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Abstract. We study the pricing of homogeneous products sold to customers who

consider different sets of suppliers. We seek prices that are stable in the sense that no

Ąrm wishes to undercut any rival or to raise its price when rivals have a subsequent

opportunity to undercut it. We identify stable and dispersed prices that emerge from

both collective choice and non-cooperative pricing games, and derive predictions for

prices across several price-consideration speciĄcations. We show how the implications

for Ąrms and customers compare to those generated by conventional approaches.

Seemingly identical products are regularly offered at different yet persistent prices. We offer a

theory of price formation centered on the idea that stable pricing positions are robust to threats

of undercuts from rivals. We use our approach to predict stable and dispersed prices.

Strategic accounts of price-setting date back to canonical Bertrand models of competition,

where the core incentive of a Ąrm is to lower its price sufficiently to ŞundercutŤ rivals. The

simplest case is typically understood to lead to marginal-cost pricing. Such prices are stable in

the sense that no Ąrm would undercut any rival further, but of course they are not dispersed.

An established approach extends this setting by studying a situation with heterogenous price

consideration: different buyers evaluate different prices. A price-setting Ąrm faces a trade-off:

undercut rivals to sell to buyers who compare many prices, or elevate price to proĄt from those

who do not. Modeling price-setting in the standard way (a non-cooperative single-stage game)

results in equilibrium prices that are set randomly via mixed strategies. The realized prices

are dispersed, but lack stability: upon seeing cheaper ĄrmsŠ prices, a higher-priced competitor

regrets its choice and wishes to undercut a rival.

We provide a theory that delivers prices that are both stable and dispersed. Our approach

recognizes the reality that sellers are often able to slash prices or to offer sales easily so that

dropping a price is easier or can be executed more quickly than pushing it upwards. It is exactly

that threat that disciplines the prices that we predict: if a Ąrm were to allow its price to creep

up then it would trigger a rival to undercut it.

1We thank Simon Anderson, Mark Armstrong, Dan Bernhardt, Alessandro Bonatti, Tim Cason, Yongmin
Chen, Alex de Corni‘ere, Andrea Galeotti, Roman Inderst, Justin Johnson, Jeanine Miklós-Thal, José Moraga-
González, Paul Heidhues, Maarten Janssen, Volker Nocke, Martin Pesendorfer, Michael Riordan, Robert Som-
ogyi, Greg Taylor, Juuso Välimäki, Hal Varian, Chris Wilson, Dimitrios Xefteris, Jidong Zhou, and others for
helpful comments. Ronayne thanks Deutsche Forschungsgemeinschaft for support (CRC TRR 190 280092119).
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The demand-side context is a distribution over consideration sets. Such a set is a list of Ąrms;

the distribution speciĄes the mass of buyers who consider the prices of those Ąrms.

We seek ŞstableŤ prices that satisfy two criteria. Firstly, they are Şundercut proofŤ so that

no Ąrm can proĄtably undercut a cheaper competitor. Secondly, we require Şcreep resistanceŤ

which means that no Ąrm can proĄt from raising its price by a little given that, were it to do

so, Ąrms would have a subsequent chance to cut prices in response.

Undercut-proof proĄles of prices are (under mild regularity conditions) entirely dispersed: each

Ąrm charges a different price. The key proĄles (one for each ordering of Ąrms) are ŞmaximalŤ

in the sense that no price can be raised without violating undercut-proofness. At least one

maximal proĄle is optimal for the industry and, in several settings, it is unique.

An undercut-proof proĄle of prices is resistant to creep if no Ąrm can increase its proĄt by

raising its price slightly if others can proĄtably respond with a lower price. Most obviously,

prices must be maximal if they satisfy this criterion. We must then investigate a deviant Ąrm

that allows its price to creep further upward from a maximal undercut-proof proĄle. This

requires us to study games in which Ąrms are offered the opportunity to cut their prices in

response. We construct equilibria of such price-cutting games and check to see if the deviant

Ąrm gains from the creep upward in its price. From this work we Ąnd a sufficient condition

on the distribution over consideration sets for the existence of a stable price proĄle: this is

a maximal undercut-proof proĄle of prices that satisĄes creep resistance. Our condition is

satisĄed by a wide set of speciĄcations, including those we later study in depth.

We then ask: do stable prices emerge from non-cooperative interaction? One simple imple-

mentation of a price-formation game that is consistent with our approach has two stages of

play: Ąrms simultaneously set initial price positions and then have a simultaneous opportu-

nity to lower their prices, prior to purchases. The second stage is readily interpreted as the

opportunity for Ąrms to engage in ŞĆash salesŤ relative to their regular prices; the Ąrst stage

allows those regular prices to be established non-cooperatively. We look for prices played as

pure strategies on the path of a subgame-perfect equilibrium of such a game. In several settings

we show that stable, disperse, and industry-optimal prices emerge from such play.

In two broad classes of consideration-set speciĄcations we sharpen our results. In one of our

settings the mass of customers who consider each set of prices depends only on the number

of prices, and so Ąrms are ŞexchangeableŤ across similarly sized consideration sets. We allow,

in addition, for different sizes of ĄrmsŠ captive audiences as well as retaining Ćexibility for

the relative importance of different consideration-set sizes. We identify a unique industry-

optimal stable price proĄle in which Ąrms with larger captive bases set higher prices. In the

second of our settings we allow for greater asymmetry, so that some Ąrms are more likely to lie

within any size of consideration set and so beneĄt from higher awareness. There, however, we

specify consideration across Ąrms to be independent, as in some popular models of informative

advertising. We Ąnd that in an industry-optimal stable price proĄle the highest price is charged

by the Ąrm that enjoys the greatest awareness amongst customers.
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We also expose the complexities of the environment. We do that via three triopoly examples.

The Ąrst example Ąnds industry-optimal stable prices from which one Ąrm can proĄtably deviate

with a non-local increase (a jump rather than a creep) in its price; the second example shows

that multiple industry-optimal proĄles can be supported by non-cooperative pure-strategy play;

and the third shows that stable prices are not always ordered by natural notions of Ąrm size.

A primitive for our work is the distribution of consideration sets. This can in principle be

inĆuenced by the actions of Ąrms and customers, and so we also illustrate how our framework

can be used to study such actions, via two duopoly examples. Firstly, we allow Ąrms to inĆuence

awareness via costly advertising. We Ąnd that symmetric Ąrms make different advertising

decisions, resulting in a marked dispersion of their stable prices. Secondly, we allow costly

buyer search. Search decisions are strategic complements (search by others increases dispersion,

raising the beneĄt of another quotation), which readily generates multiple equilibria. A (non-

knife-edge) equilibrium with high search exhibits substantial stable price dispersion.

Related Literature. The environment of price-setting Ąrms, homogeneous goods, and het-

erogeneous buyer consideration is a classic one. The focal modeling items are buyersŠ Şconsid-

eration sets,Ť a term originating in the marketing literature and used by many in economics

including (for example) Eliaz and Spiegler (2011) and Manzini and Mariotti (2014).

The workhorse model of price-setting in this environment is a single-stage non-cooperative game

in which all Ąrms simultaneously set prices, where founding contributions include Varian (1980),

Rosenthal (1980), Narasimhan (1988), and Baye, Kovenock, and de Vries (1992). Armstrong

and Vickers (2022) made substantial progress and solved that game under several consideration

structures, interpreting the equilibrium strategies as the Şpatterns of competitive interaction.Ť

The consideration-set demand structure famously leaves a single-stage pricing game with no

pure-strategy Nash equilibrium, and so price dispersion is typically interpreted as the outcome

from the realizations of mixed strategies.2 Such predictions are unstable in the sense that

realized prices are not best replies ex post. A literal interpretation of repeated play of the game

implies rapidly Ćuctuating prices. Instead, we harness ĄrmsŠ ability (and credible threat) to

cut quickly or discount a price, to arrive at stable outcomes. The prices we predict are both

undercut-proof and resistant to price increases that can subsequently be undercut. When stable

prices appear on a gameŠs equilibrium path, they necessarily do so in pure strategies.

One way to connect our predictions to those of the traditional approach is to lean on an

interpretation (inspired by Varian, 1980 and Baye, Kovenock, and de Vries, 1992) of mixed-

strategy realizations being discounts from a higher ŞregularŤ price. Rather than describing any

such Ćash sales behavior, our approach can explain how underlying and stable regular prices

originate as a function of buyer consideration, and that they themselves are dispersed.

2To illustrate, consider the structure of best replies in a duopoly: Ąrms undercut each other to capture buyers
who consider both prices and so walk down a staircase of prices; but at a sufficiently low price one Ąrm abandons
the shoppers and elevates its price back up to exploit buyers who only consider their price. This ŞEdgeworth
cycleŤ logic (Maskin and Tirole, 1988a,b) rules out pure-strategy equilibria.
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Our approach can also be viewed as a weakening of a commitment assumption. A Ąrm is

fully committed to a price point when it cannot adjust it after setting it, at all, upwards or

downwards. In that case, a mixed-strategy prediction can rationalize persistent prices: Ąrms

want to undercut rivalsŠ realized prices but cannot. In contrast, we assume (at most) one-sided

commitment. Firms are always free to lower their prices to undercut a rival at any time, but

they face less upward Ćexibility: any such move gives rivals a further opportunity to undercut.

Empirical Considerations. Empirical studies have identiĄed extensive price dispersion. For

example, Kaplan and Menzio (2015) used the large Kilts-Nielsen panel of 50,000 households to

show that the standard deviation (relative to the mean) of prices at brick-and-mortar stores

ranges from 19% (when products are deĄned narrowly) to 36% (when deĄned broadly).

Despite both cross-sectional and inter-temporal variation in price,3 prices are well-known to be

sticky or persistent in many markets. Using data from the Bureau of Labor Statistics, Nakamura

and Steinsson (2008) estimated the median duration of a (regular) price in the US to be between

8Ű11 months. The European Central Bank (ECB, 2005) found the Şmedian Ąrm changes its

price once a year.Ť Using Norwegian retail data, Wulfsberg (2016) and Moen, Wulfsberg, and

Aas (2020) found a high persistence of price dispersion: prices on average last 6Ű16 months

depending on the product category and macro environment, and stores charging prices in a

particular quartile of the distribution stay there with high probability (0.83Ű0.93) month-to-

month. Remarkably, Gorodnichenko, Sheremirov, and Talavera (2018) examined daily online

pricing data and reported (pp. 1764Ű1766) that Şalthough online prices change more frequently

than offline prices, they nevertheless exhibit relatively long spells of Ąxed prices.Ť SpeciĄcally,

prices are Ąxed for long spells of 7Ű20 weeks and Şdo not adjust every instant.Ť They concluded

that prices tend to vary in the cross section rather than over time.4

In principle, long price spells could be because of a paucity of opportunity for Ąrms to change

their prices. However, some evidence suggests Ąrms do not change their prices every time they

can. For example, 43% of Euro-area Ąrms reviewed prices at least four times a year, but only

14% changed price that often (ECB, 2005, see also ECB, 2019).

These applied considerations motivate a theory of stable price dispersion. Our approach posits

that Ąrms are free to cut price and undercut rivals at any point, but that it can be harder to

raise a price once it is set or to prevent price-cutting responses. This gels with an intuition

that retailers can typically slash prices, by even large amounts, at short notice.

3For example, Kaplan and Menzio (2015) decomposed the variation and found the intertemporal component
(their ŞtransactionŤ component) accounted for a substantial fraction, but less than half. Also with Kilts-Niesen
data, Kaplan, Menzio, Rudanko, and Trachter (2019) reported that Şa sizable fraction of the variance of prices
for the same good is caused by persistent differences in the price that different stores set for that good [...].Ť
4Many industry-speciĄc studies are also consistent with this summary, e.g., those on prescription drugs
(Sorensen, 2000), illicit drugs (Galenianos, Pacula, and Persico, 2012), memory chips (Moraga-González and
Wildenbeest, 2008), and textbooks (Hong and Shum, 2010). A contrasting conclusion was provided by Lach
(2002), who emphasized that (p. 433) Şstores move up and down the cross-sectional price distribution.Ť And in
some industries, gasoline for example, substantial dynamic price movements have been documented (see, e.g.,
Chandra and Tappata, 2011; Pennerstorfer, Schmidt-Dengler, Schutz, Weiss, and Yontcheva, 2020).
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One reason for this could be that customers may see attempts to charge above some initial

price as unfair or socially unacceptable. It may be that an initial price sets a reference point

for loss-aversion arguments (Kahneman and Tversky, 1979), which suggests a higher elasticity

of demand above the initial price than below (Ahrens, Pirschel, and Snower, 2017).5 The role

of fairness concerns is central to the work of Kahneman, Knetsch, and Thaler (1986). Relating

their ideas to Okun (1981), they reported Şthe hostile reaction of customers to price increases

that are not justiĄed by increased costs . . . Ť6 Firms are not ignorant of these concerns: the

ECB reports cited above found that a ĄrmŠs Şimplicit contractŤ with their customers (that their

prices will not rise) was a primary reason behind the observed price stickiness.7 Additionally, in

some markets direct legal constraints force a Ąrm to meet any published offer or to limit price

rises. For example, in a study of dispersed prices for prescription drugs, Sorensen (2000, p. 837)

reported that Şprice-posting legislation dictates that any posted price must be honored at the

request of the consumer.Ť8 In the gasoline market, Obradovits (2014) documented regulations

that prohibited price rises (except once a day at noon), while price cuts were freely permitted.9

Plan of the Paper. We now illustrate our ideas in a duopoly (Section 1). We then develop

our theory (Sections 2 and 3) and apply it to two classes of consideration: exchangeability

and independent awareness (Sections 4 and 5). We study limitations in triopoly settings (Sec-

tion 6), before closing with two consideration-endogenizing applications (Section 7). Proofs and

extensions appear in main (Appendix A) and supporting (Appendices B and C) supplements.

1. A Duopoly Illustration

Consider a homogeneous-good, zero-cost duopoly. The price of Ąrm i ∈ ¶1, 2♢ is pi ∈ [0, v].

Each customer is interested in obtaining a single unit and is willing to pay at most v > 0 for

it. A mass λi > 0 of customers consider only i and so are ŞcaptiveŤ to that Ąrm, while λS > 0

ŞshoppersŤ consider both prices and buy from a cheapest Ąrm.

We begin by deriving the set of Şundercut proofŤ prices. Trivially, of course, two zero prices

are undercut-proof. Otherwise, for strictly positive prices to be undercut proof we need them

to differ and to be sufficiently far apart. For the alternative rankings of the two prices, the

corresponding Şundercut proofnessŤ constraints are

p1λ1 ≥ p2(λ1 + λS)
︸ ︷︷ ︸

if p1>p2

or p2λ2 ≥ p1(λ2 + λS)
︸ ︷︷ ︸

if p2>p1

. (1)

5Relatedly, marketing research documents how Şadvertised reference pricesŤ set value perceptions and purchase
intentions, e.g., Urbany, Bearden, and Weilbaker (1988); Lichtenstein, Burton, and Karson (1991); Grewal,
Monroe, and Krishnan (1998); Alford and Engelland (2000); Kan, Lichtenstein, Grant, and Janiszewski (2013).
6The importance of fairness considerations in pricing is central to many marketing studies (e.g., Campbell, 1999,
2007; Bolton, Warlop, and Alba, 2003; Xia, Monroe, and Cox, 2004).
7Of course prices sometimes rise, but typically with inĆation, unlike cuts (e.g., Nakamura and Steinsson, 2008).
8Charging ŞoversŤ at the point of sale can also fall under deĄnitions of deceptive pricing. For example, the UKŠs
Advertising Standards Authority advises that a product should be available at its listed price.
9Price-control and proĄt-control laws (which are often temporary measures) also typically impose frictions,
explicitly or implicitly, on upwards but not downwards price movements.
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The left-hand side of each inequality is earned by the higher-price Ąrm from its captive cus-

tomers; the right-side reĆects the extra sales to shoppers by undercutting a cheaper competitor.

Pairs of prices that satisfy one of the (mutually exclusive) inequalities are undercut proof. But

what if a Ąrm allows its price to creep upward? If there is slack in the relevant no-undercutting

constraint the cheaper Ąrm can raise its price (locally) and neither Ąrm would wish to cut price

in response. Similarly, if the higher price Ąrm prices strictly below v then its price can also

creep up without prompting an undercut. For Şcreep resistanceŤ we need undercut-proof prices

to be as high as possible or ŞmaximalŤ and so

p1 = v and p2 =
vλ1

λ1 + λS︸ ︷︷ ︸
if p1>p2

or p1 =
vλ2

λ2 + λS

and p2 = v
︸ ︷︷ ︸

if p1<p2

. (2)

If λ1 > λ2 then the Ąrst pair of prices in eq. (2) generates strictly more proĄt for each Ąrm than

the second, and so is an Şindustry optimalŤ pair amongst undercut-proof prices.

Restricting attention to the two maximal price pairs reported in eq. (2), we now ask: can the

lower-price Ąrm deviate and do better by creeping its price further upward (and so break the

no-undercutting constraint) given that its rival has a subsequent opportunity to cut its price?

If the rival is uniquely able to respond then (of course) that rival will take that opportunity to

undercut and so the deviant Ąrm will lose the sales of shoppers.10 If the creep upward in price

is sufficiently small then this loss in sales to shoppers ensures that the deviant Ąrm performs

strictly worse. In this sense, both maximal price pairs are creep-resistant.

Suppose instead that both Ąrms are able to engage in price cuts. Here we must study a

simultaneous-move price-cutting game. Consider the Ąrst pair of maximal undercut-proof prices

from eq. (2) and a move upward of ∆ > 0 in the second (and cheaper) ĄrmŠs price. The two

Ąrms choose Ąnal prices p̃1 ∈ [0, v] and p̃2 ∈ [0, p2 + ∆]. If ∆ > 0 is not too large then this

game has a unique mixed-strategy Nash equilibrium in which both Ąrms mix continuously over

the interval [p2, p2 + ∆) with residual atoms at v and p2 + ∆ respectively, giving Ąrms expected

proĄts precisely equal to those obtained from the original undercut-proof prices. We conclude

that maximal undercut-proof prices are creep resistant, and so (as we deĄne it) stable.

If λ1 ≥ λ2 then the argument above holds for ∆ of any size. This implies a stronger result:

the Şindustry optimalŤ prices in eq. (2) are played as pure strategies on the path of a subgame

perfect equilibrium of a two-stage game in which Ąrms adopt regular price positions (in the Ąrst

stage) and then are free to engage in price cuts (in the second stage). Notably, that logic is not

true of λ1 < λ2: the second (and cheaper) Ąrm with the larger captive audience would prefer

to raise its regular price to v, despite the subsequent undercutting. We conclude (for λ1 ̸= λ2)

that the pair of industry-optimal, dispersed and stable prices in eq. (2) is also the unique one

supported via the pure-strategy play of a subgame-perfect equilibrium.

10Precisely, the unique best reply is to match the deviatorŠs new price with the tie broken in the responderŠs
favor. The endogenous settlement of the tie-break in the spirit of Simon and Zame (1990) solves the standard
best-reply existence issue in Bertrand games, by making an ŞundercutŤ well-deĄned.
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2. A Model of Heterogeneous Price Consideration

The Economic Environment. On the supply side, n > 1 Ąrms indexed by i ∈ ¶1, . . . , n♢

produce a homogeneous product with the same constant marginal cost which, without (further)

loss of generality, we set to zero. A ĄrmŠs proĄt is its price multiplied by its sales.

On the demand side, each customer is willing to pay at most v > 0 for a single unit. A

customerŠs consideration set lists those Ąrms from whom they may buy. Each customer buys

from the cheapest Ąrm in their consideration set; ties can be broken in any interior way.

We write λ(B) : 2N 7→ R+ for the mass of customers considering Ąrms within B ⊆ ¶1, . . . , n♢,

and we write Bi = I[i ∈ B] ∈ ¶0, 1♢ for the indicator of whether Ąrm i is a member of B. We

also use the shorthand λi = λ(¶i♢) for the mass of those who are ŞcaptiveŤ to a single Ąrm i. To

set aside uninteresting cases, we assume that each Ąrm i has some captive customers (λi > 0)

and that a positive mass consider i together with at least one other Ąrm j ̸= i.11

In a classic Şcaptive and shopperŤ model a mass of λS ≡ λ(¶1, . . . , n♢) customers are ŞshoppersŤ

who consider every Ąrm; all other non-singleton consideration sets have zero mass. The latter

feature guarantees that a single-stage pricing game with symmetric Ąrms has (inĄnitely) many

equilibria.12 In their analysis of a game in which consideration sets are formed randomly and

symmetrically, Johnen and Ronayne (2021) noted the property of ŞtwonessŤ meaning that all

consideration pairs have positive mass: λ(¶i, j♢) > 0 for i ̸= j. A symmetric single-stage pricing

game has a unique equilibrium if and only if this holds. Our exposition simpliĄes appreciably

if we maintain this property as an assumption, and so (for convenience) we do so. (Our claims

hold without it, but our statements can become tedious.) Of course, the ŞtwonessŤ property

does not hold for a strict captive-and-shopper world (in which shoppersŠ comparisons are made

between all Ąrms) with n > 2 but we do, nevertheless, also handle that case (in Section 4).

Solution Concept (i): Stable Prices. Our novel approach is to seek prices that satisfy two

criteria. Firstly, prices should be Şundercut proofŤ so that no Ąrm strictly gains by undercutting

a cheaper competitor. Secondly, prices should be Şcreep resistantŤ so that no Ąrm proĄts from

a small move upward (a ŞcreepŤ in our terminology of price cuts and creeps) in its price given

that all Ąrms subsequently enjoy an opportunity to revise their prices downward. These two

criteria capture the ideas that prices can be easier to lower than to raise and that a Ąrm can

readily respond to competitors with a discount or special offer.

When a proĄle of prices (one price per Ąrm) satisfy these criteria, we call those prices Şstable.Ť

11If i is not considered with another Ąrm, then iŠs audience is entirely captive and it sets the monopoly price.
If there are no captive customers, then Bertrand competition forces all proĄts down to zero.
12Under asymmetry, two (smallest) Ąrms mix, while others charge v (Baye, Kovenock, and de Vries, 1992).
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DeĄnition (Stable Prices). Prices (one per Ąrm) are stable if they satisfy both (1) and (2):

(1) Undercut-proofness. Equivalently, in a game in which Ąrms have a simultaneous oppor-

tunity to lower prices there is a Nash equilibrium in which no Ąrm does so.

(2) Creep resistance. No Ąrm gains from a creep upward in its price, given that all Ąrms

would enjoy a subsequent opportunity to cut their prices. Formally, following a suffi-

ciently small increase in the price of a Ąrm i, consider a price-cutting game in which

Ąrms simultaneous choose whether to lower prices. That game has a Nash equilibrium

that gives a weakly lower expected proĄt to Ąrm i, relative to the equilibrium in (1).

Both criteria refer to a simultaneous-move game in which Ąrms may lower their prices from

some initial price positions. Later we Ąnd a unique Nash equilibrium for each relevant game.

Requirement (1) is weaker than pure-strategy Nash equilibrium, and so many price proĄles are

undercut-proof. Amongst this set, we might seek the highest prices that are best for ĄrmsŠ

proĄts. Such prices are (as we will conĄrm) candidates to meet requirement (2). Given suitable

conditions, we also show (in our results) something stronger: a further movement upwards in a

ĄrmŠs price (to a proĄle that is no longer undercut-proof) will be followed by a Nash equilibrium

of a simultaneous-move price-cutting game in which the relevant Ąrm does not gain.

Solution Concept (ii): Non-cooperative Price Formation. Our notion of resistance to

ŞcreepŤ in a ĄrmŠs price is limited to a small price rise. We might also investigate larger price

rises. Relatedly, we left open the nature of price formation: what if initial prices are chosen non-

cooperatively? We can model the non-cooperative formation and adjustment of prices using

several different games.13 The key feature is that the Ąnal adjustment opportunity available to

Ąrms is a downward price cut. This is most simply captured via a two-stage pricing game:

(i) Ąrms simultaneously choose their initial price positions; and then

(ii) Ąrms simultaneously choose whether to revise downward their prices.

As usual, ĄrmsŠ payoffs in this game are proĄts and they are assumed to be risk neutral.

The second stage allows Ąrms to offer ŞsalesŤ in the spirit of Varian (1980). Such sales are

readily interpreted as special offers relative to a ĄrmŠs regular price. However, in the classic

model of sales the determination of ĄrmsŠ regular prices is not addressed; those prices are

implicitly assumed to be equal to the monopoly price v that fully exploits any captive buyers.

A natural solution concept is subgame-perfect equilibrium. Such equilibria can include the

(both on-path and off-path) play of mixed strategies. However, we seek (and will tend to Ąnd)

equilibria in which a proĄle of prices is played via pure strategies on the equilibrium path.

13Others have studied related price-then-cut games. For example, Anderson, Baik, and Larson (2023) modeled
targeted price discrimination with mixed-strategy personalized prices and Gill and Thanassoulis (2016) studied
a duopoly in which some customers see list prices while others access to second-stage discounts.
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DeĄnition (Pure-Strategy Play). A proĄle of prices is supported by the equilibrium play of

pure strategies if there is a subgame-perfect equilibrium of the two-stage pricing game in which

that proĄle is played on the equilibrium path in both the Ąrst and second stage.

If a price proĄle satisĄes this deĄnition then (straightforwardly) it must be undercut proof, for

if it were not then a Ąrm would exploit a proĄtable second-stage deviation. Another possible

deviation for a Ąrm is to raise its price in the Ąrst stage, and so prices supported by pure-strategy

play must also be resistant to price creep. In summary, such prices must be stable. However,

the deĄnition of pure-strategy play can rule out certain stable price proĄles. For example, our

consideration of duopoly (in Section 1) identiĄed a unique proĄle of prices supported by the

equilibrium play of pure strategies even though there are two stable proĄles.

3. Characterizing Stable Prices

In this section we characterize the candidate proĄles that can satisfy our price-stability deĄ-

nition by identifying a unique such proĄle for each possible ordering of ĄrmsŠ prices. We then

derive a simple sufficient condition for the existence of a stable price proĄle.

Maximal Undercut-Proof Prices. We begin by identifying undercut-proof prices.

One such proĄle is the trivial proĄle of zero prices. On the other hand, some proĄles are

never undercut-proof: if there are ties of positive prices then they are pairwise compared (given

the ŞtwonessŤ assumption) which generates an incentive to undercut.14 We conclude that any

strictly positive undercut-proof prices must be entirely distinct.

Let us now (without loss of generality) label Ąrms in decreasing order of initial price, so that

p1 ≥ · · · ≥ pn, and (from the argument above) the inequality pi ≥ pi+1 is strict if pi > 0.

If Ąrm j charges pj > 0 then it wins all price comparisons that involve only Ąrms from the

j most expensive. These are the consideration sets B ⊆ ¶1, . . . , j♢. We need to include only

those in which Ąrm j is considered, which is achieved via the indicator variable Bj ∈ ¶0, 1♢.

Hence Ąrm j earns pj
∑

B⊆¶1,...,j♢ Bj λ (B). If Ąrm j undercuts a cheaper Ąrm i > j then it wins

all price comparisons which involve the i most expensive Ąrms. To avoid a proĄtable undercut

we need pj
∑

B⊆¶1,...,j♢ Bj λ (B) ≥ pi
∑

B⊆¶1,...,i♢ Bj λ (B), or equivalently

pi ≤
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)
. (3)

This must hold for every j < i, which gives the characterization of eq. (4) in Lemma 1 below.

If a proĄle of undercut-proof prices is established then the absence of undercutting opportunities

means it is the only prediction of a game in which Ąrms can only cut their prices.

14More generally, if a Şk-nessŤ property holds, so that any consideration set containing k > 1 Ąrms has positive
mass (formally: ♣B♣ = k ⇒ λ(B) > 0) then at most k − 1 strictly positive undercut-proof prices can be tied.
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Lemma 1 (Basic Properties of Undercut-Proof Price ProĄles). Without loss of gener-

ality, label Ąrms in order of their prices from highest to lowest so that p1 ≥ · · · ≥ pn.

(i) Any proĄle of strictly positive undercut-proof prices is strictly ordered: p1 > · · · > pn > 0.

(ii) A proĄle of prices is undercut-proof if and only if

pi ≤ min
j∈¶1,...,i−1♢

{
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)

}
for all i ∈ ¶2, . . . , n♢, (4)

(iii) For any such proĄle, a simultaneous-move price-cutting game in which Ąrm i chooses

p̃i ∈ [0, pi] is dominance solvable, and the unique Nash equilibrium has p̃i = pi for all i.

(For results that follow, any proof beyond the argument in the text is reported in Appendix A.)

There are many possibilities for undercut-proof prices. We pause here to ask: to which undercut-

proof prices would Ąrms collectively agree? Presumably, they would wish to raise prices as high

as possible, and looking across all such proĄles, would prefer those with (Pareto) superior proĄts

from the perspective of Ąrms. We use these deĄnitions.

DeĄnition (Maximal and Industry-Optimal ProĄles). The maximal undercut-proof prices

for an ordering of Ąrms are those that are higher than all other undercut-proof proĄles that place

ĄrmsŠ prices in the same order. An undercut-proof price proĄle is industry optimal if there is

no other (Pareto) superior (in terms of ĄrmsŠ proĄts) undercut-proof proĄle.

Maximal undercut-proof prices are readily identiĄed. Strictly positive undercut-proof prices

retain this peroperty if we raise the highest price to p1 = v. We then iteratively raise each

successively lower price so that eq. (4) binds. Each price rise is a Pareto improvement for the

Ąrms: a price goes up, and the allocation of sales to Ąrms is preserved. Lemma 2 summarizes.

Lemma 2 (Properties of Maximal Prices). Maximal undercut-proof prices satisfy

p1 = v, and iteratively, pi = min
j∈¶1,...,i−1♢

{
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)

}
for all i ∈ ¶2, . . . , n♢. (5)

Industry-optimal proĄles are a (non-empty) subset of the n! maximal proĄles deĄned via (5).

This lemma allows us to construct n! proĄles (one for each ordering of ĄrmsŠ prices) that are

candidates for industry optimality. For some consideration set speciĄcations (Section 4) we

Ąnd a unique such proĄle; and in others (Sections 5 and 6) we Ąnd multiple.

Stable Prices. Stable prices are undercut-proof, by deĄnition. If Ąrms play a simultaneous-

move price-cutting game relative to those ŞregularŤ prices then (from claim (iii) of Lemma 1)

there is a unique Nash equilibrium with no price cuts. Mirroring our discussion of industry

proĄtability, suppose that the undercut-proof prices are not maximal. This means that there

is at least one that can creep upwards while preserving undercut-proofness and so maintaining

the Şno price cutsŤ equilibrium in the price-cutting game. This necessarily generates a strict

gain for the creeping Ąrm. This argument focuses our attention on maximal prices.
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There are n! maximal undercut-proof price proĄles; one for each ordering of the Ąrms. Fixing

such an ordering, those maximal prices satisfy the binding no-undercutting constraints of eq. (5).

Each constraint checks which Ąrm j < i is most tempted to undercut Ąrm i. If one of the binding

ŞtemptationŤ constraints is generated by the Ąrm immediately above, so that Ąrm i − 1 is (one

of the) most tempted to undercut Ąrm i, then we are able to show that such prices are resistant

to upward price creep. This provides a sufficient condition for stable prices.

Proposition 1 (Necessary and Sufficient Conditions for Stable Prices).

(i) A stable proĄle comprises maximal undercut-proof prices. There are at most n! such proĄles.

(ii) Fix an ordering of Ąrms, and consider the unique maximal undercut-proof prices. If

i − 1 ∈ arg minj∈¶1,...,i−1♢

{
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)

}
for all i ∈ ¶2, . . . , n♢, (6)

so that Ąrm i − 1 is one of the most tempted amongst ¶1, . . . , i − 1♢ to undercut Ąrm i, then

that proĄle of maximal prices is resistant to price creep, and so is a stable price proĄle.

To prove this result (in Appendix A) we construct an equilibrium of a pricing subgame following

a upward adjustment in initial price by some Ąrm i > 1, where the expected proĄt of Ąrm i

matches what it earns when Ąrms charge their initial prices. If i does deviate upwards, then

a lower-indexed (and so higher priced) Ąrm is tempted to undercut iŠs new (higher) price.

Equation (6) says that the non-undercutting constraint binds for Ąrm i − 1. Our approach is

to construct a mixed-strategy equilibrium in which the Ąrms i and i − 1 mix continuously, or

ŞtangoŤ (terminology from Baye, Kovenock, and de Vries, 1992), over an interval including pi.

The condition of eq. (6) is immediately satisĄed for the duopoly case of n = 2, given that there

is only one other higher-priced Ąrm that can be tempted to undercut a lower-priced competitor.

Corollary (Duopoly). In a duopoly, both maximal undercut-proof price proĄles are stable.

Discussion. To satisfy our notion of stability we may focus on the maximal prices associated

with the n! possible ordering of Ąrms. We note, however, three potential limitations.

Firstly, not all maximal prices are industry-optimal. The duopoly case illustrates this: placing

the Ąrm with fewer captives at the high-price position generates lower proĄts for both Ąrms;

they would prefer to switch positions. Nevertheless, the maximal prices from this sub-optimal

Ąrm order satisfy our stability deĄnition. Secondly, our notion of Şcreep resistanceŤ is limited to

local price movements. We might ask whether a Ąrm beneĄts from a larger price rise. Thirdly,

our deĄnition of stability leaves open the source of the initial prices. One possibility is for such

prices to be chosen collectively. Industry optimal prices are maximal and so can be stable (if,

for example, the condition of eq. (6) in Proposition 1 is satisĄed). A second possibility is that

prices form solely through non-cooperative actions.
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To address the latter two points, our second solution concepts asks whether prices are supported

by the pure-strategy play of non-cooperative price-formation games. Most parsimoniously,

our two-stage pricing game allows Ąrms to choose their initial (or ŞregularŤ) prices and then

(following the observation of them) offers an opportunity to lower prices, prior to purchases.

To do this, we need to consider the possibility of subgames in which a Ąrm raises its price

non-locally, including all the way to the monopoly price v. If all Ąrms made that largest move,

then we would enter a subgame in which Ąrms play a standard simultaneous-move pricing game

with an arbitrary distribution over (the 2n distinct) consideration sets.15 As such, we inherit

here the substantial analytic complexity found in the classic approach.

The established literature does not contain a solution of the classic pricing game for a general

distribution over consideration sets. Narasimhan (1988) solved the duopoly case, but only

recently have we seen a full analysis of triopoly from Armstrong and Vickers (2022); the step

from n = 2 to n = 3 involves substantial intricacies. For asymmetric consideration distributions

they considered n > 3 only for some special cases such as the nested consideration of Ąrms,

but studied (in their Section 3) general symmetric consideration speciĄcations (see also Johnen

and Ronayne, 2021). For asymmetric cases, other papers have made progress by specifying

that potential buyers are independently aware of each Ąrm (Ireland, 1993; McAfee, 1994).

Other developments in the literature have varied the captive-and-shopper speciĄcation (Baye,

Kovenock, and de Vries, 1992).16 Our own subgames add extra complications to the classic

game owing to the fact that Ąrms have different initial prices.

Our foundational result (Proposition 1) imposes little structure on the distribution over consid-

eration sets. We now impose more structure to develop our theory fully. The Ąrst broad class

of consideration distributions (in Section 4) allows for complete heterogeneity in the distribu-

tion of how many prices buyers compare, while assuming Ąrms are equally and symmetrically

considered in the aggregate. We also go further by presenting a generalized version allowing

additionally for asymmetric captive bases.17 The second broad class (in Section 5) allows for

Ąrms to be considered by asymmetric shares of buyers, but also assumes that buyersŠ consider-

ations of different sellers are independent. For each, we apply the apparatus introduced above:

we derive maximal and industry-optimal undercut-proof price proĄles, and we show that eq. (6)

holds so that such prices are stable. We also demonstrate situations in which those prices are

supported by pure-strategy play, and identify those in which the only prices supported by such

play are industry-optimal and undercut-proof. Overall, the level of generality that we reach

through these two classes of buyer consideration broadly matches that seen in the classic study

of simultaneous-move pricing games.

15We can instead make assumptions that permit fewer Ąrms to react, which can reduce complexity, as we
demonstrated in the duopoly of Section 1. As we explained there, that led to a strict loss from a creep in price.
16An early extension of the captive-shopper model allowed for asymmetric marginal costs (as well as asymmetric
captive audiences) for duopoly (Golding and Slutsky, 2000), but only recently (in our own work, Myatt and
Ronayne, 2024b) has it been extended to asymmetric marginal costs for n > 2.
17This also allows us to study the (general, asymmetric version of the) classic captive-shopper conĄguration.
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4. Exchangeability

Here we allow differently sized consideration sets to have arbitrary masses, but all consideration

sets of the same size have the same mass. We call this property exchangeability.

Exchangeable Consideration Sets. In addition to captive customers, λi > 0 for each i,

Im ≥ 0 customers know m ∈ ¶2, . . . , n♢ prices. Such consideration is random and symmetric

across Ąrms so that the mass Im comprises equal shares of every combination of m Ąrms:

consideration sets of the same size have equal mass. For B ⊆ ¶1, . . . , n♢ with ♣B♣ ≥ 2 members,

λ(B) = I♣B♣

/(
n

♣B♣


(7)

Firms differ by the size of their captive audiences, but are otherwise ŞexchangeableŤ. We use

the term Şfully exchangeableŤ when λi = λj for all i ̸= j.18

An interpretation is that non-singleton consideration sets arise from shoppers who obtain quo-

tations via a search technology that does not bias toward any Ąrm. On the other hand, the

singleton consideration sets include some (possibly different in mass) local, loyal, or non-shopper

customers who are exogenously locked in to a speciĄc supplier. We retrieve the classic captive-

shopper setting with λS ≡ In and Im = 0 for 1 < m < n. However exposition is smoother if we

abstract (for now) from zero masses of comparison shoppers and set Im > 0 for all m.19

Maximal Undercut-Proof Prices. Setting Im > 0 for all m implies that I2 > 0, the

ŞtwonessŤ property. We know, therefore, that any proĄle of maximal undercut-proof prices

contains n distinct prices. We label the Ąrms so that: p1 > · · · > pn > 0. It is convenient to

denote by Xi, the mass of customers (excluding captives) buying from i ≥ 2:

Xi ≡
i∑

m=2

Im

(
i − 1

m − 1

/(
n

m

]
and so using this notation

∑

B⊆¶1,...,i♢

Biλ(B) = λi + Xi. (8)

The term Xi sums over the relevant consideration-set sizes (no sale is made if m > i because

then m is cheaper than i). For each m, there are
(

n
m

)
equally-sized consideration sets. Firm m

makes a sale only if compared to m − 1 others from the i − 1 competitors with higher prices.

There are
(

i−1
m−1

)
such sets. We deĄne X1 = 0 for completeness.

To Ąnd the maximal undercut-proof prices for this ordering of Ąrms, we can apply Lemma 2:

p1 = v and pi = min
j<i

{
pj

λj + Xj

λj + Xi

}
for i > 1. (9)

Because cheaper Ąrms have more sales (Xj < Xi), the term (λ + Xj)/(λ + Xi) increases in λ.

This means that a Ąrm with fewer captives has a greater incentive to undercut. To keep prices

high, therefore, it is helpful to place larger Ąrms (with more captives) higher in the ladder

18The full exchangeability setting was analysed with a single-stage game by many (e.g. Burdett and Judd, 1983;
Johnen and Ronayne, 2021; Lach and Moraga-González, 2017; Nermuth, Pasini, Pin, and Weidenholzer, 2013).
19Those zero-mass cases are cumbersome to carry, but our results extend naturally (continuously) to them.
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of prices. This also pushes captive customers to higher prices. This suggests that industry

optimality will order Ąrms so that λ1 ≥ · · · ≥ λn: Ąrms with more captives are more expensive.

Our proof of this claim works by contradiction. We proceed down the list of Ąrms until we Ąnd

the lowest k where λk < λk+1. We can then show that switching the positions of those two

Ąrms results in a (Pareto) superior proĄle for Ąrms. Once this is established, we can also show

that the binding Şno undercuttingŤ constraint for each price pi is the one corresponding to Ąrm

i − 1 undercutting Ąrm i. We can then use eq. (9) to solve recursively for prices.

Proposition 2 (Industry Optimal Prices under Exchangeability). For the exchangeabil-

ity setting, and in an undercut-proof industry-optimal proĄle: prices are distinct, higher prices

are charged by Ąrms with more captive customers, and those prices are given by

pi =





v if i = 1

v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj

if i ≥ 2.
(10)

This proĄle is unique if Ąrms have differently sized captive audiences so that λ1 > . . . > λn.

In Appendix C we supplement this with Proposition C3, which shows that the prices identiĄed

by Proposition 2 are upper bounds for any maximal prices, and so for any stable prices.

Stable Prices. Suppose that captive masses are distinct and label Ąrms so that λ1 > · · · > λn.

Proposition 2 maps Ąrms to prices, uniquely: Ąrms with more captives are more expensive.

With the strict ordering of captive audiences, ĄrmsŠ binding undercut-proofness constraints are

always local (from the next most expensive Ąrm, whereas non-local constraints have slack).

These are the conditions that we need to apply Proposition 1.

SpeciĄcally, suppose that Ąrm k > 1 creeps up to pk + ∆ ∈ (pk, pk−1]. Just as we did when

developing Proposition 1, we construct the following (asymmetric) mixed-strategy proĄle:

Fk−1(p) =
(p − pk)(λk + Xk)

p(Xk − Xk−1)
and Fk(p) =

(p − pk)(λk−1 + Xk)

p(Xk − Xk−1)
, (11)

which generates on-path expected proĄts. The Ąrms place any remaining mass at their initial

prices. Each Ąrm i < k − 1 has more captive customers than k − 1 and k, and does not have a

proĄtable deviation into the interval in which k − 1 and k mix. This leads us to Proposition 3.

Proposition 3 (Stable Prices under Exchangeability). Under exchangeability the (unique,

if captive-audience sizes differ) undercut-proof industry-optimal proĄle of prices is stable.

Pure-Strategy Play. We can say more when Ąrms are fully exchangeable. Let λi ≡ λ > 0

for all i. Proposition 2 applies, and, because Ąrms are symmetric, there is only one maximal

proĄle (albeit we cannot predict which Ąrm charges which price). We build an equilibrium of

our two-stage price-formation game in which the Ąrms charge the prices of Proposition 2 on

the equilibrium path. In the second stage, we have p̃i = pi from claim (iii) of Lemma 1.
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Consider a Ąrst-stage deviation by Ąrm k > 1 (there is no opportunity for an upward deviation

by the highest price Ąrm) and write p̂k > pk for that deviant initial price. This deviation means

that p̂k ∈ (pi+1, pi] for some higher-priced competitor i < k. In the subgame that follows there

is no pure-strategy Nash equilibrium. We illustrate the strategies of a Nash equilibrium of that

subgame below and place details of the proof of Lemma 3 in Appendix A.

The most straightforward case is when p̂k ∈ (pk, pk−1]. In this case, the deviation by Ąrm k

does not (strictly) upset the ordering of prices. We can construct an equilibrium in which Ąrms

k and k − 1 continuously (and symmetrically) mix over the interval [pk, p̂k) via

Fk(p) = Fk−1(p) =
(λ + Xk)(p − pk)

p(Xk − Xk−1)
, (12)

which (by construction) gives the Ąrms the same expected proĄt as on the equilibrium path. If

p̂k = pk−1, the solution is continuous up to the common upper bound, and satisĄes Fk(pk−1) =

Fk−1(pk−1) = 1. If p̂k < pk−1 then the Ąrms place residual mass at their initial prices.

A more complex case is when k deviates further upward. We discuss an example here: suppose

p̂k = pk−2. To cope with this, we construct an equilibrium in which the three Ąrms k − 2,

k − 1, and k all mix (symmetrically) over the interval [pk, pk−1). Firm k − 1 then places an

atom with remaining mass at its constraining initial price pk−1. Firms k and k − 2 then begin

mixing again at some price p† ∈ (pk−1, pk−2), and the construction continues. We can repeat

this process similarly for higher deviations. Doing so, the proof of the next lemma shows that

proĄts from the constructed Nash equilibrium match those from on-path play. (The complexity

of the relevant strategies varies with the deviation, p̂k; the proof contains a complete treatment.)

Lemma 3 (Second-Stage Subgames: Full Exchangeability). In the full exchangeability

setting, consider the subgame following the Ąrst-stage prices reported in Proposition 2, with the

exception of Ąrm k > 1, which deviates to an initial price p̂k > pk. There is a Nash equilibrium

of that price-cutting subgame in which each Ąrm i earns a proĄt of pi(λ + Xi) = vλ.

To complete a subgame-perfect equilibriumŠs speciĄcation, we allow any equilibrium to be

played in second-stage subgames that are further off-path. We then arrive at Proposition 4.

Proposition 4 (Pure-Strategy Play under Full Exchangeability). Under full exchange-

ability, the unique industry-optimal undercut-proof proĄle of prices (reported in Proposition 2)

is the same as the unique proĄle of prices supported by the equilibrium play of pure strategies.

To summarize, the unique proĄle of industry-optimal prices is both dispersed and stable. Under

full exchangeability, those prices also emerge when Ąrms non-cooperatively set initial prices.

Does that result extend to asymmetric captive audiences? In Section 6 we respond and pin

down (in a triopoly) conditions for a positive answer; but that answer can also be negative.
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Models of Sales. The exchangeable speciĄcation can encompass the model of sales (Varian,

1980). However, we simpliĄed exposition by setting Im > 0 for all m. Nevertheless, we can

apply our results to speciĄcations that are arbitrarily close to the classic model.

Fix a model of sales with asymmetric captive audiences: λ1 > · · · > λn. We specify exchange-

able models indexed by ε > 0 where, using obvious notation, (i) λε
i = λi; (ii) λε

S = λS; and (iii)

0 < Iε
m ≤ ε for m ∈ ¶2, . . . , n − 1♢. This converges to a model of sales as ε → 0.

Recall from eq. (8) that Xi is the mass of non-captive customers who buy from Ąrm i. Inspecting

that expression, notice that limε→0 Xε
i = 0 for all i ∈ ¶2, . . . , n−1♢, and so in the model-of-sales

limit (ε → 0) only Ąrm n serves non-captive customers. Similarly, an inspection of eq. (10)

from Proposition 2 shows that for industry-optimal undercut-proof prices

lim
ε→0

pε
i = v for i < n and lim

ε→0
pε

n = p†
n−1 where p†

i ≡
vλi

λi + λs

. (13)

Here p†
i is the lowest undominated price for Ąrm i: by setting this price and serving all shoppers,

it earns the same as it does from exploiting its captive audience at the monopoly v. Equa-

tion (13) says that the n distinct prices collapse to two points: the smallest Ąrm (in terms of

captive audience) charges a distinct lowest price, while all other Ąrms serve only their captives.

Our key results extend (continuously) to an exact (ε = 0) model-of-sales speciĄcation. We omit

the details here, relegating them to Appendix A where we prove the following result.

Proposition 5 (Model of Sales). In a model of sales, there is a unique industry-optimal

undercut-proof proĄle in which Ąrm n, with fewest captives, sets pn = p†
n−1 and others price at

v. Each Ąrm i < n earns its Şcaptive onlyŤ proĄt vλi. Firm n earns more: p†
n−1(λn+λS) > vλn.

This is the unique price proĄle supported by pure-strategy play of our price-formation game.

Any other proĄle of maximal undercut-proof prices is stable.

The mixed strategies of Varian (1980) were intended to capture ŞsalesŤ. Realized prices may

be either close or far apart, and the identity of the cheapest Ąrm is uncertain.20 In contrast,

we predict n − 1 ŞregularŤ prices alongside one starkly-lower Şon-saleŤ price from the Ąrm with

fewest captive customers. Of course, over time there can be changes in which Ąrm has the

fewest, which would Ćip the identity of the on-sale Ąrm. Such shifts can be more frequent if

the sizes of captive audiences are relatively close, and so their order can change more easily. In

that sense, we retain the spirit of sales, while providing new insights and predictions.

20With asymmetric captive shares, this is true for the two Ąrms who ŞtangoŤ (meaning: mix over more than one
price) while n − 2 others maintain the ŞregularŤ monopoly price (Baye, Kovenock, and de Vries, 1992, Section

V). In particular, i ∈ ¶1, . . . , n − 2♢ charge pi = v while n and n − 1 mix over the interval [p†
n−1, v) with Ąrm

n − 1 placing an atom at v. When marginal costs and captive shares are asymmetric, analysis is substantially
complicated. There, we found there is (generically) a unique Nash equilibrium in which the (cost and captive)
parameters dictate how many Ąrms mix, which can be anything between 2 and n (Myatt and Ronayne, 2024b).
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5. Independent Awareness

Exchangeability allows variation in the mass of customers who consider a particular number

of Ąrms. It also allows consideration to be correlated: in the captive-shopper case, a customer

who sees more than one Ąrm sees them all. However, it does impose substantial symmetry.

Here we restrict the correlation of Ąrms in consideration sets, but allow for much greater

generality in asymmetries. We build upon prior work including Butters (1977), Grossman and

Shapiro (1984), Ireland (1993), McAfee (1994), and Eaton, MacDonald, and Meriluoto (2010):

each price is exposed to an independent (but asymmetric) fraction of potential customers.

Consideration Sets. On the demand side, a fraction αi ∈ (0, 1) of customers is independently

aware of Ąrm i.21 The mass of customers who consider Ąrms B ⊆ ¶1, . . . , n♢ is

λ(B) =
(∏

i∈B
αi

) (∏
i/∈B

(1 − αi)
)

=
n∏

i=1

αBi

i (1 − αi)
1−Bi . (14)

We say that Ąrm i is larger than Ąrm j if it enjoys greater awareness, so that αi ≥ αj.
22

Maximal Undercut-Proof Prices. Here, the ŞtwonessŤ property holds because λ(¶i, j♢) =

αiαj
∏

k /∈¶i,j♢(1 − αk) > 0, which means that maximal undercut-proof prices are distinct. We

label Ąrms so that p1 > · · · > pn and apply Lemma 2 to produce Lemma 4.

Lemma 4 (Maximal Prices for Independent Awareness). Under independent awareness,

maximal undercut-proof prices are p1 = v and pi = (1 − αi)pi−1 = v
∏i

j=2(1 − αj) for i > 1.

Under these prices every Ąrm j is indifferent to undercutting any other Ąrm i > j. The proĄt

of each Ąrm i ∈ ¶1, . . . , n♢ from this price proĄle is πi = vαi
∏n

j=2(1 − αj).

All no-undercutting constraints bind simultaneously. To see why, note that Ąrm j receives pj

from customers aware of it, true with probability αj, and who are aware of no cheaper Ąrm,

true with probability
∏

k>j(1 − αk), giving proĄt pjαj
∏

k>j(1 − αk). If j undercuts i > j then

it gets pi (or close to it) from customers who consider j and no Ąrm cheaper than i. That gives

j a proĄt of (or arbitrarily close to) piαj
∏

k>i(1 − αk). The no-undercutting constraint is then

piαj

∏

k>i

(1 − αk) ≤ pjαj

∏

k>j

(1 − αk) ⇔ pi ≤ pj

i∏

k=j+1

(1 − αk). (15)

A special case is the local constraint: pi ≤ pi−1(1−αi), which does not involve the awareness of

Ąrm j, αj. Note that undercutting constraints do not depend on the type of the Ąrm considering

the undercut; it is the awareness of the Ąrm being undercut (Ąrm i) that is relevant.23

21If two or more Ąrms enjoy complete awareness, αi = 1, then the Bertrand (zero proĄt) outcome follows.
Allowing (at most) one Ąrm to be known to all customers does not affect our results (and is relevant to some
results under endogenous advertising). But for smoother exposition, we carry αi ∈ (0, 1) ∀i forward in the text.
22The special case of symmetry (αi = αj for all i, j) falls within the full exchangeability speciĄcation of Section 4.
23This contrasts with our exchangeability speciĄcation under which it is the type of the Ąrm contemplating the
undercut that matters: local no-undercutting constraints take the form pi ≤ pi−1(λi−1 + Xi−1)/(λi−1 + Xi).
Note that this depends on the type (λi−1) of Ąrm i − 1, which is the Ąrm that contemplates the undercut.
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The proĄt expressions reported in Lemma 4 are also of interest. Note that

πi = vαi

n∏

j=2

(1 − αj) =
vαi

1 − α1

n∏

j=1

(1 − αj). (16)

A ĄrmŠs proĄt depends on its own awareness αi in a natural way. The product term in the

second expression ranges over all Ąrms, and does not depend on the order of them. That

order inĆuences Ąrm iŠs proĄt only via the denominator term 1 − α1, which depends upon the

awareness of the Ąrm at the top of the pricing ladder. The proĄt of Ąrm i (and of every Ąrm)

is increasing in α1; and indeed this is the only way in which the order of Ąrms inĆuences the

proĄts obtained from maximal undercut-proof prices, giving Proposition 6.

Proposition 6 (Industry-Optimal Prices under Independent Awareness). Under inde-

pendent awareness, the industry-optimal undercut-proof proĄles order ĄrmsŠ prices so that the

largest Ąrm charges the monopoly price, v. Other ĄrmsŠ prices, for any order of these Ąrms,

are given by Lemma 4. All generate the same proĄts for each Ąrm.

We can contrast this result with Proposition 2 from our exchangeability speciĄcation. There, we

found (at least for strictly asymmetric Ąrms) a unique industry-optimal undercut-proof proĄle

of prices. Here, however, we identify (n − 1)! such proĄles (all of which are proĄt equivalent).

Stable Prices and Pure-Strategy Play. For any proĄle identiĄed by Proposition 6 and

price pi for i > 1, we know the no-undercutting constraint of i − 1 binds. Proposition 1 applies:

any industry-optimal undercut-proof proĄle is stable.

However, it is instructive to look at equilibrium strategies following an adjustment. Suppose

that Ąrm i > 1 allows its price to creep upward by ∆ < pi−1 − pi. In the associated subgame,

we construct an equilibrium in which Ąrms j /∈ ¶i − 1, i♢ continue with their on-path play by

choosing pj = pj, while Ąrms i − 1 and i continuously mix over [pi, pi + ∆) with distributions

Fj(p) =
1

αj

(
1 −

pi

p


for j ∈ ¶i − 1, i♢, (17)

and place remaining mass at pi−1 and pi + ∆ respectively, earning their on-path proĄts, πj.

This argument is enough to establish that for a small adjustment (so that ∆ is not too large)

we can construct an equilibrium which removes the incentive for any Ąrm to deviate. In other

words: any proĄle of maximal undercut-proof prices is robust to upward adjustments.

For larger deviations, this ŞtangoŤ between Ąrms i − 1 and i can fail. To see why, suppose that

Ąrm i deviates all of the way up to the initial price of Ąrm i − 1. (This is an upward deviation

of ∆ = pi−1 − pi.) For our distributions to be valid, we need

max
j∈¶i−1,i♢

Fj(pi−1) =
1

min¶αi−1, αi♢

(
1 −

pi

pi−1


=

αi

min¶αi−1, αi♢
≤ 1 ⇔ αi ≤ αi−1. (18)

This says that the two Ąrms must be in awareness order, with the larger Ąrm at the higher

price position. If they are out of order, so that αi > αi−1, then this construction fails.
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To resolve the problem of deviations to higher prices, we bring another Ąrm on to the Şdance

Ćoor.Ť For example, in this case, and if i > 2, we can construct an equilibrium in which Ąrms

i − 2, i − 1, and i mix. The construction is quite complex, and becomes more so for higher

initial prices by the deviant Ąrm i that move above the initial prices of other (lower indexed)

Ąrms. What is crucial for the construction is to Ąnd some more expensive Ąrm that is larger

than the deviant Ąrm. For example, if i = 2 then we must have α1 ≥ α2 if the construction of

the equilibrium is to work. This holds for all possible deviations by all possible deviants if we

place the largest Ąrm at the top of the price sequence, so that α1 ≥ αi for all i ∈ ¶2, . . . , n♢.

More generally, if we do not place the largest Ąrm at the highest price position then this Ąrm

will have a proĄtable deviation in the Ąrst stage. To see why, suppose that αi > α1 so that

Ąrm i is strictly larger than the highest-priced Ąrm. Using Lemma 4, iŠs proĄt is

vαi
∏n

j=1(1 − αj)

1 − α1

<
vαi

∏n
j=1(1 − αj)

1 − αi

= vαi

∏

j ̸=i

(1 − αj). (19)

This last expression is the proĄt that i achieves by setting pi = pi = v and selling only to

captive customers. From this, we conclude that we must order Ąrms with the largest awareness

at the top. If we order Ąrms completely (from the largest to the smallest as we move down the

sequence of prices) then we can construct an equilibrium with on-path payoffs in any subgame

when a Ąrm deviates upward by any amount in the Ąrst stage.

Lemma 5 (Price-Cutting Subgames under Independent Awareness). In the indepen-

dent awareness setting, consider the price-cutting subgame following maximal prices when Ąrms

are ordered by size except that Ąrm k deviates upward. There is a Nash equilibrium of that sub-

game in which each Ąrm i earns its on-path proĄt, πi = vαi
∏n

j=2(1 − αj).

Note that this lemma asks the Ąrms to be completely ordered by size: α1 ≥ α2 ≥ · · · ≥ αn. In

the next section we obtain the same result in a triopoly where α1 ≥ α3 > α2, so that Ąrms are

not completely ordered (but nevertheless the largest Ąrm is at the top).

We assemble our observations into the following proposition.

Proposition 7 (Stability and Pure-Strategy Play under Independent Awareness). If

a proĄle is supported by the equilibrium play of pure strategies then those undercut-proof prices

are industry optimal, and so the most expensive Ąrm is a largest Ąrm: α1 ≥ αi for i > 1.

The undercut-proof industry-optimal proĄle for size-order Ąrms, α1 ≥ · · · ≥ αn, is supported by

the equilibrium play of pure strategies. Any other maximal undercut-proof proĄle is stable.

This leaves open the possibility that multiple industry-optimal proĄles are supported by the

equilibrium play of pure strategies. However, the expressions for ĄrmsŠ expected proĄts are the

same for all such proĄles, and also match those reported by Ireland (1993) and McAfee (1994).

They considered the classic single stage of pricing and characterized its mixed-strategy Nash

equilibria. A message here is that we can establish stable price dispersion (entirely distinct

prices chosen as pure strategies) without impacting ĄrmsŠ expected proĄts.
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6. Limitations

We do not offer unambiguous results for all consideration-set speciĄcations. Such results (as we

now show) are not always possible. Here we use a trio of triopoly models to expose the limits

of our results and to illustrate the environmentŠs complexities.

We show that (i) industry-optimal undercut-proof prices are not always supported by pure-

strategy play; (ii) multiple proĄles can sometimes be supported by pure-strategy play; and (iii)

the order of ĄrmsŠ prices does not always correspond to a natural ordering of their sizes.

Pure-Strategy Play under Exchangeability. Industry-optimal prices are stable under ex-

changeability (Proposition 3). However, they are not always robust to larger deviations: here

we Ąnd such prices that are not supported by the equilibrium play of our price-formation game.

Consider exchangeability with λ1 > λ2 > λ3 > 0 and so industry-optimal undercut-proof prices

p1 = v, p2 =
vλ1

λ1 + X2

, and p3 =
vλ1

λ1 + X2

λ2 + X2

λ2 + X3

. (20)

We can handle any upward deviation in the Ąrst-stage price of Ąrm 2 (where only two Ąrms

mix). Similarly, if 3 deviates upward to p̂3 ∈ (p3, p2] then, just as we did for creep in prices, we

can construct the following mixed-strategy proĄle for Ąrms 2 and 3:

F2(p) =
(λ3 + X3)(p − p3)

p(X3 − X2)
and F3(p) =

(λ2 + X3)(p − p3)

p(X3 − X2)
, (21)

which generates on-path expected proĄts for both Ąrms across this range. These functions are

increasing from F2(p3) = F3(p3) = 0, and satisfy F3(p) > F2(p) for higher prices. Furthermore,

F3(p) ≤ F3(p2) =
(λ2 + X3)(p2 − p3)

p2(X3 − X2)
= 1, (22)

and so we have valid distribution functions, which are completed by placing any remaining

mass at ĄrmsŠ initial prices. Now suppose that Ąrm 3 deviates to p̂3 ∈ (p2, p1]. We can build

an equilibrium in which Ąrms 2 and 3 mix over [p3, p2) and where Ąrm 2 places remaining mass

at p2. We have noted, however, that Ąrm 3Šs distribution satisĄes F3(p2) = 1. Nevertheless,

the higher initial price means that Ąrm 3 is able to price higher than p2. Indeed, if it chooses

p > p2 (sacriĄcing the capture of the atom played by Ąrm 2) then it will move all the way up

p = p̂3. It earns this price on λ3 captive customers and X2 customers with consideration set

¶1, 3♢, and so earns an expected proĄt of p̂3(λ3 + X2). For our construction to work, this must

be less than p3(λ3 + X3). The deviant Ąrst-stage price can be as high as p1 = v, and so we need

v(λ3 + X2) ≤ p3(λ3 + X3) ⇔
λ3 + X2

λ3 + X3

≤
λ1

λ1 + X2

λ2 + X2

λ2 + X3

. (23)

This holds if X2 is sufficiently small. If X2 approaches zero then this exchangeable triopoly

becomes a model of sales: if we are close to a captive-shopper model then industry-optimal

prices are supported by pure-strategy play. However, eq. (23) fails if λ2 and λ3 are close. (It

strictly fails if λ2 = λ3.) This means that we can Ąnd circumstances (e.g., λ1 > λ2 ≈ λ3) in

which the industry-optimal proĄle is not supported by the equilibrium play of pure strategies.
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Our discussion relies upon a ŞtangoŤ danced by Ąrms 2 and 3. For our fully exchangeable

speciĄcation, we dealt with higher initial price deviations by constructing equilibria in which

higher priced Ąrms joined in. Here, this cannot work: Ąrm 1 (with the largest captive audience)

is strictly unwilling to mix down to p3. The proof of the result that follows conĄrms that if

eq. (23) fails then we cannot construct a suitable equilibrium of the subgame; we construct

another equilibrium (of the subgame) which is strictly better for the deviant.

Proposition 8 (An Exchangeable Triopoly). In an exchangeable triopoly, the industry-

optimal undercut-proof prices are supported by equilibrium pure-strategy play if and only if

λ3 + X2

λ3 + X3

≤
λ1

λ1 + X2

λ2 + X2

λ2 + X3

. (24)

This holds if the mass of customers who conduct pairwise comparisons is sufficiently small, but

it fails if the masses of captive customers for the second and third Ąrms are sufficiently similar.

Multiple Equilibria under Independent Awareness. For independent awareness (Sec-

tion 5), industry-optimal prices place the largest (most widely known) Ąrm at the highest price

(p1 = v). This does not pin down the other Ąrms: there are (n − 1)! orderings with the same

proĄts. The price proĄle in which Ąrms are ordered by size (Ąrms with more awareness charge

more) is supported by the equilibrium play of pure strategies (Proposition 7). We left open the

possibility that other industry-optimal proĄles are supported. We take up that issue here.

Order three Ąrms with parameters αi ∈ (0, 1) : α1 > α3 > α2 so that p1 > p2 > p3. This means

that the second and third Ąrms are not in size order. The associated prices are

p1 = v, p2 = v(1 − α2), and p3 = v(1 − α2)(1 − α3). (25)

Now consider our two-stage pricing game and an upward deviation by Ąrm 3. Our previous

approach was to build an equilibrium in the subgame in which Ąrms 2 and 3 mix according to

Fj(p) =
1

αj

(
1 −

p3

p


for j ∈ ¶2, 3♢. (26)

The problem with this is that for p sufficiently high, F2(p) is not a valid distribution:

F2(p2) =
1

α2

(
1 −

p3

p2


=

α3

α2

> 1. (27)

This means that if Ąrm 3 deviates upward (even while remaining below p2) then, in the subgame,

we need all three Ąrms to mix. In the proof Proposition 9 we build an equilibrium in which

all three Ąrms mix up until a speciĄc price at which Ąrm 1 places all remaining mass at its

initial price while the remaining two Ąrms continue to ŞtangoŤ. The construction is conceptually

straightforward, but nevertheless detailed and delicate, and underpins our next result.

Proposition 9 (Pure-Strategy Play of an Awareness Triopoly). In a triopoly under

(strictly asymmetric) independent awareness, there are two industry-optimal undercut-proof

price proĄles, both of which assign the highest price to the largest Ąrm, but which differ by the

order of the other two Ąrms. Both are supported by the equilibrium play of pure strategies.



22

A Prominence Setting. Here we Ąnd two industry-optimal proĄles with different proĄts.

Only one is supported by pure-strategy play, and it does not place Ąrms in ŞsizeŤ order.

Firm i = 1 is ŞprominentŤ and so is known to all customers. Customers see at most one of

Ąrms i ∈ ¶2, 3♢, but never see all three. Summarizing, the three positive-mass consideration

sets are ¶1♢, ¶1, 2♢, and ¶1, 3♢. We use the following notation:

ϕ1 = λ(¶1♢), ϕ2 = λ(¶1, 2♢), and ϕ3 = λ(¶1, 3♢). (28)

An interpretation is that the prominent Ąrm is a national sales channel, whereas other Ąrms are

local suppliers. Each local Ąrm i ∈ ¶2, 3♢ has access customers who see iŠs price. Additionally,

all such customers are informed of Ąrm 1Šs price.24 We let ϕ2 ≥ ϕ3.

Only a customer with consideration set ¶1♢ is truly captive: λ1 = ϕ1 > 0 but λ2 = λ3 = 0.

This does not Ąt the regularity condition (in Section 2) which says that all Ąrms have captive

customers. Similarly, ŞtwonessŤ fails: there are no pairwise comparisons of Ąrms 2 and 3.

If prices are undercut-proof and strictly positive, then they must place the prominent Ąrm at

the top.25 (If the prominent Ąrm charges strictly less than a local Ąrm, then that local Ąrm

would undercut the prominent Ąrm.) If prices are maximal, then of course p1 = v.

Turning to no-undercutting constraints, we need only to check that the prominent Ąrm does

not wish to undercut the local Ąrms. If local Ąrms are ordered so that p2 ≥ p3, then the relevant

constraints are vϕ1 ≥ p2(ϕ1 + ϕ2) and vϕ1 ≥ p3(ϕ1 + ϕ2 + ϕ3). For prices to be maximal, these

bind. Let j > 1 set the lowest price, pj. It is undercut-proof if pj ≤ vϕ1/(ϕ1 + ϕ2 + ϕ3).

For efficiency this also must bind, and so the lowest price is independent of which Ąrm sets

it. Notice also that if both local Ąrms set this price, then either could raise it slightly without

provoking an undercut by Ąrm 1, so such prices are not maximal: Ąrms set distinct prices.

Let i ̸= j be the local Ąrm that sets the higher price. Firm 1 does not undercut pi if pi ≤

vϕ1/(ϕ1 + ϕi). For efficiency this must also bind: pi depends on how many customers consider

iŠs price, unlike pj. Given p1 = v, each local supplier prefers that they charge pi and the other

charges pj, than vice versa. Thus, there are two industry-optimal undercut-proof proĄles: one

in which i = 2 and j = 3, and one in which i = 3 and j = 2 (these coincide if ϕ2 = ϕ3

We proceed to investigate unilateral deviations in our price-formation game. It is straight-

forward to construct an equilibrium in the subgame following a deviation upward by a non-

prominent Ąrm that preserve the order of ĄrmsŠ initial prices: the deviator and the prominent

Ąrm mix in the interval up to the deviant initial price, while the other Ąrm maintains its initial

price; the deviatorŠs proĄt is unchanged.

24Inderst (2002) considered a related single-stage model, but did not fully characterize equilibrium; we charac-
terize an equilibrium for one of his cases in Appendix B. Armstrong and Vickers (2022, Section 4) solved the
single-stage game in a closely related setting, interpreting Ąrms as a chain store with local rivals. In their setting
any comparison involving a local Ąrm involves the chain store, but local rivals also have captive audiences.
25The claim holds for the ordered-search model of Arbatskaya (2007) and in the search-and-prominence duopoly
model of Moraga-González, Sándor, and Wildenbeest (2021). In contrast, Armstrong, Vickers, and Zhou (2009)
used a sequential-search model to predict that a prominent Ąrm offers the lowest price.
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It remains to consider a deviation by the cheapest Ąrm j to an initial price p̂j ∈ (pi, p1]. In

Appendix C we show that when ϕ2 > ϕ3 and j = 3, such a deviation leads to a subgame

in which any Nash equilibrium gives Ąrm 3 strictly greater proĄt. The reason is that the

larger non-prominent Ąrm 2 charges a low intermediate price to prevent the prominent Ąrm

undercutting it (p2 = vϕ1/(ϕ1 + ϕ2)). This leaves an interval of prices, (p2, vϕ1/(ϕ1 + ϕ3)),

which are dominated for the prominent Ąrm (by v), and so are safe for Ąrm 3 to deviate to and

yield it a proĄt strictly greater than p3ϕ3. (If j = 2, then a deviation of this sort is unavailable.)

Proposition 10 (Stable Prices in a Prominence Setting). In the prominence triopoly,

there are two industry-optimal undercut-proof proĄles, described by:

p1 = v, pi =
vϕ1

ϕ1 + ϕi

, and pj =
vϕ1

ϕ1 + ϕ2 + ϕ3

for i, j ∈ ¶2, 3♢ and i ̸= j, (29)

Each Ąrm k ∈ ¶1, 2, 3♢ makes a proĄt equal to pkϕk. Both of these proĄles are stable. There

is a unique proĄle supported by the equilibrium play of pure strategies, in which the larger

non-prominent Ąrm is the cheapest, i.e., i = 3 and j = 2.

With n symmetrically-sized Ąrms (ϕi = ϕ for all i ∈ ¶1, . . . , n♢), there is a unique undercut-

proof proĄle of prices in which a ĄrmŠs price declines inversely to its position in the sequence:

pi =
v

i
for all i ∈ ¶1, . . . , n♢. (30)

This proĄle is supported by the equilibrium play of pure strategies.

A (non-prominent) Ąrm with a larger audience is cheaper. It remains the case that the proĄt of

a non-prominent Ąrm is increasing in its own size. However, the larger non-prominent Ąrm can

make a smaller proĄt than the other. This is true whenever their sizes are sufficiently close.

As the prominent ĄrmŠs position strengthens (greater ϕ1) price cuts hurt it more and so its

rivals can set higher prices without being undercut. This implies non-prominent ĄrmsŠ prices

and proĄts are increasing in ϕ1 and that customers are worse off with a larger prominent Ąrm.26

7. Stable Prices as Components of Deeper Models

Consideration sets themselves might respond to the actions by Ąrms (such as advertising

choices) and customers (such as price discovery). Naturally, a full study is beyond the scope

of (at least the main body of) this paper. However, here we use duopoly analyses to illustrate

the likely impact of ĄrmsŠ and customersŠ actions on the consideration-set environment.

Duopoly, Revisited. The duopoly speciĄcation of Section 1 Ąts within the frameworks (ex-

changeability and independent awareness) considered in Sections 4 and 5. Recall that λi cus-

tomers are captive to Ąrm i ∈ ¶1, 2♢ and λS ≡ λ(¶1, 2♢) customers compare both prices. For

26In Appendix B we develop this model of prominence by adding an earlier stage to consider the incentives of a
Şprominence providerŤ which brings one of many local Ąrms to national prominence. We Ąnd that this provider
makes a prominence offer (which is accepted) to the local Ąrm with the largest local customer base, which is
the worst choice for customers because it ampliĄes the asymmetry between Ąrms.
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λ1 > λ2 the industry-optimal undercut-proof prices and corresponding proĄts are

p1 = v and p2 =
vλ1

λ1 + λS

=⇒ π1 = vλ1 and π2 =
vλ1(λ2 + λS)

λ1 + λS

. (31)

The proĄts match those from single-stage pricing models. Notice that (the larger, in terms

of awareness) Ąrm 1 cares solely about expanding its captive audience. The incentives of (the

smaller) Ąrm 2 are nuanced. For example, Ąrm 2 beneĄts from an expansion in Ąrm 1Šs captives.

Advertising. We now build upon the independent awareness model of Section 5, where the

awareness αi of a Ąrm is a consequence of its advertising activities. This maps to the general

duopoly model via λ1 = α1(1 − α2), λ2 = α2(1 − α1), and Ąnally λS = α1α2. For α1 > α2,

π1 = vα1(1 − α2) and π2 = vα2(1 − α2). (32)

We see that the two Ąrms have very different incentives. The larger and so more expensive

Ąrm sets a price of p1 = v that is not limited by any Şno undercuttingŤ constraint. For a given

α2 < 1, its proĄts are linearly increasing in its advertising intensity.

The smaller and cheaper Ąrm, however, sets p2 = v(1 − α2), preventing an undercut by Ąrm

1. The more it advertises, the more attractive such an undercut becomes, and so the lower its

price must be to keep Ąrm 1 at bay. This leads to a trade off for Ąrm 2 when choosing how

much to advertise, reĆected by the non-monotonicity of π2 in α2. In particular (and putting

aside advertising costs, for now) Ąrm 2 (if it smaller) will always prefer α2 ≤ 1
2
.

We can readily embed the proĄts of (32) into an advertising-choice game. (More fully, we can

imagine a three-stage game in which Ąrms: (i) choose awareness parameters; (ii) form their

regular prices; and, Ąnally, (iii) can offer price cuts.) For example, if advertising is free and

awareness is chosen from αi ∈ [0, ᾱ] for some ᾱ ∈
(

1
2
, 1
)
, then a pure-strategy Nash equilibrium

of an advertising game will take the form α1 = ᾱ and α2 = 1
2
. The associated (stable) prices

p1 = v and p2 =
vλ1

λ1 + λS

= v(1 − α2) =
v

2
(33)

are dispersed. One Ąrm maximizes its exposure to customers and sets the monopoly price,

while the other limits its exposure to half of customers and charges half the monopoly price.

In Appendix B we provide a full treatment with n Ąrms and asymmetric advertising cost

functions. One Ąrm charges v and advertises distinctly more than all the others, who each

advertise to a minority of customers and set mutually distinct lower prices. When advertising

is costless, adding extra competitors adds additional lower prices (while retaining existing price

positions) and increases the range of dispersed prices. With costly adverting, a fall in costs

increases the awareness of each Ąrm and the dispersed prices of the Ąrms become further apart.

A conclusion here is that our pricing approach matches established predictions for advertising

(Ireland, 1993; McAfee, 1994) which use conventional pricing games, owing to the fact ĄrmsŠ

expected proĄts are the same. (Our actual pricing predictions differ, of course.)
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Search. Retaining the duopoly framework, suppose that a potential customer uses Ąxed-

sample search technology ‘a la Burdett and Judd (1983): this customer seeks (without re-

placement) either zero, one, or two price quotations. Searching once Ąnds each Ąrm with equal

probability. If the quotation is from the high-price Ąrm v then there is no beneĄt; but if the

low-price Ąrm is found (probability 1
2
) then the customer gains v − p2. A second search is guar-

anteed to Ąnd the cheaper Ąrm, but this is beneĄcial only if the Ąrst search did not already do

so. As such, the second search also generates a gain of v − p2 with probability 1
2
. Summarizing,

E[beneĄt of 1st search] = E[beneĄt of 2nd search] =
v − p2

2
=

vλS

2(λ1 + λS)
. (34)

Now adopt the classic constant-returns search technology so that gathering each quotation costs

κ ∈
(
0, v

2

)
. A customer Ąnds it strictly optimal to obtain two quotations if and only if

κ <
vλS

2(λ1 + λS)
⇔ λS >

2κλ1

v − 2κ
, (35)

will not search at all if the opposite strict inequality holds, and will be indifferent between all

search strategies if there is an equality. This inequality reveals a strategic complementarity:

if many others seek out both price quotations (so that the mass of shoppers λS is large) then

there is greater price dispersion, and this increases the incentive of a customer to search.

This strategic complementarity suggests there may be multiple equilibria with endogenous

search.27 To sketch a model of this, let us suppose that a mass λ̄i of customers are exogenously

captive to Ąrm i, a mass λ̄S are exogenously shoppers, and mass µ decide whether to search

once, twice, or not at all. Writing µL and µH for the masses of buyers searching once and twice

(we choose these subscripts to avoid confusion with Ąrm labels) we have µL + µH ≤ µ, and

λi = λ̄i + µL for i ∈ ¶1, 2♢ and λS = λ̄S + µH . (36)

There are multiple equilibria if the various parameters here satisfy

λ̄S + µ >
2κλ̄1

v − 2κ
> λ̄S. (37)

We can construct a Şhigh searchŤ equilibrium (of a fully deĄned game, with an appropriate

solution concept) in which all endogenous searchers seek out two quotations (µL = µ) and

become shoppers. In this equilibrium prices are more dispersed:

p1 = v and p2 =
vλ̄1

λ̄1 + λ̄S + µ
(38)

In a second Şlow searchŤ equilibrium endogenous searchers stay home (µL = µH = 0). In this

equilibrium the two price points are closer together and total search is limited to λ̄1 + λ̄2 + λ̄S.28

In a model with a conventional pricing game (Burdett and Judd, 1983) the Şhigh searchŤ

equilibrium has incomplete search, and so our approach is consequential for search behavior.

27We provide a full treatment in related work (Myatt and Ronayne, 2024c); see Appendix B for some discussion.
28There can be an interior equilibrium satisfying λ̄S + µH = κ(2λ̄1 + µL)/(v − 2κ). This is unstable in the sense
of Fershtman and Fishman (1992): shifting extra customers to search twice (and letting ĄrmsŠ prices adjust)
the beneĄt of a second search increases and so all customers wish to search twice. In contrast, a single-stage
duopoly analysis yields an equilibrium with search with (using present notation) µL + µH = 1 and µL, µH > 0.



26

8. Concluding Discussion

The economic interest in price competition with heterogeneous consideration arises in many ar-

eas, including strategic clearing-houses such as comparison websites (Baye and Morgan, 2001,

2009; Moraga-González and Wildenbeest, 2012; Ronayne, 2021; Shelegia and Wilson, 2021),

more general platform models (Bergemann and Bonatti, 2024; Hagiu and Wright, 2024), price

discrimination (Armstrong and Vickers, 2019; Fabra and Reguant, 2020), product substitutabil-

ity (Inderst, 2002), consumer search (Stahl, 1989), and boundedly-rational consumers (Carlin,

2009; Chioveanu and Zhou, 2013; Heidhues, Johnen, and Kőszegi, 2021; Inderst and Obradovits,

2020; Piccione and Spiegler, 2012). Our work shows that predictions of prices that are stable

and dispersed can be recovered within this environment.29

Our construction of stable dispersed prices has (if all Ąrms can use price cuts) the feature that

a cheaper Ąrm is indifferent between maintaining an undercut-proof price and raising it. The

equality of expected proĄts suggests a concern: a Ąrm is indifferent to creeping its price up

and so its choice is a weak, rather than strict, best reply. Nevertheless, additional assumptions

readily make equilibria strict in the sense that such an upward deviation strictly hurts.

One such approach is to consider the asymmetric ability of Ąrms to respond with price cuts.

Suppose, for example, that a deviant Ąrm that nudges upward its price is unable to adjust

its price again; and yet its competitors are then free to implement price cuts. In our duopoly

analysis (of Section 1) we found that makes a creep upward in price strictly harmful.30

Another natural case is when a decision-maker is averse to risk. In the pure-strategy play

of our price-formation games, a ĄrmŠs proĄt is fully determined when the equilibrium path

is followed. A Ąrst-stage upward deviation leads to the same expected proĄt, but makes the

eventual realization of proĄt uncertain. Suppose now that the initial pricing decision is made by

a risk-averse manager (who maximizes the expected utility of proĄt), but that the Ąnal price is

set by a risk-neutral operational pricing agent (who maximizes expected proĄt).31 The manager

now has a strict incentive not to increase the ĄrmŠs initial price away from an industry-optimal

undercut-proof proĄle and trigger a mixed-strategy equilibrium in the ensuing subgame.

29Other (very different) environments can generate dispersed pure-strategy prices. Reinganum (1979) offered
a version of Diamond (1971) in which Ąrms have different costs and set different monopoly prices. Anderson
and De Palma (2005) studied customers who (exogenously) consider Ąrms in a random order, but without any
meaningful price comparison. Arnold (2000) studied capacity-constrained Ąrms and single-search customers
who see prices but not whether a Ąrm is stocked out. Firms trade off price for the (endogenous) number of
buyers that buy from them. For csome valuations, there is an equilibrium in which Ąrms choose different prices.
30Relatedly, the Ąrst stage of our price-formation game gives each Ąrm the opportunity to take a de facto
Stackelberg leadership position. In Appendix B we study a sequential-move captive-and-shopper game. There,
and as in Deneckere, Kovenock, and Lee (1992), the Ąrm most keen to set low prices (with the fewest captive
customers) acts as a Stackelberg leader, setting a price just low enough to ensure that no other Ąrm undercuts
it in the second stage. The same effect occurs in a fully speciĄed multi-stage game in which all Ąrms are given
one full commitment opportunity to reach shoppers (Myatt and Ronayne, 2024b, Section 3).
31We cover this in brief in Appendix B and in more detail elsewhere (Myatt and Ronayne, 2024b, Appendix C).



27

We conclude by comparing our results and predictions to those from conventional approaches.

We identify three advantages. Firstly, we predict that disperse prices can be stable rather than

randomized. Secondly, we provide a clear process to solve for those stable prices. Thirdly, those

prices are expressed via relatively simple closed-form analytic solutions.

Turning to predictions, we can identify (in some, but not all, circumstances) consequences for

Ąrms and aspects of their behavior that coincide with the conventional approach. For buyers,

however, we identify distinctly different implications for their incentives to search.

For Ąrms, and for the major settings that we covered, expected proĄts match those earned in

the equilibrium of a single-stage game.32 This means that researchers analyzing settings with

a single-stage model in a subgame (for example, the platform analysis by Hagiu and Wright

(2024) or the endogenous advertising in our Section 7) can supplement or replace it with our

approach.33 The proĄt equivalence (in many cases) means there is no disruption to earlier stages

(at least with risk-neutral players) and so we do not expect substantial changes in Ąrm-related

actions such as advertising. An illustrative exception is the case of the prominence triopoly

in Section 6. FirmsŠ proĄts from the pure-strategy play of our price-formation game strictly

exceed, for one Ąrm, the expected proĄt earned from an equilibrium of a single-stage game.34

From the perspective of buyers, however, things are markedly different. Consider the duopoly

search model (of Section 7) so that ŞsearchŤ effectively refers to buyers retrieving both ĄrmsŠ

prices. Stable prices diverge as buyers search more, increasing the payoff from doing so, revealing

strategic complementarities to search. In contrast, single-stage mixed-strategy pricing (Burdett

and Judd, 1983, with a Ąnite number of Ąrms) predicts that Ąrms use prices drawn randomly

from the same distribution. Crucially, there is strategic substitutability as search becomes

sufficiently strong: the incentive for an individual buyer to search falls if search amongst others

is higher. As search becomes complete (so that almost all buyers obtain two price quotations)

the ĄrmsŠ (symmetric) mixing distribution collapses to marginal cost. This, of course, makes a

second search redundant; and so this rules out an equilibrium in which search is complete.

We pursue a full analysis of stable prices in the presence of such costly buyer search elsewhere

(Myatt and Ronayne, 2024c). We identify novel effects: search (in a stable equilibrium equilib-

rium with positive search) is higher than predicted by the conventional approach; an increase

in the number of Ąrms lowers the intensity of search; and such entry to the industry raises

(rather than lowers) aggregate proĄt in the industry. The duopoly sketches we provided in this

paper serve to demonstrate how stable prices can generate novel applied insights.

32In the captive-shopper setting, the proĄts from Proposition 5 match those of Baye, Kovenock, and de Vries
(1992); for full exchangeability, proĄts from Proposition 2 match those of Johnen and Ronayne (2021); for
independent awareness, the proĄts from Proposition 6 match those of Ireland (1993) and McAfee (1994).
33The analysis of Hagiu and Wright (2024) includes a fee-setting plaform, requiring them to consider a captive-
and-shopper subgame with asymmetric marginal costs, and for that they use results from our analysis of
asymmetric models of sales (Myatt and Ronayne, 2024b). Our theory of stable price dispersion extends readily
to a captive-and-shopper model of sales with asymmetric marginal costs.
34For completeness, we characterize that equilibrium in Appendix B.
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Appendix A. Omitted Proofs

The proofs of Lemma 2 and Propositions 3, 6 and 7 follow arguments in the main text. The

proofs of Propositions 8 to 10 are contained in our supplemental Appendix C.

Proof of Lemma 1. Claims (i) and (ii) follow from the main text. (See also Appendix C.)

For claim (iii) it is without loss to focus on strictly positive prices. For undercut-proof prices

p1 > · · · > pn > 0 write πi = pi
∑

B⊆¶1,...,i♢ Bi λ (B) for the proĄt of Ąrm i.

By charging p̃1 = p1, Ąrm 1 achieves the proĄt π1, independent of the choices of other Ąrms.

For any other price it may charge, p̃1 < p1, its proĄt is highest if all others maintain their initial

prices. The proĄle of initial prices is undercut-proof, and Ąrm 1 earns strictly less than π1 by

strictly undercutting any other Ąrm. If it matches another Ąrm, then (given that ties are broken

in an interior way) it also earns strictly less. Therefore, all p̃1 < p1 are strictly dominated for

Ąrm 1. We conclude (as an induction basis) that Ąrm 1 must charge p̃1 = p1.

For i > 1, suppose that p̃j = pj for all j < i. Firm i can guarantee a proĄt πi by charging pi.

Recycling the argument above, even if others maintain their initial prices (so maximizing the

proĄt of Ąrm i) then Ąrm i earns strictly less from p̃i < pi. We conclude that p̃i = pi. By the

principle of induction, this holds for all i ∈ ¶1, . . . , n♢. □

The following lemma is used in proofs that follow, including that of Proposition 1.

Lemma A1. Consider a strategy proĄle in a pricing game in which Ąrms i and j mix (con-

tinuously) over an interval [pL, pH ] not intersecting the support of any other Ąrm, and where i

and j are both indifferent (as they are in mixed-strategy Nash equilibrium) across that interval.

The expected proĄt of any other Ąrm from deviating to a price p ∈ [pL, pH ] is convex in p.

Proof. We note that Fl(p) is constant for p ∈ [pL, pH ] and l /∈ ¶i, j♢; we write Fl for this

constant. Varying the prices of i and j within the interval [pL, pH ] has no effect on their sales

when there is no comparison between them. We write Yi and Yj for such sales:

Yi =
∑

B⊆¶1,...,n♢

λ(B)Bi(1 − Bj)
∏

l ̸∈¶i,j♢

(1 − BlFl) (A1)

Yj =
∑

B⊆¶1,...,n♢

λ(B)Bj(1 − Bi)
∏

l ̸∈¶i,j♢

(1 − BlFl) (A2)

We also write Z for the sales made by the cheaper of i and j when they are compared:

Z =
∑

B⊆¶1,...,n♢

λ(B)BiBj

∏

l ̸∈¶i,j♢

(1 − BlFl). (A3)

With this notation in hand, the ĄrmsŠ expected proĄts from any price p ∈ [pL, pH ] are

πi(p) = p (Yi + Z(1 − Fj(p))) and πj(p) = p (Yj + Z(1 − Fi(p))) . (A4)
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These proĄts are constant across this interval and so

1 − Fj(p) =
πi − pYi

pZ
and 1 − Fi(p) =

πj − pYj

pZ
. (A5)

Now consider the proĄt of some Ąrm k /∈ ¶i, j♢ deviating to a price in this interval. We write

Yk for the sales made when there is no comparison between k and either (or both) of i and j:

Yk =
∑

B⊆¶1,...,n♢

λ(B)Bk(1 − Bi)(1 − Bj)
∏

l ̸∈¶i,j,k♢

(1 − BlFl), (A6)

where these expected sales are guaranteed for any price in [pL, pH ]. Other possible sales involve

comparisons of k with i, with j, or with both i and j. Possible sales for these three cases are

Zik =
∑

B⊆¶1,...,n♢

λ(B)BkBi(1 − Bj)
∏

l ̸∈¶i,j,k♢

(1 − BlFl), (A7)

Zjk =
∑

B⊆¶1,...,n♢

λ(B)Bk(1 − Bi)Bj

∏

l ̸∈¶i,j,k♢

(1 − BlFl), (A8)

Zijk =
∑

B⊆¶1,...,n♢

λ(B)Bk(1 − Bi)(1 − Bj)
∏

l ̸∈¶i,j,k♢

(1 − BlFl). (A9)

The expected proĄt of Ąrm k from charging price p ∈ [pL, pH ] is

πk(p) = p [Yk + Zik(1 − Fi(p)) + Zjk(1 − Fj(p)) + Zijk(1 − Fi(p))(1 − Fj(p))]

= p


Yk + Zik

πj − pYj

pZ
+ Zjk

πi − pYi

pZ
+ Zijk

πj − pYj

pZ

πi − pYi

pZ

]

= pYk + Zik
πj − pYj

Z
+ Zjk

πi − pYi

Z
+

Zijk

Z2


πiπj

p
+ YiYjp − (πiYj + πjYi)

]
, (A10)

which by inspection is convex in p, and strictly so if Zijk > 0. □

Proof of Proposition 1. Begin with the Ąrst claim, which identiĄes a necessary condition for

stable prices. Suppose that the no-undercutting constraint of Ąrm i is slack, so that either

i = 1 and p1 < v or i > 1 and equation (4) holds as a strict inequality. Firm i can strictly raise

pi while maintaining undercut-proofness, and enter a price-cutting game with (by claim (iii) of

Lemma 1) a unique Nash equilibrium which gives Ąrm i a strictly higher expected proĄt.

For the sufficient condition, Ąx the candidate price proĄle. Given (6), this satisĄes p1 = v and

pi = pi−1

∑
B⊆¶1,...,i−1♢ Bi−1 λ (B)
∑

B⊆¶1,...,i♢ Bi−1 λ (B)
for all i ∈ ¶2, . . . , n♢. (A11)

These prices are undercut-proof, and so p̃i = pi for all i is the unique Nash outcome of a

price-cutting game, by claim (iii) of Lemma 1. Firm i earns a proĄt pi
∑

B⊆¶1,...,i♢ Biλ(B).

Consider a creep upward in price by i > 1 of ∆ > 0 sufficiently small such that pi + ∆ ≤ pi−1,

and that each Ąrm j < i − 1 that strictly prefers pj to undercutting pi also strictly prefers

pj to undercutting pi + ∆. In the price-cutting game construct a strategy proĄle in which

j /∈ ¶i − 1, i♢ choose p̃j = pj, while j ∈ ¶i − 1, i♢ mix over [pi, pi + ∆) with distributions

Fj(p) =
(p − pi)

∑
B⊆¶1,...,i♢ Bk λ (B)

p
∑

B⊆¶1,...,i♢ BiBi−1 λ (B)
for j, k ∈ ¶i − 1, i♢, j ̸= k, (A12)
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and then place remaining mass at pi−1 and pi + ∆ respectively. These are valid CDFs which

continuously increase from Fj(pi) = 0 and satisfy Fj(pi + ∆) ≤ 1 for j ∈ ¶i − 1, i♢ if ∆

is sufficiently small. Moreover, prices within this interval give the Ąrms j ∈ ¶i − 1, i♢ their

on-path expected proĄts. To see why, note that for j ∈ ¶i − 1, i♢ and k ∈ ¶i − 1, i♢ for k ̸= j,

(p − pi)
∑

B⊆¶1,...,i♢

Bj λ (B)

︸ ︷︷ ︸
gain from lifting price

= pFk(p)
∑

B⊆¶1,...,i♢

BiBi−1 λ (B) .

︸ ︷︷ ︸
lost sales to k ̸=j

(A13)

The left-hand side is the gain to j from charging a price higher than pi. (The summation

represents sales from being the cheapest of ¶1, . . . , i♢.) The right-hand side is then the value of

sales lost to the competitor k, which incorporates the probability that k prices below p.

The condition (6) says that i − 1 is a Ąrm that is indifferent to undercutting i. We chose ∆

such that any Ąrm that strictly prefers not to undercut pi also strictly prefers not to undercut

pi + ∆ and so prefers not to join the ŞtangoŤ between i − 1 and i. It remains to check that any

Ąrm j < i − 1 that is indifferent to undercutting pi is unwilling to join the dance (i.e., set some

p ∈ [pi, pi + ∆)). By Lemma A1 we only need to check that j does at least as well with pj than

both (i) pi, and (ii) (undercutting) pi + ∆. As for (i), we know j is indifferent between pj and

pi. For (ii), recall that ∆ is sufficiently small such that Fj(pi +∆) ≤ 1 for j ∈ ¶i−1, i♢. In fact,

using (A12) we Ąnd F −1
i (1) = pi−1 (i.e., the function Fi reaches 1 at exactly pi−1). Therefore,

j gets a strictly lower proĄt from undercutting pi−1 than charging pj (i has no mass at pi−1,

so no matter the mass i − 1 places there, j would not undercut pi−1 because the initial price

proĄle is undercut-proof). It follows that undercutting pi + ∆ (which is ≤ pi−1) gets j an even

lower expected proĄt than if it were to undercut pi−1, and so j prefers pj. □

Proof of Proposition 2. Fix a proĄle of maximal undercut-proof prices. We Ąnd the Ąrst k ∈

¶1, . . . , n − 1♢ such that λk < λk+1. We claim that for all i ∈ ¶2, . . . , k + 1♢

pi = pi−1
λi−1 + Xi−1

λi−1 + Xi

and so pi ≡ v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj

. (A14)

The Ąrst equality says that the local no-undercutting constraint binds at each step; setting

p1 = v and repeated substitution gives the second equality. To prove this, we note that this

must be true for i = 2 (forming an induction basis) because there is only one no-undercutting

constraint that applies, and it must bind because prices are maximal. Now suppose that the

claim holds (as an induction hypothesis) for all j ∈ ¶2, . . . , i − 1♢. For Ąrm i,

pi = min
j<i

{
pj

λj + Xj

λj + Xi

}
= min

j<i



pj

λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1






i∏

k=j+1

λk−1 + Xk−1

λk−1 + Xk








= v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj

min
j<i





λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1








= v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj



1, min

j<i−1





λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1











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deviation by Ąrm k

pk+1 pk pk−1 pi+1 pip̂k
pi−1︸ ︷︷ ︸

firms j∈¶i,...,k♢ play mixed strategies

Figure 1. An Upward Deviation in Initial Price

= v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj

= pi−1
λi−1 + Xi−1

λi−1 + Xi

. (A15)

The Ąrst four lines use algebraic re-arrangement. The Ąnal line holds because for each j < i−1,

λj + Xj

λj + Xi

i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1

≤
λj + Xj

λj + Xi

i∏

k=j+1

λj + Xk

λj + Xk−1

=
λj + Xj

λj + Xi

λj + Xi

λj + Xj

= 1. (A16)

The inequality in the chain holds because Xk ≥ Xk−1 in each of the ratio terms, which means

that such terms are each decreasing in λk−1. An upper bound for each term is obtained by

replacing λk−1 with λj ≤ λk−1, where this inequality holds because j ≤ k − 1 ≤ i − 1 and (by

assumption) Ąrms below i are in size order. The claim holds by the principle of induction.

Now consider Ąrms k and k + 1; the Ąrst out-of-order pair.

pk+1

pk

=
λk + Xk

λk + Xk+1

<
λk+1 + Xk

λk+1 + Xk+1

. (A17)

The equality is the (binding) no undercutting constraint. The inequality holds because Xk <

Xk+1 and λk+1 > λk. This means that if we switch the positions of k and k + 1 in the proĄle

of prices (while maintaining the actual prices) then the no-undercutting holds strictly. Firm

k is now lower in the price order than before, but with the same proĄt, and so (as before)

does not want to undercut any lower-priced Ąrms. Firms j < k face the same no-undercutting

opportunities as before, and so their no-undercutting constraints still hold. Firm k + 1 is now

strictly better off. We have constructed a Pareto-superior undercut-proof proĄle. □

Proof of Lemma 3. Suppose that Ąrm k (where necessarily k > 1) deviates upward to p̂k > pk.

There is some i < k such that pi+1 < p̂k ≤ pi. For example, one case is where i = k − 1, so that

Ąrm k deviates upward without crossing the initial price of another Ąrm. Another case is when

i = 1 and p̂k = p1 = v, which means that k removes any restriction on its Ąnal price. We build

a mixed-strategy equilibrium (illustrated in Figure 1) in which all Ąrms earn their (common)

on-path equilibrium expected proĄts, vλ. Firms j ∈ ¶i, . . . , k♢ mix (with atoms and gaps) over

the interval [pk, pi]. Others set their initial prices: pj = pj for j /∈ ¶i, . . . , k♢.

Given that Ąrms ¶1, . . . , k♢ price (by construction below) at or above pk, any Ąrm l ∈ ¶k +

1, . . . , n♢ has no proĄtable deviation downward, and is constrained upward. Firms j ∈ ¶i, . . . , k♢

will (again by construction below) earn their on-path equilibrium proĄts, and this implies that

Ąrms ¶1, . . . , i − 1♢ cannot proĄtably deviate to within [pk, pi]. This is because an upper bound

to the expected proĄt a lower-indexed Ąrm can achieve by doing so is that from Şthrowing some
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j ∈ ¶i . . . , k♢ off the dance ĆoorŤ and charging one of the prices j used to. Given the symmetry

of Ąrms, this gives the deviator the same expected proĄt j had before their ejection, vλ.

We now build the strategies used by the actively mixing Ąrms ¶i, . . . , k♢. This group consists

of the deviant Ąrm k and all lower-indexed Ąrms up to the Ąrm i with the lowest initial price

that weakly exceeds the deviantŠs new initial price. We consider three cases.

Case (i): a deviation that does not cross another Ąrst-stage price.

If i = k−1, so that p̂k ∈ (pk, pk−1], then Ąrms k and k−1 mix continuously over the single interval

of prices [pk, p̂k), and then place atoms (these are strictly positive if and only if p̂k < pk−1) at

their respective initial prices p̂k and pk−1. They mix using the same distribution F (p). Taking

the indifference condition for Ąrm k (the same condition holds for Ąrm k − 1), F (p) satisĄes

λv = p
∑

B⊆¶1,...,k−2♢

[λ(B ∪ ¶k♢) + (1 − F (p))λ(B ∪ ¶k, k − 1♢)]

= p
k−2∑

x=0

(
k − 2

x


 I1+x(

n
1+x

) +
[1 − F (p)]I2+x(

n
2+x

)


 , (A18)

where we deĄne I1 ≡ nλ.35 The left-hand side is the expected proĄt of Ąrm k. The right-hand

side is the price p multiplied by the probability that Ąrm k wins any comparisons. Firm k wins

from comparisons which group it with any subset of ¶1, . . . , k − 2♢ (these are the higher priced

Ąrms). Additionally, it wins comparisons that also include k − 1 so long as k − 1 prices above

p, which happens with probability 1 − F (p). The second line computes the sizes of the relevant

comparison sets. The summation over x ranges over the possible sizes of B ⊆ ¶1, . . . , k − 2♢,

noting that for each x there are
(

k−2
x

)
relevant sets. Bringing in Ąrm k, these comparison sets

are of size 1+x. The total mass of comparison sets of this size is I1+x, and there are
(

n
1+x

)
such

sets. Hence I1+x/
(

n
1+x

)
is the size of each comparison set. Similar calculations apply when Ąrm

k − 1 is added, where this time the combined mass of the relevant comparison sets is multiplied

by 1 − F (p). The solution for F (p) is strictly increasing in p, F (pk) = 0, and F (pk−1) = 1.

Case (ii): a deviation into the upper part of a higher price interval.

A second case is when the deviation of Ąrm k crosses the initial price of at least one other Ąrm,

so that i < k − 1 or equivalently p̂k > pk−1, and when that deviant price is sufficiently high in

(pi+1, pi]. We consider p̂k ∈ [p⋄
i , pi] where p⋄

i ∈ (pi+1, pi) is a threshold to be determined below.

We build an equilibrium mixed-strategy proĄle in which there is a threshold p⋄
j ∈ (pj+1, pj) for

each j ∈ ¶i, . . . , k − 2♢ such that the interval (pj+1, p⋄
j), which is the lower part of the interval

between the initial prices of Ąrms j + 1 and j, is a gap in the mixing distributions of all Ąrms.

(This gap must exist because, for any price in that interval, a Ąrm would prefer to undercut

the price pj+1 in order to capture an atom which will be played by Ąrm j + 1.) For j > i, over

the upper part of the interval [p⋄
j , pj) Ąrms in ¶i, . . . , j♢∪¶k♢ will mix continuously. Firm j will

then place an atom at pj. Turning to the top interval between the prices of i + 1 and i, Ąrms i

35Note that captive customers are included in the Ąrst line, with λ(∅ ∪ ¶k♢).
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and k will mix continuously over [p⋄
i , p̂k) and then will place remaining mass at their respective

initial prices. Across the lowest interval [pk, pk−1) all Ąrms mix continuously, with Ąrm k − 1

placing an atom at its initial price pk−1. For k = 4 and i = 1 the basic plan of the equilibrium

support of the ĄrmsŠ mixed strategies is illustrated in Figure 2.

deviation by Ąrm k = 4

p4 p3 p2p⋄
2

p1p⋄
1 p̂4︸ ︷︷ ︸

firms j∈¶1,2,3,4♢ mix

︸ ︷︷ ︸
firms j∈¶1,2,4♢ mix

︸ ︷︷ ︸
firms j∈¶1,4♢ mix

Figure 2. Mixing Supports for an Equilibrium of Type Case (ii)

For each j ∈ ¶i, . . . , k−1♢ (these are Ąrms tempted to undercut following kŠs deviant Ąrst-stage

choice), consider the interval of prices [pj+1, pj). Firms ¶i, . . . , j♢∪¶k♢ will actively used mixed

strategies within this interval, where this is a strict subset for j < k − 1. Note that there are

j − (i − 1) + 1 such Ąrms. Specify the cumulative distribution function, Fj(p), to satisfy

λv = p
∑

B⊆¶1,...,i−1♢

∑

B̃⊆¶i,...,j♢

λ
(
B ∪ B̃ ∪ ¶k♢

)
[1 − Fj(p)]♣B̃♣

= p
i−1∑

x=0

j−i+1∑

y=0

(
i − 1

x

(
j − i + 1

y


I1+x+y(

n
1+x+y

) [1 − Fj(p)]y (A19)

The left-hand side is the (common) equilibrium expected proĄt of each Ąrm. The right-hand side

is kŠs expected proĄt when, at price p, all Ąrms in ¶i, . . . , j♢ mix according to Fj(p). The Ąrst

summation collects together subsets of lower-indexed Ąrms who always lose any comparisons

with price p. The second summation deals with those who actively mix. For any set B̃ there

are ♣B̃♣ such Ąrms, and so the price p wins comparisons against them all with probability

[1 − Fj(p)]♣B̃♣. The second line follows from the various masses of consideration sets. This is an

indifference condition for Ąrm k. The same condition also holds for other Ąrms in ¶i, . . . , j♢.

The solution for Fj(p) satisĄes Fj(pj+1) = 0 and is strictly increasing. DeĄning Fj(pj) =

limp↑pj
Fj(p), the k − i solutions satisfy Fk−1(pk−1) < Fk−2(pk−2) < · · · < Fi(pi) = 1.

Looking across the whole interval [pk, pi), we might aim to join the k − 1 functions to form

a single distribution. However, such a function would jump downward at each initial price

(to zero), and so would not be a valid distribution function. We Şsmooth outŤ these jumps

as follows. For each j ∈ ¶i, . . . , k − 2♢ we deĄne p⋄
j ∈ (pj+1, pj) to be the unique solution to

Fj+1(pj+1) = Fj(p
⋄
j) . We now stitch together a full cumulative distribution as follows. First,

we deĄne F (p) = Fk−1(p) for p ∈ [pk, pk−1]. For all other j ∈ ¶i, . . . , k − 2♢ we deĄne

F (p) =





Fj+1(pj+1) p ∈ (pj+1, p⋄
j ]

Fj(p) p ∈ (p⋄
j , pj]

(A20)

This distribution function continuously increases from F (pk) = 0 to F (pi) = 1. It is constant

for each interval [pj+1, p⋄
j ] for each j ∈ ¶i, . . . , k − 2♢, but otherwise is strictly increasing.
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We are Ąnally ready to build our strategy proĄle. Firm k (the deviant) mixes according to F (p)

across p ∈ [pk, p̂k) and places any remaining mass (if p̂k < pi) at its Ąrst-stage price, and so plays

an atom of size 1 − F (p̂k) at p̂k. Firm i also mixes according to F (p) for p ∈ [pk, p̂k) and then

places its remaining mass 1−F (p̂k) at pi. (This means that Ąrms i and k behave symmetrically

save for the location of their atoms.) A Ąrm j ∈ ¶i + 1, . . . , k − 1♢ mixes according to F (p)

across p ∈ [pk, pj) and then places its remaining mass 1 − F (pj) at pj. This construction yields

a mixed-strategy Nash equilibrium proĄle so long as the deviant initial price satisĄes p̂k ≥ p⋄
i .

We note that the constructed distribution function F (p) is used by all Ąrms below their re-

spective initial prices. At any point in the support of a ĄrmŠs strategy (so that F (p) is strictly

increasing) the function is constructed so that each mixing Ąrm earns the on-path equilibrium

expected proĄt, vλ. Any price within a gap (where F (p) is constant) generates an expected

proĄt strictly below vλ. (At such prices a Ąrm performs strictly better by undercutting the

next initial price below and so capturing the atom of another Ąrm.)

The strategy proĄle constructed requires k to place an atom at its deviant price p̂k. If p̂k ∈

(pi+1, p⋄
i ), however, the deviant price lies strictly within an interval across which F (p) is constant

and so generates an expected proĄt strictly below vλ. We adapt to cover that case next.

Case (iii): a deviation into the lower part of a higher price interval.

We now consider p̂k ∈ (pi+1, p⋄
i ). What we do here is to construct an equilibrium in which Ąrms

follow the previous strategy proĄle up to some critical price p⋆, at which point Ąrm i ceases

to participate (in essence, this Ąrm Şleaves the dance ĆoorŤ) and places remaining mass at its

initial price. SpeciĄcally, we deĄne p⋆ to be the lowest price which satisĄes F (p⋆) = Fi(p̂k).

Necessarily this critical price satisĄes p⋆ < pi+1. We retain our deĄnition of F (p) for p ≤ p⋆.

We now change Ąrm iŠs strategy so that it mixes according to F (p) for p ∈ [pk, p⋆] but then places

remaining mass at its initial price, so that it has an atom at pi of size 1 − F (p⋆) = 1 − Fi(p̂k).

This construction means that Ąrm k earns its on-path equilibrium expected proĄt, vλ, from

playing the price p̂k. For p > p⋆ Ąrm i no longer actively mixes, and so we modify the behavior

of other Ąrms to maintain appropriate indifferences for each j ∈ ¶i + 1, k − 1♢, and prices in

the interval [pj+1, pj) that are at or above p⋆ we specify F ⋆
j (p) to satisfy

λv = p
∑

B⊆¶1,...,i−1♢

∑

B̃⊆¶i+1,...,j♢

[
1 − F ⋆

j (p)
]♣B̃♣ [

λ
(
B ∪ B̃ ∪ ¶k♢

)
+ (1 − F (p⋆))λ

(
B ∪ B̃ ∪ ¶i, k♢

)]

= p
i−1∑

x=0

j−i∑

y=0

(
i − 1

x

(
j − i

y


[1 − F ⋆

j (p)]y


 I1+x+y(

n
1+x+y

) +
I2+x+y[1 − F (p⋆)](

n
2+x+y

)


 . (A21)

This is an indifference condition for k, but also applies to other relevant Ąrms. It adjusts (A19)

to treat i separately, as i prices above p with (constant) probability 1 − F (p⋆) for p ∈ (p⋆, pi).

The solution satisĄes F ⋆
j (p) > Fj(p) for p > p⋆ (F ⋆

j (p) = Fj(p) for p = p⋆). To proceed, we

replace Fj(p) with F ⋆
j (p) for p > p⋆. We then redeĄne F (p) and the thresholds p⋄

j appropriately.

This modiĄcation ensures k is indifferent between p̂k and slightly undercutting pi+1. □
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Proof of Proposition 4. Because of the symmetry of the full-exchangeability setting there is

only one maximal undercut-proof proĄle, and so one candidate equilibrium prediction. That

proĄle coincides with the proĄle given in Proposition 2. From that proĄle, there are no proĄtable

downward Ąrst-stage (or any second-stage, by claim (iii) of Lemma 1) deviations. For subgames

following any single-Ąrm upward deviation, we apply Lemma 3. □

Proof of Proposition 5. This proposition is concerned with an exact (rather than approximate)

captive-and-shopper model of sales: Im = 0 for m ∈ ¶2, . . . , n − 1♢. Pairwise consideration sets

are empty and so the ŞtwonessŤ property does not hold. This means that claim (i) of Lemma 1

does not apply: strictly positive undercut-proof prices are not necessarily distinct.36

Consider what must be true of any maximal undercut-proof prices. The lowest price cannot be

zero: such a Ąrm (even if there is more than one) could raise its price locally without violating

no-undercutting constraints.37 Given that the lowest price is strictly positive it must be charged

by only a single Ąrm (else a proĄtable undercut would be available). Firms who are not the

cheapest, and so sell only to their captives, can raise their prices to the maximum, v, while

maintaining undercut-proofness. We conclude that there must be only two price points in any

maximal undercut-proof proĄle: a lowest (strictly positive) price and v.

Consider, then, price proĄles in which one Ąrm i sets pi < v while other Ąrms set pj = v for

j ̸= i. All such Ąrms j earn vλj, and so to dissuade undercutting we need pi ≤ p†
j, where p†

j is

from eq. (13). Thus, the maximal proĄle when i is cheapest must satisfy

pi = min
j ̸=i

p†
j =





p†
n−1 if i = n, or

p†
n if i ∈ ¶1, . . . , n − 1♢.

(A22)

We have found n maximal price proĄles, which vary according to the identity of the shopper-

capturing cheapest Ąrm. All Ąrms j ̸= i earn vλj. If i < n, Ąrm i earns strictly less than

vλi; but if i = n then Ąrm i earns strictly more. From this we conclude that i = n (the Ąrm

with fewest captives is cheapest) pins down the unique industry-optimal undercut-proof proĄle.

Firm n commits to the lowest price such that it wins all the shoppers without a Ąght.

For the next statement (concerning pure-strategy play) consider the two-stage pricing game.

Build a strategy proĄle in which Ąrms choose the industry-optimal undercut-proof prices as

initial prices, and maintain those prices on the equilibrium path in the second stage. By

construction, no Ąrm i < n can proĄtably deviate in the Ąrst stage, and so the only candidate

for a proĄtable deviation is for Ąrm n to deviate upwards at the Ąrst stage.

A deviation by Ąrm n to p̂n ∈ (p†
n−1, v] leads to a subgame in which there is no pure-strategy

Nash equilibrium. The following claim reports the proĄts in a mixed-strategy equilibrium.

36We noted earlier that if a Şk-nessŤ property holds, so that all consideration sets comprising k > 1 Ąrms have
positive mass, then there can be at most k − 1 tied prices. A model of sales has this property only for k = n,
which leaves open the possibility of n−1 tied prices. Ultimately, this is what we predict. Claim (ii) of Lemma 1
does not hold as stated. However, this is simply because we need to adjust our notation to deal with cases of
tied prices. Finally, claim (iii) of Lemma 1 continues to hold more generally even without the twoness property.
37Any higher-priced Ąrm earns strictly positive proĄts, and would earn less by pricing close enough to zero.
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Claim. Consider the price-cutting game following p̂n > p†
n−1 and pi = v for i < n. There is a

unique Nash equilibrium in which Ąrm n earns p†
n−1(λn + λS) and each Ąrm i earns proĄt vλi.

This result is covered by Proposition 7 of Myatt and Ronayne (2024b). In the current paper,

marginal costs are symmetric and captive shares are strictly asymmetric, which implies the

lowest dominated price of each Ąrm, as deĄned in (23), is distinct, i.e., p†
i ̸= p†

j for i ̸= j. As

shown in Myatt and Ronayne (2024b, Appendix C), this removes the instances that can give

multiple equilibria, and leaves us with a unique Nash equilibrium.

For example, if Ąrm n deviates to a Ąrst-stage price p̂n ∈ (p†
n−1, p†

n−2), then in the subgameŠs

Nash equilibrium each i < n − 1 sets its Ąrst-stage price equal to v, while Ąrms n − 1 and n

mix continuously (or ŞtangoŤ) over the interval [p†
n−1, p̂n) with distribution functions

Fn−1(p) =
(p − p†

n−1)(λS + λn)

pλS

and Fn(p) =
(p − p†

n−1)(λS + λn−1)

pλS

, (A23)

with n and n − 1 placing remaining mass at p̂n and v, respectively. The proĄt earned by Ąrm

n is the same as reported in the statement of the proposition, making the upward deviation in

its initial price non-proĄtable. Finally, within (off-path) subgames following any other choices

of Ąrst-stage prices, any equilibrium may be played.38 In summary, we have constructed a

subgame perfect equilibrium that supports the on-path play of industry-optimal prices.

Turning to the Ąnal statement in the proposition, consider any other proĄle of maximal

undercut-proof prices, i.e., one in which some Ąrm i ∈ ¶1, . . . , n−1♢ chooses pi = p†
n while each

j ̸= i chooses pj = v. Suppose that Ąrm i deviates upward at the Ąrst stage to an initial price

p†
n + ∆ < p†

n−1. Over the interval [p†
n, p†

n + ∆), let Ąrms i and n mix according to

Fi(p) =
(p − p†

n)(λS + λn)

pλS

and Fn(p) =
(p − p†

n)(λS + λi)

pλS

, (A24)

and place remaining mass at their initial prices. The distributions are continuously increasing

from Fi(p
†
n) = Fn(p†

n) = 0, and satisfy Fi(p) < Fn(p) ≤ 1 if p is not too large (guaranteed by

∆ sufficiently small). By construction, Ąrms i and n earn their original expected proĄts. We

conclude that this price proĄle is creep resistant, and so forms a stable price proĄle. □

Proof of Lemma 4. We know that p1 = v, from Lemma 2. The text following the lemma

conĄrms pi ≤ pi−1(1 − αi) must hold for every i ∈ ¶2, . . . , n♢. Choosing maximal prices so that

these constraints all bind generates the solutions stated in the lemma. More generally, there is

a no-undercutting constraint pj ≤
∏

i≥k>j(1 − αk) for every i < j, as derived in the text, and

these constraints are all satisĄed by the stated solutions for maximal undercut-proof prices. □

Proof of Lemma 5. The proof follows a similar structure to the proof of Lemma 3. Owing also

to its length, it is relegated to our online supplemental Appendix C. □

38Again, an equilibrium exists there because Theorem 5 of Dasgupta and Maskin (1986, p.14) applies.
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Appendix B. Extensions

In this appendix we supplement and extend various results or points in the main text.39 We:

1. detail the model of prominence outlined in Section 6;

2. detail the n-Ąrm model of advertising outlined for duopoly in Section 7;

3. discuss the model of costly search sketched in Section 7;

4. consider the impact of risk-aversion making equilibrium strict; and

5. describe a two-stage Stackelberg-style game in the captive-shopper setting.

1. Prominence. In Section 6 we described a triopoly in which one Ąrm is prominently con-

sidered. One industry-optimal undercut-proof proĄle is supported by the equilibrium play of

pure strategies (Proposition 10). ProĄts for the Ąrms (which we order so that ϕ2 ≥ ϕ3) are

π1 = vϕ1, π2 = p2ϕ2 =
vϕ1ϕ2

ϕ1 + ϕ2 + ϕ3

, and π3 = p3ϕ3 =
vϕ1ϕ3

ϕ1 + ϕ3

. (B1)

Here we describe a Nash equilibrium from the play of the standard single-stage pricing game.

(This is an equilibrium in a subgame of our two-stage game following p1 = p2 = p3 = v at

t = 1.) In this equilibrium, Ąrm 2 mixes over the interval [p2, p3] according to the distribution

F2(p) =
ϕ1 + ϕ2 + ϕ3

ϕ2

−
vϕ1

ϕ2p
, (B2)

where p2 = vϕ1/(ϕ1 + ϕ2 + ϕ3) and p3 = vϕ1/(ϕ1 + ϕ3) are the equilibrium-supported initial

prices from Proposition 10. Firm 3 then mixes over the interval [p3, v] according to

F3(p) =
ϕ1 + ϕ3

ϕ3

−
vϕ1

ϕ3p
. (B3)

Finally, the prominent Ąrm 1 mixes over the entire interval [p2, v) with the distribution

F1(p) = 1 −
vϕ1

p(ϕ1 + ϕ2 + ϕ3)
, (B4)

with remaining mass as an atom of size ϕ1/(ϕ1 + ϕ2 + ϕ3) at v. It is straightforward to conĄrm

that all Ąrms are indifferent across all p ∈ [p2, v). In this equilibrium Ąrms 1 and 2 earn the

expected proĄts reported above in (B1). However, the expected proĄt of Ąrm 3 is

π̃3 =
vϕ1ϕ3

ϕ1 + ϕ2 + ϕ3

<
vϕ1ϕ3

ϕ1 + ϕ3

= π3 (B5)

39Some of these connect to our related work: product prominence (Myatt and Ronayne, 2024d), endogenous
advertising (Myatt and Ronayne, 2024a), two-stage pricing with risk aversion, and a sequential-move captive-
and-shopper game (Myatt and Ronayne, 2024b, Appendix C).
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and so Ąrm 3 is strictly worse off than it would be on the equilibrium path of our two-stage

game. As noted in our concluding remarks, this is a setting in which our proĄt predictions do

not coincide with those from a Nash equilibrium of the corresponding single-stage game.

We note that the single-stage game studied here is one studied by Inderst (2002, Section 3).

We obtain an equivalence by setting ϕ2 = ϕ3 (so that the non-prominent Ąrms are symmetric)

and δ = 0 in his paper (which eliminates any captives for non-prominent Ąrms). Lemma 3 of

Inderst (2002) suggests that the non-prominent Ąrms must mix over the same support, whereas

we have an equilibrium in which their supports are non-overlapping.40

This setting can further illustrate how our pricing framework can be a component of a deeper

model. Inspired by papers in which suppliers pay for prominence (Armstrong and Zhou, 2011;

Chen and He, 2011), we introduce a prominence provider that sells that position to Ąrms.

Suppose that all three Ąrms begin with exclusive local customer bases, so that Ąrm i ∈ ¶1, 2, 3♢

would charge v to ϕi customers within its locality. A monopolist prominence provider, M , offers,

in a preliminary (pre-pricing) stage, to bring one Ąrm to national prominence. For example,

a provider may be a department store that chooses a product to display in the window, or a

website that shows a product on its home page or highlights it at the top of search results.

SpeciĄcally, M makes a take it or leave it offer to one Ąrm, and commits to make a speciĄed

competitor prominent if the offer is refused. We assume Ąrms have differently sized bases and

label them so that ϕ1 > ϕ2 > ϕ3. Following the allocation of prominence, we assume that Ąrms

set prices that are supported by the equilibrium play of pure strategies (in which the larger

non-prominent Ąrm is cheapest, as per Proposition 10).

Because ĄrmsŠ proĄts are increasing in the size of the prominent ĄrmŠs base, and the largest Ąrm

is the cheapest when it is not prominent, M maximizes its fee (which is accepted in equilibrium)

by offering prominence to the Ąrm with the largest base, Ąrm 1, while threatening to make their

rival with the smallest base, Ąrm 3, prominent if it refuses.

In essence, a small non-prominent Ąrm has a threatening lean and hungry look, which strength-

ens the ability of M to extract a fee from a large Ąrm. As such, in equilibrium, M bestows

prominence upon Ąrm 1. The prominence provider proĄts by exploiting the asymmetries be-

tween the largest and smallest Ąrm. It then compounds this asymmetry by making Ąrm 1

prominent. This is to the detriment of customers, for whom Ąrm 1 is the worst choice.

2. Advertising. In Section 7 we sketched an extension to the independent awareness speciĄca-

tion in which adverting decisions inĆuence consideration sets. Here we Ćesh out that extension

with n Ąrms, noting that some details are reported elsewhere (Myatt and Ronayne, 2024a).

SpeciĄcally, we now think of Ąrms that play the following three-stage perfect-information game:

40It is possible that the source of the difference in predictions might lie within derivation of the second displayed
equation of the proof of Lemma 3 in the appendix of Inderst (2002).
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(t = 1) Ąrms simultaneously choose their awareness parameters αi ∈ [0, 1]; and then

(t = 2) Ąrms simultaneously choose their initial price positions pi ∈ [0, v]; and last

(t = 3) Ąrms simultaneously choose price cuts to p̃i ∈ [0, pi].

A ĄrmŠs payoff is its operating proĄt minus the cost of advertising, where that advertising

determines the awareness of the Ąrm. Firm iŠs advertising cost Ci(αi) is smoothly increasing,

convex, Ci(0) = 0, and C ′
i(0) < v. When Ąrms are asymmetric we index them so that C ′

1(α) <

· · · < C ′
n(α) for all α ∈ (0, 1]. This differs from McAfee (1994) by allowing for asymmetric

Ąrms, while in Ireland (1993) Ąrms face no costs of advertising.41

We seek subgame-perfect equilibria with the play of pure strategies (for advertising choices,

initial prices, and Ąnal retail prices) along the equilibrium path, and we also look for the play

of pure strategies following any Ąrst-stage deviations in advertising choices.

Following any Ąrst-stage advertising choices, we know that any subgame-perfect equilibrium

involves the on-path play of pure strategies (in prices) only if the associated prices are undercut-

proof and industry optimal (Proposition 7). The proĄts of Ąrms (before the deduction of

advertising costs) are uniquely deĄned in such a case. This means that we can simply refer to

an equilibrium of the advertising game (with pure on-path strategies) with payoffs πi − Ci(αi).

DeĄnition (Equilibrium with Endogenous Advertising). A proĄle of advertising strate-

gies is supported by the equilibrium play of pure strategies if there is a subgame-perfect equi-

librium in which pure strategies are played, both on the equilibrium path and on any path be-

ginning within any second-stage subgame. Such a proĄle is a pure strategy Nash equilibrium of

a simultaneous-move advertising game in which ĄrmsŠ payoffs are πi − Ci(αi) where πi is the

proĄt of Ąrm i from any industry-optimal proĄle of undercut-proof prices.

Given that Ąrms are not yet ordered by their (now endogenous) choice of advertising exposure,

we can write the expected sales revenues as

πi =





vαi
∏

j ̸=i(1 − αj) αi > maxj ̸=i¶αj♢ and

vαi(1 − αi)
∏

j /∈¶i,k♢(1 − αj) αi < αk where αk = maxj ̸=i¶αj♢,
(B6)

and where both expressions apply when Ąrm i ties to be the largest Ąrm.

A ĄrmŠs sales revenue reacts differently to its advertising reach depending on whether that Ąrm

is the largest. The largest Ąrm sets the highest (monopoly) price and so does not worry about

another Ąrm undercutting them. Therefore for the largest Ąrm, an increase in αi increases its

expected revenue linearly. In contrast, smaller ĄrmsŠ prices must be set to deter undercutting

by larger Ąrms. For them, there are two competing effects: Ąxing second-period prices, an

increase in αi scales up sales; however, it also forces its second-period price down (and that of

41McAfee (1994) also related his paper to that of Robert and Stahl (1993), who speciĄed the simultaneous
(rather than sequential) choice of advertising exposure and price.
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any smaller Ąrms because of the recursive nature of prices). In fact,

∂πi

∂αi

=





v
∏

j ̸=i(1 − αj) αi > maxj ̸=i¶αj♢ and

v(1 − 2αi)
∏

j /∈¶i,k♢(1 − αj) αi < αk where αk = maxj ̸=i¶αj♢.
(B7)

For a smaller Ąrm, revenue is decreasing in advertising exposure when a Ąrm reaches a majority

of customers, that is, when αi > 1/2. If not, then this revenue kinks upward as αi passes through

the maximum advertising exposure of competing Ąrms. SpeciĄcally,

limαi↓maxj ̸=i αj
∂πi/∂αi

limαi↑maxj ̸=i αj
∂πi/∂αi

=
1 − maxj ̸=i αj

1 − 2 maxj ̸=i αj

> 1, (B8)

where the inequality is strict because (once dominated strategies have been eliminated) every

Ąrm chooses positive exposure. This implies that no Ąrm chooses its advertising reach to be

exactly equal to the maximum of others, and so there is a unique largest Ąrm.

For smaller Ąrms, advertising increases sales revenue only if αi ≤ 1/2. This implies Ąrms other

than the largest restrict awareness to a minority of potential customers (no matter the cost).

The proofs of Lemma B1, and Propositions B1 and B2 can be found in Appendix C.

Lemma B1 (Properties of Advertising Choices). In any proĄle of advertising choices

supported by the equilibrium play of pure strategies there is a unique largest Ąrm, and all other

Ąrms advertise to a minority of customers.

On the revenue side, the largest Ąrm always faces an incentive to increase its exposure. Labeling

this Ąrm as k, it is straightforward to conĄrm that, in equilibrium, ∂πk/∂αk ≥ 1/2n−1. Hence,

if C ′(1) < 1/2n−1 then Ąrm k chooses αk = 1 and advertises to everyone.

An advertising equilibrium is characterized by the speciĄcation of a leading (and largest) Ąrm

k, and n advertising choices which satisfy the n Ąrst-order conditions

C ′
k(αk)

v
=
∏

j ̸=k

(1 − αj) and
C ′

i(αi)

v
= (1 − 2αi)

∏

j /∈¶i,k♢

(1 − αj) ∀i ̸= k. (B9)

Because payoffs can be written to rely on a product of all ĄrmsŠ advertising choices, we can

(and do, in the proof of Proposition B1) treat this as an aggregative game and solve accordingly

(see, e.g., Anderson, Erkal, and Piccinin, 2020; Nocke and Schutz, 2018).

To fully characterize an equilibrium we also need to check for any non-local deviations. For

example, one of the smaller Ąrms i ̸= k has the option to deviate and choose αi > αk, and

become the largest Ąrm. The proof of Proposition B1 checks such remaining details.

Proposition B1 (Pure Strategies on Path: Endogenous Advertising). There is at least

one proĄle of advertising choices supported by the equilibrium play of pure strategies.

In any such equilibrium, one Ąrm chooses a strictly higher advertising level than all the others,

sets a price equal to the monopoly price, and only sells to customers who are uniquely aware of

its product. Other Ąrms advertise to at most half of potential customers and set lower prices.
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In equilibrium, one leading Ąrm advertises distinctly more than others. Proposition B1 does

not identify this Ąrm. If the advertising cost functions are not too different then any Ąrm can

play this role.42 If they are different then the leading Ąrm is one with relatively low advertising

costs.43 The other minority-audience Ąrms can, however, be ordered given the structure of the

advertising cost functions. For example, if k = 1 then advertising choices satisfy α1 > · · · > αn.

If Ąrms are symmetric (Ci(αi) = C(αi) for all i) then the Ąrst-order conditions simplify appre-

ciably. Writing α for the common advertising choice of the smaller Ąrms,44

C ′(αk)

v
= (1 − α)n−1 and

C ′(α)

v
= (1 − 2α)(1 − α)n−2. (B10)

A special case is when advertising is free (Ireland, 1993), where there is a pathological equilib-

rium in which multiple Ąrms choose αi = 1 and proĄts are subsequently driven to zero. Putting

this aside (or by allowing costs to be close to free) the Şfree advertisingŤ case yields α = 1/2

for n − 1 Ąrms, and complete coverage, αk = 1, for one Ąrm.

Another case of interest is the cost speciĄcation derived from the random mailbox postings

technology suggested by Butters (1977).45 Equivalently, this is what McAfee (1994) called

constant returns to scale in the availability of a ĄrmŠs price.46 This is obtained by setting

C(α) = γ log[1/(1 − α)], so that the marginal cost of increased advertising satisĄes C ′(α) =

γ/(1 − α). Setting γ = 1 without loss of generality (this cost coefficient only matters relative

to the valuation v of customers for the product) and requiring v > 1 (otherwise all Ąrms choose

zero advertising) the relevant Ąrst-order conditions become

1

v(1 − αk)
= (1 − α)n−1 and

1

v
= (1 − 2α)(1 − α)n−1. (B11)

These equations solve recursively. Substituting the second into the Ąrst, we Ąnd that αk = 2α:

no matter what the level of cost, the large Ąrm reaches twice as many customers as each smaller

Ąrm. The solution for α satisĄes the natural comparative-static property that α is increasing

in the product valuation v, and so is decreasing in the advertising cost parameter γ.

Proposition B2 (Equilibrium with Symmetric Advertising Costs). If advertising is

free, as it is under the speciĄcation of Ireland (1993), then, in an equilibrium in which Ąrms earn

positive proĄts, the largest Ąrm chooses maximum advertising exposure, while others advertise

to half of potential customers. The largest Ąrm earns twice the proĄt of each smaller Ąrm.

If the cost of advertising reach is determined by a random mailbox postings technology, as it

is under the constant returns case of McAfee (1994), so that C(α) = −γ log(1 − α), then the

42This is true for the speciĄcations of Ireland (1993) and McAfee (1994), under which costs are symmetric.
43Formally: there is some k⋆ such that there is an equilibrium in which any k ∈ ¶1, . . . , k⋆♢ leads the industry.
44The expressions in (B10) are precisely the equilibrium conditions stated by McAfee (1994).
45Suppose that customers are divided into 1/∆ segments each of size ∆. Each segment corresponds to a mailbox.
An advertisement costs γi∆ for Ąrm i, and randomly hits one of the segments. Hence, with a total spend of
Ci(αi), a Ąrm is able to distribute Ci(αi)/(γi∆) advertisements. It follows that αi = 1 − (1 − ∆)Ci(αi)/(γi∆).
Taking the limit as ∆ → 0, we observe that (1 − ∆)Ci(αi)/(γi∆) → exp(−C(αi)/γi). Solving suggests a cost
speciĄcation Ci(αi) = γi log[1/(1 − αi)] where (for asymmetric Ąrms) we assume that γn > · · · > γ1 > 0.
46Under Şconstant returnsŤ two merging Ąrms do not save advertising costs. The probability that a customer
considers Ąrm i or j is 1−(1−αi)(1−αj). There are constant returns if C(αi)+C(αj) = C(1−(1−αi)(1−αj)).
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largest Ąrm chooses advertising awareness equal to double that of the competing small Ąrms.

Advertising is increasing in customersŠ willingness to pay.

In both cases, with ĄrmsŠ labels chosen appropriately, prices satisfy pi = v/2i−1.

The Şindependent awarenessŤ advertising technology and its endogenous selection are not new

to this paper: Ireland (1993) and McAfee (1994) both report that the leading Ąrm is twice the

size (in terms of advertising reach) and earns twice the proĄt of other Ąrms. Other authors have,

more recently, studied versions of the single-stage model but with a pre-pricing stage in which

Ąrms determine their captive shares and have also found asymmetric equilibrium advertising

outlays (Chioveanu, 2008).47 In contrast to those papers, our result maintains the prediction

of asymmetric advertising intensities while allowing for the on-path play of pure strategies. We

identify (as the Ąnal claim of Proposition B2) an interesting pricing sequence: the margin of

each Ąrm in the pricing ladder is half that of the Ąrm above.

3. Costly Search. In Section 7 we also sketched a model of customer search. In a related paper

(Myatt and Ronayne, 2024c) we consider more fully that search model. We build upon the

Ąxed-sample search technology of Burdett and Judd (1983) and Janssen and Moraga-González

(2004): customers choose how many (costly) quotations to request and then select the best

available price. Firms set prices using the approach of this paper. Again we predict that

Ąrms choose entirely distinct prices. Search behavior and the comparative-static properties

differ from those of Janssen and Moraga-González (2004) including the number of quotations

customers obtain and the relationship between expected price and entry to the industry.

4. Risk Aversion. In our concluding remarks we observe that in our two-stage pricing game

Ąrms are typically indifferent to raising their initial prices. If a Ąrm deviates by doing so, then

(for each settingŮsee the proofs of Lemmas 3 and 5 and Propositions 8 and 10) we constructed

a mixed-strategy equilibrium for the ensuing subgame which generates the on-path proĄt for

the deviator. This means that there is only a weak incentive to maintain an initial price.

This is all underpinned by the assumption (otherwise maintained throughout) that Ąrms are

risk neutral. Suppose instead that we split each Ąrm into two players: a manager, and an

operational pricing agent. We deĄne a game (of perfect information) with 2n players in which

(t = 1) the ĄrmsŠ managers simultaneously choose initial price positions pi ∈ [0, v]; and then

(t = 2) the ĄrmsŠ agents simultaneously choose where to cut prices to p̃i ∈ [0, pi].

AgentsŠ payoffs are simply proĄts, and so they are assumed to be risk neutral and maximize ex-

pected proĄt. The manager of Ąrm i, however, has payoff ui(πi), which is a smoothly increasing

and concave function of the ĄrmŠs proĄt. (The more general and key assumption here is that

the manager is more risk averse than the pricing agent.) Equilibrium play in any subgame is

47A similar result, but in a setting with a comparison site that advertises alongside sellers for its captive base
can be found in an earlier version of Ronayne and Taylor (2022): Ronayne and Taylor (2020, Appendix W.3).
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unaffected by the move to this Ş2n playerŤ environment. If ĄrmsŠ managers choose the initial

prices pi described in our results, then they obtain payoffs ui(πi) where πi is a the corresponding

proĄt of Ąrm i under the relevant price proĄle. Any upward deviation leads to a subgame with

the same expected proĄt, but a lower expected utility. This means that manager iŠs choice of

pi is the unique best reply to the initial prices, pj, of managers j ̸= i.

Moreover, in the captive-shopper setting we Ąnd (see Myatt and Ronayne, 2024b, Proposition

C2) conditions under which the prices reported in Proposition 5 are the unique subgame-perfect

equilibrium of this two-stage manager-agent game.

5. A Stackelberg Version of the Captive-and-Shopper Game. Also in our concluding

remarks, we mentioned a Stackelberg interpretation. Keeping (for simplicity of discussion) to

the captive-shopper setting with Ąrms ordered by their masses of captive customers, λ1 > · · · >

λn > 0, suppose that a choice of initial price in the Ąrst stage is a commitment to a Ąnal retail

price (a Ąrm that does so becomes, endogenously, a Stackelberg leader) that can be neither

raised nor lowered, but that every Ąrm has the option to remain unconstrained, i.e., such a

commitment is optional. In the second stage, all unconstrained Ąrms proceed (as endogenous

Stackelberg followers) to select their Ąnal retail prices. Just as before, we look for an equilibrium

in which pure strategies are chosen along the equilibrium path.48

There is a subgame-perfect equilibrium in which Ąrm n commits (as the unique Stackelberg

leader) to pn = p†
n−1 in the Ąrst stage, while other (follower) Ąrms remain unconstrained. In the

second stage, Ąrms i < n charge pi = v and sell to captives, while Ąrm n serves the shoppers.

It is easy to see that no Ąrm i < n has a proĄtable Ąrst-stage or second-stage deviation (to

capture shoppers requires a dominated price) and that Ąrm n loses strictly with a lower Ąrst-

stage price choice (this Ąrm already serves all shoppers with p†
n−1). If Ąrm n deviates to a

higher price in the Ąrst stage, then it loses the shoppers (some of the time) to n − 1 in the

second stage. If Ąrm n deviates to remain unconstrained in the Ąrst stage then we revert to a

subgame in Ąrm n (once again) does not gain from this deviation.

This example motivates a richer exercise in which Ąrms can choose to commit to (e.g., advertise)

a price at any point of a T -stage game, where Ąrms face a Ćow of customers, who arrive each

period. In that setting we show (see Myatt and Ronayne, 2024b, Proposition 8) that so long as

T is not too small, then in any subgame-perfect equilibrium Ąrm n commits to the distinctly

low price p†
n−1 in the Ąrst period and sells to the shoppers, while all other Ąrms i < n charge

the monopoly price and sell only to their captives.

Appendix C. Other Omitted Proofs and Results

Proof of Lemma 1. We Ąrst prove claim (i). If strictly positive prices tie, then a Ąrm in that tie

recognizes there is a positive mass of customers who compare them to another Ąrm in that tie

48For technical reasons, we retain a free choice of how to break ties when two Ąrms charge the same price.
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(and no other). Such a Ąrm strictly improves by undercutting. Thus, any strictly positive prices

within a proĄle are distinct. A special case is claim (i), when all prices are strictly positive.

Turning to claim (ii), if prices are undercut-proof, then no higher priced Ąrm j < i wishes to

undercut a cheaper competitor i. If pi = 0 then this is trivially true. If pi > 0, then the strictly

positive prices pi and pj are distinct and so Ąrm j earns pj from any comparisons that exclude

any higher indexed (strictly cheaper) Ąrms. These are all the comparison sets B ⊆ ¶1, . . . , j♢,

each of which has mass λ(B), that include Ąrm j, which is incorporated by the use of the

indicator Bj ∈ ¶0, 1♢. Hence pj
∑

B⊆¶1,...,j♢ Bj λ (B) is the proĄt of j. The same logic says that

j can achieve (arbitrarily close to) a proĄt pi
∑

B⊆¶1,...,i♢ Bj λ (B) by undercutting pi and so

winning any comparisons amongst the Ąrst i Ąrms. Thus, the no-undercutting constraint is

pj

∑

B⊆¶1,...,j♢

Bj λ (B) ≥ pi

∑

B⊆¶1,...,i♢

Bj λ (B) ⇔ pi ≤
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)
. (C1)

This must hold for all j < i, giving condition (4) in the lemma. Now suppose that we have a

price proĄle that satisĄes (4). The inequality (C1) holds for any pair j < i. This inequality

is the correct no-undercutting constraint so long as the positive prices involved are distinct.

However, the inequalities holding imply that the prices are distinct. To see this, note that

pi ≤
pj
∑

B⊆¶1,...,j♢ Bj λ (B)
∑

B⊆¶1,...,i♢ Bj λ (B)
≤

pj
∑

B⊆¶1,...,j♢ Bj λ (B)

λ (¶i, j♢) +
∑

B⊆¶1,...,j♢ Bj λ (B)
< pj, (C2)

where the Ąnal strict inequality follows from our maintained ŞtwonessŤ assumption. □

Proof of Lemma 5. The proof follows a similar structure to the proof of Lemma 3.

If Ąrm k (where necessarily k > 1) deviates upward to p̂k > pk, then there is some i < k such

that p̂k ∈ (pi+1, pi]. Just as in the proof of Lemma 3, we build a mixed-strategy equilibrium

(illustrated in Figure 1) in which all Ąrms j ∈ ¶i, . . . , k♢ mix (with atoms and gaps) over the

interval [pk, pi]. Other Ąrms maintain their initial prices: pj = pj for j /∈ ¶i, . . . , k♢.

Just as before, l ∈ ¶k + 1, . . . , n♢ has no proĄtable deviation, for the usual reasons. A Ąrm

l ∈ ¶1, . . . , i−1♢ cannot proĄtably deviate to within [pk, pi]. An upper bound on its proĄt from

doing so is what it would get by ŞstealingŤ the price position of some j ∈ ¶i . . . , k♢. SpeciĄcally,

suppose l sets a price in [pk, pi] and could arrange for j to price above it. Under independent

awareness, lŠs expected proĄt from a price position in competition with other Ąrms is the same

as it was for j, save for the fact that their expected proĄts are scaled by αl and αj, respectively.

However, those scalings also apply to the on-path equilibrium expected proĄts. This means

that l does not proĄtably gain by Şstepping on to the danceĆoorŤ with higher-indexed Ąrms.

We now build the strategies used by the actively mixing Ąrms ¶i, . . . , k♢.

Case (i): a local deviation upward to p̂k ∈ (pk, pk−1].
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Consider a strategy proĄle in which any Ąrm j /∈ ¶k − 1, k♢ maintains its initial price, while

Ąrms j ∈ ¶k − 1, k♢ continuously mix over [pk, p̂k) according to distribution functions

Fj(p) =
1

αj

(
1 −

pk

p


, (C3)

and place remaining mass at their initial prices. These CDFs satisfy Fj(pk) = 0. Because

αk ≤ αk−1 implies Fk−1(p) ≤ Fk(p), we need only check that Fk(p) is a valid CDF:

Fk(p) ≤ 1 ⇔ p ≤
pk

1 − αk

= pk−1, (C4)

which holds because p̂k ≤ pk−1. Prices within this interval generate the expected proĄt

πk(p) = pαk (1 − αk−1Fk−1(p))
∏

j>k

(1 − αj) = pkαk

∏

j>k

(1 − αj), (C5)

which is the on-path expected proĄt of Ąrm k, πk. A similar calculation holds for k − 1.

For the remaining cases, Ąrm k deviates to p̂k ∈ (pi+1, pi] where i < k − 1.

Case (ii): a deviation to the upper part of a higher price interval, so that p̂k ∈ ((1−αk)1/2pi, pi].

We write Fj(p) for the mixed strategy of j. In the lowest interval of prices [pk, pk−1) we set

Fj(p) =
1

αj


1 −

(
pk

p

1/(k−i)

 , (C6)

for each Ąrm j ∈ ¶i, . . . , k♢. These are well-deĄned continuously increasing CDFs. Note that

lim
p↑pk−1

Fj(p) =
1

αj

(
1 − (1 − αk)1/(k−i)

)
≤

1

αk

(
1 − (1 − αk)1/(k−i)

)
< 1, (C7)

and so these solutions require k − 1 (this Ąrm faces the constraint pk−1 ≤ pk−1) to place an

atom at its initial price pk−1. The expected proĄt for j from any price within this interval is,

pαj

∏

l ̸=j

(1 − αlFl(p)) = pkαj

∏

l>k

(1 − αl) = vαj

∏

l>1

(1 − αl), (C8)

which is the on-path equilibrium expected proĄt for Ąrm j, πj.

Next, for each j ∈ ¶i + 1, . . . , k − 2♢ consider the price interval [pj+1, pj). This interval lies

above the initial price of any Ąrm l ∈ ¶j + 1, . . . , k − 1, k + 1, . . . , n♢, and so Fl(p) = 1 for all

such Ąrms. The Ąrms l ∈ ¶i, . . . , j♢ ∪ ¶k♢ (there are j − i + 2 such Ąrms) all actively mix via

Fl(p) =





1

αl

(
1 − (1 − αk)1/(j−i+2)

)
p ∈ [pj+1, (1 − αk)1/(j−i+2) pj)

1

αl


1 −

(
pj(1 − αk)

p

1/(j−i+1)

 p ∈ [(1 − αk)1/(j−i+2) pj, pj)

(C9)

= max



 lim

p⋄↑pj+1

Fl(p
⋄),

1

αl


1 −

(
pj(1 − αk)

p

1/(j−i+1)





 . (C10)
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This means that the CDF remains Ćat (there is a gap in the support) across the lower part of

the interval [pj+1, pj). For any price in such a gap, a Ąrm would prefer to deviate and undercut

the initial price pj+1 given that Ąrm j + 1 places an atom there. Indeed,

lim
p↑pj

Fl(p) =
1

αl

(
1 − (1 − αk)1/(j−i+1)

)
≤

1

αk

(
1 − (1 − αk)1/(j−i+1)

)
< 1, (C11)

and so Ąrm j places an atom at its initial price position. Any price p ∈ [(1 − αk)1/(j−i+2) pj, pj)

generates the on-path expected proĄts for any mixing Ąrm. For example, Ąrm k gets

pαk




∏

h∈¶j+1,...,k−1,k+1,...,n♢

(1 − αh)






∏

l∈¶i,...,j♢

(1 − αlFl(p))




= pjαk




∏

h∈¶j+1,...,k−1,k+1,...,n♢

(1 − αh)


 (1 − αk) = pnαk = πk. (C12)

For the top price interval (this is for j = i), the same formulae apply up to p̂k. That is,

Fl(p) =





1

αl

(
1 − (1 − αk)1/2

)
p ∈ [pi+1, pi (1 − αk)1/2)

1

αl

(
1 −

(
pi(1 − αk)

p


p ∈ [pi (1 − αk)1/2 , pi).

(C13)

The two Ąrms l ∈ ¶i, k♢ then place their remaining mass on their initial prices. (If p̂k = pi then

the CDFs described above specify Fk(pi) = 1 and so Ąrm k has no atom.)

Case (iii): a deviation to the lower part of a higher price interval, so that p̂k ∈ (pi+1, pi(1−αk)].

For this case we build the same strategy proĄle that we would use if p̂k = pi+1. There, Ąrm

i does not participate, and always chooses its initial price so that pi = pi. If i = k − 2 then

we build the strategy proĄle described in case (i), and if i < k − 2 then we use the strategy

proĄle from case (ii). In both cases, for prices just below pi+1, the two Ąrms k and i + 1 mix.

SpeciĄcally, for p ∈ [pi+1 (1 − αk)1/2 , pi+1) and l ∈ ¶k, i + 1♢,

Fl(p) =
1

αl

(
1 −

(
pi+1(1 − αk)

p


. (C14)

We know αk ≤ αl and so Fl(p) ≤ Fk(p). Moreover, limp↑pi+1
Fk(p) = 1. This means that

k places all mass continuously below pi+1, and so does not use any prices within (pi+1, p̂k].

However, for αk < αl, l places an atom at pi+1. Firms earn their equilibrium expected proĄts.

Notice that Ąrm k places all mass below pi+1, which captures the atom of Ąrm i + 1. We need

to check that k does not get more than its equilibrium expected proĄt, πk, by charging p̂k:

p̂kαk

∏

j∈¶i+1,...,k−1,k+1,...,n♢

(1 − αj) =
p̂kαk

1 − αk

n∏

j=i+1

(1 − αj) ≤ πk ⇔ p̂k ≤ pi(1 − αk), (C15)

where this inequality holds by assumption in this case.

Case (iv): a deviation to an intermediate range, so that p̂k ∈ (pi(1 − αk), pi(1 − αk)1/2].
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Case (iii) of Lemma 3Šs proof is similar in nature. For p ∈ [pk, pk−1), the lowest interval, deĄne:

F +
l (p) =

1

αl


1 −

(
pk

p

1/(k−i)

 l ∈ ¶i, . . . , k♢ (C16)

F −
l (p) =

1

αl


1 −

(
pk

p

p̂k

pi(1 − αk)

1/(k−i−1)

 l ∈ ¶i + 1, . . . , k♢. (C17)

Next, for each j ∈ ¶i + 1, . . . , k − 2♢ and the corresponding price interval [pj+1, pj), deĄne

F +
l (p) =

1

αl


1 − min



(1 − αk)

1

j−i+2 ,

(
pj(1 − αk)

p

 1

j−i+1






 l ∈ ¶i, . . . , j♢ ∪ ¶k♢ (C18)

F −
l (p) =

1

αl


1 − min





(
p̂k

pi

 1

j−i+1

,

(
pj

p

p̂k

pi

 1

j−i






 l ∈ ¶i + 1, . . . , j♢ ∪ ¶k♢. (C19)

For the largest-awareness Ąrm i and p ∈ [pk, pi) deĄne

Fi(p) = min

{
F +

i (p),
1

αi

(
1 −

pi(1 − αk)

p̂k

}
, (C20)

and let i place its remaining mass at the initial price pi.

For other Ąrms l ∈ ¶i + 1, . . . , k♢ and prices p < pl deĄne

Fl(p) =





F +
l (p) Fi(p) = F +

i (p)

F −
l (p) otherwise,

(C21)

with remaining mass at the ĄrmŠs initial price (so that Fl(p) = 1 for p ≥ pl). □

Proof of Proposition 8. Consider the proĄle from (20). As usual we construct a strategy proĄle

for our two-stage game in which Ąrms charge those prices in the Ąrst stage, and maintain those

prices in the second stage. The prices are undercut-proof and so there is no proĄtable second-

stage deviation, nor any proĄtable downward Ąrst-stage deviation. It remains to consider

upward deviations by either Ąrm 2 or 3 in the Ąrst stage. (As usual, we can specify the play of

any equilibrium in games that are further from the equilibrium path.)

If Ąrm 2 deviates upward to p̂2 > p2 then we construct an equilibrium in which Ąrm 3 charges

p3 (earning its on-path expected proĄt) while 1 and 2 mix using the distributions

F2(p) =
(λ1 + X2)(p − p2)

pX2

and F1(p) =
(λ2 + X2)(p − p2)

pX2

(C22)

over the interval [p2, p̂2) with (if p̂2 < p1) both Ąrms placing remaining mass at their initial

prices. If p̂2 = p1 = v then the solutions above yield F2(p1) = F2(v) = 1 and so only Ąrm 1 plays

an atom at its initial price p1 = v. These strategies generate the on-path equilibrium expected

payoffs for both Ąrms across the support of their mixed strategies, and it is straightforward to

conĄrm that they have no incentive to deviate elsewhere.

As noted in the text, the more difficult case involves Ąrm 3 deviating upward to p̂3 > p3. We

construct an equilibrium in which Ąrm 1 sets p̃1 = p1. We then (as explained in the main text)
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build mixed strategies for Ąrms 2 and 3 over [p3, min¶p̂3, p2♢) with distributions

F2(p) =
(λ3 + X3)(p − p3)

p(X3 − X2)
and F3(p) =

(λ2 + X3)(p − p3)

p(X3 − X2)
, (C23)

where both Ąrms place remaining mass at their initial prices. These distributions give both

Ąrms their on-path expected proĄts across the support. As noted in the text, F3(p2) = 1. This

means that if p̂3 > p2 then Ąrm 3 cannot play any price p̃3 ∈ (p2, p̂3]. We need to check that

Ąrm 3 does not wish to play such a price. By the argument in the text, that is true if and only if

p̂3(λ3+X2) ≤ p3(λ3+X3), which is satisĄed for all p̂3 ≤ v if and only if v(λ3+X2) ≤ p3(λ3+X3).

Rearranging this gives the inequality (24) stated in the proposition.

So far we have shown that, if (24) holds, there is a strategy proĄle in which Ąrms 2 and 3 mix

and obtain their on-path expected proĄts, and where they have no incentive to deviate anywhere

else. However, we need to check that Ąrm 1 does not wish to deviate from charging p̃1 = p1 = v.

If p̂3 < p2 then any deviation p1 ∈ (p̂3, p2) should be to just below p2 to capture the atom of Ąrm

2. However, this is not proĄtable owing to the no-undercutting constraint. This means that

we need to check Ąrm 1Šs expected proĄt from deviating to some price p̃1 ∈ [p3, min¶p̂3, p2♢)

which is (in essence) the Şdance ĆoorŤ across which Ąrms 2 and 3 tango. By Lemma A1, that

expected proĄt, π1(p1), is quasi-convex in p1 over the interval [p3, p2), which means that

π1(p1) ≤ max
{

π1(p3), lim
p1↑p2

π1(p1)
}

= max
{

p3(λ1 + X3), p2(λ1 + X2(1 − lim
p1↑p2

F2(p1))
}

< max ¶vλ1, p2(λ1 + X2)♢ = vλ1. (C24)

The strict inequality holds for both of the components over which the maximum is taken.

SpeciĄcally, p2(λ1 + X2(1 − limp1↑p2
F2(p1))) < p2(λ1 + X2) because Ąrm 2 places an atom at

p2. Also p3(λ1 + X3) < vλ1 because Ąrm 1 strictly prefers not to undercut Ąrm 3. Explicitly:

p3(λ1 + X3) =vλ1
λ1 + X3

λ1 + X2

λ2 + X2

λ2 + X3

=vλ1
λ1λ2 + X2X3 + (λ1 + λ2)X2 + λ2(X3 − X2)

λ1λ2 + X2X3 + (λ1 + λ2)X2 + λ1(X3 − X2)
< vλ1. (C25)

From this we conclude that Ąrm 1 does not wish to step onto the dance Ćoor.

In summary, we have constructed an equilibrium in deviant subgames with expected proĄts

equal to those on path so long as p̂3(λ3 + X2) ≤ p3(λ3 + X3), which is necessarily true if the

inequality (24) holds. Now suppose that this inequality fails, which means that a deviation

p̂3(λ3 +X2) > p3(λ3 +X3) is possible. Our construction (such that 3 earns its on-path expected

proĄt also in the deviant second-stage subgame) no longer works, as we now explain.

We know that Ąrm 1 can achieve at least vλ1 by charging p1 = v. This means that the price p3,

and prices just above it, are strictly dominated for 1. It follows that the support of any mixed

strategy for Ąrm 1 lies strictly above p3. If the support for the mixed strategy of Ąrm 2 were to

lie strictly above p3, then Ąrm 3 could achieve strictly more than its on path expected proĄt.

(There would be a price p̃3 > p3 below the support of the competitors which would allow Ąrm

3 to win all comparisons and so earn p̃3(λ3 + X3) > p3(λ3 + X3).)
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We conclude that Ąrm 2 must mix down to p3 or below. Suppose that p3 is indeed the lower

bound. (We can make the same argument for a strictly lower lower bound.) Firms 2 and

3 must mix continuously as we move up from that lower bound. Given that their expected

proĄts are determined by capturing all comparisons at the lower bound, we can solve for their

mixed strategies with the solutions for F2 and F3 as before. As we move up the price range,

we can evaluate π1(p) from Ąrm 1 joining in at any price p. We have already showed that this

is strictly less than vλ1. We conclude that Ąrm 1 never joins the dance Ćoor as we move up

through the prices. Eventually we reach the same conclusion that we did before: Ąrm 3 has a

strict incentive to set p3 = p̂3, and our intended construction fails. □

Proof of Proposition 9. Fix the proĄle of maximal undercut-proof prices stated in the text.

As usual, we construct a strategy proĄle in which p̃i = pi is on the path of subgame-perfect

equilibrium. There are no proĄtable downward deviations at the Ąrst stage, for the usual

reason: the same deviation at the second stage does weakly better. We can, of course, specify

any equilibrium in subgames that are not reached with a unilateral deviation in the Ąrst stage.

We now focus on upward deviations by either Ąrm 2 or Ąrm 3 in the Ąrst stage. Suppose that

Ąrm 2 raises its initial price to p̂2. In the subgame, Ąrms j ∈ ¶1, 2♢ mix according to

Fj(p) =
1

αj

(
1 −

p2

p


for p ∈ [p2, p̂2), (C26)

and place remaining mass at their initial prices. Firm 3 plays p3 = p3. This proĄle yields

equilibrium expected proĄts. For example, for prices in this interval, j, k ∈ ¶1, 2♢ and j ̸= k,

πk(p) = αkp(1 − α3) (1 − αjFj(p)) = p2αk(1 − α3) = vαk(1 − α3)(1 − α2) = πk. (C27)

Moreover, F1(p) ≤ F2(p) ≤ F2(p1) = 1
α2

(
1 − p2

p1

)
= 1, and so these are valid CDFs.

Next consider deviations by Ąrm 3 to p̂3 > p3. One possibility is p3 < p̂3 ≤ v(1 − α3) < p2 (the

last inequality holds because p2 = v(1 − α2) and α3 > α2.) Suppose Ąrms j ∈ ¶2, 3♢ mix via

Fj(p) =
1

αj

(
1 −

p3

p


for p ∈ [p3, p̂3), (C28)

and place remaining mass at their Ąrst-stage prices. Firm 1 plays p1. Straightforwardly, prices

by j ∈ ¶2, 3♢ in [p3, p̂3) yield equilibrium expected proĄts, and prices by Ąrm 1 there earn it

strictly less than in equilibrium. We need to check Fj(p) are valid CDFs:

F3(p) ≤ F2(p) ≤ F2(p̂3) =
1

α2

(
1 −

p3

p̂3


≤ 1 ⇔ p̂3 ≤

p3

1 − α2

= v(1 − α3), (C29)

which holds by assumption in this case.

The remaining deviations by Ąrm 3 are to p̂3 > v(1 − α3). The strategy proĄles that we

construct specify mixing by each j ∈ ¶1, 2, 3♢ via

Fj(p) =
1

αj


1 −

(
p3

p

1/2

 for p ∈ [p3, p⋄), (C30)
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for some p⋄. It is simple to check that all Ąrms earn equilibrium expected proĄts in this interval.

Different cases involve different choices for p⋄. First suppose (1 − α3)
1/2 ≤ 1 − α2. This is true

if and only if v(1−α3)
1−α2

≤ p2. For this parameter case, suppose p̂3 < v(1−α3)
1−α2

and set:

p⋄ =
(p̂3)

2(1 − α2)

v(1 − α3)
. (C31)

Firm 1 places remaining mass at its Ąrst-stage price. Firms j ∈ ¶2, 3♢ mix according to:

Fj(p) =
1

αj

(
1 −

p3

p(1 − α1F1(p⋄))


=

1

αj


1 −

p3

p

(
p⋄

p3

1/2

 for p ∈ [p⋄, p̂3). (C32)

Both earn equilibrium expected proĄts across this interval, the CDFs are continuous at p⋄ and

F2(p̂3) = 1. We complete the speciĄcation with 3 placing all remaining mass as an atom at p̂3.

If p̂3 = v(1−α3)
1−α2

, there is no interval with exactly two Ąrms mixing. Expressions (C30) and (C31)

give the equilibrium strategies, and Ąrms place any remaining mass at their Ąrst-stage prices.

Now suppose instead that p̂3 > v(1−α3)
1−α2

. For this case we set p⋄ = v(1−α3)
1−α2

, and we note that the

solution for the CDFs below p⋄ satisĄes F2(p
⋄) = 1. Hence Ąrm 2 prices only below p⋄, and

does not use the ability to price in (p⋄, p2]. Firms j ∈ ¶1, 3♢ then mix according to

Fj(p) =
1

αj

(
1 −

p3

p(1 − α2)


for p ∈ [p⋄, p̂3) . (C33)

Both Ąrms then place remaining atoms at their Ąrst-stage prices. (If p̂3 = v then this formula

speciĄes F3(v) = 1, and so only Ąrm 1 has an atom.)

It remains to consider parameters satisfying (1 − α3)
1/2 > (1 − α2), so that p2 < v(1−α3)

1−α2
.

If p̂3 ∈ (v(1 − α3), p2], then we use the same approach as before by setting p⋄ as per (C31), and

building an equilibrium in which Ąrms 2 and 3 mix over [p⋄, p̂3) which exhausts the CDF for

Ąrm 2 as p̂3 is reached, at which point Ąrm 3 places an atom.

If p̂3 ∈
(
p2, v (1 − α3)

1/2
]
, we also set p⋄ as per (C31). All Ąrms mix up to p⋄, Ąrm 1 puts

remaining mass on its Ąrst-stage price, and j ∈ ¶2, 3♢ mix via

Fj(p) =
1

αj

(
1 −

p3

p(1 − α1F1(p⋄))


=

1

αj


1 −

p3

p

(
p⋄

p3

1/2

 for p ∈ [p⋄, p2), (C34)

with 2 playing an atom at p2 and 3 at p̂3. The value of p⋄ ensures that 3 earns its equilibrium

expected proĄt from p̂3, making it just indifferent to undercutting Ąrm 2Šs atom at p2.

The Ąnal case is p̂3 ∈
(
v (1 − α3)

1/2 , v
]
. We set p⋄ = p2. This means that all three Ąrms mix

up p2, with Ąrm 2 playing an atom at p2. The remaining Ąrms j ∈ ¶1, 3♢ play

Fj(p) =
1

αj

(
1 −

p3

p(1 − α2)


for p ∈

[
v (1 − α3)

1/2 , p̂3

)
, (C35)

with their CDFs remaining constant for p ∈
(
p2, v (1 − α3)

1/2
)
. □
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Proof of Proposition 10. We now prove the claims without complete proofs in the main text,

which we divide into three parts: Parts 1 and 2 address Nash equilibria in subgames following

local and non-local deviations, respectively; Part 3 covers the n-Ąrm symmetric-size case.

Part 1. Here, we provide a Nash equilibrium strategy for each Ąrm in the subgame following

local deviations from the proĄle of prices p1, pi, pj, where p1 > pi > pj, from Proposition 10.

The Ąrst class of local deviations has Ąrm i setting some p̂i ∈ (pi, p1]. The following strategies

constitute a Nash equilibrium of the ensuing subgame. Firms 1 and i mix over [pi, p̂i) via

F1 = 1 −
pi

p
, Fi = 1 −

(v − p)ϕ1

pϕi

, (C36)

with residual mass placed at p1 and p̂i respectively. Firm j sets pj = pj.

The second class of local deviations has Ąrm j setting some p̂j ∈ (pj, pi]. The following strategies

constitute a Nash equilibrium of the ensuing subgame. Firms 1 and j mix over [pj, p̂j) via

F1 = 1 −
pj

p
, Fj = 1 −

(v − p)ϕ1 − pϕi

pϕj

, (C37)

with residual mass placed at p1 and p̂j, respectively; Ąrm i sets pi = pi, earning piϕi(1−F1(p̂j)) =

piϕi(pj/p̂j). We conĄrm i does not have an incentive to deviate to some p ∈ [pj, p̂j):

pϕi(1 − F1(p)) = pjϕi ≤ pjϕi(pi/p̂j). (C38)

Part 2. Here we address Şnon-localŤ deviations. The Ąrst case is that when the smaller non-

prominent Ąrm is cheaper, i.e., i = 2 and j = 3, and ϕ2 > ϕ3, with p1 > p2 > p3 as stated in

Proposition 10. We now prove that in any Nash equilibrium of the subgame following Ąrst-stage

prices p1, p2, and p̂3 ∈ (p2, vϕ1/(ϕ1 + ϕ3)), Ąrm 3 gets a strictly greater proĄt than p3ϕ3.

In any Nash equilibrium of such a subgame:

(i) No Ąrm places an atom strictly below its Ąrst-stage price: if a Ąrm did, then no competitor

would ever price at or just above this atom, and so the Ąrm could safely move the atom upward.

(ii) The prominent Ąrm uses a mixed strategy: if pure, each ĄrmŠs price equals their Ąrst-stage

price, and the prominent Ąrm would Ąnd it proĄtable to undercut p2 and capture all customers.

(iii) For the prominent Ąrm, prices p < p3 are strictly dominated, as are p ∈ (p2, vϕ1/(ϕ1 + ϕ3)).

A Ąrm k ∈ ¶2, 3♢ can secure all the relevant customers by charging p3 and so can guarantee an

expected proĄt of p3ϕk > 0. Take the highest price charged by any non-prominent Ąrm. This

wins customers with strictly positive probability (as it must to generate a positive expected

proĄt) only if the prominent Ąrm prices above it with strictly positive probability. Thus the

prominent Ąrm places an atom at p1 = v, which implies its expected proĄt is vϕ1.

(iv) Excluding the atom at p1 = v, consider the support of the prominent ĄrmŠs (continuous)

mixed strategy. This lies within the union of the competitorsŠ supports: any other price can

be safely raised (that is, without losing sales) which strictly raises proĄt. The support of any
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competitor lies within the support of the prominent Ąrm, and for the same reason. It follows

that the two supports (the prominent ĄrmŠs, and the union of the competitorsŠ) coincide. At

the lower bound of that support, the prominent Ąrm sells to everyone, a mass ϕ1 + ϕ2 + ϕ3.

This ĄrmŠs proĄt is vϕ1, and so that lower-bound price must equal p3 = vϕ1/(ϕ1 + ϕ2 + ϕ3).

(v) Consider the interval [p3, p2). Price p3 is the lower bound of Ąrm 1Šs support and therefore

also for some h ∈ ¶2, 3♢. There cannot be any gaps in the union of all ĄrmsŠ supports in [p3, p2).

For all other prices in that interval that h plays, h must be indifferent: p3ϕh = pϕh(1−F1(p)) ⇔

F1(p) = 1 − p3/p. For any p ∈ [p3, p2) charged by k ̸= h, k must be indifferent to p and the

inĄmum of those, x, implying kŠs expected proĄt is xϕk(1 − F1(x)) = p3ϕk and so 1 must again

price by the same CDF for p charged by k: F1(p) = 1 − p3/p over all p ∈ [p3, p2).

(vi) No Ąrst-stage price is in [p3, p2), and so there are no atoms. Within this interval there is no

gap within the support of the prominent Ąrm: if so, then there would be a gap in the support

of the competitorsŠ strategies, and so the prominent Ąrm could safely (i.e., without losing sales)

move a price from the bottom of the gap upward, and so strictly gain. Similarly, there is no

gap with the union of opponentsŠ supports. Given that, at least one h ∈ ¶2, 3♢ is willing to

set p2, earning an expected proĄt of least p3ϕh. Because F1(p) does not depend on which Ąrm

has p in their support, the two non-prominent Ąrms face the same expected proĄt when pricing

against the prominent Ąrm, and so 3 can guarantee at least p3ϕ3 by setting p2.

(vii) Firm 3 earns p3ϕ3 on the equilibrium path, and at least that much by playing p3 = p2

in the deviant subgame. Recall that the prominent Ąrm 1 never prices just above p2. Hence,

prices p slightly above p2 earn pϕ3(1 − F1(p2)) = p3ϕ3(p/p2) > p3ϕ3. We conclude that any

equilibrium in this subgame yields a proĄtable deviation, and that the proĄle of prices with

Ąrm 3 as the cheapest is not supported by the equilibrium play of pure strategies.

The second case is that when the larger non-prominent Ąrm is cheaper, i.e., i = 3 and j = 2,

with p1 > p3 > p2 as stated in Proposition 10. Consider the subgame following a deviation of

Ąrm 2 to some p̂2 ∈ (p3, p1], then the following strategy proĄle constitutes a Nash equilibrium.

All Ąrms mix: Ąrm 1 over [p2, p̂2), 2 over [vϕ1/(ϕ1 + ϕ2), p̂2) and 3 over [p2, vϕ1/(ϕ1 + ϕ2)) via

F1(p) = 1 −
p2

p
, F2 = 1 −

(v − p)ϕ1

pϕ2

, and F3 = 1 −
(v − p)ϕ1 − pϕ2

pϕ3

, (C39)

with any residual mass for Ąrms 1 and 2 placed at p1 and p̂2, respectively. Firm 2 earns ϕ2p2,

the same as without the deviation. We conclude that the prices in the proposition with i = 3

and j = 2 are supported as the on-path strategies of a subgame-perfect equilibrium.

Part 3. The remaining claim concerns n Ąrms and ϕ1 = · · · = ϕn ≡ ϕ. Without loss of

generality, label the Ąrms inversely to price so that p1 > · · · > pn > 0 where Ąrm 1 is the

prominent Ąrm. As usual, p1 = v in any industry-optimal undercut-proof proĄle. Now consider

pi for i > 1. The prominent ĄrmŠs no-undercutting constraints (one for each local Ąrm) are

vϕ1 ≥ pi

(∑i

j=1
ϕj

)
⇔ pi ≤

vϕ1∑i
j=1ϕj

=
v

i
. (C40)
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For efficiency these bind, and so pi = v/i. As usual, no Ąrm has an incentive to lower its Ąrst-

stage price or undercut in the second stage. It remains to check upward Ąrst-stage deviations.

Suppose that Ąrm i > 1 raises its Ąrst-stage price to p̂i > pi. Consider this strategy proĄle in

the subgame. Firm 1 mixes over [pi, p̂i) using the distribution function

F1(p) = 1 −
pi

p
, (C41)

and places all remaining mass at p1 = v. Any cheaper Ąrm, j > i sets pj = pj as a pure strategy.

Any Ąrm j < i, which satisĄes pj ≥ p̂i also plays a pure strategy, pj = pj. Any other Ąrm j ̸= i

satisĄes pi < pj < p̂i. Such a Ąrm mixes over [pj+1, pj) using the distribution function

Fj(p) = 1 −
v − jp

p
. (C42)

Finally, consider the deviant Ąrm i. Take the lowest index k (and so highest Ąrst-stage price

pk) which satisĄes pk < p̂i. Firm i mixes over [pk, p̂i) using the distribution function

Fi(p) = 1 −
v − (k − 1)p

p
, (C43)

and places all remaining mass at the deviant price p̂i.

This is a Nash equilibrium of the subgame. Firm 1 earns vϕ1, the same as without the deviation;

by undercut-proofness of the initial prices, Ąrm 1 does not do better with a price outside [pi, p̂i).

For any local Ąrm j < i, a price satisfying pi ≤ p ≤ p̂i is in Ąrm 1Šs support and yields an

expected proĄt of piϕ. If pj ≤ p̂i then a Ąrm can do no better than this, and optimally plays

the prescribed strategy. If pj > p̂i then j is strictly better off with p̃j = pj, and so does so. □

This next proposition is a more general version of Proposition 2.

Proposition C3. For Ąrms placed in size order, λ1 ≥ · · · ≥ λn, deĄne the following prices:

p‡
1 = v and p‡

i ≡ v
i∏

j=2

λj−1 + Xj−1

λj−1 + Xj

. (C44)

Next, for any given order of Ąrms, consider the set of maximal undercut-proof prices:

(1) These prices satisfy pi ≤ p‡
i for all i.

(2) If λ1 ≥ · · · ≥ λi−1 (so that Ąrms indexed below i are in size order) then pi = p‡
i .

(3) The ith highest price is highest when Ąrms are in size order, for all i.

(4) Placing Ąrms in size order maximizes the industry proĄt.

(5) All Ąrms would unanimously prefer to be placed in size order.

Proof. Claim (1) is straightforward. It holds trivially for i = 1. If it holds for all j < i then

pi = min
j<i

{
pj

λj + Xj

λj + Xi

}
≤ pi−1

λi−1 + Xi−1

λi−1 + Xi

≤ p‡
i−1

λi−1 + Xi−1

λi−1 + Xi

= p‡
i , (C45)

and so it holds also for i, and, by the principle of induction, for all i.
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Claim (2) can also be proved inductively. It holds for i = 2. If it holds for all j < i then

pi = min
j<i

{
pj

λj + Xj

λj + Xi

}
= min

j<i

{
p‡

j

λj + Xj

λj + Xi

}

= min
j<i



p‡

j

λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1






i∏

k=j+1

λk−1 + Xk−1

λk−1 + Xk








= p‡
i min

j<i





λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1








= p‡
i



1, min

j<i−1





λj + Xj

λj + Xi




i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1










 = p‡

i . (C46)

The Ąrst line holds by the inductive hypothesis. The second line introduces product terms

which cancel each other. The third line recognizes that the second product term multiplied

by p‡
j is p‡

i . The fourth line is obtained by separating out the Ąrst term for j = i − 1 and the

remaining terms for j < i − 1. The Ąnal line is obtained by noting that for each j < i − 1,

λj + Xj

λj + Xi

i∏

k=j+1

λk−1 + Xk

λk−1 + Xk−1

≤
λj + Xj

λj + Xi

i∏

k=j+1

λj + Xk

λj + Xk−1

=
λj + Xj

λj + Xi

λj + Xi

λj + Xj

= 1. (C47)

The inequality in the chain holds because Xk ≥ Xk−1 in each of the ratio terms, which means

that such terms are each decreasing in λk−1. An upper bound for each term is obtained by

replacing λk−1 with λj ≤ λk−1, where this inequality holds because j ≤ k − 1 ≤ i − 1 and (by

assumption) Ąrms below i are in size order. The claim holds by the principle of induction.

For Claim (3), suppose that Ąrms are not in size order. Consider the Ąrst Ąrm k that is out of

order: λ1 ≥ · · · ≥ λk−1 but λk > λk−1. We know that pi = p‡
i for all i ≤ k. This means that

pk = pk−1
λk−1 + Xk−1

λk−1 + Xk

, (C48)

which (given that Xk−1 < Xk) is strictly increasing in λk−1. The next price is

pk+1 = min

{
pk−1

λk−1 + Xk−1

λk−1 + Xk+1

, pk
λk + Xk

λk + Xk+1

}

= pk−1 min

{
λk−1 + Xk−1

λk−1 + Xk+1

,
λk + Xk

λk + Xk+1

λk−1 + Xk−1

λk−1 + Xk

}

= pk−1
λk−1 + Xk−1

λk−1 + Xk

min

{
λk−1 + Xk

λk−1 + Xk+1

,
λk + Xk

λk + Xk+1

}
= pk−1

λk−1 + Xk−1

λk−1 + Xk+1

. (C49)

Suppose that we interchange the two Ąrms; we swap λk and λk−1. Prices pi for i < k remain

unchanged. We write p⋄
k for the remaining maximal undercut-proof prices. Clearly,

p⋄
k = pk−1

λk + Xk−1

λk + Xk

> pk−1
λk−1 + Xk−1

λk−1 + Xk

= pk, (C50)

where the inequality holds because λk−1 < λk. Next,

p⋄
k+1 = min

{
pk−1

λk + Xk−1

λk + Xk+1

, p⋄
k

λk−1 + Xk

λk−1 + Xk+1

}
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= pk−1 min

{
λk + Xk−1

λk + Xk+1

,
λk−1 + Xk

λk−1 + Xk+1

λk + Xk−1

λk + Xk

}

= pk−1
λk + Xk−1

λk + Xk

min

{
λk + Xk

λk + Xk+1

,
λk−1 + Xk

λk−1 + Xk+1

}

= pk−1
λk + Xk−1

λk + Xk

λk−1 + Xk

λk−1 + Xk+1

> pk−1
λk−1 + Xk−1

λk−1 + Xk

λk−1 + Xk

λk−1 + Xk+1

= pk−1
λk−1 + Xk−1

λk−1 + Xk+1

= pk+1. (C51)

Straightforwardly all other prices for i > k + 1 must also (at least weakly) rise.

For Claim (4), from Claim (3) prices are highest by placing Ąrms in order. This maximizes the

industry proĄt
∑n

i=1 piXi from comparator customers. The proĄt from captives is maximized

when the largest Ąrms charge the highest prices, and this is so when Ąrms are in size order.

This claim also holds when we correct a misstep in the Ąrst group of Ąrms: if λ1 ≥ · · · ≥ λk−1

but λk < λk−1, then switching k − 1 and k raises the proĄts earned by the Ąrst k Ąrms.

For Claim (5), consider again the procedure above of switching k − 1 and k into the correct

order. Firm k − 1 beneĄts: this Ąrm was previously indifferent to charging pk−1 and charging

pk, but now gains strictly because p⋄
k > pk. Firm k beneĄts from this switch if

pk(λk + Xk) ≥ pk−1(λk + Xk−1) ⇔
λk−1 + Xk−1

λk−1 + Xk

>
λk + Xk−1

λk + Xk

, (C52)

where this last inequality holds because λk < λk−1. This means that the Ąrst pair of misordered

Ąrms both gain by ŞcorrectingŤ their order, as well as raising the proĄts of all Ąrms i > k. □

Proof of Lemma B1. The Ąrst claim follows from the argument in the text. The second claim

holds because if a Ąrm is not the largest then the derivative of its proĄt πi (ignoring awareness

costs) with respect to αi has the same sign as 1 − 2αi, which is strictly negative if αi > 1
2
. □

Proof of Proposition B1. We seek an equilibrium of the advertising game, where Ąrm iŠs payoff

is πi − Ci(αi). We write α⋆
i for the (pure strategy) equilibrium choice of Ąrm i. Recalling that

we ordered Ąrms according to C ′
i(·), we will show there is an equilibrium in which Ąrm 1 (the

Ąrm with the lowest (marginal) cost of advertising) chooses α⋆
1 > maxi̸=1¶α⋆

i ♢. Advertising

choices (for αi ∈ (0, 1)) satisfy the Ąrst-order conditions (B9). With k = 1, those become

C ′
1(α1)

v
=
∏

j>1

(1 − αj) and
C ′

i(αi)

v
=

1 − 2αi

1 − αi

∏

j>1

(1 − αj) ∀i > 1, (C53)

where for the set of n − 1 Ąrst-order conditions for i > 1 we have divided by 1 − αi knowing

that the equilibrium must satisfy α⋆
i ≤ 1/2. DeĄne R =

∏
j>1(1 − αj). If Rv > C ′

i(0), then we

deĄne Ai(R) to be the αi ∈ (0, 1/2) that satisĄes Ąrm iŠs Ąrst-order condition. That is,

C ′
i(Ai(R))

v
=

1 − 2Ai(R)

1 − Ai(R)
R. (C54)
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This is uniquely deĄned because the left-hand side is continuously increasing in Ai(R) and

the right-hand side is continuously decreasing (beginning from R and decreasing to zero at

Ai(R) = 1/2). Furthermore, this solution is strictly increasing in R. If Rv ≤ C ′
i(0) (so that the

right-hand side lies everywhere below the left-hand side) then we set Ai(R) = 0. To Ąnd R we

seek a solution to R =
∏

j>1(1 − Aj(R)). The right-hand side lies within [0, 1], begins above

zero, and is decreasing in R, and so we can Ąnd a unique solution R⋆. We then set α⋆
i = Ai(R

⋆)

for i > 1. Finally, we can Ąnd α⋆
1, where α⋆

1 = 1 if C ′
1(1) < vR⋆, but otherwise α⋆

1 is the unique

positive solution (and one which satisĄes α⋆
1 > α⋆

i for i > 1) to the condition C ′
1(α1) = vR⋆.

The remaining deviation checks are non-local:

(i) 1 deviates to α̂1 ≤ α⋆
j where j : α⋆

j = maxi>1¶α⋆
i ♢. Firm j satisĄes a Ąrst-order condition at

α⋆
j . Therefore, the best such deviation for 1 is to α̂1 = α⋆

j (1Šs revenue (cost) curve is the same

(Ćatter) for α̂1 ∈ [0, α⋆
j ] than jŠs over the same interval when αi = α⋆

i for i ̸= j). By continuity

and 1Šs Ąrst-order condition, 1Šs proĄt at any α̂1 ≥ α⋆
j is less than at α⋆

1.

(ii) i > 1 deviates to α̂i ≥ α⋆
1. Firm 1 satisĄes their Ąrst-order condition at α⋆

1. Therefore,

the best such deviation for i > 1 is to α̂i = α⋆
1 (iŠs revenue (cost) curve is Ćatter (steeper) for

α̂i ∈ [α⋆
1, 1] than 1Šs over the same interval when αi = α⋆

i for i > 1). But by continuity and iŠs

Ąrst-order condition, iŠs proĄt at any α̂i ≤ α⋆
1 is less than at α⋆

i .

The other claims of the proposition follow from Lemma B1. □

Proof of Proposition B2. When all Ąrms have zero costs, we put aside trivial equilibria where

more than one Ąrm chooses αi = 1 which lead to zero proĄt outcomes. From symmetry it

follows that although the proĄle of equilibrium advertising choices we report is unique, the

assignment of Ąrms is not. Subject to this disclaimer, the main text explains that one Ąrm will

advertise with the outright highest intensity, and we label this Ąrm 1.

By (B6), the proĄt of Ąrm 1 is strictly (and linearly) increasing in α1 for any αi < 1 for i > 1,

hence α⋆
1 = 1. Given α⋆

1 = 1, (B6) shows that the proĄt of the non-largest Ąrms is maximized

at αi = 1/2 for any αj < 1 where j ̸= 1, i, hence α⋆
i = 1/2 for i > 1.

For positive costs, Ąrms i, j > 1 must satisfy their Ąrst-order conditions given in (B9) but with

Ci = C. Taking the ratio of iŠs and jŠs condition yields

C ′(αi)

C ′(αj)
=

(1 − 2αi)(1 − αj)

(1 − 2αj)(1 − αi)
. (C55)

If αi > (<)αj the left-hand side > 1(< 1) but the right-hand side < 1(> 1). However, if

αi = αj, (C55) is satisĄed. Hence α⋆
i = α⋆

j . Letting C(α) = − log(1 − α) gives (B11), the

solution to which gives the values of α⋆
1 and α⋆

i for i > 1, and that α⋆
1 = 2α⋆

i . Similar reasoning

to that in the proof of Proposition B1 rules out proĄtable non-local deviations. □
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