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Abstract

We study price discrimination by a monopolistic seller that endogenously

produces a market segmentation at a cost, and question the efficiency of the

production of market segmentations led by private incentives. We show that

the efficient market segmentation gives all the gains in total surplus to the

buyer, and the seller profit stays at the uniform profit level. Our result sug-

gests that the private production of information by sellers to price discriminate

is significantly inefficient.
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1 Introduction

Firms do not simply acquire information, they produce information. They trans-

form data, a digital resource yet unfit for direct use, into insights that help decision-

making. Examples abound: KPMG, a large consulting firm, argues that “Data

is the great hidden resource that flows, largely untapped, through major organiza-

tions” and offers clients to “convert data into insights.”1 Meta transforms its massive

amount of user data into insights to help businesses target and reach a personal-

ized audience segment.2 Many firms’ core business model is to produce information.

Palantir, for instance, helps institutions and businesses to secure, store, compile,

and analyze their data to improve decision-making.3 Insights is what this industry

refers to as a “deep understanding of data” that “helps organizations make better

decisions.”4 Transforming data into insights is costly and becoming one of the major

investments of firms.5

We study the production of information where insights are market segmentations

used to price discriminate. We consider a seller that endogenously produces at a

cost a market segmentation. Think of a seller acquiring data about potential buyers,

such as zip codes, demographics, cookies, or the browser history of past purchases,

then using it to segment the market into consumer groups with different estimates

about their value for the good. In each market segment, the seller sets a price given

the estimated distribution of buyer values, i.e., the demand. The produced market

segmentation is the input for the seller’s price discrimination strategy.

Taking into account that producing information is costly, this paper questions

the efficiency of the production of information to price discriminate. We argue why

the endogenous choice of market segmentations is crucial to our understanding of

the welfare consequences of price discrimination.

As shown in the seminal work of Bergemann et al. (2015) (BBM thereafter), how

a monopolistic seller is informed about buyers entirely pins down the surplus division

between buyers and the seller. Any surplus division that ensures the seller no less

1KPGM.
2Insights to Go.
3Foundry is one of Palentir’s personalized data solution.
4See google’s course on insights.
5See Report on data analytics industry.
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profit than uniform pricing, non-negative buyer surplus, and no more total surplus

than the efficient level is achieved by price discrimination under some information

about buyers. In other words, how the seller produces information determines the

surplus outcome of price discrimination.

We know that if the production of information is unfeasible or too costly, then

we have the notoriously inefficient monopoly uniform-pricing outcome. The Coase

theorem fails because of information asymmetries between the seller and buyers. So

by reducing information asymmetries in the market, the production of information

is socially valuable. On the other hand, if the production of information is free,

we know the seller acquires all the information to first-degree price discriminate re-

sulting in an efficient outcome. Therefore, any distortions must take root in costly

production frictions.

In the context of price discrimination one cannot model information in a reduced

form, e.g., as a quality dimension like accuracy, precision, or variance. Indeed, as

apparent in BBM, comparative statics on welfare does not boil down to an issue of

too little or too much information or to an issue of a too coarse or too refined mar-

ket segmentation: Capturing distortions requires a full-fledged information model.

The production of information in this context is out of the scope of standard firms’

production models.

We compare the profit-maximizing production of information to the welfare-

maximizing production of information, where information is used by the seller to

price discriminate.6 We assume a flexible production that allows the seller or the

planner to acquire any signal at a cost, reflecting an industry that provides ever

more tailored and personalized data solutions. We assume both face the same cost,

excluding externalities such as privacy costs that could worsen distortions.

Our main result shows that, under various market environments, the welfare-

maximizing information gives all the welfare gains to the buyer, nothing goes to the

seller. That is, the planner solution coincides with the buyer-optimal one and the

seller profit stays at the uniform level.

To increase trade efficiency, the planner produces a market segmentation that

induces lower prices, but does not over-produce to save on costs. Hence, it stops

6By welfare we mean the sum of the buyer surplus and the seller profit.
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producing information exactly when the seller switches to a lower price. As a result,

the efficiently produced market segmentation makes the seller indifferent between

multiple prices in all but one segment. This key property of efficient segmentations

holds for all continuous and strictly Blackwell monotone costs of information. We

then show this property implies the efficient segmentation gives all welfare gains to

buyers in various market conditions.

In the case where buyers have binary values, the implication is immediate: with

no further restriction the efficient segmentation gives all the welfare gains to buyers.

In the case where buyers have finitely many values, we show our main result holds

for a restricted set of prior distributions of buyer values. Finally, in the case where

buyers have three values and with a symmetry and differentiability assumption on

the production cost of information, we show our main result holds for unrestricted

prior distributions of buyers values.

Figure 1 represents our main result on the BBM surplus triangle. The red

Buyer Surplus

Seller Profit

0

ΠU

A

B

Figure 1: Seller vs Planner Segmentations on the BBM Surplus Triangle

arrow illustrates the profit-maximizing segmentation: Starting from point B, the

uniform pricing or no-information point, the seller acquires information to ideally

reach point A, the 1st degree price discrimination or full information point, if in-
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formation is cheap but may stop before otherwise.7 The blue arrow captures the

welfare-maximizing segmentation: Starting from point B the planner acquires infor-

mation that only benefits buyers, hence staying on the bottom edge of the surplus

triangle.

We consider a monopolistic seller that, in the first stage, produces a posterior

belief distribution about buyers’ values at a cost. A posterior belief distribution

corresponds to a market segmentation that distributes buyers in different segments

with different value distributions. In the second stage, the seller sets a price in each

segment to maximize profit. We contrast with a planner that produces information

for the seller to maximize total surplus.

The profit-maximizing production of information problem is formally equiva-

lent to a rational inattention problem (Sims 2003 and Caplin & Dean 2013).8 The

welfare-maximizing production of information is a Bayesian persuasion problem with

costly information acquisition (Gentzkow & Kamenica 2014).9

We view the production cost of information as a technical cost to transform

data into insight. It accounts for each step of the production process (collecting,

compiling, analyzing data) and it accounts for production factor’s price. We assume

that the seller rationalizes production: If two production plans generate the same

price discrimination strategies, the seller produces the cheapest one. We show that

the resulting rationalized production cost is Blackwell monotone: More information

(more spread out beliefs) costs more.

In the first part of the paper (section 3), we present our main result in the binary

buyer value case. While without production cost of information, the seller acquires

full information and perfectly price discriminate buyers, resulting in an efficient out-

come; with costly production of information, we show that efficient segmentations

never benefits seller: all the surplus gained goes to buyers.

In section 4, we establish the key property that at an efficient market segmen-

tation the seller is indifferent between multiple prices in all segments except the

highest-price-inducing one. Proposition 3 extends the our main result to the case

7Proposition 8 characterizes the seller’s trade-off.
8The problem of incurring attention costs to decode a signal and pick the right action is the

same as the problem of acquiring costly information about buyers values to set the right price.
9The receiver (seller) is misaligned with the sender (planner).
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where buyers have finitely many types for a restricted set of prior buyer value dis-

tributions.10 We then build an example with an asymmetric cost of producing

information for which starting from a prior out of proposition 3 region, the planner

produces a segmentation that gives profit to the seller.

Section 5 restricts attention to differentiable costs of information. We show that,

in contrast to the efficient segmentation, at profit-maximizing market segmentation,

only one price is optimal for the seller in all segments. We then consider symmetric

information costs where spreading is equally costly in all directions. If buyers have

three types we extend our main result to all prior distribution of buyer values.

Section 6 presents first-order characterizations of the planner and seller solutions

used for section 5’s results, which holds even for non-posterior separable costs

Related Literature. Our paper relates to the literature sparked by Bergemann

et al. (2015) studies price discrimination under any market segmentation induced by

some information about buyers. See, e.g., Ali et al. (2020), Hidir & Vellodi (2021),

Ichihashi & Smolin (2022), Elliott et al. (2022), Barreto et al. (2022), Haghpanah &

Siegel (2022), and De Cornière et al. (2024). Ravid et al. (2022) considers how buy-

ers should costly learn before trading with a monopolist.11 The closest paper to ours

is Tekdir (2024) that also studies endogeneous market segmentation acquisition for

the seller in the case of entropy costs of information. They exhibit a non-monotonic

relationship in consumer surplus and welfare when information is made more costly.

Our paper compares the seller problem with the planner for all strictly Blackwell

monotone on costs of information. Devine & Munoz-Garcia (2018) studies second-

degree price discrimination with costly information acquisition.

The seller problem is a rational inattention (Sims 2003, Sims 2010, Caplin &

Dean 2013, Caplin 2016, and Maćkowiak et al. 2018). How an agent incurs atten-

tion costs to learn an uncertain state of nature is formally related to how a firm

incurs a cost to transform data into insights. Matějka & McKay (2015) and Po-

matto et al. (2023) derive first-order characterizations for optimal learning.

The social planner problem of producing a surplus-maximizing posterior distri-

10Finitely many values is BBM’s main set-up.
11See also Roesler & Szentes (2017) for this problem with no learning cost. Mensch & Ravid

(2022) and Thereze (2022) also study price discrimination with costly buyer learning.
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bution for the firm is an application of costly Bayesian persuasion (Kamenica &

Gentzkow 2011 and Gentzkow & Kamenica 2014). The social planner (sender) has

misaligned incentives compared with the firm (receiver). We specifically exploit us-

ing duality techniques introduced by Dworczak & Kolotilin (2024) and Dworczak &

Martini (2019).

We contribute to both literatures in that we extend the characterization of so-

lutions to the case where costs are not necessarily posterior separable, using the

concept of Bregman divergence.

The next section presents the model. Section 3 resents the binary value case.

Section 4 presents results for the finite value case. Section 5 introduces variational

techniques. Section 6 compares social versus private information production under

differentiable production costs of information. Section 7 concludes.

2 Model

Players and Market. There is a single seller with no cost to produce the good facing

a unit-mass of unit-demand buyers with positive private values v ∈ {v1, ..., vN} = Ω.

There is a commonly known fully supported prior distribution ρ0 ∈ ∆(Ω) of buyer

types in the market.12 The v coordinate of vector ρ0, denoted ρv0, corresponds to

the proportion of type v buyers. The buyer value distribution represents market

demand; the number of buyers purchasing at price p is given by:

D0(p) =
∑

v≥p

ρv0.

The best seller profit without price discrimination is:

π(ρ0) = max
p∈R

pD0(p) = max
p∈R

p
∑

v≥p

ρv0.

12If the seller has a per unit cost say κ, then set new values as ṽ = v−κ and remove negative ṽ
from Ω̃ (the seller never sets a price below marginal cost in this model) to map back to our setup.
If ρ0 does not have full support, i.e., ρv

′

0 = 0 for some v′, simply remove v′ from the set of buyers
values Ω.
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First Stage. The seller produces a posterior belief distribution of buyers value

τ ∈ ∆(∆(Ω)) with mean ρ0 at cost C(τ). We assume that the cost is continuous

and that producing no information costs 0.13 The next subsection discusses further

assumptions and interpretation of the production cost of information.

Think of τ as a segmentation of the initial market ρ0 that distributes into each

segment ρ a mass τ(dρ) of buyers. Where ρ ∈ ∆(Ω) is the distribution of buyer types

in the market segment and so captures the segment’s demand Dρ(p) =
∑

p≤v ρ
v.

The typical example of the students and non-students market segmentation is

captured by a distribution τ with binary support. The weak segment ρl reflects

students’ demand (type distribution), where τ(dρl) is the proportion of students

in the population. The strong segment ρh reflects the non-students’ demand (type

distribution) where τ(dρh) = 1 − τ(dρl) is the proportion of non-students in the

population. Given the overall proportion ρ0 of buyer types, the segmentation is

feasible if and only if τ(dρl)ρl + τ(dρh)ρh = ρ0. This set-up captures all market

segmentations, see Bergemann et al. (2015).

Second Stage. For each market segment ρ supported by τ , the seller sets a price

p ∈ R. Buyers in each market segment observe the seller price and decide whether

to buy the good.

Payoffs. Each buyer purchases the seller good if their private value is above

their market segment price, otherwise trade does not happen and the buyer and

seller get 0 payoff. The seller profit from trading with a type v buyer at price p is

us(p, v) = p1{v≥p} and the corresponding buyer surplus is ub(p, v) = (v − p)1{v≥p}.

So trading is efficient and generates surplus v.14

We focus on profit-maximizing and welfare-maximizing market segmentations

net of information production cost given that the seller sets optimal prices in each

market segment.

13Continuity ensures existence of solutions to the maximization problems. No information is
the distribution δρ0

that draws the prior with probability 1, so C(δρ0
) = 0.

14We have normalized Ω to exclude buyers types below marginal cost.
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The Seller’s Problem. Let π map beliefs into profits under optimal pricing:

π(ρ) := max
p∈R

p
∑

p≤v

ρv = max
p∈R

pDρ(p).

The firm’s profit-maximizing production of information problem is:

max
τ∈∆(∆(Ω))

∫

∆(Ω)

π(ρ)τ(dρ)− C(τ), s.t.

∫

∆(Ω)

ρτ(dρ) = ρ0. (P1)

Profit-maximizing prices are in {v1, ..., vN}.
15 We denote by Pi the set of posteriors

where price vi is profit-maximizing:

Pi :=

{

ρ ∈ ∆(Ω); vi ∈ argmax
p

p
∑

p≤v

ρv

}

The Planner’s Problem. If many prices are optimal at a posterior ρ, we assume

the seller sets the lowest one and we denote it by p(ρ).16 Let w map beliefs into the

resulting welfare:

w(ρ) =
∑

v≥p(ρ)

vρv.

The welfare optimal production of information problem is:

max
τ∈∆(∆(Ω))

∫

∆(Ω)

w(ρ)τ(dρ)− C(τ), s.t.

∫

∆(Ω)

ρτ(dρ) = ρ0. (P2)

2.1 Rationalized Production Costs

We view the production cost of information as a technical cost to transform data

into insights. It accounts for each step of the production process like purchasing,

collecting, compiling, storing, cleaning, and analyzing data. It accounts for produc-

15A price in between two buyer values vi < p < vi+1 is suboptimal as the price p′ = vi+1 yields
the same amount of sales for a larger mark-up.

16We assume the seller (receiver) plays the planner (sender) preferred equilibrium. This is a
standard assumption in Bayesian persuasion to ensure the existence of solutions in the planner
problem.
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tion factors prices such as energy, and computing technology, and wages like data

scientists’ labor. It accounts for suppliers’ prices if part of the production is out-

sourced.

We assume that the seller rationalizes production: If one information produc-

tion plan leads to the same price discrimination strategies as another, then the seller

produces the cheapest one. We argue below why rationalized production costs are

Blackwell monotone, that is non-decreasing in the mean preserving spread (MPS)

order.

From the Blackwell theorem, we know that a decision maker’s set of strategies

expands if and only if it gains Blackwell information.17 Without information, the

seller can only set prices independent of v. If instead it has full information on v,

it can perfectly correlate prices with v (first degree price-discriminate buyers), but

it can also set prices independent of v or with arbitrary correlation. With partial

information on v, it can correlate but not perfectly prices with v.

Let C̃ : X → R+ be the technical production cost of information that maps the

choice of a production plan x ∈ X into its costs, and let µ : X → ∆(∆(Ω)) maps

production plans with the posterior belief distributions they output.

Definition 1. A rationalized production cost of information τ is the cost of the

cheapest production plan that achieves price discrimination strategies feasible under

τ :

C(τ) := inf
x∈X

{

C̃(x); µ(x) MPS τ
}

This definition makes apparent that the rationalized production cost is Blackwell

monotone, because the set of production plans that output no less information than

τ contains all production plans that output no less information than any MPS of τ .

Lemma 1. A rationalized production cost of information is Blackwell monotone.

We therefore view Blackwell monotonicity as a consequence of the rationalization

of a technical production cost. This approach captures sellers that are experienced

17See Le Cam (1996) or de Oliveira (2018). The distribution τ is a mean preserving spread of
a distribution τ ′ if and only if the seller can replicate all price discrimination strategies feasible
under τ ′ with information τ .
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with the data industry, that have experimented with multiple information produc-

tion strategies, and that intend to minimize their production cost.

We reinforce the previous property by assuming that there are no free informa-

tion gains.

Assumption 1. The production cost of information is strictly Blackwell monotone:

For all τ MPS of τ ′ such that τ ̸= τ ′ then C(τ) > C(τ ′).

We will add more assumptions in the variational approach section of the paper.

The next section studies the private and social production of information problem

for N = 2.

3 Strong Misalignment for the Two Type Case

Consider the case where Ω = {vl, vh}, with vl < vh. A belief ρ refers to the proba-

bility of the buyer being of a high type P (v = vh). Accordingly, a posterior belief

distribution τ supports a (measurable) subset of [0, 1].

3.1 Private and Social Marginal Values of Information

The value of information measures the gain in payoff for a decision maker of an

information τ compared to no information. The value of information for the seller

and planner are:

Π(τ) =

∫ 1

0

π(ρ)τ(dρ)− π(ρ0)

W (τ) =

∫ 1

0

w(ρ)τ(dρ)− w(ρ0)

These values are linear (posterior separable) in τ as both decision makers are ex-

pected surplus maximizers.

The seller has two dominant pricing strategies. If ρ ≤ vl
vh
, the best price vl to

trade with both types leaving the low type without surplus. Otherwise if ρ ≥ vl
vh

the best price is vh to trade only with the high types leaving them with no sur-

plus. We assume the seller sets a low price at the cutoff vl
vh
. The marginal values of

10



information18 π and w are:

π(ρ) =







vl if ρ ≤ vl
vh

ρvh if ρ ≥ vl
vh

w(ρ) =







(1− ρ)vl + ρvh if ρ ≤ vl
vh

ρvh if ρ > vl
vh

ρ
0

vl

vh

vl
vh

1

π(ρ)

Figure 2: Marginal Profit

ρ
0

vl

vh

vl
vh

1

w(ρ)

Figure 3: Marginal Welfare

Both profit and welfare are piecewise linear: Information is payoff relevant only

if it affects decisions. Spreading or contracting beliefs on an interval where the

same price is played has no effect profit or welfare, so π or w are linear on such

intervals. Piece-wise linearity hints at the standard property that coarse posterior

belief distribution are without loss or optimal with costly information production.

Definition 2. A posterior belief distribution τ is coarse if it supports one posterior

per price played.

The marginal profit is convex, which stems from the Blackwell theorem, more

spread out beliefs yields higher profit. In contrast, the marginal welfare is non-

convex, which reflects what we know about the welfare effect of price discrimination:

Allowing price discrimination, i.e., the use of information, may or may not increase

18We use the term marginal value of information because π and w are the derivatives in τ of
the seller and planner values of information.
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welfare.

Discontinuity in marginal social value reflects the incentive misalignment be-

tween seller and planner.19 Buyer surplus drops for a small belief change around
vl
vh

that makes the seller switch from a low to a high price. Moreover, it seems sub-

optimal for the seller to produce ρ = vl
vh
. This posterior makes the seller indifferent

between the two prices, but the purpose of information is to help decision making.

More formally, the marginal profit forms a kink around vl
vh

so that any belief spread

out of this posterior is valuable. We call this posterior indecisive.

Definition 3. A posterior ρ is indecisive if multiple prices are optimal at ρ. Oth-

erwise, it is decisive if only one price is optimal.

3.2 No Information Cost Benchmark

We know that without costs of information the seller acquires full information to

perfectly price discriminate buyers. The resulting allocation is efficient, and the

seller extracts the entire surplus.

The seller and planner solutions concavify respectively marginal profit and wel-

fare (Kamenica & Gentzkow 2011 and Caplin & Dean 2013).

ρ
0

vl

vh

vl
vh

1

πc(ρ)

Figure 4: Concavification of Marginal
Profit

ρ
0

vl

vh

vl
vh

1

wc(ρ)

Figure 5: Concavifiction of Marginal
Welfare

The concavifications of marginal profit and welfare are equal: πc = wc, reflecting

19Upper semi-continuity follows from our assumption that the receiver breaks ties in favor of
the sender, ensuring the existence of solutions.
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that first degree price discrimination is efficient. The distribution that concavifies

profit involves the extreme point beliefs 0 and 1 (because the profit is convex). That

is, full information is required to perfectly price discriminate.

The first linear piece of welfare on [0, vl
vh
] is aligned with the welfare value at

ρ = 1, meaning that for all ρ ∈ [0, vl
vh
], w(ρ) = wc(ρ). That is, when at the prior the

seller sets a low price trade is efficient, no information is needed. Unlike for profit,

many distributions concavify w, provided they induce price vh only at ρ = 1.20

All in all, there is no distortion: The solution to the seller problem is a solution

to the planner problem. Without costs, private information acquisition is efficient.

With costly information, however, the only distribution that concavifies profit is

also the most expensive to produce, but the planner can pick cheaper distributions

to reach efficiency.

3.3 Full Misalignment with Costly Information

Full information is now no longer an efficient solution as it is the costliest to produce.

Surprisingly, we show the efficient solution is now buyer optimal and generates no

profit to the seller: All the welfare gained is passed to buyers.

We first prove an intuitive lemma that optimal distributions are coarse.

Lemma 2. Solutions to the seller and planner problem are coarse.

Proof. Standard result in the literature, see the appendices for completeness.

Solutions either support only {ρ0} (no information) or have binary support

{ρl, ρh} with posterior ρl inducing price vl and posterior ρh inducing price vh. Next,

we establish a robust distortion between the supports of the seller and planner so-

lutions.

Proposition 1. Assume some information is produced at the solution.

1. The seller’s solution only supports decisive posteriors.

2. The planner’s solution supports an indecisive low posterior, i.e., ρl =
vl
vh
.

20These efficient information structures allocate differently the total surplus to the seller and
buyers, and form the hypotenuse of the BBM surplus triangle.
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Proof. See the appendices.

If the prior induces a low price, the planner does not produce information as

trade is already efficient. If the prior induces a high price, then the cheapest belief

spread that induces a low price supports the indecisive posterior vl
vh
. That is, there

is no benefit to spread below vl
vh

as it already induces a low price. Whereas for the

seller, producing the indecisive posterior vl
vh

is never optimal as it makes the seller

indifferent between the two prices.

Proposition 1 has strong implications for the allocation of the total surplus at

the planner solution.

Proposition 2. The seller profit under the planner solution stays at the uniform

profit level: All the surplus gained from the information produced is passed on to

buyers. So that, the welfare-optimal information production coincides with the buyer-

optimal one.

Proof. See the appendices.

If the prior is in the low price inducing region then no information is produced,

trade is efficient and there is no price discrimination. If, instead, the prior is in

the high price inducing region, the planner induces low prices by spreading the

indecisive posterior. The seller is indifferent at the low posterior and therefore has

the same profit as when setting the high price uniformly. In any cases, the seller

profit stays at the uniform profit level. Despite the planner maximizing consumer

surplus and profit, to economize on information costs it produces a distribution that

only benefits the buyer, making the planner’s solutions and buyer optimal solutions

coincide.

Unlike in the free information benchmark where there is no misalignment between

the planner and the seller as the concavification of welfare and profit are equal, the

starkest misalignment obtains under costly information. For any strictly Blackwell

monotone cost, the efficient solution is buyer optimal.
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3.4 Example with Euclidean Costs

Assume an Euclidean production cost of information for a κ > 0:

C(τ) = κ

∫ 1

0

∥ρ− ρ0∥
2τ(dρ)

Total cost of τ is obtained by integrating how far each posterior is drawn from the

prior. This cost function is posterior separable, continuous and no information costs

0. It is also strictly Blackwell monotone, because the marginal cost ρ 7→ κ∥ρ− ρ0∥
2

is strictly convex (see lemma 5).

Let hi = π for i = 1 and hi = w for i = 2, the optimal production of information

problem rewrites:

max
τ∈∆[0,1]

∫ 1

0

(hi(ρ)− κ∥ρ− ρ0∥
2)dτ(ρ), s.t

∫ 1

0

ρdτ(ρ) = ρ0 (Pi)

The concavification argument applies to the map hi(ρ)− κ∥ρ− ρ0∥
2.

ρ
0 ρ∗l ρ∗h

ρ0vl
vh

1

(π − c)c(ρ)

π(ρ)− c(ρ)

Figure 6: Concavification of Marginal
Profit net of Cost

ρ
ρ0 ρeh0 vl

vh
ρel = 1

(w − c)c(ρ)

w(ρ)− c(ρ)

Figure 7: Concavification of Marginal
Welfare net of Cost

Figure 6 and 7 show the seller and planner solution for a prior in the high-price

region. The difference between the concavified and non-concavified value at the

prior is the gain in profit (resp. welfare) net of the production cost.

If ρ0 ≤
vl
vh
, (w − c)c(ρ) = w(ρ)− c(ρ), that is the planner solution is to produce

no information: trade is already efficient in markets where a low price is played.

But for some ρ0 ≤ vl
vh
, the seller produces information, it segments the market to

mark-up high type buyers in the high segment ρ∗h. If ρ0 >
vl
vh
, both the seller and the
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planner produce information. However, the planner stops spreading the low belief

at vl
vh

making the seller indifferent in the low segment (proposition 1).

The Seller Solution. We compute (ρ∗l , ρ
∗
h) using proposition 8 and corollary 1

necessary and sufficient conditions:







vh − κ(ρ∗h − (1− ρ∗h)) = −κ(ρ∗l − (1− ρ∗l )) (Smooth Pasting)

ρ∗hvh − vl = κ(ρ∗h − ρ∗l )
2 (Bdiv)

τ(dρ∗h) =
ρ0−ρ∗

l

ρ∗
h
−ρ∗

l

(Feasibility)

⇐⇒







ρ∗h = vl
vh

+ vh
4κ

ρ∗l =
vl
vh

− vh
4κ

τ(dρ∗h) =
1
2
+ 2κ

vh
(ρ0 −

vl
vh
)

The first condition ensures that marginally spreading or contracting ρ∗l and ρ∗h is

not profitable. The second condition equates the Bregman divergences of marginal

profit and marginal cost. We have interior solutions for κ > max
{

v2
h

4(vh−vl)
,
v2
h

4vl

}

,

otherwise ρ∗l = 0 or ρ∗h = 1. Furthermore, we need − vh
4κ

< ρ0 −
vl
vh

< vh
4κ

otherwise no

information production is optimal.

The Planner Solution. There is no production of information if ρ0 ≤ vl
vh
, as

trade is already efficient. We focus on ρ0 >
vl
vh
. Proposition 1 (or 3 for the general

case) implies that ρl is indecisive so equal to vl
vh
. If interior, ρh satisfies the Bregman

divergence condition (proposition 9).







ρel =
vl
vh

(Indecisiveness)

(1− ρel )vl = κ(ρel − ρeh)
2 (Bdiv)

τ(dρeh) =
ρ0−ρe

l

ρe
h
−ρe

l

(Feasibility)

⇐⇒







ρel =
vl
vh

ρeh = vl
vh

+
(

(1− vl
vh
)vl
κ

) 1

2

τ(dρeh) =
ρ0−

vl
vh

(

(1−
vl
vh

)
vl
κ

) 1

2

The second condition equates the Bregman divergences of marginal welfare and

marginal cost (proposition 9). The prior must be such that: 0 < ρ0 − vl
vh

<
(

(1− vl
vh
)vl
κ

) 1

2

otherwise the solution is no production. The solution is interior for
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κ > vlvh
vh−vl

, otherwise ρh = 1.

Comparison. If the prior induces a low price, then no information production

is efficient. The seller produces information and therefore reduces welfare for ρ0 ∈
[
vl
vh

− vh
4κ
, vl
vh

]

. If the prior induces a high price, then producing information increases

welfare. It allows for low-type consumers that are excluded under the uniform price,

to trade with positive probability. Furthermore, if ρ∗l > 0, buyer surplus increases

as some high-type consumers are charged a low price which also implies that welfare

increases net of production costs.

4 Extension to Finite Buyer Values

This section studies the general model with v ∈ {v1, ..., vN}. Lemma 2 directly

extends to this case. We take for granted that profit- and welfare-maximizing dis-

tributions are coarse.

4.1 Marginal Values of Information

The seller’s marginal value of information is the solution of a maximization problem:

taking the best decision at posterior ρ. Lemma 3 presents an envelope result:21

Lemma 3. 1. π is continuous, convex, and piecewise linear.

2. The subdifferentials of π are convex hulls of state-vector payoffs evaluated at

optimal prices:22

∂π(ρ) = conv
{
us(vi, .) ∈ R

N ; ρ ∈ Pi

}

Proof. Rochet (1987) proves a related statement in the context of multidimensional

screening.23 See the appendices for completeness.

21Lemma 3 is a multidimensional envelop theorem that cannot be deduced from Milgrom &
Segal (2002) theorem.

22Where 1i is a vector with coordinates 1 for coordinates weakly above i and 0 otherwise.
23See also Daskalakis et al. (2017). The first claim is routinely applied in the Bayesian persuasion

and information theory literatures.
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Convexity of the marginal value v captures that spreading beliefs increases profit

(the Blackwell theorem). Piece-wise linearity reflects that spreading or contracting

posteriors on a subset where the same price is played has no effect on profit. Infor-

mation matters only if it affects decision-making.

The second part of the proposition is an envelope result: One can ignore the ef-

fect of re-adjusting the seller’s optimal price when subdifferentiating optimal profit

with respect to posteriors. Lemma 3 shows that π is differentiable at ρ if and only

if ρ is decisive. At indecisive posteriors π forms a kink.

There is no envelope result for the planner case, as the seller has misaligned in-

centives. The next lemma collects useful properties of the planner’s marginal value

of information.

Lemma 4. The marginal welfare w(ρ) is piece-wise linear and upper semi-continuous.

It is differentiable on the interior of Pi, the corresponding gradient is:

w′(ρ) = ub(vi, .) + us(vi, .)

Proof. See appendices.

Piece-wise linearity reflects that information matters only if it affects prices.

Non-convexity means allowing price discrimination may or may not increase welfare.

The marginal value is discontinuous at posteriors where the seller switches prices.

Upper semi-continuity follows from the assumption that the seller sets the planner-

preferred price if indifferent.

4.2 Planner and Buyer Alignment

This subsection extends proposition 1 to the N buyer value case and corollary 1

for restricted prior distributions. Proposition 2’s statement about the seller extends

with additional smoothness assumption on the cost (see section 5).

Proposition 3. At the planner solution, all supported posteriors, except the highest-

price-inducing one, are indecisive.

Proof. See the appendices.
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Consider shifting a low-price-inducing posterior ρl towards a higher-price-inducing

posterior ρh, i.e. ρ
′
l = ρl+ ε(ρh− ρl). Maintaining a mean of ρ0 implies that ρ′l must

be drawn slightly more often than ρl and ρh slightly less often. If ρl is decisive,

there is an ε > 0 for which ρ′l induces the same low price than ρl. In that case, this

variation induces low prices more often: Welfare goes up. On the other hand, this

variation is a mean preserving contraction, and is therefore cheaper to produce. So

low-price-inducing posteriors cannot be decisive at the planner solution.

The planner spreads posteriors to induce lower prices, but does not waste re-

sources over-spreading. Consequently, all low-price-inducing posteriors make the

seller indifferent between multiple prices. This feature is unappealing for the seller

that would produce information to know what price to set. With differentiable costs,

proposition 5 shows that all seller-produced posteriors are decisive.

Proposition 3 sheds an interesting light on the third-degree price discrimination

literature, in which it is commonly assumed that each segment has a profit max-

imizing price characterized by a first-order condition. Such assumption excludes

market segmentations featuring indecisive demands, where many prices are optimal.

However, these segmentations have better welfare properties. That is, assuming log-

concavity of demand tilts welfare analysis against the use of price discrimination.

In the two type case, this result implies that the planner solution gives all welfare

gains to the buyer and nothing to the seller. In the N type case, we show the same

implication holds for a specific set of initial markets.

Proposition 4. Suppose either of these two:

1. ρ0 ∈ P1.

2. ρ0 ∈ Pi \ conv{ρ ∈ Pj ; j ̸= i} for i > 1, and the profit ranking of prices at ρ0

satisfies v1 ⪰ v2 ⪰ ... ⪰ vi−1.

then the planner solution gives all the welfare gains to the buyers and nothing to the

seller.

Proof. See the appendices.

Figure 8’s grey areas are the initial markets where the planner solution gives

all the welfare gains to the buyers. In these areas, the planner and buyer solutions
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v1 v2

v3

P1

P2

P3

Figure 8: Simplex with {v1, v2, v3} = {1, 2, 3}

coincide. The seller obtains part of the welfare gains at the planner solution if at a

low posterior, the seller is not indifferent with the highest induced price. The seller

would then be strictly worse-off by setting the same price at both posteriors.

4.3 A Counter Example for N=3

We now present an example to provide intuition for why our main result for binary

values does not directly generalize to the finite value case.

The figure below represents the N = 3 simplex with v1 = 1, v2 = 2, v3 = 3 and a

prior ρ0 = ( 3
10
, 1
5
, 1
2
). We have ρ0 ∈ P3, so the uniform monopoly price is 3. Let the

matrix ML be the projection matrix on the linear subspace L in blue on the figure.

So I3 −ML is the projection matrix on the corresponding orthogonal space.24

Consider the following cost function for ϵ, B > 0:

C(τ) =

∫
(
ϵ(ρ− ρ0)

TML(ρ− ρ0) + B(ρ− ρ0)
T (I3 −ML)(ρ− ρ0)

)
dτ(ρ)

Lemma 5 (see next section) ensures C is Blackwell monotone.25

For ϵ small and B large, it is cheap to spread beliefs along the linear subspace

24Where I3 is the 3 by 3 identity matrix.
25Indeed, ML and I3 −ML are symmetric and semi positive definite as projection matrix. So

C’s gradient: ρ 7→ (ρ− ρ0)
T (ϵML +B(I3 −ML))(ρ− ρ0) is convex.
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L but expensive to spread in other directions. In this environment, the spread

(ρe1, ρ
e
3) is efficient and is the planner solution for ϵ sufficiently small and B suffi-

ciently large. However, the monopolist gains profit under this spread compared to

the uniform level. Indeed, the belief supporting a low price of 1 is indecisive, but the

monopolist is indifferent between price v1 and v2 and not with price v3 the uniform

monopoly price.

v1 v2

v3

P1

P2

P3

ρ0

L

ρeh

ρel

Figure 9: Simplex with {v1, v2, v3} = {1, 2, 3}

The next section serves two purposes. We show that under differentiable costs

where spreading is equally costly in all direction, then proposition 4 extends to all

starting market ρ0 for N = 3. In other words, raising the seller at the efficient

segmentation is justified by asymmetries in the production cost of information.

Furthermore, under differentiable costs we show the seller produces only decisive

posteriors, exhibiting a robust support distortion.

5 Differentiable and Symmetric Costs

5.1 Marginal Costs of Producing Information

Assumption 2. The cost of producing information is Fréchet differentiable.
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The corresponding marginal of C at τ , cτ , is a continuous map from ∆(Ω) to R.26

The marginal cost of producing information reflects the cheapest shift of production

plans to output extra information.

Consider the seller shifting its production from a distribution τ to a distribution

τ + ϵ(τ ′ − τ) for a small ϵ > 0. The marginal cost cτ approximates the change in

information production cost as follows:27

C(τ + ϵ(τ ′ − τ))− C(τ) = ϵ

∫

∆(Ω)

cτ (ρ)(τ
′ − τ)(dρ) + o(ϵ).

For a posterior ρ, cτ (ρ) is per unit of mass production cost change. To compute

the total change in production cost, one aggregates (integrates) per posterior cτ (ρ)

weighted by the size of each change ϵ(τ ′ − τ)(dρ). That is, marginal changes in the

cost of producing information have a posterior separable interpretation.28

Suppose cτ is convex, then a marginal cost change from τ towards a more infor-

mative (a mean preserving spread) τ ′ is positive. So if the marginal cost is convex

at all τ the production cost of information marginally increases in the mean pre-

serving spread order. The next proposition shows that this property is necessary

and sufficient for the production cost of information to be Blackwell monotone.

Lemma 5. Assume C is differentiable.

1. C is Blackwell monotone if and only if cτ is convex at all τ .

2. If cτ is strictly convex at all τ , then C is strictly Blackwell monotone.

Proof. Ravid et al. (2022) proves 1. in the space of cumulative distributions.29 See

the appendices for completness.

26See Riesz-Markov representation theorem. The space of continuous functions is endowed
with the sup norm ∥.∥∞, and the space of measures with the corresponding dual norm ∥τ∥TV =

supf,∥f∥∞≤1

{∫

∆(Ω)
f(ρ)τ(dρ)

}

.

27The map o(ϵ) is such that limϵ→0
o(ϵ)
ϵ

= 0.
28This is because a) marginal cost changes correspond to changes in the total cost’s local linear

approximation, and b) linear costs of information are posterior-separable. Therefore, marginal cost
changes inherit the posterior separable property.

29Ely et al. (2015) and Gentzkow & Kamenica (2014) discuss this claim for linear costs of
information.
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The first part of the proposition is a first-order characterization of Blackwell

monotonicity. So differentiable rationalized production cost of information have

convex marginal costs. We assume strict convexity of marginal costs to recover

assumption 1:

Assumption 3. The marginal cost of information cτ is strictly convex for all τ .

We make an additional smoothness assumption:

Assumption 4: For all τ , the marginal cost cτ is differentiable.

Marginal costs are strictly convex, so almost everywhere differentiable. Assump-

tion 4 removes a few kinks. Differentiability makes cτ approximately linear around

any beliefs, so that the cost of small spreads is vanishingly small.

5.2 Robust Support Distortion

We now extend proposition 1 to the finite buyer value case and establish for all

differentiable costs of information a distortion between the seller-produced and the

planner-produced market segmentations.

Proposition 5. Assume some information is produced at the seller and planner

solutions.

1. All supported profit-maximizing posteriors are decisive.

2. (Restatement of Proposition 3) All supported welfare-maximizing posteriors

except the one inducing the highest price are indecisive.

Proof. See appendices

The seller produces information to improve its decision making, so intuitively it

seems suboptimal to produce posteriors where two or more prices are optimal. For-

mally, this statement hinges on the differentiability of the marginal cost (assumption

4).30 Differentiability means the marginal cost is approximately linear at all points

and therefore small posterior spreads are approximately costless. In contrast, a

30If the marginal cost is not differentiable and has kinks, then the same statement holds if the
kinks of the marginal values are sharper than the marginal cost’s ones.
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small posterior spread around an indecisive posterior, i.e. where the marginal value

has a kink, yields non-vanishing gains. Spreading out of a kink is always locally

profitable net of costs, and so produced posteriors are decisive.

The logic is radically different for the social planner. Indecisive posteriors in-

duces the seller to set prices lower than the prior-induced one using minimal spreads,

thereby economizing production costs.

This distortion is robust to regulations that do not ban private information pro-

duction. Indeed, if a planner provides to the seller a market segmentation that

features indecisive posteriors, then the seller will always produce additional infor-

mation to spread out of indecisive posteriors and make all posteriors decisive.

5.3 Planner and Buyer Alignment

We assume in this subsection that N = 3. We further make a symmetry assumption:

it is equally costly to spread in all directions at the margin:

Assumption 5. For all τ there is a κτ > 0 such that:

cτ (ρ) = κτ∥ρ− ρ0∥
2

For instance, the Euclidiean cost of information satisfy this assumption for κτ = κ.

A quadratic Euclidean cost of information satisfies this assumption as well:31

C(τ) =
1

2

(

κ

∫

∆(Ω)

∥ρ− ρ0∥
2dτ(ρ)

)2

, as marginal costs are:

cτ (ρ) = κ

∫

∆(Ω)

∥z − ρ0∥
2dτ(z)

︸ ︷︷ ︸

≡κτ

∥ρ− ρ0∥
2

A cost of information such that for a map f is: C(τ) = f
(∫

∆(Ω)
∥ρ− ρ0∥

2dτ(ρ)
)

satisfies assumption 5. For such costs, we extend our main results for all starting

market.

Proposition 6. Assume that 2v2 ≥ v3, then at the planner solution the seller

31Remark that this cost function is not posterior separable.
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profit stays at the uniform profit level: All the surplus gained from the information

produced is passed on to buyers. So, the welfare-optimal information production

coincides with the buyer-optimal one.

Proof. See the appendices.

The proof shows on a case-by-case basis that segmentations providing the same

total welfare but additional profit to the seller are costlier to produce than ones that

do not give additional profit.32

6 Variational Approach

This section presents the first-order characterizations of profit- and welfare-maximizing

segmentations used to derive section 5’s results. To make our first-order approach

sufficient, we assume global convexity on the total cost:33

Assumption 6. The cost of producing information C is convex.

6.1 First-Order Characterizations

Let hi = π for i = 1 and hi = w for i = 2, the optimal production of information

problem is:

max
τ∈∆(Ω)

∫

∆(Ω)

hi(ρ)dτ(ρ)− C(τ), s.t

∫

∆(Ω)

ρdτ(ρ) = ρ0 (Pi)

The next proposition extends known characterizations of solutions for C linear

to the case where the cost is not linear but differentiable (and convex for sufficiency):

32Our intuition is that this result extends to any N. However, the number of cases to check
explodes, and we did not find an efficient method to replicate the N = 3 proof.

33Without assumption 6, all following result remain necessary. Ravid et al. (2022) makes the
same assumption (in the space of cumulative distributions). The rational inattention literature
considers costs that are posterior-separable (linear) and so convex.
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Proposition 7. The following statements are equivalent for i ∈ {1, 2}:

1. τ is solution to (Pi).

2. τ concavifies hi − cτ at ρ0.

3. τ is feasible and ∃λ s.t. supp{τ} ⊂ argmax
ρ∈∆(Ω)

{

hi(ρ)− cτ (ρ)−
∑

v∈Ω

λv(ρv − ρv0)

}

.

Proof. See the appendices.

The equivalence between 2. and 3. follows from Dworczak & Kolotilin (2024)

results. The equivalence between 1. and 2. generalizes the concavification charac-

terization (Caplin & Dean 2013, Gentzkow & Kamenica 2014) to costs that are not

necessarily posterior separable.

To interpret this 3., consider that the seller and planner have a limited posterior

budget mass of 1 they can produce. Given that fixed budget, they produce the

posteriors that generate the highest value per unit of mass net of the production

cost and an opportunity cost captured by λ. The opportunity cost reflects the extra

cost of compensating for the mean when producing a posterior.

To be supported (produced), a posterior belief must solve a sub-maximization

problem. For i ∈ {1, 2} there is a λi such that for all supported ρ:

max
ρ∈∆(Ω)

hi(ρ)− cτ (ρ)−
∑

v∈Ω

λv
i ρ

v (SPi)

We study this problem in the next subsection to characterize and compare the seller

and planner solutions.

6.2 Characterization with Bregman Divergences

The concept of Bregman divergence central to our characterization of solutions.34

Definition 4. The Bregman divergence of a convex function f captures how fast

34Frankel & Kamenica (2019) uses the Bregman divergence and shows that the value of news
pieces that are coupled with measures of uncertainty are Bregman divergences of the latter. In our
paper, the Bregman divergence comes up as an optimality condition.
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the function curves away from its tangent from ρ2 to ρ1:

Bf(ρ1, ρ2) = f(ρ1)− f(ρ2)− f ′(ρ2) · (ρ1 − ρ2)

Geometrically Bf(ρ1, ρ2) is the difference between function values at ρ1 to its ρ2

tangent evaluated at ρ1. Think of the tangent at ρ1 as a linear benchmark where it

is costless to spread belifs around ρ1. The Bregman divergence measures the cost of

spreading beliefs compared to that linear (costless) benchmark.

Profit-Maximizing Information Production. The next proposition shows that

supported posteriors solve is an equality between the Bregman divergence of the

marginal profit and the marginal cost.

Proposition 8. A feasible distribution τ is a solution to (P1) if and only if

1.∀ρ1, ρ2 ∈ supp{τ} :
∑

v≥p1

p1ρ
v
1 −

∑

v≥p2

p2ρ
v
1 = Bcτ (ρ1, ρ2)

2.∀ρ3 ∈ ∆(Ω), ∀ρ2 ∈ supp{τ} :
∑

v≥p3

p3ρ
v
3 −

∑

v≥p2

p2ρ
v
3 ≤ Bcτ (ρ3, ρ2)

Proof. See the appendices.

Condition 1. is the counterpart of marginal value equals marginal cost in our

problem. The value of taking different actions (a(ρ1) instead of a(ρ2)), that is,

the value of spreading beliefs equals the costs of spreading beliefs. The Bregman

divergence is the measure of convexity that captures the cost of spreading.

Corollary 1. Consider τ a solution to (P1). Then, for any two posteriors ρ1, ρ2 ∈

supp{τ} inducing prices p1 > p2 and for all v ∈ Ω one has:

∂cτ
∂ρv

(ρ1)−
∂cτ
∂ρv

(ρ2) +
∂cτ
∂ρv

(ρ2)−
∂cτ
∂ρv

(ρ1) = p11{v≥p1} − p21{v≥p2, p2 ̸=v}

Proof. See the appendices.

The smooth pasting condition means that for all supported posteriors the marginal

values net of marginal costs have the same direction on ∆(Ω). If smooth pasting
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fails for two posteriors, then marginally contracting in or spreading out these two

posteriors increases marginal value net of marginal cost.

Welfare-Maximizing Information Production. Because the seller indifferent

in many segments, welfare is discontinuous on the efficient support, making first-

order characterizations tricky. Yet, if the highest-price-inducing posterior is decisive,

then welfare is differentiable around this posterior and we obtain a characterization

for the planner solution using Bregman divergences.

Proposition 9. Consider a feasible τ . Assume the highest price inducing posterior

ρk is decisive then τ is a solution to (P2) if and only if

1. ∀ρ1 ∈ supp{τ} :
∑

p1≤v<pk

vρv1 = Bcτ (ρ1, ρk)

2. ∀ρ2 ∈ ∆(Ω) :
∑

p2≤v<pk

vρv2 ≤ Bcτ (ρ2, ρk)

Proof. See the appendices.

Solutions the euclidean example apply proposition 8 and 9 conditions.

7 Conclusion

We question the efficiency of private information production to price discriminate.

We show that a privately optimal signal distributes consumers in decisive segment

where one price is optimal. There are non-vanishing incentives to acquire more

information when a decision-maker is indifferent between multiple actions. In con-

trast, to economize on production costs, the efficient market segmentation features

all but one indecisive segments. For various market conditions and large classes

of production costs of information, we show this property implies all welfare gains

from efficiently produced market segmentation go to the buyer, and the seller’s profit

stays at the uniform level.

Unlike the inconclusive price discrimination welfare result under general but ex-

ogenous market segmentations, we show stark distortions emerge if one assumes the
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production of information is endogenous and costly. Our result warns against the

strong inefficiencies of privately produced information to price discriminate.

Appendices

Proof of Lemma 2

Suppose not, and consider a solution τ that supports ρ1 < ρ2 such that [ρ1, ρ2] ⊂

[0, vl
vh
] or ⊂ ( vl

vh
, 1]. Consider another distribution τ ′ that contracts posteriors ρ1

and ρ2 into ρ3 =
1

τ(dρ1)+τ(dρ2)
(τ(dρ1)ρ1 + τ(dρ2)ρ2) drawn with probability τ(dρ1) +

τ(dρ2). Distribution τ is a mean preserving spread of τ ′, and so C(τ) > C(τ ′).

However, τ ′ yields the same welfare and profit as τ as w and π are linear on [ρ1, ρ2],

so τ cannot be a solution. Therefore, solutions are coarse.

Proof of Proposition 1

1. Suppose instead the solution supports ρl < ρh with ρl =
vl
vh
. Since π is linear

on [ρl, ρh] contracting posteriors strictly reduces cost without reducing profit, a

contradiction. Same argument for ρh = vl
vh
.

2. First off, if ρ0 ≤
vl
vh
, no information production generates the efficient surplus,

therefore this is the solution. Hence, if there is production of information at the

solution then ρ0 >
vl
vh
. Suppose instead τ supports ρl <

vl
vh

< ρh. Consider a τ ′ that

supports vl
vh
, ρh instead. Feasibility implies τ(dρh) = ρ0−ρl

ρh−ρl
and τ ′(dρh) =

ρ0−
vl
vh

ρh−
vl
vh

.

Consider the following conditional distribution:

G(B|ρ) =







δρ(B) if ρ ̸= vl
vh

vl
vh

−ρl

ρh−ρl
δρl(B) +

ρh−
vl
vh

ρh−ρl
δρh(B) if ρ = vl

vh

Remark that for all ρ ∈ [0, 1]
∫ 1

0
D(x|ρ)dx = ρ and that for all B ∈ B[0, 1]

∫

B
G(x|ρ)τ ′(dρ) = τ(B). Therefore τ is a dilation of τ ′ and so τ is a MPS of
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τ ′.35 Moreover, the difference in welfare between τ ′ and τ is:

∫ 1

0

w(ρ)τ ′(dρ)−

∫ 1

0

w(ρ)τ(dρ)

=
ρh − ρ0
ρh −

vl
vh

((1−
vl
vh

)vl +
vl
vh

vh) +
ρ0 −

vl
vh

ρh −
vl
vh

ρhvh −
ρh − ρ0
ρh − ρl

((1− ρl)vl + ρlvh)−
ρ0 − ρl
ρh − ρl

ρhvh

=(ρh − ρ0)
(1− ρh)(

vl
vh

− ρl)

(ρh − ρl)(ρh −
vl
vh
)
vl ≥ 0

With equality iff ρh = 1. Therefore τ ′ generates weakly higher welfare and costs

strictly less to produce so τ cannot be a solution.

Proof of Proposition 2

Remark that the value of information is greater for the planner than for the buyer,

that is for all τ we have:

∫ 1

0

(w(ρ)− π(ρ))τ(dρ)− (w(ρ0)− π(ρ0)) ≤

∫ 1

0

w(ρ)τ(dρ)− w(ρ0)

Therefore, if the planner solution is no information production which implies that

for all τ the welfare generated is smaller than the production cost:

∫ 1

0

w(ρ)τ(dρ) ≤ C(τ)

Then so is the case for buyer surplus:
∫ 1

0
(w(ρ)−π(ρ))τ(dρ)+π(ρ0) ≤ C(τ). And so

the solution to buyer optimal production of information is no information produc-

tion.

Assume instead there is information production at the planner solution (imply-

ing ρ0 > vl
vh
). By lemma 2 the support is binary and by proposition 4 the low

posterior is ρl =
vl
vh
. The planner problem boils down to:

max
ρh∈(ρ0,1]

ρh − ρ0
ρh −

vl
vh

w

(
vl
vh

)

+
ρ0 −

vl
vh

ρh −
vl
vh

w(ρh)− C(τ)

35See Le Cam (1996).
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Because profit is linear on [ vl
vh
, ρh], we have that (1− τ(dρh))π

(
vl
vh

)

+ τ(dρh)π(ρh) =

ρ0. Therefore the planner problem rewrites:

max
ρh∈(ρ0,1]

ρh − ρ0
ρh −

vl
vh

(

w

(
vl
vh

)

− π

(
vl
vh

))

+
ρ0 −

vl
vh

ρh −
vl
vh

(w(ρh)− π(ρh)) + π(ρ0)− C(τ)

Which is the buyer optimal information production problem.

Proof of Lemma 3

1. v is defined on the convex set ∆(Ω). The epigraph of π is:

epi(π(ρ)) =

{

(ρ, r) ∈ ∆(Ω)× R; max
p∈Ω

N∑

i=1

us(p, vi)ρ
vi ≤ r

}

=
⋂

p∈Ω

{

(ρ, r) ∈ ∆(Ω)× R;
N∑

i=1

us(p, vi)ρ
vi ≤ r

}

{

(ρ, r) ∈ ∆(Ω)× R;
∑N

i=1 us(p, vi)ρ
vi ≤ r

}

is a half space and is closed and convex

for all a ∈ A. Intersections of closed and convex sets are closed and convex, therefore

π is convex and continuous.

Recall Pi is a finite intersection of halfspaces, so it is convex and closed. More-

over, Pi ⊂ ∆(Ω), so it is compact. In addition, ∪vi∈ΩPi = ∆(Ω) since the decision

problem has a solution for all ρ, so there is some vi where Pi ̸= ∅. By construction

π(ρ) =
∑

v∈Ω us(vi, v)ρ
v ⇐⇒ ρ ∈ Pi, and π is linear on each non-empty Pi. There-

fore π is linear on all (non empty) piece Pi where the same price is optimal.

2. This is a direct application of Danskin’s theorem, see Rochet (1987).

Proof of Lemma 4

For all ρ ∈ Pi, w(ρ) =
∑

v∈Ω v1{vi≤v}ρ
v is linear in ρ. Therefore, w linear on Pi and

continuous on int(Pi), but discontinuous at the borders of Pi when the seller switches

prices. Upper semicontinuity follows from the seller setting the planner-preferred

price if indifferent.
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Proof of Proposition 3

Assume the planner solution is τ ̸= δρ0 , and let ρk, ρi ∈ supp{τ} that induces prices

vk > vi respectively. Construct a distribution of τ ′ from τ , that transfers ϵ > 0 mass

from ρk to ρi and shifts ρi towards ρk, ρ
′
i = ρi + γ(ρk − ρi) to maintain the mean at

ρ0. That is:

τ ′(dρ) =







0 if ρ = ρi

τ(dρi) + ϵ if ρ = ρ′i

τ(dρk)− ϵ if ρ = ρk

τ(dρ) otherwise

And τ ′ has mean ρ0 if:

∫

∆(Ω)

ρτ ′(dρ) = ρ0

⇐⇒

∫

∆(Ω)

ρτ(dρ) + τ(dρi)γ(ρk − ρi) + ϵ(ρi + γ(ρk − ρi)− ρk) = ρ0

⇐⇒ γ(ρk − ρi)(τ(dρi) + ϵ) = ϵ(ρk − ρi)

⇐⇒ γ =
ϵ

τ(dρi) + ϵ

We now argue τ MPS τ ′. Indeed, define the conditional distribution:

G(dρ|z) =







δz if z ̸= ρi +
ϵ

τ(dρi)+ϵ
(ρk − ρi)

ϵ
τ(dρi)+ϵ

δρk +
τ(dρi)

τ(dρi)+ϵ
δρi if z = ρi +

ϵ
τ(dρi)+ϵ

(ρk − ρi)

And remark that:

∫

∆(Ω)

ρG(dρ|z) = z ∀z

τ(dρ) =

∫

∆(Ω)

G(dρ|z)τ ′(dz) ∀ρ

Therefore, τ is a MPS of τ ′. Consequently, C(τ ′) < C(τ).
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The variation in welfare from τ to τ ′ is:

∫

w(ρ)τ ′(dρ)−

∫

w(ρ)τ(dρ) = (τ(dρi) + ϵ)(w(ρi + γ(ρk − ρi))− τ(dρi)w(ρi)− ϵw(ρk)

Assume that welfare is differentiable at ρi in direction ρk−ρi. Then there is a small

ϵ such that at ρi+
ϵ

τ(dρi)+ϵ
(ρk−ρi) induces price vi. The variation in welfare becomes:

(τ(dρi) + ϵ)w(ρi) + ϵ
∑

v≥vi

v(ρvk − ρvi )− τ(dρi)w(ρi)− ϵ
∑

v≥vk

vρvk = ϵ
∑

vi≤v<vk

vρvk ≥ 0

Therefore, at all posteriors welfare must not be differentiable towards higher pos-

teriors. Which implies that all posteriors except the highest price-inducing one are

indecisive.

Proof of Proposition 4

We first prove a useful lemma on welfare discontinuities. We introduce the following

notation. For a subset of indices I ⊂ {1, ..., N}, we denote by ρI a posterior where

all prices vi with i ∈ I are optimal, i.e. ρI ∈ ∩i∈IPi. We further more denote by s

the smallest element of I.

Lemma 6. 1. Welfare is differentiable at a posterior ρI in direction ρ−ρI if and

only if ps is weakly more profitable than pi for all i ∈ I at ρ.

2. Welfare is differentiable at a posterior ρI in direction ρI − ρ if and only if ps

is weakly less profitable than pi for all i ∈ I at ρ.

Proof. 1. Welfare is differentiable in direction ρ− ρI at ρI if and only if there is an

ϵ > 0 such that ρI + ϵ(ρ− ρI) ∈ Ps. That is, for some ϵ > 0 and for all j:

∑

ps≤v

ps[(1− ϵ)ρvI + ϵρv] ≥
∑

pj≤v

pj[(1− ϵ)ρvI + ϵρv]

Because for j /∈ I the inequality is strict, such small ϵ exists regardless of ρ. However

for j ∈ I the inequality boils down to:
∑

ps≤v psρ
v ≥

∑

pj≤v pjρ
v That is we must

have ps more profitable than pj for all j ∈ I at ρ.
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2. Welfare is differentiable in direction ρ − ρI at ρI if and only if there is an

ϵ > 0 such that ρI + ϵ(ρI − ρ) ∈ Ps. For strict inequalities the argument is the same

however for j ∈ I the inequality boils down to:

∑

ps≤v

psρ
v ≤

∑

pj≤v

pjρ
v

That is we must have ps weakly less profitable than pj for all j ∈ I at ρ.

We now prove the proposition. First, if ρ0 ∈ P1 then trade is efficient without

production of information. The seller payoff is the uniform profit.

Under 2., consider the planner solution’s support {ρ1, ..., ρk} with ρ0 ∈ Pi.

Claim 1: ρk induces the uniform price.

Proof: Suppose ρk induces a strictly lower price than ρ0. Because it is the highest

price inducing posteriors that implies all other posteriors induce prices strictly lower

than ρ0. But that imply ρ0 ∈ conv{Pj; j < i} a contradiction. Suppose, ρk induces

a strictly higher price than ρ0. All other posteriors average out at some ρ−k such

that ρk, ρ0 and ρ−k are aligned. If a posterior is in Pi, it is indecisive (not the highest

one), so ρ−k ∈ conv{Pj; j ̸= i}. Therefore, ρ0 ∈ conv{Pj; j ̸= i}, a contradiction.

Claim 1 implies ρk ∈ Pi, applying lemma 6, implies that all other posteriors are

indecisve with vk, which is the uniform price. Therefore the seller has the same

profit as if it were setting vk in all segments.

Proof of Lemma 5

1. (⇐) Assume cτ is convex at all τ . Consider τ ′ a mean preserving spread of τ ,

and the smooth curve γ : ϵ ∈ [0, 1] 7→ ϵτ ′ + (1− ϵ)τ .

For each ϵ, ∂γ

∂ϵ
is the measure τ ′ − τ . Applying the gradient theorem:

C(τ ′)− C(τ) =

∫ 1

0

(∫

∆(Ω)

cγ(ϵ)(ρ)τ
′(dρ)−

∫

∆(Ω)

cγ(ϵ)(ρ)τ(dρ)

)

dϵ
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The integrand is non-negative for all ϵ since τ ′ is a mean preserving spread of τ and

cγ(ϵ) is convex for all ϵ ∈ [0, 1]. Therefore C(τ ′) ≥ C(τ).

(⇒) Assume C is Blackwell monotone. Consider τ ′ a mean preserving spread of

τ . For all ϵ ∈ [0, 1], the measure ϵτ ′ + (1 − ϵ)τ is a mean preserving spread of τ .

Indeed, for all convex and continuous map f the quantity:

∫

∆(Ω)

f(ρ)(ϵτ ′ + (1− ϵ)τ)(dρ)−

∫

∆(Ω)

f(ρ)τ(dρ)

=ϵ

(∫

∆(Ω)

f(ρ)τ ′(dρ)−

∫

∆(Ω)

f(ρ)τ(dρ)

)

≥ 0

is positive since τ ′ is a mean preserving spread of τ .

C is differentiable at τ :36

C(ϵτ ′ + (1− ϵ)τ) = C(τ) + ϵ

∫

∆(Ω)

cτ (ρ)(τ
′ − τ)(dρ) + o(ϵ)

Since ϵτ ′ + (1− ϵ)τ is a mean preserving spread of τ and C is Blackwell increasing

then:

ϵ

∫

∆(Ω)

cτ (ρ)(τ
′ − τ)(dρ) + o(ϵ) = C(ϵτ ′ + (1− ϵ)τ)− C(τ) ≥ 0

=⇒

∫

∆(Ω)

cτ (ρ)(τ
′ − τ)(dρ) +

o(ϵ)

ϵ
≥ 0.

This condition holds for all τ ′ MPS τ and all ϵ > 0. Letting ϵ → 0:

∫

∆(Ω)

cτ (ρ)(τ
′ − τ)(dρ) ≥ 0, for all τ ′ mean preserving spreads of τ. (MPS)

We show the (MPS) condition implies cτ is convex. Consider for ϵ > 0 and ρ =

αρ1 + (1− α)ρ2 with α ∈ [0, 1] a τ ′ such that:

τ ′ = τ − ϵ (δρ + αδρ1 + (1− α)δρ2)

36Where o(ϵ) is such that limϵ 7→0
o(ϵ)
ϵ

= 0
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τ ′ spreads mass from ρ to ρ1 and ρ2 preserving mean and total mass of 1. Thus τ ′

is a mean preserving spread of τ . This holds even if ρ /∈ supp{τ}, since C’s differ-

entiability is defined over some open set U ⊃ ∆(∆(Ω)) with non-empty interior.37

Therefore, there is a small enough ϵ such that τ ′ ∈ U . Applying (MPS) to τ ′ yields:

αcτ (ρ1) + (1− α)cτ (ρ2) ≥ cτ (αρ1 + (1− α)ρ2)

Which holds for all ρ1, ρ2 ∈ ∆(Ω) and α ∈ [0, 1]. Therefore, cτ is convex and which

concludes the proof of 1.

2. Assume cτ is strictly convex at all τ . As before, consider τ ′ a mean preserv-

ing spread of τ ̸= τ ′, and the smooth curve γ:

γ : ϵ ∈ [0, 1] 7→ ϵτ ′ + (1− ϵ)τ

For each ϵ, ∂γ

∂ϵ
is the measure τ ′ − τ . Applying the gradient theorem:

C(τ ′)− C(τ) =

∫ 1

0

(∫

∆(Ω)

cγ(ϵ)(ρ)τ
′(dρ)−

∫

∆(Ω)

cγ(ϵ)(ρ)τ(dρ)

)

dϵ

By Le Cam (1996), because τ ′ is a MPS of τ , there exists a markov kernel G with
∫

∆(Ω)
zG(dz|ρ) = ρ for all ρ such that:

∀B ∈ B[∆(Ω)], τ ′(B) =

∫

∆(Ω)

G(B|ρ)τ(dρ)

Plugging this formulation in the above condition one has:

C(τ ′)− C(τ) =

∫ 1

0

(∫

∆(Ω)

∫

∆(Ω)

cγ(ϵ)(z)G(dz|ρ)τ(dρ)−

∫

∆(Ω)

cγ(ϵ)(ρ)τ(dρ)

)

dϵ

=

∫ 1

0

∫

∆(Ω)

∫

∆(Ω)

(cγ(ϵ)(z)− cγ(ϵ)(ρ))G(dz|ρ)τ(dρ)dϵ

37Fréchet differentiability has bite only on full dimensional open sets.
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A function c on ∆(Ω) is strictly convex iff for all x0 ∈ ∆(Ω) there exists u ∈ R
n s.t:

c(z)− c(x0) > u · (z − x0) ∀z ∈ ∆(Ω), z ̸= x0

Since τ ′ ̸= τ , there is a subset S with τ(S) > 0 for which for all ρ ∈ S, G(dz|ρ) ̸=

δρ(dz). For these ρ apply the characterization of strict convexity for cγ(ϵ) at x0 = ρ

and integrate over w.r.t G(.|ρ). That is, for all ρ, ∃uρ:

cγ(ϵ)(z)− cγ(ϵ)(ρ) > uρ · (z − x0)

=⇒

∫

∆(Ω)

(cγ(ϵ)(z)− cγ(ϵ)(ρ))G(dz|ρ) >

∫

∆(Ω)

uρ · (z − ρ)G(dz|ρ) = 0

The last equality follows from the fact linear operators commute and that
∫

∆(Ω)
zG(dz|ρ) =

ρ. Since it holds for all ρ in S with τ(S) > 0 for all ϵ the integrand is strictly positive:

∫

∆(Ω)

∫

∆(Ω)

(cγ(ϵ)(z)− cγ(ϵ)(ρ))G(dz|ρ)τ(dρ) > 0

Which holds for all ϵ ∈ [0, 1], therefore: C(τ ′) > C(τ).

Proof of Proposition 7

1. ⇒ 2. Assume τ is a solution of (Pi). Consider a feasible τ ′, an ϵ > 0 and the

following quantity:

Hi(τ + ϵ(τ ′ − τ))−Hi(τ)

ϵ
=

∫

∆(Ω)

hi(ρ)(τ
′ − τ)(dρ)−

C(τ + ϵ(τ ′ − τ))− C(τ)

ϵ

Because C is differentiable, and τ is a solution one has:

∫

∆(Ω)

(hi(ρ)− cτ )(τ
′ − τ)(dρ)− o(ϵ) ≤ 0

Which holds for all positive ϵ, therefore for all feasible τ ′:

∫

∆(Ω)

(hi(ρ)− cτ )τ
′(dρ) ≤

∫

∆(Ω)

(hi(ρ)− cτ )τ(dρ)
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Therefore τ concavifies hi − cτ at ρ0.

1. ⇐ 2. Assume τ concavifies hi − cτ at ρ0, then for all feasible τ ′:

∫

∆(Ω)

(hi(ρ)− cτ (ρ))(τ
′ − τ)(dρ) ≤ 0

Since Hi is concave (C is convex) then for all feasible τ ′:

Hi(τ
′)−Hi(τ) ≤

∫

∆(Ω)

(hi(ρ)− cτ (ρ))(τ
′ − τ)(dρ) ≤ 0

And so τ is solution to (Pi).

Consequently, solutions of (Pi) solves the following problem:

(hi − cτ )
c(ρ0) = sup

τ∈∆(Ω)

{∫

∆(Ω)

(hi(ρ)− cτ (ρ))τ(dρ);

∫

ρτ(dρ) = ρ0

}

To prove 2. ⇐⇒ 3. we use Dworczak & Kolotilin (2024) that characterizes

primal and dual solutions of this problem.38

Lemma 7. Corollary 1, Dworczak & Kolotilin (2022)

A feasible τ ∗ and a feasible λ are primal and dual solutions if and only if for all

ρ ∈ supp{τ}:

hi(ρ)− cτ∗(ρ) =
∑

v∈Ω

λvρv

Where the set of feasible λ ∈ R
N is: F =

{
hi(ρ)− cτ (ρ) ≤

∑

v∈Ω λvρv, ∀ρ ∈ ∆(Ω)
}
.

Equivalently, a feasible τ ∗ is a solution to (Pi) if and only if there is a λ ∈ R
|Ω| such

that:

∀ρ ∈ supp{τ ∗} , ρ ∈ argmax
ρ′∈∆(Ω)

{

hi(ρ)− cτ∗(ρ)−
∑

v∈Ω

λvρv

}

.

38The authors study a more general version in which Ω is not necessarily finite. They argue
their result with Ω finite can be recovered from Rockafellar (1970).

38



Remark that the max is achieved as the objective is upper semicontinuous (lemma

3 and 4) and ∆(Ω) is compact.

Proof of Proposition 5

Consider τ a solution to the seller’s problem which supports ρ. Proposition 7 implies

ρ is a solution to (SP). Directional derivatives of the objective at ρ are negative. All

derivatives in direction d ∈ R
|Ω| with

∑

v∈Ω dv = 0 are feasible and exists since π is

convex. So for direction d and −d one has:







π′(ρ; d)− c′τ (ρ) · d ≤ λ · d

π′(ρ;−d) + c′τ (ρ) · d ≤ −λ · d

Therefore at a solution ρ one has:

π′(ρ; d)− c′τ (ρ) · d ≤ λ · d ≤ −π′(ρ;−d)− c′τ (ρ) · d

=⇒ π′(ρ; d) ≤ −π′(ρ;−d)

However because π is convex then π′(ρ; d) ≥ −π′(ρ;−d), So π′(ρ; d) = −π′(ρ;−d).

Because this holds for any d with
∑

v∈Ω dv = 0, ρ is in the relative interior of a linear

part of π, so π is differentiable at ρ.

Proof of Proposition 6

We start with a useful lemma.

Lemma 8. Assume τ is a solution and consider ρ1, ρ2 ∈ supp{τ} inducing prices

p1 < p2. For all ρ such that w is differentiable in direction ρ−ρ1 at ρ1 and indirection

ρ2 − ρ at ρ2 then we have that:

∑

p1≤v<p2

vρv +Bcτ (ρ, ρ1)− Bcτ (ρ, ρ2) ≤ 0
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Proof. Because ρ1, ρ2 ∈ supp{τ} proposition 7 implies there is a λ such that:

w(ρ1)− cτ (ρ1)− λ · ρ1 = w(ρ2)− cτ (ρ2)− λ · ρ2

=⇒ w(ρ1)− w(ρ) + cτ (ρ)− cτ (ρ1)− λ · (ρ1 − ρ) = w(ρ2)− w(ρ) + cτ (ρ)− cτ (ρ2)− λ · (ρ2 − ρ)

Furthermore, as welfare is differentiable in direction ρ − ρ1 at ρ1 and indirection

ρ2 − ρ at ρ2 we have that:

w′(ρ1) · (ρ1 − ρ)− c′τ (ρ1) · (ρ1 − ρ) ≥ λ · (ρ1 − ρ)

w′(ρ2) · (ρ2 − ρ)− c′τ (ρ2) · (ρ2 − ρ) ≤ λ · (ρ2 − ρ)

Combining:

w(ρ1)− w(ρ) + cτ (ρ)− cτ (ρ1)− w′(ρ1) · (ρ1 − ρ) + c′τ (ρ1) · (ρ1 − ρ)

≤w(ρ2)− w(ρ) + cτ (ρ)− cτ (ρ2)− w′(ρ2) · (ρ2 − ρ) + c′τ (ρ2) · (ρ2 − ρ)

⇐⇒ − Bw(ρ, ρ1) + Bcτ (ρ, ρ1) ≤ −Bw(ρ, ρ2) + Bcτ (ρ, ρ2)

⇐⇒
∑

p1≤v<p2

vρv +Bcτ (ρ, ρ1)− Bcτ (ρ, ρ2) ≤ 0

Low price-inducing posteriors must be indecisive (proposition 3). Seller has a higher

profit than uniform level if low prices are not indecisive other higher supported price.

With N = 3 this happens if (a) ρ1 ∈ P1 ∩ P2 \ P3 and ρ3 ∈ P3 \ (P2 ∪ P1), or if (b)

ρ1 ∈ P1 ∩ P3 \ P2 and ρ2 ∈ P2 \ (P3 ∪ P1). We show that in both cases there is a

variation increasing welfare net of costs.

Case a). Assume that ρ3, ρ1 ∈ supp{τ} such that ρ3 ∈ P3\(P2∪P1), ρ1 ∈ P1∩P2\P3.

And consider a ρ2 ∈ P2 ∩ P3 such that ρ1 + α(ρ3 − ρ2) ∈ P1 ∩ P2 for some α > 0.

Claim 1. ρ12 = ρ13.

Proof. ρ1 ∈ P1 ∩ P2 so: v1 = v2(1− ρ11) ⇐⇒ v2ρ
1
1 = v2 − v1.
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Likewise ρ1 + α(ρ3 − ρ2) ∈ P1 ∩ P2:

v1 = v2(1− ρ11 + α(ρ12 − ρ13))

⇐⇒ v2ρ
1
1 + v2α(ρ

1
2 − ρ13) = v2 − v1

⇐⇒ v2α(ρ
1
2 − ρ13) = 0 ⇐⇒ ρ12 = ρ13

Claim 2. ρ2 ∈ ∆(Ω).

Proof. let ρ12 = ρ13, and consider x s.t. ρ32 = ρ33 − x and ρ22 = ρ23 + x. Because

ρ2 ∈ P2 ∩ P3:

(ρ33 − x)v3 = v2(ρ
3
3 + ρ23) ⇐⇒ x = ρ33 −

v2
v3
(ρ33 + ρ23) ∈ (0, ρ33)

And so ρ12 = ρ13, ρ
2
2 = (1− v2/v3)(ρ

2
2 + ρ32) and ρ32 =

v2
v3
(ρ33 + ρ23).

Claim 3. ρ3, ρ1 ∈ supp{τ} =⇒ v2ρ
2
3 ≤ (c′τ (ρ1)− c′τ (ρ2)) · (ρ3 − ρ2)− Bcτ (ρ3, ρ2)

Proof. ρ1, ρ1 + α(ρ3 − ρ2) ∈ P1 ∩ P2, therefore welfare is differentiable at ρ1 in

direction ρ3 − ρ2. By proposition 7, for the dual solution λ we have that:

(w′(ρ1)− c′τ (ρ1)) · (ρ3 − ρ2) ≤ λ · (ρ3 − ρ2)

ρ3 ∈ supp{τ} and ρ2 /∈ supp{τ}, by proposition 7:

w(ρ3)− cτ (ρ3)− λ · ρ3 ≥ w(ρ2)− cτ (ρ2)− λ · ρ2

⇐⇒ w(ρ3)− cτ (ρ3)− (w(ρ2)− cτ (ρ2)) ≥ λ · (ρ3 − ρ2)

Combining yields:

w′(ρ1) · (ρ3 − ρ2)− w(ρ3) + w(ρ2) ≤ c′τ (ρ1) · (ρ3 − ρ2)− cτ (ρ3) + cτ (ρ2)

⇐⇒ v2ρ
2
3 + v1(ρ

1
3 − ρ12)ρ

3
2 ≤ (c′τ (ρ1)− c′τ (ρ2)) · (ρ3 − ρ2)− cτ (ρ3) + cτ (ρ2) + c′τ (ρ2) · (ρ3 − ρ2)

⇐⇒ v2ρ
2
3 ≤ (c′τ (ρ1)− c′τ (ρ2)) · (ρ3 − ρ2)− Bcτ (ρ3, ρ2)
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Also, v2ρ
2
2 ≤ Bcτ (ρ2, ρ3) =⇒ , using above:

v2ρ
2
3 ≤ c′τ (ρ1) · (ρ3 − ρ2)− cτ (ρ3) + cτ (ρ2)

⇐⇒ v2ρ
2
3 ≤ (c′τ (ρ1)− c′τ (ρ3)) · (ρ3 − ρ2) + Bcτ (ρ2, ρ3)

Claim 4 Assume that Cτ (ρ) = κτ∥ρ− ρ0∥
2, with κτ > 0. Then

(c′τ (ρ1)− c′τ (ρ2)) · (ρ3 − ρ2)− Bcτ (ρ3, ρ2) < 0

Proof. We have that Bcτ (ρ3, ρ2) = κτ∥ρ3 − ρ2∥
2 and that C ′

τ (ρ) = 2κτ (ρ− ρ0). So:

2κτ (ρ1 − ρ2) · (ρ3 − ρ2)− κτ (ρ3 − ρ2) · (ρ3 − ρ2)

∝

(

ρ1 −
ρ2 + ρ3

2

)

· (ρ3 − ρ2)

=(ρ31 − ρ33 +
x

2
)x− (ρ21 − ρ23 −

x

2
)x

∝ρ31 − ρ21 + ρ23 − ρ33 + x = ρ31 − ρ21 + ρ23 −
v2
v3
(ρ33 + ρ23)

We know price v2 is strictly better than price v3 at ρ1. Therefore:

ρ31 − ρ21 < ρ31(1−
v3 − v2

v2
) = ρ31

2v2 − v3
v2

Furthermore, because price v3 is strictly than v2 at ρ3:

ρ23
v3 − v2

v3
−

v2
v3
ρ33 < ρ33

(
v3 − v2

v2

v3 − v2
v3

−
v2
v3

)

= ρ33
v23 − 2v2v3

v2v3
= ρ33

v3 − 2v2
v2

Because price v1 strictly worse than price v2 at ρ3, then one has ρ31 < v1
v3

< ρ33.

Therefore: (ρ31 − ρ33)
2v2−v3

v2
< 0 ⇐⇒ 2v2 > v3.

That is, whenever 2v2 > v3, the variation saves cost, and, therefore, the planner

solution gives no profit to the seller.

Case b). ρ1 ∈ P1 ∩ P3 \ P2 and ρ2 ∈ P2 \ (P3 ∪ P1). ρ1 ∈ P1 ∩ P3 \ P2 implies that

ρ31 =
v1
v3

and that (1− ρ11) < ρ31
v3
v2

= v1
v2
. Using lemma 8 on ρ = (0, 1− v1

v3
, v1
v3
), it must
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be that:

Bcτ (ρ, ρ1) ≤ Bcτ (ρ, ρ2) ⇐⇒ ∥ρ− ρ1∥
2 ≤ ∥ρ− ρ2∥

2

We will show that ∥ρ − ρ1∥
2 > ∥ρ − ρ2∥

2 for all feasible ρ1, ρ2. ∥ρ − ρ1∥
2 can be

arbitrarily close to ∥ρ− ρ̃∥2 where ρ̃ = (1− v1
v2
, v1
v2
− v1

v3
, v1
v3
) is the posterior that makes

the seller indifferent between all three prices.

We show that maxρ2 ∥ρ − ρ2∥
2 = ∥ρ − ρ̃∥2 for ρ2 ∈ P2 and for which price

v3 is preferred to v1. This problem maximizes a convex function over a polytope.

Therefore, the maximum is achieved at one of the corners of the polytope. It has

three corners: ρ, ρ̃ and ρ2,3 = (0, 1 − v2
v3
, v2
v3
). We compare the distance of our two

candidates ρ̃.

∥ρ− ρ2,3∥
2 = (

v2
v3

−
v1
v3
)2 + (

v1
v3

−
v2
v3
)2 = 2(

v2 − v1
v3

)2

∥ρ− ρ̃∥2 =

(

1−
v1
v2

)2

+

(

1−
v1
v3

−
v1
v2

+
v1
v3

)2

= 2

(
v2 − v1

v2

)2

Because v2 < v3, ∥ρ− ρ2,3∥
2 < ∥ρ− ρ̃∥2. Hence, ρ̃ is the maximizer.

Proof of Proposition 8

(⇒) If ρ is solution to (SP), proposition 7 shows π is differentiable at ρ, and by

optimality feasible directional derivatives are negative:

(π′(ρ)− c′τ (ρ)) · d ≤ λ · d

Because d and −d are feasible directions one has:

∀ d s.t.
∑

v

dv = 0, (π′(ρ)− c′τ (ρ)) · d = λ · d
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Now pick ρ that solves (SP). For all ρ′ ∈ ∆(Ω) (remark
∑

v∈Ω(ρ
′v − ρv) = 0):

π(ρ)− cτ (ρ)− λ · ρ ≥ π(ρ′)− cτ (ρ
′)− λ · ρ′

=⇒ π(ρ)− cτ (ρ) ≥ π(ρ′)− cτ (ρ
′)− (π′(ρ)− c′τ (ρ)) · (ρ

′ − ρ)

=⇒ cτ (ρ
′)− cτ (ρ)− c′τ (ρ) · (ρ

′ − ρ) ≥ π(ρ′)− π(ρ)− π′(ρ) · (ρ′ − ρ)

⇐⇒ Bcτ (ρ
′, ρ) ≥ Bπ(ρ′, ρ)

And if ρ1 and ρ2 both solves (SP) then:

π(ρ1)− cτ (ρ1)− λ · ρ1 = π(ρ2)− cτ (ρ2)− λ · ρ2 ⇐⇒ Bcτ (ρ2, ρ1) = Bπ(ρ2, ρ1)

Using lemma 3 then Bπ(ρ′, ρ) =
∑

v∈Ω (us(a(ρ
′), v)− us(a(ρ), v)) ρ

′v. In particular

for ρ and ρ′ both solutions:

∑

v∈Ω

(us(a(ρ
′), v)− us(a(ρ), v)) ρ

′v = Bcτ (ρ
′, ρ)

(⇐) Consider a feasible distribution τ such ∀ρ ∈ supp{τ} and ∀ρ′ ∈ ∆(Ω):

Bπ(ρ′, ρ) ≤ Bcτ (ρ
′, ρ)

And ∀ρ1, ρ2 ∈ supp{τ}: Bπ(ρ2, ρ1) = Bcτ (ρ2, ρ1). Then, for a ρ1 ∈ supp{τ}:

ρ1 ∈ argmax
ρ′∈∆(Ω)

{Bπ(ρ′, ρ1)− Bcτ (ρ
′, ρ1)}

⇐⇒ ρ1 ∈ argmax
ρ′∈∆(Ω)

{π(ρ′)− cτ (ρ
′)− (π′(ρ1)− c′τ (ρ1)) · ρ

′}

Because at ρ′ = ρ1 the upperbound 0 of the problem is achieved. The equivalence

follows from constant terms not affecting the argmax. Also any ρ2 ∈ supp{τ} solves

this problem. So picking λ = π′(ρ1)− c′τ (ρ1) yields proposition 7 statement.
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Proof of Corollary 1

Consider a solution τ . Proposition 8 is equivalent to:

∀ρ ∈ supp{τ}, supp{τ} ⊂ argmax
ρ′∈∆(Ω)

{Bπ(ρ′, ρ)− Bcτ (ρ
′, ρ)}

For any two supported posteriors ρ1, ρ2, the first order condition implies that for all

d such that
∑

v d
v = 0:

(π′(ρ1)− c′τ (ρ1)) · d = (π′(ρ2)− c′τ (ρ2)) · d

Or equivalently, ∀ρ1, ρ2 ∈ supp{τ}, there is a φ1,2 ∈ R such that:

π′(ρ1)− c′τ (ρ1) = π′(ρ2)− c′τ (ρ2) + φ1,2







1
...

1







So gradients of marginal value minus marginal costs at supported posteriors are

equal up to a translation.

To simplify the notations, let supported posteriors ρ1, ρ2 lead to prices p1, p2 and

let v be the lowest state in Ω. Consider the case where p1 > p2 remark that:

∂π

∂ρv
(ρ1)−

∂π

∂ρv
(ρ1) = p11{v≥p1}

∂π

∂ρv
(ρ2)−

∂π

∂ρv
(ρ2) = p21{v≥p2, p2 ̸=v}

Using the equality of gradients up to a translation one has that for all supported

posteriors ρ1 and ρ2 inducing prices p1 > p2 and for all v ∈ Ω:

∂cτ
∂ρv

(ρ1)−
∂cτ
∂ρv

(ρ2)−
∂cτ
∂ρv

(ρ1) +
∂cτ
∂ρv

(ρ2) = p11{v≥p1} − p21{v≥p2, p2 ̸=v}

Proof of Proposition 9

(⇒) Assume τ is a solution to (P2), so that each ρ ∈ supp{τ} solves (SP2). In partic-

ular, for ρk the objective of (SP2) is differentiable and so ∀d such that
∑

v∈Ω dv = 0:
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(w′(ρ)− c′τ (ρ)) · d =
∑

v∈Ω λvdv. Hence, ∀ρj ∈ ∆(Ω) :

w(ρj)− cτ (ρj)− λ · (ρj − ρk) ≤ w(ρk)− cτ (ρk)

=⇒ w(ρj)− w(ρk)− w′(ρk) · (ρj − ρk) ≤ cτ (ρj)− cτ (ρk)− c′τ (ρk) · (ρj − ρk)

⇐⇒
∑

pj≤v<pk

vρvj ≤ Bcτ (ρj, ρk)

And with equality if ρj ∈ supp{τ} as it solves (SP2) as well.

(⇐) Assume τ is such that:

1. ∀ρ1 ∈ supp{τ} :
∑

p1≤v<pk

vρv1 = Bcτ (ρ1, ρk)

2. ∀ρ2 ∈ ∆(Ω) :
∑

p2≤v<pk

vρv2 ≤ Bcτ (ρ2, ρk)

Therefore we have:

supp{τ} ⊂ argmax
ρi∈∆(Ω)

{
∑

pi≤v<pk

vρvi − Bcτ (ρi, ρk)

}

=argmax
ρ∈∆(Ω)

{w(ρ)− w(ρk)− w′(ρk) · (ρ− ρk)− cτ (ρ) + cτ (ρk) + c′τ (ρk) · (ρ− ρk)}

=argmax
ρ∈∆(Ω)

{w(ρ)− cτ (ρ)− (w′(ρk)− c′τ (ρk)) · ρ+ constant terms }

Therefore, all ρ ∈ supp{τ} solve SP2 for λ = w′(ρk)− c′τ (ρk), and so τ solves P2.

.1 Working case of Entropy mutual information

C(τ) =

∫

∆

H(ρ0)−H(ρ)dτ(ρ)

=

∫

∆(Ω)

n∑

i=1

(ρi log(ρi)− ρi0 log(ρ
i
0))dτ(ρ)
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B−H(ρ1, ρ2) = DKL(ρ1∥ρ2) =
∑

i

ρi1 log

(
ρi1
ρi2

)

References

Ali, S. N., Lewis, G. & Vasserman, S. (2020), Voluntary disclosure and person-

alized pricing, in ‘Proceedings of the 21st ACM Conference on Economics and

Computation’, pp. 537–538.

Barreto, D. M., Ghersengorin, A. & Augias, V. (2022), ‘Price discrimination with

redistributive concerns’.

Bergemann, D., Brooks, B. & Morris, S. (2015), ‘The limits of price discrimination’,

American Economic Review 105(3), 921–57.

Caplin, A. (2016), ‘Measuring and modeling attention’, Annual Review of Economics

8, 379–403.

Caplin, A. & Dean, M. (2013), Behavioral implications of rational inattention with

shannon entropy, Technical report, National Bureau of Economic Research.

Daskalakis, C., Deckelbaum, A. & Tzamos, C. (2017), ‘Strong duality for a multiple-

good monopolist’, Econometrica 85(3), 735–767.

De Cornière, A., Mantovani, A. & Shekhar, S. (2024), ‘Third-degree price discrimi-

nation in two-sided markets’, Management Science .

de Oliveira, H. (2018), ‘Blackwell’s informativeness theorem using diagrams’, Games

and Economic Behavior 109, 126–131.

Devine, B. R. & Munoz-Garcia, F. (2018), Nonlinear pricing with costly information

acquisition, Technical report, Working Paper.

Dworczak, P. & Kolotilin, A. (2024), ‘The persuasion duality’, Theoretical Eco-

nomics 19(4), 1701–1755.

Dworczak, P. & Martini, G. (2019), ‘The simple economics of optimal persuasion’,

Journal of Political Economy 127(5), 1993–2048.

47



Elliott, M., Galeotti, A., Koh, A. & Li, W. (2022), ‘Matching and information design

in marketplaces’, Available at SSRN .

Ely, J., Frankel, A. & Kamenica, E. (2015), ‘Suspense and surprise’, Journal of

Political Economy 123(1), 215–260.

Frankel, A. & Kamenica, E. (2019), ‘Quantifying information and uncertainty’,

American Economic Review 109(10), 3650–80.

Gentzkow, M. & Kamenica, E. (2014), ‘Costly persuasion’, American Economic

Review 104(5), 457–62.

Haghpanah, N. & Siegel, R. (2022), ‘The limits of multiproduct price discrimination’,

American Economic Review: Insights 4(4), 443–58.

Hidir, S. & Vellodi, N. (2021), ‘Privacy, personalization, and price discrimination’,

Journal of the European Economic Association 19(2), 1342–1363.

Ichihashi, S. & Smolin, A. (2022), ‘Data collection by an informed seller’, arXiv

preprint arXiv:2204.08723 .

Kamenica, E. & Gentzkow, M. (2011), ‘Bayesian persuasion’, American Economic

Review 101(6), 2590–2615.

Le Cam, L. (1996), ‘Comparison of experiments: A short review’, Lecture Notes-

Monograph Series pp. 127–138.

Maćkowiak, B., Matějka, F. &Wiederholt, M. (2018), ‘Survey: Rational inattention,

a disciplined behavioral model’, Available at SSRN 3266436 .
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