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Large, generalist, technology ĄrmsŮso-called Şbig-techŤ ĄrmsŮpowerful in their

primary market, routinely enter secondary markets consisting of specialist Ąrms.

Naturally, one might expect a specialist Ąrm to be Ąercely protective of its data

as a way to maintain its market position in the secondary market. Counter to

this intuition, we demonstrate that a specialist Ąrm willingly shares its market

data with an intruding tech generalist. We do so by developing a model of cross-

market competition in which data collected via consumer usage in each market is a

factor of product quality in both markets. We show that a specialist Ąrm shares its

data to strategically create co-dependence between the two Ąrms, thereby softening

competition and transforming the generalist Ąrm from a traditional competitor into

a co-opetitor. For the generalist intruder, data from the specialist Ąrm substitute for

its own investments in product quality in the secondary market. As such, the act of

sharing data makes the intruder a stakeholder in the valuable data collected by the

specialist, and consequently in the specialistŠs continued success. Moreover, while

the Ąrms beneĄt from data sharing, consumers can be worse off from the weaker

price competition and lower investments in innovation. Our results have managerial

and policy implications, notably on account of backlash against data collection and

the market power of big tech Ąrms.

Keywords: Data-driven quality improvements, externalities, co-opetition, data

sharing.
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1. Introduction

So-called Şbig techŤ Ąrms such as Google, Facebook, Apple, Amazon and Microsoft have become

the corporate giants of recent years. These Ąrms are data powerhouses, collecting and leveraging

massive amounts of user data through the use of sophisticated algorithms, and transforming

data-driven insights into products and services which generate higher per-user monetization

and revenues. Their ever-present hunger for data, among other reasons, often leads these Ąrms

into adjacent markets. For instance, Google has combined its dominance in search with moves

into areas such as Android hardware (such as smartphones and tablets), Chromebook laptops,

wearables (including smartwatches and Ątness devices), home automation (e.g., hubs, routers,

sensors), and autonomous driving. Similarly, Amazon has gone beyond even its ŞSuperstoreŤ

vision by extending its prowess into cloud computing (AWS), entertainment (Amazon Video),

game streaming (Twitch), and logistics. Such cross-market moves have extended the reach of

big tech Ąrms well beyond their original markets.

One advantage big tech Ąrms have is their ability to leverage data across markets and thereby

create better products. For instance, a search engine can Ąne-tune its search results and spon-

sored advertising algorithms by using sales and conversion data from a retail operation; con-

versely, it can leverage usersŠ search data to hone its retail tactics.1 Similarly, data about

driver actions captured by an autonomous vehicle can trigger improvements in mapping data,

and mapping data are of course useful for driving.2 Thus, cross-market data sharing creates a

virtuous cycle (see Fig. 1a), as more sales or usage in one market generates more data, which

provides the basis for improved analytics and algorithmic learning, leading to better offerings in

both markets. This Şdata-driven network effectŤ (Argenton & Prüfer 2012, Gregory et al. 2021,

Prüfer & Schottmüller 2021) has taken a central role in the debate on the regulation of big tech

(Cennamo & Sokol 2021, European Commission 2020a,b, Krämer & Schnurr 2022, Parker et al.

2021). With their prowess in artiĄcial intelligence and machine learning techniques fuelled by

abundant data, such Ąrms derive a competitive advantage from their ability to leverage data

1See Klein et al. (2022) for a discussion of how data is a key input in improving the quality of search results.
2E.g., ŞWaze Could Be GoogleŠs Ace in the Hole in a Self-Driving Car War With Uber,Ť last accessed Aug 21,
2023: vox.com/2015/12/18/11621572/waze-could-be-googles-ace-in-the-hole-in-a-self-driving-car-war-with
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between their original and secondary markets. In recent work, Lei et al. (2023) provide evidence

from a large-scale experiment that showcases the complementary value of cross-market data.3

(a) Data-value Ćows across markets. (b) Is sharing data proĄtable?

Figure 1: Data-Sharing between Firms across Markets

In light of the data-driven network effect advantage that big tech Ąrms enjoy when entering

secondary markets, this paper examines what tactic incumbent ŞspecialistŤ Ąrms (which only

operate in the secondary market) should adopt with regard to proprietary data in their markets.

To facilitate exposition, the generalist big tech Ąrm, which operates in a primary market A but

can also enter a secondary market B, is labeled Ąrm 1. Market B features an incumbent Ąrm

2 that only operates in this market (see Fig. 1a). In light of the generalist ĄrmŠs ability to

harness data-driven network effects to improve its competitive position in market B, one would

expect incumbent Ąrm 2 to be highly protective of its own proprietary data market B. If Ąrm 1

could get Ąrm 2Šs market B data, it would improve both its market A and market B products.

Yet, we observe contrary strategy in practice. For example, the smartwatch company Mobvoi

TicWatch, whose Pro 5 smartwatch competes with GoogleŠs Pixel and Sense smartwatches,

requires that users consent to Google Cloud Sync terms of service, including granting Google

access to the data collected by Mobvoi.4 More generally, reports by the European Commission

3SpeciĄcally, they show that a query autocomplete companyŠs click-through rate rises about 5% with access to
(another ĄrmŠs) search engineŠs data. The authors also provide an up-to-date review of several other empirical
studies documenting the beneĄts of cross-market data sharing.
4See, for example, ŞMobvoi TicWatch Pro 5 review: timing is everything,Ť last accessed, Nov 14, 2023
https://www.theverge.com/23733359/mobvoi-ticwatch-pro-5-review-wear-os-3-smartwatch-wearables. Other
examples include home devices such as thermostats, cameras and sensors that capture data about the lifestyles
of their users. Those data complement the health-related data collected by wearables such as smart watches,
resulting in Ąner sport, Ątness, and activities recommendations. Conversely, the data collected by wearables
can be used to optimize home devicesŠ design and performance.
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(2018) point to a large and sharply increasing practice of B2B data-sharing.5,6 They also found

90% of companies sharing data did so with others within the same broad business sector.

These dynamics inspire us to ask the following questions, depicted in Fig. 1b: Does a specialist

Ąrm in fact have an incentive to share data with a generalist rival? If so, when and why might

such a counter-intuitive strategy make sense? What is the impact on proĄts and consumers,

and, ultimately, entry decisions? Our main contribution is to identify a novel strategic rationale

for why specialist Ąrms may want to share data with their generalist rivals, for free. Our analysis

and the intuition for this result is as follows. First, we conĄrm that data sharing by Ąrm 2 (of

its market B data to Ąrm 1) indeed is a competitive gift to Ąrm 1; doing so enables Ąrm 1 to

improve its product quality in market B. Second, however, we show that receipt of this gift

makes Ąrm 1 reliant on Ąrm 2, causing it to view Ąrm 2 as a co-opetitor in market 1 rather than

a traditional competitor. The logic is that when the specialist Ąrm 2 enjoys greater demand,

then it can provide more data to Ąrm 1, increasing Ąrm 1 proĄt. Moreover, this proĄt comes

at a lower cost than Ąrm 1 would incur if it made quality improvements only through direct

investments. Consequently, it wants Ąrm 2Šs market data, and therefore has a stake in Ąrm 2Šs

continued success in market B. This causes Ąrm 1 to scale back its own entry into B, mitigating

the competitive pressure on Ąrm 2.

In support of this intuition, the European Commission (2018) points to B2B agreements

having Şdifferent conditions to share data [. . . ], including for free.Ť There is also an emerging

industry of Ąrms that facilitate and support such B2B data sharing.7 Recognizing the impor-

tance of this trend, European policy makers have even launched several public initiatives to

foster data sharing between Ąrms and improve the efficiency of data-intensive companies, in

particular for Ąrms in the same industry.8 Our results suggest that encouraging data sharing

among rival Ąrms is in fact a way for policy makers to help small Ąrms in the face of tech giants.

5Of the companies surveyed, 37% share data, and 14% share more than 50% of the data they generate, including
2% of companies that generate more than 1PB/monthŮĄgures the report emphasizes are rapidly increasing.
6Speaking to the expected growth in sharing, the European Commission (2020c) will, over 2021-27, invest in
European data spaces and federated cloud infrastructures, as part of the European Strategy for Data.
7For example, StartUs Insights: https://www.startus-insights.com/innovators-guide/discover-5-top-data-
sharing-startups-scaleups/, last accessed Jan 19, 2023.
8E.g., project GAIA X: https://www.bmwk.de/Redaktion/EN/Dossier/gaia-x.html, last accessed Feb 13, 2024.
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Despite the apparent pro-competitive aspects of data sharing, there is a need for a nuanced

view of this practice. Data sharing from a specialist to a generalist big tech Ąrm is a win-win

for both Ąrms (unless a very aggressive generalist poses an existential threat to the specialist),

however it might be detrimental for customers. When the Ąrms engage in co-opetition, the less

intense competition can make customers worse off through less innovation and weaker price

competition. Widening the scope of consideration, long-term competitive dynamics can be

seen to weaken or strengthen these observations. On the one hand, if data fuels long-term

innovation, data sharing may help the generalist Ąrm to exclude its specialist rival from the

market in the long run. On the other hand, as the specialist Ąrm invests more in innovation when

data are shared, this may also help its long-term growth. We discuss the possible interactions

between the mechanism we identify and other effects in a broader context in Section 6.

Regarding policy and welfare, several initiatives have been recently implemented by regu-

lators to foster data sharing practices between Ąrms (see for instance the GAIA-X initiative

in Europe).9 Our results send a cautionary note to policy makers when it comes to the pro-

competitive effects of data and the beneĄts of data sharing practices for consumers. As noted

above, although data sharing enhances value creation, it can make consumers worse off when

the reduction in competition overpowers the value creation effect of data sharing. Hence, an

unintended anti-competitive effect may arise when Ąrms implement such data-sharing prac-

tices. This suggests that there is no such thing as a one-size-Ąts-all mandatory data sharing

policy. Rather, our results suggest that policy makers should be especially cautious when it

comes to data sharing in interrelated markets, in which case a small Ąrm sharing its data with

a competing conglomerate operating in interrelated markets may be of concern. Instead, this

negative effect of data sharing on consumers does not take place when markets are unrelated,

suggesting that data sharing practices may create value and increase welfare.

9See Footnote 8 for a link to more information on that initiative.
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2. Literature

Information sharing. Scholars and practitioners have examined information sharing be-

tween Ąrms for over 50 years. A large theoretical literature analyzes whether competing Ąrms

have incentives to exchange information about market characteristics such as consumer de-

mand and production costs (Raith 1996). InĆuential papers include Vives (1984) and Gal-Or

(1985), which characterize when it is proĄtable for duopolists to share information about un-

certain demand. With recent advancements in technologies such as machine learning and AI,

consumer-level data are important inputs in digital markets, the sharing (or protection) of

which has become a key subject for analysis. For example, Jones & Tonetti (2020) show that

dominant Ąrms may choose to hoard their datasets to preserve their competitive advantage.

In contrast, Choe et al. (2022) study the incentives of Ąrms to share data in a context where

data are used to price discriminate. They show that a Ąrm endowed with data on consumers

would be willing to give certain data to a data-less competitor, to soften price competition. In

a similar spirit, Huang et al. (2020) show that sharing intellectual property can soften compe-

tition between Ąrms when learning costs are sufficiently high. In contrast to these studies, we

develop a model in which data are valuable across markets and Ąrms are ex-ante asymmetric:

we study the incentive of specialist (single-market) Ąrms to share data with their generalist

(multi-market) rivals. We Ąnd that specialist Ąrms may have incentives to share data with

their generalist rivals as a strategic device to lower competitive intensity.

Partial ownership. By sharing its data, a specialist Ąrm gives its competitor access to its

assets, and for this reason our paper relates to the literature on partial ownership (see, e.g.,

Ederer & Pellegrino 2022, Gilo et al. 2006, Hunold & Shekhar 2022, OŠBrien & Salop 1999,

Antón et al. 2023). The competition reduction induced by partial ownership has received the

attention of policy makers, and appropriate regulations have been formulated.

Our contribution is to show that, in contrast to partial ownership effects, both Ąrms have

higher proĄts when data are shared via arrangements free of other obligations. As such, there

is no loss for the specialist Ąrm in sharing data per se, while partial ownership usually requires
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a Ąrm to give away part of its control over its activities. Moreover, data sharing may not bear

the contractual complexity of partial ownership and so may be particularly ripe for adoption

by data management teams. In particular, partial ownership deals are costly to establish and

reverse, while data sharing can be more easily turned on or shut down.

From a regulatory perspective, while policymakers are usually wary of partial ownership prac-

tices, B2B data sharing has thus far seemingly slipped through the anti-trust dragnet. Instead,

it has had mostly the positive (surplus-generating) aspects highlighted, in places leading to an

encouragement of the practice in general.10

Data-driven network effects. We contribute to the emerging literature analyzing the eco-

nomic impacts of data-driven network effects (Gregory et al. 2021). Argenton & Prüfer (2012)

consider those effects in the context of search engines and Ąnd they can lead to market tip-

ping. Schaefer et al. (2018) also consider the search engine market and use real search engine

query logs to empirically investigate the quality improvements from such effects. Prüfer &

Schottmüller (2021) study the investment incentives of competing Ąrms under data-driven net-

work effects in a dynamic setting, including when data in one market can be leveraged in

another. Unlike Prüfer & Schottmüller (2021), we model data-driven network effects as en-

hancing user experience. This allows us to study the interplay between competitive strategies

and innovation decisions. The cross-market interaction encourages more innovation in the pri-

mary and secondary market by the generalist Ąrm than if the two markets were not connected

or regulated. Further, we allow competing Ąrms to choose how much to invest directly in

innovation via costly methods such as R&D.

Cross-market externalities. Our work also contributes to the literature on cross-market

externalities where the positive impact of corporate diversiĄcation on ĄrmsŠ proĄtability has

been empirically established (Berger & Ofek 1995, Graham et al. 2002, Lang & Stulz 1994,

Lins & Servaes 1999). The rationale for such a strategy is the resulting synergies which may

10These policy recommendations include the European Data Governance Act and the Data Act (which
can be accessed respectively at: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113; and
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act).
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stem from economies of scope in production and the uses of common distribution channels for

different products within a Ąrm, such as the Apple Store for AppleŠs physical goods, or Google

Play for mobile applications (Hill & Hoskisson 1987), or from innovation spillovers across related

products (Baysinger & Hoskisson 1989).11 In a similar spirit, we model competition between a

large multi-market Ąrm, and a smaller single-market competitor.12 We model synergies as the

value generated from relevant data collected in other markets, which activates a virtuous cycle

of data-driven network effects. There, we contribute by studying the incentives and effects of

a specialist Ąrm to share its data with a generalist competitor via inter-market synergies.

3. Model

We study a game-theoretic model with two Ąrms, i = 1, 2, and markets for two goods, A and

B, with production costs set to zero for simplicity. Firm 1 is a monopolist in market A. Firm 2

operates in market B, which Ąrm 1 enters. We model Ąrm 2Šs decision to share data with Ąrm

1. Each Ąrm also chooses how much to produce and how much to invest in product quality.13

Market A is governed by an (inverse) demand function PA = A − βAqA (where A is base

quality, P is price, and q is quantity). This extends the classical (linear) form in the following

ways, representing two mechanisms for Ąrm 1 to improve the value delivered to its users in

market A.14 First, Ąrm 1 can shift the demand curve up by vA via direct investments in

innovation or operational expenditures such as customer support or service infrastructure, at

cost I(vA) =
v2

A

2
. Second, it can shift the demand curve up by using data from market B. This

11Additionally, Gomes & Livdan (2004) argue that diversiĄcation allows corporate Ąrms to undertake potentially
high-reward risky projects while securing a steady cash Ćow from other, more stable markets.
12This market conĄguration is supported by empirical evidence of product diversiĄcation by digital giants,
a strategy that has been extensively analyzed by the economics and management literature, back to Hill &
Hoskisson (1987) and Shaked & Sutton (1990).
13Although the model is setup with 2 Ąrms, our results are reinforced when more than 2 Ąrms compete in
market B. This is because competition in market B makes it more likely that small Ąrms will share data with
their multi-market rival. In favor of being conservative by stacking the odds against incentives to share data,
we shut down this competitive effect to solely focus on our main mechanism. For our narrative, we can think
of Ąrm 1 as a big-tech company such as Google, which decides to enter market B where Ąrm 2 is a smaller
incumbent. By operating in both markets, Ąrm 1 beneĄts from cross-market data externalities.
14We show our results also follow under price competition (see Section 5.1) and in the presence of various other
extensions, which we house in Section 5 and our online-only Appendix C.
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includes data generated by its own sales in market B, q1, and, if Ąrm 2 shares, data from Ąrm

2Šs sales in B, q2. Let the indicator variable Φ be 1 when B shares its data with Ąrm 1 and 0

otherwise. Then total data available to Ąrm 1 in market A is q1 + Φq2. Additionally, let θ > 0

be the rate at which a unit of data translates into higher willingness to pay of consumers.15

Incorporating those features, Ąrm 1Šs demand in market A is:

PA(vA, q1,Φq2, qA) = A + vA
︸︷︷︸

quality increase
by investing

+ θ(q1 + Φq2)
︸ ︷︷ ︸

data
advantage

−βAqA. (1)

The last term is the standard (linear) inverse relationship between price and sales. The intercept

term is A = α + βA/2. One can interpret α ≥ 0 and βA > 0 as the average and spread of

willingness to pay, respectively.16

Market B operates under an inverse demand function B − βBQB (where QB is the sum of

outputs q1 and q2 of Ąrms 1 and 2), which is similarly adjusted for quality-related investments

and, only for Ąrm 1, an additional quality increment due to its data advantage.17 Firm 1 can

use the data it generates from its sales in market A, qA, to improve its product in B, shifting

demand by θqA.18 The resulting (inverse) demand functions for each Ąrm in market B are:

P1(v1, qA, QB) = B + v1 + θqA
︸︷︷︸

data
advantage

−βBQB, P2(v2, QB) = B + v2 − βBQB, (2)

where vi for i = 1, 2 is the quality increase by investing. ProĄts of Ąrms 1 and 2 are, respectively:

Π1 = PA(·)qA − I(vA)
︸ ︷︷ ︸

ProĄts from market A

+ P1(·)q1 − I(v1)
︸ ︷︷ ︸

ProĄts from market B

, Π2 = P2(·)q2 − I(v2). (3)

The timing of the game is as follows. At stage 1, Ąrm 2 decides whether to share data with

15For example, data from a search engine about usersŠ queries and clicks on Ątness-related searches could lead
to better dashboards and improves the default features in a Ątness app which increases user willingness to pay.
16We provide a corresponding microfoundation for this interpretation in online Appendix C.
17In an extension, we show that our results hold in the presence of same-side network externalities (see Section
5.2). We also conduct this exercise in Appendix C, but in the presence of price competition.
18In the baseline framework, we consider identical θ identical from market A to B and reciprocally and no
intra-market externalities. We provide extensions without those assumptions in Section 5.
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Ąrm 1. At stage 2, both Ąrms choose their level of expenditures to determine vA, v1 and v2 in

the markets they operate in. At stage 3, Ąrms set outputs and simultaneously compete to serve

consumers. Last, demand and proĄts are realized. We seek Subgame Perfect Nash Equilibria

and solve the game backwards. We present a summary of notations below in Table 1.

Table 1: Notation Guide

Variable Interpretation

i Index to represent Ąrms i = 1, 2.
PA Inverse demand function of Ąrm 1 in market A.
Pi Inverse demand function of Ąrm i ∈ ¶1, 2♢ in market B.

A,B Base quality of products in markets A and B.
θ Productivity of data-driven network effect.

I(v) Investment cost to reach innovation level v.
Πi ProĄt of Ąrm i ∈ ¶1, 2♢.
CSm Consumer surplus in market m ∈ ¶A,B♢.
βk Output sensitivity of demand in markets k for k ∈ ¶A,B♢.
qA Consumer demand in market A.
qi Consumer demand of Ąrm i in market B.
vA Innovation effort by Ąrm 1 in market A.
vi Innovation effort by Ąrm i in market B for i ∈ ¶1, 2♢.

The following regularity conditions ensure that there is an interior equilibrium solution (which

is the non-trivial case because under corner solutions, demands become inelastic):19

• The data externality is not too strong: θ < θ ≈ 0.353.

• The demand intercept terms are not too high: A,B < 2(42−88θ2+43θ4−6θ6)
(3−θ2)(12+θ(4−θ(19+2θ−4θ2)))

.

• The spread of the willingness to pay is sufficiently high: βA, βB > β̃ ≈ 1.7, and for

increased tractability we set βA = βB = 2.

Data shared by Ąrm 2 allows Ąrm 1 to attract more demand and collect more data in marketA.

Hence, data sharing also increases the competitiveness of Ąrm 1 in market B through enhanced

cross-market data externalities from A to B, so that sharing data could have a negative impact

on Ąrm 2. Viewed in this way, our setup stacks the odds against Ąrm 2 sharing data with Ąrm

1, especially for free, as we conĄrm in Lemma 1.

19We discuss our assumptions and probe our modelŠs robustness in Section 5 and Appendix C.
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4. Analysis and Results

4.1. A benchmark case without entry

Before solving the model, consider a hypothetical benchmark case where Ąrm 1 is present

only in market A and does not enter market B at all, rendering the two markets separate

and independent. In that setting, data sharing has no impact on Ąrm 2, but it carries some

advantage for Ąrm 1. Hence, under these separate markets, Ąrm 1 would be willing to pay some

price (up to its gain from data sharing) while Ąrm 2 would be willing to share data for any

positive payment from Ąrm 1. With this in mind, we return to the main setting where Ąrm 1

enters market B, and we show that Ąrm 2 would still be willing to share its data with Ąrm 1,

even for free, despite the direct competitive threat it faces in market B.

4.2. Main model

Output-setting stage. The Ąrst-order conditions for the two ĄrmsŠ output decisions are

∂Π1

∂qk

= Pk(·)
︸ ︷︷ ︸

Volume effect

+
∂Pk(·)

∂qk

qk

︸ ︷︷ ︸

Margin effect

+
∂Pj(·)

∂qk

qj

︸ ︷︷ ︸

Value increase in market B
from data collected in market A (+)

= 0, for k ̸= j ∈ ¶A, 1♢, (4)

∂Π2

∂q2

= P2(·)
︸ ︷︷ ︸

Volume effect

+
∂P2(·)

∂q2

q2

︸ ︷︷ ︸

Margin effect

= 0. (5)

Firms face the standard volume and margin trade-off. In addition, Ąrm 1 beneĄts, in each

market, from increased margins due to the value it creates with data from the other market.20

Solving simultaneously, the above system yields the equilibrium outputs as functions of the

sharing decision and quality improvement levels, denoted by q̂A(vA, v1, v2,Φ), q̂1(v1, vA, v2,Φ),

q̂2(v2, v1, vA,Φ) and Q̂B(v2, v1, vA,Φ) = q̂1(·) + q̂2(·).
21 Intuitively, as quality improvements

increase consumersŠ willingness to pay, Ąrms produce more in the corresponding market, and

20An increase in output by Ąrm 1 in market B enhances the margin on its sales in market A, thus making it
proĄtable to expand output in market B. A similar intuition holds for Ąrm 1Šs output strategy in market A.
21The terms we reference in the text are fully written out in Appendix AŠs proofs of Lemma 1 and Proposition 1.

10



so ∂q̂1(·)
∂v1

, ∂q̂A(·)
∂vA

, ∂q̂2(·)
∂v2

> 0. Because of the cross-market data externality, if Ąrm 1 invests more in

quality (increasing output, which generates more data) in one market, its product in the other

market also improves, boosting demand, so Ąrm 1 produces more there too, i.e., ∂q̂A(·)
∂v1

, ∂q̂1(·)
∂vA

> 0.

In contrast, Ąrms produce less when their rival invests more in quality. For example, if Ąrm 1

invests more in market B, then it produces more in B, which increases the competitive pressure

on Ąrm 2 that responds by producing less because output choices are strategic substitutes. That

is, we have the following relations: ∂q̂A(·)
∂v2

≤ 0, ∂q̂1(·)
∂v2

, ∂q̂2(·)
∂vA

, ∂q̂2(·)
∂v1

< 0.

In this output-setting phase, and holding investments constant, Ąrm 2 should not share its

data with Ąrm 1.

Lemma 1 (Data Sharing Without Investment Responses). Keeping investments con-

stant, Ąrm 2 has no incentive to share data with Ąrm 1, i.e., Π2(0) − Π2(1) > 0.

Without responses in investment, data sharing by Ąrm 2 returns to haunt it because it

enhances Ąrm 1Šs value proposition in market A and, via cross-market data network effects,

strengthens its position in market B too. This in turn lowers both Ąrm 2Šs output and proĄt,

implying that it should not share its data (for free). This result lays some groundwork with

which to view our contribution: Lemma 1 is reversed when one accounts for direct investments

as another lever to improve product quality.

Innovation-setting stage. Substituting in the optimal output choices, we write the demand

functions in terms of choices made at stages 1 and 2: P̂A(vA, v1, v2,Φ), P̂1(vA, v1, v2,Φ), and

P̂2(v2, v1, vA,Φ). Firms set innovation levels to maximize proĄts:

max
vA,v1

Π̂1(vA, v1, v2,Φ) =
∑

k=1,A

P̂k(·)q̂k(·) − I(vk), max
v2

Π̂2(v2, v1, vA,Φ) = P̂2(·)q̂2(·) − I(v2). (6)
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Applying the envelope theorem to the Ąrst-order conditions, we obtain the following system:

∂Π̂1(·)

∂vk

=
∂Pk(·)

∂vk

q̂k(·)
︸ ︷︷ ︸

Margin effect

−
∂I(vk)

∂vk
︸ ︷︷ ︸

Cost
︸ ︷︷ ︸

Direct effects

+
∂P1(·)

∂QB

∂q̂2(·)

∂vk

q̂1(·)

︸ ︷︷ ︸

Competitive effect (+)

+

=Φ
︷ ︸︸ ︷

∂PA(·)

∂q2

∂q̂2(·)

∂vk

q̂A(·)

︸ ︷︷ ︸

Data-sharing effect (−)
︸ ︷︷ ︸

Strategic effects (?)

= 0, k ∈ ¶A, 1♢ (7)

∂Π̂2(·)

∂v2

=
∂P2(·)

∂v2

q̂2(·)
︸ ︷︷ ︸

Margin effect

−
∂I(v2)

∂v2
︸ ︷︷ ︸

Cost
︸ ︷︷ ︸

Direct effects

+
∂P2(·)

∂QB

∂q̂1(·)

∂v2

q̂2(·)

︸ ︷︷ ︸

Competitive effect (+)

= 0. (8)

The terms labeled direct effects are two classic and opposing forces. A unit increase in quality

increases consumersŠ willingness to pay and thus also the ĄrmŠs margins, boosting proĄt, but

also requires costly investment. The strategic effects account for the rivalŠs reactions to quality

improvements. Here, there are two opposing effects. First, the competitive effect represents

the increased proĄtability for a Ąrm in market B following its rivalŠs scaling back in market

B. The second is the data-sharing effect, which is triggered when Ąrm 2 shares data (Φ = 1).

This effect represents the decreased proĄtability of Ąrm 1 in market A caused by the reduction

in the amount of data available to it in A following 2Šs contraction in market B (and the

corresponding fall in data shared by Ąrm 2). This effect dampens the strategic incentives of

Ąrm 1 to invest in quality improvement when Ąrm 2 shares data (Φ = 1). It is a manifestation

of the transformation of the relationship of the Ąrms from competition to co-opetition. The

strength of this effect determines whether Ąrm 1 innovates more in market B or in market A.

Solving these Ąrst-order conditions simultaneously yields the equilibrium quality improvement

levels as function of Ąrm 2Šs sharing decision, Φ ∈ ¶0, 1♢, denoted by v⋆
A(Φ), v⋆

1(Φ) and v⋆
2(Φ).

Substituting the optimal investment choices at stage 2 into the optimal outputs as functions

of quality improvement at stage 3 yields the equilibrium outputs, q⋆
A(Φ), q⋆

1(Φ), q⋆
2(Φ), and

equilibrium proĄts, Π⋆
1(Φ) and Π⋆

2(Φ).

Data-sharing stage. Recall that data sharing by Ąrm 2 generates a greater data advantage

in market A. Intuitively, this allows Ąrm 1 to collect more data in market A which can then be
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leveraged to enhance its data advantage in market B to the detriment of Ąrm 2. Hence, for Ąrm

2, sharing its market B data with Ąrm 1 would seem to be an act of self-sabotage. Contrary

to this wisdom, we Ąnd the following result.

Proposition 1 (ProĄtable Data Sharing). After the entry of Ąrm 1 in market B, Ąrm 2

is willing to share its data with Ąrm 1, even for free: Π⋆
2(1) > Π⋆

2(0).

Proposition 1 is a novel result in the literature. Firm 2 achieves higher proĄts by sharing data

with Ąrm 1. With this action, Ąrm 2 transforms Ąrm 1 from a competitor into a co-opetitor.

Firm 2Šs increased data collection in market B beneĄts 1 in A, where it is a monopolist.22 To

unpack the intuition behind this result, we examine the impact of Ąrm 2 sharing its data on

equilibrium quality investment and output choices.

Corollary 1 (Quality Improvements, Output and Data Sharing). The receipt of data

from market B induces Ąrm 1 to scale back its operations in market B and Ąrm 2 to expand:

v⋆
1(1) < v⋆

1(0), q⋆
1(1) < q⋆

1(0) and v⋆
2(1) > v⋆

2(0), q⋆
2(1) > q⋆

2(0). (9)

In market A, the receipt of data from market B induces Ąrm 1 to scale back its operations if

cross-market externalities are sufficiently strong:

v⋆
A(1) < v⋆

A(0) ⇔ θ > θS ≈ 0.27 and q⋆
A(1) < q⋆

A(0) ⇔ θ > θQ ≈ 0.31. (10)

When Ąrm 2 shares data the data-sharing effect reduces Ąrm 1Šs incentive to increase qual-

ity improvement in both markets because the data it receives from Ąrm 2 substitutes for its

own costly investment in quality improvements. Firm 2 optimally responds by increasing its

investment (and output) in market B. The effects of data sharing on output largely follow the

effects on quality improvement in market B. Indeed, as data sharing lowers Ąrm 1Šs quality

improvement efforts in B, its output in market B also falls. Because output choices in B are

strategic substitutes, Ąrm 2 increases production, which is further enhanced by the increased

investment by Ąrm 2 in market B. Together, the changes in investment and output in market

22This mechanism may explain why the European Commission (2018) observed that Ąrms share data freely
with other Ąrms (see pp.60-65 for a summary of data sharing practices).
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B show how Ąrm 1 accommodates its data-sharing rival. Hence, data sharing is a way for Ąrm

2 to soften the aggressiveness of its new competitor.

In market A, Ąrm 1 faces fewer forces on its incentives to invest in quality improvements.

The overall effect of data sharing depends on the rate at which data translates into increased

consumersŠ willingness to pay, θ. When sufficiently low, θ < θS ≈ 0.27, the data-sharing effect

is relatively weak and Ąrm 1 improves the quality of its product in market A, compensating

for a reduction in quality improvements in market B. But when high, θ > θS ≈ 0.27, the

data-sharing effect dominates and Ąrm 1 invests less in quality improvements even in market A

(and hence in both markets) when Ąrm 2 shares its data. The results for output in market A

qualitatively follow the effects on quality improvements levels in market A. SpeciĄcally, when

the rate at which data translates into increased consumersŠ willingness to pay (θ) is high, in

addition to lowering output in market B, Ąrm 1 further commits to lower data advantages to

its affiliate in market B. This willingness of Ąrm 1 to lower its quality improvement efforts in A

as well as its data advantage in market B is a particularly acute manifestation of its incentive

to soften competitive forces on Ąrm 2 in lieu of higher volume of data. As a consequence of

this, Ąrm 2 prefers to share its data.

Welfare effects of data sharing. It follows from Proposition 1 that industry proĄts are

higher when Ąrm 2 shares its data. The effect on consumers is less immediate. Consumers in a

given market are better off when the total output in that market rises. Therefore, Corollary 1

tells us consumer surplus in market A falls when externalities are strong (θ > θQ), and rises

when they are not. Corollary 1 also tells us that when Ąrm 2 shares data, Ąrm 1 produces less

in market B, while Ąrm 2 produces more. Corollary 2 summarizes.

Corollary 2 (Industry ProĄt and Consumer Surplus). When Ąrm 2 shares its data:

1. industry proĄt is higher;

2. consumer surplus is: (i) lower in market A if and only if θ > θQ; (ii) lower in market B.

The Impact of Entry by Firm 1 in Market B. Comparing the benchmark case to our

main analysis (Sections 4.1 and 4.2), we can see how entry by Ąrm 1 in market B impacts
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the data sharing decision of Ąrm 2. Doing so, we uncover a novel rationale for market entry:

entering market B (and becoming a generalist) Ąrm 1 prompts Ąrm 2 to share data on more

favorable terms. After Ąrm 1Šs entry in market B, Ąrm 2 is no longer indifferent and instead

gains from sharing data with 1, even for free. Combining these observations gives Proposition 2.

Proposition 2 (Entry Rationale). Entry by Ąrm 1 increases Ąrm 2Šs incentive to share data.

By being active in market B and exerting competitive pressure on Ąrm 2, Ąrm 1 prompts

Ąrm 2 to share its data because it softens competition in market B. To underscore the nature

of this result, consider a case in which Ąrm 1 has full bargaining power. Firm 2 would pay an

amount equal to Π⋆
2(1) − Π⋆

2(0) > 0 to share its data with Ąrm 1.

5. Model extensions

In this section we present several extensions that probe the robustness of our model. We consider

each of the following: (i) price competition; (ii) same-side network effects; (iii) heterogeneous

cross-market externalities; and (iv) two generalist Ąrms. Details, proofs and calculations are in

our online-only Appendix B.23

5.1. Differentiated Bertrand competition

Our main model features classic Cournot competition so that products are perfect substitutes.

Our insights about data sharing also hold for typically differentiated products. We show this

with a demand system arising from the well-known Hotelling set-up in which Ąrms choose

prices. There is a unit mass of consumers in each market. In market A, their valuations are

distributed according to an outside option, s ∼ U [0, 1].

uA(vA, pA,Φ, s) = vA + θ(qe
1 + Φqe

2) − pA − s, (11)

23In addition, in our (also online-only) Appendix C we combine extensions (i) and (ii) by solving the model
with both price competition and same-side network effects. In that appendix, we also show that our main result
is robust to the case when allowing for consumer expectations, à la Katz & Shapiro (1985).
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where pA is the price charged by the generalist in market A, Φ is the indicator function whether

the specialist Ąrm 2 in market B shares data and qe
1 and qe

2 is the expected value consumers

get from data collected in market B. Consumers buy when uA(·) ≥ 0 =⇒ s < s̃(vA, pA,Φ),

which determines demand in market A.24 In market B, the generalist Ąrm 1 and the incumbent

specialist Ąrm 2 compete to attract consumers who are distributed uniformly on a unit-length

Hotelling preference line.25 Firm 1 is located at 0 and Ąrm 2 is located at 1.

The utility of a consumer of type x from Ąrm 1 and 2Šs products are, respectively,

u1(v1, p1, x) = v1 + θqe
A − p1 − tx, u2(v2, p2, x) = v2 − p2 − t(1 − x), (12)

where pi and vi are the price and the value from investments at Ąrm i ∈ ¶1, 2♢, t is the

transportation cost parameter and qe
A is the expected value from data collected in market A.

Consumers demands are constructed by identifying the consumer that is indifferent between

buying from Ąrm 1 or Ąrm 2 and is denoted as x̃, i.e., u1(·) = u2(·) =⇒ x̃(v1, v2, p1, p2, q
e
A).

Thus, in this framework we can represent the demands as

q1(v1, v2, p1, p2, q
e
A) = x̃(·), q2(v2, v1, p2, p1, q

e
A) = 1 − x̃(·). (13)

Note that consumer demands are now directly affected by the value generated from data col-

lected in market A. SpeciĄcally, as the data collected in market A increases, the demand for

Ąrm 1Šs product increases while the demand Ąrm 2Šs product decreases. This direct effect of

data on demand for the product of the two Ąrms is a novel feature of this demand system which

was absent in our main, Cournot, setting.

The proĄts of the Ąrms are calculated as before:

Π1 = pAqA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (14)

24To ensure that demand in market A is elastic, we assume (as speciĄed precisely by Assumption 1) that this
market is not covered such that some consumers do not purchase the product in equilibrium.
25For Ąrms to compete in market B, we assume (as speciĄed precisely by Assumption 1) that market is covered.
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The timing of the game is as follows: (i) Firms set investments v1, vA and v2; (ii) Firms set

prices p1, pA, p2; (iii) Consumers form expectations on the value generated by data then decide

whether to buy.26 We impose the following technical restrictions.

Assumption 1. (i) The value of cross-network data externality θ is sufficiently low, i.e.,

θ < θ̃ ≈ 0.322; (ii) the transportation cost parameter is within the region 2+15θ2

18
< t <

8−9θ2+
√

64+225θ4−144θ2

72
.

These restrictions ensure that the second-order conditions are satisĄed, and that we get an

interior solution. In particular, under these conditions, market A is not covered so that the

demand is elastic and the generalist Ąrm invests in innovation and beneĄts from the data of

the specialist Ąrm. On the contrary, market B is covered and Ąrms compete in this market.

We present a detailed analysis in Appendix B, showing that Ąrm 2 prefers to share data with

Ąrm 1, Π⋆
2(1) − Π⋆

2(0) > 0, as per our main result.

5.2. Same-side data externalities

The mechanism we reveal with our main model is a consequence of cross-market externalities.

Same-side network effects may also exist, where a product improves when there is more con-

sumer data generated from a productŠs own use. In this section, we show that our main result is

qualitatively unaffected with the addition of same-side network effects. Consider the following

inverse demand functions

PA(vA, q1,Φq2, qA) = A + vA + θ(q1 + Φq2) − βAqA, (15)

P1(v1, qA, q1, QB) = B + v1 + θqA + σq1 − βBQB, (16)

P2(v2, q2, QB) = B + v2 + σq2 − βBQB, (17)

where σ ≥ 0 represents the strength of the same-side externality in market B. Letting σ = 0

nests our main speciĄcation. Adding these terms comes at a considerable cost to brevity.

26Expectations are assumed to be correct in equilibrium, as usual. To address out-of-equilibrium cases, we
assume expectations are ŞresponsiveŤ in the sense that they are correct for any choices of Ąrms at prior stages.
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Nevertheless, and as detailed in Appendix B, we cover and here report two tractable cases.

The Ąrst is a ŞneutralŤ or ŞbalancedŤ case, in which data from market A are equally helpful

as those from B for product enhancement, i.e., σ = θ. In a second natural case of interest, we

consider data from the same market to be more helpful for product development, σ > θ. In

both cases, our main result prevails: Ąrm 2 strictly prefers to share its data.

The presence of an intra-market externality in market B adds an incentive for Ąrms to

produce more. All else equal, a Ąrm producing more would typically lower the market price

(and this still happens in our model because σ must be sufficiently small to produce well-deĄned

solutions) but the product enhancements raise consumersŠ willingness to pay, which encourages

the Ąrm to set higher prices. Overall, this makes price less sensitive to output, and so output

in market B increases in σ. This increases the relative importance of a ĄrmŠs own production

in market B in their total proĄts.

This does not overturn the willingness of Ąrm 2 to share its data, because doing so still

prompts Ąrm 1 to accommodate Ąrm 2 in B. In particular, the effects described by (9) persist.

As such, the mechanism we uncover is present in the face of the intra-market externality.

However, an increase in its strength (σ) reduces the extent to which Ąrm 1 accommodates Ąrm

2, and as such, Ąrm 2Šs proĄt falls with σ. Overall, the intra-market externality reduces the

potency of the forces we identify with our main result, but does not overturn them.

5.3. Heterogeneous cross-market externalities

Our contribution relies crucially on cross-market externalities, and our important parameter

there is θ > 0: the rate at which data from sales of one product translates into a higher

willingness to pay for another product. We assumed that the rates at which data from market

A affects product B, and vice versa, to be equal. This is inaccurate when data from A are more

useful in improving product B than data from B are in improving product A, or vice versa;

or, when the rate at which a company can take advantage of data is different for data sourced

internally (as is the case for Ąrm 1) versus externally (when Ąrm 2 shares with Ąrm 1).27

27This is the case, e.g., in Baldwin (2018), who models a one-way externality.
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To address this, here we consider asymmetric cross-market externalities. Namely, data col-

lected in market A and shared inB induce an externality proportional to θA, while data collected

in B and shared in A induce an externality proportional to θB, which gives demands:

PA(vA, q1,Φq2, qA) = A + vA + θB(q1 + Φq2) − βAqA, (18)

P1(v1, qA, q1, QB) = B + v1 + θAqA − βBQB, (19)

P2(v2, q2, QB) = B + v2 − βBQB. (20)

As we detail in Appendix B, different cross-market externalities do not change our modelŠs

qualitative results. What matters for the mechanism we reveal is that data from one market

improves quality in the other, i.e., that θA, θB > 0, not the relative rates at which they do so.

5.4. Two competing generalist Ąrms

In the baseline, we demonstrated that our main results in a setting in which the specialist Ąrm

faces one generalist competitor. We now show that the core effect at play when Ąrm 2 decides

to share its data remains unchanged when markets A and B have multiple (2) generalist Ąrms.

The two generalist Ąrms are indexed as Ąrms 1 and 3, while the specialist remains indexed as

Ąrm 2. Indicators Φ1 and Φ3 capture the decision of Ąrm 2 to share data with Ąrm 1 and Ąrm 3,

respectively (a value of 1 indicates data are shared). The total outputs are now QA = qA1 + qA2

in market A and QB = qB1 + q2 + qB3. The inverse demand functions in markets A and B are:

PA1(vA1, qB1,Φ1q2, QA) = A + vA1 + θ(qB1 + Φ1q2) − βAQA, (21)

PB1(vB1, qA1, QB) = B + vB1 + θqA1 − βBQB, (22)

P2(v2, q2, QB) = B + v2 − βBQB, (23)

PA3(vA3, qB3,Φ3q2, QA) = A + vA3 + θ(qB3 + Φ3q2) − βAQA, (24)

PB3(vB3, qA3, QB) = B + vB3 + θqA3 − βBQB. (25)
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As usual, the resulting proĄts of the Ąrms can be written:

Π1 = PA1(·)qA1 + PB1(·)qB1 − I(vA1) − I(vB1), (26)

Π2 = P2(·)q2 − I(v2), (27)

Π3 = PA3(·)qA3 + PB3(·)qB3 − I(vA3) − I(vB3). (28)

We focus our discussion on the decision of Ąrm 2 to share its data, and on the willingness of

the generalist Ąrms to accept the data. Denote by Π∗
1(Φ1,Φ3), Π∗

2(Φ1,Φ3), and Π∗
3(Φ1,Φ3) the

proĄts of Ąrms 1, 2, and 3 depending on whether Ąrm 2 shares its data with Ąrm 1 and Ąrm 3.

We prove that the specialist Ąrm shares its data with both generalists. To do so, we Ąrst

conĄrm that Ąrm 2 is willing to share its data with both competitors:

Π∗
2(1, 1) > Π∗

2(0, 1) = Π∗
2(1, 0) > Π∗

2(0, 0). (29)

Note that sharing data with one of the Ąrms, and not the other, is less proĄtable for Ąrm 2

than sharing data with both generalist Ąrms. It remains to show that both generalist Ąrms are

willing to accept the data. Compared to a situation in which neither generalist Ąrm has data

from Ąrm 2, it is proĄtable for a generalist to accept the data:28

Π∗
1(1, 0) > Π∗

1(0, 0) and Π∗
3(0, 1) > Π∗

3(0, 0). (30)

The effects at play are as in our main analysis. Sharing incentivizes generalist Ąrms to accom-

modate the specialist by lowering their output in market B. This prompts Ąrm 2 to expand

and share more data, and the fact Ąrms compete in market A does not remove this effect.

28Also, when one generalist receives data from Ąrm 2, the other beneĄts from those data too:
Π∗

1
(1, 1) > Π∗

1
(0, 1) and Π∗

3
(1, 1) > Π∗

3
(1, 0).
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5.5. Long-term competitive dynamics.

The entry of the generalist Ąrm into a secondary market may be followed by market changes

that alter the ĄrmŠs objectives. If market B becomes larger or more lucrative over time, Ąrm 1Šs

objectives might well shift to full domination of market B and threatening the survival of Ąrm

2. Our analysis thus far assumes a one-shot game featuring data sharing and competition, and

in which data-sharing is shown to be a source of co-opetition. One topic for further research

is to consider how the forces we identify interact with features relevant to a more dynamic

competitive setting. In the relevant markets, one particularly plausible outcome when each

Ąrm is uncertain about its future production and innovation costs, is the exit of specialist

Ąrms. Consumer data are typically used to better direct their innovation and understand

future trends of the markets. Hence, access to large amounts of consumer data can allow a Ąrm

to reduce uncertainty and lower the chance of exit, while increasing its own dominance and

potentially increasing rivalsŠ rate of exit. In this case, would a specialist Ąrm still be willing to

share its data if its larger rival could use it in the long run to cement its dominance and force

the specialist out of business?

While a full analysis of the long run is outside the scope of this article, we discuss some

of the different factors at play in light of our results. On the one hand, if data allow a Ąrm

to lower its production costs over time, a small Ąrm could be reluctant to share its data and

increase the chances of being pushed out of the market by an increasingly efficient rival. On the

other hand, we showed that a specialist Ąrm innovates more when it shares its data, while the

generalist rival invests less. These shifts in investment may have long-lasting positive impacts

on the proĄts of the specialist Ąrm. Hence, the willingness of a specialist to share data when

it accounts for such competitive dynamics crucially depends on the respective importance of

data and investments in innovation on future production costs and expected proĄts.

A second and related factor is acquisitions. If data-sharing increases a rivalŠs competence

or efficiency in a specialist ĄrmŠs market, then it may increase the likelihood of a takeover.

Some smaller or specialist companies seem, from their inception, to wish to be acquired. For

companies with such shorter-term goals, it is not clear if the mechanism we uncover is beneĄcial.
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While data-sharing may eventually lead to a lower-priced acquisition (or an exit), the increased

Ćow of proĄt during a preceding phase of co-opetition could compensate for this. For specialist

companies with longer-term objectives the calculus seems yet more complicated as more factors

become relevant, but for them data-sharing may be distinctly less attractive to the extent that

a limited period of co-opetition is not a strong enough reason to share data.

With high rates of acquisitions and such dominant acquirers, many of the markets relevant

to this article are also a natural focus of competition authorities. Our results suggest that

data-sharing, by reducing competitive pressures and aligning incentives between rival Ąrms,

could delay or reduce acquisitions, perhaps pushing towards less concentrated markets. It is a

stretch to suggest that data-sharing is equivalent to ownership, but our analysis highlights that

if data-sharing leads to more Ąrms in a market, this should not be interpreted as unambiguously

pro-competitive and could in fact be a symptom of co-opetition.

Overall, whether data sharing is still more proĄtable than data hoarding when accounting

for long-term competitive dynamics would seem to depend on the type of markets considered,

and the horizons and objectives of the Ąrms involved.

6. Implications and discussions

Managerial implications. In general, our work highlights the importance for data-driven

companies to put data governance considerations at the center of their business models, and to

acknowledge the strategic role of data.

Managerial Insight 1. When a large Ąrm enters a new market to beneĄt from cross-market

data exernalities, it may be proĄtable for a smaller incumbent to share its data with it, even for

free. Data sharing can be a strategic device to lower the multi-market ĄrmŠs aggressiveness.

With this point, we offer stark and a priori counter-intuitive advice to managers of specialist

Ąrms. Sharing value-enhancing data with a multi-market rival can in fact afford some breathing

space, potentially much needed in todayŠs competitive digital landscape. SpeciĄcally, our results

show that data-sharing can make even a formidable rival a less aggressive competitor because
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it makes them internalize the value of the data shared with them.

Turning to generalist Ąrms, our advice may also run counter to Ąrst instincts:

Managerial Insight 2. A generalist (multi-market) Ąrm can increase its overall proĄt by

giving up market share to a specialist (single-market) rival, when the specialist shares its data.

Giving up market share is surely bad standalone advice, but our work shows that doing so in

one market can be more than compensated by increased proĄts in another. When a specialist is

willing to share their data, it may be proĄtable to respond by accommodating the rival because

it increases the Ćow of data that can be used to increase the value proposition to customers.

The increased data collection substitutes for more costly investments, improving bottom lines.

Last, we propose a new consideration for Ąrms considering entry into new markets:

Managerial Insight 3. Entry into a market for which data are related to the ĄrmŠs existing

operations can result in more favorable data-sharing agreements with incumbent specialist Ąrms.

This suggests that Ąrms should explore opportunities in data-relevant markets. In addition

to collecting relevant data, their presence in the new market also gives them the leverage to

negotiate more favorable terms for data sharing with incumbent specialist Ąrms. This shows a

new source of value to establishing a subsidiary in data-relevant markets, and so constitutes a

new strategic rationale for entry in the presence of cross-market externalities.

Policy implications and regulation. Recognizing the importance of data as a source of

competitive advantage, there is a growing policy discussion and academic literature on optimal

regulation in the presence of data-driven network effects (Crémer et al. 2019, Hagiu & Wright

2020, Krämer & Schnurr 2022, Krämer & Shekhar 2022, Prüfer & Schottmüller 2021, Parker

et al. 2021, Tucker 2019).

We predict that by sharing its data, the specialist Ąrm boosts its sales and proĄts due to the

strategic retreat of the generalist Ąrm in that market. In general terms, we show data sharing

to be a form of Şpuppy-dogŤ strategy by specialists that softens the aggressiveness of Şfat catŤ

generalists (in the spirit of Fudenberg & Tirole 1984).
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Both Ąrms in our model proĄt from data sharing. To competition authorities, information

exchange between Ąrms is a classic signal of collusion (Awaya & Krishna 2016, Cason & Mason

1999, Clarke 1983, Kandori & Matsushima 1998). But in our setting, data sharing lowers

competition without any explicit underlying collusion.

Data-sharing can unleash economies of scope and provide beneĄts across marketsŮa message

well-received by policy makers. For example, the European Commission (2022) reports:

ŞAs data is a non-rivalrous resource, it is possible for the same data to support the creation

of several new products, services or methods of production. So, companies can engage with

the same data in different arrangements with other big companies, small and medium-sized

enterprises (SMEs), startups or the public sector. This way, the value resulting from the data

can be fully exploited.Ť

Those beneĄts seem undeniable (and are captured by our modelŠs externalities). In line with

that general and positive sentiment, in our analysis Ąrms beneĄt from sharing and the increased

data availability leads to improved products and services. Those improvements increase the

total surplus available and may yield further beneĄcial effects outside the scope of our study.

Yet, the beneĄts will remain unrealized if Ąrms are resistant to data sharing. With a view to

unlocking the gains from sharing, reports such as that by the European Commission (2020a)

emphasize when it may harm the sharer and constitute a market failure.29 To those points, our

analysis shows data sharing to be an important strategic decision for Ąrms that can be mutually

proĄtable for both sharer and receiver, even when they have asymmetric market positions:

Policy Insight 1. Data sharing can reduce market concentration and enhance the market share

of smaller specialist Ąrms.

Data sharing is a double-edged sword for policy. On the one hand, it encourages generalist

Ąrms to accommodate specialists, which increases their investments in innovation. On the other

hand, it lowers consumer surplus as investment intensity drops and Ąrms fall into a co-opetitive

29Related to our work, that report points out an incentive for Ąrms to share data across markets when goods
are complements (European Commission 2020a, pp.20-21).
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relationship. This presents a dilemma for policy and data-sharing policies should acknowledge

that increased market share of specialist Ąrms in market B does not imply Ąercer competition.

Policy Insight 2. When a specialist (single-market) Ąrm shares its data with a competitor that

operates in two markets, consumer welfare falls in the market in which they compete. Consumer

welfare can also fall in the primary market of the generalist.

Finally, our results suggest that reduced competition caused by data-sharing also has long-

term implications. This follows from the lower innovation intensities data sharing prompts.

Policy Insight 3. Data sharing may lower innovation in both markets when the value of

inter-market data is high.

The negative impacts of data sharing we reveal call for caution over recent regulations such as

the European CommissionŠs Data Act30 in which Chapter II standardizes data access between

Ąrms, and the proposed Data Governance Act,31 which aims to facilitate B2B data exchanges.

Another issue intimately related to data sharing and often near the top of the list of con-

cerns is that of consumer privacy. For example, limits on information-sharing practices are

included in the California Consumer Privacy Act32 and the European General Data Protec-

tion Regulation.33 That said, technological advances are providing an increasing number of

privacy-preserving data-sharing solutions, which may reduce the tension between privacy and

data sharing.34 When Ąrms cannot share data, our work suggests that consumers may in fact

beneĄt, not (only) from privacy protection, but from more intense competition between Ąrms.

In sum, our insights present tensions for policy. It is not within the scope of our analysis to

provide a complete resolution to these tensions, especially as these markets and the associated

technologies continue to develop rapidly. But our analysis does show that any blanket support

for B2B data sharing would seem misguided. More generally, we hope to bring the competitive

consequences of cross-market data-sharing agreements to the forefront of the debate.

30https://digital-strategy.ec.europa.eu/en/policies/data-act, last accessed November 7, 2022.
31https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020PC0767, last accessed November 7, 2022.
32https://theccpa.org/, last accessed Sep 27, 2022.
33https://gdpr.eu/, last accessed Sep 27, 2022.
34See, for example, the Deloitte Insights 2022 report here: https://www2.deloitte.com/xe/en/insights/focus/tech-
trends/2022/data-sharing-technologies.html, last accessed Jan 19, 2023.
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7. Concluding discussion

Business-to-business (B2B) data sharing is increasingly common. In contrast to oft discussed

advantages like information synergies and value creation, we unveil a new strategic rationale

for B2B data sharing. We show that specialist (single-market) Ąrms can employ data-sharing

commitments to mitigate competition by transforming their multi-market competitors into

cooperative partners (co-opetitors). This strategy allows small incumbent Ąrms to better cope

with the entry of large, multi-market competitors in their market.

However, we caution that the approach may not always yield positive outcomes, and managers

need to discern the conditions under which such data sharing is proĄtable. SpeciĄcally, if data

sharing fails to diminish the aggressive nature of a multi-market rival, then the smaller Ąrm may

Ąnd sharing data unproĄtable. This is particularly true in scenarios where the technology is

already mature, and there is limited potential for medium-term quality improvements. In such

cases, smaller Ąrms may refrain from data sharing, as their investments would have negligible

impact on reducing the aggressiveness of the dominant Ąrm in the market they compete in.

We hope this work can be used and built on to further explore how data sharing affects market

outcomes. One direction is to consider richer competitive dynamics. For instance, consider the

incentives of multi-market Ąrms to acquire specialist competitors (especially relevant given how

many acquisitions occur in digital markets). On the one hand, data sharing may help Ąrms

better anticipate the value of information synergies resulting from a merger (see, e.g., Dubus

& Legros 2022) and increase the overall value of mergers and acquisitions. On the other hand,

after data are shared, the beneĄts of a merger are reduced compared to the no-sharing case

in which Ąrms compete head-to-head. Once data are shared, as we have shown, Ąrms may

compete less aggressively. This lowers the competition-reducing gains of a merger in the case

data were already shared before the merger (vis-á-vis no sharing before the merger). This

suggests that after data are shared, Ąrms are more likely to merge for efficiency gains than for

a weaker anti-competitive effect, an issue relevant to Ąrms and regulators alike.
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Appendix A. Proofs for the main model

In this appendix we prove the results of our main model, introduced in Section 3. In doing so,

we also provide the exact expressions behind some of the terms we referenced in the main text.

Proof of Lemma 1. Differentiating the proĄt of Ąrm 1 with respect to qA and q1 and the

proĄt of Ąrm 2 with respect to q2 yields the following system of Ąrst-order conditions:

∂Π1

∂qk

= Pk(·)
︸ ︷︷ ︸

Volume effect

+
∂Pk(·)

∂qk

qk

︸ ︷︷ ︸

Margin effect

+
∂Pj(·)

∂qk

qj

︸ ︷︷ ︸

Value increase in market B
from market A data(+)

= 0, for k ̸= j ∈ ¶A, 1♢, (A.1)

∂Π2

∂q2

= P2(·)
︸ ︷︷ ︸

Volume effect

+
∂P2(·)

∂q2

q2

︸ ︷︷ ︸

Margin effect

= 0. (A.2)

Solving yields the equilibrium output choices as functions of sharing and investment decisions:

q̂A(vA, v1, v2,Φ) = [2ω]−1
[

6(A + vA) + θ(A(2 + Φ) + (4 − Φ)v1 − 2(1 − Φ)v2)
]

, (A.3)

q̂1(v1, vA, v2,Φ) = [2ω]−1
[

4A + 8v1 − 4v2 + 4θ(A + vA) + Φθ2(A + v2)
]

, (A.4)

q̂2(v2, v1, vA,Φ) = [ω]−1
[

A(2 − θ − θ2) − 2v1 − θvA + v2(4 − θ2)
]

, (A.5)

Q̂B(v2, v1, vA,Φ) = q̂1(·) + q̂2(·)

= [2ω]−1
[

4(2A + v1 + v2) + 2θ(A + vA) − (2 − Φ)θ2(A + v2)
]

,

(A.6)

ω ≡ 12 − (4 − Φ)θ2. (A.7)

Because investment creates value (shifts demand out), Ąrms produce more in a given market if

they invest more in their product in that market:

∂q̂1(·)

∂v1

=
4

ω
> 0,

∂q̂A(·)

∂vA

=
3

ω
> 0,

∂q̂2(·)

∂v2

=
4 − θ2

ω
> 0. (A.8)

27



Due to the cross-market data advantage, if Ąrm 1 invests more in one market and therefore

produces more in that market, its product in the other market also improves, boosting demand.

Therefore, Ąrm 1 increases output there too:

∂q̂A(·)

∂v1

=
(4 − Φ)θ

2ω
> 0,

∂q̂1(·)

∂vA

=
2θ

ω
> 0. (A.9)

In contrast, Ąrms produce less when their rival invests more in quality improvement. For exam-

ple, if Ąrm 1 invests more in market B, it produces more in B. This increases the competitive

pressure on Ąrm 2, and as output choices are strategic substitutes, it produces less. In sum:

∂q̂A(·)

∂v2

=
θ(Φ − 1)

ω
≤ 0,

∂q̂1(·)

∂v2

=
Φθ2 − 4

2ω
< 0,

∂q̂2(·)

∂vA

= −
θ

ω
< 0,

∂q̂2(·)

∂v1

= −
2

ω
< 0. (A.10)

Substituting these outputs into demand, we can then write the ĄrmsŠ proĄts as:

P̂A(vA, v1, v2,Φ) = PA(vA, q̂1(·),Φq̂2(·), q̂A(·)), (A.11)

P̂1(vA, v1, v2,Φ) = P1(v1, q̂A(·), Q̂B(·)), (A.12)

P̂2(v2, v1, vA,Φ) = P1(v2, Q̂B(·)). (A.13)

max
vA,v1

Π̂1(vA, v1, v2,Φ) = P̂A(·)q̂A(·) + P̂1(·)q̂1(·) − I(vA) − I(v1) (A.14)

max
v2

Π̂2(v2, v1, vA,Φ) = P̂2(·)q̂2(·) − I(v2). (A.15)

Now we demonstrate that keeping investments constant, Ąrm 2 has no incentive to share data

with the generalist Ąrm 1, Π̂2(·,Φ = 1) < Π̂1(·,Φ = 0). In particular, we Ąnd

∂Π̂2(·,Φ)

∂Φ
= −

4θ2(A(2 − θ − θ2) + v2(4 − θ2) − 2v1 − θvA)2

(12 − θ2(4 − Φ))2
< 0, (A.16)

which establishes that Π̂2(·,Φ = 1) < Π̂1(·,Φ = 0). ■

28



Proof of Proposition 1. The proĄts of the Ąrms are given by (A.14) and (A.15). Applying

the envelope theorem to the Ąrst-order conditions, yields the following, for k ∈ ¶A, 1♢:

∂Π̂1(·)

∂vk

=
∂Pk(·)

∂vk

q̂k(·)
︸ ︷︷ ︸

Margin effect

−
∂I(vk)

∂vk
︸ ︷︷ ︸

Cost
︸ ︷︷ ︸

Direct effects

+
∂P1(·)

∂QB

∂q̂2(·)

∂vk

q̂1(·)

︸ ︷︷ ︸

Competitive effect (+)

+

=Φ
︷ ︸︸ ︷

∂PA(·)

∂q2

∂q̂2(·)

∂vk

q̂A(·)

︸ ︷︷ ︸

Data-sharing effect (−)
︸ ︷︷ ︸

Strategic effects (?)

= 0,
(A.17)

∂Π̂2(·)

∂v2

=
∂P2(·)

∂v2

q̂2(·)
︸ ︷︷ ︸

Margin effect

−
∂I(v2)

∂v2
︸ ︷︷ ︸

Cost
︸ ︷︷ ︸

Direct effects

+
∂P2(·)

∂QB

∂q̂1(·)

∂v2

q̂2(·)

︸ ︷︷ ︸

Competitive effect (+)

= 0.
(A.18)

Solving gives the equilibrium quality improvement levels as functions of sharing decision Φ:

v⋆
A(Φ) = Ω−1

[

2A(56 + Φ2θ3 + 2Φθ(2 − θ)(3 + θ(4 + θ(3 + θ)))

+ 4θ(8 − θ(8 − θ(6 − θ − θ2))))
]

,

(A.19)

v⋆
1(Φ) =

[

2Ω
]−1[

A(192 + θH)
]

, (A.20)

v⋆
2(Φ) = Ω−1

[

4A(4 − θ2)(6 − θ(12 + 4θ(4 − θ − θ2)) + Φ(1 + θ(2 − θ − θ2)))
]

, (A.21)

H ≡ 512 − 80g − 24θ(6 − Φ(10 − Φ)) − 4θ2(4 − Φ)(20 − Φ)

+ 2θ3(12 − Φ(62 − Φ(18 − Φ))) + 4θ4(4 − Φ)(3 − Φ) + Φθ5(4 − Φ)2,

(A.22)

Ω ≡ 336 − 4θ2(176 − Φ(71 − Φ)) + θ4(344 − Φ(236 − Φ(40 − Φ)))

− (6 − Φ)(4 − Φ)(2 − Φ)θ6.

(A.23)

Substituting into outputs and proĄts yields
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q⋆
A(Φ) = q̂A(v⋆

A(Φ), v⋆
1(Φ), v⋆

2(Φ),Φ), (A.24)

q⋆
1(Φ) = q̂1(v

⋆
1(Φ), v⋆

A(Φ), v⋆
2(Φ),Φ), (A.25)

q⋆
2(Φ) = q̂2(v

⋆
2(Φ), v⋆

1(Φ), v⋆
A(Φ),Φ), (A.26)

Q⋆
B = q⋆

1(Φ) + q⋆
2(Φ). (A.27)

And substituting these equilibrium outputs into the inverse demand expressions gives

P ⋆
A(Φ) = P̂A(v⋆

A(Φ), v⋆
1(Φ), v⋆

2(Φ),Φ), (A.28)

P ⋆
1 (Φ) = P̂1(v

⋆
1(Φ), v⋆

A(Φ), v⋆
2(Φ),Φ), (A.29)

P ⋆
2 (Φ) = P̂2(v

⋆
2(Φ), v⋆

1(Φ), v⋆
A(Φ),Φ). (A.30)

The equilibrium proĄt of Ąrm 1 and 2 is

Π⋆
1(Φ) = P ⋆

1 (Φ)q⋆
1(Φ) + P ⋆

A(Φ)q⋆
A(Φ) − I(v⋆

1(Φ)) − I(v⋆
A(Φ)), (A.31)

Π⋆
2(Φ) = P ⋆

2 (Φ)q⋆
2(Φ) − I(v⋆

2(Φ)). (A.32)

Comparing the proĄt of Ąrm 2 when it does versus does not share its data,

Π⋆
2(1) − Π⋆

2(0) =
A2θG

18T 2
, (A.33)

G ≡ 423360 − 1640016θ + 1822464θ2 + 4669212θ3 − 18017808θ4 − 10852432θ5

+ 39825520θ6 + 19343977θ7 − 40548980θ8 − 19444706θ9 + 22903540θ10

+ 11148569θ11 − 7662012θ12 − 3782316θ13 + 1516284θ14 + 755172θ15

− 164520θ16 − 82260θ17 + 7560θ18 + 3780θ19 > 0,

(A.34)

T = (28 − 29θ2 + 5θ4)(42 − 88θ2 + 43θ4 − 6θ6) > 0. (A.35)
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Similarly, comparing the proĄt of Ąrm 1 under data sharing to none,

Π⋆
1(1) − Π⋆

1(0) =
A2θM

72T 2
, (A.36)

M ≡ 6435072 − 8338176θ − 52121664θ2 + 5550336θ3 + 130857312θ4 + 39659776θ5

− 155218048θ6 − 80051000θ7 + 102204552θ8 + 67905525θ9 − 39950388θ10

− 31868323θ11 + 9384772θ12 + 8875358θ13 − 1273188θ14 − 1458492θ15

+ 88092θ16 + 130320θ17 − 2160θ18 − 4860θ19 > 0.

(A.37)

This establishes that both Ąrms prefer Ąrm 2 to share its data with Ąrm 1. ■

Proof of Corollary 1. Comparing the equilibrium investment of Ąrm 1 in market B under

data sharing with its investment without data sharing, we Ąnd

v⋆
1(1) − v⋆

1(0) = −
[

2T
]−1

A(2 + θ)θ
[

140 − 176θ + 352θ2

+ 346θ3 − 475θ4 − 150θ5 + 168θ6 + 18θ7 − 18θ8
]

< 0.

(A.38)

Comparing these equilibrium investment choices for Ąrm 2 gives

v⋆
2(1) − v⋆

2(0) = −
[

3T
]−1

A(2 − θ)θ
[

84 − 198θ + 475θ2

+ 1176θ3 − 13θ4 − 768θ5 − 186θ6 + 126θ7 + 42θ8)
]

< 0.

(A.39)

And lastly, comparing the equilibrium investment choices of Ąrm 1 in market A gives

v⋆
A(1) − v⋆

A(0) =
[

3T
]−1

Aθ
[

252 − 742θ − 904θ2

+ 566θ3 + 572θ4 − 133θ5 − 127θ6 + 9θ7 + 9θ8
]

.

(A.40)

The numerator is positive if and only if (252 − 742θ− 904θ2 + 566θ3 + 572θ4 − 133θ5 − 127θ6 +

9θ7 + 9θ8) > 0, which holds if θ < θS = 0.270 and does not otherwise. We now turn to output.
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Comparing the equilibrium output of Ąrm 1 in market B with and without data sharing gives

q⋆
1(1) − q⋆

1(0) = −
[

6T
]−1[

336 − 708θ + 1720θ2 + 2857θ3 − 1714θ4

− 2137θ5 + 528θ6 + 582θ7 − 54θ8 − 54θ9
]

< 0.

(A.41)

Comparing these equilibrium output choices of Ąrm 2 gives

q⋆
2(1) − q⋆

2(0) =
[

T
]−1

Aθ
[

42 − 99θ + 236θ2 + 396θ3

− 243θ4 − 305θ5 + 77θ6 + 85θ7 − 8θ8(1 + θ)
]

> 0.

(A.42)

And lastly, comparing the equilibrium output choices of Ąrm 1 in market A gives

q⋆
A(1) − q⋆

A(0) =
[

12T
]−1

Aθ
[

1008 − 2464θ − 3544θ2 + 2128θ3

− 2563θ4 − 630θ5 − 696θ6 + 66θ7(1 + θ)
]

,

(A.43)

which is positive if and only if 1008 − 2464θ − 3544θ2 + 2128θ3 − 2563θ4 − 630θ5 − 696θ6 +

66θ7(1 + θ) > 0, which in turn holds if θ < 0.307 and does not otherwise. ■

Proof of Corollary 2. The result follows from the arguments made in the main text. ■

Proof of Proposition 2. The result follows from the arguments made in the main text. ■
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Appendix B. Proofs for the extensions

In this appendix we provide proofs and supporting calculations of the extensions in Section 5.

B.1. Differentiated price competition

The model description is available in Section 5.1. We proceed by presenting the analysis Ąrst

in the case that the specialist Ąrm 2 does not share its data, and then when it does.

Specialist Ąrm does not share data

At stage 3, given expectations, consumers act and their demands are

q1(v1, v2, p1, p2, q
e
A) =

1

2
+
v1 − v2 − (p1 − p2) + θqe

A

2t
, (B.1)

q2(v2, v1, p2, p1, q
e
A) = 1 − q1(·), (B.2)

qA(vA, pA, q
e
1) = vA + θqe

1 − pA. (B.3)

In any equilibrium, consumersŠ expectations should match the outcome and so we set qe
A = qA,

qe
1 = q1 and solve for demands as functions of price and investment levels.

q1(v1, v2, vA, p1, p2, pA) =
1

2
+
v1 − v2 − (p1 − p2) + θ(vA − pA)

2t− θ2
, (B.4)

q2(v2, v1, vA, p2, p1, pA) = 1 − q1(·), (B.5)

qA(vA, v1, v2, pA, p1, p2) =
2t(vA − pA) + θ(t+ v1 − v2 − (p1 − p2))

2t− θ2
. (B.6)

Substituting these demands in the proĄt expression yields

Π1 = pAqA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (B.7)

Differentiating the proĄt of the generalist Ąrm with respect to its prices p1 and pA and the

specialist Ąrm with respect to p2 gives a system of Ąrst order conditions. Solving those yields
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prices as functions of investment levels given as follows.

p1(v1, v2, vA) = t+
2(v1 − v2) − θ(vA + 2θ)

6
, (B.8)

p2(v2, v1, vA) = t+
v2 − v1 − θ(vA + 2θ)

6
, (B.9)

pA(vA, v1, v2) =
vA

2
. (B.10)

Substituting these prices into the proĄt expressions yields proĄts as functions of investments.

Π1 = pA(·)qA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1(·)q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2(·)q2(·) − I(v2). (B.11)

Differentiating Π1 with respect to its prices, v1 and vA and Π2 with respect to v2, and solving

the resulting system of Ąrst order conditions yields

v⋆
1(0) =

4 − 18t+ 6θ2

12 − 54t+ 39θ2
, v⋆

2(0) =
4 − 18t+ 20θ2

12 − 54t+ 39θ2
, v⋆

A(0) =
4θ(2 − 9t+ 3θ2)

12 − 54t+ 39θ2
. (B.12)

Substituting these investment levels into prices, demands and proĄts we Ąnd

p⋆
1(0) = v⋆

1(0)



3t−
5θ2

2



, p⋆
2(0) = 3v⋆

2(0)



t−
θ2

2



, p⋆
A(0) =

v⋆
A(0)

2
, (B.13)

q⋆
1(0) =

3v⋆
1(0)

2
, q⋆

2(0) =
3v⋆

2(0)

2
, q⋆

A(0) =
5v⋆

A(0)

4
, (B.14)

Π⋆
1(0) =

v⋆
A(0)2

8
+
v⋆

1(0)2

2



9t−
15θ2

2
− 1



, Π⋆
2(0) =

v⋆
2(0)2

2



9t−
9θ2

2
− 1



. (B.15)

Specialist Ąrm shares data

At stage 3, given expectations, consumers act and their demands are

q1(v1, v2, p1, p2, q
e
A) =

1

2
+
v1 − v2 − (p1 − p2) + θqe

A

2t
, (B.16)

q2(v2, v1, p2, p1, q
e
A) = 1 − q1(·), (B.17)

qA(vA, pA, q
e
1, q

e
2) = vA + θ(qe

1 + qe
2) − pA. (B.18)
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In any equilibrium, consumersŠ expectations should match the outcome and so we set qe
A = qA,

qe
1 = q1 and qe

2 = q2 and solve for demands as functions of price and investment levels.

q1(v1, v2, vA, p1, p2, pA) =
1

2
+
v1 − v2 − (p1 − p2) + θ(θ + vA − pA)

2t− θ2
, (B.19)

q2(v2, v1, vA, p2, p1, pA) = 1 − q1(·), (B.20)

qA(vA, pA) = θ + vA − pA. (B.21)

Substituting these demands in the proĄt expressions yields

Π1 = pAqA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (B.22)

Differentiating the proĄt of the generalist Ąrm with respect to its prices p1 and pA and the

specialist Ąrm with respect to p2 gives a system of Ąrst order conditions. Solving those yields

prices as functions of investment levels given as follows.

p1(v1, v2, vA) =
2t(6t+ 2(v1 − v2) + θ(vA + θ))

12t− θ2
, (B.23)

p2(v2, v1, vA) =
2t(6t− 2(v1 − v2) − θ(vA + 2θ))

12t− θ2
, (B.24)

pA(vA, v1, v2) = vA + θ −
6tvA + θ(9t+ v1 − v2)

12t− θ2
. (B.25)

Substituting these prices into the proĄt expressions yields proĄts as functions of investments.

Π1 = pA(·)qA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (B.26)
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Differentiating Π1 with respect to its prices, v1 and vA and Π2 with respect to v2, and solving

the resulting system of Ąrst order conditions yields

v⋆
1(1) =

(8t− θ2)(4t(9t− 2) + θ2(9t− θ2))

(12t− θ2)(72t2 + θ2 + θ4 − 16t(1 + θ2))
, (B.27)

v⋆
2(1) =

8t(4t(9t− 2) − θ2(25t− 1 − 2θ2))

(12t− θ2)(72t2 + θ2 + θ4 − 16t(1 + θ2))
, (B.28)

v⋆
A(1) =

128t2θ(9t− 2) + θ5(11t− 1) − 12tθ3(19t− 3)

(12t− θ2)(72t2 + θ2 + θ4 − 16t(1 + θ2))
. (B.29)

Substituting these investment levels into prices, demands and proĄts we Ąnd

p⋆
1(1) = v⋆

1(1)2t


1 +
4t

8t− θ2



, p⋆
2(1) = v⋆

2(1)



3t−
θ2

4



, (B.30)

p⋆
A(1) =

88t2θ(9t− 2) + θ5(30t− 1) − θ7 − 2tθ3(141t− 14)

(12t− θ2)(72t2 + θ2 + θ4 − 16t(1 + θ2))
, (B.31)

q⋆
1(1) = v⋆

1(1)


1 +
4t

8t− θ2



, q⋆
2(1) = v⋆

2(1)



3

2
−
θ2

8t



, (B.32)

q⋆
A(1) =

136t2θ(9t− 2) + θ5(9t− 1) − 6tθ3(35t− 6)

(12t− θ2)(72t2 + θ2 + θ4 − 16t(1 + θ2))
, (B.33)

Π⋆
1(1) = p⋆

A(1)q⋆
A(1) −

v⋆
A(1)2

2
+
v⋆

1(1)2

2



4t(12t− θ2)2

(8t− θ2)2
− 1



, (B.34)

Π⋆
2(1) =

(v⋆
2(1))2

2



9t−
3θ2

2
+

θ4

16t
− 1



. (B.35)

Comparing Ąrm 2Šs proĄt under data sharing versus when Ąrm 2 does not share data, we Ąnd

Π⋆
2(1) − Π⋆

2(0) > 0. (B.36)

Firm 2 Ąnds it proĄtable to share data with Ąrm 1 under our regularity Assumption 1.
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B.2. Intra-market externalities

We consider the following demand system, which includes an intra-market externality.

PA(vA, q1,Φq2, qA) = A + vA + θ(q1 + Φq2) − βAqA, (B.37)

P1(v1, qA, q1, QB) = B + v1 + θqA + σq1 − βBQB, (B.38)

P2(v2, q2, QB) = B + v2 + σq2 − βBQB. (B.39)

We Ąrst provide solutions for quantity and investment choices with any values θ, σ ≥ 0 so that

they provide well-deĄned solutions, which, as in our main model, means we assume they are

sufficiently small. Otherwise, the model is unchanged and proĄts are

Π1 = PA(·)qA + P1(·)q1 − I(vA) − I(v1), (B.40)

Π2 = P2(·)q2 − I(v2). (B.41)

At stage 3, Ąrm 1 chooses qA, q1 to maximize Π1 and Ąrm 2 chooses q2 to maximize Π2. Solving

the resulting system of equations yields the optimal output choices as functions of θ and σ.

q̂A(·) = [2ρ]−1
[

α((Φ + 2)θ + 6) − σ(Φθ(α+ v2 + 1) + 8(α+ vA) + 2θ(α+ v1 + 1))

+ θ(Φ(−v1) + 2(Φ − 1)v2 + Φ + 4v1 + 2) − 8σ + 2σ2(α+ vA + 1) + 6vA + 6
]

,

(B.42)

q̂1(·) = [2ρ]−1
[

(Φθ2 − 4)(α+ v2 + 1) − 2(σ − 2)(θ(α+ vA + 1) + 2(α+ v1 + 1))
]

, (B.43)

q̂2(·) = ρ−1
[

2 − α(θ2 + θ + 2σ − 2) − 2σ − θ(θ + vA + 1) − 2v1 − v2(θ
2 + 2σ − 4)

]

, (B.44)

ρ = θ2(Φ + 2σ − 4) + 4(σ − 3)(σ − 1). (B.45)
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We next solve the game at stage 2. Firms choose investment to maximize proĄts, which yields

v∗
A(Φ) =

[

2ψ
]−1[

(α+ 1)(θ5(Φ2σ(5 − 2σ) − 2Φ(σ − 2)2(2σ + 1) − 4(σ − 2)2(2σ − 1))

+ 2θ3(Φ2(2 − (σ − 2)σ(2σ − 5)) + Φ(2σ(21 − 4σ((σ − 6)σ + 11)) + 8)

− 8(σ − 2)(2σ − 3)((σ − 3)σ + 1)) + 2θ4(σ − 2)(Φ(σ(2σ − 7) + 2) + σ(5 − 2σ)2

− 4) + 4θ2(Φ(σ(σ(σ(2σ − 15) + 38) − 36) + 10) + 2(σ − 2)(σ − 1)(σ(4(σ − 6)σ

+ 39) − 8)) − 8θ((σ − 2)σ(2σ − 5) − 2)(Φ(σ − 3)(σ − 1) + 2(σ − 2)2)

+ 8((σ − 2)σ(2σ − 5) − 2)(σ(σ(2σ − 13) + 26) − 14))
]

,

(B.46)

v∗
1(Φ) =

[

2ψ
]−1[

(α+ 1)(2θ4(Φ3(σ − 1) + 2Φ2(σ(3σ − 11) + 9) + Φ(σ − 2)(σ(8σ − 35)

+ 31) − 3(σ − 2)2(2σ − 1)) + 4θ22Φ2(σ − 3)(σ − 1)2 + Φ(σ − 1)(4σ − 15)(σ

− 2)2 − 6(2σ − 3)((σ − 3)σ + 1)(σ − 2) + Φθ6(Φ + 2σ − 4)2

− 2θ5(σ − 2)(Φ + 2σ − 4)(Φ + 2σ − 3) − 4θ3(σ − 1)(Φ + 2σ − 4)(Φ(σ − 3)

+ 2(σ − 2)(2σ − 5)) − 8θ(Φ(σ(σ(σ(2σ − 15) + 38) − 36) + 10) + 2(σ(2σ − 7)

+ 4)(σ − 2)3) − 24(σ − 2)2((σ − 2)σ(2σ − 5) − 2))
]

,

(B.47)

v∗
2(Φ) = ψ−1

[

− ((α+ 1)(σ − 2)(θ2 + 2σ − 4)(2θ4(Φ + 2σ − 4) + 2θ3(Φ + 2σ − 4)

+ θ2(4Φ(σ − 1) + σ(14σ − 47) + 32) − 2θ(Φ − 4(σ − 3)(σ − 1))

+ 6((σ − 2)σ(2σ − 5) − 2))
]

,

(B.48)

ψ ≡ (θ6(Φ + 2σ − 4)(Φ2 + 4Φ(σ − 2) + 2(σ − 2)(2σ − 3)) + θ4(2Φ2(σ(6σ − 25)

+ 20) − Φ3 + Φ(σ − 2)(σ(46σ − 173) + 118) + (σ − 2)(σ(4σ(11σ − 59) + 379)

− 172)) + 2θ2(−2Φ2(σ − 3)(σ − 1) + Φ(σ(σ(σ(22σ − 169) + 442) − 444)

+ 142) + 2(σ − 2)(2σ − 1)(σ(σ(10σ − 67) + 141) − 88))

+ 12((σ − 2)σ(2σ − 5) − 2)(σ(σ(2σ − 13) + 26) − 14)).

(B.49)

Substituting investment choices (B.46)-(B.48) into (B.42)-(B.44) provides the optimal output

choices, q∗
m(Φ) for m ∈ ¶A, 1, 2♢, as in the main analysis. Calculating, we replicate Corollary 1:
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v⋆
1(1) < v⋆

1(0), q⋆
1(1) < q⋆

1(0) and v⋆
2(1) > v⋆

2(0), q⋆
2(1) > q⋆

2(0). (B.50)

We also conĄrm that when Ąrm 2 shares its data, Ąrm 1 accommodates it less when σ is higher:

∂v⋆
1(1)

∂σ
< 0,

∂q⋆
1(1)

∂σ
< 0. (B.51)

We substitute investment choices (B.46)-(B.48) into (B.42)-(B.44) and Ąrst consider θ = σ:

Π∗
2(Φ) = −

[

4(θ(θ(Φ3θ2(θ2 − 1) + 2Φ2(3θ2 − 1)(θ3 − 8θ + 6) + Φ(3θ(θ(θ(4θ3 − 59θ

+ 42) + 216) − 296) + 284) + θ(θ(θ(θ(8θ3 − 164θ + 115) + 1090) − 1448)

− 1864) + 4240) − 2304) + 336)2
]−1[

(α+ 1)2(θ − 2)(θ(θ3(Φ2 − 60) + θ4(4Φ

+ 2) + 8θ2(3 − 4Φ) + 24θ(Φ + 10) + 4θ5 − 288) + 80)(θ(2Φ(θ(θ(θ + 3) − 2)

− 1) + θ(θ(2θ(2θ + 5) − 35) − 54) + 84) − 12)2
]

.

(B.52)

It is then straightforward to conĄrm that Π∗
2(1) > Π∗

2(0). Second, we consider when σ > θ:

Π∗
2(Φ) = −

[

4(θ6(Φ + 2σ − 4)(Φ2 + 4Φ(σ − 2) + 2(σ − 2)(2σ − 3))

+ θ4(2Φ2(σ(6σ − 25) + 20) − Φ3 + Φ(σ − 2)(σ(46σ − 173) + 118)

+ (σ − 2)(σ(4σ(11σ − 59) + 379) − 172)) + 2θ2(−2Φ2(σ − 3)(σ − 1)

+ Φ(σ(σ(σ(22σ − 169) + 442) − 444) + 142) + 2(σ − 2)(2σ − 1)(σ(σ(10σ

− 67) + 141) − 88)) + 12((σ − 2)σ(2σ − 5) − 2)(σ(σ(2σ − 13) + 26)

− 14))2
]−1[

(α+ 1)2(σ − 2)(2θ4(Φ + 2σ − 4) + 2θ3(Φ + 2σ − 4) + θ2(4Φ

(σ − 1) + σ(14σ − 47) + 32) − 2θ(Φ − 4(σ − 3)(σ − 1)) + 6((σ − 2)σ(2σ − 5)

− 2))2(θ4(Φ2 + 4Φ(σ − 2) + 2(σ − 2)(2σ − 3)) + 8θ2(Φ(σ − 3)(σ − 1)

+ (σ − 2)(σ(2σ − 7) + 4)) + 8σ(σ(σ(2σ − 15) + 38) − 36) + 80)
]

.

(B.53)

And here too Π∗
2(1) > Π∗

2(0), i.e., Ąrm 2 prefers to share its data (Φ = 1) than not (Φ = 0). In

addition, one can conĄrm that Ąrm 2Šs proĄts are falling in σ because
dΠ∗

2
(Φ)

dσ
< 0 for Φ ∈ ¶0, 1♢.
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B.3. Heterogeneous cross-market externalities

Throughout, θA and θB satisfy the same condition as in our main model: θA, θB < θ ≈ 0.353.

We consider the following demand system

PA(vA, q1,Φq2, qA) = A + vA + θB(q1 + Φq2) − βAqA, (B.54)

P1(v1, qA, q1, QB) = B + v1 + θAqA − βBQB, (B.55)

P2(v2, q2, QB) = B + v2 − βBQB. (B.56)

ProĄts are deĄned in the usual way, but with demands (B.54)-(B.56). Optimal outputs are

q̂A(·) = ρ−1
[

6 + 6vA + (1 − v1(−2 + Φ) + Φ + v2(−1 + 2Φ))θA + θB + 2v1θB − v2θB

+ α(6 + θA + ΦθA + θB)
]

,

(B.57)

q̂1(·) =
[

2ρ
]−1[

16(1 + v1 + α) + 4(1 + vA + α)(θA + θB) + (1 + v2 + α)(−8

+ ΦθA(θA + θB)],

(B.58)

q̂2(·) = −
[

2ρ
]−1[

8v1 + v2(−4 + θA + θB)(4 + θA + θB) + (θA + θB)2

+ α(−2 + θA + θB)(4 + θA + θB) + 2(−4 + θA + vAθA + θB + vAθB)
]

,

(B.59)

ρ ≡ 24 + ((−2 + Φ)θA − 2θB)(θA + θB). (B.60)

Using these equilibrium outputs, we solve for the optimal investments of each Ąrm at stage 2:

v∗
A(Φ) = ψ−1

[

2(1 + α)(448 − (−1 + Φ)θ5
A + θ4

A(2 + 5θB − 2Φ(1 + 2θB))

+ 2θ2
A(20Φ + 2Φ(4 + Φ)θB − 3(−2 + Φ)θ2

B + (5 − 2Φ)θ3
B − 4(8 + 9θB))

+ θB(128 + θB(4 + θB)(−16 + (−2 + θB)θB)) + 2θ3
A(2Φ2 + (2 + θB)(−6 + 5θB)

+ ϕ(4 − 3θB(1 + θB))) + θA(128 − Φ(−4 + θB)(24 + θB(16 + θB(6 + θB)))

+ θB(−128 + θB(−72 + θB(8 + 5θB))))
]

(B.61)
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v∗
1(Φ) =

[

2ψ
]−1[

(1 + α)((−2 + Φ)2Φθ6
A + θ4

A(12 − 4Φ(31 + 2(−9 + Φ)Φ)

+ 4(−3 + Φ)(−5 + 3Φ)θB + Φ(40 + 3(−8 + Φ)Φ)θ2
B) + θ3

A(−320 + 16(16

− 3Φ)Φ + 48θB − 4Φ(93 + 2(−18 + Φ)Φ)θB + 12(−5 + Φ)(−2 + Φ)θ2
B + Φ(40

+ (−16 + Φ)Φ)θ3
B) + (−2 + Φ)θ5

A(−6 + Φ(4 + (−10 + 3Φ)θB)) + 4(−4 + θB)

(4 + θB)(−24 + θB(−32 + 3θB(1 + θB))) + 4θ2
A(6(3 + θB)(−4 + θB(−12 + 5θB))

− Φ2(−4 + θB)(−12 + θB(−6 + θB(3 + θB))) + Φ(240 + θB(128 + θB(−93

+ θB(−14 + 5θB)))) + 2θA(1024 + 6θB(−48 + θB(−80 + θB(4 + 5θB)))

+ Φ(−320 + θB(480 + θB(128 + θB(−62 + θB(−7 + 2θB)))))))
]

(B.62)

v∗
2(Φ) = −ψ−1

[

(1 + α)(−4 + θA + θB)(4 + θA + θB)(θA(48 − 2θA(−16 + θA(2 + θA))

+ Φ(−8 + (−2 + θA)θA(4 + θA)) + 48(−1 + θB) + θA(64 − 4θA(3 + 2θA)

+ Φ(−8 + θA(4 + 3θA))θB + (32 + 2(−6 + Φ)θA + 3(−4 + Φ)θ2
A)θ2

B

+ (−4 + (−8 + Φ)θA)θ3
B − 2θ4

B)
]

(B.63)

ψ ≡ 2688 + (−3 + Φ)(−2 + Φ)(−1 + Φ)θ6
A + (−36 + Φ(55 + 3(−8 + Φ)Φ))θ5

AθB

− 1408θ2
B + 172θ4

B − 6θ6
B + θ3

AθB(688 − 4Φ(177 + (−40 + Φ)Φ)

+ (−4 + Φ)(30 + (−20 + Φ)Φ)θ2
B) + θ4

A(172 − 4Φ(59 + (−20 + Φ)Φ)

+ (−90 + Φ(110 + 3(−12 + Φ)Φ))θ2
B) + θAθB(16(−176 + 71Φ)

+ 4(172 − 59Φ)θ2
B + (−36 + 11Φ)θ4

B) + θ2
A(−16(88 + Φ(−71 + 6Φ))

+ 4(258 + Φ(−177 + 20Φ))θ2
B + (−90 + (55 − 6Φ)Φ)θ4

B).

(B.64)

Substituting investment choices (B.61)-(B.64) into (B.57)-(B.59) provides the optimal output

choices, q∗
m(Φ) for m ∈ ¶A, 1, 2♢, as in the main analysis. Calculating, we replicate Corollary 1:

v⋆
1(1) < v⋆

1(0), q⋆
1(1) < q⋆

1(0) and v⋆
2(1) > v⋆

2(0), q⋆
2(1) > q⋆

2(0). (B.65)
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In turn, the proĄts of Ąrm 2 when it shares data (Φ = 1) and when it does not (Φ = 0) are

Π∗
2(1) = −

[

4((41θ2
A − 172)θ4

B + θA(33θ2
A − 452)θ3

B + (θA − 2)(θA + 2)(13θ2
A − 352)θ2

B

− 4(θ2
A − 12)(3θ2

A − 56) + 2θA(θ4
A − 68θ2

A + 840)θB + 25θAθ
5
B + 6θ6

B)2
]−1

[

(1 + α)2(θ4
A + θ3

A(5θB + 2) + θ2
A(θB(9θB + 8) − 24) + θA(θB(θB(7θB + 10) − 56)

− 40) + 2θB(θB(θB(θB + 2) − 16) − 24) + 48)(2((θA + θB)(θA + 2θB) − 24)

(θ5
AθB + θ4

A(θB(7θB − 2) − 4) + θ3
A(θB(θB(19θB − 10) − 72) + 16)

+ θ2
A(θB(θB(θB(25θB − 18) − 252) + 104) + 176) + 2θA(θB(θB(θB(θB(8θB − 7)

− 154) + 84) + 592) − 160) + 4(θ2
B − 12)(θB(θB((θB − 1)θB − 19) + 8) + 48))

+ 8θ2
A(θA(θA(θA(5θA + 4) − 244) − 144) + 3744) − 2(81θA + 4)θ7

B

− 2(θA(199θA + 22) − 568)θ6
B + 2(θA(2404 − θA(269θA + 50)) + 144)θ5

B

− 8(θA(θA(3θA(18θA + 5) − 1016) − 138) + 2004)θ4
B − 2(θA(θA(θA(θA(103θA

+ 40) − 3464) − 808) + 21840) + 1664)θ3
B − 2(θA(θA(θA(θA(θA(27θA + 14)

− 1532) − 552) + 20800) + 3776) − 44416)θ2
B − 2θA(θA(θA + 8)(θA(θA(θA(3θA

− 22) − 140) + 952) + 336) − 57088)θB + 2048(5θA + 6θB − 69) − 28θ8
B)
]

.

(B.66)

Π∗
2(0) =

[

2((3(θA + θB)2 − 86)(θA + θB)4 + 704(θA + θB)2 − 1344)2
]−1

[

(1 + α)2((θA + θB)2 − 8)(3(θA + θB)2 − 40)(θ4
A + θ3

A(4θB + 2)

+ 2θ2
A(3θB(θB + 1) − 8) + θA(2θB(θB(2θB + 3) − 16) − 24)

+ θB(θB(θB(θB + 2) − 16) − 24) + 24)2
]

,

(B.67)

Comparing conĄrms Π∗
2(1) > Π∗

2(0), i.e., that data sharing is proĄtable for Ąrm 2.
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B.4. Two generalist Ąrms

We consider the following demand system and proĄts:

PA1(vA1, qB1,Φ1q2, QA) = A + vA1 + θ(qB1 + Φ1q2) − βAQA, (B.68)

PB1(vB1, qA1, QB) = B + vB1 + θqA1 − βBQB, (B.69)

P2(v2, q2, QB) = B + v2 − βBQB, (B.70)

PA3(vA3, qB3,Φ3q2, QA) = A + vA3 + θ(qB3 + Φ3q2) − βAQA, (B.71)

PB3(vB3, qA3, QB) = B + vB3 + θqA3 − βBQB. (B.72)

Π1 = PA1(·)qA1 + PB1(·)qB1 − I(vA1) − I(vB1), (B.73)

Π2 = P2(·)q2 − I(v2), (B.74)

Π3 = PA3(·)qA3 + PB3(·)qB3 − I(vA3) − I(vB3). (B.75)

Solving for optimal outputs and investments, we Ąnd that each generalist Ąrm chooses less

when Ąrm 2 shares its data, as in Corollary 1. For proĄts, we Ąnd the following relationships:

Π∗
2(1, 1) > Π∗

2(0, 1) = Π∗
2(1, 0) > Π∗

2(0, 0). (B.76)

Π∗
1(1, 0) > Π∗

1(0, 0) and Π∗
3(0, 1) > Π∗

3(0, 0). (B.77)

Π∗
1(1, 1) > Π∗

1(0, 1) and Π∗
3(1, 1) > Π∗

3(1, 0). (B.78)

These establish that Ąrm 2 shares with both 1 and 3. ProĄts per sharing arrangement are:

Π∗
1(0, 0) = Π∗

3(0, 0) = −[8κ]−1
[

(α+ 1)2(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(4θ(2θ(6θ + 11)

− 301) − 2077) + 12422) + 20061) − 67212) − 101641) + 200430)

+ 286721) − 312620) − 433050) + 207660) + 288174) − 22644) − 42768)
]

(B.79)

Π∗
2(0, 0) = [2κ]−1

[

3(α+ 1)2(θ2 − 7)(θ2 − 3)(θ(θ(θ(θ(2θ(θ + 2) − 17) − 28) + 34)

+ 29) − 7)2
]

;

(B.80)

κ ≡ (6θ8 − 91θ6 + 458θ4 − 800θ2 + 273)2 (B.81)
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Π∗
1(1, 0) = Π∗

3(0, 1) = −
[

2λ
]−1[

(α+ 1)2(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ

(θ(θ(3θ(θ(24θ(θ(90θ(3θ + 14) − 13429) − 67267) + 6962381) + 38391720)

− 252775544) − 1602965656) + 1813130178) + 14408466752)

− 7046695432) − 86974486664) + 5237400952) + 354952456272)

+ 85791045984) − 962052218848) − 439656822272) + 1659630641856)

+ 1007601439296) − 1690457197056) − 1197788585984) + 881795848192)

+ 682442820864) − 171469357056) − 138027108352) + 11373232128)

+ 8766640128) − 226492416) − 175177728)
]

,

(B.82)

Π∗
2(1, 0) = Π∗

2(0, 1) = λ−1
[

2(α+ 1)2(θ2 − 6)(5θ2 − 42)(θ(θ(θ(θ(3θ(θ(θ(θ(2θ(θ(12θ(θ

+ 2) − 233) − 431) + 3119) + 4981) − 8404) − 9992) + 25544) + 19596)

− 5688) − 912) + 224)2
]

,

(B.83)

Π∗
1(0, 1) = Π∗

3(1, 0) = −
[

2λ
]−1[

(α+ 1)2(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(3θ(θ

(12θ(4θ(3θ(15θ(8θ + 19) − 6239) − 44066) + 1715869) + 47997391)

− 273064898) − 1888276739) + 6936053756) + 15789630576)

− 39015358288) − 87635893696) + 147016689824) + 325911606496)

− 365124375392) − 801520526864) + 571895310912) + 1257732024448)

− 516311126784) − 1177878527488) + 218371945984) + 578839090432)

− 19558063104) − 113650075648) + 722264064) + 7808765952)

+ 1622016) − 175177728)
]

,

(B.84)

λ ≡


− 360θ14 + 10602θ12 − 122513θ10 + 691666θ8 − 1917352θ6 + 2263264θ4

− 809568θ2 + 34944
2

(B.85)
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Π∗
1(1, 1) = Π∗

3(1, 1) =
[

4µ
]−1[

(α+ 1)2(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(θ(16θ(θ + 4) − 313)

− 1700) − 3380) + 492) + 118548) + 361248) − 835848) − 3923808)

+ 567632) + 14604128) + 9195776) − 16299648) − 14624256)

+ 2064384) + 2737152)
]

,

(B.86)

Π∗
2(1, 1) = −µ−13(α+ 1)2(2θ2 − 21)(θ(θ(θ(θ(8θ(θ + 2) − 109) − 196) + 262)

+ 224) − 56)2,

(B.87)

µ ≡ 2(−35θ6 + 717θ4 − 4226θ2 + 2184)2. (B.88)

Note we assume θ < θ ≈ 0.145 throughout this extension to allow well-deĄned solutions. This

value is lower than in the main model as three Ąrms compete in market B, and the highest value

of externality must therefore be lower than when only Ąrms 1 and 2 are competing. Indeed,

the total output in market B with three Ąrms is greater than with two Ąrms (the relevant

expressions are below, denoted by Q∗
B,2, Q

∗
B,3, respectively).

Q∗
B,2 =

[

6(θ2 − 4)(6θ6 − 43θ4 + 88θ2 − 42)
]−1

[

(α+ 1)(θ2 − 3)(θ(θ(θ(θ(2θ(4θ − 5) − 89) + 48) + 258) − 48) − 144)
]

,

(B.89)

Q∗
B,3 =

[

70θ6 − 1434θ4 + 8452θ2 − 4368
]−1

[

(α+ 1)(θ(θ(θ(θ(θ(11θ − 48) − 390) + 588) + 3440) − 672) − 2016)
]

.

(B.90)
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Appendix C. Further extensions

In this appendix we (i) provide a microfoundation for the demand system of our main model;

(ii) extend our analysis to incorporate consumer expectations over ĄrmsŠ quantity choices; and

(iii) include same-side externalities in our analysis of price competition (from Section 5.1).

C.1. Microfoundation for demand

Here we present a microfoundation of the demand functions used in the main paper. We assume

that consumers in one market beneĄt from data collected in the other market.35

Demand in market A. Consumers have a basic valuation r with support [α − βA

2
, α + βA

2
]

which follows the uniform distribution, i.e. r ∼ U [α − βA

2
, α + βA

2
] where α ≥ 0 is the average

willingness to pay and β is a measure of its volatility (heterogeneity).36

The monopolist Ąrm in market A is able to increase the value of its product through two

channels. First, the monopolist can incur a costly publicly observed investment which enhances

consumersŠ value for the product. We denote the magnitude of this value enhancement as vA

which comes at an investment cost of I(vA). Second, the monopolist can collect data from

market B which allows it to offer consumers a better product and increases the value of its

product. Thus, the aggregate quality in market A depends also on the data collected (in our

case proxied by demand) in market B, i.e., a larger demand served by the Ąrm in market B

allows it to collect more (or more representative) consumer data. SpeciĄcally, q1 + Φ · q2 is a

proxy for the volume of data analyzed by Ąrm 1. This value-enhancing data-driven network

effect also depends on whether Ąrm 1 has access to the data collected by its rival in market B.

We denote by Φ ∈ ¶0, 1♢ the indicator function for data shared by Ąrm 2 with Ąrm 1Šs affiliate

in market A, where Φ = 1 indicates that Ąrm 2 has shared data with Ąrm 1 and Φ = 0 indicates

that Ąrm 2 does not share data.

35We proxy demand in one market as a measure of data collected in that market.
36As in Katz and Shapiro (1985), the support also includes negative values, as some consumers may not Ąnd
it worthwhile to purchase the product, even when the price is zero, unless the quality of the product exceeds
a certain threshold. This speciĄcation also ensures that there is no corner solution and consumer demands are
within the support when Ąrms invest in value enhancement of their products.
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We assume these two quality dimensions enter the utility expression in an additive and linear

manner and thus we can write the utility expression of a consumer of type r in market A that

consumes the product of Ąrm 1 as

UA(r) = r + vA + q1 + Φ · q2 − PA, (C.1)

where vA is the magnitude of value enhancement of Ąrm 1′s product in market A through

investments, q1 + Φ · q2 is the level of value increase arising from data-driven network effects

and PA is the (implicit) price of the product.37

Consumers purchase from Ąrm 1 in market A only when they obtain positive utility from

doing so.38 This condition pins down the demand for Ąrm 1Šs product in market A as

UA ≥ 0 =⇒ r > r̃A = PA − vA − (q1 + Φ · q2). (C.2)

Thus, the mass of consumers purchasing from Ąrm 1 in market A is

qA = 1 −
(r̃A − α+ βA

2
)

βA

=
α+ βA

2
+ vA + q1 + Φ · q2 − PA

βA

. (C.3)

Inverting, we obtain the inverse demand function in market A, where A = α+ βA

2
:

PA(vA,Φ, qA) = A + vA + q1 + Φ · q2 − βAqA. (C.4)

Demand in market B. In market B where Ąrm 1 competes with Ąrm 2, we also assume

that there are positive data externalities which enhance the value of the product sold by Ąrm

1, for instance as the insights gained in market A are also useful in market B.39

37At the time consumers decide to purchase the product, they can observe participation by other consumers and
take their consumption decision accordingly. Equivalently, Ąrms could just announce their intended production
quantities in the second stage, which they are then committed to, in the spirit of Katz & Shapiro (1985).
38Note that we assume that the outside option of consumers is zero. This assumption does not affect our results
as any positive (and small enough) outside option is sufficient to provide qualitatively similar results.
39For instance, GoogleŠs collection of consumer data from the search market allows it to offer better services
also in the smart speaker market. Another relevant example is GoogleŠs collection of traffic data in the maps
market is expected to make its services more valuable to consumers in the self-driving car market.
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In market B, consumers are heterogeneous in their basic valuation r with the support [γ −

β
2
, γ + βB

2
] which follows the uniform distribution, i.e. r ∼ U [γ − βB

2
, γ + βB

2
] where γ ≥ 0 is the

average willingness to pay and β is a measure of its volatility (heterogeneity). Further, as in

market A competing Ąrms in market B are also able to increase the value of the products for

consumers through two channels. First, Ąrms can invest in costly and public value-enhancing

innovations that are observable to consumers. We denote this costly value creation by Ąrm

i ∈ ¶1, 2♢ in market B as vi. Secondly, if Ąrms access data collected in market A, they can

improve the value of their product in market B. To be more concrete, letŠs denote the positive

data spillover of value generated by data from market A with demand qA on the services of Ąrm

1 as θqA where qA is a proxy for the insights gained from the data collected by Ąrm 1 market A.

Note that Ąrm 2 has no presence in market A and does not beneĄt from this data advantage.

We naturally consider data generating cross-market value from market A to B and recipro-

cally, but our qualitative insights do not depend on this speciĄcation. The core mechanism of

our analysis relies on the fact that the data generated by the small Ąrm is useful for its larger

competitor, which will in turn have incentives to accommodate it by softening the intensity

of competition in market B. For instance, we would obtain similar results by considering a

cross-market value of data only from market B to A.

Thus, the utility of a consumer of type r that buys from Ąrms 1 and 2 is given as

U1(r) = r + v1 + θqA − P1, U2(r) = r + v2 − P1. (C.5)

where vi, θqA and Pi for i ∈ ¶1, 2♢ are respectively the quality levels invested by each Ąrm, the

consumer value for inter-market data driven value creation, and the price charged by each Ąrm

for its service in market B. Consumers buy the product of the Ąrm that provides them the

highest net utility. Under the above speciĄcation, Ąrms 1 and 2 will have positive demand only

if the quality-adjusted price at each Ąrm X = P1 − v1 − θqA = P2 − v2 is identical, implying

that the Şno arbitrageŤ condition holds.40 Furthermore, we assume the value of a consumerŠs

40This condition implies that any consumer of type r should be indifferent between buying from Ąrm 1 or 2 in
market B i.e. U1(r) = U2(r).
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outside option is zero, so that consumers with Ui < 0 will not choose any Ąrm. This implies that

total demand is constituted only by those consumers for whom r > X. Hence, total demand

in market B is QB = 1 −
(Φ−γ+

βB
2

)

β
, where QB =

∑

i=1,2 qi is the total output in market B.

Rearranging and inverting the above total output for each Ąrm i yields:

P1(v1, qA, QB) = γ +
βB

2
+ v1 + θqA − βBQB, P2(v2, 0, QB) = γ +

βB

2
+ v2 − βBQB. (C.6)

Note that these demand functions are directly impacted by investments in value by each Ąrm,

i.e., each Pi is increasing in vi. Additionally, in market B, because Ąrms 1 and 2 are competing,

their inverse demand function will also be (indirectly) impacted by the rivalŠs investments

through its strategic choice of the output which impacts the total output QB = q1 + q2.

Moreover, in favor of brevity and clear exposition of the results, we make the following

variable transformation: B = γ + βB

2
.

C.2. Consumer expectations

In markets with demand externalities, a consumerŠs willingness to pay is determined by how

many other consumers buy. In our one-shot model, this is implemented in a straightforward

manner: Ąrms choose their production quantities in all markets during the last stage, which

consumers observe.41 It follows that consumers are willing to buy as dictated by the demand

curves speciĄed at those sales levels.42 An alternate approach is to model consumersŠ expecta-

tions on other consumersŠ purchase decisions. We offer such a version of our main model in this

extension. SpeciĄcally, when consumers decide to buy in one market they have an expectation

of how much (quality-enhancing) data is generated in the other market (rather than knowing it,

as in our main model). The introduction of output expectations reduces the sensitivity of prof-

its to output (because consumers do not react to a deviation in output from the expected level)

41Equivalently, Ąrms commit to production quantities (Katz & Shapiro 1985, pp439Ű440).
42Another way to interpret the game is to consider that the (unique) market-clearing price that follows from
the chosen production quantities prevails in the market. Consumers, looking at the market, can then simply
consult their own willingness to pay and compare it against that price. Those with the highest willingness to
pay (higher than the price when no-one else buys) buy Ąrst, which pushes up other demand curves, encouraging
more to buy, and so on. The purchasing ends once all the produced units have been purchased.
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and so we obtain different quantitative predictions from our main model, but the mechanism

and qualitative results are unchanged.

Denote by qe
A the expected output in market A and by qe(qe

1, q
e
2,Φ) = qe

1 + Φ · qe
2 the expected

level of quality-enhancing data generated in market B. The (inverse) demand functions are:

PA(vA, q
e(·), qe

A) =A + vA + θqe(·) − βAqA, (C.7)

P1(v1, q
e
A(·), QB) =B + v1 + θqe

A(·) − βBQB, (C.8)

P2(v2, QB) =B + v2 − βBQB. (C.9)

As in Katz & Shapiro (1985), our solution concept is FulĄlled Expectations Cournot Equilib-

rium in which each Ąrm chooses its output given consumersŠ expectations, and in equilibrium

those expectations are required to be correct. Including expectations in the model alters the

relationship between output and proĄts. A ĄrmŠs output choice in one market no longer directly

inĆuences demand in the other. Instead, consumersŠ expectations of that output choice do, i.e.,

∂PA(·)

∂q1

=
∂PA(·)

∂q2

=
∂P1(·)

∂qA

=
∂P2(·)

∂qA

= 0, (C.10)

and so the Ąrst order conditions for Ąrm 1 are now respectively:

∂Π1

∂qA

= PA(·) +
∂PA(·)

∂qA

qA and
∂Π1

∂q1

= P1(·) +
∂P1(·)

∂QB

q1, (C.11)

which one can show to be below those of our main model. The reduced responsiveness of own

proĄts to own output affects equilibrium output and investment levels, but these quantitative

differences do not impact the qualitative results and Ąrm 2 is willing to share its data for free.

C.3. Price competition with same-side data externalities

Here we extend the model in Section 5.1 to show that the mechanism we identiĄed holds when

Ąrms are differentiated, compete in prices, and when data generates both cross and within-

market externalities in market B.
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We continue with the notation of Section 5.1 and similarly assume consumersŠ outside options

are given by s ∼ U [0, 1] so that the valuations are described by (11). Consumers buy when

s < s̃(vA, pA,Φ), and so demand in market A is qA(vA, pA,Φ) = s̃(·). In market B, the generalist

Ąrm 1 and the incumbent specialist Ąrm 2 compete à la Hotelling, and the utility of a consumer

of type x from Ąrm 1 and 2Šs products are, respectively,

u1(v1, p1, x) =v1 + θ (qe
A + qe

1 + Φqe
2) − p1 − tx, (C.12)

u2(v2, p2, x) =v2 + θqe
2 − p2 − t(1 − x), (C.13)

where qe
A, qe

1, and qe
2 are the expected values derived from the data collected in market A and by

Ąrm 1 and Ąrm 2 in market B, respectively. Using the same reasoning as before, we denote the

indifferent consumer in market B by x̃, characterized by u1(·) = u2(·) =⇒ x̃(v1, v2, p1, p2, q
e
A).

Using this expression we can characterize the demands:

q1(v1, v2, p1, p2, q
e
A) = x̃(·), q2(v2, v1, p2, p1, q

e
A) = 1 − x̃(·). (C.14)

ProĄts and the timing of the game are otherwise as in Section 5.1. We make the following

technical assumptions to ensure that the second order conditions are satisĄed and that we

obtain an interior solution.

Assumption 2. (i) The cross-network data externality θ is not too strong, θ < θ̃ ≈ 0.137; (ii)

the transportation cost parameter is such that 15θ2+18θ+2
18

< t < −9θ2+30θ+8+
√

225θ4+180θ3−108θ2−96θ+64
72

.

To solve the game, we Ąrst consider the case in which Ąrm 2 does not share data.
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Specialist Ąrm does not share data

At stage 3, given expectations consumers act and their demands are

q1(v1, v2, p1, p2, q
e
1, q

e
A) =

1

2
+
v1 − v2 − (p1 − p2) + (qe

A + qe
1 − qe

2)

2t
, (C.15)

q2(v2, v1, p2, p1, q
e
2, q

e
A) = 1 − q1(·), (C.16)

qA(vA, pA, q
e
1) = vA + θqe

1 − pA. (C.17)

In equilibrium, consumersŠ expectations should match the outcome and we set qe
A = qA, qe

1 = q1,

qe
2 = q2 and solve for demands to get demands as a function of price and investment levels.

q1(v1, v2, vA, p1, p2, pA) =
t− p1 + p2 + θ(vA − pA − 1) + v1 − v2

2t− θ(2 + θ)
, (C.18)

q2(v2, v1, vA, p2, p1, pA) = 1 − q1(·), (C.19)

qA(vA, v1, v2, pA, p1, p2) =
t(2vA + θ) − θ(2vA + v2 + θ + p1 − p2 − v1) + 2pA(θ − t)

2t− θ(2 + θ)
. (C.20)

Substituting these demands in the proĄt expression yields

Π1 = pAqA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (C.21)

Differentiating the proĄt of the generalist Ąrm with respect to its prices p1 and pA and the

specialist Ąrm with respect to p2 gives a system of Ąrst order conditions. Solving those yields

prices as functions of investment levels given as follows.

p1(v1, v2, vA) = t+
2v1 − 2v2 − θ(2θ + vA + 6)

6
, (C.22)

p2(v2, v1, vA) = t+
v2 − v1 − θ(2θ + vA + 3)

3
, (C.23)

pA(vA, v1, v2) =
vA

2
. (C.24)
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Substituting these prices into the proĄt expression yields proĄts as functions of investments.

Π1 = pA(·)qA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1(·)q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2(·)q2(·) − I(v2). (C.25)

Differentiating Π1 with respect to its prices, v1 and vA and Π2 with respect to v2, and solving

the resulting system of Ąrst order conditions yields

v⋆
1(0) =

18t− 4 − 6θ(θ + 3)

54t− 3(θ(13θ + 18) + 4)
, (C.26)

v⋆
2(0) =

20θ2 + 18θ − 18t+ 4

39θ2 + 54θ − 54t+ 12
, (C.27)

v⋆
A(0) = −

4θ(3θ(θ + 3) − 9t+ 2)

54t− 3(θ(13θ + 18) + 4)
. (C.28)

Substituting these investment output into prices, demand expression and proĄt yields

p⋆
1(0) = v⋆

1(0)



3t−
θ(6 + 5θ)

2



, p⋆
2(0) = 3v⋆

2(0)



t−
θ(2 + θ)

2



, p⋆
A(0) =

v⋆
A(0)

2
, (C.29)

q⋆
1(0) =

3v⋆
1(0)

2
, q⋆

2(0) =
3v⋆

2(0)

2
, q⋆

A(0) =
5v⋆

A(0)

4
, (C.30)

Π⋆
1(0) =

v⋆
A(0)2

8
+
v⋆

1(0)2

2



9t−
3θ(5θ + 2)

2
− 1



, (C.31)

Π⋆
2(0) =

v⋆
2(0)2

2



9t−
9θ(2 + θ)

2
− 1



. (C.32)

Specialist Ąrm shares data

At stage 3, given expectations, consumers act and their demands are

q1(v1, v2, p1, p2, q
e
1, q

e
A) =

1

2
+
v1 − v2 − (p1 − p2) + (qe

A + qe
1)

2t
, (C.33)

q2(v2, v1, p2, p1, q
e
2, q

e
A) = 1 − q1(·), (C.34)

qA(vA, pA, q
e
1, q

e
2) = vA + θ(qe

1 + qe
2) − pA. (C.35)
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In any equilibrium, consumersŠ expectations should match the outcome and so we set qe
A = qA,

qe
1 = q1 and qe

2 = q2 and solve for demands as functions of price and investment levels.

q1(v1, v2, vA, p1, p2, pA) =
t+ v1 − v2 + p2 − p1 + θ(θ − pA + vA)

2t− θ
, (C.36)

q2(v2, v1, vA, p2, p1, pA) = 1 − q1(·), (C.37)

qA(vA, pA) = θ + vA − pA. (C.38)

Substituting these demands in the proĄt expression yields

Π1 = pAqA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2q2(·) − I(v2). (C.39)

Differentiating the proĄt of the generalist Ąrm with respect to its prices p1 and pA and the

specialist Ąrm with respect to p2 gives a system of Ąrst order conditions. Solving them yields

prices as functions of investment levels given as follows.

p1(v1, v2, vA) =
(2t− θ)(6t+ 2v1 − 2v2 + θ(θ + vA − 2))

12t− θ(θ + 6)
, (C.40)

p2(v2, v1, vA) =
(2t− θ)(6t− 2v1 + 2v2 − θ(2θ + vA + 4))

12t− θ(θ + 6)
, (C.41)

pA(vA, v1, v2) =
3t(θ + 2vA) − θ(θ(θ + 2) + v1 − v2 + (θ + 3)vA)

12t− θ(θ + 6)
. (C.42)

Substituting these prices into the proĄt expression yields proĄts as functions of investments.

Π1 = pA(·)qA(·) − I(vA)
︸ ︷︷ ︸

Market A proĄt

+ p1(·)q1(·) − I(v1)
︸ ︷︷ ︸

Market B proĄt

; Π2 = p2(·)q2(·) − I(v2). (C.43)
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Differentiating Π1 with respect to its prices, v1 and vA and Π2 with respect to v2, and solving

the resulting system of Ąrst order conditions yields

v⋆
1(1) = C−1(8t− θ(θ + 4))



−θ((θ − 1)θ(θ + 6) − 4) + 36t2 +


9θ2 − 30θ − 8


t


, (C.44)

v⋆
2(1) = C−14(2t− θ)



θ(θ(θ(2θ + 13) + 13) + 4) + 36t2 − (θ(25θ + 42) + 8)t


, (C.45)

v⋆
A(1) = C−1θ



− θ2(θ(θ(5θ + 53) + 150) + 64) + 1152t3

− 4


57θ2 + 420θ + 64


t2 + θ(θ(θ(11θ + 218) + 852) + 256)t


.

(C.46)

C ≡ (12t− θ(θ + 6))


θ(θ(θ(θ + 8) + 19) + 8) + 72t2 − 8(θ(2θ + 9) + 2)t


(C.47)

Substituting these investment output into prices, demand expression and proĄt yields

p⋆
1(1) = v⋆

1(1)
(2t− θ)(12t− θ(6 + θ))

8t− θ(4 + θ)
, p⋆

2(1) = v⋆
2(1)



3t−
θ(6 + θ)

4



, (C.48)

p⋆
A(1) = θ



792t3 − 2(3θ(47θ + 200) + 88)t2 + θ(θ(θ(30θ + 283) + 634) + 176)t
− θ2(θ(θ(θ(θ + 15) + 72) + 116) + 44)



C
, (C.49)

q⋆
1(1) = v⋆

1(1)



(12t− θ(6 + θ))

8t− θ(4 + θ)



, q⋆
2(1) = v⋆

2(1)



(12t− θ(6 + θ))

8t− 4θ



, (C.50)

q⋆
A(1) =



1224t3 − 2(3θ(35θ + 296) + 136)t2

θ(θ(θ(9θ + 199) + 894) + 272)t− 4θ2(θ(θ(θ + 12) + 39) + 17)



C
, (C.51)

Π⋆
1(1) = p⋆

A(1)q⋆
A(1) −

(v⋆
A(1))2

2
+

(v⋆
1(1))2

2



(2t− θ)(12t− θ(6 + θ))2

(8t− θ(4 + θ))2
− 1



, (C.52)

Π⋆
2(1) =

(v⋆
2(1))2

2



(12t− θ(6 + θ))2

8(2t− θ)
− 1



. (C.53)

Comparing Ąrm 2Šs proĄt under data sharing with the case when Ąrm 2 does not share yields:

Π⋆
2(1) − Π⋆

2(0) > 0. (C.54)

Firm 2 proĄts by sharing data with Ąrm 1 (given our regularity condition Assumption 2).
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