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Abstract
We employ a quantitative spatial model that accounts for trade frictions—generated
by trade costs and non-tradable services—and mobility frictions—generated by id-
iosyncratic tastes and local ties—to recover unobserved quality of life (QoL) and
estimate the urban QoL premium. For Germany, we 昀椀nd that a city twice as large
o昀昀ers, on average, a 22% higher QoL to the average resident—far exceeding the ur-
ban wage premium of 4%. Our model-based Monte Carlo simulations suggest that
the lack of strong empirical evidence for an urban QoL premium in earlier literature
likely stems from measurement error in the Rosen-Roback framework due to omitted
spatial frictions.
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1 Introduction
Why workers agglomerate in cities is, perhaps, the most classic question in spatial
economics. Empirically, the urban wage premium that makes cities attractive places
to work is, by now, well-documented.1 Intuitively, cities may also be attractive
places to live because they are often located in geographically desirable areas with
amenity value, such as near coasts, rivers, or other natural amenities. Yet, for a
long time, the economics literature in the tradition of the neoclassical Rosen (1979)-
Roback (1982) framework has found little evidence for a positive urban quality of life
(QoL) premium (Albouy, 2011).2 Using a spatial structural model, Diamond (2016),
however, shows that large cities have recently become more attractive, especially for
the high-skilled—a 昀椀nding echoed in Couture and Handbury (2020).3 This calls for
a reassessment of the urban QoL premium as a potentially underappreciated driver
of migration, urbanisation, and spatial inequality.

Against this background, we revisit the literature on the measurement of QoL,
incorporating recent advances in quantitative spatial economics (Allen and Arko-
lakis, 2014; Ahlfeldt et al., 2015; Zabek, 2024).4 Our central argument, supported
by a Monte Carlo study within a quantitative spatial model, is that the omission
of spatial frictions in the Rosen-Roback framework leads to downward-bias in esti-
mates of the urban QoL premium. This may explain why much of the neoclassical
literature has failed to establish a positive urban QoL premium. An application to
Germany reveals an urban QoL premium that exceeds the urban wage premium,
with downward bias in the Rosen-Roback framework and upward bias in models
that incorporate idiosyncratic tastes for locations, but omit local ties to worker’s
hometowns. As a tangible contribution to the applied literature, we provide an ac-
cessible GitHub toolkit with parsimonious data requirements that solves for a new
QoL measure that accounts for trade-cost-induced variation in tradable goods prices,
input-price-induced variation in non-tradable services prices (trade frictions) as well
as imperfectly elastic local labour supply due to idiosyncratic tastes and local ties
(mobility frictions).5

1See for example, Glaeser and Maré (2001) and Combes and Gobillon (2015) for a review.
2Notable applications of the Rosen-Roback framework to measuring QoL include Albouy et

al. (2013); Albouy and Lue (2015); Albouy (2016); Albouy et al. (2016); Blomquist et al. (1988);
Gabriel and Rosenthal (2004); Glaeser et al. (2001); Kim et al. (2025); Hausman et al. (2025);
Rappaport (2009). Desmet and Rossi-Hansberg (2013) develop a complementary approach that
does not require rents.

3These results are broadly consistent with sorting by skill found in Couture et al. (2024) and
Albouy and Faberman (2025).

4See Redding and Rossi-Hansberg (2017) for a review of recent advances.
5The toolkit is available at https://github.com/Ahlfeldt/ABRSQOL-toolkit and includes
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Conceptually, the economics literature treats QoL as a location-speci昀椀c shifter
in a utility function, akin to total factor productivity in a production function. Em-
pirically, it is challenging to measure this utility shifter since it is impossible to
observe all amenities that contribute to the QoL a city o昀昀ers. And even if they
were observable, their contributions to the latent variable would not be obvious.
Therefore, the literature relies on spatial equilibrium models to invert unobserved
QoL from observed wages and living costs. In the canonical Roback (1982) ver-
sion, the latter are approximated by housing costs as all other goods are assumed to
be freely tradable. Further assuming that workers are homogeneous and perfectly
mobile, any di昀昀erence in QoL between two cities must be compensated for by di昀昀er-
ences in wages and rents in the spatial equilibrium. Therefore, the inverse real wage
represents a theory-consistent measure of QoL. This frictionless spatial equilibrium
framework has remained a workhorse tool in urban economics for decades (Glaeser
and Gottlieb, 2009).

More recently, the literature has moved on to incorporate mobility and trade
frictions into the spatial equilibrium framework. As discussed by Moretti (2011),
idiosyncratic tastes for locations imply a mobility friction since small changes in
wages, rents, or amenity values will no longer trigger oceans of workers to change
their location. Extreme-value distributed taste shocks have, since then, become an
integral part of quantitative spatial models to generate imperfectly elastic labour
supply and housing demand at any location (Ahlfeldt et al., 2015; Redding, 2016).6

The important implication for the measurement of QoL is that, unlike in the Rosen-
Roback framework, wages and rents can no longer be assumed to re昀氀ect labour
supply and housing demand conditions exclusively. A city—in the quantitative
spatial model and in reality—may o昀昀er high wages due to a productive tradable
sector and low rents due to a productive housing construction sector. Through the
lens of the Rosen-Roback framework, where labour supply and housing demand are
perfectly elastic, the city’s productivity-induced high real wage would be wrongly
attributed to a low QoL. Since more productive cities grow larger, this measurement
error is negatively correlated with city size. Therefore, we expect the absence of
idiosyncratic tastes in the Rosen-Roback framework to lead to a downward bias in
estimates of the urban QoL premium.

Another reason the local labour supply is imperfectly elastic is that workers often
have strong local ties. Intuitively, they may choose to stay in their hometowns near
family and friends, even if it means forgoing opportunities to move to cities with

functions with user-friendly syntax for MATLAB, Stata, R, and Python.
6Other applications include Fajgelbaum et al. (2019); Heblich et al. (2020); Monte et al. (2018).
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higher wages or a better QoL. The idea that spatial relocation is costly has a long
tradition in the literature on the economics of migration, going back at least to
Sjaastad (1962).7 It is well-established that workers require large wage or amenity
premiums at potential migration destinations to leave their hometowns (Bryan and
Morten, 2019). Consequentially, local ties a昀昀ect the spatial equilibrium distribution
of real wages within a suitably extended quantitative spatial model (Zabek, 2024).
By implication, the real wage no longer fully re昀氀ects a city’s QoL. A city—in the
quantitative spatial model and in reality—may o昀昀er low wages and high rents due
to a large number of workers who grew up in the city and are reluctant to give up
their local ties. Through the lens of the Rosen-Roback framework, the low real wage
would be misinterpreted as a high QoL that is universally appreciated, including by
those who do not consider the city their hometown. Since a larger city naturally has
more workers considering it their hometown, we expect the absence of local ties in
the Rosen-Roback framework to lead to an upward bias in estimates of the urban
QoL premium.

In a parallel movement, the quantitative spatial economics literature has adopted
tools from the international trade literature to generate a gravity structure of trade
between regions in a country (Allen et al., 2020; Head and Mayer, 2014). Love
for variety in conjunction with distance-dependent trade costs result in tradable
goods prices that vary across cities (Allen and Arkolakis, 2014; Redding and Rossi-
Hansberg, 2017). Spatially variant tradable goods prices—which are absent in the
Rosen-Roback framework—matter for the measurement of QoL since tradable goods
are an important component of real living costs. A city—in the quantitative spatial
model and in reality—may o昀昀er low tradable goods prices due to great market access.
Through the lens of the Rosen-Roback framework, living costs and, consequentially,
QoL would appear greater than they are. Since the home-market e昀昀ect leads to
concentrations of large cities in agglomerated regions, such as the coastal areas
in the US or the Rhine-Ruhr area in Germany, this measurement error is likely
positively correlated with city size. Therefore, we expect the absence of frictions
in the exchange of tradable goods in the Rosen-Roback framework to lead to an
upward bias in the urban QoL premium.

Certain goods, such as restaurant visits or haircuts, are subject to prohibitive
trade costs. Diamond and Moretti (2021) show that such local services account for
a signi昀椀cant fraction of consumption expenditure and exhibit substantial variation
in prices across space. Recent quantitative spatial models feature a sector that

7Important recent contributions in this literature include Artuç et al. (2010); Desmet et al.
(2018); Caliendo et al. (2019); Kennan and Walker (2011).
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produces such services using labour and 昀氀oor space as inputs (Caliendo and Parro,
2015; Caliendo et al., 2018). Similar to the prices of tradable goods, the prices of
local services introduce a measurement error in inverse real wages, which carries over
to the Rosen–Roback QoL measure. Since QoL is negatively capitalised in wages
and positively capitalised in land prices, the direction of the measurement error due
to the omission of local services in the Rosen-Roback framework is theoretically
ambiguous.

While the intuition for the QoL measurement error due to omission of spatial
frictions is strong, a quanti昀椀cation of the magnitude of the problem and its implica-
tions for the estimation of the urban QoL premium is still outstanding. Given that
the expected biases arising from the omission of idiosyncratic tastes, local ties, trade
costs, and local services point in di昀昀erent directions, it is not even a priori clear
whether estimates of the urban QoL premium from di昀昀erent measurement frame-
works are biased upwards or downwards. To 昀椀ll this gap in the literature, we must
inevitably take a stance on the true values of QoL against which we wish to bench-
mark model-inverted QoL measures. This is a non-trivial problem, given that QoL
is a latent variable that cannot be observed directly.

To tackle this problem, we assume that the true data-generating process (DGP)
conforms to a quantitative economic geography model with frictional trade as in
Allen and Arkolakis (2014) and Redding and Rossi-Hansberg (2017), augmented
by a local services sector (Caliendo and Parro, 2015), idiosyncratic worker tastes
(Ahlfeldt et al., 2015), and local ties (Zabek, 2024). Of course, this data-generating
process is only an approximation of reality—our ground truth, not the actual truth.
Any measurement error or estimation bias we report is de昀椀ned relative to this ground
truth. We do not claim that the QoL measure we recover from our quantitative
model is itself free of error relative to the underlying truth. Given the latent nature
of QoL, such an error cannot be established—not even by future models that may
provide a better description of reality. What the assumption of a known DGP
buys us is the ability to apply standard concepts and precise terminology from the
econometrics literature when deriving and discussing measurement error and model
misspeci昀椀cation.

Before we invert QoL from real-world data, we employ our structural model
as a DGP in a Monte Carlo setting—an approach that is standard in structural
econometrics (Ackerberg et al., 2007; Reiss and Wolak, 2007), but has not been
applied in the context of QoL.8 A good example is Dubé et al. (2012), who generate

8The closest analogue is Dingel and Tintelnot (2023), who use a Monte Carlo study to assess
the 昀椀nite-sample behaviour of the calibrated-shares approach, which non-parametrically recovers
unobserved commuting costs from observed commuting 昀氀ows. Similarly, Adão et al. (2023) simulate
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a synthetic dataset using the Berry et al. (1995) model as a DGP. In their Monte
Carlo experiments, they randomise several structural primitives, including the latent
(in observational data) variable of product quality. Using the set primitives and the
model, they generate synthetic market shares, which they treat as observed. Finally,
they test how well (and fast) di昀昀erent estimation approaches recover some of the
primitives that were initially randomised, such as product quality, from the synthetic
market shares. Intuitively, the ground truth becomes the truth in these Monte Carlo
experiments since the researchers control and, therefore, know the ’true’ values of
the latent variable.

We use a similar Monte Carlo approach to evaluate how omitting spatial frictions
a昀昀ects the measurement of QoL—and thus the urban QoL premium—across a much
broader range of structural environments than would be feasible in an empirical
study limited to a single country or a small sample of countries. We generate 1,000
synthetic countries on a square featureless plain of about the area of Germany, each of
which contains 144 cities of equal area. For each city and country, we randomise city-
speci昀椀c housing productivity, labour productivity, hometown population shares, and
QoL—the latent variable of primary interest. We also randomly choose the country-
speci昀椀c parameters that govern the heterogeneity of idiosyncratic tastes and the
strength of local ties since these are arguably the parameters that are least consensual
in the literature. We solve the model separately for each synthetic country and use
the model solutions for city-speci昀椀c equilibrium wages, goods prices, rents, and
total employment—the equivalents to what would be observed on real economic
markets—to compute various QoL measures that correspond to popular models in
spatial economics. We use these recovered QoL measures to estimate urban QoL
premia and compare them to the urban QoL premium in the ground truth—which
is the truth in the Monte Carlo setting—to quantify estimation bias.

While our DGP under a canonical reparametrisation implies a city-size elasticity
of QoL of 0.23, estimation using a Rosen-Roback measure, built on exactly the same
synthetic data, results in an approximately 90% smaller premium. The downward
bias persists under a broad range of plausible parameter values. Accounting for trade
costs alone (Allen and Arkolakis, 2014) even results in a (not statistically signi昀椀cant)
negative premium. Accounting for trade costs and idiosyncratic tastes , but not for
local services and local ties (Monte et al., 2018), produces a modest upward bias.
Accounting for idiosyncratic tastes while omitting both trade costs and local ties
(Ahlfeldt et al., 2015; Diamond, 2016) yields a larger overestimate. Since much of
the QoL literature is rooted in the Rosen-Roback framework, our results suggest

a trade model to study inference under measurement error.
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that the lack of evidence for an urban QoL premium is likely due, at least in part,
to measurement frameworks that fail to account for spatial frictions.

To illustrate the impact of accounting for spatial frictions in the measurement
of QoL in a real-world setting, we quantify our model for 141 German commut-
ing zones. While—unlike in the Monte Carlo setting—we cannot claim that our
model-inverted QoL measure conforms to the true DGP, we show that it is closely
correlated with observable amenity variables—much closer than the conventional
Rosen-Roback measure. Consistent with our Monte Carlo simulations, we 昀椀nd a
larger urban QoL premium when spatial frictions are taken into account. A German
city that is on average twice as large o昀昀ers a 22% higher QoL to the average res-
ident (the marginal resident is indi昀昀erent). This premium is almost twice as large
as estimated in the Rosen-Roback framework (14%) and about 昀椀ve times as large
as the urban wage premium (4%). QoL measures incorporating idiosyncratic tastes
but abstracting from local ties generate an urban QoL premium that is almost 50%
greater than our ground truth measure. This large upward bias is driven by rela-
tively strong local ties in Germany and—considering our more general Monte Carlo
simulations—is less likely to generalise to other contexts than the downward bias in
the Rosen-Roback framework.

Although we condition on potential confounders and experiment with instru-
mental variables, we do not claim that our estimates of the urban QoL premium
re昀氀ect a causal e昀昀ect of city size on QoL. It is quite possible that certain cities o昀昀er
high QoL and therefore grow large because they are located in places with natural
amenities such as sunshine, mountains, or oceans. Whether city size has a causal
e昀昀ect on QoL is a separate question, which arguably becomes more relevant in the
light of our 昀椀ndings. In any case, our results show that QoL is a more important de-
terminant of the high urbanisation rate in Germany—and possibly elsewhere—than
has previously been recognised.

The remainder of the paper is structured as follows. Section 2 presents stylised
evidence that motivates our analyses. Section 3 outlines the model. Section 4
examines measurement error in QoL and estimation bias in the urban QoL premium
within a Monte Carlo setting. Section 5 provides an application and Section 6
concludes by summarising the implications for related literature and future research.

2 Stylised facts
Taking Germany as a case in point, Figure 1 presents some stylised facts of the
spatial economy that highlight the role of QoL as an important determinant of local
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labour supply and motivate our choice of building blocks for our model. In all panels,
we compare local labour markets, which are delineated on the basis of commuting
patterns by Kosfeld and Werner (2012). For simplicity, we refer to them as cities.

Panel (a) documents that a city’s hometown population—the number of work-
ers who grew up in the city, regardless of where they currently live—is a striking
predictor of the city’s current population. This is consistent with a large fraction of
workers living in their hometowns and suggests an important role for local ties in
shaping location decisions as pointed out by Zabek (2024) for the US.9 Nevertheless,
some workers do leave their hometowns. The estimated slope parameter in Panel a)
is greater than one (at the 1% signi昀椀cance level), implying that workers are more
likely to move from small cities to large cities than vice versa. The most popular
explanation for this trend towards higher urbanisation, developed in literature going
back to Marshall (1890), is that higher productivity leads to higher wages in larger
cities, resulting in the so-called urban wage premium. Panel (b) supports this view,
as the largest cities, indeed, tend to pay high wages. In relative terms, however,
the cost of living in large cities is even higher than wages, due to higher prices for
housing and non-housing goods, as shown in panel (c). Indeed, panel (d) shows
that large cities are the most successful in attracting workers from other hometowns
while o昀昀ering the lowest real wages. This striking feature of the data suggests that
the desire to satisfy the consumption of housing and non-housing goods is not the
primary driving force behind the increasing agglomeration of workers in large cities.
A plausible alternative explanation is QoL. If workers are willing to give up local
ties to move to large cities, only to receive lower real wages, large cities must o昀昀er
high QoL in return. We call this phenomenon the urban QoL premium.

While the intuition is straightforward, the correct measurement of QoL is chal-
lenging. The typical approach in the literature rooted within the Rosen-Roback
framework is to use the vertical deviation from the linear 昀椀tted line in panel (b)
as a relative measure of a city’s QoL. Mostly, the simplifying assumption is made
that non-housing goods are perfectly tradable and that prices do not vary across
space—perhaps because housing prices are easier to observe than non-housing prices.
Given that housing and non-housing prices are correlated (see panel c), relying on
house prices as the sole source of variation in the cost of living will lead to system-
atic measurement error. At a deeper conceptual level, another problem is that the
Rosen-Roback framework abstracts from idiosyncratic tastes for locations. As a city
grows, it becomes increasingly difficult to attract workers because the idiosyncratic

9In our sample of workers who had started an apprenticeship since the early 1990s, this pro-
portion was about 72% in 2015.
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Figure 1: Stylised facts of the spatial economy

(a) Hometown vs. residence population (b) Nominal wage vs. living cost

(c) Housing vs. non-housing cost (d) Real wage vs. population surplus

Notes: Unit of observation are the 141 local labour markets (LLM) as de昀椀ned by Kosfeld and Werner (2012).
Employment and nominal wages are from the Employment History (BeH) data set. Hometown refers to the LLM in
which a person started apprenticeship training. Regional wages are adjusted for skill composition using regressions
of individual wages against LLM and worker 昀椀xed e昀昀ects (Abowd et al., 1999). We compute living costs as the
geometric mean of goods and services price levels from Weinand and Auer (2020) as well as housing prices from
Ahlfeldt et al. (2023) using an expenditure share on housing of 0.33 and equal shares for non-housing goods and
services (Statistisches Bundesamt, 2020). All values are observed in 2015. Subsection 5.1 provides a more detailed
description of the underlying data. Marker size is proportionate to total employment.

utility of moving to a city decreases for the marginal individual. Larger cities must
o昀昀er higher QoL to compensate for this lower idiosyncratic utility—a phenomenon
that is not accounted for in the canonical Rosen-Roback framework. At the same
time, it would be premature to conclude that QoL in large cities is necessarily higher
than implied by the Rosen-Roback framework because, as shown in panel (a), large
cities can draw from larger pools of workers with local ties. Local ties, which are
also missing in the Rosen-Roback framework, potentially o昀昀set the low idiosyncratic
utility draws for workers living in large cities, so that the direction of the bias of the
urban QoL premium estimated within the Rosen-Roback framework is theoretically
ambiguous. These observations lead us to develop a quantitative framework for
measuring QoL that extends the canonical Rosen-Roback framework by allowing for
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trade cost-induced variation in the prices of tradable goods, input price-induced vari-
ation in the prices of non-tradable services (trade frictions), and imperfectly elastic
local labour supply due to heterogeneous tastes and local ties (mobility frictions).

3 Model
We develop a spatial general equilibrium model with frictions in the trade of goods
and the mobility of workers. The economy consists of a set of cities i, j ∈ J and
is populated by L̄ =

∑

m L̄b
m mobile workers who grew up in di昀昀erent hometowns

m ∈ J . We refer to the measure of workers born in a location m as the hometown
population, L̄b

m. Each city hosts immobile owners of land, T̄i, and capital, Ki. There
is no commuting between cities, so workers live in the city where they work and vice
versa.

3.1 Preferences

Worker ω from hometown m living in city i derives utility from the consumption of
goods (Ciω) and 昀氀oor space (hiω) according to

Uimω =

(
Ciω

³

)α(
hiω

1− ³

)1−α

exp[aimω], (1)

where Ciω = (Qt
iω/´)

β(qniω/(1 − ´))1−β summarises the consumption of a CES-
aggregate of tradable di昀昀erentiated varieties (superscript t), shipped from origin
j to destination i, qtjiω,

Qt
iω =

[
∑

j∈J

(
qtjiω
)σ−1

σ

] σ
σ−1

(2)

and a local non-traded homogeneous good (superscript n), qniω. The idiosyncratic
amenity component exp[aimω] = exp[aiω+1{m = i}·(ξ/µ)] is modelled as a stochastic
preference shock for each location i, that is shifted upwards if the residence corre-
sponds to the hometown. In particular, aiω is drawn from a type-I-extreme value
(Gumbel) distribution:

Fi(a) = exp
(

−Ãi exp {− [µa+ Γ]}
)

with µ > 0, (3)
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where Ãi ≡ (Ai)
γ represents the mean of the amenity shock and Γ is the Euler-

Mascheroni constant.10 In the following, we take the component Ai as a measure
of local QoL and consider it as an exogenous utility shifter that captures the ef-
fects of (dis)amenities, as is common in the literature on the estimation of local
non-marketed goods (Roback, 1982; Blomquist et al., 1988; Albouy, 2011). The
composite parameter exp[(ξ/µ)] > 1 captures workers’ valuation of local ties in their
hometowns. The parameter µ controls the dispersion of individual amenity shocks.
Such amenity shocks to individual utility induce idiosyncrasy in tastes in tastes and
generate imperfectly elastic local labour supply, leading to imperfect spatial arbi-
trage (Moretti, 2011).11 Since all workers in a location make the same consumption
choices, we will suppress the subscript ω in the following whenever clarity permits.

3.2 Technology

Developers supply 昀氀oor space under perfect competition according to a Cobb-Douglas
production function that combines capital with location-speci昀椀c land, T̄i, as in
Ahlfeldt et al. (2015):

HS
i = ηi

(
T̄i

¶

)δ (
Ki

1− ¶

)1−δ

. (4)

ηi denotes total factor productivity, capturing the role of regulatory (e.g. height
restrictions) and physical (e.g. a rugged surface) constraints (Saiz, 2010), and ¶

controls the relative importance of both input factors. Floor space is used by workers
for residential purposes and by 昀椀rms in the non-tradable goods sector as a production
input.

Capital is mined by local capital owners at zero cost and supplied at an exogenous
rate, rKi , set by local municipalities.12 Both capital owners and landowners spend
constant shares ´ and 1 − ´ of their incomes, rKi Ki and riT̄i, on tradables and
non-tradables locally. We denote as ri the endogenous price for one unit of land.13

Under the assumptions made, we obtain imperfectly elastic 昀氀oor space supply while
ensuring that local expenditures are proportional to the wage bill which helps with
tractability. Our formulation nests the setup with one tradable non-housing good

10This implies that shocks are i.i.d across individuals and locations. This approach is established
in the literature and has been applied to describe productivity distributions, e.g., in Eaton and
Kortum (2002), or individual preferences, e.g., in Ahlfeldt et al. (2015).

11Such a setup yields similar predictions to a framework based on region-speci昀椀c migration
frictions (Desmet et al., 2018).

12Intuitively, we can think of local capital as bricks and stones retrieved from local mines at a
constant marginal cost.

13Pro昀椀t maximisation of developers pins down the value of the local capital input as rK
i
Ki =

1−δ

δ
riT̄i.

10



and inelastic 昀氀oor space supply in Monte et al. (2018) as a special case with ´ = 1

and ¶ = 1.
Each location produces a unique tradable and di昀昀erentiated variety (Armington,

1969) using labour Lt
i as the only production input according to:14

qti = φiL
t
i. (5)

We also allow for endogenous labour productivity, φi = φ̄iL
ζ
i , which increases in

local employment according to the agglomeration elasticity ζ.
Production of the non-tradable good requires both labour and 昀氀oor space based

on the following Cobb-Douglas structure:

qni = νn
i

(
φiL

n
i

µ

)µ(
Hn

i

1− µ

)1−µ

, (6)

where Ln
i is the labour demand for the production of non-tradables and νn

i is a
region-sector-speci昀椀c productivity shifter. Hn

i denotes 昀氀oor space input and the
Cobb-Douglas parameter µ governs the input shares of each factor.

3.3 Trade

Utility maximization provides optimal aggregate demand at location i for trad-
able and di昀昀erentiated goods from origin j, qtji = (ptji)

−σ(P t
i )

σ−1´Ei, where ptji

is the consumer price of a variety produced in j and consumed in location i and
Ei = ³wiLi + riT̄i + rKi Ki captures total non-housing expenditures in city i. For
local non-traded services we get qni = (1 − ´)Ei/p

n
i , where pni denotes the price

of services in i. Workers receive region-speci昀椀c wages wi as compensation, while
P t
i = [

∑

j(p
t
ji)

1−σ]1/(1−σ) describes the price index of the 昀椀nal good dual to Eq. (2).
The optimal demand for housing by workers is Hr

i = (1−³)wiLi/p
H
i with the price

for housing being pHi .
Trade in di昀昀erentiated varieties is subject to bilateral iceberg trade costs such

that τji > 1 units must be shipped from j for one unit to arrive at destination i.
Perfect competition in tradable and non-tradable sectors equates prices to marginal
costs, so we get ptji = τjiwj/φj and pni = νn

i (wi/φi)
µ(pHi )

1−µ, with local wages wi.
Furthermore, the trade structure implies an expenditure share of customers in i on

14The setup with labour as the only factor of production follows Monte et al. (2018). Intuitively,
tradable goods are produced by manufacturing 昀椀rms located close to the city margin. Since the
agricultural land rent varies little within a country, abstracting from 昀氀oor space in the production
of tradable goods comes with little loss of generality.
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di昀昀erentiated varieties shipped from j as follows:

χji =
ptjiq

t
ji

∑

k p
t
kiq

t
ki

=
(τjiwj/φj)

1−σ

∑

k (τkiwk/φk)
1−σ . (7)

3.4 Location choice

Under the distributional assumptions on the idiosyncratic utility component, we
obtain the probability that a worker from hometown m lives in location i:

λim =
(Aiwi/Pi)

γ · exp[1{m = i} · ξ]
∑

j∈J (Ajwj/Pj)
γ · exp[1{m = j} · ξ]

, (8)

where we have de昀椀ned the aggregate consumer price index Pi ≡ (P t
i )

αβ
(pni )

α(1−β)(pHi )
1−α.

Summing over all hometown probabilities, we obtain the residential choice proba-
bility:

λi =
∑

m

λim =
(Aiwi/Pi)

γ

∑

j∈J (Ajwj/Pj)
γ

(
∑

m ̸=i

Ψb
mL̄

b
m +Ψb

i · exp[ξ]L̄
b
i

)

/L̄, (9)

with Ψb
m =

(

1 + (exp[ξ]−1)(Amwm/Pm)γ∑
j∈J (Ajwj/Pj)

γ

)−1

< 1 the utility discount associated with
having left the hometown. The probability of residing in i increases in QoL and
nominal wages and declines in the aggregate consumer price index. Due to local ties,
the residential choice probability also depends on the distribution of the hometown
population. For given hometown population, the probability of living in i increases
in ξ, owing to an increasing value of local ties, Ψb

i · exp[ξ] > 1. The number of
workers residing in i is Li = λiL̄.15

Mobility of workers allows to derive the expected utility of workers of hometown
m in equilibrium. This is given by

W̄m = ln

[
∑

j∈J

(Ajwj/Pj)
γ · exp[1{m = j} · ξ]

] 1

γ

. (10)

3.5 General equilibrium

Land market and 昀氀oor-space market clearing. On the land market, the con-
stant expenditure rule implies ri = ¶pHi H

S
i /T̄i. Combining this equation with the

pro昀椀t-maximising supply of 昀氀oor-space, HS
i = η̃iT̄ir

1−δ
i /¶, and adjusted 昀氀oor space

15Note that if the utility gain from living in one’s hometown is negligible (e.g. exp(ξ) → 1), there
is no discount associated with living elsewhere, such that

(
∑

m ̸=i
Ψb

k
Lb
m +

(
Ψb

i
· exp[ξ]

)
L̄b
i

)

→ L̄.
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productivity, η̃i ≡ ηi/(r
K
i )1−δ, delivers the equilibrium relationship between land

rents and 昀氀oor-space prices:
ri =

(
η̃ip

H
i

) 1

δ . (11)

To derive the 昀氀oor space market equilibrium, HS
i = HD

i , we start with the demand
side. Floor space is needed for residential purposes, Hr

i , and as an input for the
production of non-tradables, Hn

i , so HD
i = Hr

i +Hn
i . Using the fact that the return

to 昀氀oor-space input in the production of non-tradables is a constant share 1 − µ

of expenditure, we obtain Hn
i = (1 − ´)(1 − µ)[³wiLi + pHi H

D
i ]/pHi , where the

second term in brackets is total income of capital owners and landowners. Demand
for residential housing is given as Hr

i = (1 − ³)wiLi/p
H
i as introduced in Section

3.1. Replacing land rents in optimal housing supply according to Eq. (11) delivers
HS

i = η̃i
1

δ T̄i(p
H
i )

1−δ
δ /¶. The market clearing price for 昀氀oor space solves HS

i = HD
i

and is thus given by

pHi =

(

³̃¶wiLi

η̃
1

δ

i T̄i

)δ

, (12)

where ³̃ ≡ (1/[1− (1− µ)(1− ´)]− ³) is a constant.

Tradable goods market clearing. Since tradable goods 昀椀rms spend revenues
from all regions, weighted by expenditure shares, on labour input, we obtain:

wiL
t
i =

∑

j∈J

(τijwi/φi)
1−σ

∑

k (τkjwk/φk)
1−σ´ (³ + ³̃)wjLj, (13)

where we used the equilibrium conditions on the markets for 昀氀oor space, land and
capital.

Local services market clearing. Since local services 昀椀rms spend the share µ of
local revenues on labour input, we obtain:

wiL
n
i = µ(1− ´) (³ + ³̃)wiLi (14)

Local labour resource constraint. All workers in city i must work either in the
tradable goods or the local services sector:

Li = Lt
i + Ln

i (15)

National labour market clearing. Total employment in i must equate to labour
supply.

Li = λiL̄ (16)
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Given the model primitives, a general equilibrium of the economy is referenced
by a vector of the endogenous objects V = {Ln

i , L
t
i, p

H
i , p

n
i , P

t
i , ri, wi} and a vec-

tor W̄m which are jointly determined by Eqs. (11)–(16) and the de昀椀nition of the
aggregate consumer price index. We solve for V using a conventional numerical
昀椀xed-point algorithm described in Appendix A.2. For given primitives and struc-
tural parameters as well as values of V, there is a recursive structure that solves for
all other endogenous objects. While the gravity trade structure in our model could
theoretically lead to multiple equilibria, it is well understood that the equilibrium
is unique under plausible parametrisations (Allen and Arkolakis, 2014; Allen et al.,
2024). Indeed, the solutions returned by our solution algorithm are insensitive to
the chosen starting values under the parametrisations chosen in Sections 4 and 5.

4 Monte Carlo study
To benchmark QoL measures derived from di昀昀erent classes of models, we assume that
the true DGP corresponds to the quantitative spatial model outlined in Section 3.
While we acknowledge that no model can be a perfect depiction of reality and future
models may capture reality more accurately, assuming a state-of-the-art structural
model as DGP is standard practice in the econometric analysis of measurement
error and model misspeci昀椀cation (see, e.g., White, 1982; Hansen, 1982; Reiss and
Wolak, 2007). This approach allows us to treat model primitives and the resulting
endogenous variables as observed, providing a controlled environment in which we
can isolate and quantify the biases that arise when researchers use alternative or
simpli昀椀ed models to infer unobservable quantities such as QoL. Importantly, this
approach allows us to use the precise terminology of the econometrics literature,
while acknowledging that our data-generating process is only an approximation of
reality—our ground truth, not the truth. Accordingly, any measurement error or
estimation bias we report is de昀椀ned relative to this ground truth. We do not claim
that the QoL measure recovered from our quantitative model is itself free of error
relative to the underlying truth.

Conceptually, our approach mirrors the logic of Monte Carlo simulations in which
the true DGP is known by construction, enabling researchers to evaluate the con-
sequences of model approximation or misspeci昀椀cation. It allows us to interpret
deviations from the known true QoL as measurement errors arising from neglecting
speci昀椀c spatial frictions. In this way, we can decompose the estimation bias arising
from measurement errors using the standard tools of econometric analysis and assess
which elements of the structural environment are quantitatively most important for
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accurate measurement. In practice, we solve the model for randomised values of its
primitives, including QoL, as well as selected parameters, and generate the alterna-
tive QoL measures (e.g., Rosen-Roback) based on the resulting equilibrium values
of wages, rents, goods prices, and employment. The measurement error is de昀椀ned as
the relative di昀昀erence between a model-inverted QoL measure and the ’true’ QoL in
the DGP. We calculate the bias in the estimated urban QoL premium by comparing
how inverted QoL and ’true’ QoL increase in the equilibrium city population.

4.1 Setting

For our Monte Carlo study, we generate 1,000 synthetic countries within a stylised
geography of a square with a side length of 500 km. We overlay this square with
12 × 12 equally sized grid cells corresponding to J = 144 synthetic cities.16 We
compute all bilateral distances between the geographic centroids of the grid cells
and parametrise trade costs as τij = (exp[−ι ∗ ln distij])

1

1−σ , using ι = −1 and σ = 5

as conventional in the trade literature (Head and Mayer, 2014).17

For all 1, 000 × J = 144, 000 synthetic cities, we 昀椀rst randomly draw the home-
town population L̄b

m, which we take as exogenous. The consensus in the literature
is that city sizes follow Zipf’s Law and can be modelled by log-normal distributions
(Eeckhout, 2004). Therefore, we draw a city’s log hometown population from a nor-
mal distribution with a mean of 0 and a standard deviation of 0.85, which delivers
a rank-size coefficient close to one. We normalise the hometown population so that
∑

m L̄b
m = L̄. Similarly, we draw fundamentals {lnAi, ln φ̄i, ln η̃i} in logs from nor-

mal distributions with mean zero and a standard deviation of 0.25 which ensures
that equilibrium residence population, Li, also approximates Zipf’s Law.18 We nor-
malise these fundamentals as well as hometown population and market potential by
the values of a numéraire location.

For each of the 1,000 synthetic countries, we draw values of the parameters
governing the heterogeneity of idiosyncratic tastes, µ, and the valuation of local ties,
ξ, from uniform distributions in the limits [1.1; 10] and [0, 10] respectively. Empirical
estimates of the taste heterogeneity parameter range from 2-3 for larger spatial units
such as counties and states (Monte et al., 2018; Fajgelbaum et al., 2019) to higher

16The side length and number of grid cells are chosen to approximate the actual geographic area
and number of cities (local labour markets) of Germany, as described in more detail in Section 5.

17As they are not our main parameters of interest, we normalise the sector-speci昀椀c production
shifter in the non-tradable sector, νn

i
, to unity for all locations in our Monte Carlo study. Table

S1 in the Online Supplement provides an overview of selected parameters and de昀椀nitions.
18We truncate the normal distributions by 0.65 from below and above to avoid generating cities

with implausibly large or small populations. All the main results are insensitive to the truncation.
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values of up to µ = 7 for smaller units such as housing blocks (Ahlfeldt et al., 2015;
Heblich et al., 2020). Less is known about the workers’ valuation of local ties. Our
reference point is a value of ξ = 5, which ensures that, on average, about 50% of
workers live in their hometown, as documented by Zabek (2024) for the US.

We set the expenditure share on non-housing goods to ³ = 0.7 (Combes et al.,
2019), the share of expenditure on tradable goods at total non-housing expenditure
to ´ = 0.5 (Caliendo et al., 2018) , the housing supply elasticity to ¶ = 0.3 (Baum-
Snow and Han, 2024), and the share of labour in the production of local services to
µ = 0.8 (Greenwood et al., 1997). For the agglomeration elasticity, we use ζ = 0.02

as a typical value found by studies controlling for unobserved worker heterogeneity
(Combes and Gobillon, 2015).

Under this parametrisation, we solve the model 1,000 times to obtain values of
the equilibrium vector V for each synthetic country (see Appendix A.2 for details).
We end up with an synthetic world of 144,000 cities in 1,000 countries, for which we
observe prices and quantities of all goods and factors, so that we can easily compute
the canonical Rosen-Roback measure of QoL, as well as more re昀椀ned measures that
account for selected spatial frictions.

4.2 Measurement error in quality of life

To understand the measurement error in the canonical Rosen-Roback measure, it is
instructive to reformulate Eq. (9) and express all model elements x in ratios relative
to a numéraire location j, such that x̂ ≡ xi/xj ∀ i ∈ J . This delivers the relative
QoL in the most general version of our model as

Â =
(P̂ t)αβ(p̂n)α(1−β)(p̂H)1−α

ŵ

(

L̂/L̂
) 1

γ

, (17)

where we de昀椀ne Li ≡ (exp[ξ]− 1)Ψb
i L̄

b
i +
∑

m∈J Ψ
b
mL̄

b
m. Here and in the remainder

of this paper, we maintain the assumption that all values of the endogenous variables
{ŵ, p̂n, p̂t, p̂H , L̂, L̂} correspond to their equilibrium values in the full quantitative
model, which we treat as the DGP. In other words, we assume that the researcher ob-
serves data in a world that conforms exactly to our quantitative model—our ground
truth. This assumption is useful because it allows us to transparently derive how
omitting di昀昀erent spatial frictions—such as trade costs, local services, idiosyncratic
preferences, or local ties—leads to systematic measurement error in inferred QoL.

Notice that Eq. (17) nests QoL as in the canonical Rosen-Roback case that
abstracts from trade costs (τij → 1 and, hence, P̂ t → 1), local services (´ → 1),
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idiosyncratic tastes (µ → ∞) and local ties (µ → ∞ and/or ξ → 0):19

ÂRR =

(
p̂H
)1−α

ŵ
, (18)

where {ŵ, p̂H} are the equilibrium values implied by the full quantitative model
under the parametrisation discussed in Section 4.1, not those that would arise in a
world governed by the Rosen-Roback model itself. Relating Eq. (18) to Eq. (17)
and taking logs delivers a decomposition of our ground-truth QoL measure into the
canonical Rosen-Roback measure as well as the contributions of of the four spatial
frictions we consider.

Â = ln ÂRR
︸ ︷︷ ︸

Rosen-Roback

+ ³´ ln P̂ t

︸ ︷︷ ︸

trade costs

+ ³(1− ´) ln p̂n
︸ ︷︷ ︸

local services

+ (1/µ) ln L̂
︸ ︷︷ ︸

idiosyncratic tastes

− (1/µ) ln L̂
︸ ︷︷ ︸

local ties

(19)

Measurement error, relative to ground truth, obtained under Rosen-Roback, is then:

E ≡ ln
ÂRR

Â
= − ³´ ln P̂ t

︸ ︷︷ ︸

trade costs

− ³(1− ´) ln p̂n
︸ ︷︷ ︸

local services

− (1/µ) ln L̂
︸ ︷︷ ︸

idiosyncratic tastes

+ (1/µ) ln L̂
︸ ︷︷ ︸

local ties

(20)

The 昀椀rst term captures the e昀昀ect of not controlling for di昀昀erences in prices of tradable
goods, the second term represents the error stemming from variation in prices of local
services, the third term describes the error originating from idiosyncratic tastes for
di昀昀erent regions, and the last term captures the error when not accounting for local
ties to the hometown.

By implication, Eq. (19) also summarises how our proposed quality-of-life mea-
sure relates to those inverted from more recent models which account for selected
spatial frictions. For example, Koster (2024) uses a quantitative urban model that
accounts for idiosyncratic tastes in the tradition of Ahlfeldt et al. (2015) to value
Greenbelts in England. Similar frameworks have been used to invert amenities as
structural residuals and then correlate them with empirically observed measures
from the US (Ang et al., 2024) or assess the impact of pollution for location choices
of heterogeneous worker groups in China (Khanna et al., 2025). The spatial struc-
tural discrete choice model of location choice in Diamond (2016) also accounts for
idiosyncratic tastes. In contrast, the quantitative model in Allen and Arkolakis
(2014) accounts only for trade costs, whereas Monte et al. (2018) account for trade
costs and idiosyncratic tastes. While abstracting from local services and trade cost,

19We refer to the baseline case in Roback (1982) without non-tradable goods and also allow for
δ < 1, which implies an elastic supply of land. As can easily be seen below, this assumption does
not a昀昀ect our results.
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Almagro and Domínguez-Iino (2025) invert from a dynamic spatial framework, ac-
counting for local ties in addition to idiosyncratic tastes, similar to static models of
migration (Bryan and Morten, 2019; Zabek, 2024).

4.3 Urban quality of life premium

We have conducted an extensive analysis of the measurement error de昀椀ned in Eq.
(20). In the interest of brevity, we relegate the detailed results to Online Appendix
S.1.2 for the interested reader. Our main 昀椀nding is that the measurement error
due to the omission of spatial frictions is sizeable and systematically correlated with
city size. Naturally, cities with relative advantages in QoL, housing productivity,
and fundamental labour productivity grow larger, ceteris paribus. A large residence
population implies a marginal worker deriving a lower idiosyncratic utility. This
decrease in worker-speci昀椀c utility must be compensated for by a higher city-speci昀椀c
QoL in order to keep the marginal worker indi昀昀erent. This is the intuition behind the
third term in Eq. (20). Of course, a larger residence population can also arise when a
city has a larger hometown population, as more workers are likely to stay to maintain
local ties. These worker-speci昀椀c local ties compensate for a low idiosyncratic utility,
and hence there is less need for the city to o昀昀er a high QoL to keep the marginal
worker indi昀昀erent. Therefore, the e昀昀ect of the hometown population, which enters
via L̂, points in the opposite direction to the residence population, L̂, in Eq. (20).
Finally, the prices of tradable goods and local services that enter the 昀椀rst two terms
of Eq. (20) depend on input costs—wages and rents—which are themselves shaped
by city size through the equilibrium of local labour and housing markets.

With this in mind, we now turn to quantifying how the omission of spatial
frictions results in biased estimates of the urban QoL premium, de昀椀ned as the
elasticity of QoL with respect to city size (Ahlfeldt and Pietrostefani, 2019; Al-
bouy, 2011). We know from Eq. (9) that in the DGP, we can parametrise city
size as L̂(Â, ˆ̃η, ˆ̄φ,M̂, ˆ̄Lb) = cÂγ exp

(

ϵ(ˆ̃η, ˆ̄φ,M̂, ˆ̄Lb)
)

, where c is a constant and

ϵ(ˆ̃η, ˆ̄φ,M̂, ˆ̄Lb) is a residual term that captures that city size also depends on the
other structural fundamentals {ˆ̃η, ˆ̄φ,M̂, ˆ̄Lb}. Following the literature, we can esti-
mate the urban QoL premium using the following OLS speci昀椀cation:

ln Â = c̃+ ρ ln L̂+

[

−
1

µ
ϵ

]

, (21)

where c̃ ≡ − 1
γ
ln c and the term in brackets constitutes the regression residual.

To establish the ground truth within synthetic countries that resemble real-world
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counterparts, we restrict the synthetic dataset described in Section 4.1 to coun-
tries with an idiosyncratic taste parameter µ ∈ (2.5, 4.5) and a local ties parameter
ξ ∈ (4, 6), ranges that are broadly consistent with most relevant estimates in the
literature. Estimates of Eq. (21) on this sub-sample reported in Column (1) of
Table 1 reveal an urban QoL premium of 0.23. This implies that doubling city size
is associated with a 20.23 − 1 ≈ 17% higher QoL, on average.

Table 1: Urban QoL Premia

(1) (2) (3) (4) (5) (6)
Model Ground ARSW MRRH

truth RR AA Diamond MRRH + services
Trade Costs ✓ ✓ ✓ ✓

Idiosyncratic tastes ✓ ✓ ✓ ✓

Local services ✓ ✓

Local ties ✓

(Log) Employment 0.229** 0.027** -0.006 0.299** 0.267** 0.236**

(0.004) (0.003) (0.003) (0.005) (0.005) (0.005)

Country 昀椀xed e昀昀ects Yes Yes Yes Yes Yes Yes
R2 0.749 0.438 0.403 0.832 0.797 0.754

Observations 7,344 7,344 7,344 7,344 7,344 7,344
Notes: We estimate the urban QoL premium in a regression pooling synthetic country, with the unit
of observation being synthetic cities (see Section 4.1 for a description of the synthetic data set). We
only focus on countries where 2.5 < γ < 4.5 and 4 < ξ < 6. Column (1) shows the urban premia
in the full model. Column (2) shows the urban QoL premium inside the Rosen-Roback framework,
column (3) controls for trade frictions (e.g., Allen and Arkolakis (2014), AA), while column(4) controls
for idiosyncratic tastes (e.g., Ahlfeldt et al. (2015), ARSW, or Diamond (2016)). Column (5) controls
for both trade costs and idiosyncratic tastes (e.g., Monte et al. (2018), MRRH). Column (6) extends
the speci昀椀cation in column (5) by also controlling for local services. Standard errors in parentheses are
clustered on the level of synthetic countries. ** indicates signi昀椀cance at the 1% level.

Notice that we do not expect the estimated urban QoL premium, ρ̂, to corre-
spond to 1

γ
as implied by Eq. (9) since L̂ and ϵ are necessarily correlated given their

dependence on similar fundamentals. Just like the urban wage premium, the ur-
ban QoL premium is a descriptive concept and simply summarises how QoL di昀昀ers
between cities of di昀昀erent sizes; it does not measure the causal e昀昀ect of city size
on QoL. It is conceivable that cities emerged and grew because they were founded
near attractive features such as ocean bays, rivers or mountains. Disentangling the
causal e昀昀ect of agglomeration economies on QoL from correlated unobservables is
an interesting question, but not the one we are concerned with. In fact, we have
kept QoL deliberately exogenous in the DGP, although making QoL a positive or
negative function of agglomeration is straightforward in our model. Our point is
that QoL measures that do not take into account all spatial frictions in Eq. (21) do
not even recover the urban QoL premium as a descriptive statistic correctly. Using
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Eq. (20) in Eq. (21), we obtain:

ln ÂRR = c̃+ ρRR ln L̂+

[

E −
1

µ
ϵ

]

(22)

for the same regression as Eq. (21), but with the Rosen-Roback measure on the
left-hand side. Theoretically, OLS estimation of Eq. (22) will deliver an estimate
ρ̂RR ̸= ρ̂ if E(L̂′E) ̸= 0. And, indeed, Column (2) of Table 1 shows that constructing
the conventional Rosen-Roback QoL measure within the same synthetic data set
and running an otherwise identical QoL regression results in a near-zero estimate of
the urban QoL premium. Hence, the net-e昀昀ect of omitting all spatial frictions is a
sizeable negative bias on the estimated urban QoL premium.

To shed light on the contributions of the di昀昀erent frictions in Eq. (20) to this bias,
we employ alternative QoL measures corresponding to alternative model classes, as
reported in the remaining columns of Table 1. A measure that solely accounts for
frictions from trade costs à la Allen and Arkolakis (2014) increases the bias, turning
the urban QoL premium slightly negative (Column 3). This occurs because tradable
goods prices are lower in more productive cities, which tend to grow larger. Once this
is accounted for, the spatial equilibrium condition requires a lower QoL to equalise
utility across locations. In contrast, a measure that solely accounts for idiosyncratic
tastes, as in Ahlfeldt et al. (2015) or Diamond (2016), produces a large urban QoL
premium (Column 4). At 0.3, the estimated premium even exceeds the ground truth,
implying a sizeable positive bias. This increase re昀氀ects the removal of the bias arising
from L̂ being part of the error term E in Eq. (20) (third term). A measure that
accounts for both trade costs and idiosyncratic tastes, as in Monte et al. (2018),
reduces the bias, yielding a QoL premium closer to the ground truth (Column 5).
Adding local services further reduces the bias, although a small positive bias remains
(Column 6). This is because L̂, which captures local ties—the remaining friction—is
typically positively correlated with the resident population L̂. The correlation arises
because the hometown population ˆ̄Lb is related to both L̂ (see Eq. (9)) and L̂ (see
Eq. (17)).

Of course, the bias in estimates of the urban QoL premium documented in Table
1 depends on the values of structural parameters that govern the strengths of spatial
frictions. For instance, the importance of idiosyncratic tastes is determined by µ,
which enters the error term in Eq. (22) via the third and fourth terms of Eq.
(20). Likewise, the importance of local ties is captured by ξ, which a昀昀ects the
error term through the fourth term of Eq. (20). In theory, the bias could vary
substantially—and even change sign—across countries, depending on the mobility
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of their residents. To assess how the bias depends on these parameters, we estimate
Eqs. (21) and (22) separately for each synthetic country. From these estimates, we
compute the country-speci昀椀c bias in the Rosen–Roback estimate of the urban QoL
premium, B = ρ − ρRR. Each bias is represented by a point in Figure 2, where B

is plotted against the country’s idiosyncratic taste heterogeneity parameter µ, with
colours indicating the strength of local ties ξ. As expected, the bias approaches zero
as µ increases, since the largest contributors to E in Eq. (20) (terms three and four)
are diminished. At the consensus value µ = 3, however, the bias still varies widely
across countries—from about −0.3 to +0.25—depending on the value of ξ. This is
a substantial range, given that the costs and bene昀椀ts of urbanisation typically scale
with city size at elasticities close to zero (Ahlfeldt and Pietrostefani, 2019).

Figure 2: Bias in urban quality of life premium

Notes: The bias in the urban QoL premium is de昀椀ned as B = ρRR−ρ where ρ̂RR and ρ̂ as estimated from arti昀椀cial-
country-speci昀椀c regressions of the Rosen-Roback QoL measure and the true (within our DGP) QoL measure against
residence population (in logs).

For ξ < 6, the Rosen–Roback framework consistently underestimates the urban
QoL premium, implying B < 0. For very strong local ties, for example ξ > 8, the
bias can turn positive. Such high values, however, are far above our estimate of
ξ = 5.6 from the real-world dataset used in Sections 2 and 5 (see Section S.3.2 in the
Online Supplement). We view this estimate as an upper bound in an international
context, given that the share of the hometown population in the resident population
is 0.7—well above the typical value of 0.5 (Zabek, 2024). It is therefore likely that
Rosen–Roback-based estimates of the urban QoL premium su昀昀er from a negative
bias in most countries. This may help explain why the literature has generally
struggled to 昀椀nd positive urban QoL premiums (Ahlfeldt and Pietrostefani, 2019;
Albouy, 2011, 2016).
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5 Application
We now quantify the model in a real-world setting to illustrate the impact of spatial
frictions on the measurement of QoL. Using Germany as a case in point, we compute
three QoL measures: a measure that corresponds to the conventions in the Rosen-
Roback literature, ÂRR; a measure that is fully consistent with our model, Â, and
a crude-data version of our preferred measure, ÂCD, which may be more widely
applicable due to parsimonious data requirements. We discuss our data and the
quanti昀椀cation of the model in Section 5.1 before comparing the resulting QoL and
implied urban QoL premiums in Sections 5.2 and 5.3.

5.1 Data and quanti昀椀cation

As an empirical counterpart to the cities indexed by i in the model, we choose
141 German labour market regions de昀椀ned by Kosfeld and Werner (2012) based on
commuting data. For simplicity, we refer to these regions as cities when presenting
our results. The centre of a labour market region is the municipality with the largest
number of workers. We provide a brief discussion of the dataset we collect for these
units below and refer to the Online Supplement Section S.3.1 for further details.

We use the Integrated Employment Biographies (IEB) from Germany’s Insti-
tute for Employment Research to obtain employment at the workplace and wages
in 2015. The data cover the universe of 16-65 year old regular employees with social
security insurance in Germany. We restrict the sample to workers who have com-
pleted vocational training (about 65% of all workers), as this allows us to code their
hometown as the city where they received their vocational quali昀椀cation. This choice
is motivated by the observation that most workers in Germany receive vocational
training in the cities where they completed their schooling.20 We further restrict the
sample to workers who have completed their vocational training after 1990 to avoid
selection due to missing information on vocational training completed in East Ger-
many. To address top-coding, we apply a procedure to impute censored wages based
on Card et al. (2013). We aggregate daily imputed wages into annual wages and
regress these, after taking logs, against individual 昀椀xed e昀昀ects and region-year 昀椀xed
e昀昀ects, recovering the latter as a sorting-adjusted region-year wage index (Glaeser

20Empirical evidence for this observation is provided by Ho昀昀mann and Wicht (2023), who use
microdata from the National Educational Panel Survey (NEPS) to examine the extent of spatial
mobility among school leavers who continue on to apprenticeships. According to their results, about
78% of the 2011-2017 school leaver cohorts start apprenticeship training in a company located in
the same labour market region where they completed their schooling, while 22% start training in
a di昀昀erent region.
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and Maré, 2001; Combes et al., 2008).
To construct the aggregate consumer price index, we rely on information about

昀氀oor-space prices and local prices for tradable and non-tradable goods. We take
2015 昀氀oor-space prices from Ahlfeldt et al. (2023) who provide a property price
index for the 141 German local labour market regions based on asking prices from
immobilienscout24.de – Germany’s largest online platform. This index controls for
property characteristics and commuting, in line with Combes et al. (2019). Regional
tradable goods and local services prices for 2015 are based on county-level price
indices from Weinand and Auer (2020). We aggregate their values to local labour
market regions using employment weights.

To complete the quanti昀椀cation of the model-consistent QoL measure according
to Eq. (17), we set the expenditure share of housing to 1 − ³ = 0.33 (Statistisches
Bundesamt, 2020), the expenditure share for tradable goods to ´ = 0.34 (based on
own estimation) and the preference heterogeneity parameter to µ = 3 (Krebs and
P昀氀üger, 2023). Since we are not aware of an extant estimate of the value of local
ties in Germany, we estimate ξ using a log-linearised version of Eq. (8). To this
end, we regress the log of the bilateral residence-birthplace population, Lim = λimL̄,
against the dummy denoting hometown-residence bilaterals, 1{m = i}, residence
昀椀xed e昀昀ects that absorb all other objects in the numerator, and hometown 昀椀xed
e昀昀ects, which absorb multilateral resistance in the denominator. The coefficient
on the dummy delivers ξ = 5.6 (see Online Supplement S.3.2 for details). This
estimate is somewhat larger than the value of ξ = 5 calibrated in Section 4, which
is consistent with the workers in our sample, at 70%, having an unusually high
probability of residing in their hometown (Zabek, 2024, documents a probability of
50% for the US).21

Our theory-consistent QoL measure, Â, described in Eq. (17) is admittedly
somewhat data-demanding. For one thing, our microdata enables the computation
of a hometown population measure, at least for a subset of the total population.
In other contexts, however, researchers may not be able to observe the distribution
of hometown population for workers currently observed in the labour market. For
another, we observe prices of tradable goods and local services, but regional non-
housing prices are not available for many countries and periods. Therefore, we also
construct a variant of our QoL measure that requires only crude data, ÂCD. For
one thing, we set the prices of tradable goods and local services to uniform values,
which, according to the results of our Monte Carlo simulations, should introduce

21For postcodes, Büchel et al. (2020) 昀椀nd a lower e昀昀ect of return migration on migration prob-
abilities in their conditional logit model, which suggests that local ties are weaker when measured
on the neighbourhood scale.

23



limited error (see Appendix Section S.1.2. For another, we use a standard population
measure from the census as a proxy for the residence population and the 30-year lag
of the resident population as a proxy for the hometown population since most workers
currently active in the labour market grew up where their parents lived when they
were young.22 In another variant, largely relegated to the appendix, we exploit the
fact that the structure of our model allows the construction of theory-consistent price
indices using more accessible variables such as regional wages, sectoral employment
and bilateral trade costs (see Appendix A.3).

5.2 Quality of life measures

We use the data described in Section 5.1 to compute our measure of QoL, Â, for
German cities according to Eq. (17). Since there is no analytical solution for Â, we
use a numerical solution algorithm described in Appendix A.1.2.23 We refer inter-
ested readers to our GitHub toolkit, which provides a convenient way to replicate
our measure in other contexts.24

We map this novel QoL index in the left panel of Figure 3. In the right panel, we
show how this measure deviates from the canonical Rosen-Roback measure, ÂRR,
de昀椀ned in Eq. (18). A striking feature of Figure 3, which reinforces the descriptive
evidence from Section 2, is that the largest cities (Berlin, Hamburg, Munich) o昀昀er
the highest QoL. Second tier cities such as Frankfurt, Cologne or Düsseldorf also
o昀昀er high QoL. It is worth noting that these large cities also appear as high QoL
cities in the canonical Rosen-Roback measure (see the Online Supplement Section
S.3.4 for a map). However, as shown in the right-hand panel of Figure 3, the
Rosen-Roback measure understates QoL in large cities compared to our preferred
QoL measure. The di昀昀erences between the two measures extend beyond the largest
cities, suggesting that there is considerable scope for our new measure to in昀氀uence
QoL rankings.

We illustrate how our new measure changes the QoL ranking in Table 2, focusing
on the 昀椀ve cities with the highest and the 昀椀ve cities with the lowest values in our
preferred QoL measure. Columns (1) and (2) summarise the QoL ranking based on

22We use regional population data from the years 2015 and 1985, respectively. The data are
provided by the Federal Office for Building and Regional Planning at the county level, which we
aggregate to the level of the 141 labour market regions that are used in the empirical analysis.

23Our solutions are insensitive to starting values under the chosen parametrisation. This is
consistent with the existence of a unique mapping from observed outcomes to fundamental amenity
value (conceptually equivalent to QoL) in the absence of spatial spillovers, as shown by Allen and
Arkolakis (2014), as long as the congestion force is large enough.

24The toolkit is available at https://github.com/Ahlfeldt/ABRSQOL-toolkit and includes
functions with user-friendly syntax for MATLAB, Stata, R, and Python.
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Figure 3: Quality of life in Germany

(a) Quantitative spatial model (QSM) (b) Rosen-Roback vs. QSM

Notes: Both maps illustrate ln(Â). Panel (a) is based on the quantitative spatial model (QSM); panel (b) shows
the ratio of RR over QSM .

the quantitative spatial model (de昀椀ned in Eq. (17), referred to as QSM, best data).
Columns (3) and (4) show the corresponding QoL ranking for the Rosen-Roback case,
which does not control for di昀昀erences in residence population, hometown population,
and prices of non-housing goods (de昀椀ned in Eq. (18)). To ease the comparison,
Column (5) computes the relative di昀昀erence between the Rosen-Roback and the
QSM measures. The next three Columns (7)-(9) replicate Columns (3)-(5) for the
crude-data version of our measure, which uses the deep lag of residence population
as a proxy for hometown population and abstracts from di昀昀erences in non-housing
prices. Con昀椀rming the visual impression from Figure 3, the range of the QoL measure
based on the QSM is about 13% larger than that of the Rosen-Roback measure. For
all 昀椀ve top ranking QoL cities, which tend to be relatively large, we obtain higher
QoL values (relative to the numéraire city of Kiel) using the quantitative spatial
model. Similarly, the measure derived from the quantitative spatial model is smaller
for all 昀椀ve lowest-ranking cities, which are generally small. A fuller discussion of
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Table 2: Quality of life rankings

QSM, best data Rosen-Roback QSM, crude data

Rank Â Rank ÂRR (4)/(2) Rank ÂCD (7)/(2)
(1) (2) (3) (4) (5) (6) (7) (8)

Hamburg 1 2.081 2 1.737 0.834 2 1.648 0.792
München 2 2.033 1 1.963 0.965 3 1.644 0.809
Berlin 3 1.851 3 1.678 0.907 1 1.758 0.950
Frankfurt am Main 4 1.696 5 1.520 0.896 4 1.441 0.850
Düsseldorf 5 1.566 12 1.335 0.853 5 1.392 0.889
... ... ... ... ... ... ... ... ...

Freyung-Grafenau 137 0.538 126 0.688 1.278 139 0.547 1.017
Kronach 138 0.526 132 0.651 1.237 140 0.538 1.021
Stendal 139 0.522 141 0.575 1.101 130 0.617 1.183
Vulkaneifel 140 0.519 107 0.773 1.488 141 0.525 1.010
Uelzen 141 0.510 137 0.637 1.248 138 0.548 1.073

Standard deviation 0.276 0.253 0.223

Notes: The table shows measures of relative QoL for the labour market regions with the 5 highest and the 5
lowest values according to the full speci昀椀cation in Eq. (17) (QSM). The numéraire location is Kiel. Columns
(1) and (2) report QoL estimates and the corresponding ranks based on Eq. (17). Columns (3) and (4) report
QoL estimates and the corresponding ranks based on Eq. (18). Columns (6) and (7) report QoL estimates and
the corresponding ranks based on Eq. (17) using census population as a proxy for residence population, the
30-year lag of residence population as a proxy for hometown population and uniform prices for non-housing
goods.

the impact on rankings is provided in Appendix S.3. Here, we simply note that our
昀椀rst impression from the real-world example in Figure 3 and Table 2 aligns with
the main 昀椀nding of our Monte Carlo experiments in Section 4: the Rosen–Roback
framework tends to yield a lower QoL premium.

5.3 Urban quality of life premium

To quantify the urban QoL premium and the downward bias within the Rosen-
Roback framework for Germany, we estimate Eqs. (21) and (22) on the data set
introduced in Section 5.1 and report the results in Figure S4a. As already suggested
by Figure 3, we 昀椀nd a well-de昀椀ned positive correlation between QoL and city size for
both measures. However, the urban QoL premium is much larger when estimated
from our model that we treat as the ground truth. The city size elasticity of the QoL
measure is 0.29, which implies that ceteris paribus, a German city with twice the
residence population o昀昀ers a 20.29 − 1 = 22% higher QoL. At 20.18 − 1 = 13%, this
premium is almost halved when derived from the Rosen-Roback framework. If we
are willing to believe that our quantitative spatial model is a plausible approximation
of the true DGP in Germany, the downward bias in the Rosen-Roback framework is
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large at 40%.
Of course, it is quite conceivable that the urban QoL premium is smaller in

other countries, such as the US, where Rosen-Roback estimates do not suggest a
positive urban QoL premium (Albouy, 2011). At the same time, the relatively
large downward bias found for Germany may suggest that more countries may have
a positive urban QoL premium than is generally assumed (as already suggested
by the Monte Carlo simulations in Section 4). To put the estimated urban QoL
premium into perspective, Figure 4b provides analogous estimates of the urban wage
premium. A large literature has documented higher wages in cities, and Germany
is no exception. The average wage increases in city size at an elasticity of about
0.06. When skill heterogeneity is controlled for through individual worker 昀椀xed
e昀昀ects, the estimate halves.25 These estimates are within the typical range found
in the literature (Combes and Gobillon, 2015). Strikingly, even the lower bound
estimate of the urban QoL premium derived from the Rosen-Roback framework
exceeds the upper bound estimate of the urban wage premium unadjusted for the
skill composition of the workforce.

We extend the comparison of the estimated urban QoL premium to other classes
of models in panel a) of Table 3. In the German setting using observed goods and
services prices, trade frictions turn out to be less consequential than in the more gen-
eral Monte Carlo setting in Section 4 (see Columns 3 vs. 2 and 6 vs. 5). In contrast,
models accounting for idiosyncratic tastes but not local ties (Columns 4–6) deliver
QoL estimates that entail a larger upward bias in the urban QoL premium (about
two-thirds). This is consistent with the Monte Carlo simulation results reported in
Figure 2, which reveal that the estimation bias (from omitted local ties) becomes
more positive when local ties are stronger. Indeed, we have estimated stronger local
ties (governed by ξ) than have previously been found for the US (Zabek, 2024).
This may be due to Germans being generally relatively immobile or the group we
are focusing on (completing vocational training) being less mobile than other groups
in Germany. Judging from the more general Monte Carlo experiments that exploit
many synthetic countries with a range of plausible local ties parameters, the upward
bias in the urban QoL premium inferred from models with idiosyncratic tastes as
the only mobility friction (Ahlfeldt et al., 2015; Diamond, 2016; Monte et al., 2018)
is less likely to extend beyond the German context than the downward bias in mod-
els that omit idiosyncratic tastes and local ties (Roback, 1982; Allen and Arkolakis,
2014).

25Conditional on worker 昀椀xed e昀昀ects, the urban wage premium is identi昀椀ed from the change in
wages that workers experience when they move to cities of di昀昀erent sizes (Combes et al., 2008).
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Given that QoL is a latent composite variable, one may naturally wonder whether
economic QoL measures are correlated with observable amenity variables in ways
that make intuitive sense. Panel b) shows that this is the case irrespective of the
model class we employ. Inverted QoL is higher in places that are closer to the coast,
sunnier, have more restaurants per capita, and have better air quality. Conditional
on these controls, it is also higher in places that generate more photos shared on
social media per capita. This is a broad measure of human interest, capturing oth-
erwise difficult-to-observe features such as the aesthetic quality of places and their
potential to facilitate social interaction.26 Notably, models accounting for idiosyn-
cratic tastes (our ground truth measure as well as Ahlfeldt et al., 2015; Diamond,
2016; Monte et al., 2018), invert QoL measures that are more closely correlated
with observables than models that abstract from mobility frictions (Roback, 1982;
Allen and Arkolakis, 2014)—the R2 is about 50% higher. This is, at least, consistent
with our argument that controlling for spatial frictions reduces measurement error
in QoL. Notably, the R2 from regressions using QoL measure accounting for mobility
frictions are about twice as high as in Ang et al. (2024), who analyze within-city
variation. This suggests that inverted amenity measures align even more closely
with observed amenities when comparing across cities rather than within them.

Theoretically, the amenities in panel b) could be driving the urban QoL pre-
mium established in panel a) if they were correlated with city size. Empirically,
the estimated urban QoL premia are fairly robust to controlling for the observable
amenity measures in panel c). This may be read as weak evidence for endoge-
nous amenities that scale with city size—which are difficult to capture empirically—
contributing to the urban QoL premium. Indeed, using an established instrument—
subsoil mineralogy—for city size in panel d) supports this notion, as the estimated
urban QoL premium remains close to those in panel a). The idea behind the instru-
ment is that it determines agricultural productivity, which in昀氀uenced historic city
size but not contemporaneous city size, since trade costs have fallen signi昀椀cantly
(Combes et al., 2010). That said, the case for the excludability of the instrument is
arguably weaker than when establishing agglomeration e昀昀ects on productivity, since
subsoil mineralogy may be correlated with topographic features that have amenity
value and a昀昀ect QoL. Controlling for exogenous amenities (proximity to coast, Alps,
and sunshine) is, arguably, an imperfect hedge against this concern (see Appendix
Section S.3.6 for further detail on the IV regressions).

26Because city size and (dis)amenities likely in昀氀uence the number of photos taken and shared,
we regress the per-capita photo count on all observables and use the residuals from this regression.
The residual captures variation not explained by the included (dis)amenities, and thus serves as a
proxy for otherwise unobserved location qualities such as aesthetics or social appeal.

28



Figure 4: Urban quality-of-life premium vs. urban wage premium

(a) Urban quality of life premium (b) Urban wage premium

Notes: QSM is the QoL measure derived from the quantitative spatial model, Â. Rosen-Roback is the same derived
from the Rosen-Roback QoL measure, ÂRR. Adjusted worker wages are from regressions of log wages against worker
and region-昀椀xed e昀昀ects, where the latter are recovered as a regional wage index adjusted for sorting.

Therefore, we prefer to view the urban QoL premium and the urban wage pre-
mium as descriptive concepts. They summarise the bene昀椀ts workers derive from
being located in large cities. Whether higher wages and QoL arise from favourable
fundamentals that attract workers or from genuinely city-size-related agglomeration
economies is a separate question. Regardless of the underlying mechanisms, how-
ever, our results suggest that, in Germany, high QoL is an even more important
reason for workers to locate in large cities than high wages.27 This, in itself, is a
striking result given that, since Marshall (1890), the literature has mostly focused
on productivity as the main reason why workers concentrate in cities.

27Note that in our quantitative spatial model, a one per cent increase in QoL has the same
e昀昀ect on indirect utility as a one per cent increase in wages.
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Table 3: Estimated urban QoL premium

(1) (2) (3) (4) (5) (6)
Model Ground ARSW MRRH

truth RR AA Diamond MRRH + services

Panel A: Regression of log QoL on log employment (OLS)
(Log) Employment 0.298∗∗∗ 0.185∗∗∗ 0.185∗∗∗ 0.519∗∗∗ 0.519∗∗∗ 0.521∗∗∗

(0.010) (0.017) (0.017) (0.017) (0.017) (0.017)
Observable amenities No No No No No No
R2 .882 .429 .429 .855 .855 .855

Panel B: Regression of log QoL on amenities (OLS)
Distance Alps (100km) -0.016 -0.061∗∗∗ -0.061∗∗∗ -0.052∗∗ -0.051∗∗ -0.052∗∗
Distance coast (100km) -0.031∗∗ -0.077∗∗∗ -0.076∗∗∗ -0.075∗∗∗ -0.074∗∗∗ -0.073∗∗∗
Log av. sun hours 0.654∗∗∗ 1.209∗∗∗ 1.209∗∗∗ 1.314∗∗∗ 1.314∗∗∗ 1.332∗∗∗
Log restaurants per capita 0.054∗∗ 0.128∗∗∗ 0.129∗∗∗ 0.101∗∗ 0.102∗∗ 0.099∗∗
Opera house 0.018 0.011 0.011 0.035 0.035 0.034
Log photo count (residualised) 0.056∗∗ 0.110∗∗∗ 0.111∗∗∗ 0.110∗∗ 0.111∗∗ 0.110∗∗
Log av. PM-10 concentration -0.307∗∗∗ -0.203∗∗∗ -0.203∗∗∗ -0.537∗∗∗ -0.537∗∗∗ -0.539∗∗∗
Log violent crime rate -0.045 -0.043 -0.043 -0.081 -0.080 -0.078
R2 .887 .65 .651 .889 .89 . 891

Panel C: Regression of log QoL on log employment and amenities (OLS)
(Log) Employment 0.299∗∗∗ 0.119∗ 0.118∗ 0.453∗∗∗ 0.451∗∗∗ 0.445∗∗∗

(0.036) (0.069) (0.069) (0.069) (0.069) (0.069)
Observable amenities Yes Yes Yes Yes Yes Yes
R2 .919 .657 .658 .913 .913 .913

Panel D: Regression of log QoL on log employment (2SLS: subsoil mineralogy)
(Log) Employment 0.335∗∗∗ 0.252∗∗∗ 0.252∗∗∗ 0.585∗∗∗ 0.586∗∗∗ 0.590∗∗∗

(0.023) (0.054) (0.055) (0.054) (0.055) (0.055)
Observable exog. amenities Yes Yes Yes Yes Yes Yes
Pseudo-R2 .895 .553 .552 .886 .886 .885

Notes: Column (1) shows the urban premia in the full model. Column (2) shows the urban QoL premium inside the
Rosen-Roback framework, column (3) controls for trade frictions (e.g., Allen and Arkolakis (2014), AA), while column(4)
controls for idiosyncratic tastes (e.g., Ahlfeldt et al. (2015), ARSW, or Diamond (2016)). Column (5) controls for both trade
costs and idiosyncratic tastes (e.g., Monte et al. (2018), MRRH). Column (6) extends the speci昀椀cation in column (5) by also
controlling for local services. Observable regional amenities include a region’s distance from the Alps and the coast (both
in units of 100 kilometers), the log average number of hours of sunshine per day as measured between 1981 and 2010, the
log number of restaurants per capita, the existence of an opera house, the log social media photo count (residualised by a
regression on log employment and all other amenity variables), the log average concentration of particulate matter (10 µm)
and the log violent crime rate. The 昀椀rst three variables constitute the set of exogenous observable amenities. Instrumental
variables in Panel D and Panel E are dummy variables for subsoil mineralogy that are de昀椀ned as in Combes et al. (2010).
Robust standard errors. ∗/∗∗/∗ ∗ ∗ indicate statistical signi昀椀cance at the 1%, 5% and 10% level, respectively.

6 Conclusions
We show that by abstracting from spatial frictions, estimates of QoL derived from the
Rosen-Roback framework su昀昀er from a downward measurement error that increases
in city size. This result reconciles a growing literature that has emphasised the
consumption bene昀椀ts that cities o昀昀er (Glaeser et al., 2001; Diamond, 2016) with a

30



classical literature on the measurement of QoL that has found limited evidence for
an urban QoL premium (Roback, 1982; Albouy, 2011). We document a positive
QoL premium for Germany and argue that it may extend to many other countries
once spatial frictions are accounted for. Indeed, QoL may be just as important an
agglomeration force driving urbanization as productivity.

Our results have important implications that extend beyond the QoL literature.
Since the pioneering work of Roback (1982), the neoclassical spatial equilibrium
framework has been the workhorse tool for the valuation of amenities (Glaeser and
Gottlieb, 2009; Greenstone, 2017).28 To this end, the literature correlates di昀昀erences
in real living costs—often approximated by di昀昀erences in house prices—with di昀昀er-
ences in amenities to recover their shadow prices. The role of the shadow price is to
map a di昀昀erence in amenity endowment between two cities into a di昀昀erence in worker
utility. The downward bias in the variance of QoL in the Rosen-Roback framework,
therefore, suggests a downward bias in the estimated shadow price derived from
the Rosen-Rosen framework, especially in the largest locations. Quantifying the
magnitude of this bias is an important avenue for further research.

As shown by Fajgelbaum and Gaubert (2020), accounting for spatial di昀昀erences
in QoL is crucial for deriving optimal spatial policies.29 In spatial equilibrium, high-
QoL regions have lower real wages. Since the marginal value of real consumption is
higher, 昀椀scal transfers to regions with higher QoL should be welfare enhancing under
realistic parametrisations and all else equal. A key 昀椀nding of our analysis is that the
canonical Rosen-Roback framework understates QoL in large cities. By implication,
spatial policies derived within the Rosen-Roback framework may lead to the under-
provision of public goods in large cities, leading to misallocation. Quantifying the
welfare cost of sub-optimal spatial policies that may arise from the mismeasurement
of QoL represents another avenue for future research.

28Typical examples include clean air (Chay and Greenstone, 2005), safety (Linden and Rocko昀昀,
2008), or public schools (Cellini et al., 2010).

29Important related contributions include Blouri and Ehrlich (2020), Henkel et al. (2021), and
Gaubert et al. (2021).
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A Appendix
This appendix adds to Section 3 in the main paper, which introduces our quantitative
spatial model. We discuss how to quantify the model to rationalise observed data in
Section A.1. In Section A.2, we outline the numerical procedure used to solve for the
equilibrium values within the model conditional on given primitives. This procedure
is, in particular, employed in our Monte Carlo simulation study as described in
section 4.

A.1 Quantifying the model

In this appendix, we outline how to quantify our model from Section 3 to rationalise
observed data and solve for the primitives of the model (Ai, η̃i, φ̄i, ν

n
i ).

Quantifying the general equilibrium model requires data on employment by lo-
cation and sector (Ln

i , L
t
i), regional wage data (wi) and local price levels that vary

by expenditure category (pHi , pni , P t
i ). Furthermore, one requires data on the home-

towns of all employed workers (L̄b
m) and the area of all locations (T̄i) as well as their

bilateral distances (distij). Apart from these data, we also require values for all
structural parameters {³, ´, µ, ¶, ζ, ι, µ, σ, ξ}.

In a nutshell, the quanti昀椀cation consists of three steps. First, we settle on
parameter values for {³, µ, ¶, ζ, ι, µ, σ, ξ}. Second, we infer the value for ´ that
is implicitly determined by observed data conditional on set parameter values.
Third, we invert the structural fundamentals given the full set of parameter val-
ues {³, ´, µ, ¶, ζ, ι, µ, σ, ξ} and observed data.

A.1.1 Structural parameters

Table A1 provides an overview of our parameter value choices. All parameter values
are set to established values in the literature or estimated from data with one excep-
tion. The tradable goods share in consumption of non-housing goods, ´, is implicitly
determined by the observed values of endogenous variables {wi, L

n
i } and the set pa-

rameter value for µ. We solve for the consumption share of non-tradables, 1−´, that
rationalises aggregate goods-market-clearing in the sector for non-tradable services,
Eq. (14):

1− ´ =

∑

i∈J wiL
n
i

(1− µ)
∑

i∈J wiLn
i + µ

∑

i∈J wiLi

.

We estimate the value for the hometown values parameter ξ using a moment
condition that directly follows from our model (see Section S.3.2 in the Online Sup-
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plement for details). For all other parameters, we use canonical parameter values
from the literature.

Table A1: Parameter values for model quanti昀椀cation (Germany as a case in point)

Parameter Description Approach Source

Preferences

1− ³ = 0.3 Housing share in consumption Set Combes et al. (2019)
µ = 3 Labour supply elasticity Set Krebs and P昀氀üger (2023)

´ = 0.34 Tradable goods share Est. Inferred from data
ξ = 5.6 Hometown valuation Est. Own estimation

Production

¶ = 0.3 Share of land in production Set Baum-Snow and Han (2024)
ι = 1 Distance elasticity Set Head and Mayer (2014)
σ = 5 Regional varieties substitution Set Head and Mayer (2014)
µ = 0.8 Labour share in production Set Greenwood et al. (1997)
ζ = 0.02 Productivity spillovers Set Combes and Gobillon (2015)

A.1.2 Inverting quality of life

In this Appendix, we discuss how our structural model can be used to invert quality
of life in the presence of spatial frictions. As highlighted in Eq. (17), relative QoL
Â is perfectly identi昀椀ed up to a normalization (or numéraire location) and given by:

Â =
(P̂ t)αβ(p̂n)α(1−β)(p̂H)1−α

ŵ

(

L̂/L̂
)

1

γ

,

Algorithm 1 in the Online Supplement provides pseudo-code to outline how a dataset
with observed endogenous variables, {Li, L̄

b
i , p

H
i , p

n
i , P

t
i , wi}, the exogenous variable,

L̄b
i , and the structural parameters {³, ´, µ, ξ} can be used to identify QoL under

mobility (local ties, idiosyncratic tastes) and trade frictions (variation in tradable
goods and non-tradable service prices).

Allen and Arkolakis (2014) show that in the absence of spatial spillovers (in
productivity and amenity), there is a unique mapping from the data to the primitives
of the model for given values of structural parameters as long as the congestion
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force (here arising from inelastically supplied land) dominates the agglomeration
force (here arising from love for variety and positive trade costs). The practical
implication of this property is that our QoL solver is invariant to starting values. To
substantiate this insight in the context of our model (which does not feature spatial
spillovers in productivity of or amenity), we draw N=1000 di昀昀erent starting values
for Ai from a uniform distribution in the bounds (0.5; 1.5) and invert the relative
quality of life for each of these starting guesses of the solver. Reassuringly, in each
of these simulations, we invert exactly the same level of relative QoL, such that we
conclude that the observed data uniquely maps into the model fundamentals.

For the interested user, we provide an accessible toolkit that implements the
pseudo-code of Algorithm 1 in the Online Supplement as a MATLAB function, a
Stata ado programme, as well as R and Python packages. The toolkit is available
at https://github.com/Ahlfeldt/ABRSQOL-toolkit.

A.1.3 Solving for worker and 昀氀oor-space productivities

We solve for adjusted 昀氀oor space productivities using the market clearing condition
on the market for 昀氀oor space, Eq. (12):

η̃i =
1

pHi

(

³̃¶wiLi

T̄i

)δ

,

Relative worker productivities are identi昀椀ed—up to a normalization—from goods
market clearing in the market for tradable goods, Eq. (13). In doing so, we 昀椀rst
calibrate the bilateral trade cost matrix to follow the trade literature (Head and
Mayer, 2014): we compute all bilateral distances between the geographic centroids
of the regions while parametrising trade costs as τij = (exp[−ι ∗ ln distij])

1

1−σ dj,
where we set {ι = −1, σ = 5} and introduce dj as a destination-speci昀椀c component
of trade costs. This component captures regional attributes that a昀昀ect trade costs
to all other regions, such as direct access to the highway network, a natural harbour,
or an airport, and allows the model to exactly match observed tradable goods prices.

In Algorithm 2 of the Online Supplement, we use pseudo-code to outline how
a dataset with the endogenous variables {Li, L

t
i, P

t
i , wi}, the structural parameters

{³, ´, ζ, ι, µ, σ} and bilateral distances can be used to identify worker productivities—
up to a normalization—as well as the trade-cost shifter.

Lastly, we use data on wages (wi), 昀氀oor space prices (pHi ), price levels in the
non-tradable sector (pni ) and previously inverted productivities (φ̂) to identify the
relative productivity shifters that are speci昀椀c to the service sector:
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ν̂n =
p̂n

(ŵ/φ̂)µ(p̂H)1−µ
.

A.2 Solving the model

Within quantitative spatial models, there are typically no analytical solutions for the
spatial equilibrium, and our model is no exception. Still, there is a unique mapping
from the model’s primitives to the equilibrium vector V = {Ln

i , L
t
i, wi, ri, p

H
i ,Pi}

which we exploit in a standard 昀椀xed-point numerical solver that converges rapidly.
As discussed in the main paper, we calculate all bilateral distances between all
grid points, distij, and then parametrise trade costs as τij = (exp[−ι ∗ ln distij])

1

1−σ .
Further, we normalise the sector-speci昀椀c production shifter for non-tradable services,
νn
i , to unity in all locations.

Algorithm 3 in the Online Supplement then provides pseudo-code to outline how
identi昀椀ed model fundamentals {Ai, L̄

b
i , T̄i, η̃i, φ̄i, τij} and the structural parameters

{³, ´, µ, ¶, ζ, µ, ξ, σ} can be combined to solve for the equilibrium vector V.
In the absence of spatial spillovers (in productivity and amenity), there is gen-

erally a unique solution in a quantitative spatial model if the congestion force (here
arising from inelastically supplied land) dominates the agglomeration force (here
arising from love for variety and positive trade costs) under the chosen reparametri-
sation (Allen and Arkolakis, 2014; Redding and Rossi-Hansberg, 2017) The practical
implication of this property is that our equilibrium solver is insensitive to starting
values. To substantiate this insight in the context of our model, we perform an
additional Monte Carlo simulation where we show that randomization of the start-
ing values to the solving Algorithm 3 still yields the same equilibrium vector V.
In particular, we draw N = 1000 random starting vectors for the vectors {Li, wi}

from a uniform distribution in the bounds {0.5; 1.5}, but normalise the guesses for
employment by a common factor such that they sum to L̄ in the aggregate. We then
solve for the equilibrium vector V for each of the randomised sets of starting values.
Reassuringly, in each of the N simulations, we solve for the same spatial equilibrium,
which we take as an indication that the spatial equilibria for which we solve in the
Monte Carlo study of Section 4 are unique (at the very least for empirically relevant
parametrizations).

A.3 Using the model to predict non-housing price indices

From Eq. (17) it is evident that measuring QoL while accounting for trade frictions
requires measures of tradable goods and local services prices. If no such price index is
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at hand, we can use the structure of the model to solve for a non-housing price index
from employment and wage data. Intuitively, we set the structural fundamentals,
{νn

i , dj}, which rationalise observed tradable goods and local services prices in the
quanti昀椀cation described in Section A.1, to uniform one. Otherwise, we follow the
same steps to invert worker productivity, which is then used to predict tradable
goods and local services prices.

We invert worker productivities using the tradable goods market condition in
Eq. (13) using the same values for parameters {³, ´, ζ, ι, µ, σ} as in Section A.1,
and a simpli昀椀ed version of Algorithm 2. Since we do not require model-predicted
tradable goods prices, P t,model to match values in data, P t, the outer loop becomes
redundant so that we iterate over guessed values of worker productivity φ in the
inner loop, holding the destination-speci昀椀c trade cost component constant at dj = 1.
Consequentially, the data requirements for this procedure, compared to Section A.1,
drop to observed values of endogenous variables as well as a bilateral distance matrix.

With worker productivity at hand, the model-consistent tradable goods price
index can be computed as

P̂ t =

[

∑

i∈J (τijwi/φi)
1−σ

∑

i∈J (τikwi/φi)
1−σ

]
1

1−σ

,

with τij = (exp[−ι ∗ ln distij])
1

1−σ . Similarly, given the assumption of uniform pro-
ductivity in local services, pn = 1, it is straightforward to compute the local services
price index as

p̂n = (ŵ/φ̂)µ(p̂H)1−µ.
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S Supplemental Appendix

S.1 Monte Carlo study

This appendix complements the Monte Carlos analysis in Section 4.

S.1.1 Parameter choices

Table S1 provides an overview of the parameter value choices in the Monte Carlo
study. Additionally, we recap how the model fundamentals are determined.

S.1.2 Determinants of the measurement error

In Figure S1 we scatter the measurement error de昀椀ned in Eq. (20) of the main paper
against various forcing variables in our Monte Carlo experiments. In each panel,
each point represents an arti昀椀cial city in one of the arti昀椀cial countries. A common
feature to all panels is that QoL di昀昀erences (relative to the numéraire location) are
generally underestimated within the Rosen-Roback framework. For positive QoL
di昀昀erences in the DGP marked by red dots (ln Â > 0.25), the error is negative for
the most part. The error is mostly positive for negative di昀昀erences (blue dots for
ln Â < −0.25), which also implies that the magnitude of the relative QoL di昀昀erence is
underestimated. One explanation is that for imperfectly mobile workers, di昀昀erences
in QoL must be larger than the inverse real wage di昀昀erentials alone would suggest,
since a high-QoL city, in attracting more workers, must compensate the marginal
worker for lower idiosyncratic utility and foregone local ties to other places.

The role of mobility frictions is substantiated by panels (a) and (b), which plot
the measurement error against the values of the country-speci昀椀c structural parame-
ters {µ, ξ}. Panel (a) reveals that the measurement error converges asymptotically
to zero as workers’ tastes become more homogeneous and local labour supply be-
comes more elastic, i.e. at higher values of µ. Formally, the third and fourth terms
in Eq. (20) approach zero as µ → ∞. Intuitively, compensating di昀昀erentials in
real wages to o昀昀set idiosyncratic taste shocks become less important when workers
care less about the particularities of individual cities. Local ties also become less
important because their utility value, exp(ξ/µ), is a decreasing function of µ. For
a related reason, we observe in panel (b) that the magnitude of the measurement
error is smaller when local ties are weaker at given values of µ, i.e. at lower values
of ξ. Formally, the fourth term in Eq. (20) approaches zero as ξ → 0. Intuitively,
compensating di昀昀erentials in real wages to o昀昀set local ties become less important
when workers are less attached to their hometowns.
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Table S1: Parameter values

Parameter Description Approach Source

Preferences

1− ³ = 0.3 Housing share in consumption Set Combes et al. (2019)
´ = 0.5 Tradable goods share Set Caliendo et al. (2018)

Production

¶ = 0.3 Share of land in production Set Baum-Snow and Han (2024)
ι = 1 Distance elasticity Set Head and Mayer (2014)
σ = 5 Regional varieties substitution Set Head and Mayer (2014)
µ = 0.8 Labour share in production Set. Greenwood et al. (1997)
ζ = 0.02 Productivity spillovers Set. Combes and Gobillon (2015)

Regional fundamentals

L̄ = J Number of workers Set
Ti = 1 Land Area Set
distij Geographical Distance Set

τij Trade cost Set τij = (exp[−ι ∗ ln distij])
1

1−σ

Mi Market access measure Set
∑

j∈J(Yj/distij)

lnLb Log Birth Place Population Sim. ∼ N (0, 0.85)

lnAi Log Quality of life Sim. ∼ N (0, 0.25)

ln ηi Floor space productivity Sim. ∼ N (0, 0.25)

ln φ̄i Worker productivity Sim. ∼ N (0, 0.25)

µ Labour supply elasticity Sim. ∼ U(1.1; 10)

ξ Value of Birth Place Location Sim. ∼ U(0; 10)
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Figure S1: Measurement error in the full model

(a) (Inverse) idiosyncratic tastes (γ) (b) Valuation local ties (ξ)

(c) Quality of life (ln Â) (d) Adjusted housing productivity (ln ˆ̃η)

(e) Fundamental labour productivity
(ln ˆ̄ϕ) (f) Hometown population (ln ˆ̄Lb)

Notes: Measurement error is de昀椀ned as E = (1/γ)(lnLb − ln L̂) − αβ ln P̂ t − α(1 − β) ln p̂n. We run N = 1, 000
Monte Carlo simulations for a synthetic economy with J = 144 local labour markets.

Turning to the city-speci昀椀c fundamentals, panel (c) shows that the (magnitude of
the) measurement error increases in the (magnitude of the) relative QoL di昀昀erences.
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Intuitively and all else equal, a city with a high QoL is more attractive and grows
larger. In a world with mobility frictions, growing cities attract marginal workers
with lower idiosyncratic utility and an increasing share of workers with local ties
in other hometowns. An increasingly larger city-speci昀椀c QoL must compensate
for these declining worker-speci昀椀c utility components to keep the marginal worker
indi昀昀erent. Therefore the measurement error in the Rosen-Roback QoL measure—
which abstracts from idiosyncratic tastes and local ties—is larger for high QoL cities
that grow larger.

Panels (d) and (e) illustrate how variation in the other fundamentals adds to the
problem. Panel (d) reveals that the (magnitude of the) measurement error increases
in the (magnitude of the) relative adjusted di昀昀erences in housing productivity. In-
tuitively, higher 昀氀oor space productivity and lower interest rates on capital are
昀氀oor space supply shifters that, given a downward-sloping housing demand, reduce
昀氀oor space prices for reasons unrelated to housing demand. However, in the Rosen-
Roback framework, lower rents due to higher 昀氀oor space supply are misattributed
to 昀氀oor space demand (and labour supply), as housing demand (and labour supply)
is assumed to be perfectly elastic. Likewise, panel (e) reveals that the (magnitude
of the) measurement error increases in the (magnitude of the) relative fundamental
labour productivity di昀昀erences. Intuitively, fundamental labour productivity is a
labour demand shifter which, given an upward-sloping labour supply, raises wages
for reasons unrelated to labour supply. However, in the Rosen-Roback framework,
higher wages due to higher labour productivity are misattributed to labour supply,
which is assumed to be perfectly elastic.

Naturally, cities with relative advantages in QoL, housing productivity, and fun-
damental labour productivity grow larger, ceteris paribus. The common implication
of panels (c) to (e) is that measurement error increases in the resident population.
As shown in panel (f), the e昀昀ect of a relatively larger hometown population is the
opposite. To develop intuition, it is useful to recall that, holding the hometown
population constant, a large residence population implies a marginal worker deriv-
ing a lower idiosyncratic utility. This decrease in worker-speci昀椀c utility must be
compensated for by a higher city-speci昀椀c QoL in order to keep the marginal worker
indi昀昀erent. This is the intuition behind the third term in Eq. (20). Of course, a
larger residence population can also arise when a city has a larger hometown popula-
tion, as more workers are likely to stay to maintain local ties. These worker-speci昀椀c
local ties compensate for a low idiosyncratic utility, and hence there is less need
for the city to o昀昀er a high QoL to keep the marginal worker indi昀昀erent. Therefore,
the e昀昀ect of the hometown population, which enters via L̂, points in the opposite
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Table S2: Heterogeneity in measurement error

Frictions controlled: (1) (2) (3) (4) (5)
Trade Costs ✓

Local services ✓

Local ties ✓

Idiosyncratic tastes ✓

Measurement error: Intercept -0.288 -0.305 -0.300 -0.169 -0.090

Parameters and regional fundamentals:

(Inverse) taste heterogeneity: γ-3 0.026 0.023 0.023 0.015 0.018
Strength of local ties: ξ-5 -0.017 -0.015 -0.015 0.015 -0.037
Market access: lnM̂ -0.087 -0.156 -0.048 -0.053 -0.004
Quality of life: ln(Â/1.5) -0.711 -0.754 -0.741 -0.427 -0.212
Relative 昀氀oor-space productivity : ln ˆ̃η -0.189 -0.205 -0.270 -0.105 0.014
Relative worker productivity: ln ˆ̄ϕ -0.547 -0.611 -0.591 -0.309 -0.130
Relative hometown population: ln L̂b 0.073 0.062 0.065 -0.132 0.223

Interaction e昀昀ects:

lnM̂ ∗ (γ − 3) 0.010 0.007 0.009 0.008 0.005
ln(Â/1.5) ∗ (γ − 3) 0.065 0.056 0.058 0.039 0.042
ln η̂ ∗ (γ − 3) 0.022 0.019 0.020 0.019 0.009
ln ˆ̄ϕ ∗ (γ − 3) 0.054 0.047 0.048 0.033 0.033
ln L̂b ∗ (γ − 3) -0.005 -0.004 -0.004 0.025 -0.031
lnM̂ ∗ (ξ − 5) -0.006 -0.004 -0.006 0.006 -0.013
ln(Â/1.5) ∗ (ξ − 5) -0.042 -0.036 -0.038 0.039 -0.091
ln η̂ ∗ (ξ − 5) -0.015 -0.013 -0.014 0.011 -0.031
ln ˆ̄ϕ ∗ (ξ − 5) -0.036 -0.031 -0.032 0.034 -0.078
ln L̂b ∗ (ξ − 5) 0.018 0.016 0.017 -0.022 0.045

Observations 144,000 144,000 144,000 144,000 144,000
Adjusted R2 0.977 0.985 0.984 0.783 0.807

Notes: Each column represents a di昀昀erent measurement error for a location with 50% higher quality of life than the numéraire location, so
Â = 1.5. In column (1), we ignore all spatial frictions; in column (2), we control for trade costs; in column (3), we control for di昀昀erences
in non-tradable service prices; in column (4) we control for local ties and in column (5) we control for migration frictions. All explanatory
variables are expressed relative to a numéraire location. The mobility friction parameter γ and local ties valuation ξ are re-scaled to have a
zero value at γ = 3 and ξ = 5, respectively, so we can interpret the intercept as the measurement error for otherwise identical locations. Given
the high number of Monte Carlo iterations, all coefficients are highly signi昀椀cant at all common levels so we do not report standard errors for
the sake of brevity.

direction to the residence population, L̂, in Eq. (20). The important implication for
the correct measurement of QoL is that accounting for idiosyncratic tastes without
accounting for local ties, and vice versa, may increase rather than decrease measure-
ment error.

In Figure S1, we have focused on the intuition behind the third and fourth terms
in Eq. (20), as there is an intuitive connection between residence and hometown
population and the randomised primitives of the model (the forcing variables in the
Monte Carlo simulations). The link between the prices of tradable goods and local
services that enter Eq. (20) and the primitives of the model is less direct since goods
and services prices depend on input prices, which are endogenous objects in our
general equilibrium model. In any case, the correlation between the measurement
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error, E , and tradable goods prices, P̂ t, and local services prices, p̂n is weaker than
those reported in Figure S1, suggesting that trade frictions are less consequential
for the correct measurement of QoL than mobility frictions (see section S.1.5 in the
Online Supplement).

S.1.3 Multivariate analysis of measurement error

One overarching takeaway of Figure S1 is that the measurement error in the Rosen-
Roback QoL measure cannot be summarised by a single number. It depends on the
fundamentals of an arti昀椀cial city as well as the heterogeneity of idiosyncratic tastes
and the strength of local ties in an arti昀椀cial country. In fact, it must depend on the
interactions. At higher values of µ and lower values of ξ, idiosyncratic utility and
local ties—from which the Rosen-Roback framework abstract—become less relevant.
Since labour supply and housing demand become more elastic, labour demand and
housing supply shocks that confound the interpretation of real wage di昀昀erences as
compensating di昀昀erentials become less consequential.

To quantify the measurement error, E , in light of this heterogeneity, we regress
E against the arti昀椀cial country-speci昀椀c values of the parameters governing the dis-
persion of idiosyncratic tastes, µ, and the strength of local ties, ξ, the arti昀椀cial city-
country-speci昀椀c fundamentals {Â, ˆ̃η, ˆ̄φ}, hometown population, ˆ̄Lb, and the arti昀椀cial
city-speci昀椀c market access measure, M̂, which summarises relative advantages due
to trade gravity, as well as the interaction of µ and ξ with {Â, ˆ̃η, ˆ̄φ,M, ˆ̄Lb}. For a
more intuitive interpretation of the constant, we transform the regressors as follows:
For the relative QoL measure, we use ln(Â/1.5); for idiosyncratic taste heterogene-
ity, we use µ − 3; for the strength of local ties, we use ξ − 5; for all other regressors,
we simply take the log. The constant then summarises the average measurement
error for an arti昀椀cial city that has a 50% higher QoL than the numéraire city, is
identical to the numéraire city in all other respects, and is located in an arti昀椀cial
country where µ = 3—arguably the consensus value in the literature (Redding,
2016)—and ξ = 5, which ensures a typical share of about 50% of workers living in
their hometowns (Zabek, 2024).

We report the results of the regression analysis in Column (1) of Table S2. Given
the high R2, a large number of observations, and the strong economic rationale
for the relevance of the covariates, it is no surprise that all estimated regression
coefficients are statistically signi昀椀cant at the 1% level. Hence, we omit standard
errors for a more compact presentation. For the reference arti昀椀cial city (with a
relative QoL advantage of 50%) in the reference arti昀椀cial country (µ = 3, ξ = 5),
we 昀椀nd that the Rosen-Roback framework underestimates the true QoL Â by 25%
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(= exp[−0.288] − 1). In keeping with expectations, the magnitude of the measure-
ment error is smaller when there is less idiosyncratic taste heterogeneity. For the
measurement error to become zero for our reference city, we would require an in-
crease in µ by 11 units. This implies a dispersion parameter in the range of µ = 14,
which is well outside the typical range of estimates in the literature. Likewise, the
magnitude of the measurement error is smaller when local ties are weaker. However,
even at the theoretical lower bound of ξ = 0 (a reduction by 昀椀ve units), the mea-
surement error remains sizeable at -18.4%. Hence, it seems unlikely that there are
many countries in the real world where measurement error is negligible.

The measurement error increases in positive relative di昀昀erences in market ac-
cess, QoL, 昀氀oor space productivity, and exogenous labour productivity. In keeping
with Figure S1, relative di昀昀erences in QoL and fundamental labour productivity are
particularly consequential. For example, the measurement error increases to -43.5%
when a city has a relative QoL advantage of 100% instead of 50% over the numéraire
city. Maintaining a relative QoL advantage of 50% and adding a 50% advantage
in terms of relative labour or housing productivity, increases the bias to -40% or
-30.5%, respectively.30 We require an increase in µ by approximately 10 to bring
the marginal e昀昀ects of these covariates close to zero, which is well outside the range
of estimates in the literature. Reducing ξ to zero reduces these marginal e昀昀ects by
about one-third.

In further keeping with Figure S1, the e昀昀ect of positive di昀昀erences in the home-
town population points in the opposite direction. For a city with a relative QoL
advantage of 50% over the numéraire city, the measurement error will be approx-
imately zero only if the hometown population is about 50 times the one of the
numéraire location. In this case, the Rosen-Roback measure would be accidentally
correct, as the measurement error from the fourth term in Eq. (20) would o昀昀set the
error originating from the other terms. More generally, this counterweight implies
that it is crucial to take local ties into account when considering the e昀昀ects of id-
iosyncratic tastes in measuring QoL, otherwise there is an inherent risk of turning
an underestimation of QoL di昀昀erences into an overestimation.

S.1.4 Relative importance of trade and mobility frictions

Having established that the measurement error in the Rosen-Roback QoL measure
is sizeable and highly heterogeneous, we now turn to quantifying the relative im-
portance of spatial frictions. To this end, we compute three adjusted measurement

30We calculate the change in measurement error when assuming regions’ primitives di昀昀er by a
further 50% according to (1.5coef − 1) ∗ exp (−0.288).
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errors of the form E − X , where X corresponds to one of the terms highlighted in
Eq. (20). We use these adjusted errors as dependent variables in regressions that
are otherwise identical to Table S2, Column (1) throughout Columns (2)-(5). The
constants can be interpreted as the measurement error for the reference city (with a
relative QoL advantage over the numéraire location of 50% in a country with µ = 3

and ξ = 5) that prevails when we control for the respective friction.
As mentioned in the context of Figure S1, simple scatter plots suggest that the

correlations between E and the trade-friction-related variables {P̂ t, p̂n} are weaker
than those with the mobility-friction-related variables {L̂, ˆ̄Lb}. Table S2 substanti-
ates this impression. In Column (4), the magnitude of the measurement error for the
reference location is reduced by 37.8% relative to Column (1) (to 15.6 pp) once local
ties are accounted for. In Column (5), the reduction even amounts to 65.6% (to 8.6
pp) when idiosyncratic tastes are accounted for instead. In contrast, the magnitude
of the measurement error for the reference location hardly changes when we account
for variation in tradable goods (Column 1) and local services (Column 2) prices. In
fact, measurement error even slightly increases. By implication, leaving frictional
trade unaccounted for causes upward measurement error in the Rosen-Roback QoL
measure. The reason is that judging from the Rosen-Roback measure, a high QoL
city appears less a昀昀ordable than it is since tradable and non-tradable goods prices
are relatively lower in high-QoL cities. Intuitively, a city with a greater QoL, ceteris
paribus, has a lower wage due to enhanced labour supply. A lower wage maps into
a lower price of local services for which labour is the most important input. The
logic extends to tradable goods prices since households also consume di昀昀erentiated
varieties from local producers. The implication is that accounting for trade frictions
improves the measurement of QoL only if mobility frictions are already accounted
for. Perhaps counter-intuitively, using a re昀椀ned cost-of-living index that accounts
for variation in prices of tradable goods and local services within the Rosen-Roback
framework might actually increase measurement error.

As a 昀椀nal piece of evidence concerning the priorities when improving the mea-
surement of QoL, we present the results of a Shapley decomposition of the variance
of the measurement error across all arti昀椀cial cities and countries. We obtain the
following relative contributions of the four terms on the right-hand side of Eq. (20):
10.14% (tradable goods), 4.45% (local services), 18.80% (idiosyncratic tastes) and
66.61% (local ties). As expected given the evidence reviewed so far, mobility fric-
tions are more important than trade frictions. However, the impact of the latter,
especially that of tradable goods, is not negligible. Reconciling the results of the
Shapley decomposition with those reported in Table S2, we conclude that trade fric-
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tions may have a sizeable impact on the measurement error for individual cities but
less so on the systematic error for cities with similar QoL. This is because QoL is
less correlated with market access than city size, which endogenously responds to
QoL.

For the interested reader, we provide a sensitivity analysis in which we separately
increase or decrease the values of parameters {³, ´, µ, σ, ¶, ι} by 25% in Section S.1.6
of the Online Supplement to better re昀氀ect the range of parameter estimates from
the literature. All conclusions presented above are qualitatively and quantitatively
insensitive to these changes. Quantitatively, changes in the value of σ and ³ (for
昀氀oor-space productivity) are most consequential. Yet, even for the alternate values
of σ and ³, the measurement error for the reference city remains within a close range
of 23.4-26% (vs. 25% in the baseline).

S.1.5 Measurement error: Further results

Figure S2 complements Figure S1 in the main paper by correlating the measurement
error in the Rosen-Roback QoL measure, E , against additional variables. As in Fig-
ure S1, each dot corresponds to one arti昀椀cial city in the synthetic data set generated
in Section 4. In panel (a), we consider market access, M, as a covariate. Our market
access measure solely depends on geography, which is exogenous and held constant
across all Monte Carlo experiments. Therefore, it varies between arti昀椀cial cities,
but not between countries. Ceteris paribus, we expect it to be negatively correlated
with tradable goods prices. Yet, we 昀椀nd no correlation between market access and
measurement error. We do 昀椀nd a weakly positive correlation between tradable goods
prices and measurement error in panel (b). However, within groups with similar rel-
ative QoL values, the correlation is negative. We observe the same pattern for local
service prices in panel (c). Descriptively, we do not 昀椀nd strong evidence that trade
frictions signi昀椀cantly shape measurement error in the Rosen-Roback QoL measure.

In panel (d), we examine another endogenous outcome: the ratio of residence
population to hometown population. We 昀椀nd a pronounced negative correlation
between this ratio and the measurement error, which reinforces the patterns observed
in the correlations with the fundamentals in panels (a) to (c) of Figure S1. The
underestimation of relative QoL di昀昀erences within the Rosen-Roback framework is
particularly pronounced in cities that, due to positive fundamentals, attract a large
residence population relative to the hometown population.
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Figure S2: Measurement error: Other outcomes

(a) Market access (b) Tradable goods prices

(c) Local services prices (d) Residence/hometown population

Notes: Measurement error is de昀椀ned as E = (1/γ)(lnLb − ln L̂) − αβ ln P̂ t − α(1 − β) ln p̂n. All covariates are in
logs. We run N = 1, 000 Monte Carlo simulations for a synthetic economy with J = 144 local labour markets.

S.1.6 Sensitivity analysis

In Table S3 we analyse how sensitive our regression results are to parameter choices
by decreasing (increasing) each by 25% and repeating our Monte Carlo study. For
sake of brevity, we only display the marginal e昀昀ects of the main variables for the full
measurement error E .
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Table S3: Sensitivity analysis

(1) (2) (3) (4)
α1 = 0.75 ∗ α α2 = 1.25 ∗ α β1 = 0.75 ∗ β β2 = 1.25 ∗ β

Measurement bias: Intercept -0.284 -0.286 -0.285 -0.296
(Inverse) taste heterogeneity: γ-3 0.026 0.025 0.027 0.030
Strength of local ties: ξ-5 -0.015 -0.016 -0.016 -0.016
Market access: Mi -0.081 -0.075 -0.090 -0.100
Quality of life: ln(Â/1.5) -0.705 -0.704 -0.712 -0.719
Relative 昀氀oor-space productivity : ln η̂ -0.316 -0.220 -0.177 -0.197
Relative worker productivity: ln ˆ̄ϕ -0.502 -0.541 -0.546 -0.540
Relative hometown population: ln L̂b 0.092 0.072 0.081 0.075

µ1 = 0.75 ∗ µ µ2 = 1.25 ∗ µ σ1 = 0.75 ∗ σ σ2 = 1.25 ∗ σ

Measurement bias: Intercept -0.287 -0.301 -0.266 -0.281
(Inverse) taste heterogeneity: γ-3 0.019 0.022 0.029 0.030
Strength of local ties: ξ-5 -0.014 -0.013 -0.021 -0.015
Market access: Mi -0.085 -0.080 -0.103 -0.098
Quality of life: ln(Â/1.5) -0.729 -0.736 -0.671 -0.696
Relative 昀氀oor-space productivity : ln η̂ -0.165 -0.179 -0.167 -0.192
Relative worker productivity: ln ˆ̄ϕ -0.583 -0.579 -0.469 -0.518
Relative hometown population: ln L̂b 0.073 0.068 0.095 0.073

δ1 = 0.75 ∗ δ δ2 = 1.25 ∗ δ ι1 = 0.75 ∗ ι ι2 = 1.25 ∗ ι

Measurement bias: Intercept -0.291 -0.293 -0.286 -0.294
(Inverse) taste heterogeneity: γ-3 0.026 0.026 0.026 0.027
Strength of local ties: ξ-5 -0.017 -0.017 -0.021 -0.016
Market access: Mi -0.099 -0.086 -0.135 -0.105
Quality of life: ln(Â/1.5) -0.725 -0.718 -0.695 -0.714
Relative 昀氀oor-space productivity : ln η̂ -0.189 -0.170 -0.172 -0.206
Relative worker productivity: ln ˆ̄ϕ -0.570 -0.550 -0.514 -0.541
Relative hometown population: ln L̂b 0.069 0.072 0.089 0.070

Notes: Each column represents the measurement error of the full model for a location with 50% higher
quality of life than the numéraire location (so Â = 1.5) and when a structural parameters is decreased
(increased) by 25%. All explanatory variables are expressed relative to a numéraire location. The mobility
friction parameter γ and local ties valuation ξ are re-scaled to have a zero value at γ = 3 and ξ = 5,
respectively, so we can interpret the intercept as the measurement error for otherwise identical locations.
Given the high number of Monte Carlo iterations, all coefficients are highly signi昀椀cant at all common
levels so we do not report standard errors for the sake of brevity. We use the same explanatory variables
as in Table S2 of the main paper.
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S.1.7 Urban quality-of-life premium

This section complements Section 4.3 in the main paper. In Figure 2, we correlate
the bias in the Rosen-Roback estimate of the urban QoL premium with the syn-
thetic country-speci昀椀c value of the taste dispersion parameter µ, distinguished by
the strength of local ties (governed by ξ).

In Figure S3, we quantify the impact of controlling for selected frictions on the
bias in the estimated urban QoL premium. To compute the bias, we now use adjusted
QoL measures, ln ÂRR − X when estimating Eq. (22), where X corresponds to one
of the terms highlighted in Eq. (20). For ease of interpretation, we focus only on the
empirically relevant cases where ξ < 6 and the total bias is consistently negative.

Conditional on controlling for local ties, the remaining measurement error caus-
ing the bias in the urban QoL premium is primarily driven by the omitted control
for idiosyncratic tastes. Consequently, the urban QoL premium is underestimated
for the most part. Likewise, controlling for idiosyncratic tastes, the omission of
the control for local ties typically results in a sizeable overestimation of the urban
QoL premium. Echoing Table S2, controlling for trade frictions without address-
ing mobility frictions has mostly quantitatively small e昀昀ects. Moreover, it does not
necessarily reduce the bias in the urban QoL premium unless mobility frictions are
already accounted for. The important takeaway for the applied literature is that, to
avoid biased estimates of the urban QoL premium, accounting for mobility frictions
is more important than accounting for trade frictions. When addressing mobility
frictions, it is important to account for idiosyncratic tastes and local ties simultane-
ously; otherwise, there is a risk that the bias, in absolute terms, actually increases.
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Figure S3: Bias in urban QoL premium: Controlling for selected migration frictions.

Notes: For ease of interpretation, we focus only on the empirically relevant cases where ξ < 6, and drop all other
Monte Carlo scenarios for this 昀椀gure.

S.2 Pseudo code

In this online Supplement, we provide pseudo-code that describes how we can invert
QoL, worker productivities, and solve the model in general equilibrium.
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Algorithm 1: Numerical solution algorithm to invert QoL
1 Start with values for variables {Li, L̄

b
i , p

H
i , pni , P

t
i , wi} and structural parameters

{α, β, γ, ξ}

2 Normalise employment and birth-place population data, such that
L̄ =

∑

i∈J Li =
∑

i∈J L̄b
i

3 Calculate relative values of all variables with respect to a numéraire location (e.g. in
”hat-algebra”): V̂ = {L̂, ˆ̄Lb, p̂H , p̂n, P̂ t, ŵ}

4 Solve for the aggregate consumer price index Pi ≡ (P t
i )

αβ
(pni )

α(1−β)(pHi )1−α.
5 Set convergence parameter κ ∈ (0, 1)

6 Set precision rule to govern deviation between guesses and model solution.
7 Set count = 1
8 Guess values of Ai and normalise relative to numéraire location
9 while count < maxiter do

10 Solve for Ψb
i by using its de昀椀nition below Eq. (9), such that

Ψb
i =

(

1 + (exp[ξ]−1)(Aiwi/Pi)
γ

∑
j∈J

(Ajwj/Pj)
γ

)−1

11 Solve for Li by using its de昀椀nition below Eq. (17), such that
Li ≡ (exp[ξ]− 1)Ψb

i L̄
b
i +

∑

m∈J Ψb
mL̄b

m

12 Solve for L̂.
13 Solve for relative QoL, Ânew, by using Eq. (17).

14 Check deviation between guesses and model solution

target = round(abs(Ânew − Â), precision)

15 if target == 0 then
16 break;

17 else
18 Update initial guesses or updated values of Â:

Âup = Aup = κ · Ânew + (1− κ) · Â

Use updated values and re-iterate

Ai = Â = Âup

Result: Equilibrium values of Â
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Algorithm 2: Numerical solution algorithm to invert worker productivities
1 Start with values for variables {Li, L

t
i, P

t
i , wi} and structural parameters

2 Calculate relative tradables prices and wages {P̂ t, ŵ}
3 Set convergence parameter κ ∈ (0, 1)

4 Set precision rule to govern deviation between guesses and model solution.
5 Set count = 1
6 Set iter = 1
7 Guess values of dj
8 while count < maxiter do
9 Calculate τij = (exp[−ι ∗ ln distij ])

1

1−σ ∗ dj

10 while iter < maxiter do
11 Guess values of ϕi

12 Calculate right-hand side of Eq. (13), rhsi

13 Check deviation between rhsi and wiL
t
i

target = round(abs(rhsi − wiL
t
i, precision)

14 if target == 0 then
15 break;

16 else
17 Update initial guesses or updated values of ϕi:

ϕup
i = ϕi/[rhsi/(wiL

t
i)]

Use updated values and re-iterate

ϕi = κϕup
i + (1− κ)ϕi

18 Calculate model-consistent price levels for tradable goods:

P̂ t,model = [
∑

i

τij(ŵ/ϕ̂)
1−σ]1/(1−σ)

19 Check deviation between P̂ t and P t,model
j

target = round(abs(P̂ t − P̂ t,model, precision)

20 if target == 0 then
21 break;

22 else
23 Update initial guesses or updated values of dj :

dj = P̂ t/P̂ t,model

24 Calculate ˆ̄ϕ = ϕ̂L̂−ζ

Result: Equilibrium values of {dj , ˆ̄ϕ}

58



Algorithm 3: Numerical solution algorithm
1 Given values for primitives {Ai, L̄

b
i , T̄i, η̃i, ϕ̄i, τij} and structural parameters

{α, β, γ, δ, ζ, µ, ξ, σ} de昀椀ne set of endogenous variables V = {Ln
i , L

t
i, wi, ri, p

H
i ,Pi}

2 Set convergence parameter κ ∈ (0, 1)

3 Set precision rule to govern deviation between guesses and model solution.
4 Set maximum number of iterations to maxiter
5 Set count = 1
6 Guess values of wi and Li

7 while count < maxiter do
8 Solve for Ln

i by using Eq. (14).
9 Solve for Lt

i by using the labour resource constraint, Eq. (15).
10 Solve for pHi by using Eq. (12) and solve for ri by using Eq. (11).
11 Solve for the aggregate consumer price index

Pi ≡
(

[
∑

j(τjiwj/ϕj)
1−σ]1/(1−σ)

)αβ
(

(wi/ϕi)
µ(pHi )1−µ

)α(1−β)
(pHi )1−α, where we

have used the expressions for prices of tradable goods, ptji = τjiwj/ϕj , the
CES-price index P t

i = [
∑

j(p
t
ji)

1−σ]1/(1−σ), and non-tradable goods,
pni = (wi/ϕi)

µ(pHi )1−µ in the aggregate consumer price index
Pi ≡ (P t

i )
αβ

(pni )
α(1−β)(pHi )1−α.

12 Then compute new values of initial (or updated) guesses:
13 Compute wnew

i by using Eq. (13). Normalise mean wages to unity, e.g. by
wnew

i = wnew
i /mean(wnew

i )

14 Compute λi and derive value for Lnew
i using Eq. (16).

15 Check deviation between guesses and model solution

target1 = round(abs(wi − wnew
i ), precision)

target2 = round(abs(Li − Lnew
i ), precision)

16 if target1 == 0 & target2 == 0 then
17 break;

18 else
19 Update initial guesses or updated values of wi and Li:

wup
i = κwi + (1− κ)wnew

i

Lup
i = κLi + (1− κ)Lnew

i

Use updated values and re-iterate

wi = wup
i

Li = Lup
i

20 Compute other endogenous variables (e.g. quantities) as needed.
Result: Equilibrium values of V
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S.3 Application Appendix

This appendix complements the application of our approach to the measurement of
QoL in Germany in Section 4.

S.3.1 Data sources

This appendix complements Section 5.1 in the main paper. For our application, we
require four sets of data compiled for consistent spatial units: Employment, wages,
昀氀oor space prices, and non-housing prices.

Spatial unit. According to Kosfeld and Werner (2012), the delineation of German
labour market areas is based on combining one or more administrative regions at
the county level to create self-contained labour markets. The boundaries of local
labour markets are de昀椀ned such that commuting within labour market regions is
relatively large compared to commuting between regions (subject to an upper limit
on commuting time of 45-60 minutes).

Population. Our measures of population – residence population and hometown
population – are derived from individual-level social security data that are con-
tained in the Integrated Employment Biographies (IEB). This data set covers daily
information on the labour market biographies of the universe of employees in Ger-
many (except for civil servants and the self-employed). To prepare the data set for
our empirical analysis, we proceed in the following way. First, we retain information
on all workers who are employed subject to social security contributions at any point
between 1993 and 2019. Within a given year, we restrict the sample to individuals
who are employed on 30 June of that year and select the employment spell that con-
tains this reference date. If a person has multiple employment spells that contain the
reference data, we sequentially apply the following criteria to determine which spell
to keep: a) the longest employment spell, b) the employment spell with the highest
wage and c) a random employment spell. Second, we address the fact that wages
in the IEB data are censored and perform an imputation procedure that is based
on Card et al. (2013) and described in further detail in Stüber et al. (2023). Third,
we retain those workers whose highest skill level is a completed apprenticeship, who
started their training in the year 1993 or later and who were between 15 and 25 years
old at that time. The choice of this group is motivated by the possibility to use the
region of a person’s training 昀椀rm, which is observed in the IEB data, as a proxy for
a person’s hometown, which is not observed. Since reliable data on East Germany
is only available from 1993, using earlier apprenticeship cohorts is not feasible. This
procedure yields a total of 5.8 million individuals, who are employed in 2015 and
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for whom the region of their training 昀椀rm is observed. To assess robustness of our
昀椀ndings, we further restrict the sample by only including individuals with German
nationality as the former are more likely to have grown up in Germany as opposed
to foreigners who might have come to Germany shortly before starting apprentice-
ship training and for whom the region of the training 昀椀rm would therefore not be a
suitable measure of their hometown. This restriction is potentially relevant as the
years 2015 and 2016 saw a large number of refugee migrants arrive in Germany (e.g.,
Hayo and Roth, 2024). Applying this restriction reduces sample size to 5.6 million
workers in the year 2015. Residence population is de昀椀ned as the (contempora-
neous) number of employees in a local labour market, Li. For most analyses, this
quantity refers to the year 2015. For the speci昀椀c sample that we use for the empiri-
cal analysis, the average residence population across the 141 labour market regions
stands at 41,114. Values range from about 4,000 in the labour market region Vulka-
neifel to approximately 250,000 in Hamburg. Hometown population is de昀椀ned
as the number of employees who started their apprenticeship training in the same
region, Lm. Since every individual in the data set is assigned a residence region and
a hometown region, the mean value of both measures across labour market regions
is identical. Moreover, regions that are large in the present also tend to have had a
relatively large number of apprenticeship trainees, leading to a positive correlation
between residence population and hometown population. We argue that the region
in which a person started her apprenticeship training represents a good proxy for
her hometown because empirical evidence suggests that a large share of individuals
start apprenticeship training in the region in which they also completed schooling
(Ho昀昀mann and Wicht, 2023).

Census population. To construct the crude-data QoL version, we replace mea-
sures of the residence and the hometown population, which are based on the IEB,
with publicly available total population measures. Speci昀椀cally, we use a labour mar-
ket’s population size in 2015 as a measure of residence population and its population
size in 1985 as a measure of hometown population. Both population variables are
based on data from the Federal Institute for Research on Building, Urban A昀昀airs
and Spatial Development (BBSR) that were initially provided at the county level
and which we aggregate to the level of the 141 labour market regions.

Tradable sector. We assign individuals to the (non-)tradable sector based on the
2-digit sector they are employed in. For this purpose, we employ the classi昀椀cation of
2-digit sectors as tradable or non-tradable from Gregory et al. (2021). About 43%
of individuals are employed in the tradable sector.
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Productivity. We use information from the universe of workers who are observed
as employed subject to social security (including apprentices) on June 30 to esti-
mate the region-speci昀椀c productivity, which maps into the wage. In line with the
standard approach in the agglomeration literature (Combes and Gobillon, 2015),
we assume that worker productivity φi(ω) is a multiplicative function of a region-
speci昀椀c component φi and an individual component ρi(ω). Following the conventions
in labour economics (Abowd et al., 1999), we de昀椀ne ρi(ω) = exp(ρ̄(ω)SL

i (ω)z
LfL

i (ω))

as a function of unobserved time-invariant individual productivity ρ̄(ω), observable
worker characteristics SL

i (ω) (dummies for whether a worker is in an apprenticeship
or works part-time, with zL being the marginal e昀昀ects) and a stochastic residual
term fL

i (ω). This yields the following estimation equation for individual wages:

lnwi(ω) = ρ̄(ω) + SL
i (ω)z

L + φ̃i + fL
i (ω). (23)

In estimating Eq. (23), we remove all observations of individuals who never
change their place of employment. We recover φ̃i as a log index of region-speci昀椀c
productivity, which we re-scale such that the averages match the group-speci昀椀c log
annual earnings in the raw wage data.

Observable amenities. To assess how our model-based measures of QoL are re-
lated to observable regional amenities, we compile a dataset of suitable regional
characteristics. These include measures of natural amenities, such as a region’s
distance to the Alps and to the coasts, and the average number of hours of sun-
shine per day, as well as measures of consumption amenities, such as the number
of restaurants per capita and the existence of opera houses. Moreover, we consider
the number of geo-tagged photos shared on social media as a “big data” composite
amenity index originally proposed by Ahlfeldt (2013), which has gained popularity
recently (Gaigné et al., 2017; Saiz et al., 2018; Carlino and Saiz, 2019). This measure
assumes that social media users share visually appealing content (e.g., distinctive
architecture or scenic views) or interesting activities (e.g., hiking tours or restaurant
visits) that re昀氀ect a location’s endowment with amenities. Observable measures
of disamenities include the concentration of particulate matter (PM10), with data
provided by the German Environment Agency, as well as a region’s crime rate per
capita, as provided by the Federal Criminal Police Office.

Instrumental variables. To estimate whether the e昀昀ect of city size on QoL is
causal—–or whether QoL is higher in larger cities because cities with favourable
fundamentals tend to grow larger——we require an instrumental variable for con-
temporaneous population size. We address this potential endogeneity by applying
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established instruments from the literature on agglomeration economies. First, we
use historic population size as an instrumental variable for contemporaneous pop-
ulation size, following Ciccone and Hall (1996). Speci昀椀cally, we employ data on
regional population size in 1885 provided by Falter and Hänisch (1990). In doing
so, we expect that regional di昀昀erences in population size from almost 150 years ago
remain predictive of present-day variation, but we must assume that the drivers of
agglomeration in the past di昀昀er from those in the present. Second, we use soil data as
predictors for contemporaneous population size (Combes et al., 2010). Speci昀椀cally,
we rely on the dominant mineralogical components of a region’s subsoil and top-
soil. Information on soil characteristics is provided by the European Soil Database
(ESDB). Soil characteristics are relevant determinants of agricultural yield and, as
such, used to be important determinants of the population a region could sustain.
To satisfy excludability of the instrument, we assume that in light of improvements
in agricultural productivity and reduction in trade cost of agricultural produce, soil
characteristics are no longer directly relevant for contemporaneous population size.
Of course, excludability entails another strong assumption: That soil characteristics
are not correlated with topographic features that a昀昀ect QoL.

S.3.2 Estimation

This section complements Section 5.1 in the main paper by showing additional details
on the estimation of the parameter governing the strength of local ties, ξ.

To estimate ξ, we start from Eq. (9), multiply by L̄ and take logs. This delivers
the regression speci昀椀cation:

lnLim = ξ1{m = j}+Ri +Hm + νim, (24)

where 1{m = j} is a dummy that indicates when the residence is equal to the
hometown, Ri ≡ µ ln (Aiwi/Pi) denotes residence 昀椀xed e昀昀ects,
Hm ≡ ln

(

∑

j∈J (Ajwj/Pj)
γ · exp[1{m = j} · ξ]

)

denotes hometown 昀椀xed e昀昀ects,
and νim is the regression residual that accounts for measurement error.

A standard problem arising when estimating log-linearised gravity equations is
many bilaterals do not have positive values. In Table S4, we address this problem
by applying the conventional ln(y + 1) transformation to the dependent variable in
Columns (2) and (5) and using a PPML estimator in Columns (3) and (6). The
PPML estimator yields an estimate of ξ of about 5.6 – regardless of whether the full
sample is used or the sample of German nationals. By contrast, using the sample
of non-zero bilateral population cells or applying the log-transformation yields an
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estimate of slightly above 7.

Table S4: Estimation of ξ

(1) (2) (3) (4) (5) (6)
Full sample German nationals

OLS OLS PPML OLS OLS PPML
Same region (1{m = j}) 7.2243*** 7.1358*** 5.5885*** 7.2123*** 7.1232*** 5.5830***

(0.0793) (0.0749) (0.0350) (0.0796) (0.0753) (0.0346)
Residence 昀椀xed e昀昀ects Yes Yes Yes Yes Yes Yes
Hometown 昀椀xed e昀昀ects Yes Yes Yes Yes Yes Yes
Sample Non-zero All All Non-zero All All
Observations 18742 19881 19881 18724 19881 19881
R2 .59 .622 .589 .621

Notes: Unit of observation is residence-hometown population. The dependent variable is the log of residence-hometown
population Lim = λimL̄. Robust standard errors. The non-zero sample are bilaterals with positive residence-hometown
population. In Columns (2) and (5), the dependent variable is transformed to ln(y + 1). Columns (1)-(3) use the full
sample, while Columns (4)-(6) are restricted to German nationals. Robust standard errors in parenthesis; * p < 0.1, **
p < 0.05, *** p < 0.01

S.3.3 Rank correlations

This appendix complements the application section in the main paper by discussing
how the ranking of cities, according to their quality-of-life, is impacted by its mea-
surement. Since there is sizable heterogeneity in the relative di昀昀erences between
the QoL measures with and without spatial frictions (see Column (5) of Table 2
in the main paper), the ranking of cities changes. When QoL is inferred from the
quantitative spatial model instead of the Rosen-Roback framework, Hamburg over-
takes Munich to become the city with the highest QoL. Frankfurt climbs one rank
(from 5th to 4th), and Düsseldorf even climbs seven ranks (from 12th to 5th). Similar
ordinal e昀昀ects are observed at the bottom of the ranking: Freyung-Grafenau drops
by 11 ranks, Vulkaneifel even by 33 ranks, and Stendal climbs by two.

The left panel of Figure S4 illustrates that there is substantial ordinal error in
Rosen-Roback-based QoL rankings across the entire distribution. In fact, besides
Berlin (ranked 3rd), only Würzburg (ranked 25th) and Celle (ranked 122nd) main-
tain the same rank in both rankings. There are extreme cases of measurement error;
for example, Chemnitz climbs 64 ranks (to 40th), whereas Lörrach and Waldshut
fall by 50 ranks (to 88th and 107th, respectively). On average, the absolute di昀昀er-
ence between the QoL ranks derived from the Rosen-Roback framework and our
quantitative spatial model is 17. The right panel of Figure S4 illustrates how the
measurement error in our crude-data version of our preferred measure is substan-
tially lower than in the Rosen-Roback measure. On average, the absolute di昀昀erence
between the QoL ranks derived from the Rosen-Roback framework and our quanti-
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Figure S4: Comparison of QoL rankings

(a) Rosen-Roback (ARR) (b) QSM, crude data (ACD)

Notes: QSM ranking is the ranking based on QoL measure derived from the quantitative spatial model, Â. Rosen-
Roback ranking is the same derived from the Rosen-Roback QoL measure, ÂRR. QSM, crude data is the ranking
based on the QoL measure derived from the quantitative spatial model using the 30-year lag of residence population
as a proxy for hometown population and uniform prices for non-housing goods.

tative spatial model is about 10 (about two-thirds of the Rosen-Roback measure).
Hence, our crude-data variant of our QoL measure represents a potentially useful
alternative to the Rosen-Roback measure in sparse-data environments.

The data set used in this exemplary application is usually rich in that we observe
wages, employment (at residence and hometown), and house prices in a panel setting.
However, we only observe one cross-section of tradable goods prices and local services
prices. The structure of our model, however, allows us to predict prices of tradable
goods and local services as discussed in Appendix A.3. Reassuringly, we 昀椀nd that a
QoL measure that uses model-generated prices of tradable goods and local services
instead of observed prices closely resembles our preferred QoL measure in 2015.
Computing this measure for 2007 and 2019 reveals a great degree of persistence
within the top-10 cities in the QoL ranking, but signi昀椀cant changes outside. In
particular, cities that were historically dependent on heavy industry or coal mining
have seen their relative QoL decline in recent decades. As non-housing prices are
often unavailable for small spatial units, the model’s ability to predict non-housing
price indices may prove useful beyond our speci昀椀c application.
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Figure S5: Quality of life in Germany

(a) Quantitative spatial model (b) Rosen-Roback

Notes: Both maps illustrate ln(Â). Panel (a) is based on the quantitative spatial model (QSM); panel (b) shows
QoL based on the canonical Rosen-Roback case (RR).

S.3.4 Rosen-Roback quality of life

Figure S5 compares our preferred QoL measure, AQSM , to the canonical Rosen-
Roback measure, ARR. One insight from Figure S5 is that, qualitatively, the two
measures exhibit a similar spatial pattern. The largest cities Berlin, Hamburg,
and Munich are among the places with the greatest QoL, but the similarities extend
beyond these cities. Quantitatively, however, the di昀昀erences are striking. Interpreted
through the lens of the quantitative spatial model, there is much more variation in
QoL than when the inference is based on the Rosen-Roback framework. As argued in
Section 4, this is the expected result when QoL and city size are positively correlated.

S.3.5 Predicted non-housing price index

We observe the prices of tradable goods and local services in 2015, but not before
or after. However, to gain insight into how QoL has changed over time, we can use
the model to predict prices of tradable goods and services, as discussed in Appendix

66



A.3. With predicted prices for 2007 (the earliest house prices from Ahlfeldt et al.
(2022)) and 2019 (the last year before the start of the Covid-19 pandemic), we can
calculate how relative QoL has changed over a period of more than 20 years.

The 昀椀rst insight from Table S5 is that, taking 2015 as a case in point, the QoL
measure using our predicted prices (PP) is a good approximation of our preferred
QoL measure (QSM). This is reassuring, as it suggests that the long-term change
in relative QoL revealed by the measures using predicted prices is informative. At
the top of the distribution, we observe a striking degree of persistence in the QoL
ranking. Within the top-5, only Berlin moved up one place. The only other changes
within the top-10 are Münster (up 2 places) and Hanover (up 5 places). Outside the
top-10, the changes are more signi昀椀cant. Among the cities that have lost the most are
many of Germany’s former industrial heartlands, such as Chemnitz, Gera, Hagen
and Bochum, which have struggled with economic transition, deindustrialisation
and demographic decline. Many of these cities were historically dependent on heavy
industry or coal mining, making them particularly vulnerable to structural change.

Table S5: Quality of life in 2015 and 2019

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Hamburg 1 2.08 1 1.91 1.76 1.85 0
München 2 2.03 2 1.89 1.79 1.90 0
Berlin 3 1.85 3 1.70 1.49 1.72 1
Frankfurt am Main 4 1.70 4 1.58 1.66 1.60 -1
Düsseldorf 5 1.57 5 1.44 1.48 1.46 0
Köln 6 1.52 6 1.39 1.41 1.40 0
Stuttgart 7 1.49 7 1.39 1.38 1.39 0
Münster 8 1.30 8 1.25 1.23 1.30 2
Nürnberg 9 1.29 11 1.23 1.23 1.21 0
Hannover 10 1.29 12 1.21 1.21 1.25 5
Dresden 11 1.27 10 1.24 1.28 1.15 -9
Leipzig 12 1.22 15 1.16 1.23 1.16 -6
Regensburg 13 1.22 9 1.24 1.22 1.22 2
Karlsruhe 14 1.19 17 1.16 1.20 1.15 -1
Mainz 15 1.18 13 1.19 1.22 1.13 -7
Bremen 16 1.18 21 1.12 1.06 1.15 19
Essen 17 1.16 37 1.02 1.17 1.00 -27
Erlangen 18 1.13 14 1.19 1.13 1.13 2
Ingolstadt 19 1.12 18 1.15 1.15 1.14 2
Ulm 20 1.12 20 1.12 1.08 1.09 5

Continued on next page
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Table S5 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Freiburg 21 1.11 16 1.16 1.15 1.17 7
Traunstein 22 1.11 19 1.13 1.11 1.19 13
Saarbrücken 23 1.10 32 1.06 1.02 0.86 -27
Heidelberg 24 1.10 24 1.09 1.17 1.10 -6
Würzburg 25 1.09 27 1.08 1.09 1.10 5
Landshut 26 1.09 22 1.12 1.12 1.13 1
Dortmund 27 1.09 41 1.00 1.10 0.98 -22
Aachen 28 1.08 35 1.04 1.05 0.96 -12
Bonn 29 1.08 29 1.07 1.11 1.07 -3
Böblingen 30 1.07 25 1.09 1.13 1.10 -5
Augsburg 31 1.07 30 1.07 1.10 1.16 14
Ravensburg 32 1.07 33 1.04 1.06 1.07 5
Bielefeld 33 1.06 39 1.01 1.06 1.02 0
Koblenz 34 1.06 38 1.02 1.06 1.05 6
Soest 35 1.06 34 1.04 1.02 1.00 6
Ludwigshafen 36 1.06 40 1.00 1.09 1.01 -9
Erfurt 37 1.05 36 1.03 1.16 1.01 -21
Rostock 38 1.03 23 1.09 1.09 1.07 0
Heilbronn 39 1.03 45 0.99 1.04 1.04 8
Chemnitz 40 1.02 58 0.94 1.17 0.86 -58
Oldenburg 41 1.01 31 1.06 0.98 1.06 27
Kiel 42 1.00 42 1.00 1.00 1.00 11
Kassel 43 0.99 49 0.98 0.98 0.99 15
Fulda 44 0.99 44 1.00 1.00 1.03 22
Braunschweig 45 0.98 50 0.98 1.02 1.01 9
Gießen 46 0.98 54 0.95 0.98 0.96 6
Reutlingen 47 0.97 47 0.98 1.01 1.02 12
Ortenaukreis 48 0.96 46 0.98 0.97 0.98 11
Konstanz 49 0.96 28 1.07 1.08 1.13 12
Bamberg 50 0.95 43 1.00 1.04 0.99 0
Darmstadt 51 0.94 53 0.96 1.05 0.95 -17
Kempten 52 0.94 51 0.97 0.95 0.99 24
Weilheim-Schongau 53 0.94 26 1.08 1.08 1.10 6
Osnabrück 54 0.94 56 0.95 0.95 0.94 11
Hagen 55 0.93 76 0.87 1.02 0.82 -40
Bochum 56 0.93 77 0.86 1.01 0.83 -32
Magdeburg 57 0.92 67 0.90 1.06 0.89 -30
Wolfsburg 58 0.92 61 0.93 1.01 0.90 -17
Borken 59 0.92 63 0.92 0.91 0.92 21

Continued on next page
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Table S5 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Trier 60 0.92 52 0.96 1.00 0.95 -4
Lübeck 61 0.91 60 0.93 0.97 0.98 15
Bautzen 62 0.91 68 0.90 0.94 0.71 -41
Heidenheim 63 0.91 69 0.90 0.94 0.92 11
Ascha昀昀enburg 64 0.90 59 0.94 1.00 0.95 0
Schwerin 65 0.89 66 0.91 1.01 0.89 -17
Bayreuth 66 0.89 55 0.95 0.95 0.97 15
Jena 67 0.89 48 0.98 1.04 0.96 -12
Flensburg 68 0.88 65 0.91 0.88 0.91 29
Passau 69 0.88 57 0.94 0.92 0.98 31
Rottweil 70 0.88 74 0.88 0.93 0.92 13
Coburg 71 0.88 64 0.92 0.97 0.86 -9
Emsland 72 0.88 75 0.87 0.88 0.85 16
Halle 73 0.88 79 0.85 1.00 0.83 -27
Minden 74 0.87 84 0.83 0.93 0.84 0
Schweinfurt 75 0.86 73 0.88 0.91 0.93 23
Deggendorf 76 0.86 62 0.93 0.91 0.99 39
Altötting 77 0.85 72 0.88 0.93 0.93 16
Vechta 78 0.85 71 0.88 0.85 0.91 39
Göttingen 79 0.85 83 0.83 0.92 0.79 -7
Wuppertal 80 0.83 102 0.77 0.93 0.76 -23
Südvorpommern 81 0.83 70 0.89 0.95 0.84 -11
Hof 82 0.81 92 0.80 0.94 0.81 -13
Amberg 83 0.81 87 0.82 0.89 0.82 7
Nordvorpommern 84 0.80 80 0.84 0.96 0.89 -4
Landau 85 0.79 81 0.84 0.87 0.87 25
Siegen 86 0.78 97 0.79 0.85 0.76 8
Ansbach 87 0.78 86 0.82 0.89 0.73 -19
Lörrach 88 0.78 78 0.86 0.87 0.85 21
Pforzheim 89 0.78 93 0.80 0.89 0.83 8
Teltow-Fläming 90 0.78 85 0.83 0.98 0.79 -35
Memmingen 91 0.78 82 0.84 0.88 0.87 22
Olpe 92 0.78 104 0.77 0.86 0.78 4
Kaiserslautern 93 0.77 88 0.81 0.87 0.78 2
Emden 94 0.77 106 0.77 0.86 0.80 13
Dessau-Roßlau 95 0.76 107 0.76 0.93 0.76 -24
Suhl 96 0.76 94 0.80 0.89 0.73 -16
Kleve 97 0.76 91 0.80 0.85 0.77 6
Schwäbisch Hall 98 0.76 101 0.78 0.84 0.81 25
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Table S5 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Eisenach 99 0.75 90 0.80 0.97 0.72 -48
Göppingen 100 0.75 89 0.81 0.91 0.84 7
Potsdam-Mittelmark 101 0.75 99 0.78 0.86 0.78 9
Oberhavel 102 0.74 96 0.79 0.95 0.80 -17
Donau-Ries 103 0.74 95 0.80 0.83 0.77 15
Bad Kreuznach 104 0.74 98 0.79 0.84 0.79 17
Pirmasens 105 0.72 112 0.74 0.87 0.73 -10
Limburg-Weilburg 106 0.72 111 0.74 0.86 0.75 -4
Waldshut 107 0.71 103 0.77 0.75 0.73 13
Bremerhaven 108 0.71 114 0.73 0.75 0.75 18
Saalfeld-Rudolstadt 109 0.71 105 0.77 0.93 0.72 -31
Gera 110 0.71 113 0.73 0.92 0.65 -44
Stade 111 0.71 109 0.76 0.78 0.77 21
Cham 112 0.70 108 0.76 0.83 0.79 23
Märkisch-Oderland 113 0.70 100 0.78 0.85 0.76 4
Wilhelmshaven 114 0.69 110 0.75 0.78 0.72 8
Goslar 115 0.69 121 0.69 0.88 0.68 -27
Mecklenburgische Seenplatte 116 0.68 116 0.71 0.84 0.70 -3
Cottbus 117 0.66 117 0.71 0.85 0.68 -12
Nordhausen 118 0.66 115 0.71 0.79 0.70 -1
Elbe-Elster 119 0.65 123 0.68 0.84 0.66 -14
Havelland 120 0.64 122 0.69 0.73 0.63 -2
Frankfurt (Oder) 121 0.63 130 0.65 0.81 0.68 -6
Celle 122 0.63 124 0.67 0.70 0.68 8
Waldeck-Frankenberg 123 0.63 128 0.65 0.72 0.66 4
Uckermark 124 0.63 118 0.70 0.79 0.62 -13
Zollernalbkreis 125 0.62 129 0.65 0.73 0.70 11
Hameln 126 0.62 127 0.65 0.73 0.63 -4
Unstrut-Hainich 127 0.62 119 0.69 0.74 0.61 -10
Ostprignitz-Ruppin 128 0.62 120 0.69 0.75 0.64 -4
Sigmaringen 129 0.60 125 0.66 0.67 0.67 12
Weißenburg-Gunzenhausen 130 0.59 126 0.66 0.77 0.62 -12
Dithmarschen 131 0.58 132 0.65 0.67 0.70 21
Bitburg 132 0.58 131 0.65 0.70 0.60 -3
Höxter 133 0.57 133 0.62 0.69 0.58 -4
Lüchow-Dannenberg 134 0.55 137 0.61 0.72 0.59 -8
Prignitz 135 0.54 134 0.61 0.66 0.52 -4
Altenkirchen 136 0.54 139 0.58 0.65 0.62 5
Freyung-Grafenau 137 0.54 135 0.61 0.61 0.68 22
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Table S5 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Kronach 138 0.53 138 0.59 0.68 0.56 -4
Stendal 139 0.52 141 0.57 0.70 0.53 -9
Vulkaneifel 140 0.52 136 0.61 0.59 0.54 2
Uelzen 141 0.51 140 0.57 0.64 0.62 8

Notes: Change in rank is computed from 2007 to 2019. Positive numbers re昀氀ect an improvement in QoL.
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S.3.6 Qol regressions

To evaluate how the di昀昀erent QoL measures vary with population size and how they
are related with various observable amenities, we estimate the following model:

ln Âi = ´0 + ´1 lnLi + µxi + εi (25)

ln Âi represents a speci昀椀c measure of log QoL. The parameter ´1 captures the
elasticity of QoL with respect to population size, Li. The vector xi contains a
number of observable amenities which are described in Section S.3.1. O昀昀ering a
higher QoL is a potential reason why some regions attract a higher population than
others and as such population size has to be considered endogenous. We address
this concern by using a two-stage least squares (2SLS) approach for which we use
established measures from the literature on agglomeration economics (Combes et
al., 2010), such as historic population size and soil characteristics, as instrumental
variables for endogenous population size (see Section S.3.1 for a description).

The main regression results can be found in Table 3, where dummies for the
mineralogical composition of a region’s subsoil are used as instrumental variables for
population size. We provide results for alternative instruments –historic population
size and topsoil mineralogy– in Table S6. The use of these alternative instruments
does not change the ordering of the size of the estimated population size elasticity
across the di昀昀erent QoL measures. Using historic population size as an instrumental
variable produces estimates that are only slightly smaller in size than when subsoil
characteristics are used. By contrast, the estimate from our preferred QoL measure
in column (1) of Panel D increases by about 25% when the instrumental variables
are given by dummies for topsoil rather than subsoil characteristics (Panel C). This
di昀昀erence in the estimated elasticities disappears, however, when exogenous ameni-
ties are also controlled for in Panel E (see Panel E in Table 3). Selected 昀椀rst-stage
results are reported in Table S7).
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Table S6: Estimated urban QoL premium

(1) (2) (3) (4) (5) (6)
Model Ground ARSW MRRH

truth RR AA Diamond MRRH + services

Panel A: Regression of log QoL on log employment (2SLS: historic population size)
(Log) Employment 0.287∗∗∗ 0.152∗∗∗ 0.152∗∗∗ 0.485∗∗∗ 0.485∗∗∗ 0.487∗∗∗

(0.014) (0.025) (0.025) (0.025) (0.025) (0.026)
Observable amenities No No No No No No
Pseudo-R2 .88 .414 .415 .851 .851 .851

Panel B: Regression of log QoL on log employment (2SLS: historic population size)
(Log) Employment 0.295∗∗∗ 0.172∗∗∗ 0.172∗∗∗ 0.506∗∗∗ 0.506∗∗∗ 0.507∗∗∗

(0.012) (0.020) (0.020) (0.020) (0.020) (0.020)
Observable exog. amenities Yes Yes Yes Yes Yes Yes
Pseudo-R2 .906 .595 .595 .897 .897 .897

Panel C: Regression of log QoL on log employment (2SLS: subsoil mineralogy)
(Log) Employment 0.327∗∗∗ 0.242∗∗∗ 0.243∗∗∗ 0.576∗∗∗ 0.576∗∗∗ 0.581∗∗∗

(0.025) (0.058) (0.058) (0.058) (0.058) (0.059)
Observable amenities No No No No No No
Pseudo-R2 .918 .656 .657 .912 .913 .913

Panel D: Regression of log QoL on log employment (2SLS: topsoil mineralogy)
(Log) Employment 0.408∗∗∗ 0.413∗∗∗ 0.415∗∗∗ 0.747∗∗∗ 0.748∗∗∗ 0.754∗∗∗

(0.051) (0.113) (0.114) (0.113) (0.114) (0.115)
Observable amenities No No No No No No
Pseudo-R2 .761 -.22 -.23 .689 .687 .684

Panel E: Regression of log QoL on log employment (2SLS: topsoil mineralogy)
(Log) Employment 0.339∗∗∗ 0.252∗∗∗ 0.253∗∗∗ 0.585∗∗∗ 0.587∗∗∗ 0.589∗∗∗

(0.034) (0.069) (0.069) (0.069) (0.069) (0.070)
Observable exog. amenities Yes Yes Yes Yes Yes Yes
Pseudo-R2 .892 .552 .551 .886 .886 .886

Notes: Column (1) shows the urban premia in the full model. Column (2) shows the urban QoL premium inside
the Rosen-Roback framework, column (3) controls for trade frictions (e.g., Allen and Arkolakis (2014), AA), while
column(4) controls for idiosyncratic tastes (e.g., Ahlfeldt et al. (2015), ARSW, or Diamond (2016)). Column (5)
controls for both trade costs and idiosyncratic tastes (e.g., Monte et al. (2018), MRRH). Column (6) extends the
speci昀椀cation in column (5) by also controlling for local services. Observable regional amenities include a region’s
distance from the Alps and the coast (both in units of 100 kilometers), the log average number of hours of sunshine
per day as measured between 1981 and 2010, the log number of restaurants per capita, the existence of an opera house,
the log social media photo count (residualised by a regression on log employment and all other amenity variables),
the log average concentration of particulate matter (10 µm) and the log violent crime rate. The 昀椀rst three variables
constitute the set of exogenous observable amenities. Instrumental variables are log 1885 population size (Panels A
and B), dummy variables for subsoil (Panel C) or topsoil mineralogy (Panels D and E). The latter are de昀椀ned as in
Combes et al. (2010). Robust standard errors. ∗/∗∗/∗ ∗ ∗ indicate statistical signi昀椀cance at the 1%, 5% and 10%
level, respectively.
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Table S7: Estimated urban QoL premium (昀椀rst-stage)

(1) (2) (3) (4) (5) (6)
Dependent variable: Historic population Subsoil Topsoil
Log Employment

(Log) 1885 population 1.001∗∗∗ 1.047∗∗∗
(0.055) (0.050)

Subsoil characteristics
(reference: 2/1 and 1/1 Minerals)
2/1 and 2/1/1 non swel. Minerals -0.124 -0.177

(0.255) (0.278)
Swel. and non swel. 2/1 Minerals -1.177∗∗∗ -1.136∗∗∗

(0.346) (0.350)
Not applicable -1.339∗∗∗ -1.302∗∗∗

(0.243) (0.262)
Topsoil characteristics
(reference: 1/1 Minerals and Quartz)
2/1 and 2/1/1 non swel. Minerals 0.187 0.315

(0.176) (0.200)
Swel. and non swel. 2/1 Minerals -0.697∗∗ -0.513

(0.344) (0.391)
Not applicable -0.447 -0.351

(0.321) (0.337)
Observable exog. amenities No Yes No Yes No Yes
Kleibergen-Paap statistic 333.621 445.785 90.010 34.287 3.839 3.857

Notes: The table shows selected 昀椀rst-stage results from the regression of log QoL against log employment and di昀昀erent
amenity variables. Log employment is instrumented by log 1885 population size (Columns (1) and (2)), by dummy variable
for the mineralogical composition of a region’s subsoil (Columns (3) and (4)) or topsoil (Columns (5) and (6)). The soil
variables are de昀椀ned as in Combes et al. (2010). The Kleibergen-Paap statistic refers to Wald rank F-statistic for weak
identi昀椀cation. Exogenous observable regional amenities include a region’s distance from the Alps and the coast (both in units
of 100 kilometers) and the log average number of hours of sunshine per day as measured between 1981 and 2010. Robust
standard errors. ∗/∗∗/∗ ∗ ∗ indicate statistical signi昀椀cance at the 1%, 5% and 10% level, respectively.
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