) (0.336)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 275 275 130 130 145 145

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.07 p = 0.09 p = 0.05 p = 0.05 p = 0.59 p = 0.74

Panel B: Non-top students
Info-1 0.164∗∗∗ 0.161∗∗∗ 0.177∗∗∗ 0.184∗∗∗ 0.149∗∗∗ 0.138∗∗

(0.039) (0.038) (0.059) (0.058) (0.054) (0.056)
Info-2 0.039 0.034 0.017 0.016 0.064 0.049

(0.041) (0.038) (0.023) (0.018) (0.079) (0.075)
Constant 0.064∗∗∗ 0.090∗ 0.043∗∗∗ 0.131∗∗ 0.086∗∗ 0.055

(0.020) (0.049) (0.015) (0.052) (0.036) (0.087)

Baseline Info-0 Info-0 Info-0 Info-0 Info-0 Info-0
Controls No Yes No Yes No Yes
Observations 650 650 330 330 320 320

Postestimation Wald tests:
H0: Info-1 = Info-2 p = 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.30 p = 0.30

The dependent variable is Justified Envy ∈ {0, 1}. Estimation by random-effects
regression. Standard errors clustered on group-level in parentheses. Controls are
performance in baseline Raven test and the true ROL. ∗, ∗∗ and ∗∗∗ denote signifi-
cance at the 10%, 5% and 1% level, respectively.

Table 13: The effect of information on JE for top and non-top students (male
sample).
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Instructions

Both translated and original instructions are available as an online appendix.
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