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ABSTRACT

We study the blocking effect of patents on follow-on innovation by others. We posit that follow-on

innovation requires freedom to operate (FTO), which firms typically obtain through a license from the

patentee holding the original innovation. Where licensing fails, follow-on innovation is blocked unless

firms gain FTO through patent invalidation. Using large-scale data from post-grant oppositions at the

European Patent Office, we find that patent invalidation increases follow-on innovation, measured in

citations, by 16% on average. This effect exhibits a U-shape in the value of the original innovation.

For patents on low-value original innovations, invalidation predominantly increases low-value follow-

on innovation outside the patentee’s product market. Here, transaction costs likely exceed the joint

surplus of licensing, causing licensing failure. In contrast, for patents on high-value original innovations,

invalidation mainly increases high-value follow-on innovation in the patentee’s product market. We

attribute this latter result to rent dissipation, which renders patentees unwilling to license out valuable

technologies to (potential) competitors.
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1 Introduction

Modern innovation is to a great extent cumulative (Scotchmer, 1991): firms develop new products

and processes building on prior (“original”) innovations. Such follow-on innovation efforts require

firms to have freedom to operate (FTO); the commercialization of their new products or processes

is not curtailed by patents on the original innovation. Firms typically obtain FTO for follow-on

innovation through licensing.1 If licensing fails, a firm’s follow-on innovation can become the target

of litigation and injunctions by the patentee. The prospect of not obtaining a license and the resulting

threat of an injunction reduce incentives to invest in follow-on innovation. Consequently, patents

on original innovations may block follow-on innovation.

Several studies have explored whether a blocking effect on follow-on innovation exists by ex-

ploiting the grant or invalidation of individual patents as variation in patent protection (e.g., Murray

and Stern, 2007; Galasso and Schankerman, 2015; Sampat and Williams, 2019). In these studies, a

negative effect of patent protection on follow-on innovation is interpreted as evidence for bargaining

breakdown, implying that the patentee was unable to license out because transaction costs eroded

the joint surplus of licensing (Green and Scotchmer, 1995). However, this interpretation does not

account for the possibility that the patentee might have been unwilling to license out due to rent

dissipation. That is, the revenues from licensing might not fully compensate for the loss in profits

arising from increased product market competition (Arora and Fosfuri, 2003).

In this study, we provide new insights into the relationship between patents and follow-on in-

novation. We draw predictions regarding the effect of patent invalidation on follow-on innovation

from a theoretical model of non-exclusive licensing and validity challenges. Based on a large sample

of patents subject to a validity challenge, we find an overall positive effect of patent invalidation on

follow-on innovation by other firms. Through heterogeneity analyses, we provide evidence that the

invalidation effect on follow-on innovation likely stems from licensing failure due to both transac-

tion costs and rent dissipation, but their relative importance varies substantially with innovation

value and product market competition.

Our institutional setting for observing patent validity challenges is post-grant opposition at the

European Patent Office (EPO). Opposition is a frequent event as it is comparatively inexpensive

and the final opportunity for third parties to challenge a European patent before it splits up into

1Examples illustrate the salience of FTO through licensing for firms: In 1999, Novartis Seeds agreed to a royalty-

bearing license related to herbicide resistance with Monsanto. According to the CEO of Novartis Seeds at that time, “[t]his

agreement ensures freedom to operate and allows us to bring new, improved corn hybrids to farmers in the future.” In

2003, Cambridge Antibody Technology entered a licensing agreement with Micromet AG and Enzon Pharmaceuticals,

which gave “substantial freedom to conduct research”. And in 2015, SAP announced a broad cross-licensing agreement

with Google that should “increase freedom to operate and prevent distractions from unnecessary patent litigation.”
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a bundle of national patents. We compile a sample of more than 38,000 patents opposed between

1993 and 2013, which vary substantially in value. To address the endogeneity of patent invalidation,

we exploit plausibly random variation in the participation of the patent’s granting examiner in the

opposition division (cf. Nagler and Sorg, 2020). Specifically, when the granting examiner is part of

the division, the likelihood of the patent being invalidated decreases.

We derive predictions on the effect of patent invalidation on follow-innovation from a model

of non-exclusive licensing post-validity challenge. In this model, invalidation provides otherwise

unlicensed firms with FTO. The invalidation effect thus increases with licensing failure between the

patentee and potential follow-on innovators, caused by either excessive transaction costs or rent

dissipation. The effect takes a U-shaped form in relation to the value of the original innovation: it is

pronounced for patents on low-value original innovations due to transaction costs, and for patents

on high-value original innovations due to rent dissipation. Both the prospect of a valuable follow-on

innovation and product market competition reduce the impact of transaction costs while amplifying

rent dissipation. This strengthens the invalidation effect for patents on high-value innovations and

weakens it for patents on low-value innovations.

As a first step, we successfully replicate the average positive invalidation effect on follow-on in-

novation found in the prior literature (Galasso and Schankerman, 2015, hereafter GS2015). Specif-

ically, we observe that patent invalidation increases follow-on innovation by 16% on average, as

evidenced by patent citations from other parties. This increase can be attributed to a growth in

the number of unique follow-on innovators and emerges approximately three years after invalida-

tion. The effect becomes more pronounced when taking into account so-called patent thickets—

overlapping patent rights (Shapiro, 2001)—which can curtail the degree to which invalidation cre-

ates FTO. Several robustness checks reinforce the notion that the observed invalidation effect does

not simply reflect changes in citation behavior.

In line with our theoretical predictions, we find that the effect of patent invalidation on follow-

on innovation exhibits a U-shape in the value of the original innovation. To proxy innovation value,

we employ several patent value indicators that predict selection into expensive patent litigation.

The invalidation effect on citations is most pronounced for patents in both the top and bottom

value quartiles of our sample. Conversely, the effect is near zero and insignificant for patents in

the medium value range. These findings align with our prediction that patent invalidation increases

follow-on innovation in contexts where potential follow-on innovators likely fail to gain FTO through

licensing: either when transaction costs exceed the surplus of licensing (for patents in the bottom

value quartile) or when rent dissipation deters licensing (for patents in the top value quartile).
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We further find that patent invalidation triggers different kinds of follow-on innovation depend-

ing on the value of the original innovation. Invalidation leads to a more pronounced increase in

high-value citations (i.e., citations from high-value patents) for patents in the top value quartile

compared to those in the bottom value quartile. This finding is in line with our prediction that the

invalidation effect is stronger when both the original and follow-on innovations hold high value.

Similarly, invalidation increases citations from the same technology class, industry, and country sub-

stantially more for patents in the top value quartile than for those in the bottom value quartile. This

pattern aligns with our prediction that product market competition between the patentee and po-

tential follow-on innovators makes licensing failure due to rent dissipation more likely, resulting in

a stronger invalidation effect. Conversely, for patents in the bottom value quartile, invalidation in-

creases primarily low-value citations and those from outside of the patentee’s product market. This

underscores the relevance of licensing failure due to transaction costs as the leading cause behind

the invalidation effect for this group of patents.

In summary, these findings strongly suggest that, at least within our sample of challenged

patents, two distinct reasons for licensing failure—excessive transaction costs and competitive rent

dissipation—cause the blocking effect on follow-on innovation.

Our study contributes to the literature in three ways. First, we present new evidence on the

blocking effect of patents on follow-on innovation and provide a comprehensive theoretical frame-

work for interpretation. Focusing on patents subject to post-grant validity challenges in Europe,

we corroborate the positive invalidation effect found by GS2015 for patents challenged within US

high-profile litigation disputes. We advance their work by shedding light on the selection of patents

into validity challenges and by illustrating how this selection shapes the observed invalidation effect.

Additionally, we account for the fact that, irrespective of transaction costs, patentees may simply not

license out because the potential licensing income would not make up for lost profits in the product

market. This insight is well established in the market for technology literature (e.g., Arora and Fos-

furi, 2003; Arora and Ceccagnoli, 2006; Gambardella et al., 2007), but largely absent in the debate

on patents and cumulative innovation (see Furman et al. (2017) and Bryan and Williams (2021) for

overviews). Indeed, our findings suggest that even in a world of frictionless bargaining, a blocking

effect may still arise simply because patentees seek to sustain their competitive advantage.

Second, we add empirical and theoretical insights to the market for technology literature. For

one, we illustrate how licensing activities, and the reasons for licensing failure, relate to the value

of the underlying technology. This extends the prior literature, which has primarily focused on firm

characteristics, IP protection, and technological generality as licensing determinants (Gans et al.,
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2008; Arora and Gambardella, 2010; Gambardella and Giarratana, 2013). We also expand the

patentee’s licensing consideration by introducing a dynamic perspective: the prospect of a valuable

follow-on innovation can sway activities in the market for technology in different ways. On the one

hand, it can help overcome excessive transaction costs linked to licensing an otherwise marginal

original innovation. On the other hand, it might make the patentee even more reluctant to license

out, as each license can imply more competition for follow-on innovation. These insights enrich

recent contributions that examined the role of static competition in licensing decisions (de Bettignies

et al., 2022; Moreira et al., 2020).

Finally, we establish freedom-to-operate (FTO) as a key consideration in a firm’s decision to

innovate. Although the literature on innovation and IP strategy sporadically refers to FTO (e.g.,

Guellec et al., 2012; Chung et al., 2019; Cappelli et al., 2023), our study is the first to conceptualize

its importance for follow-on innovation.

2 Theoretical Framework

This section sets out predictions for the effect of patent invalidation on follow-on innovation. We

derive these predictions from a theoretical model presented in Appendix A. In the following, we

define the invalidation effect, describe the model, and summarize the predictions and implications

for the empirical analysis.

2.1 The invalidation effect

The invalidation of a patent on an original innovation can increase follow-on innovation by others.

The extent of this increase depends on the number of otherwise unlicensed firms that gain freedom

to operate (FTO) and successfully build on the innovation. We call this the invalidation effect on

follow-on innovation.

If a patent protects the original innovation, only firms that obtain a license from the patentee

have FTO, i.e., “the ability to proceed with the research, development and/or commercial production

of a new product or process with a minimal risk of infringing the unlicensed intellectual property

rights [...] of third parties” (WIPO, 2005).2 Firms without FTO are discouraged from pursuing

follow-on innovation due to the risk of patent infringement, costly litigation, and damage payments.3

2To establish their FTO status, firms analyze existing patents on technologies relevant to their R&D activities to ensure

they will not infringe upon any third-party rights. When conducting this so-called FTO analysis, firms scrutinize existing

patents by their territorial boundaries, (expected) expiry, the claimed scope of protection, and legal validity (WIPO, 2005).
3Note that firms do not gain FTO simply by obtaining a patent on their follow-on innovation. A patent provides the

owner with the right to exclude others but not the right to use. Hence, even a patented follow-on innovation can infringe

patents on the original innovation.
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In contrast, if the patent on the original innovation is invalidated through a validity challenge,

all firms gain FTO. Firms can challenge a patent’s validity directly after grant at the patent office

(Graham and Harhoff, 2014) or later in a court of law (Cremers et al., 2016). The likelihood that

a challenged patent is invalidated depends on its validity (i.e., legal quality), which varies across

granted patents (Lemley and Shapiro, 2005).

Formally, we quantify the invalidation effect I as the difference in follow-on innovation between

two cases: i) the patent is invalidated, and all (N − 1) other firms in the market have FTO; ii) the

patent continues to protect the original innovation, and only n licensees have FTO. That is,

I(n)≡ ρ · (N − 1)−ρ · n , (1)

where ρ is the probability that a given firm with FTO succeeds in follow-on innovation.4

Equation 1 shows that the strength of the invalidation effect depends on the number of firms

that fail to obtain a license from the patentee (N −1−n). Such licensing failure arises for two main

reasons: rent dissipation and transaction costs. Rent dissipation renders licensing unprofitable for

the patentee if the earnings from licensing fees cannot fully offset the lost revenue due to increased

product market competition (Arora and Fosfuri, 2003; Fosfuri, 2006). Transaction costs erode an

otherwise positive joint surplus from a licensing agreement (Green and Scotchmer, 1995).5

In the following, we examine how the number of licenses selected by the patentee, n, and hence

the invalidation effect, I , vary with the value of the original innovation, vo, and the value of the

follow-on innovation, v f. We derive predictions for I that are testable without data on the number

of licensing contracts (n). Additionally, we discuss incentives to challenge the patent on the original

innovation. This discussion also motivates the methods we employ in the empirical analysis.

2.2 Model

Building on Arora and Fosfuri (2003), we model technology and product market competition in

an oligopoly with a patentee and N − 1 other firms. The patentee holds a patent on the original

innovation. This innovation, with value vo, increases product market revenues of the patentee

and all licensees. The patentee and all licensees have FTO to compete for one single follow-on

innovation, with value v f , to further increase revenues. Patent invalidation provides all firms with

the original innovation and FTO to compete for the follow-on innovation.

4For simplicity, we assume that ρ is exogenous here. This excludes potential externalities that might arise from firms’

decisions to pursue follow-on innovation, as suggested by “prospect theory” (cf. Kitch, 1977; Merges and Nelson, 1994).

In the Appendix, we allow that ρ depends on n and show that I declines in n for a wide range of innovation models.
5In particular, uncertainty and information asymmetries between the patentee and potential licensees make it costly

to reach an agreement (Teece, 1986; Zeckhauser, 1996). Agrawal et al. (2015) find that failure in licensing negotiation is

positively associated with due diligence costs, the inability to agree on a license fee, and the number of involved parties.
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Figure 1: Structure of the licensing model with validity challenge

Patent

grant

Validity

challenge

Challenge

outcome

Licensing

by patentee

Follow-on innovation

pursued by n firms with

FTO through licensing

Follow-on innovation

pursued by N-1 firms with

FTO through invalidation

Licensing by

follow-on innovator

Patent unchallenged

Patent challenged Patent upheld

Patent inva
lid

Stage 1 Stage 2

Notes: This figure illustrates the structure of a model of non-exclusive licensing with follow-on innovation after a validity

challenge. Round nodes represent firm decisions: Validity challenge (Stage 1) and Licensing (Stage 2). Ticks represent

exogenous events: Patent grant, Challenge outcome. Rectangular nods represent firm activities depending on firm de-

cisions and exogenous events. The probability that follow-on innovation occurs depends on the endogenous number of

firms with FTO: n. Note that the patentee has FTO in either scenario. We focus on the change in FTO as a result of

invalidation.

Figure 1 illustrates the sequence of events and firms’ actions in the model.6 Firms interact in two

stages. At Stage 1, the patent on the original innovation is challenged by another firm.7 The validity

challenge can result in two outcomes: the patent is either upheld or invalidated. If the patent on

the original innovation is upheld, the patentee decides on the number of licenses, thereby providing

n firms with FTO. If the patent is invalidated, all N − 1 firms gain FTO. In this case, the firm that

innovates chooses how many licenses to offer.

For simplicity, we assume that the patentee offers licensing contracts with a grant-back clause,

ensuring the patentee’s right to use the follow-on innovation if a licensee innovates (Ambashi et al.,

2019; Leone and Reichstein, 2012). For the same reason, we assume that other licensees also obtain

the right to use the follow-on innovation in exchange for additional licensing fees.8 If the patent is

invalidated, the patentee may fail to obtain a license for the follow-on innovation.

Stage 2: Licensing and follow-on innovation

In her licensing decision, the patentee considers her expected profits from three mutually exclusive

outcomes: i) with probability ρ, the patentee innovates and obtains πp, ii) with probability n · ρ,

one of n licensees innovates and the patentee obtains πl , or iii) with probability 1−[n+1] ·ρ, there

is no follow-on innovation and the patentee obtains πs. In each outcome, profits are a function of

the number of licenses n. Depending on the specific outcome, profits are also functions of the value

of the original innovation, vo, the value of the follow-on innovation, v f , or both.

6More detail on the sequence of moves in the model is provided in Section A.2.1 of the Appendix.
7With the validity challenge preceding the licensing decision, our model more closely resembles preemptive post-grant

validity challenges rather than validity challenges arising from infringement allegations.
8Contracts with exclusive grant-back clauses, which give the patentee the right to license the follow-on innovation to

third parties, are common (Murray, 2012). We discuss alternative contracts in Section A.2.1 of the Appendix.
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The patentee selects the number of licenses, n, that maximize her expected value of licensing, V :

max
n

V = ρ ·πp(n, v f )︸ ︷︷ ︸
patentee innovates

+ρ · n ·πl(n, vo, v f )︸ ︷︷ ︸
a licensee innovates

+
�
1−ρ · [n+ 1]

�
·πs(n, vo)︸ ︷︷ ︸

no follow-on innovation

− nT − H , (2)

which is the sum of the expected profits from the three outcomes minus the transaction costs for

each license, T , and the fixed cost of follow-on innovation, H. Given that licensing increases the

number of firms with FTO for follow-on innovation, the relative probabilities of the three outcomes

also change with n.9

Our main interest lies in the relationship between innovation value and the invalidation effect. To

see how variation in the value of the original innovation vo and the value of the follow-on innovation

v f affects the selected number of licenses n and thus the invalidation effect I , we rearrange Equation

2. This reveals that the patentee obtains a static and a dynamic return from licensing:

V = πs(n, vo)− n T︸ ︷︷ ︸
static return

+ρ ·
��
πp(n, v f )−πs(n, vo)

�
+ n

�
πl(n, vo, v f )−πs(n, vo)

��
︸ ︷︷ ︸

dynamic return

− H .

In the outcome with no follow-on innovation, the patentee gains only the static return, which de-

pends on vo. When vo is low and transaction costs (T) are high, the static return may turn negative.

This leads to complete licensing failure: the patentee does not license out at all (n= 0). In the two

outcomes with follow-on innovation, the patentee gains the static return and an additional, positive

dynamic return. The size of the dynamic return depends on the difference between v f and vo. A

sufficiently high dynamic return can offset a negative static return, reducing the extent of licens-

ing failure due to transaction costs for low vo. For high vo, rent dissipation reduces profits in all

outcomes, increasing the extent of licensing failure (n→ 0). A high v f intensifies rent dissipation.

Figure 2 illustrates how the strength of the invalidation effect I varies with the value of the

original innovation vo and the value of the follow-on innovation v f. Specifically, Figure 2a shows

that I has a U-shape in vo, holding v f constant. I is strong where transaction costs lead to licensing

failure, which is likelier at low vo. I is also strong where rent dissipation causes licensing failure,

which is likelier at high vo. Conversely, I is the weakest where neither transaction costs nor rent

dissipation cause licensing failure; this is most likely at intermediate values of vo.

Figure 2b illustrates how the strength of the invalidation effect I varies with vo and v f in com-

bination. It shows that a higher v f makes licensing failure due to transaction costs less likely, as the

dynamic return compensates for a negative static return. This weakens I at low vo. Conversely, a

higher v f intensifies rent dissipation making licensing failure of that kind more likely. This strength-

9That is, licensing changes the overall probability (ρ · [n+ 1]) that a follow-on innovation arises. Strictly speaking,

the probability that any given firm innovates (ρ) has to decrease in n, as discussed in Appendix A. This implies that n also

decreases the probability that the patentee innovates. Our results encompass this dependency.
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Figure 2: Licensing failure and invalidation effect
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(b) By value of original and follow-on innovation
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Notes: These two figures illustrate the relationship between the invalidation effect (I) and the value of the original

innovation (vo) (Figure 2a), as well as between I , vo and the value of the follow-on innovation (v f ) (Figure 2b). I

increases with the number of unlicensed firms that would obtain FTO only through patent invalidation (cf. Equation A.1).

At Imax, the extent of licensing failure results in n = 0 firms with FTO through licensing. At Imin, there is no licensing

failure, and n= N − 1 firms have FTO through licensing. Darker shades of blue indicate a stronger invalidation effect.

ens I at high vo. To summarize, relative to a low-value follow-on innovation, a high-value follow-

on innovation can either strengthen the invalidation effect (for high-value original innovations) or

weaken it (for low-value original innovations).

Extensions We briefly summarize two extensions of the outlined model—patent thickets and (no)

product market competition—and their implications for the invalidation effect.10

Patent thickets: The original innovation is not necessarily protected by only one single patent.

Particularly in complex technology fields, multiple patents may protect different aspects of the origi-

nal innovation, creating a patent thicket (Cohen et al., 2000; Shapiro, 2001). Here, the invalidation

of one patent does not remove the necessity to license the other patents for FTO. While the existence

of multiple patents (or rather: patentees) may also affect the extent of licensing failure itself, we

expect that patent thickets weaken the invalidation effect I due to a limited increase in FTO.11

(No) product market competition: Patentees may not always compete in the product market

of their (potential) licensees; they may be active in a different industry or lack vertical integration

(Arora and Fosfuri, 2003; Arora and Ceccagnoli, 2006). In this case, rent dissipation does not reduce

10We do not extend our model to account for firm heterogeneity due to the variety of potential impact channels. For

instance, firm size may impact transaction costs, static and dynamic revenues, and the probability of innovation. This

makes the overall effect on follow-on innovation difficult to predict.
11The need to obtain licenses from multiple patentees may increase transaction costs (Ziedonis, 2004), strengthening

the invalidation effect in complex technology fields. In discrete technology fields, patentees compete with each other

for licensees, which lowers rent dissipation—a result previously shown by Arora and Fosfuri (2003). Here, the effect of

multiple patentees on the invalidation effect largely depends on the switching costs between the discrete technologies.
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the patentee’s product market revenues. However, it still influences the patentee’s expected value of

licensing as every additional license reduces each licensee’s profits and thereby lowers the amount

the patentee can extract as a licensing fee. Thus, without product market competition, licensing

failure due to rent dissipation is less likely, weakening the invalidation effect I at high vo. At the same

time, coordination across product markets is typically considered to be more costly, increasing T .12

Hence, licensing failure due to transaction costs is more likely absent product market competition,

strengthening I at low vo.

Stage 1: Validity challenge

After analyzing the licensing decision in Stage 2, we shift our focus to Stage 1: the decisions leading

to a patent being selected for a validity challenge. These decisions reflect two trade-offs. First,

the challenging firm’s expected value of pursuing the validity challenge must outweigh its costs.

This depends on i) the patent’s (latent) validity, ii) the net gain from invalidation, which increases

with the extent of licensing failure and, in the case of licensing, the due fees, and iii) the costs of

challenging the patent. Second, the patentee’s expected value of having the patent’s validity affirmed

must exceed the value of settling the validity challenge (if that option is available).13

These two trade-offs determine the characteristics of patents selected into a validity challenge.

In particular, patent validity and innovation value determine whether a patent is challenged and

whether the parties fail to settle. Patents are less likely to be challenged if they have a particu-

larly low or high validity. Furthermore, they are less likely to be challenged if vo and v f are low.

These selection effects intensify with the costs of the validity challenge, meaning that higher costs

correspond to a higher minimum vo (and v f ) for challenged patents.

Our model reveals that patents of high validity are more likely to be challenged if they protect

high-value innovations. This selection either generates a positive correlation between patent va-

lidity and innovation value—or reinforces a (presumably) already existing correlation within the

patent population.14 This implies that, conditional on a validity challenge, patents on high-value

innovations are less likely to be invalidated.15

12Industry outsiders often lack the bargaining chips needed for more implicit—and therefore less costly—licensing

agreements (Lanjouw and Schankerman, 2004; Ziedonis, 2004). Additionally, they face higher information asymmetry

concerning industry-specific parameters, such as demand, resulting in higher verification costs.
13Settlement may not always be a viable option for the patentee due to the short time frame for negotiations and

institutional reasons. That said, winning the validity challenge may offer additional advantages for the patentee, such as

bolstering a reputation of toughness or signaling patent validity to others. Somaya (2003) provides empirical evidence

for the importance of such asymmetric stakes in patent disputes.
14Firms are likely to invest substantially in drafting patent applications for valuable innovations. The aim is to secure

their grant and safeguard them against future validity challenges. This may well result in a positive correlation between

innovation value and validity in the patent population.
15This correlation might be further strengthened by the patentee’s incentive to invest more in defending patents of

higher value—a relevant point in high-profile, resource-intensive legal disputes over infringement (GS2015).
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2.3 Predictions and implications for empirical analysis

The model outlined above provides three testable predictions concerning the effect of patent inval-

idation on follow-on innovation. In addition, the model has implications for the empirical analysis,

which we outline here.

Predictions

We derive three predictions regarding the effect of invalidation on follow-on innovation:

Prediction 1: The invalidation effect follows a U-shape in the value of the original innovation.

Prediction 2: A high follow-on innovation value makes the invalidation effect weaker for low-value

and stronger for high-value original innovations.

Prediction 3: Product market competition between patentee and potential licensees makes the

invalidation effect weaker for low-value and stronger for high-value original innovations.

Prediction 1 follows from Figure 2a, Prediction 2 follows from Figure 2b, and Prediction 3 follows

from the extensions discussed above. We test all three predictions in Section 4. The empirical results

based on these predictions will allow us to infer the role of transaction costs and rent dissipation in

causing licensing failure.

Implications for empirical analysis

Three additional results of our model bear relevance for our empirical analysis. First, the higher the

cost of a validity challenge, the less likely it is that patents on low-value innovations will be subjected

to such challenges. Second, the invalidation effect is likely to differ if multiple patents protect the

original innovation rather than just a single patent. Third, conditional on being challenged, patents

on high-value innovations are less likely to be invalidated.

These results guide the following decisions in our empirical analysis. We will choose an em-

pirical setting where the costs of challenging validity are comparatively low to ensure a sample of

patents that covers a broad range of innovation values—a prerequisite to testing our predictions.

Furthermore, we will control for patent thickets surrounding the challenged patents to account for

the likelihood that multiple patents protect the original innovation. Lastly, we will employ an em-

pirical strategy that overcomes the correlation between innovation value and patent invalidation,

allowing for a causal interpretation of the estimated invalidation effect.

3 Empirical Strategy, Setting & Data

In the following, we outline the empirical strategy, detail the setting, specify the data sources, and

describe the variables.
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3.1 Empirical strategy

We aim to estimate the invalidation effect by comparing subsequent follow-on innovation activities

between invalidated patents and those upheld in a validity challenge. By examining the estimated

magnitude of the invalidation effect between different sets of patents and different types of follow-on

innovation, we can test our theoretical predictions.

We focus on an empirical setting where the costs of challenging validity are comparatively low:

post-grant opposition at the EPO. This reduces the impact of selection bias, as the low costs of

opposition result in a large sample of challenged patents with substantial heterogeneity in innovation

value. As selection is reduced but not neutralized, we will remain cautious about generalizing the

observed invalidation effects to the patent population.

We use an instrumental variable that affects patent invalidation but not follow-on innovation to

address omitted variable bias. This is necessary as innovation value, being partly unobserved, corre-

lates negatively with invalidation (our treatment variable) and positively with follow-on innovation

(our outcome variable), resulting in a negative bias of the estimated invalidation effect. As discussed

in Section 2, there likely exists a positive correlation between innovation value and latent validity

within samples of challenged patents. This implies a negative correlation between innovation value

and invalidation. Furthermore, a positive correlation likely exists between innovation value and the

general probability of follow-on innovation.16

Theoretically, we could address this omitted variable bias by fully accounting for innovation

value with patent value determinants. Yet, with observable patent and firm characteristics, we can

only imperfectly capture these determinants. Moreover, patent value also hinges on unobserved

factors, such as the degree of product differentiation. Consequently, even with these controls, we

expect some residual bias. This prompts us to implement an instrumental variable approach.

3.2 Post-grant opposition at the EPO

Our institutional setting to observe patent validity challenges is post-grant opposition at the Euro-

pean Patent Office (EPO). Within the first 9 months after the EPO’s decision to grant a patent, third

parties can challenge its validity by filing an opposition.

At the EPO, a technically qualified examiner (“the granting examiner”) decides whether a given

patent application fulfills all patentability requirements and should be granted. The examiner’s

decision to grant the patent can be opposed by any party except the patentee herself. The opposition

16In practice, it is likely that the overall probability of follow-on innovation, ρ, is positively correlated with the value of

the original innovation, vo. For instance, valuable original innovations may provide more technological opportunities for

follow-on innovation, or a generally higher R&D intensity in an industry, which leads to high-value original innovations,

might also foster follow-on innovation.
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may be filed on the grounds that the subject matter is not new or inventive, the invention is not

sufficiently disclosed, or the granted patent extends beyond the application’s content as filed.

The opposition division, which consists of three technically qualified examiners, hears the case.

On average, about three years after the grant, the opposition division rules the opposed patent as

either fully valid, valid but in amended form (i.e., with a narrowed scope), or invalid. Appendix F

provides further procedural details on examination and opposition.

Oppositions at the EPO represent low-cost validity challenges. With costs ranging from 6,000

EUR to 50,000 EUR, challenging a patent at the EPO is considerably more affordable than through

patent litigation in national courts, where expenses can reach into the millions (Mejer and van Pot-

telsberghe de la Potterie, 2012). These relatively low costs reduce selection effects.17 Approximately

6% of patents granted by the EPO are opposed, a rate that significantly exceeds litigation rates both

in Europe (Cremers et al., 2017) and the US (Lanjouw and Schankerman, 2004; Bessen and Meurer,

2013). Hence, as we will demonstrate later, the average opposed patent tends to have a lower value

than those typically involved in litigation.

3.3 Data sources

We identify opposed patents in the EPO PATSTAT Register. For these patents, we obtain documents

related to examination and opposition from the online file inspection system provided by EPO. We

extract the names of granting examiners and members of the opposition divisions from these docu-

ments (see Appendix G for details). The EPO PATSTAT Register provides us with results and dates

of opposition outcomes and the identities of opponents.

We further use bibliographic data on opposed patents, patentees, and citations from the EPO

Worldwide Patent Statistical Database (2019 Autumn Edition). We obtain information on further

aspects of the examination process, such as the assigned technical art unit and the examination

location, from the EPO’s administrative database EPASYS (April 2015). Finally, we complement the

patent data with firm-level microdata (firm size and industry focus) provided by Orbis Intellectual

Property (April 2019).

3.4 Dependent variable

Consistent with prior literature (e.g., GS2015, Watzinger et al., 2020), we quantify follow-on in-

novation by counting the number of citations received by the focal patent from other patents. Our

analysis concentrates on EPO citations from the first five years following the opposition outcome,

17Institutional factors discourage settlement once the proceeding has started, further reducing selection. The opposed

patent may still be invalidated by the opposition division despite the opponent’s withdrawal. This makes settlement

between the opponent and the patentee at this stage a relatively rare event (∼10%).

12



using the earliest filing date of the citing patent as an approximation for the actual invention date.

Importantly, we focus on citations from patents filed by firms other than the focal patentee.18

We test Predictions 2 and 3 by decomposing the overall set of citations into specific citation

subsets. To examine how the invalidation effect varies with the value of the follow-on innovation, we

distinguish citations by whether the citing patent is of above-average value (based on common patent

value indicators). To examine how the invalidation effect varies with product market competition

between the patentee and the follow-on innovators, we distinguish citations by whether the citing

firm is active in the same industry or resides in the same country as the focal patentee.19 Considering

the low granularity and incompleteness of firm-level information, we further distinguish citations

by whether the citing patent is in the same IPC4 technology class as the focal patent. While all three

binary indicators for product market competition have their shortcomings, they collectively capture

key dimensions of competition: industry, geography, and technology.

Citations may capture more than just follow-on innovations that would infringe on the opposed

patent, thereby necessitating FTO (Freilich and Shahshahani, 2023). Although EPO citations are

known to have high technological relevance (Breschi and Lissoni, 2004), we test the robustness

of our main results to subsets of particularly relevant citations (Criscuolo and Verspagen, 2008).

Additionally, we count patents with high textual similarity to the focal patent, regardless of whether

a citation link between them exists.

In alignment with prior literature, we log-transform the dependent variable to estimate semi-

elasticities. This transformation warrants careful consideration if the dependent variable is right-

skewed and has a large probability mass at zero (Mullahy and Norton, 2022). Hence, we verify the

robustness of our results by using alternative transformations of the dependent variable.

3.5 Independent variables

The independent variable of main interest is invalidation. We complement this with variables cap-

turing characteristics of the patentee, the opponent, the patent, and the technology field.20

Invalidation: We create a binary variable (“invalidated”) equalling 1 for the opposition out-

comes “invalid” and “valid but in amended form”, and 0 for “valid”, with a mean of 0.71. This

operationalization follows GS2015. Our main results are robust to alternative operationalizations.

18In robustness tests, we further analyze the effect on follow-on innovation by parties who are not involved in the

opposition proceeding. This accounts for the fact that the response to invalidation of firms selecting themselves into

validity challenges may differ from the average firm response.
19We consider follow-on innovators and patentees to be in the same industry if their NACE codes share the same first

3 digits and relate to manufacturing activities. The NACE codes are a European Industry-standard classification system

with a 4-digit hierarchy.
20A comprehensive list of the control variables can be found in Appendix Table B-1.
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Patentee and opponent characteristics: To account for variation in firms’ profits flowing from

vertical integration, complementary assets, and competitiveness of product markets, we include

variables capturing the sector (corporate entity or not), country of residence (EU, UK, US, JP, RoW),

and firm size (small, medium, large).21

Patent variables: We draw on several established patent value indicators to capture innovation

value. Specifically, we consider patent claims, first claim length, family size, IPC classes, applicants,

inventors, and backward citations. Furthermore, we include self and other citations within the first

three years after patent filing as additional proxies for patent value. Capturing a patent’s under-

lying innovation value with bibliographic indicators is notoriously difficult (Higham et al., 2021).

Although the above patent value indicators are recognized correlates of value, they remain imper-

fect and can be noisy. To refine our measurement of innovation value within our sample of opposed

patents, we will investigate which of the above variables best predicts selection into expensive liti-

gation and choose these as our preferred measures to represent innovation value.

Patent thicket density: To account for multiple patents protecting the original innovation, we

control for the time-variant density of patent thickets in the focal patent’s technology field. We

measure patent thicket density by counting citation constellations in which three patentees can

mutually block each other (Von Graevenitz et al., 2011). The patent thicket density is higher in

complex technology fields and in recent years (see Appendix Figure B-1).

3.6 Instrumental variable

To address omitted variable bias in estimating the invalidation effect, we use an instrumental vari-

able approach. In particular, we leverage random variation in the participation of the patent’s grant-

ing examiner in the opposition division, which decides on invalidation (see also Nagler and Sorg,

2020, for details).

Granting examiners are suitable and legitimate22 candidates for the opposition division. In our

data, they participate in more than 50% of all opposition proceedings. As one of the three division

members, the granting examiner has an equal vote on the opposition outcome.23

21The size categories are drawn from firm-level data in ORBIS IP. They follow the division of the European Commission,

which considers the number of employees, annual turnover, and total assets.
22Article 19(2) of the European Patent Convention states the following: “An Opposition Division shall consist of three

technically qualified examiners, at least two of whom shall not have taken part in the proceedings for grant of the patent

to which the opposition relates.”
23As voting follows a simple majority, the participation of the granting examiner is most decisive where the other two

members of the opposition division disagree on the patent’s validity. While we do not find that complier patents (i.e.,

patents where the instrument affects the treatment status) differ in observable characteristics from the other opposed

patents (see Appendix D), it is conceivable that these patents are more contentious. Given that uncertain patent protection

complicates licensing agreements (Arora and Ceccagnoli, 2006; Gans et al., 2008), the invalidation effect—if caused by

licensing failure due to transaction costs—may be larger among the complier patents in our sample.
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We argue and show empirically that the opposed patent is more likely to be upheld if the granting

examiner participates. Explanations for this pattern include behavioral biases, career concerns, and

knowledge redundancy.

First, the granting examiner may be more likely to reaffirm the patent’s validity because she

suffers from confirmation bias, which makes it more difficult for the opponent to convince her that the

initial decision on the patent’s validity was incorrect. Indeed, scholars have argued that decisions on

patentability may be prone to confirmation bias (Allison and Tiller, 2003; Doyle, 2016). Moreover,

the granting examiner may show a preference for decision consistency, which makes her stick to the

initial grant decision (Falk and Zimmermann, 2018).

Second, the granting examiner’s decision-making may be affected by career concerns (Langinier

and Marcoul, 2020). Promotions at the EPO are based on a bi-annual performance evaluation,

which includes quality of examination (Friebel et al., 2006). Depending on how the granting exam-

iner perceives the EPO’s evaluation criteria (e.g., appraisal by peers vs. number of correct granting

decisions), it is possible that she seeks an affirmative opposition outcome.

Third, invalidation may become less likely due to the “redundant” knowledge that comes with

the granting examiner. Each examiner draws on a unique stock of accumulated prior art knowledge

to decide on patentability (Cotropia and Schwartz, 2020). In cases where the granting examiner

participates, only two instead of three examiners with new prior art knowledge scrutinize the patent.

Qualitative and quantitative evidence suggests that variation in examiner participation is due to

the temporary unavailability of other eligible examiners and is unrelated to characteristics of the

opposed patent and beyond the influence of the patentee or the opponent. Interviews with EPO

officials revealed that the participation of the granting examiner is due to capacity constraints in

the technical art unit at the moment when the opposition division is appointed. These capacity

constraints are a function of the art unit’s recent recruitment efforts and the examiners’ relative

workloads, but also depend on mundane events at the examiner level, such as retirement, mater-

nity leave, sick leave, and vacation. We provide evidence on the relationship between examiner

participation and temporary capacity constraints in Appendix D.24

To minimize the influence of patenting activities in the opposed patent’s technology field (which

may correlate with follow-on innovation) on examiner participation, we include year fixed effects

and fine-grained (>500) technology class fixed effects in our baseline specifications. We also demon-

24Even with exogenous examiner participation, the exclusion restriction might be violated. If the patentee or opponent

anticipated examiner participation before the outcome, they might alter their behavior. Yet, the opposition division’s

composition is disclosed late in the process, and, based on our data, an examiner’s identity does not consistently predict

their participation, as few always or never join opposition proceedings.
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strate the robustness of our main results to the inclusion of technology class-year, examiner, and

examiner-year fixed effects.

3.7 Sample

We observe around 54,000 patents opposed between 1993 and 2012.25 We narrow this sample to

oppositions with information on the granting examiner and the members of the opposition divi-

sion,26 and exclude patents with an opposition outcome after 2013 to mitigate truncation effects.

The main sample of analysis consists of 38,271 opposed patents.27

Opposed patents are, on average, significantly more valuable than a random set of comparable

patents. In Figure 3a, we plot the mean differences of several value indicators between opposed and

control patents from the same patent office, filing year, and technology class. More specifically, we

compare the patents’ 1st claim length (reversed), number of claims, family size, number of inventors,

number of IPC classes, and abnormal returns at the time of grant (Lerner, 1994; Novelli, 2015; Kogan

et al., 2017; Kuhn and Thompson, 2019). Most of these indicators suggest that opposed patents are

significantly more valuable. This finding aligns with the argued selection into validity challenges.28

That said, there still is substantial variation in patent value within our sample, which we leverage

in the empirical analysis.29

Opposed patents are, on average, less valuable than litigation patents, whose validity has been

challenged in high-stakes infringement disputes. In Figure 3a, we further plot the mean differences

in the same value indicators, comparing approximately 1,200 litigation patents with their respective

control patents.30 Consistent with being selected into more costly validity challenges, we observe

that the standardized mean differences are significantly larger for litigation patents than for opposed

patents across three value indicators: number of claims, family size, and the number of IPC classes.31

As these three indicators seemingly capture a relevant value dimension of patents conditional on

25Information on the members of the opposition division is unavailable before 1993.
26This reduces our sample by about 17% per year (see Appendix Table G-1 for a detailed breakdown). We assume that

this selection has little relevance to our subsequent analysis. The fact that the excluded patents are equally distributed

over time supports this view (see Appendix Figure B-2).
27The control variables in our main specification perfectly predict patent invalidation for about 130 opposed patents.

We exclude these patents from our sample.
28It also reconfirms findings in prior work on opposition (e.g., Harhoff and Reitzig, 2004)
29For instance, patent family size has a sample mean of 10.7 with a standard deviation of 10.9, and the number of

claims has a sample mean of 13.6 with a standard deviation of 10.1 (see Appendix Table B-2).
30This sample approximates the one used by GS2015. It is based on patent litigation cases at the US Court of Appeals

for the Federal Circuit (CAFC) with a decision between 1983 to 2008 as reported in the legal database Darts-IP.
31More specifically, we use the EP family size, which corresponds to the number of European countries for which the

opposed patent has been validated relative to the total number of eligible European countries at the time. We favor

this narrow definition of family size because the DOCDB family can include national patents filed directly in European

countries. Since the legal status of these patents is not affected by the opposition outcome, a patent’s family size would

have an inverse correlation with treatment intensity.
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having their validity challenged, we draw on these variables to proxy innovation value. Specifically,

we will use the first principal component derived from these three variables to test our predictions

about the invalidation effect related to the value of the original innovation.

Figure 3: Patents selected into opposition

(a) Patent value

more valuable

[1] −1st claim length

 [2] Claims

 [3] Family size

[4] Inventors

[5] IPC classes

[6] KPSS (2017) values

  Principal Component
of [2], [3] and [5]

-.5 0 .5 1
Standardized mean difference

to matched control group

Opposition
Litigation

(b) Opposition rates over time

0

4

8

12

O
pp

os
iti

on
 ra

te
 (i

n 
%

)
1995 2000 2005 2010

Year of patent grant
 

Discrete
Complex

Notes: The left-hand figure shows the standardized mean differences between EPO opposition (and US litigation) patents

and their matched control patents. Every opposition/litigation patent is matched to five randomly drawn granted patents

based on jurisdiction, year of (priority) filing, and IPC4 technology class. We standardize the mean differences to facilitate

a direct comparison. The corresponding statistics are reported in Appendix Table E-3. 95% confidence intervals are shown.

KPSS (2017) values are based on abnormal stock market returns of the patentee at the time of grant (Kogan et al., 2017).

This variable is missing for a significant share of our sample. The right-hand figure shows the opposition rate (in %) for

all patents granted by the EPO in discrete and complex technology fields over time. The classification of technologies into

discrete and complex fields follows Von Graevenitz et al. (2013).

Opposition rates differ noticeably between discrete and complex technologies (Figure 3b). In

discrete technology fields, the opposition rate is around 8%. In complex technology fields, the

opposition rate is around 6% in the early 1990s, declining further to 4% with time. The difference

in opposition rates has been attributed to the large number of overlapping patent rights in complex

technology fields, which reduces the incentives to challenge validity (Harhoff et al., 2016). As

outlined in Section 2, such patents thickets also matter for the effect of invalidation on follow-on

innovation. We will account for time-variant differences in the number of overlapping patent rights

between technology fields with the patent thicket density measure.

Opposition involves mostly corporate entities with about 94% of patentees and 97% of opponents

as firms. This supports our choice to concentrate on firm licensing decisions in our theoretical

framework. The distribution of the patentees’ countries of residence mirrors that in the population

of granted patents. As patents granted by the EPO primarily impact the activities of firms in Europe,

the share of domestic opponents is elevated (58% vs. 83%). The size distributions of patentees and

opponents are similar to the population, with 50% classified as large firms.
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4 Empirical Analysis

4.1 Econometric model and identification strategy

Our data on oppositions is a cross-section where the unit of observation is the unique patent p. Our

basic empirical specification is:

log (Citationsp) = β0 + β1 Invalidatedp + β2 Patent thicket densityp + β3 Patentp (4.1)

+ β4 Patenteep + β5 Opponentp + β6 Agep + β7 Yearp + β8 Techp + εp .

The dependent variable captures the number of citations within the first five years after the

opposition outcome. The coefficient β1 provides the effect of patent invalidation on the number of

citations; this is the effect of primary interest for our analysis. The model also includes the patent

thicket density measure and characteristics of the patent, the patentee, and the opponent. Patent

age, grant year, decision year, and technology field enter the model as fixed effects.

We estimate a two-stage least squares (2SLS) model in which invalidation is instrumented with

the predicted probability of invalidation. The prediction includes the “Examiner participation”

dummy and all other covariates x:

Invalidatedp = α1 Predicted probabilityp +αxp + up (4)

log (Citationsp) = β1
ÛInvalidatedp +βxp + εp .

We expand this baseline model to account for variation in the invalidation effect with patent thicket

density. To do this, we interact the endogenous “Invalidated” variable with the “Patent thicket den-

sity” covariate. This interaction must be treated as a separate endogenous variable that requires its

own instrumental variable (Wooldridge, 2010). To this end, we use the interaction of the predicted

probability of invalidation with the “Patent thicket density” covariate.

The examiner’s participation in the opposition division is a highly significant negative predictor

of invalidation (see Table 1). Examiner participation lowers the probability of invalidation by about

7.2 percentage points (pp) in the univariate model (column 1) and by about 4.8 pp in the model with

the full set of covariates (column 2). This result is robust to the inclusion of large sets of additional

fixed effects (columns 3 and 4).

While we can empirically show the instrument’s relevance, its exogeneity cannot be verified.

Nonetheless, the results of several empirical analyses are consistent with the argued randomness of

examiner participation conditional on technology class and year effects. Importantly, we do not find

any (non-)linear relationships between examiner participation and patent value indicators. Like-

wise, we do not find differences in citation trends between patents with and without examiner

participation within the ten years before the decision outcome. Appendix D provides further details.
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Table 1: Examiner participation and patent invalidation

(1) (2) (3) (4)
Estimation method Probit Probit Probit Probit
Dep var Invalidated (d)

Exam. participation (d) −0.073∗∗∗ −0.046∗∗∗ −0.047∗∗∗ −0.061∗∗∗

(0.005) (0.005) (0.006) (0.012)

Covariates None Full Full Full
Additional fixed effects – – IPC4×yr Exam.×yr

Dep var mean 0.71 0.71 0.70 0.61
Model degrees of freedom 1 588 3,458 4,998
χ2-statistic 239.6 2,686.6 5,094.9 3,968.7
Pseudo-R2 0.005 0.072 0.127 0.146
Observations 38,271 38,271 32,742 20,397

Notes: The probit regressions in columns (1) to (4) show the relevance of the “Examiner participation” dummy for the

opposition outcome. The invalidation predictions of the probit regression in column (2)—or equivalent predictions—are

used as the instrument in the 2SLS instrumental variables regressions throughout the study. The samples in columns

(3) and (4) are reduced due to a large set of fixed effects that perfectly predict patent invalidation. One is added to

all citation variables before taking the logarithm to include patents without citations. A comprehensive list of the con-

trol variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.

4.2 Average invalidation effect

We start our analysis by examining the average effect of patent invalidation on follow-on innovation,

both to validate our research design and to replicate the positive invalidation effect observed in

the prior literature. In Table 2, columns (1) and (3) show OLS regressions of the log-transformed

number of citations within five years after the opposition outcome on the invalidation dummy, both

with control variables and without them. The estimated effect of patent invalidation on citations is

statistically insignificant and close to zero.

Turning to the respective 2SLS instrumental variables (IV) regressions in columns (2) and (4),

we find significant positive invalidation effects. The estimated coefficient in column (4), our main

specification, implies that patent invalidation increases citations in the five years following the op-

position outcome by 0.15 (p < 0.03), corresponding to an increase of about 16%. The instrument

explains a sizable part of the variation in patent invalidation, underlined by the first stage F -statistic

of almost 500—exceeding the Stock and Yogo (2005) critical values for weak identification tests.

Additionally, the null hypothesis of exogeneity can be rejected (p < 0.02).

The positive difference between the OLS and the IV estimates aligns with the presumed endo-

geneity of invalidation. As discussed in Section 3.1, the OLS estimates are likely downward biased

because invalidation is negatively correlated with unobserved dimensions of patent value, which in

turn are positively correlated with the general probability of follow-on innovation.

Taking into account the existence of other patents also protecting the original innovation, we

recover substantially larger invalidation effects. In columns (5) and (6), we add an (instrumented)
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Table 2: Effect of patent invalidation on follow-on innovation

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated (d) −0.001 0.067∗∗∗ −0.007 0.148∗∗ 0.066∗∗∗ 0.580∗∗∗

(0.006) (0.021) (0.006) (0.065) (0.018) (0.088)
× Patent thicket density −0.014∗∗∗ −0.098∗∗∗

(0.003) (0.013)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 2,845.0 253.8 252.1
Weak identification test 3,774.5 482.6 236.1
Endogeneity test 11.4 5.6 49.1
p-value 0.001 0.018 0.000
Observations 38,271 38,271 38,271 38,271 38,271 38,271

Notes: Columns (1) to (6) compare the OLS and the 2SLS regressions for the effect of invalidation on citations by

others in a 5-year window following the opposition outcome. One is added to all citation variables before taking the

logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with

the corresponding probability predicted by a probit regression on the “Examiner participation” dummy and all other

exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen

and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A

comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors are presented in

parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

interaction term of the invalidation dummy with the patent thicket density. The corresponding in-

teraction effect is negative for both OLS and 2SLS regressions and sizeable. For the 2SLS regression,

an increase of one standard deviation in the patent thicket density lowers the invalidation effect

on citations by about 0.16. The negative coefficient of the thickets interaction is in line with our

reasoning that, in the case of overlapping patent rights, firms do not necessarily obtain FTO for

follow-on innovation from the invalidation of a single patent. Hence, the estimated baseline effect

of invalidation (with no thicket surrounding the invalidated patent) is large in magnitude (0.58).32

The positive effect of invalidation obtained from 2SLS regressions is robust to a large set of

alternative variable operationalizations and model specifications (see Appendix C.1). First, the effect

of invalidation is highly similar when taking into account appeals to the opposition outcome or when

defining patent invalidation by the share of invalidated claims. Second, the effect of invalidation

remains positive and significant when limiting the dependent variable to citations with a higher

standard of relevance, when counting citations generated by the USPTO (instead of the EPO), and

when counting the number of subsequently filed patents with a high text similarity to the opposed

patent. Likewise, the effect of invalidation is robust to different transformations of the citation count

(binary and hyperbolic sine) and using the non-transformed citation count. Third, the effect of

32The observed heterogeneity in the invalidation effect by patent thicket density is also found when splitting the sample

into patents surrounded by a patent thicket density above or below the average. Likewise, we find consistent results when

using a binary operationalization of patent thicket density as the moderator variable.
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Figure 4: Effect of patent invalidation on follow-on innovation – timing
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Notes: The figure presents the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations estimated for each year after the opposition outcome individually. We account for overdispersion in the

dependent variable by replacing the number of citations with a binary variable indicating whether the patent has been

cited in the respective year. Otherwise, the model specification is equivalent to that in Table 2, column (4).

invalidation remains practically unchanged when clustering standard errors at the technology field

level or when adding further fixed effects (e.g., examiner×year fixed effects) as control variables.33

Notably, the positive effect of invalidation on citation is driven by an increase in the number of firms

citing the focal patent. We find highly similar coefficients when limiting the count of citations to

one for each citing firm. This increase at the extensive margin suggests that more firms conduct

follow-on innovation after patent invalidation.

Examining the timing of the invalidation effect, we find that citations start increasing only from

the third year after the opposition outcome (Figure 4). This time lag supports the interpretation that

the invalidation effect materializes only after additional R&D has been undertaken. It also renders

changes in citation behavior an unlikely explanation for the effect, as one would expect to see them

setting in immediately after invalidation.34

In summary, these results suggest that patent invalidation led to an overall increase in follow-

on innovation activities by other firms—which replicates the positive (albeit considerably larger)

invalidation effect found in the prior literature (GS2015). According to our theoretical framework,

this pattern indicates that some firms only have FTO for follow-on innovation due to invalidation—

they failed to obtain a license from the patentee.

To determine the reasons for this licensing failure, we will now test our predictions concerning

the strength of the invalidation effect by original innovation value, follow-on innovation value, and

product market competition as set out in Section 2.3.

33Our main results also hold when using a Generalized Method of Moments estimator of Poisson regression.
34Moreover, the minimal and statistically insignificant estimates of invalidation on citations in the years prior to the

opposition outcome is consistent with the argued exogeneity of the instrumented opposition outcome.
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4.3 Effect heterogeneity by original innovation value

In our theoretical framework, we predict that the invalidation effect follows a U-shape in the value

of the original innovation (Prediction 1). This pattern arises from the two reasons why firms may

fail to gain FTO through licensing, with the likelihood of each reason largely hinging on the value of

the original innovation. The first reason pertains to transaction costs, which can inhibit the licensing

of low-value original innovations. The second reason concerns rent dissipation, which discourages

patentees from licensing out their more valuable original innovations.

To discern whether the invalidation effect in our sample can be explained by licensing failure due

to transaction costs or rent dissipation, we probe the relationship between the invalidation effect

and the value of the original innovation. For this purpose, we leverage our sample’s substantial

heterogeneity in patent value and create four subsamples of roughly equal size divided at the first,

second, and third quartiles of the patent value distribution. To measure patent value, we use the

first principal component based on the number of claims, the number of IPC classes, and the patent

family size. The patent value distribution is then stratified by year and technology field to account

for time- and technology-specific variation of patent indicators (Harhoff, 2016; Higham et al., 2021).

We find that the invalidation effect on citations exhibits a U-shape along the patent value dis-

tribution. In Figure 5a, we present the invalidation effects obtained from separate instrumental

variables regressions on the different subsamples by patent value. The effect is particularly large for

patents in both tails of the value distribution, although statistically significant only in the top quar-

tile. The coefficient of the invalidation effect in the top value quartile stands at 0.33, approximating

80% of the effect magnitude found for high-value litigation patents in the prior literature (GS2015).

In contrast, the invalidation effect is much smaller and statistically indistinguishable from zero in the

medium range of the value distribution. This U-shape becomes even more salient when controlling

for the moderating effect of the patent thicket density surrounding the opposed patents (Figure 5b).

In fact, the baseline invalidation effect in the top value quartile is more than four times as large as

in the second value quartile (0.849 vs. 0.191, p < 0.01).35

The observed U-shape of the invalidation effect is robust to various changes in the regression

specification (see also Appendix C.2). First, we find a similar albeit less marked pattern when mea-

suring patent value through other (non-composite) patent indicators (number of claims, patent

family size, and number of IPC classes). Moreover, the pattern is robust to sample splits based

on different thresholds within the value distribution. Second, we can rule out that the pattern is

35Focusing on a subsample of challenged patents with a low patent thicket density, we find the same pattern and

coefficients that approximate the baseline effects in Figure 5b.
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Figure 5: Effect of patent invalidation on follow-on innovation – original innovation value
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and

(6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year to account for time- and technology-

specific variation. The statistical significance of coefficient differences is determined by bootstrapping (results in Table

C-8). The corresponding regression results are in Appendix Table C-7.

driven by subsample-specific variation in the distribution of the dependent variable. Taking either

the inverse hyperbolic sine or a binary variable indicating a positive citation count as the dependent

variable leads to the same pattern. Likewise, the U-shape is robust to removing citations by the

opponent and focusing exclusively on citations by third parties. Third, we can confirm this pattern

when controlling for patentee size. Patent value and firm size are not independent of each other

(Arora et al., 2023). To avoid any correlation between firm size and patent value driving our results,

we add a second (instrumented) interaction of invalidation with a dummy variable indicating large

patentees. The estimated baseline coefficients show a similar U-shape to the one presented here.

In summary, these results suggest that the invalidation effect is the strongest for patents at either

end of the value distribution in our sample. The found U-shape of the invalidation effect aligns with

Prediction 1 derived from our theoretical framework, in which the extent of licensing failure depends

on the value of the original innovation. The invalidation effect for patents on low-value original

innovations is best explained by licensing failure due to transaction costs, whereas the invalidation

effect for patents on high-value original innovations is best explained by licensing failure due to rent

dissipation. At the same time, the invalidation effect is substantially smaller for patents of medium

value. Here, the challenged patents appear to cover original innovations that are valuable enough

to ensure a joint surplus that exceeds the transaction costs of licensing but not so valuable that rent

dissipation makes the patentee systematically unwilling to license out.
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4.4 Effect heterogeneity by follow-on innovation value

In our theoretical framework, we posit that not only the value of the original innovation but also

the prospect of a valuable follow-on innovation influences the extent of licensing failure and, con-

sequently, the invalidation effect. Specifically, we predict that for high-value follow-on innovations,

the invalidation effect becomes weaker for low-value and stronger for high-value original innova-

tions (Prediction 2). This is because high-value follow-on innovation exacerbates rent dissipation,

making licensing failure due to rent dissipation even more likely for high-value original innovations.

At the same time, such follow-on innovation can raise the surplus of licensing for low-value original

innovations, reducing the extent of licensing failure due to transaction costs.

To examine whether the invalidation effect is influenced by the value of the follow-on innovation,

we distinguish between citations from low- and high-value citing patents (hereafter simply referred

to as low- and high-value citations). Based on our theoretical underpinnings, we expect high-value

citations to increase predominantly with the invalidation of high-value patents. We split the overall

citation count into two subsets, distinguishing whether the citing patent is of above-average value.

Our analysis focuses on challenged patents in the bottom and top value quartiles to provide the

strongest contrast in effects. Estimates for all four quartiles are presented in Appendix C.3.

We find that the invalidation effect on high-value citations is more pronounced in the top value

quartile than in the bottom value quartile, even though the difference is not statistically significant

(Figure 6a). When controlling for patent thickets surrounding the challenged patents, we find a

substantially larger difference in effect sizes (Figure 6b). In the top value quartile, the invalidation

effect on high-value citations is more than three times as large as in the bottom value quartile (0.62

vs. 0.19, p < 0.03). In contrast to that, the corresponding effect on low-value citations is roughly

equal between patents in the top and in the bottom value quartile (0.42 vs. 0.37).

While the differences in coefficients are not consistently statistically significant, the pattern of

results is instructive and aligns with Prediction 2.36 Confidence in these results is further under-

scored by the results of several robustness tests (see also Appendix C.3). Employing different patent

value indicators (patent family size, patent claims, IPC classes) to measure the value of follow-on

innovation, we find a consistent pattern of differences. Moreover, the observed effect differences

persist when using either the inverse hyperbolic sine of the citation count or a binary variable indi-

cating a positive citation count as the dependent variable. The same holds true when estimating the

invalidation effects in subsamples more extreme than the bottom and top value quartiles.

36The reason why the differences are not more distinct may be due to the inherent uncertainty surrounding the potential

for follow-on innovation. From an ex-ante perspective, both the patentee and the potential follow-on innovator might be

uncertain whether a highly valuable follow-on innovation will materialize.
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Figure 6: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, respectively. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4)

and (6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are

restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the

stated quartile. The patent value distribution is stratified by technology field and year. Citations from high-value patents

are those where the citing patent has an above-average patent value (based on the principal component of claims, IPC

classes, and family size). The statistical significance of coefficient differences is determined by bootstrapping (results in

Table C-16). The corresponding regression results are in Appendix Table C-15.

In summary, the observed heterogeneity in results based on the value of follow-on innovation

strengthens the argument that the invalidation effect is caused by licensing failure of different kinds.

Licensing failure due to rent dissipation is most relevant for the invalidation effect if the value of

both the original and the follow-on innovation is high. Conversely, licensing failure due to transac-

tion costs seems to be most relevant if neither the original innovation nor the follow-on innovation

generates a sufficiently large joint surplus of licensing.

4.5 Effect heterogeneity by product market competition

Lastly, our theoretical framework suggests that the relevance of licensing failure due to transaction

costs and rent dissipation varies with product market competition between the patentee and the

(potential) licensees. More specifically, we predict that product market competition weakens the

invalidation effect for low-value and strengthens it for high-value original innovations (Prediction 3).

This follows from the theoretical result that rent dissipation is larger when the follow-on innovator

competes with the patentee in the same product market. Additionally, when the patentee and the

follow-on innovator operate in the same product market, transaction costs should be less pertinent

as licensing agreements likely require less coordination.

To test this prediction, we distinguish citations by whether the citing patentee likely competes
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with the focal patentee in the product market. To this end, we split citations based on whether i) the

citing patent belongs to the same technology class as the opposed patent, ii) the citing patentee is

active in the same industry as the opposed patentee, and iii) the citing patentee resides in the same

country as the opposed patentee. Each of these citation subsets contains roughly the same number

of citations.37 We then examine the effect of invalidation on the citation subsets defined by these

three criteria separately.

We find that the invalidation effect on citations, in the presence of product market competition

between the patentee and follow-on innovators, is distinctly stronger for patents in the top value

quartile than those in the bottom value quartile. Citations from the same technology class exhibit a

noticeably larger invalidation effect (0.28 vs. −0.1, p = 0.03). However, for citations based on the

other two indicators of product market competition, the effect differences are smaller and remain

inconclusive due to the estimates’ limited precision (Figure 7a). That said, the differences become

substantially larger across all three indicators when controlling for patent thicket density (Figure

7b). For citations belonging to the same technology class, the invalidation effect is large for patents

in the top value quartile and practically zero for patents in the bottom value quartile (0.56 vs. 0.02,

p = 0.02). Notably, if we turn our attention to citation subsets wherein the patentee presumably

does not compete with the follow-on innovators in the product market, the invalidation effects are

comparable, if not larger, for patents in the bottom value quartile.

Once again, these patterns are robust to using the inverse hyperbolic sine of the citation count or

a binary variable indicating a positive citation count as the dependent variable. Likewise, focusing

on citations that are from the same product market according to all three indicators provides similar

results. Finally, the observed differences become even more pronounced when estimating the inval-

idation effects in more extreme subsamples than the bottom and top value quartiles of challenged

patents. These robustness results are presented in Appendix C.4.

The observed heterogeneity in the invalidation effects by product market competition is consis-

tent with Prediction 3. It also underpins the interpretation of our earlier results that the invalidation

effect is driven by licensing failure due to transaction costs for the low-value patents and by licensing

failure due to rent dissipation for the high-value patents in our sample. According to our theoreti-

cal framework, the patentee refrains from licensing out where rent dissipation looms large; that is,

where innovation value is high and licensing would likely cannibalize the patentee’s profits in the

product market. Consequently, the number of firms that gain FTO only through invalidation should

be larger in the patentee’s own product market. At the same time, the patentee does not license out

37Summary statistics of the citation subsets for each value quartile can be found in Appendix Table B-6.
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Figure 7: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition

(a) IV estimates
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and

(6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year. Citations from the same tech class are

defined as those where challenged and citing patent share the same primary IPC4 technology code. Citations from the

same industry are defined as those where both patentees share the same 3-digit primary NACE Rev. 2 industry code.

Citations from the same country are defined as those where both patentees share the same country of residence (EU, UK,

US, JP, RoW). The statistical significance of coefficient differences is determined by bootstrapping (results in Table C-20).

The corresponding regression results are in Appendix Tables C-18 and C-19.

if transaction costs erode the surplus of licensing; that is, where innovation value is low compared

to the costs of reaching a licensing agreement—a condition more likely where the patentee and

follow-on innovators need to coordinate across product markets.

In sum, the above heterogeneity results are in line with our predictions concerning the invali-

dation effect, demonstrating a consistent pattern where both transaction costs and rent dissipation

lead to licensing failure under specific conditions. Nonetheless, these empirical results need to be

put into perspective. Strictly speaking, uncovering heterogeneity in the causal effects of patent

invalidation does not in itself allow a causal interpretation. That is, our estimations do not iden-

tify how the invalidation effect would change if, for instance, the value of the original innovation

was exogenously altered or potential licensees were randomly removed from the patentee’s product

market. Moreover, although the observed heterogeneity pattern is consistent with our theoretical

predictions concerning the causes and extent of licensing failure, this does not rule out alterna-

tive explanations. Future contributions that can illuminate the assumed mechanisms causing the

invalidation effect with licensing data would be valuable.
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5 Discussion and Concluding Thoughts

In this study, we find a positive invalidation effect across a large sample of patents subject to a post-

grant validity challenge. This replicates the invalidation effect in the seminal study of GS2015, who

analyze about 1,300 patents whose validity was challenged during high-profile litigation disputes.38

We expand on their work, both theoretically and empirically, showing that the invalidation effect

and the reasons behind it vary with patent value. Indeed, our findings introduce a more nuanced

perspective concerning the reasons for licensing failure compared to GS2015. While they attribute

the invalidation effect in their sample of high-value patents primarily to transaction costs, our find-

ings suggest this reason is more prevalent among low-value patents. In contrast, we argue that

rent dissipation is likely the driving force behind the invalidation effect for high-value patents. The

reasons for these different conclusions are intriguing and warrant further investigation.

From a policy perspective, the results of our study suggest that an increase in follow-on in-

novation after patent invalidation cannot be automatically ascribed to frictions in the market for

technology. Among high-value patents, rent dissipation seems to be the more reasonable explana-

tion. This result makes the observed blocking of follow-on innovation much less problematic from a

welfare perspective: the patentee’s decision to not license out can go hand in hand with productive

coordination and align with the patent system’s aim to stimulate ex-ante investment incentives.

However, our results do not imply that transaction costs have no role in blocking follow-on in-

novation. On the contrary, the strong invalidation effect among low-value patents in our sample

suggests that transaction costs frequently erode the surplus of licensing, causing bargaining break-

down. Apart from that, there are good reasons to believe that transaction costs create consider-

able licensing frictions for patented technologies outside of our sample. For instance, transaction

costs can be substantial if licensing requires the transfer of complementary tacit knowledge (Arora,

1995). Such cases are unlikely to be selected into our sample: potential follow-on innovators have

little incentive to challenge patents on technologies where additional know-how from the patentee

is necessary. Either way, agreements on technology transfer would be even harder to reach with-

out patent protection, possibly reversing the relationship between patent protection and follow-on

innovation in these cases.39

From a practical perspective, our research suggests that firms pursuing FTO for follow-on innova-

tion have to be aware that intensified product market competition and the patentee’s own innovation

38In fact, GS2015 and our study share several findings: the overall positive effect of invalidation on citations, the

timing of the effect, and the direction of the endogeneity bias. We present several replication results in Appendix E.
39This could explain the null effect of patent grant on follow-on innovation found by Sampat and Williams (2019)—a

sample surely more representative of the patent population than patents subject to a validity challenge.

28



plans can hinder licensing agreements, regardless of their efforts. One strategic implication is that

firms need to scan the evolving technology landscape effectively for patents conflicting not only with

their current product market activities but also with future R&D projects. Developing the necessary

capabilities demands close collaboration of R&D and legal functions. Once developed, firms may

also be able to identify conflicting patents more promptly. This opens up low-cost options to seek

patent invalidation, allowing firms—in case of a successful validity challenge—to safeguard returns

to their R&D investments early on.
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A Theory

This Appendix underpins Section 2 of the paper. In Section A.1, we expand on the presentation of

the invalidation effect in the paper. In Section A.2, we set out a model of non-exclusive licensing

and validity challenges. This model generates the three predictions presented in the paper. The

model shows how original and follow-on innovation value (vo, v f ), product market competition,

and complexity of technology jointly determine the strength of the invalidation effect.

A.1 The invalidation effect

This section shows that the invalidation effect decreases in the number of licenses provided by the

patentee. This is the foundation for the analysis of the number of licenses offered by the patentee

in the following section.

The invalidation effect is the difference in follow-on innovation between two cases: i) the patent

is invalidated, and all firms (N -1) have FTO; ii) the patent protects the original innovation, and only

n licensees have FTO. This is,

I(n)≡ ρ(N − 1) · [N − 1]−ρ(n) · n (A.1)

where ρ(ñ) is the probability that a firm with FTO succeeds in follow-on innovation. In the paper,

we assume ρ is exogenous and identical for all firms. This simplifying assumption is adopted for

expository purposes. In case at most one firm can obtain the follow-on innovation, ρ will depend

on the number of firms with FTO ñ, where ñ ∈ {(N −1), n}. Here we show the invalidation effect is

reduced if the patentee provides more licenses, even when ρ depends on ñ.

To begin with, we assume follow-on innovation has one of three outcomes: i) the patentee inno-

vates, ii) a licensee innovates, iii) no firm innovates. The literature on innovation and imperfectly

discriminating contests (Loury, 1979; Blavatskyy, 2010) models the probability of successful inno-

vation40 ρ as a function of three variables: an exogenous likelihood of winning, w, an exogenous

likelihood of a draw, d, and the number of firms in the contest, n:

ρ(n, w) =
w

w · [n+ 1] + d
. (A.2)

In our context, the number of firms in the contest is the number of firms with FTO, and a draw

arises when there is no follow-on innovation. Blavatskyy (2010) provides an axiomatization for

imperfectly discriminating contests in which there can be a draw. Note that ρ(n, w) has two relevant

characteristics—an increase in the number of firms with FTO: i) reduces the individual probability

40Nti (1997) notes that this form of the probability of success is isomorphic to those adopted by Loury (1979) and

himself.
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of success, but also ii) reduces the likelihood of a draw.

Now consider the effect of providing more licenses on the invalidation effect. The probabilities

that a firm with FTO obtains a follow-on innovation or that there is a draw sum to one:

1= ρ · [n+ 1] +
d

w · [n+ 1] + d
. (A.3)

We can show that:

∂ ρ

∂ n
= −ρ2. (A.4)

This implies that:

∂ I

∂ n
= −ρ [1−ρ · n]< 0 . (A.5)

By Equation A.3, the term in square brackets is positive. The derivation demonstrates that although

the probability of success, ρ, declines in the number of licenses offered by the patentee, the overall

effect of the marginal license is to reduce the invalidation effect.

The success function we have adopted has one limitation: it does not capture settings in which

different follow-on innovations arise simultaneously.41 We briefly discuss how the invalidation effect

behaves in this case.

Assume again that there is a fixed probability of success ρ′ along each of at least N parallel

research trajectories and that each firm with FTO chooses a separate trajectory. Then the invalidation

effect, defined as the probability that there is at least one follow-on innovation, is:

I ′ =
�
1−

�
1−ρ′

�N
�
−
�
1−

�
1−ρ′

�n�
(A.6)

It follows that:

∂ I ′

∂ n
= (1−ρ)n ln(1−ρ)< 0 . (A.7)

This shows that the invalidation effect decreases in the number of licenses the patentee offers for a

wide range of modeling approaches. The question we turn to next is which factors determine how

many licenses the patentee will offer, as this determines the strength of the invalidation effect.

A.2 A model of licensing and validity challenges

In this section, we set out a model of the patentee’s licensing decisions in the context of validity

challenges and competition for a follow-on innovation. The model provides the analytical founda-

tion for the predictions in the paper. It also underpins the empirical strategy we discuss in Section

3.1. In the following, we briefly outline the predictions and link these to our analytical results below.

41The success function we adopted above could be extended to such cases by drawing on Blavatskyy (2010), but this

is beyond this paper.
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We set out three predictions in Section 2.3 of the paper:

Prediction 1: The invalidation effect follows a U-shape in the value of the original innovation.

Prediction 2: A high follow-on innovation value makes the invalidation effect weaker for low-value

and stronger for high-value original innovations.

Prediction 3: Product market competition between patentee and potential licensees makes the

invalidation effect weaker for low-value and stronger for high-value original innovations.

We provide the results underpinning Predictions 1 and 2 in Section A.3, those underpinning

Prediction 3 in Section A.4, and further results extending Predictions 1 and 2 in Section A.5. We

further present results illuminating the selection of patents into validity challenges.

The core result we test in our empirical analysis is given in Prediction 1. To derive this first

prediction, we incorporate the effects of follow-on innovation into a model of licensing for the orig-

inal innovation. This involves solving a cubic function to derive the optimal level of licensing.42 By

solving the cubic function, we can also characterize the effect of variation in the value of the follow-

on innovation. This underpins the derivation of Prediction 2. The derivation of Prediction 3 is an

extension of the analytical results underpinning Prediction 1. We adjust the model such that the

patentee does not compete with the licensees in the product market. We show that rent dissipation

is reduced in this case.

Firm profits

Our model draws on Arora and Fosfuri (2003), who show that it can be profitable for oligopolistic

firms to license out technologies. Their work highlights the effect of rent dissipation in limiting how

extensively a technology is licensed. While Arora and Fosfuri (2003) focus on licensing to market

entrants, we analyze licensing to incumbents. In this setting, firms’ product market profits are those

of Cournot oligopolists with positive marginal costs.43

There are N firms, each producing one product. Let the inverse demand of firm k be:

pk = α− qk − θ
∑
j 6=k

qk , (A.8)

where α measures vertical product quality and θ ∈ {0,1} measures the substitutability of products.

42In addition to analytical results, we provide further results with the aid of simulations.
43Sutton (1998) characterizes this setting as an endogenous sunk cost industry. The number of firms active in such

an industry is determined by the level of initial R&D investment required to offer products that are technologically com-

petitive. We assume that firms that do not participate in the initial R&D investment phase lack absorptive capacity and

cannot enter the industry (Cohen and Levinthal, 1990). Therefore the patentee is limited to the initial set of R&D active

firms when licensing.
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With θ = 0, each firm is monopolistic, and as θ → 1 products become perfect substitutes.44

In equilibrium, each firm produces quantity q̂k:

q̂k =
1

2− θ

 
(α− ck)−

θ

(2+ (N − 1)θ )

N∑
j=1

(α− c j)

!
. (A.9)

Cournot profits with N0 competing firms are:

πk = (pk − ck)qk =
1

(2− θ )2

�
(α− ck)−

θ

(2+ (N0 − 1)θ )

N0∑
j=1

(α− c j)

�2

=
1

(2− θ )2 q̂2
k

. (A.10)

To simplify, we define two composite parameters, Γ ≡ 1
(2−θ )2 and Θ ≡ θ

(2+(N0−1)θ ) . Ex-ante all firms

have the same marginal costs c and profits πI :

πI =Γ
�
(α− c) [1− N0Θ]

�2
. (A.11)

We model innovation as a patented cost-reducing technology that lowers marginal costs from

c to c′ ∈ {c, c} for the patentee and all licensees. If there is no follow-on innovation, the marginal

costs of the patentee and all licensees are c. If there is a follow-on innovation, the patentee cross-

licenses with the follow-on innovator and then licenses out the improved technology. This allows the

patentee(s) and all licensees to produce with marginal costs c, where c > c. Define∆c ≡ c−c, ∆c ≡

c−c, Ý∆c ≡ c−c. Firms’ profits are increasing in a cost reduction. Therefore the value of a technology

is increasing in the cost reduction that the patentee/licensee can obtain. We define the values of the

original and follow-on innovations as an increasing function of the change in marginal costs; i.e.,

vo = f (∆c), where ∂ f /∂∆c > 0 and v f = f (∆c), where ∂ f /∂∆c > 0.45 Unlicensed firms produce

at high costs c unless the patent on the original innovation is invalidated.

Chance determines which firms have information that the patent on the original innovation is

invalid. Throughout, we assume that the patentee obtains a share of the rents which the technology

provides to each licensee. We assume that the level of the share (φ) is exogenous and fixed.46 This

assumption means that the license fee does not affect firms’ output decisions in the product market,

simplifying the model.

44This inverse demand function is derived from the utility function proposed by Singh and Vives (1984) and generalized

to N firms (Sutton, 1998): U =
∑N

k=1
αqk − 1

2

�∑N

k=1
q2

k
+ 2θ

∑N

k 6= j
qkq j

�
+ I . Utility is linear in the consumption of other

goods (I) and quadratic in the consumption of the goods in the focal product market. Consumers maximize utility subject

to the budget constraint
∑

k pkqk + I ≤ M , where M is income. The price of other goods is normalized to 1.
45The model as presented captures industries characterized by process innovations. Sutton (1998) shows this type of

model is isomorphic to one in which innovation improves product quality.
46We hereby assume that the patentee cannot implement a non-linear license fee to replicate the outcome of a prod-

uct market cartel. In other words, we assume that competition authorities are able to effectively limit the use of anti-

competitive licensing contracts.
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A.2.1 Structure of the game

We analyze the following three-stage game, our baseline model G.47 At Stage 1, the challenging

firm and the patentee decide whether to settle a dispute over the validity of the original patent. If

the parties fail to settle, the original patent is either upheld or invalidated. Stage 2 is reached if

the patent is upheld. In this case, the patentee selects how many licenses to provide. Once FTO is

determined, either through invalidation of the original patent or through the patentee’s licensing

decision, all firms with FTO undertake R&D. Stage 3 is reached if there is a follow-on innovation and

the original patent is invalidated. In this case, the firm winning the follow-on innovation chooses

how many licenses to provide.

Game G is solved by backward induction. The sequence of actions and exogenous events is that:

• Chance determines one firm holding the patent on the original innovation—the original

patentee—and one firm holding information on the patent’s validity—the challenging firm;

1. The challenging firm pursues the validity challenge if the original patentee and the challenging

firm cannot settle;

• Outcome of the patent validity challenge;

2. If the patent is upheld, the original patentee decides how many licenses to provide;

• Firms with FTO for follow-on innovation undertake R&D, and chance determines whether

there is a follow-on innovation and who is the follow-on innovator;

3. If there is a follow-on innovation and the original patent was invalidated, the follow-on inno-

vator decides on how many licenses to provide.

To keep this game as tractable as possible, we assume that the patentee includes a grant-back

clause in licensing contracts offered at Stage 2. This implies that any licensee that succeeds in the

follow-on innovation must license back this innovation to the patentee. We also assume that the

patentee guarantees each licensee that they will also gain a license to the follow-on innovation. By

imposing these assumptions, we avoid a further licensing decision subsequent to Stage 2 in case the

original patent is upheld.48

Firms’ profits in the product market depend on all firms’ marginal costs. Equation A.10 charac-

terizes profits from product market competition in the general case. We derive specific variants that

depend on the outcomes of licensing and innovation below.

47Game G is represented in Figure 1 in Section 2.
48In our model, the patentee determines the number of licenses at Stage 2, already taking into account rent dissipation

in all subsequent outcomes. In a more complex game with an additional licensing decision after Stage 2, rent dissipation

would still be a consideration. Moreover, the patentee would have to take into account that she might not receive a license

for the follow-on innovation (lack of grant-back clause) and that the follow-on innovator could have different incentives

to license the follow-on innovation than the patentee. This would induce the patentee to further restrict licensing. We

leave the derivation of this strategic component of the licensing decision to future work.
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A.3 Baseline model – Game G

We start by analyzing the baseline model, game G, in detail. After Stage 2 of game G, four outcomes

are possible: I) the original patent was invalidated, and no follow-on innovation arises; II) the

original patent was upheld, and no follow-on innovation arises; III) the original patent was upheld,

and follow-on innovation arises; IV) the original patent was invalidated, and follow-on innovation

arises. Note that in the first three outcomes, Stage 3 is not reached. In the following, we first

describe firms’ profits under each outcome, allowing for licensing and transaction costs.

In each outcome, Λ denotes the surplus generated by licensing, and φ (0≤ φ ≤ 1) is the surplus

share the patentee obtains from licensing. Below we derive Λ for each outcome. The level of the

surplus share (φ) depends partly on firms’ bargaining power and partly on industry practice. We

assume the share is exogenous.

Licensing comes with transaction costs. We consider fixed (T) transaction costs that arise for

each license. Below we assume that the patentee bears these transaction costs, but this is not material

to our results. What is material is that transaction costs reduce the surplus that can be obtained from

licensing by the patentee—where the value of the innovation is comparatively low, these costs may

be so large that licensing is not profitable.

Outcome I The original patent is invalidated, and no follow-on innovation arises.

All firms produce at marginal cost c. Profits are:

πin = Γ
�
(α− c) [1− NoΘ]

�2
. (A.12)

Outcome II The original patent is upheld, and no follow-on innovation arises.

Define Ψun ≡
�
(α− c)(1−N0Θ)−Θ∆c(n+1)

�
and Λun ≡ Γ

�
Ψun+∆c

�2
− ΓΨ2

un = Γ∆c
�
2Ψun+∆c

�
.

Profits of the patentee (πs) are:

πs = Γ
�
Ψun +∆c

�2
+ n (φΛun − T ) . (A.13)

Outcome IIIa The original patent is upheld, and the patentee is the follow-on innovator. The

patentee licenses the follow-on patent to the licensees of the original patent. Define Ψuf ≡�
(α − c)(1 − N0Θ) − Θ∆c(n + 1)

�
and Λuf ≡ Γ∆c

�
2Ψuf + ∆c

�
. The original patentee’s profits

(πp) are:

πp = Γ
�
Ψuf +∆c

�2
+ n

�
φΛuf − T

�
. (A.14)

Outcome IIIb The original patent is upheld, but the original patentee is not the follow-on innovator.

Thanks to the grant-back clause, the follow-on patent is licensed to the original patentee and her

licensees. Both patentees (original and follow-on patentee) set fees corresponding to their respective
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innovation’s profit increment to licensees.

We define the joint surplus eΛuf ≡ Γ
�
Ψuf +∆c

�2
− Γ

�
Ψuf +∆c

�2
= ΓÝ∆c

�
2Ψuf +∆c +∆c

�
.

The profits of the original patentee (πl) are:

πl =Γ
�
Ψuf +∆c

�2
+ n (φΛun − T )−φeΛuf . (A.15)

Outcome IV The original patent is invalidated, and the original patentee is not the follow-on inno-

vator.

Define Ψi f ≡
�
(α− c)(1−N0Θ)−Θ∆c(n+1)

�
= Θ∆c

�
g(c, c)− (n+1)

�
and Λi f ≡ Γ∆c

�
2Ψi f +∆c

�
.

Profits of the follow-on patentee (πifL), the licensees (πifl) and the remaining firms (πifr) are:

πifL = Γ
�
Ψi f +∆c

�2
+ n

�
φΛi f − T

�
, πifl = Γ

�
Ψi f +∆c

�2
−φΛi f , πifr = ΓΨ

2
i f

. (A.16)

Stage 3: Licensing of follow-on innovation

Where the original patent is declared invalid, all No firms active in the industry have FTO and

compete for a follow-on innovation. Should a follow-on innovation arise, the follow-on patentee

decides on licensing her innovation. In this case, profits are set out under outcome IV. The follow-on

patentee will choose the number of licensees.

The follow-on patentee maximizes profits by setting the number of licenses n:

max
n
π f (n) = Γ

�
Ψi f (n) +∆c

�2
+ nφΓ∆c

�
2Ψi f (n) +∆c

�
− nT . (A.17)

The first order condition (FOC) characterizing this decision is:

2Γ∆c
�
Ψi f +∆c

��
φ −Θ

�
−φΓ∆c2 − 2nΓφ∆c2

Θ− T = 0 . (A.18)

The second order condition (SOC) for this extreme point is −2Γ∆c2
Θ (2φ −Θ)< 0. The FOC iden-

tifies a local maximum as long as the follow-on patentee has a sufficiently large surplus share (φ).

For homogeneous products (θ = 1), the lower bound for the surplus share is φ = 1/[2(No + 1)].

As products become more differentiated, the boundary is even lower. In what follows, we assume

φ > Θ, ensuring we analyze only profit-maximizing licensing decisions.

The follow-on patentee provides n∗ licenses to maximize her profits:

n∗ =
1

Θ(2φ −Θ)

��
(α− c)

∆c
(1− N0Θ) + (1−Θ)

��
φ −Θ

�
− φ

2
− T

2Γ∆c2

�
. (A.19)

Next, we analyze when the follow-on patentee licenses all firms in the industry. Define:

Ω ≡ φ (1+ 2(No − 1)Θ)− 2 [1− NoΘ] (φ −Θ) . (A.20)

Ω > 0 as long as 3No > (2− θ )/θ . Where products are highly differentiated Ω < 0.

40



The follow-on patentee licenses her innovation to all firms in the industry as long as n∗ ≥ (No − 1).

However, the follow-on patentee restricts licenses to some firms in the industry if:

n∗ < No⇔
�
(α− c) (1− NoΘ) (φ −Θ)

�2

Ω2
− T

ΓΩ
<

�
∆c −

(α− c) (1− NoΘ) (φ −Θ)
Ω

�2

(A.21)

There are two solutions to this inequality:

∆cu =
(α− c) (1− NoΘ) (φ −Θ)

Ω
+

√√√�
(α− c) (1− NoΘ) (φ −Θ)

�2

Ω2
− T

ΓΩ
(A.22)

∆c l =
(α− c) (1− NoΘ) (φ −Θ)

Ω
−

√√√�
(α− c) (1− NoΘ) (φ −Θ)

�2

Ω2
− T

ΓΩ
(A.23)

The follow-on patentee will license all firms in the industry as long as the cost reduction offered by

the follow-on innovation lies on the interval [∆c l ,∆cu]. Notice that the lower limit of this interval

is zero when transaction costs are zero. As transaction costs increase, the lower limit increases and

the upper limit decreases.

This analysis provides two insights: i) the follow-on patentee restricts the number of licenses

as the value of the follow-on innovation increases—this is due to rent dissipation; ii) the follow-

on patentee does not license out low-value follow-on innovations—this is due to transaction costs.

Both rent dissipation and transaction costs determine the range of follow-on innovations for which

all firms in the industry can obtain a license. A comparable analysis can be applied to the original

patentee’s decision to license out the original innovation in the next subsection.

Stage 2: Licensing of original innovation

At Stage 2, the original patentee selects how many licenses to provide. As noted above, we simplify

the model by assuming that competition for the follow-on innovation is a contest in which, at most,

one firm succeeds. The likelihood of winning for each firm in the contest is fixed as w, and the

probability of a draw (no follow-on innovation arises) is d/[(n+1)w+ d].49 If there is no follow-on

innovation, the firms’ profits are as described in Outcome II above.

When the original patent is invalidated, there is no decision at Stage 2. All No firms in the indus-

try employ the original innovation and compete for the follow-on innovation. Each firm innovates

with probability w/[Now+d]. When the original patent is upheld, the original patentee must decide

how many licenses to provide. This decision has a static and a dynamic aspect. The static trade-off

mirrors the trade-off we analyzed at Stage 3 of the game: the original patentee must choose be-

tween rent dissipation and licensing income. The dynamic trade-off is between the intensity of R&D

competition for the follow-on innovation and any licensing income flowing from that innovation.

49Here we draw on Nti (1997) and Blavatskyy (2010). Compare the discussion in Section A.1.
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Drawing on the profits set out for Outcomes IIIa and IIIb above, we can express the value of

follow-on innovation for the original patentee (V u
p ):

V u
p (∆c, n) =

1

(n+ 1)w+ d

�
wπp + wnπl + dπs

�
− H(w) . (A.24)

Note that H(w) is the fixed cost of R&D corresponding to the exogenous likelihood of winning the

follow-on innovation w. Equation A.24 corresponds to Equation 2 in Section 2. Remember that the

value of the original innovation vo and the follow-on innovation v f are increasing functions of the

respective innovation sizes ∆c and ∆c. The expected value of licensing for the patentee50 (V u
p ) can

be decomposed into a static (πs) and a dynamic return to licensing (πdyn) and the costs of follow-on

R&D (H(w)):

V u
p
= πs(n,∆c, T ) + ρ

��
πp(n,∆c)−πs(n,∆c)

�
+ n ·

�
πl(n,∆c,∆c)−πs(n,∆c)

��

︸ ︷︷ ︸
πdyn

− H(w) . (A.25)

The static return to licensing We first characterize the number of licenses offered by the original

patentee for the case that dynamic returns to licensing are negligible (n̂s).

The FOC characterizing static licensing incentives is:

2Γ∆c
�
Ψun +∆c

�
(φ −Θ)− Γφ∆c2 − 2Γ nφΘ∆c2 − T = 0 . (A.26)

This FOC characterizes a local maximum if −2Γ∆c2
Θ (2φ −Θ) < 0.51 The original patentee will

select n̂s licenses:

n̂s =
1

Θ

�
2φ −Θ

�
��(α− c)

∆c
(1− N0Θ) + (1−Θ)

�
(φ −Θ)− φ

2
− T

2Γ∆c2

�
. (A.27)

This condition reveals that the optimal number of licenses n̂s is decreasing in the size of the original

innovation ∆c due to rent dissipation. Note that absent transaction costs, n̂s > N − 1 for original

innovations of low value (low ∆c). Here, the patentee licenses all (N − 1) firms. Rent dissipation

affects n̂s when the value of the original innovation is sufficiently large so that n̂s ≤ N − 1.

Now consider the joint effects of transaction costs and rent dissipation. The optimal number of

licensees is determined in the same manner as at Stage 3 (Equation A.19). We can show that the

original patentee licenses all firms if the original innovation lies in the interval [∆c l ,∆cu]:

∆cu =
(α− c) (1− NoΘ) (φ −Θ)

Ω
+

√√√�
(α− c) (1− NoΘ) (φ −Θ)

�2

Ω2
− T

ΓΩ
(A.28)

∆c l =
(α− c) (1− NoΘ) (φ −Θ)

Ω
−

√√√�
(α− c) (1− NoΘ) (φ −Θ)

�2

Ω2
− T

ΓΩ
(A.29)

50The expected value of licensing for the licensees V u
s,i

can be derived in a comparable manner. We suppress the

expressions here as they do not contribute to our analysis.
51The condition is satisfied under the assumption that φ > Θ.
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We derive two results:

Result 1 The original patentee licenses to all N −1 firms if the size of the original innovation ∆c is

in the range (∆c l ,∆cu).

Note that ∆c l > 0 if T > 0.

Result 2 The range (∆c l ,∆cu) shrinks as transaction costs T increase.

These results generate a U-shaped relationship between the share of firms in the market that do not

receive a license from the original patentee and the value of the original innovation. By extension,

the invalidation effect is also U-shaped, as all unlicensed firms in the market obtain FTO through

invalidation.

Figure A-1: Invalidation effect: Variation in original innovation size
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Notes: This figure presents a simulation of the share of firms that obtain FTO through invalidation of the original patent

as a function of the size of the original innovation (∆c). The values for transaction costs in the simulation are either

T = 0 (no transaction costs) or T = 0.03 (transaction costs). To simulate the static limit of our model, we minimize the

probability of follow-on innovation: follow-on innovation size is 10−6 and the relative probability of a draw is 105. The

simulation is based on the following other set parameters: N = 11, α− c̄ = 3, φ = 0.8, θ = 0.7.

In Figure A-1, we simulate the static case as the limit of the dynamic model in which follow-on

innovation is highly unlikely and small in value. Two solutions are presented: i) no transaction costs

and ii) transaction costs at a level that induces licensing failure for low-value original innovations.

For positive transaction costs, Figure A-1 reveals a U-shape for the share of firms obtaining FTO

through patent invalidation.
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The dynamic return to licensing We now consider how the dynamic return to licensing alters

the U-shaped invalidation effect derived above. Note that the dynamic return is the net change in

profits in the two outcomes with follow-on innovation as compared to the outcome with no follow-on

innovation:

πp −πs =Γ
�
Ψ

2
uf
−Ψ2

un

�
+ (1+ nφ)

�
Λuf −Λun

�

=
�
∆c −∆c

�
Γ

�
(1−Θ+ n(φ −Θ))

�
Ψuf +Ψun

�
+ (1+ nφ)

�
∆c +∆c

�
(1−Θ(n+ 1))

�

πl −πs =Γ
�
Ψ

2
uf
−Ψ2

un

�
+
�
Λuf −Λun

�
(1−φ) + 2Γφ∆c

�
Ψuf −Ψun

�

=
�
∆c −∆c

�
Γ

��
Ψuf +Ψun

�
(1−φ −Θ(n+ 1)) +

�
∆c +∆c

�
(1−Θ(n+ 1))(1−φ)− 2φΘ(n+ 1)∆c

�
.

We can show the dynamic return to licensing is:

πdyn = Γ
�
∆c −∆c

�
(n+ 1) [1−Θ(n+ 1)]

��
Ψuf +Ψun

�
+
�
∆c +∆c

�
− 2∆c

nΘφ

1−Θ(n+ 1)

�
. (A.30)

Recall that ∆c − ∆c = c − c is the follow-on innovation’s cost reduction over the cost reduction

embodied in the original innovation. Four results follow from Equation A.30:

Result 3 The dynamic return to licensing πdyn is positive.

To see this, note that πdyn is the sum of two positive terms.

Result 4 The dynamic return to licensing πdyn is not a function of transaction costs T .

Result 5 The dynamic return to licensing πdyn increases in the size of the follow-on innovation ∆c.

Result 6 The expected dynamic return to licensing ρπdyn is a concave function in n.

To see this latter result, note that the first and second derivatives of ρπdyn with respect to n are:

∂ ρπdyn

∂ n
=
�
∆c −∆c

�
Γ

�
dw

[(n+ 1)w+ d]2

���
Ψuf +Ψun

�
+
�
∆c +∆c

��
[1−Θ(n+ 1)]− 2∆cnΘφ

�

−Θ
�

1− d

(n+ 1)w+ d

���
∆c +∆c

�
[1−Θ(n+ 1)] +

��
Ψuf +Ψun

�
+
�
∆c +∆c

��
+ 2∆cφ

��
(A.31)

∂ 2ρπdyn

∂ n2
= −2Γ

�
∆c −∆c

���
∆c +∆c

�� d

(n+ 1)w+ d

�
Θ+

w [1−Θ(n+ 1)]

[(n+ 1)w+ d]

�2

−Θ2
�

+
2dw

(n+ 1)w+ d]2

��
(α− c)(1− N0Θ)

��
Θ+

w [1−Θ(n+ 1)]

[(n+ 1)w+ d]

�
+∆cφΘ

�
1− wn

(n+ 1)w+ d

���
(A.32)
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The second derivative is negative, indicating concavity, where products are differentiated and where

the industry is well established.52

These four results show that the dynamic return to licensing will increase the surplus from li-

censing for low-value original innovations, which can allow licensing to occur in spite of the effect

of transaction costs. At the same time, the dynamic return to licensing is also subject to rent dissipa-

tion (Result 6): for high-value original innovations, rent dissipation affects both static and dynamic

returns to licensing.

Next, we consider how the dynamic return influences the optimal number of licenses. This requires

that we solve a cubic FOC. To simplify the expressions, we define additional composite parameters:

A≡
�
1+Θ d

w

�
, B(n)≡ 1−Θ(n+1), C ≡ ∆c

(∆c+∆c)
, E ≡ ∆c2

∆c2
−1 and F ≡ [(α−c)(1−NoΘ)]

∆c
. Applying these

definitions to the derivative of the static return to licensing with respect to n (Equation A.26) gives:

2Γ∆c2
�
J + B(2φ −Θ)

�
= 0 , where J ≡

�
F(φ −Θ) +φΘ− T

2Γ∆c2
−φ 3

2

�
. (A.33)

The expected dynamic return to licensing (ρπdyn) can be expressed as:

πdyn = Γ∆c2E
1− B

(A− B)

�
2C(F +φ)B + B2 − 2Cφ(1−Θ)

�
. (A.34)

Allowing for dynamic and static returns, the FOC for the optimal number of licenses n̂ is:

0=

�
J + B(2φ −Θ)

�
+ EΘ

(A− 1)

[A− B]2

�
C(F +φ)B +

1

2
B2 − Cφ(1−Θ)

�
− EΘ

1− B

A− B

�
C(F +φ) + B

�
(A.35)

The SOC for n̂ is:

−Θ

τ︷ ︸︸ ︷
�
2φ −Θ

∆c2

∆c2

�
−

d
w E

�
d
w + (n+ 1)

�3

�
A2 + 2AC F + 2Cφ(A− 1) + 2CφΘ

�
. (A.36)

This condition is negative as long as τ is positive. Where the value of the original innovation is low

(∆c→ 0), the second derivative is positive and the FOC identifies a minimum of the value function

V u
p with respect to n. The locus in the ∆c − n̂ space along which the value function’s extreme value

switches from a local maximum to a local minimum is given by:

˜̂n=
3

√√√
−

d
w E

Θτ

�
A2 + 2AC F + 2Cφ(A− 1) + 2CφΘ

�
. (A.37)

Note that this locus only lies on the real plane where τ < 0; i.e., where the follow-on innovation is

sufficiently more valuable than the original innovation.

52In an established industry, the value of the original- and follow-on innovations will usually be smaller than the sum

of all preceding innovations up to that point. This implies that
�
(α− c)(1− N0Θ)

�
>
�
∆c +∆c

�
.
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Define Z ≡ (A− B)(−1) and ω ≡ EΘ(A− 1)
�
Cφ(A− 1+Θ) + 1

2A2 + AC F
�
≥ 0. Then the FOC is:

Z3 + Zω−1

σ︷ ︸︸ ︷�
J + A(2φ −Θ− EΘ)− EΘ

�
C(F +φ) +

1

2
(A− 1)

��
−ω−1τ= 0 . (A.38)

This is a depressed cubic equation in Z (Blinn, 2006). A cubic may have between one and three real

solutions. The number of solutions depends on the cubic’s polynomial discriminant.

The solution to the cubic function (Equation A.38) draws on the following composite vari-

ables: Q ≡ (1/3)ω−1σ and R ≡ −(1/2)ω−1τ and the polynomial discriminant D ≡ Q3 + R2 =
�
(1/27)ω−3σ3 + (1/4)ω−2τ2

�
. The solution of the cubic function is:

Z =
3
Æ

R+
p

D+
3
Æ

R−
p

D, which implies that n=
1

ZΘ
− d

w
− 1. (A.39)

The expression for Z has one unique real root when the polynomial discriminant is positive (D > 0)

and three real roots when it is negative. In all cases, the solutions for n may lie outside the interval

[0, N − 1]. In such cases, the profit-maximizing solution may be a corner solution.

Due to the possible multiplicity of real solutions for n, we simulate the model (Figure A-2).

This reveals the share of firms obtaining FTO by the invalidation of the original patent remains a

U-shaped function in the size of the original innovation. These results are captured in Prediction 1.

Next, we derive the results underpinning Prediction 2. Consider the effect of varying the size of the

follow-on innovation ∆c for the optimal number of licenses, holding all else constant. To derive the

effect, we use the implicit function theorem.

Where the FOC—Equation A.35—is equal to zero, we have a function L(n̂,∆c) = 0, and:

∂ n̂

∂∆c
= − ∂ L

∂∆c

�
∂ L

∂ n̂
. (A.40)

The denominator is negative as long as the SOC is negative, indicating that n̂ is a maximum. The

numerator’s sign depends on the sign of the following derivative:

∂ L

∂∆c
=

�
F +φΘ

d
w + 1

A
+
∆c

∆c

��
(A− 1)A

[A− B]2
− 1

�
+ 2
∆c

∆c
Θ (n+ 1) . (A.41)

We can show that the term in round brackets is positive if:

d

w
>

Θ(n̂+ 1)2

1− 2Θ(n̂+ 1)
where (1− 2Θ(n̂+ 1))> 0 . (A.42)

To interpret this expression, notice that if ∆c → 0, there will be few or no licenses (n̂ = 0). If

there are no licenses and products are perfect substitutes, the derivative is positive as long as d/w>

(N −1)(−1). Where products become highly differentiated (Θ→ 0), the derivative is always positive

in the limit. The inequality shows that L(n̂,∆c) increases in ∆c if the original innovation is small.
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Figure A-2: Invalidation effect: Variation in original and follow-on innovation size
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(b) FOI likely ( d
w = 20)
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(c) FOI very likely ( d
w = 1)
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(d) FOI unlikely ( d
w = 107)
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(e) FOI likely ( d
w = 20)
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(f) FOI very likely ( d
w = 1)
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Notes: This figure shows that the U-shape arises across a wide range of parameter constellations. Each graph plots the

share of firms receiving FTO only through patent invalidation. We compare this share for two distinct follow-on innovation

sizes (red and blue). From left to right, we increase the probability that follow-on innovation arises. Between the top and

bottom rows, we vary the levels of follow-on innovation size: small: 0.2 / large: 0.4 (top row) and small: 0.03 / large:

0.3 (bottom row). The SOCs are shown in grey. The simulation is based on the following other set parameters: N = 11,

T = 0.01, α− c̄ = 2, φ = 0.8, θ = 0.7.

Result 7 For a small original innovation, the optimal number of licenses n̂ increases in the size of

the follow-on innovation ∆c.

Next, consider the case in which the original innovation size is large so that n̂> 0. Unless products

are highly differentiated, it is likely that 2Θ(n̂+1)> 1. In this case, the optimal number of licenses

decreases in the size of the follow-on innovation.

Result 8 For a sufficiently large original innovation, the optimal number of licenses n̂ decreases in

the size of the follow-on innovation ∆c unless products are highly differentiated.

This latter result is due to rent dissipation. That is, for a large original innovation, an increase

in the size of the follow-on innovation intensifies rent dissipation, decreasing the optimal number

of licenses and thereby strengthening the invalidation effect. This is true unless products are highly

differentiated, such that rent dissipation is negligible.
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These results underpin Prediction 2. A valuable follow-on innovation weakens the invalidation

effect for low-value original innovations, i.e., where few or no licenses are provided. Conversely,

a valuable follow-on innovation likely strengthens the invalidation effect for high-value original

innovations.

Note that the boundary for what constitutes a “sufficiently large original innovation” depends

on the relative likelihood that no follow-on innovation arises, i.e., d/w. The greater this relative

likelihood, the greater the range of the original innovation within which the optimal number of

licenses is increasing in the size of follow-on innovation. Figure A-3 below illustrates this shift in

range in detail: as d/w falls, the range in which an increase in follow-on innovation size increases

the number of licenses shrinks.

Figure A-3: Invalidation effect: Detail of crossing functions
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(b) Follow-on innovation very likely ( d
w = 1)
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Notes: This figure shows that the crossing point, where the number of firms that obtain FTO through invalidation is lower

for more valuable follow-on innovation is higher, shifts to lower values of the original innovation as the probability that

no follow-on innovation arises becomes comparatively less likely. Each graph plots the share of firms receiving FTO only

through patent invalidation. We compare this share for two distinct follow-on innovation sizes (red and blue). The SOCs

are shown in grey. In both panels, the follow-on innovation sizes are 0.03 (blue) and 0.3 (red). The simulation is based

on the following other set parameters: N = 11, T = 0.05, α= 2, φ = 0.8, θ = 0.7.

Figure A-3 shows that the invalidation effect is weakened as the value of the follow-on innovation

increases. This effect arises because the greater value of the follow-on innovation compensates for

the transaction costs. As the value of the original innovation increases, the patentee provides so

many licenses that rent dissipation overwhelms the effect of transaction costs. Here, an increase in

the value of the follow-on innovation reduces the invalidation effect. Overall the loci of solutions

to the problem of selecting the optimal size of the invalidation effect vary with the value of the

follow-on innovation. We select two of these loci and demonstrate that they cross.
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Stage 1: Challenging patent validity

Validity challenges arise where the patent on the original innovation is probabilistic (Lemley and

Shapiro, 2005); i.e., there is a possibility that the patent can be invalidated through a validity chal-

lenge. There are two kinds of patent validity challenges: i) post-grant opposition, filed shortly after

patent grant and typically before licensing, and ii) litigation, which involves infringement allega-

tions and generally follows licensing decisions. We focus on post-grant opposition, which is the kind

of validity challenges we observe in our data.

We model validity challenges arising from asymmetric stakes: the joint surplus from settlement

is lower than the surplus from taking the validity challenge forward.53 When the probability of

invalidation is sufficiently high, the challenging firm’s expected value of gaining FTO may outweigh

the costs of a validity challenge. The patentee may benefit from not settling if winning the validity

challenge raises her future profits. Winning a validity challenge can make the patentee appear tough

or may raise the perceived probability that her patent is valid.54

To explain which firm challenges a patent, we assume that there is a probability ζ with which

each firm in the market has information that the patent may be invalid. Even if ζ is low, the overall

probability of a validity challenge will increase with the number of firms in the market No. That is,

the overall probability g that the patent is challenged by at least one firm is:

g(No) = 1− (1− ζ)(No−1) . (A.43)

Note that the number of challenging firms per patent is typically very low. Without loss of generality,

we assume below that there is just one challenging firm. A firm with information on the patent’s

invalidity has two options: either to pursue the validity challenge or to accept a settlement proposed

by the patentee (if available).

We assume the validity challenge has two outcomes: the patent is either upheld or invalidated.

The expected value of competing for the follow-on innovation after invalidation (V I) is:

V I =
w

w(n+ 1) + d
πifL +

wn

w(n+ 1) + d

�
n

No − 1
πifl +

No − n− 1

No − 1
πifr

�
+

d

w(n+ 1) + d
πin − H(w) .

53Validity challenges also arise for other reasons such as asymmetric information (Lanjouw and Lerner, 2000). As it is

more challenging to explain how asymmetric information persists, we do not pursue this explanation here.
54In the cases outlined above, the patentee can expend greater resources to win a challenge than the challenging firm.

This imbalance may lead to a positive correlation between the patentee’s profits in the product market and the probability

of a challenged patent being upheld. This can contribute to a positive correlation between innovation value and patent

validity.
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Firm incentives to challenge the original patent Assume the patent is found invalid with prob-

ability η, then 1−η is a measure of patent validity. A challenge is filed where:

ηV I + (1−η)V u
s,i − Co > V u

s,i , (A.44)

where Co represents the costs of challenging the patent, V u
s,i is the challenging firm’s expected profit

if being excluded from the pool of licensees, and V u
s,i is the challenging firm’s expected payoff from

not challenging the patent. The boundary on patent validity (1−η) below which a validity challenge

will be pursued is:

1−
V u

s,i − V u
s,i

V I − V u
s,i

− Co

V I − V u
s,i

≥ (1−η) . (A.45)

Higher costs of challenging decrease the probability of a validity challenge. Notice that as the original

innovation size (∆c) increases, the patentee licenses fewer firms. This reduces the cost of being

excluded from the pool of licensees: lim
∆c→(α−c)(V

u
s,i − V u

s,i) = 0. Note also that V I is not a function

of ∆c and that V u
s,i is decreasing in ∆c since the challenging firm is excluded from the pool of

licensees. Overall this implies that as the value of the original innovation increases, patents with

higher validity are more likely to be challenged.

Now consider the effect of variation in the size of the follow-on innovation∆c. An increase in∆c

reinforces the rent dissipation effect and reduces the number of licenses offered, reducing V u
s,i−V u

s,i .

V I increases in ∆c. By implication, as the value of the follow-on innovation increases, patents with

higher validity are more likely to be challenged.

Result 9 The likelihood of a high-validity patent being challenged increases in the size of the original

innovation ∆c and the size of the follow-on innovation ∆c.

Patentee incentives to contest the challenge We define γ ≥ 1 as a parameter capturing an in-

crease in the expected value of the patentee’s profits after winning a patent validity challenge. As

noted above, winning a patent validity challenge reduces the likelihood of future challenges, raising

profits. The patentee will prefer to contest the validity challenge where:

ηV I + (1−η)V u
p γ− Co > V u

p . (A.46)

The boundary on validity above which the patentee contests the challenge to a decision is:

(1−η)> 1− (γ− 1)
V u

p�
V u

p γ− V I
� + Co�

V u
p γ− V I

� . (A.47)

Where the increase in expected value from winning a challenge outweighs the costs of a validity

challenge (V u
p (γ− 1)− Co > 0), the patentee will not settle a challenge brought against her patent.
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The boundary above which the patentee contests the validity challenge is declining in the size of the

original innovation (∆c) as long as V I/(V I − Co)> γ.

Result 10 The likelihood of a low-validity patent being challenged decreases in the size of the

follow-on innovation ∆c.

Selection into validity challenges The challenging firm’s and the patentee’s incentives to pur-

sue the validity challenge have implications for the relationship of patent validity and patent value

(capturing both the value of the original and the follow-on innovation) among patents selected into

validity challenges. If the patentee does not have the option to settle the validity challenge, then Re-

sult 8 by itself leads to a positive correlation between patent validity and patent value. Conversely, if

the patentee has the option to settle the validity challenge, then both Result 8 and Result 9 combined

lead to the same positive correlation.

Now consider the effect of the cost of a validity challenge. Figure A-4 illustrates which patents,

characterized by their validity and innovation size, are selected into a validity challenge: patents

that are below the solid (A.45) and above the dashed boundary (A.47). Increasing the cost of a

validity challenge shifts both boundaries, resulting in a smaller set of patents selected into a validity

challenge. The upper boundary shifts down, while the lower boundary shifts up: the two boundaries

for the high-cost setting are contained wholly within those for the low-cost setting.

Figure A-4: Selection into validity challenge by patent validity (1−η) and innovation size (∆c)
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Result 11 The average original innovation size of patents being challenged increases in the cost of

the validity challenge Co.
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A.4 Extension 1: One external patentee – Game Ge

This extension underpins Prediction 3. We set out how the original patentee’s licensing incentives

change when she does not compete with the licensees in the product market. In other words, the

original patentee is external to the licensees’ product market. The lack of competition between

the patentee and her licensees in the product market removes the direct rent dissipation effect.

However, the patentee takes into account that the marginal license still reduces the rents of infra-

marginal licensees. By implication, rent dissipation still limits the number of licenses the patentee

offers. Note that we assume that there are No firms in the licensees’ product market as previously.

Again, we compare different outcomes depending on whether follow-on innovation arises and

whether the patentee is the follow-on innovator.

Outcome Ie The original patent is invalidated, and no follow-on innovation arises. The patentee

makes no profits, and all remaining firms make profits πin, as defined above.

Outcome IIe The original patent is upheld, and no follow-on innovation arises.

Define Ψe
un ≡

�
(α− c)(1− N0Θ)−Θ∆cn

�
and Λe

un ≡ Γ
�
Ψ

e
un +∆c

�2
− Γ (Ψe

un)
2. Profits are:

πe
s = n

�
φΛe

un − T
�

. (A.48)

Outcome IIIae The original patent is upheld, and the original patentee is the follow-on innovator.

The original patentee licenses the follow-on patent to the n firms that also licensed the original

patent. Define Ψe
u f
≡
�
(α− c)(1− N0Θ)−Θ∆cn

�
and Λe

u f
≡ Γ∆c

�
2Ψe

u f
+∆c

�
. Profits are:

πe
p = n

�
φΛe

u f
− T

�
. (A.49)

Outcome IIIbe The original patent is upheld, but the patentee is not the follow-on innovator. In

this case, the original patentee’s profits remain at πe
s . As a result, the dynamic returns to licensing

derive only from the outcome in which the original patentee also secures the follow-on innovation.

Outcome IVe The original patent is invalidated, and follow-on innovation arises. The patentee

makes no profits, and all remaining firms make profits πe
ifL

, πe
ifl

, πe
ifr

, as defined above.

We focus our discussion on the analysis of Stage 2 of the game. This is where differences between

the licensing incentives for an internal and an external patentee arise.

The value of follow-on innovation for the patentee (V u,e
p ) is:

V u,e
p =πe

s +
1

new+ d

�
w
�
πe

p −πe
s

��

︸ ︷︷ ︸
πe

u f

− H(w) . (A.50)

Here, πe
u f

is the dynamic return of licensing for an external patentee. Substituting out terms in the
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dynamic return shows the expected dynamic return is the product of a probability that increases in

the number of licenses and a difference term only subject to indirect rent dissipation.

V u,e
p =πe

s +
new

new+ d

�
φ
�
Λ

e
u f
−Λe

un

��
− H(w) . (A.51)

Note that these terms are also present in the dynamic returns of the internal patentee. However, the

internal patentee’s dynamic returns also subsume additional terms reflecting direct rent dissipation.

This lowers the dynamic returns to licensing relative to the case of the external licensee.

Next, we focus on the static return to licensing and demonstrate that the absence of the direct

rent dissipation effect increases the patentee’s incentives to license out.

The static optimization problem for the original patentee is:

max
ne

s

πe
s (n

e
s ) = ne

sφΓ∆c
�
2Ψe

un +∆c
�
− ne

s T . (A.52)

The original patentee selects n̂e
s licenses :

n̂e
s =

1

2Θ

�
(α− c)

∆c
(1− N0Θ) +

1

2
− T

2φΓ∆c2

�
. (A.53)

Result 12 If static licensing returns are not negligible, the optimal number of licenses n̂ increases

with no product market competition between the original patentee and the licensees.

To see this, note that:

n̂e
s − n̂s =

1

2(2φ −Θ)

�
(α− c)

∆c
(1− N0Θ) +

(T )

φΓ∆c2
+

1

2
(3+ (φ −Θ))

�
> 0 .

A similar result is derived by Arora and Fosfuri (2003).

In sum, if there is no product market competition with the licensees, the patentee has stronger

incentives to license out than the patentee in the baseline model due to the lack of a direct rent

dissipation effect. However, the patentee and potential licensees may face higher transaction costs

T across product markets. These countervailing forces underpin Prediction 3.

A.5 Extension 2: Multiple original patentees – Game G′

This section extends our analysis to settings with multiple original patentees and discusses the im-

plications for the patentee’s licensing decision and the invalidation effect. We note the implications

of this discussion in Section 2.2.

For simplicity, we limit our case to two original patentees, each holding one of two cost-reducing

original innovations (A and B, respectively). We assume that firm A’s original patent is challenged;

this is without loss of generality.
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A.5.1 Substitute technologies

We start with the case where A and B are perfect substitutes: licensees can license either original

innovation A or B to the same effect.

The main insight here is that competition in the market for technology, i.e., competition between

the two original patentees for licensees, generates higher aggregate levels of licensing than in the

baseline case with a single original patentee. The incentive to license to more firms has two reasons:

i) each patentee is seeking licensing income but ignores the resulting rent dissipation effect for the

other patentee, and ii) each patentee anticipates that a follow-on innovation building on the other

patentee’s innovation will reduce her licensing income and product market profits (if licensees can

switch between technologies). Overall we expect that:

Result 13 In the case of substitute original innovations, the optimal number of licenses of the two

original patentees is jointly larger than that of the single original patentee.

The implication is that the invalidation effect is weakened (fewer firms obtain FTO only through

invalidation) in this case relative to the baseline case.

A.5.2 Multiple patentees with complement technologies

Now consider the case in which the patentees license out original innovations that are complemen-

tary technologies. We assume that each innovation reduces licensees’ costs by δk where k ∈ {A, B}.

The combination of both can be super-additive: c = c − (δA+δB)
ξ, where ξ≥ 1.

Super-additivity has a number of implications: i) a firm with a license of one of the two inno-

vations will benefit more from licensing the other innovation than another firm without a license

on the first innovation, ii) the two patentees have very strong incentives to cross-license each other,

and (iii) the patentee licensing out innovation B after the patent on A has been invalidated will act

as if she is licensing out an innovation of value ∆c −δA.

These considerations suggest that we can expect the original patentees to coordinate their li-

censing activities; for instance, in the form of a formal or informal patent pool (Lerner and Tirole,

2004). In a patent pool, the patentees cross-license and jointly license out their innovations. With

respect to licensing, a pool behaves like a single patentee. The only difference is that each patentee’s

profit is reduced by a fixed cost to set up the pool. This does not necessarily affect the equilibrium

number of licenses offered by the pool (n̂P = n̂) as these costs are independent of the number of

licenses the pool issues. Nonetheless, transaction costs may still be larger simply due to the larger

number of involved patentees. This would further reduce the optimal number of licenses relative to

the baseline model.
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Where no pool can be formed, the patentees set license fees independently. The theoretical

literature has shown that this lack of coordination leads to royalty stacking (Shapiro, 2001): the fee

paid by licensees is much higher and may cause the market for technology to break down. In such

a case, there would only be cross-licensing between the two patentees. We focus on the case of the

pool to simplify the following analysis.

Result 14 In the case of complementary original innovations, the optimal number of licenses of the

two original patentees is weakly smaller than that of the single original patentee.

The most interesting aspect of complements relates to the consequences when the patent of one

of the innovations is invalidated. The remaining patentee faces a situation in which her patent is

the only patent to be licensed.

When patent A is invalidated, all firms in the market are able to reduce their marginal costs by

δA. Against this backdrop, the remaining patentee acts as if she was licensing an innovation of value

∆c − δA, leading her to offer more licenses than the pool would have offered for both innovations.

This effect is larger the more valuable the original innovation of the invalidated patent relative to

the other original innovation, i.e., the larger δA relative to δB.

The implication is that patent invalidation typically will not result in every firm in the market

obtaining FTO through invalidation. Rather invalidation has a muted effect on FTO as the second

patentee will likely restrict licensing:

Result 15 In the case of complementary original innovations of equal size, the number of firms that

obtain FTO through invalidation is smaller than that in the case of a single original patentee.
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B Additional Descriptives

Figure B-1: Distribution of patent thicket density in discrete and complex technology areas
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Notes: This figure shows the distribution of the patent thicket density. Panel (a) shows the distribution of the patent

thicket density for patents granted between 1993 and 2000. Panel (b) shows the distribution of triples for patents inval-

idated granted between 2001 and 2013. The measure of patent thicket density is based on the log-transformed number

of citation constellations in which three patentees can mutually block each other (Von Graevenitz et al., 2011). The level

of observation is the opposed patent.

Figure B-2: Annual number of opposed patents and sample rate
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Notes: This graph includes all opposition proceedings (at the patent level) with a grant date between 1993 and 2011.

The low sample rate in the first year is due to the fact that the EPO introduced the grant document type that contains

examiner names only in mid-1993. The sample includes oppositions with an outcome after 2013.
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Table B-1: Groups of control variables

Group name Variables in group

Year effects Dummies for grant year

Dummies for opposition outcome year

Age effects Dummies for age in years

Technology effects Dummies for IPC4 technology class (567)

Dummies for technology field (34) [alternatively]

Patent characteristics log(Number of claims)

log(1 + 3 yr self citations)

log(1 + 3 yr other citations)

log(1 + Patent thicket density)

log(1 + Number of patent literature references)

Dummy for PCT application

Dummy for accelerated examination

Dummy for examination in Munich

Dummies for publication language

Family size

Number of IPC classes

Number of inventors

Principal component (claims, family size, IPC classes)

Duration of examination

Duration of wait until examination

Patentee characteristics Number of applicants

Dummies for patentee country

Dummy for patentee corporation

Dummies for patentee size (Orbis):

tertiles within technology: small – medium – large

Opponent characteristics Number of opponents

Dummies for opponent country

Dummy for opponent corporation

Dummies for opponent size (Orbis):

tertiles within technology: small – medium – large
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Table B-2: Summary statistics of patent and opposition characteristics

Mean SD Min Max

Patent characteristics

Self citations (3 yrs after filing) 0.39 0.98 0 19

Other citations (3 yrs after filing) 0.81 1.74 0 82

Other citations (5 yrs after decision) 0.80 1.43 0 32

Age of patent (yr) 8.94 2.56 3 26

DOCDB family size 10.73 10.94 1 269

EP family size 0.38 0.26 0 1

No of applicants 1.07 0.31 1 13

No of inventors 2.64 1.79 1 21

No of claims 13.59 10.09 1 329

No of IPC tech classes 2.64 2.35 1 50

Principal component -0.00 1.12 -2 16

Patent backward references 4.98 2.94 0 57

PCT application (d) 0.45 0.50 0 1

Year of first filing 1996.37 5.25 1978 2009

Year of grant 2002.13 5.15 1993 2012

Examined in Munich (d) 0.81 0.39 0 1

Duration filing to examination (yrs) 1.77 1.27 0 19

Duration of examination (yrs) 3.99 1.87 0 16

Accelerated examination (d) 0.12 0.32 0 1
Opposition proceeding

Number of opponents 1.22 0.62 1 18

Examiner participation (d) 0.58 0.49 0 1

Year of first outcome 2005.30 5.27 1994 2013

Outcome: valid (d) 0.29 0.45 0 1

Outcome: invalid (d) 0.71 0.45 0 1

Appeal 0.47 0.50 0 1

Outcome reversed 0.08 0.27 0 1

Observations 38,405

Notes: This table presents the patent and opposition proceeding characteristics. The level of observation is the opposed

patent.
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Table B-3: Summary statistics of patentee and opponent characteristics

Patentees Opponents

Mean SD Min Max Mean SD Min Max

Sector

Corporate (d) 0.94 0.24 0 1 0.97 0.17 0 1
Country of residence

EU (d) 0.58 0.49 0 1 0.83 0.38 0 1

GB (d) 0.04 0.20 0 1 0.04 0.20 0 1

US (d) 0.23 0.42 0 1 0.10 0.30 0 1

JP (d) 0.11 0.32 0 1 0.02 0.14 0 1

RoW (d) 0.03 0.16 0 1 0.01 0.10 0 1
Size

Small (d) 0.23 0.42 0 1 0.26 0.44 0 1

Medium (d) 0.23 0.42 0 1 0.22 0.42 0 1

Large (d) 0.54 0.50 0 1 0.51 0.50 0 1

Patent portfolio size 670.97 1574.85 0 14007 714.55 1651.78 0 14007

Observations 38,405 38,405

Notes: This table presents the patentee and opponent characteristics. In the case of multiple patentees or opponents per

opposed patent, we give preference according to the ordering of sector, country of residence, and size. Size categories

are drawn from firm-level data in ORBIS. Patent portfolio size is the total number of EP patent applications filed during

the last five years prior to the opposition decision. The level of observation is the opposed patent.
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Table B-4: Summary statistics of citation characteristics

Citations (other)

Mean SD Min Max

Publication authority

EPO 0.60 0.49 0 1

WIPO 0.40 0.49 0 1
Citation characteristics

XY citation 0.53 0.50 0 1

Citation lag (yrs) 10.99 2.83 4 26

Same tech class 0.55 0.50 0 1

Same industry 0.52 0.50 0 1

Same country 0.56 0.50 0 1

Family size 6.41 6.18 1 268

No of claims 16.63 14.56 1 500

No of IPC tech classes 1.60 1.56 1 40
Citing patentee

Corporate (d) 0.94 0.24 0 1

Age (in yrs) 16.60 9.91 -3 38
Country of residence

EU (d) 0.59 0.49 0 1

GB (d) 0.04 0.19 0 1

US (d) 0.23 0.42 0 1

JP (d) 0.09 0.29 0 1

RoW (d) 0.05 0.22 0 1
Size

Small (d) 0.26 0.44 0 1

Medium (d) 0.20 0.40 0 1

Large (d) 0.54 0.50 0 1

Patent portfolio size 738.19 1678.52 0 17416

Observations 36,314

Notes: This table reports the characteristics of the citing EP patents held by entities other than the focal patentee. In case

of multiple citing applicants, we give preference according to the ordering of sector, country of residence, and size. Size

categories are drawn from firm-level data in ORBIS. Patent portfolio size is the total number of EP patent applications

filed during the last five years prior to the opposition decision. The unit of observation is the citation.

Table B-5: Summary statistics of patent value indicators

All patents (N= 38, 405)

Mean SD Min Max (1) (2) (3) (4) (5) (6)

(1) –1st claim length -142.76 92.05 -2746.00 -1.00

(2) Claims 13.59 10.09 1.00 329.00 -0.002

(3) Family size 0.38 0.26 0.00 1.00 0.082 0.088

(4) Inventors 2.64 1.79 1.00 21.00 -0.022 0.121 -0.004

(5) IPC classes 2.64 2.35 1.00 50.01 0.006 0.076 0.166 0.091

(6) KPSS (2017) values 24.29 55.65 0.00 966.44 0.029 0.017 0.083 -0.001 0.083

(7) Princ. comp. of (2), (3) and (6) -0.00 1.12 -1.89 16.24 0.044 0.516 0.642 0.106 0.737 0.100

Notes: This table reports summary statistics of several value indicators of the opposed patents. Family size is the EP patent

family size (i.e., the share of countries in which the respective EP patent has been validated). The unit of observation is

the opposed patent.
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Table B-6: Summary statistics of citation subset characteristics in the full sample and in patent value

quartiles

All patents (N= 38, 405)

Mean SD Min Max (1) (2) (3) (4)

(1) log(Citations) 0.41 0.55 0 3.50

(2) - with high value 0.22 0.41 0 2.94 0.788

(3) - in same industry 0.31 0.49 0 3.37 0.872 0.691

(4) - in same country 0.22 0.42 0 3.33 0.731 0.567 0.640

(5) - in same tech class 0.24 0.43 0 3.50 0.759 0.592 0.669 0.568

Patents in value Q1 (N= 9, 859)

Mean SD Min Max (1) (2) (3) (4)

(1) log(Citations) 0.31 0.48 0 2.71

(2) - with high value 0.15 0.34 0 2.48 0.737

(3) - in same industry 0.24 0.43 0 2.71 0.869 0.643

(4) - in same country 0.16 0.35 0 2.64 0.707 0.489 0.605

(5) - in same tech class 0.19 0.38 0 2.71 0.770 0.578 0.679 0.558

Patents in value Q2 (N= 9, 514)

Mean SD Min Max (1) (2) (3) (4)

(1) log(Citations) 0.36 0.51 0 3.50

(2) - with high value 0.19 0.38 0 2.94 0.766

(3) - in same industry 0.27 0.46 0 2.89 0.865 0.667

(4) - in same country 0.20 0.39 0 2.89 0.729 0.557 0.632

(5) - in same tech class 0.22 0.41 0 3.50 0.776 0.590 0.679 0.586

Patents in value Q3 (N= 9, 678)

Mean SD Min Max (1) (2) (3) (4)

(1) log(Citations) 0.42 0.54 0 3.22

(2) - with high value 0.23 0.41 0 2.71 0.780

(3) - in same industry 0.32 0.49 0 2.94 0.870 0.686

(4) - in same country 0.23 0.42 0 2.48 0.739 0.562 0.646

(5) - in same tech class 0.25 0.44 0 3.22 0.755 0.579 0.661 0.570

Patents in value Q4 (N= 9,354)

Mean SD Min Max (1) (2) (3) (4)

(1) log(Citations) 0.53 0.62 0 3.37

(2) - with high value 0.32 0.49 0 2.77 0.824

(3) - in same industry 0.41 0.56 0 3.37 0.874 0.719

(4) - in same country 0.28 0.48 0 3.33 0.727 0.599 0.646

(5) - in same tech class 0.30 0.49 0 3.26 0.734 0.599 0.650 0.546

Notes: This table reports summary statistics of the citation subsets used as dependent variables in the heterogeneity

analyses. Citations from high-value patents are those where the citing patent has an above-average patent value (based

on the principal component of claims, IPC classes, and family size). Citations from the same tech class are defined as

those where challenged and citing patent share the same primary IPC4 technology code. Citations from the same industry

are defined as those where both patentees share the same 3-digit primary NACE Rev. 2 industry code. Citations from the

same country are defined as those where both patentees share the same country of residence (EU, UK, US, JP, RoW). The

subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC classes, and

family size) in the stated quartile. The patent value distribution is stratified by technology field and year to account for

time- and technology-specific variation. The unit of observation is the opposed patent.
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C Additional Results and Robustness Checks

C.1 Average invalidation effect

Table C-1: Effect of patent invalidation on follow-on innovation (additional fixed effects)

(1) (2) (3) (4) (5) (6)

Estimation method OLS 2SLS OLS 2SLS OLS 2SLS

Dep var Invalidated (d)

Invalidated (d) −0.009 0.187∗∗∗ −0.008 0.099∗ −0.017∗∗ 0.165∗∗

(0.007) (0.058) (0.006) (0.059) (0.008) (0.066)

Covariates Full Full Full Full Full Full

Additional fixed effects IPC4×yr IPC4×yr Examiner Examiner Exam.×yr Exam.×yr

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41

Model degrees of freedom 85 3,459 651 2,627 636 5,447

Underidentification test 374.9 373.6 276.6

Weak identification test 524.3 512.7 276.8

Observations 36,451 32,744 37,548 35,441 30,491 20,285

Notes: The probit regressions in columns (1) and (2) show the relevance of the “Examiner participation” dummy for

the opposition outcome. Columns (1) to (6) compare the OLS and the 2SLS regressions for the effect of invalidation

on citations by others in a 5-year window following the opposition outcome. One is added to all citation variables

before taking the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is

instrumented with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy

and all other exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust

Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum

et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors

are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-2: Effect of patent invalidation on follow-on innovation – (other operationalizations of

“Invalidated”)

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated (appeal) (d) 0.011∗ 0.108∗∗∗ 0.003 0.181∗∗∗ 0.078∗∗∗ 0.573∗∗∗

(0.006) (0.022) (0.006) (0.065) (0.019) (0.087)
× Patent thicket density −0.015∗∗∗ −0.092∗∗∗

(0.003) (0.015)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 2,684.1 270.4 263.5
Weak identification test 3,540.7 579.7 275.2
Observations 38,250 38,250 38,250 38,250 38,250 38,250

(7) (8) (9) (10) (11) (12)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated (no reversal) (d) 0.014∗∗ 0.131∗∗∗ 0.005 0.180∗∗∗ 0.080∗∗∗ 0.580∗∗∗

(0.006) (0.023) (0.006) (0.062) (0.019) (0.086)
× Patent thicket density −0.015∗∗∗ −0.094∗∗∗

(0.004) (0.015)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 2,676.0 307.2 298.8
Weak identification test 3,520.1 638.2 300.9
Observations 38,245 38,245 38,245 38,245 38,245 38,245

(13) (14) (15) (16) (17) (18)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated claims>p(50) (d) −0.023∗∗∗ −0.037∗ −0.022∗∗∗ 0.106∗ 0.054∗∗∗ 0.548∗∗∗

(0.006) (0.020) (0.006) (0.062) (0.017) (0.091)
× Patent thicket density −0.015∗∗∗ −0.092∗∗∗

(0.003) (0.013)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 3,144.9 95.9 96.8
Weak identification test 4,288.3 483.0 243.4
Observations 38,226 38,226 38,226 38,226 38,226 38,226

(19) (20) (21) (22) (23) (24)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated claims (share) −0.040∗∗∗ 0.083∗∗∗ −0.037∗∗∗ 0.173∗∗ 0.043∗∗ 0.717∗∗∗

(0.006) (0.026) (0.006) (0.075) (0.019) (0.115)
× Patent thicket density −0.015∗∗∗ −0.126∗∗∗

(0.003) (0.017)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 1,990.6 118.0 122.7
Weak identification test 2,317.6 242.7 125.8
Observations 38,226 38,226 38,226 38,226 38,226 38,226

Notes: Columns (1) to (6), (7) to (12), (13) to (18), and (19) to (24) correspond to the OLS and 2SLS regression

specifications in Table 2, with alternative operationalization of patent invalidation. “Invalidated (appeal)” is based on

the latest (i.e., appeal) outcome. “Invalidated (no reversal)” is based on invalidation outcomes irrespective of the first

outcome or the appeal outcome. “Invalidated claims>p(50)” splits amendments at the median of the share of lost claims.

“Invalidated claims (share)” is a linear variable. One is added to all citation variables before taking the logarithm to include

patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding

probability predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables.

The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM

and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-3: Effect of patent invalidation on follow-on innovation (different citation sets and similar

patents)

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Examiner citations)

Invalidated (d) −0.002 0.056∗∗∗ −0.007 0.170∗∗∗ 0.066∗∗∗ 0.602∗∗∗

(0.006) (0.021) (0.006) (0.064) (0.018) (0.088)
× Patent thicket density −0.014∗∗∗ −0.098∗∗∗

(0.003) (0.013)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 2,845.0 253.8 252.1
Weak identification test 3,774.5 482.6 236.1
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(7) (8) (9) (10) (11) (12)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(XY-type citations)

Invalidated (d) 0.014∗∗∗ 0.155∗∗∗ 0.002 0.078 0.064∗∗∗ 0.343∗∗∗

(0.005) (0.016) (0.005) (0.050) (0.014) (0.067)
× Patent thicket density −0.012∗∗∗ −0.060∗∗∗

(0.003) (0.010)
Covariates None None Full Full Full Full

Dep var mean 0.24 0.24 0.24 0.24 0.24 0.24
Underidentification test 2,844.4 253.1 251.6
Weak identification test 3,772.1 483.1 236.5
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(13) (14) (15) (16) (17) (18)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(USPTO citations)

Invalidated (d) 0.082∗∗∗ 1.200∗∗∗ −0.018∗ 0.062 0.071∗∗ 0.732∗∗∗

(0.012) (0.044) (0.009) (0.106) (0.028) (0.140)
× Patent thicket density −0.018∗∗∗ −0.152∗∗∗

(0.005) (0.021)
Covariates None None Full Full Full Full

Dep var mean 1.07 1.07 1.07 1.07 1.07 1.07
Underidentification test 2,857.0 254.7 253.0
Weak identification test 3,790.3 483.0 236.2
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(19) (20) (21) (22) (23) (24)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Similar patents)

Invalidated (d) −0.024∗∗∗ −0.280∗∗∗ 0.000 0.077∗∗ 0.008 0.098∗

(0.005) (0.017) (0.004) (0.039) (0.013) (0.057)
× Patent thicket density −0.002 −0.005

(0.002) (0.008)
Covariates None None Full Full Full Full

Dep var mean 0.12 0.12 0.12 0.12 0.12 0.12
Underidentification test 2,846.3 253.7 252.4
Weak identification test 3,777.7 485.0 237.8
Observations 38,271 38,271 38,271 38,271 38,271 38,271

Notes: Columns (1) to (6), (7) to (12), (13) to (18), and (19) to (24) correspond to the OLS and 2SLS regression speci-

fications in Table 2, with alternative measures of follow-on innovation: citations of higher technical relevance (examiner

citations, XY-type citations), citations from a different patent (USPTO citations), and patents with high textual similarity

to the respective opposed patent. One is added to all citation variables before taking the logarithm to include patents

without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding probability

predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables. The un-

deridentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and

Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-4: Effect of patent invalidation on follow-on innovation (alternative operationalization /

Poisson regressions)

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var asinh(Citations)

Invalidated (d) −0.002 0.086∗∗∗ −0.009 0.193∗∗ 0.084∗∗∗ 0.749∗∗∗

(0.008) (0.027) (0.008) (0.083) (0.024) (0.114)
× Patent thicket density −0.018∗∗∗ −0.126∗∗∗

(0.004) (0.017)
Covariates None None Full Full Full Full

Dep var mean 0.52 0.52 0.52 0.52 0.52 0.52
Underidentification test 2,845.0 253.8 252.1
Weak identification test 3,774.5 482.6 236.1
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(7) (8) (9) (10) (11) (12)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var Citations > 0 (d)

Invalidated (d) −0.003 0.015 −0.003 0.128∗∗ 0.049∗∗∗ 0.426∗∗∗

(0.006) (0.019) (0.006) (0.058) (0.017) (0.080)
× Patent thicket density −0.010∗∗∗ −0.068∗∗∗

(0.003) (0.012)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
Underidentification test 2,845.0 253.8 252.1
Weak identification test 3,774.5 482.6 236.1
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(13) (14) (15) (16) (17) (18)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var Citations

Invalidated (d) 0.008 0.253∗∗∗ −0.014 0.286 0.185∗∗∗ 1.477∗∗∗

(0.016) (0.056) (0.016) (0.188) (0.046) (0.242)
× Patent thicket density −0.039∗∗∗ −0.271∗∗∗

(0.009) (0.035)
Covariates None None Full Full Full Full

Dep var mean 0.80 0.80 0.80 0.80 0.80 0.80
Underidentification test 2,845.0 253.8 252.1
Weak identification test 3,774.5 482.6 236.1
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(19) (20) (21) (22) (23) (24)
Estimation method Poiss IV Poiss Poiss IV Poiss Poiss IV Poiss
Dep var Citations

Invalidated (d) 0.003 0.253∗∗∗ −0.023 0.291 0.230∗∗∗ 1.715∗∗∗

(0.020) (0.084) (0.020) (0.205) (0.057) (0.460)
× Patent thicket density −0.050∗∗∗ −0.318∗∗∗

(0.011) (0.070)
Covariates None None Full Full Full Full

Dep var mean 0.81 0.81 0.81 0.81 0.81 0.81
Observations 36,391 36,391 36,391 36,391 36,391 36,391

Notes: Columns (1) to (6), (7) to (12), (13) to (18), and (19) to (24) correspond to the OLS and 2SLS regression

specifications in Table 2, with different operationalizations of the dependent variable (inverse hyperbolic sine transfor-

mation, binary transformation, and a simple count). In columns (19) to (24), the IV estimation method is a Generalized

Method of Moments estimator of Poisson regression. Note that this latter method necessitates excluding a significant

number of observations within small technology fields due to the fixed effects, making it ill-suited for any subsample

analyses. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding probability pre-

dicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables. The underi-

dentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald

F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the con-

trol variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-5: Effect of patent invalidation on follow-on innovation (clustered standard errors)

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated (d) −0.001 0.067∗∗ −0.007 0.148∗∗ 0.066∗∗∗ 0.580∗∗∗

(0.008) (0.032) (0.007) (0.067) (0.022) (0.126)
× Patent thicket density −0.014∗∗∗ −0.098∗∗∗

(0.004) (0.019)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
SEs clustered at IPC4 level
Underidentification test 118.0 52.0 49.6
Weak identification test 6,229.5 484.8 229.2
Observations 38,271 38,271 38,271 38,271 38,271 38,271

(7) (8) (9) (10) (11) (12)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations)

Invalidated (d) −0.001 0.067∗ −0.007 0.148∗∗∗ 0.066∗∗∗ 0.580∗∗∗

(0.008) (0.040) (0.007) (0.056) (0.021) (0.115)
× Patent thicket density −0.014∗∗∗ −0.098∗∗∗

(0.004) (0.018)
Covariates None None Full Full Full Full

Dep var mean 0.41 0.41 0.41 0.41 0.41 0.41
SEs clustered at TF34 level
Underidentification test 24.8 19.7 19.2
Weak identification test 3,154.3 323.6 138.9
Observations 38,271 38,271 38,271 38,271 38,271 38,271

Notes: Columns (1) to (6) and (7) to (12) correspond to the OLS and 2SLS regression specifications in Table 2, with

standard errors clustered. The top part shows the results with standard errors clustered at IPC4 level (>500 clusters).

The lower part shows the results with standard errors clustered at technology field level (34 clusters). One is added

to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression, the

“Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the “Examiner

participation” dummy and all other exogenous variables. The underidentification and weak identification tests are the

heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s

ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1.

Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table C-6: Effect of patent invalidation on unique follow-on innovators (extensive margin)

(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS OLS 2SLS OLS 2SLS
Dep var log(Citations - extensive margin)

Invalidated (d) −0.002 0.050∗∗∗ −0.006 0.134∗∗ 0.059∗∗∗ 0.514∗∗∗

(0.006) (0.019) (0.006) (0.059) (0.017) (0.081)
× Patent thicket density −0.013∗∗∗ −0.086∗∗∗

(0.003) (0.012)
Covariates None None Full Full Full Full

Dep var mean 0.38 0.38 0.38 0.38 0.38 0.38
Underidentification test 2,845.2 253.7 252.0
Weak identification test 3,774.8 482.6 236.2
Observations 38,271 38,271 38,271 38,271 38,271 38,271

Notes: Columns (1) to (6) correspond to the OLS and 2SLS regression specifications in Table 2, with only one (i.e., the

earliest) citation per follow-on innovator considered. One is added to all citation variables before taking the logarithm to

include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with the correspond-

ing probability predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables.

The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM

and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.2 Effect heterogeneity by original innovation value

Figure C-1: Effect of patent invalidation on follow-on innovation – original innovation value (OLS

estimates)
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others. The model specifications are equivalent to the one in Table 2, column (3). The subsamples are

restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in

the stated quartile. The patent value distribution is stratified by technology field and year to account for time- and

technology-specific variation. The corresponding regression results can be found in Appendix Table C-7.

Figure C-2: Effect of patent invalidation on follow-on innovation – original innovation value (alter-

native value proxies)

(a) IV estimates
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(b) IV estimates with thickets interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and

(6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with the respective patent value proxy in the stated quartile. The patent value distribution is stratified by

technology field and year to account for time- and technology-specific variation.
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Figure C-3: Effect of patent invalidation on follow-on innovation – original innovation value (alter-

native sample split)
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(b) IV estimates with thickets interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and

(6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

tertile. The patent value distribution is stratified by technology field and year to account for time- and technology-specific

variation.
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Figure C-4: Effect of patent invalidation on follow-on innovation – original innovation value (alter-

native transformations of dependent variable)

Binary transformation of citation count
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(b) IV estimates with thickets interaction
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Inverse hyperbolic sine transformation of citation count

(c) IV estimates
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(d) IV estimates with thickets interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the instrumented invalidation coefficient

on citations by others, with different operationalizations of the dependent variable (binary transformation and inverse

hyperbolic sine transformation). The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns

(4) and (6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are

restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in

the stated quartile. The patent value distribution is stratified by technology field and year to account for time- and

technology-specific variation. The corresponding regression results can be found in Appendix Tables C-11 and C-12.
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Table C-7: Effect of patent invalidation on follow-on innovation – original innovation value

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.002 0.009 −0.009 −0.018
(0.011) (0.012) (0.013) (0.015)

Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Adjusted-R2 0.061 0.061 0.068 0.111
Observations 9,851 9,514 9,678 9,354

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.220 −0.144 0.080 0.325∗∗

(0.178) (0.116) (0.115) (0.135)
Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Underidentification test 39.4 35.2 93.6 102.8
Weak identification test 38.9 121.0 145.7 139.8
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.512∗∗ 0.191 0.505∗∗∗ 0.849∗∗∗

(0.203) (0.162) (0.175) (0.183)
× Patent thicket density −0.068∗∗ −0.074∗∗∗ −0.099∗∗∗ −0.118∗∗∗

(0.026) (0.027) (0.030) (0.027)
Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Underidentification test 38.3 34.3 92.7 102.4
Weak identification test 18.8 57.4 69.4 69.8
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in Table 2,

columns (3), (4) and (6), respectively. The subsamples are restricted to patents with a patent value (based on the principal

component of claims, IPC classes, and family size) in the stated quartile. The patent value distribution is stratified by

technology field and year to account for time- and technology-specific variation. One is added to all citation variables

before taking the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is

instrumented with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy

and all other exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust

Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum

et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors

are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table C-8: Coefficient comparison (Table C-7)

(1) (2) (3) (4)
Comparison betw/ patents in different value quartiles Q1 vs. Q2 Q1 vs. Q3 Q4 vs. Q2 Q4 vs. Q3

∆ Invalidated (d) 0.364∗ 0.141 0.469∗∗∗ 0.245
(0.217) (0.194) (0.175) (0.199)

Replications 100 100 100 100

(5) (6) (7) (8)
Comparison betw/ patents in different value quartiles Q1 vs. Q2 Q1 vs. Q3 Q4 vs. Q2 Q4 vs. Q3

∆ Invalidated (d) 0.321 0.007 0.658∗∗∗ 0.344
(0.300) (0.273) (0.198) (0.271)

Replications 100 100 100 100

Notes: This table compares the invalidation coefficients from Table C-7, columns (5) to (8) and (9) to (12) through a

bootstrap procedure with 100 replications each. Bootstrapped standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-9: Effect of patent invalidation on follow-on innovation – original innovation value (inter-

action with patentee size included)

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) −0.007 −0.008 0.022 −0.004
(0.016) (0.017) (0.017) (0.020)

× Large patentee (d) 0.017 0.030 −0.060∗∗ −0.029
(0.022) (0.023) (0.025) (0.028)

Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Adjusted-R2 0.061 0.061 0.069 0.111
Observations 9,851 9,514 9,678 9,354

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.302∗ −0.106 0.132 0.382∗∗∗

(0.179) (0.125) (0.130) (0.136)
× Large patentee (d) −0.211∗∗∗ −0.071 −0.106 −0.141

(0.079) (0.086) (0.091) (0.096)
Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Underidentification test 38.4 35.3 92.5 100.7
Weak identification test 19.0 60.6 72.8 68.0
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.576∗∗∗ 0.207 0.555∗∗∗ 0.879∗∗∗

(0.203) (0.166) (0.188) (0.183)
× Patent thicket density −0.065∗∗ −0.073∗∗∗ −0.099∗∗∗ −0.115∗∗∗

(0.026) (0.027) (0.030) (0.027)
× Large patentee (d) −0.200∗∗ −0.044 −0.101 −0.110

(0.079) (0.086) (0.092) (0.097)
Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Underidentification test 37.4 34.5 92.2 100.6
Weak identification test 12.3 38.2 46.5 45.4
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in Table

2, columns (3), (4) and (6), respectively. The interaction of Invalidation with a dummy indicating a large patentee is

additionally included. Patentee size is based on Orbis IP firm-level data. The subsamples are restricted to patents with a

patent value (based on the principal component of claims, IPC classes, and family size) in the stated quartile. The patent

value distribution is stratified by technology field and year to account for time- and technology-specific variation. One is

added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression,

the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the

“Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-10: Effect of patent invalidation on follow-on innovation – original innovation value (op-

ponent citations excluded)

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.002 0.013 −0.015 −0.022
(0.011) (0.011) (0.012) (0.014)

Covariates Full Full Full Full

Dep var mean 0.28 0.32 0.37 0.48
Adjusted-R2 0.058 0.069 0.066 0.108
Observations 9,851 9,514 9,678 9,354

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.201 −0.165 −0.078 0.155
(0.165) (0.104) (0.109) (0.125)

Covariates Full Full Full Full

Dep var mean 0.28 0.32 0.37 0.48
Underidentification test 39.5 34.9 93.4 103.1
Weak identification test 39.0 121.3 145.9 140.7
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.503∗∗∗ 0.210 0.238 0.621∗∗∗

(0.189) (0.151) (0.167) (0.170)
× Patent thicket density −0.070∗∗∗ −0.083∗∗∗ −0.073∗∗∗ −0.105∗∗∗

(0.025) (0.026) (0.028) (0.026)
Covariates Full Full Full Full

Dep var mean 0.28 0.32 0.37 0.48
Underidentification test 38.4 34.0 92.6 102.8
Weak identification test 18.9 57.4 69.6 70.2
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in

Table 2, columns (3), (4) and (6), respectively. The citation count excludes citations by the opponent. The subsam-

ples are restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family

size) in the stated quartile. The patent value distribution is stratified by technology field and year to account for time-

and technology-specific variation. One is added to all citation variables before taking the logarithm to include patents

without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding probability

predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables. The un-

deridentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and

Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.

72



Table C-11: Effect of patent invalidation on follow-on innovation – original innovation value (binary

transformation of dependent variable)

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep var Citations > 0 (d)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.010 0.006 −0.012 −0.008
(0.011) (0.011) (0.012) (0.012)

Covariates Full Full Full Full

Dep var mean 0.34 0.39 0.44 0.50
Adjusted-R2 0.048 0.044 0.050 0.069
Observations 9,851 9,514 9,678 9,354

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var Citations > 0 (d)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.227 −0.208∗ 0.080 0.300∗∗∗

(0.178) (0.115) (0.105) (0.111)
Covariates Full Full Full Full

Dep var mean 0.34 0.39 0.44 0.50
Underidentification test 39.4 35.2 93.6 102.8
Weak identification test 38.9 121.0 145.7 139.8
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var Citations > 0 (d)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.468∗∗ 0.008 0.424∗∗∗ 0.607∗∗∗

(0.203) (0.160) (0.162) (0.151)
× Patent thicket density −0.056∗∗ −0.048∗ −0.080∗∗∗ −0.069∗∗∗

(0.026) (0.027) (0.027) (0.022)
Covariates Full Full Full Full

Dep var mean 0.34 0.39 0.44 0.50
Underidentification test 38.3 34.3 92.7 102.4
Weak identification test 18.8 57.4 69.4 69.8
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in

Table 2, columns (3), (4) and (6), respectively. The citation count is transformed into a binary variable indicating a

positive citation count. The subsamples are restricted to patents with a patent value (based on the principal component

of claims, IPC classes, and family size) in the stated quartile. The patent value distribution is stratified by technology

field and year to account for time- and technology-specific variation. One is added to all citation variables before taking

the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented

with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy and all other

exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen

and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A

comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors are presented in

parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-12: Effect of patent invalidation on follow-on innovation – original innovation value (Inverse

hyperbolic sine transformation of dependent variable)

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep var asinh(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.003 0.011 −0.011 −0.024
(0.015) (0.015) (0.016) (0.019)

Covariates Full Full Full Full

Dep var mean 0.40 0.47 0.54 0.69
Adjusted-R2 0.061 0.061 0.068 0.110
Observations 9,851 9,514 9,678 9,354

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var asinh(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.290 −0.189 0.108 0.423∗∗

(0.231) (0.149) (0.149) (0.175)
Covariates Full Full Full Full

Dep var mean 0.40 0.47 0.54 0.69
Underidentification test 39.4 35.2 93.6 102.8
Weak identification test 38.9 121.1 145.7 139.8
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var asinh(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.666∗∗ 0.245 0.656∗∗∗ 1.094∗∗∗

(0.263) (0.210) (0.227) (0.237)
× Patent thicket density −0.087∗∗ −0.096∗∗∗ −0.128∗∗∗ −0.151∗∗∗

(0.034) (0.035) (0.038) (0.035)
Covariates Full Full Full Full

Dep var mean 0.40 0.47 0.54 0.69
Underidentification test 38.3 34.3 92.7 102.4
Weak identification test 18.8 57.4 69.4 69.8
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in Table 2,

columns (3), (4) and (6), respectively. The citation count is transformed into its inverse hyperbolic sine. The subsamples

are restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size)

in the stated quartile. The patent value distribution is stratified by technology field and year to account for time- and

technology-specific variation. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding

probability predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables.

The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM

and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-13: Effect of patent invalidation on follow-on innovation – original innovation value (low

thickets density subsample)

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents with low thickets density (Q1)
and in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.382 −0.231 −0.011 0.358∗

(0.507) (0.257) (0.208) (0.200)
Covariates Full Full Full Full

Dep var mean 0.33 0.39 0.43 0.57
Underidentification test 4.7 18.8 31.7 33.6
Weak identification test 4.0 18.2 39.0 38.5
Observations 2,445 2,337 2,381 2,296

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in

Table 2, columns (3), (4) and (6), respectively. The sample is reduced to patents with the bottom quartile of the patent

thicket density. The subsamples are restricted to patents with a patent value (based on the principal component of

claims, IPC classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field

and year to account for time- and technology-specific variation. One is added to all citation variables before taking the

logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with

the corresponding probability predicted by a probit regression on the “Examiner participation” dummy and all other

exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen

and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A

comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors are presented in

parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table C-14: Effect of patent invalidation on follow-on innovation – original innovation value (binary

patent thickets operationalization)

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.260 −0.150 0.118 0.341∗∗

(0.183) (0.115) (0.115) (0.136)
× Patent thicket density (d) −0.080∗∗ 0.012 −0.089∗∗∗ −0.042

(0.031) (0.032) (0.032) (0.035)
Covariates Full Full Full Full

Dep var mean 0.31 0.36 0.42 0.53
Underidentification test 39.3 35.1 93.7 102.8
Weak identification test 19.4 60.6 72.8 70.0
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (4), (5) to (8), and (9) to (12) correspond to the OLS and 2SLS regression specifications in

Table 2, columns (3), (4) and (6), respectively. The continuous patent thicket density variable is transformed into a

binary variable indicating an above-average patent thicket density. The subsamples are restricted to patents with a patent

value (based on the principal component of claims, IPC classes, and family size) in the stated quartile. The patent

value distribution is stratified by technology field and year to account for time- and technology-specific variation. One is

added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression,

the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the

“Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.3 Effect heterogeneity by follow-on innovation value

Figure C-5: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value (all value quartiles)

(a) IV estimates
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, respectively. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and

(6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year to account for time- and technology-

specific variation. Citations from high-value patents are those where the citing patent has an above-average patent value

(based on the principal component of claims, IPC classes, and family size). The corresponding regression results are in

Appendix Table C-17.

Figure C-6: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value (alternative value proxies)

(a) IV estimates
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations by

others. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and (6), respectively.

The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted to patents with a

patent value (based on the principal component of claims, IPC classes, and family size) in the stated percentile range. The

patent value distribution is stratified by technology field and year to account for time- and technology-specific variation.

Citations from high-value patents are those where the citing patent has an above-average patent value (based on the

principal component of claims, IPC classes, and family size).
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Figure C-7: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value (alternative transformations of the dependent variable)

Binary transformation of citation count

(a) IV estimates
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(b) IV estimates with patent thicket interaction
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Inverse hyperbolic sine transformation of citation count

(c) IV estimates
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(d) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, with different operationalizations of the dependent variable (binary transformation and inverse hyperbolic sine

transformation). The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and (6),

respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year to account for time- and technology-

specific variation. Citations from high-value patents are those where the citing patent has an above-average patent value

(based on the principal component of claims, IPC classes, and family size).
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Figure C-8: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value (alternative value thresholds)

(a) IV estimates
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, respectively. The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4)

and (6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are

restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the

stated percentile range. The patent value distribution is stratified by technology field and year to account for time- and

technology-specific variation. Citations from high-value patents are those where the citing patent has an above-average

patent value (based on the principal component of claims, IPC classes, and family size).
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Table C-15: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from low-value patents high-value patents

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.154 0.144 0.077 0.246∗∗

(0.142) (0.105) (0.121) (0.107)
Covariates Full Full Full Full

Dep var mean 0.19 0.29 0.15 0.32
Underidentification test 39.6 104.0 39.5 101.9
Weak identification test 39.0 141.1 39.1 139.0
Observations 9,816 9,324 9,816 9,324

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from low-value patents high-value patents

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.372∗∗ 0.423∗∗∗ 0.193 0.616∗∗∗

(0.166) (0.141) (0.134) (0.144)
× Patent thicket density −0.050∗∗ −0.063∗∗∗ −0.027 −0.083∗∗∗

(0.022) (0.021) (0.017) (0.022)
Covariates Full Full Full Full

Dep var mean 0.19 0.29 0.15 0.32
Underidentification test 38.5 103.8 38.4 101.5
Weak identification test 18.9 70.5 19.0 69.3
Observations 9,816 9,324 9,816 9,324

Notes: Columns (1) to (8) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-year

window following the opposition outcome. The dependent variable concerns citations from patents of either above or

below-average patent value (based on the principal component of claims, IPC classes, and family size). The model spec-

ifications are equivalent to those in Table 2, columns (4) and (6), respectively. The subsamples are restricted to patents

with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated quartile. The

patent value distribution is stratified by technology field and year to account for time- and technology-specific variation.

One is added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS re-

gression, the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on

the “Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table C-16: Coefficient comparison (Table C-15)

(1) (2)
Dep var: log(Citations) from high-value patents

N Y

∆ Invalidated (d) in Q4 vs. Q1 −0.010 0.169
(0.185) (0.175)

Replications 100 100

(3) (4)
Dep var: log(Citations) from high-value patents

N Y

∆ Invalidated (d) in Q4 vs. Q1 0.051 0.424∗∗

(0.232) (0.191)

Replications 100 100

Notes: This table compares the invalidation coefficients from Table C-15, columns (1) to (4) and (5) to (8) through a

bootstrap procedure with 100 replications each. Bootstrapped standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-17: Effect of patent invalidation on follow-on innovation – original and follow-on innovation

value (all value quartiles)

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from low-value patents

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.154 −0.015 0.099 0.144
(0.142) (0.086) (0.085) (0.105)

Covariates Full Full Full Full

Dep var mean 0.19 0.21 0.24 0.29
Underidentification test 39.6 34.8 93.9 104.0
Weak identification test 39.0 121.6 146.0 141.1
Observations 9,816 9,484 9,647 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from high-value patents

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.077 −0.106 −0.013 0.246∗∗

(0.121) (0.089) (0.087) (0.107)
Covariates Full Full Full Full

Dep var mean 0.15 0.19 0.23 0.32
Underidentification test 39.5 35.3 93.2 101.9
Weak identification test 39.1 121.2 144.6 139.0
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from low-value patents

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.372∗∗ 0.273∗∗ 0.353∗∗∗ 0.423∗∗∗

(0.166) (0.124) (0.133) (0.141)
× Patent thicket density −0.050∗∗ −0.064∗∗∗ −0.059∗∗ −0.063∗∗∗

(0.022) (0.021) (0.023) (0.021)
Covariates Full Full Full Full

Dep var mean 0.19 0.21 0.24 0.29
Underidentification test 38.5 33.9 93.2 103.8
Weak identification test 18.9 57.5 69.8 70.5
Observations 9,816 9,484 9,647 9,324

(13) (14) (15) (16)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from high-value patents

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.193 0.058 0.260∗∗ 0.616∗∗∗

(0.134) (0.120) (0.131) (0.144)
× Patent thicket density −0.027 −0.036∗ −0.064∗∗∗ −0.083∗∗∗

(0.017) (0.020) (0.022) (0.022)
Covariates Full Full Full Full

Dep var mean 0.15 0.19 0.23 0.32
Underidentification test 38.4 34.5 92.1 101.5
Weak identification test 19.0 57.6 68.7 69.3
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (8) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-year

window following the opposition outcome. The dependent variable concerns citations from patents of either above or

below-average patent value (based on the principal component of claims, IPC classes, and family size). The model specifi-

cations are equivalent to those in Table 2, columns (4) and (6), respectively. The four subsamples are restricted to patents

with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated quartile. The

patent value distribution is stratified by technology field and year to account for time- and technology-specific variation.

One is added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS re-

gression, the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on

the “Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.4 Effect heterogeneity by product market competition

Figure C-9: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition (alternative transformations of the dependent variable)

Binary transformation of citation count

(a) IV estimates
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(b) IV estimates with patent thicket interaction
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Inverse hyperbolic sine transformation of citation count

(c) IV estimates
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(d) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, with different operationalizations of the dependent variable (binary transformation and inverse hyperbolic sine

transformation). The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and (6),

respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year to account for time- and technology-

specific variation. Citations from the same tech class are defined as those where both challenged and citing patent share

the same primary IPC4 technology code. Citations from the same industry are defined as those where both patentees

share the same 3-digit primary NACE Rev. 2 industry code. Citations from the same country are defined as those where

both patentees share the same country of residence (EU, UK, US, JP, RoW).
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Figure C-10: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition (all criteria combined)
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, with different operationalizations of the dependent variable (binary transformation and inverse hyperbolic sine

transformation). The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4) and (6),

respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are restricted

to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the stated

quartile. The patent value distribution is stratified by technology field and year to account for time- and technology-

specific variation. Citations from the same tech class are defined as those where both challenged and citing patent share

the same primary IPC4 technology code. Citations from the same industry are defined as those where both patentees

share the same 3-digit primary NACE Rev. 2 industry code. Citations from the same country are defined as those where

both patentees share the same country of residence (EU, UK, US, JP, RoW).
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Figure C-11: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition (alternative value thresholds)
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(b) IV estimates with patent thicket interaction
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on citations

by others, with different operationalizations of the dependent variable (binary transformation and inverse hyperbolic

sine transformation). The model specifications in panels (a) and (b) are equivalent to those in Table 2, columns (4)

and (6), respectively. The interaction effect with patent thicket density is omitted in panel (b). The subsamples are

restricted to patents with a patent value (based on the principal component of claims, IPC classes, and family size) in the

stated percentile range. The patent value distribution is stratified by technology field and year to account for time- and

technology-specific variation. Citations from the same tech class are defined as those where both challenged and citing

patent share the same primary IPC4 technology code. Citations from the same industry are defined as those where both

patentees share the same 3-digit primary NACE Rev. 2 industry code. Citations from the same country are defined as those

where both patentees share the same country of residence (EU, UK, US, JP, RoW).
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Table C-18: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different tech class same tech class

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.390∗∗∗ 0.087 −0.092 0.276∗∗

(0.136) (0.106) (0.143) (0.108)
Covariates Full Full Full Full

Dep var mean 0.15 0.28 0.19 0.30
Underidentification test 40.0 103.3 39.6 102.5
Weak identification test 39.5 140.3 39.1 140.0
Observations 9,816 9,324 9,816 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different industry same industry

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.180 0.187∗ 0.055 0.161
(0.125) (0.107) (0.142) (0.105)

Covariates Full Full Full Full

Dep var mean 0.14 0.27 0.19 0.31
Underidentification test 39.9 103.0 39.4 103.4
Weak identification test 39.4 140.4 38.9 140.3
Observations 9,816 9,324 9,816 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different country same country

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.175 0.158 0.098 0.194∗

(0.132) (0.102) (0.131) (0.107)
Covariates Full Full Full Full

Dep var mean 0.18 0.31 0.16 0.28
Underidentification test 40.6 103.2 39.4 102.5
Weak identification test 40.2 138.9 38.9 139.8
Observations 9,816 9,324 9,816 9,324

Notes: Columns (1) to (12) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-

year window following the opposition outcome. The model specifications are equivalent to the one in Table 2, column

(4). The subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC

classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field and year

to account for time- and technology-specific variation. Citations from the same tech class are defined as those where

both challenged and citing patent share the same primary IPC4 technology code. Citations from the same industry are

defined as those where both patentees share the same 3-digit primary NACE Rev. 2 industry code. Citations from the same

country are defined as those where both patentees share the same country of residence (EU, UK, US, JP, RoW). One is

added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression,

the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the

“Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-19: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different tech class same tech class

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.608∗∗∗ 0.417∗∗∗ 0.023 0.560∗∗∗

(0.157) (0.138) (0.162) (0.147)
× Patent thicket density −0.051∗∗ −0.074∗∗∗ −0.027 −0.064∗∗∗

(0.021) (0.020) (0.020) (0.022)
Covariates Full Full Full Full

Dep var mean 0.15 0.28 0.19 0.30
Underidentification test 38.9 103.1 38.5 102.2
Weak identification test 19.2 70.1 19.0 69.9
Observations 9,816 9,324 9,816 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different industry same industry

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.301∗∗ 0.388∗∗∗ 0.280∗ 0.619∗∗∗

(0.145) (0.143) (0.162) (0.142)
× Patent thicket density −0.028 −0.045∗∗ −0.052∗∗ −0.103∗∗∗

(0.019) (0.021) (0.021) (0.022)
Covariates Full Full Full Full

Dep var mean 0.14 0.27 0.19 0.31
Underidentification test 38.9 102.8 38.3 103.0
Weak identification test 19.1 70.1 18.9 70.0
Observations 9,816 9,324 9,816 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different country same country

Sample: Challenged patents in the ... value quartile Q1 Q4 Q1 Q4

Invalidated (d) 0.392∗∗∗ 0.415∗∗∗ 0.203 0.583∗∗∗

(0.150) (0.138) (0.151) (0.144)
× Patent thicket density −0.050∗∗∗ −0.058∗∗∗ −0.024 −0.088∗∗∗

(0.019) (0.021) (0.020) (0.022)
Covariates Full Full Full Full

Dep var mean 0.18 0.31 0.16 0.28
Underidentification test 39.5 102.9 38.3 102.2
Weak identification test 19.5 69.2 18.8 69.8
Observations 9,816 9,324 9,816 9,324

Notes: Columns (1) to (12) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-

year window following the opposition outcome. The model specifications are equivalent to the one in Table 2, columns

(6). The subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC

classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field and year

to account for time- and technology-specific variation. Citations from the same tech class are defined as those where

both challenged and citing patent share the same primary IPC4 technology code. Citations from the same industry are

defined as those where both patentees share the same 3-digit primary NACE Rev. 2 industry code. Citations from the same

country are defined as those where both patentees share the same country of residence (EU, UK, US, JP, RoW). One is

added to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression,

the “Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the

“Examiner participation” dummy and all other exogenous variables. The underidentification and weak identification

tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported

by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix

Table B-1. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-20: Coefficient comparison (Tables C-18 and C-19)

(1) (2) (3) (4) (5) (6)
Dep var: log(Citations) from same tech class same industry same country

N Y N Y N Y

∆ Invalidated (d) in Q4 vs. Q1 −0.302 0.368∗∗ 0.007 0.106 −0.016 0.095
(0.192) (0.170) (0.190) (0.167) (0.175) (0.192)

Replications 100 100 100 100 100 100

(7) (8) (9) (10) (11) (12)
Dep var: log(Citations) from same tech class same industry same country

N Y N Y N Y

∆ Invalidated (d) in Q4 vs. Q1 −0.191 0.538∗∗ 0.087 0.339∗ 0.023 0.380∗

(0.204) (0.240) (0.215) (0.206) (0.208) (0.216)

Replications 100 100 100 100 100 100

Notes: This table compares the invalidation coefficients from Tables C-18 and C-19 through a bootstrap procedure with

100 replications each. Bootstrapped standard errors are presented in parentheses. Significance levels: * p<0.1, **

p<0.05, *** p<0.01.
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Table C-21: Effect of patent invalidation on follow-on innovation – original innovation value and

product market competition: same technology class (all value quartiles)

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different tech class

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.390∗∗∗ −0.055 0.074 0.087
(0.136) (0.084) (0.081) (0.106)

Covariates Full Full Full Full

Dep var mean 0.15 0.17 0.20 0.28
Underidentification test 40.0 35.7 94.7 103.3
Weak identification test 39.5 121.3 145.0 140.3
Observations 9,816 9,484 9,647 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same tech class

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) −0.092 −0.073 0.040 0.276∗∗

(0.143) (0.088) (0.093) (0.108)
Covariates Full Full Full Full

Dep var mean 0.19 0.22 0.25 0.30
Underidentification test 39.6 34.9 93.7 102.5
Weak identification test 39.1 121.4 146.7 140.0
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different tech class

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.608∗∗∗ 0.090 0.293∗∗ 0.417∗∗∗

(0.157) (0.118) (0.125) (0.138)
× Patent thicket density −0.051∗∗ −0.032 −0.051∗∗ −0.074∗∗∗

(0.021) (0.020) (0.022) (0.020)
Covariates Full Full Full Full

Dep var mean 0.15 0.17 0.20 0.28
Underidentification test 38.9 34.6 93.9 103.1
Weak identification test 19.2 57.3 69.3 70.1
Observations 9,816 9,484 9,647 9,324

(13) (14) (15) (16)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same tech class

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.023 0.182 0.300∗∗ 0.560∗∗∗

(0.162) (0.124) (0.139) (0.147)
× Patent thicket density −0.027 −0.057∗∗∗ −0.061∗∗ −0.064∗∗∗

(0.020) (0.022) (0.024) (0.022)
Covariates Full Full Full Full

Dep var mean 0.19 0.22 0.25 0.30
Underidentification test 38.5 34.0 92.9 102.2
Weak identification test 19.0 57.5 70.0 69.9
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (12) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-year

window following the opposition outcome. The model specifications are equivalent to those in Table 2, columns (4) and

(6). The four subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC

classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field and year

to account for time- and technology-specific variation. Citations from the same tech class are defined as those where

both challenged and citing patent share the same primary IPC4 technology code. One is added to all citation variables

before taking the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is

instrumented with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy

and all other exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust

Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum

et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors

are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-22: Effect of patent invalidation on follow-on innovation – product market competition:

same industry – all value quartiles

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different industry

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.180 −0.204∗∗ 0.057 0.187∗

(0.125) (0.096) (0.090) (0.107)
Covariates Full Full Full Full

Dep var mean 0.14 0.18 0.21 0.27
Underidentification test 39.9 34.7 94.0 103.0
Weak identification test 39.4 120.6 146.2 140.4
Observations 9,816 9,484 9,647 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same industry

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.055 0.071 0.027 0.161
(0.142) (0.087) (0.088) (0.105)

Covariates Full Full Full Full

Dep var mean 0.19 0.21 0.24 0.31
Underidentification test 39.4 35.1 93.4 103.4
Weak identification test 38.9 121.3 145.4 140.3
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different industry

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.301∗∗ −0.034 0.350∗∗∗ 0.388∗∗∗

(0.145) (0.129) (0.135) (0.143)
× Patent thicket density −0.028 −0.038∗ −0.068∗∗∗ −0.045∗∗

(0.019) (0.021) (0.022) (0.021)
Covariates Full Full Full Full

Dep var mean 0.14 0.18 0.21 0.27
Underidentification test 38.9 33.8 93.3 102.8
Weak identification test 19.1 57.1 69.8 70.1
Observations 9,816 9,484 9,647 9,324

(13) (14) (15) (16)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same industry

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.280∗ 0.319∗∗ 0.196 0.619∗∗∗

(0.162) (0.125) (0.133) (0.142)
× Patent thicket density −0.052∗∗ −0.055∗∗ −0.039∗ −0.103∗∗∗

(0.021) (0.022) (0.023) (0.022)
Covariates Full Full Full Full

Dep var mean 0.19 0.21 0.24 0.31
Underidentification test 38.3 34.1 92.5 103.0
Weak identification test 18.9 57.4 69.2 70.0
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (12) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-year

window following the opposition outcome. The model specifications are equivalent to those in Table 2, columns (4) and

(6). The four subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC

classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field and year to

account for time- and technology-specific variation. Citations from the same industry are defined as those where both

patentees share the same 3-digit primary NACE Rev. 2 industry code. One is added to all citation variables before taking

the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented

with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy and all other

exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen

and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A

comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors are presented in

parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-23: Effect of patent invalidation on follow-on innovation – product market competition:

same country – all value quartiles

(1) (2) (3) (4)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different country

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.175 −0.020 0.080 0.158
(0.132) (0.083) (0.085) (0.102)

Covariates Full Full Full Full

Dep var mean 0.18 0.20 0.22 0.31
Underidentification test 40.6 35.6 95.3 103.2
Weak identification test 40.2 121.4 146.1 138.9
Observations 9,816 9,484 9,647 9,324

(5) (6) (7) (8)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same country

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.098 −0.098 0.004 0.194∗

(0.131) (0.087) (0.087) (0.107)
Covariates Full Full Full Full

Dep var mean 0.16 0.20 0.23 0.28
Underidentification test 39.4 35.0 94.0 102.5
Weak identification test 38.9 122.2 146.7 139.8
Observations 9,816 9,484 9,647 9,324

(9) (10) (11) (12)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from different country

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.392∗∗∗ 0.174 0.359∗∗∗ 0.415∗∗∗

(0.150) (0.117) (0.131) (0.138)
× Patent thicket density −0.050∗∗∗ −0.043∗∗ −0.065∗∗∗ −0.058∗∗∗

(0.019) (0.020) (0.022) (0.021)
Covariates Full Full Full Full

Dep var mean 0.18 0.20 0.22 0.31
Underidentification test 39.5 34.6 94.1 102.9
Weak identification test 19.5 57.5 69.5 69.2
Observations 9,816 9,484 9,647 9,324

(13) (14) (15) (16)
Estimation method 2SLS 2SLS 2SLS 2SLS
Dep var: log(Citations) from same country

Sample: Challenged patents in the ... value quartile Q1 Q2 Q3 Q4

Invalidated (d) 0.203 0.094 0.252∗ 0.583∗∗∗

(0.151) (0.125) (0.130) (0.144)
× Patent thicket density −0.024 −0.043∗∗ −0.058∗∗ −0.088∗∗∗

(0.020) (0.021) (0.023) (0.022)
Covariates Full Full Full Full

Dep var mean 0.16 0.20 0.23 0.28
Underidentification test 38.3 34.1 93.2 102.2
Weak identification test 18.8 57.9 70.0 69.8
Observations 9,816 9,484 9,647 9,324

Notes: Columns (1) to (12) report the 2SLS regressions for the effect of invalidation on citations by others in a 5-year

window following the opposition outcome. The model specifications are equivalent to those in Table 2, columns (4) and

(6). The four subsamples are restricted to patents with a patent value (based on the principal component of claims, IPC

classes, and family size) in the stated quartile. The patent value distribution is stratified by technology field and year

to account for time- and technology-specific variation. Citations from the same country are defined as those where both

patentees share the same country of residence (EU, UK, US, JP, RoW). One is added to all citation variables before taking

the logarithm to include patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented

with the corresponding probability predicted by a probit regression on the “Examiner participation” dummy and all other

exogenous variables. The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen

and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A

comprehensive list of the control variables can be found in Appendix Table B-1. Robust standard errors are presented in

parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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D Instrumental Variable

In the following, we provide additional information on our instrumental variable: the granting

examiner’s participation in the opposition division.

Variation

Interviews with EPO officials revealed that the reasons for the participation of the examiner are

found in the temporary non-availability of other eligible examiners with expertise in the particular

technology field. Figure D-1 provides evidence for this. The average participation rate is well above

60% before 2003 but then declines to an average rate of about 55% with variation between technol-

ogy areas. This drop is caused by a sharp increase in the number of examiners eligible to participate

in proceedings due to a large-scale training and promotion effort at the EPO.

We provide additional evidence on the correlation between the examiner participation rate and

capacity constraints at the technical art unit level in Table D-1. To this end, we measure capacity

constraints by the share of patent applications whose search report was not completed before the

first publication 18 months after priority filing (see Haeussler et al. (2014) for details). Controlling

for a full set of technical art unit and time fixed effects, concurrent capacity constraints are positively

associated with the examiner participation rate. Notably, capacity constraints at the technical art

unit before (and after) the appointment of the opposition division have a considerably weaker effect

on the examiner participation rate, which supports the notion that temporal staff shortages drive the

decision to appoint the granting examiner to the opposition division (see Figure D-2).

Finally, the distribution of examiner-specific participation rates is not concentrated at zero or at

one, which makes it unlikely that the applicant, who knows the granting examiner’s identity, can

anticipate her participation/absence in the opposition division (see Appendix Figure D-3).

Exogeneity

We present a range of tests that strongly suggest the instrumental variable’s randomness conditional

on technology class and year fixed effects. First, we test whether particular patentee or opponent

characteristics explain the correlation between examiner participation and the opposition outcome

(see Table D-2). To this end, we take the specification in column (2) of Table 1 and extend the set

of controls to patentee/opponent fixed effects in columns (1) and (2) and patentee/opponent ×

year fixed effects in columns (3) and (4). Adding these fixed effects has virtually no effect on the

coefficient of “Examiner participation”.

Second, we provide a conditional mean comparison of patent characteristics with respect to the

opposition outcome and examiner participation (see Tables D-3 and D-4). Patents with and without

examiner participation do not differ systematically.
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Third, we explore non-linear relationships between patent value indicators and examiner par-

ticipation. To this end, we run nonparametric regressions with examiner participation as the depen-

dent variable and decile bins of the patent value indicator (see Table D-5). We add controls for the

patent’s technology field and opposition outcome year. We find no significant correlation between

the patent value indicator bins and examiner participation despite a considerable correlation with

patent invalidation. We illustrate the lack of any systematic relationship between patent value in-

dicators and examiner participation in binned scatter plots (see Figure D-5). Finally, in Table D-7,

we show that patent characteristics of the patentee/opponent do not have any systematic effect on

examiner participation in the opposition proceeding.

One legitimate concern is that the duration of examination or opposition may affect the likeli-

hood of examiner participation as well as follow-on citations. In Tables D-8 and D-9, we present the

main result based on samples that exclude particular cases related to examination and opposition

characteristics. We remove cases with accelerated examination, cases with particularly early/late

examinations (relative to filing date), and cases with particularly slow/fast examination. Moreover,

we remove patents that were not examined at the headquarter in Munich. Likewise, we exclude

different quintiles of the overall sample based on the length of opposition. The estimates are statis-

tically indistinguishable from our main estimate.

Relevance

In Figure D-6, we plot the Lasso coefficient paths for several independent variables, including “Ex-

aminer participation”, for the opposition outcome. The figure is based on a penalized regression

approach (“Lasso”) that selects covariates by shrinking some regression coefficients to zero. The

selection of the optimal value of the Lasso regularization parameter is based on the Akaike infor-

mation criterion. “Examiner participation” enters as the second variable overall, and the coefficient

size remains constant over the remaining search grid. This suggests that “Examiner participation”

is a highly relevant explanatory variable for the opposition outcome.

Complier analysis

We further examine the characteristics of “complier” observations (Imbens and Angrist, 1994); i.e.,

patents whose invalidation status can be changed by the instrument. Tables D-10 and D-11 report

the size and the characteristics of the complier patent subpopulation. Depending on the (binary)

instrument, complier patents are estimated to constitute a share of around 6% to 20% of the patent

population. The composition of the complier subpopulation is found to be very similar to the com-

position of the entire sample with respect to a diverse range of characteristics.
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Figure D-1: Annual rate of examiner participation in opposition proceeding
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Notes: This graph shows the annual rate of examiner participation in opposition proceedings by technology main area.

Figure D-2: Capacity constraints and examiner participation
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Notes: The graph depicts depicts the effects of quarterly capacity constraints on examiner participation at technical art

unit level (see Table D-1, column (3)). Error bars show the corresponding lower and upper 90% confidence limits.
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Figure D-3: Examiner-specific participation rates
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Notes: The graph shows the densities of participation rates at the examiner level (simple and weighted). Examiners with

fewer than 10 observations are excluded.

Figure D-4: Citation trends by examiner participation – event study
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Notes: This figure provides the point estimates of the interaction of examiner participation with binned year dummies

from 10 years before to 10 years after the opposition outcome conditional on calendar year, age, and technology class

fixed effects. The annual citations of patents with and without examiner participation have a common trend up to the year

of opposition outcome. The divergence in annual citations after the opposition outcome is consistent with the relevance of

examiner participation on invalidation: examiner participation makes invalidation less likely, leading to relatively fewer

citations in the years afterward.
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Figure D-5: Patent characteristics by examiner participation and by patent invalidation

Patent claims

(a) Examiner participation

Mean
Fitted curve

0.4

0.5

0.6

0.7

Ex
am

in
er

 p
ar

tic
ip

at
io

n

0 20 40 60
Claims

(b) Patent invalidation

Mean

Fitted curve

0.6

0.7

0.8

0.9

Pa
te

nt
 in

va
lid

at
io

n

0 20 40 60
Claims

Patent family size

(c) Examiner participation

MeanFitted curve

0.4

0.5

0.6

0.7

Ex
am

in
er

 p
ar

tic
ip

at
io

n

0 20 40 60
Family size

(d) Patent invalidation

Mean

Fitted curve

0.6

0.7

0.8

0.9

Pa
te

nt
 in

va
lid

at
io

n

0 20 40 60
Family size

Citations (3yrs)

(e) Examiner participation

Mean
Fitted curve

0.4

0.5

0.6

0.7

Ex
am

in
er

 p
ar

tic
ip

at
io

n

0 2 4 6 8 10
EP cites (3yr)

(f) Patent invalidation

Mean

Fitted curve

0.6

0.7

0.8

0.9

Pa
te

nt
 in

va
lid

at
io

n

0 2 4 6 8 10
EP cites (3yr)

Notes: This figure provides the mean of “Examiner participation” (“Patent invalidation”) and the mean of “Patent claims”,

“Patent family size”, “Citations (3yrs)”, and “IPC classes” for 40 bins each. The black lines indicate the respective resid-

ualized mean of “Examiner participation” (“Patent invalidation”). The dashed lines depict quadratic fitted curves. The

disaggregated level of observation is the opposed patent. Controls for technology class and opposition outcome year

included.
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Figure D-6: Lasso coefficient paths for selected variables on opposition outcome
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Notes: This figure depicts the Lasso coefficient paths for several independent variables with the dependent variable

“Invalidated”. Coefficient path plots show the path of the coefficients over the search grid for the Lasso penalty parameter.

“Examiner participation” enters as the second variable overall, and the coefficient size remains constant over the remaining

search grid.
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Table D-1: Examiner participation rate and technical art unit capacity constraints

(1) (2) (3) (4)

Estimation method OLS OLS OLS OLS

Dep Var: Exam. part. rate Exam. part. rate Exam. part. rate Exam. part. rate

Capacity constraint −0.042 0.585∗∗∗ 0.525∗∗∗ 0.428∗∗

(0.060) (0.091) (0.111) (0.214)

– 4 quarter lag 0.093

(0.170)

– 3 quarter lag −0.068

(0.191)

– 2 quarter lag −0.001

(0.213)

– 1 quarter lag 0.047

(0.204)

– 1 quarter lead −0.041

(0.224)

– 2 quarter lead 0.208

(0.229)

– 3 quarter lead −0.200

(0.233)

– 4 quarter lead 0.005

(0.240)

– 5 quarter lead 0.126

(0.202)

Tech unit effects No Yes Yes Yes

Time effects No No Yes Yes

Dep Var mean 0.63 0.63 0.63 0.63

Model degrees of freedom 1 32 81 90

Adjusted R2 -0.000 0.197 0.289 0.287

Observations 1,481 1,481 1,481 1,481

Notes: This table explores the relationship between concurrent capacity constraints and examiner participation at the

technical art unit level. The level of observation is the technical art unit (32 in total) over time (calendar year quarters).

Capacity constraints are captured by the share of patent applications whose search report was not completed before the

first publication 18 months after priority filing (see Haeussler et al. (2014) for details). We link the measure of capacity

constraints to the quarter one year prior to the oral proceeding and opposition decision—the time when the technical art

unit’s director typically allocates the opposition file to the opposition division (see p. 26 of the EPO’s Quality Report 2016).

Columns (1) to (3) show the effect of the concurrent capacity constraints on the examiner participation rate. Column

(4) shows the effect of the capacity constraints variable with a set of lags/leads. Robust standard errors are presented in

parentheses. Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-2: Examiner participation and opposition outcome (additional fixed effects)

(1) (2) (3) (4)

Estimation method Probit Probit Probit Probit

Dep var Invalidated (d)

Exam. participation (d) −0.045∗∗∗ −0.047∗∗∗ −0.048∗∗∗ −0.062∗∗∗

(0.006) (0.006) (0.009) (0.007)

Covariates None Full Full Full

Additional fixed effects Patentee Opponent Patentee×yr Opponent×yr

Dep var mean 0.70 0.70 0.65 0.67

Model degrees of freedom 1,889 2,479 3,093 3,252

χ2-statistic . 15,657.0 2,936.9 3,595.6

Pseudo-R2 0.132 0.126 0.161 0.143

Observations 26,008 28,152 14,082 19,764

Notes: The high-dimensional fixed effects probit regressions in columns (1) to (4) illuminate the relevance of the

“Examiner participation” dummy for the outcome of the opposition proceeding. One is added to all citation vari-

ables before taking the logarithm to include patents without citations. A comprehensive list of the control vari-

ables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance lev-

els: * p<0.1, ** p<0.05, *** p<0.01.

Table D-3: Differences between patents by opposition outcome

Dependent variable β(Invalidated) Std Err t p

Cites (3yrs, other) 0.091∗∗∗ 0.017 5.439 0.000

Cites (3yrs, self) 0.021∗ 0.011 1.939 0.053

DOCDB family size 0.603∗∗∗ 0.103 5.878 0.000

EP family size 0.004 0.003 1.395 0.163

No of claims 1.190∗∗∗ 0.103 11.544 0.000

No of IPC classes 0.004 0.024 0.163 0.870

Principal component 0.066∗∗∗ 0.011 6.075 0.000

No of applicants −0.001 0.003 −0.174 0.862

No of inventors 0.085∗∗∗ 0.019 4.434 0.000

No of PL refs 0.165∗∗∗ 0.032 5.211 0.000

PCT application (d) 0.020∗∗∗ 0.005 3.691 0.000

Notes: Results from OLS regressions of different patent characteristics on first opposition outcome and sets of indicator

variables for technology class and opposition outcome year. Each row shows the coefficient, the robust standard error,

the t-statistic, and the p-value of the indicator for invalidation. The two groups of patents differ significantly, indicating

the necessity of the instrumental variable approach. One is added to all citation variables before taking the logarithm to

include patents without citations. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-4: Differences between patents by examiner participation

Dependent variable β(Ex. part.) Std Err t p

Cites (3yrs, other) −0.004 0.019 −0.216 0.829

Cites (3yrs, self) 0.009 0.011 0.817 0.414

DOCDB family size 0.003 0.119 0.023 0.982

EP family size −0.001 0.002 −0.591 0.554

No of claims 0.019 0.111 0.175 0.861

No of IPC classes 0.000 0.024 0.011 0.991

Principal component −0.003 0.011 −0.228 0.820

No of applicants 0.002 0.004 0.426 0.670

No of inventors 0.031 0.019 1.638 0.101

No of PL refs −0.012 0.032 −0.380 0.704

PCT application (d) 0.013∗∗ 0.005 2.502 0.012

Notes: Results from OLS regressions of different patent characteristics on the instrumental participation variable and

sets of indicator variables for technology class and opposition outcome year. Each row shows the coefficient, the robust

standard error, the t-statistic, and the p-value of the “Examiner participation” indicator. Patents with and without the

participation of the granting examiner in opposition do not differ significantly. One is added to all citation variables

before taking the logarithm to include patents without citations. Robust standard errors are presented in parentheses.

Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-5: Patent value indicators and examiner participation (non-parametric relationship) I

(1) (2) (3) (4)

Estimation method OLS OLS OLS OLS

Dep Var: Exam. part. (d) Invalidated (d) Exam. part. (d) Invalidated (d)

Indep Var: Claims Claims IPC classes IPC classes

1.decile 0.000 0.000 0.000 0.000

(.) (.) (.) (.)

2.decile 0.002 0.017 0.014 0.024∗∗

(0.011) (0.011) (0.011) (0.010)

3.decile 0.006 0.029∗∗ −0.010 0.019∗

(0.013) (0.013) (0.011) (0.010)

4.decile 0.009 0.030∗∗∗ 0.005 0.017∗

(0.010) (0.010) (0.011) (0.010)

5.decile 0.012 0.046∗∗∗ 0.003 0.006

(0.011) (0.011) (0.011) (0.010)

6.decile 0.012 0.058∗∗∗ −0.011 0.001

(0.011) (0.011) (0.011) (0.010)

7.decile −0.010 0.070∗∗∗ −0.018 0.016

(0.011) (0.011) (0.011) (0.010)

8.decile −0.005 0.076∗∗∗ −0.010 −0.001

(0.011) (0.010) (0.011) (0.011)

9.decile −0.002 0.084∗∗∗ −0.007 0.005

(0.011) (0.011) (0.011) (0.011)

10.decile 0.006 0.097∗∗∗ 0.001 0.011

(0.011) (0.011) (0.011) (0.011)

Dep Var mean 0.58 0.71 0.58 0.71

Model degrees of freedom 563 563 563 563

Adjusted-R2 0.109 0.036 0.109 0.032

Observations 38,365 38,365 38,365 38,365

Notes: The linear regressions in columns (1) and (3) illuminate the non-linear relationship between patent value in-

dicators and examiner participation in the opposition proceeding. The linear regressions in columns (2) and (4) illu-

minate the non-linear relationship of patent value indicators on the opposition outcome. Technology class (567) and

opposition outcome year fixed effects included. Robust standard errors are presented in parentheses. Significance lev-

els: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-6: Patent value indicators and examiner participation (non-parametric relationship) II

(1) (2) (3) (4)

Estimation method OLS OLS OLS OLS

Dep Var: Exam. part. (d) Invalidated (d) Exam. part. (d) Invalidated (d)

Indep Var: EP family size EP family size Princ. Comp. Princ. Comp.

1.decile 0.000 0.000 0.000 0.000

(.) (.) (.) (.)

2.decile −0.002 −0.010 0.005 0.003

(0.011) (0.010) (0.011) (0.010)

3.decile 0.001 −0.013 −0.003 0.020∗

(0.011) (0.010) (0.011) (0.010)

4.decile 0.012 −0.018∗ 0.003 0.023∗∗

(0.011) (0.010) (0.011) (0.010)

5.decile −0.001 −0.008 −0.004 0.019∗

(0.011) (0.011) (0.011) (0.011)

6.decile 0.006 −0.024∗∗ 0.000 0.027∗∗

(0.010) (0.010) (0.011) (0.011)

7.decile 0.010 −0.002 −0.009 0.026∗∗

(0.011) (0.010) (0.011) (0.011)

8.decile 0.017 −0.004 0.005 0.035∗∗∗

(0.011) (0.011) (0.011) (0.011)

9.decile 0.002 −0.004 0.015 0.035∗∗∗

(0.011) (0.011) (0.011) (0.011)

10.decile −0.009 0.005 −0.015 0.055∗∗∗

(0.012) (0.011) (0.012) (0.011)

Dep Var mean 0.58 0.71 0.58 0.71

Model degrees of freedom 563 563 563 563

Adjusted-R2 0.109 0.032 0.109 0.032

Observations 38,365 38,365 38,365 38,365

Notes: The linear regressions in columns (1) and (3) illuminate the non-linear relationship between patent value in-

dicators and examiner participation in the opposition proceeding. The linear regressions in columns (2) and (4) illu-

minate the non-linear relationship of patent value indicators on the opposition outcome. Technology class (567) and

opposition outcome year fixed effects included. Robust standard errors are presented in parentheses. Significance lev-

els: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-7: Examiner participation and patent, patentee, and opponent characteristics

(1) (2) (3) (4)
Estimation method OLS OLS OLS OLS
Dep Var: Exam. part. (d) Exam. part. (d) Exam. part. (d) Exam. part. (d)

log(No of claims) −0.007 −0.006 −0.006
(0.007) (0.007) (0.007)

log(CitEPAllPre3Other) 0.001 0.001 0.001
(0.005) (0.005) (0.005)

log(CitEPAllPre3Self) 0.008 0.008 0.009
(0.006) (0.006) (0.006)

DOCDB family size 0.000 0.000 0.000
(0.000) (0.000) (0.000)

EP family size −0.006 −0.007 −0.004
(0.027) (0.027) (0.027)

No of inventors 0.002 0.002 0.003∗

(0.001) (0.001) (0.001)
No of IPC tech classes −0.001 −0.001 −0.001

(0.003) (0.003) (0.003)
Principal component 0.007 0.007 0.007

(0.010) (0.010) (0.010)
PCT application (d) 0.007 −0.001 −0.001

(0.005) (0.006) (0.006)
log(Patent backward references) −0.003 −0.003 −0.003

(0.005) (0.005) (0.005)
Publication language: German (d) 0.007 0.008 0.007

(0.010) (0.010) (0.010)
Publication language: English (d) 0.012 0.012 0.008

(0.009) (0.009) (0.010)
Accelerated examination (d) 0.022∗∗∗ 0.020∗∗

(0.008) (0.008)
Examined in Munich (d) 0.083∗∗∗ 0.083∗∗∗

(0.007) (0.007)
Duration of examination (yr) 0.013∗∗ 0.012∗∗

(0.006) (0.006)
Duration of wait (yr) 0.020∗∗∗ 0.019∗∗∗

(0.006) (0.006)
No of applicants 0.002

(0.008)
Applicant EU (d) −0.020

(0.016)
Applicant GB (d) −0.019

(0.019)
Applicant US (d) −0.015

(0.016)
Applicant JP (d) −0.006

(0.017)
Corporate applicant (d) −0.015

(0.011)
Small applicant (d) 0.003

(0.006)
Medium-sized applicant (d) 0.010

(0.007)
No of opponents −0.002

(0.004)
Opponent EU (d) 0.016

(0.024)
Opponent GB (d) 0.016

(0.026)
Opponent US (d) 0.002

(0.025)
Opponent JP (d) −0.010

(0.030)
Corporate opponent (d) 0.010

(0.015)
Small opponent (d) 0.004

(0.006)
Medium-sized opponent (d) 0.004

(0.006)
Year effects Yes Yes Yes Yes
Age effects Yes Yes Yes Yes
Technology effects No Yes Yes Yes

Dep Var mean 0.58 0.58 0.58 0.58
Model degrees of freedom 588 601 605 621
Adjusted-R2 0.115 0.116 0.119 0.119
Observations 38,365 38,365 38,365 38,365

Notes: This table shows linear regressions of the “Examiner participation” dummy on exogenous variables. Marginal

effects are reported. One is added to all citation variables before taking the logarithm to include patents without citations.

Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-8: Effect of patent invalidation on follow-on innovation – exclusion of cases by examination

characteristics

(1) (2) (3) (4) (5) (6)

Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dep var log(Citations)

Excluded examinations: Accelerated 40% earliest 40% latest 40% slowest 40% fastest not in Muc

Invalidated (d) 0.142∗ 0.053 0.160∗ 0.161∗∗ 0.121 0.128∗

(0.075) (0.081) (0.091) (0.081) (0.088) (0.074)

Covariates set Full Full Full Full Full Full

Dep var mean 0.71 0.74 0.69 0.72 0.71 0.71

Underidentification test 172.3 220.6 113.2 170.1 169.9 190.8

Weak identification test 392.3 306.7 275.4 338.8 247.5 400.9

Observations 33,752 23,951 22,870 22,859 22,840 30,896

Notes: Columns (1) to (6) correspond to the 2SLS regression specification in Table 2, column (4). One is added to all

citation variables before taking the logarithm to include patents without citations. In each 2SLS regression, the “Inval-

idated” dummy is instrumented with the corresponding probability predicted by a probit regression on the “Examiner

participation” dummy and all other exogenous variables. The underidentification and weak identification tests are the

heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s

ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1.

Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table D-9: Effect of patent invalidation on follow-on innovation – exclusion of cases by opposition

duration

(1) (2) (3) (4) (5)

Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS

Dep var log(Citations)

Excluded oppositions by length: 1st quintle 2nd quintile 3rd quintile 4th quintile 5th quintile

Invalidated (d) 0.163∗∗ 0.156∗∗ 0.136∗∗ 0.152∗∗ 0.122∗

(0.077) (0.077) (0.068) (0.071) (0.070)

Covariates set Full Full Full Full Full

Dep var mean 0.74 0.72 0.71 0.71 0.70

Underidentification test 200.5 240.4 220.2 200.6 167.7

Weak identification test 333.4 357.0 424.5 399.3 409.3

Observations 30,606 30,565 30,599 30,563 30,597

Notes: Columns (1) to (5) correspond to the 2SLS regression specification in Table 2, column (4). One is added to all

citation variables before taking the logarithm to include patents without citations. In each 2SLS regression, the “Inval-

idated” dummy is instrumented with the corresponding probability predicted by a probit regression on the “Examiner

participation” dummy and all other exogenous variables. The underidentification and weak identification tests are the

heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s

ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1.

Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table D-10: LATE discussion – Complier shares

Binary instrument

Exam. part. p̂(Inv)< q(.25) p̂(Inv)< q(.5) p̂(Inv)< q(.75)

P(Invalidated) 0.7143 0.7143 0.7143 0.7143

P(Instrument = 1) 0.5803 0.2491 0.4982 0.7474

P(Complier) 0.0719 0.2290 0.2033 0.2098

P(Complier | Invalidated) 0.0423 0.2407 0.1428 0.0742

P(Complier | Not Inv.) 0.1461 0.1997 0.3546 0.5490

Notes: This table shows the share of complier patents in the full sample, P(Complier), the share among invalidated

patents, P(Complier | Invalidated), and the share among non-invalidated patents, P(Complier | Not Inv.), with respect to

different binary instruments. The first column uses the examiner participation indicator variable, the remaining columns

transform the probit-predicted invalidation probability instrument p̂ of Equation (4) into binary instruments by splitting

at the 25th, 50th, and 75th percentile, respectively. For the examiner participation instrument, the population share of

compliers lies at around 7.2%, which is comprised of a share of 4.2% for invalidated patents and 14.6% for non-invalidated

patents. Following the notation of Angrist and Pischke (2009, Section 4.4.4), we can write a patent i’s potential treatment

status as D1i when the instrument is Z = 1 and as D0i when Z = 0. “Complier” patents are then defined as those whose

treatment status is sensitive to the instrument, i.e., D1i = 0 (no invalidation) and D0i = 1 (invalidation) in the above

context. In a potential outcomes framework, the Wald estimand can be interpreted as a local average treatment effect

(LATE) on the subpopulation of compliers (Imbens and Angrist, 1994). They have to be distinguished from “always-

takers” with D1i = D0i = 1, and “never-takers” with D1i = D0i = 0. The calculations of this table rely, inter alia, on the

monotonicity assumption D0i ≥ D1i∀i, i.e., on excluding the existence of “defiers” with D1i = 1 and D0i = 0.

Table D-11: LATE discussion – Complier characteristics

Binary characteristic x E[x] E[x|complier] E[x|complier] / E[x] p(Ratio = 1)

Cites (3yrs, other) > 0.00 0.390 0.338 0.865 (0.079) 0.088

Cites (3yrs, self) > 0.00 0.229 0.160 0.699 (0.116) 0.010

DOCDB family size > 8.00 0.471 0.471 1.002 (0.067) 0.982

EP family size > 0.50 0.246 0.278 1.128 (0.113) 0.258

No of claims > 11.00 0.473 0.495 1.048 (0.067) 0.471

No of IPC classess > 2.00 0.630 0.628 0.995 (0.050) 0.926

Principal Component > -0.26 0.501 0.487 0.972 (0.065) 0.664

No of applicants > 1.00 0.060 0.009 0.158 (0.262) 0.001

No of inventors > 2.00 0.427 0.375 0.878 (0.074) 0.098

No of PL refs > 4.00 0.492 0.511 1.039 (0.065) 0.547

PCT application (d) 0.455 0.450 0.989 (0.069) 0.878

Appeal (d) 0.469 0.471 1.003 (0.067) 0.960

Notes: This table explores in how far the complier subpopulation differs from the full sample of opposed patents with re-

spect to a series of patent characteristics, conditional on IPC4 technology class and year fixed effects. Since the underlying

calculation relies on binary characteristics, count variables are split at their indicated median. The first column indicates

the share E[x] = P(x = 1) of patents with x = 1 in the entire population, the second column indicates the corresponding

share E[x | complier] among complier patents. The third column shows the relative likelihood that complier patents have

the binary characteristic x indicated on the left. The corresponding robust standard errors shown in parentheses are

derived using seemingly unrelated estimation. Almost all characteristics occur among complier patents with similar rates

as in the full sample. Compliers are defined as in the notes of Table D-10.
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E Replication of GS2015

The study most similar to ours is GS2015. Based on a sample of 1,357 patents litigated at the US

Court of Appeals for the Federal Circuit (CAFC), GS2015 also find that invalidation increases follow-

on innovation by others. They observe invalidations as an outcome of infringement disputes at an

appellate court in the United States, whereas our study focuses on post-grant validity challenges

at the European Patent Office. In Table E-2, we provide a detailed institutional and econometric

comparison between GS2015 and our study. Despite substantial differences in the empirical setting,

GS2015 and our study share several findings: the overall positive effect of patent invalidation on

citations by others, the timing of the effect, and the direction of the endogeneity bias.

Specifically, GS2015 find that patent invalidation increases citations by others by about 0.41.

This average effect is more than twice as large as the one we observe in our study (0.15). They also

report an OLS estimate of −0.05, which, when we interpret the coefficients directly, is almost ten

times larger than the corresponding one in our study (−0.007). As a first step, we seek to replicate

these large estimates by factoring in the arguably stronger selection present in their sample.

To accomplish this, we focus on particular subsets of our sample: i) opposed patents of particu-

larly high value and ii) opposed patents that can be linked to infringement disputes before courts.55

The rationale for focusing on these two sets of patents is the following. Patents selected into ex-

pensive US patent litigation are highly valuable, as already shown in Section 3.7. Moreover, the

predominant share of all CAFC cases is linked to infringement allegations, indicating the patents’

considerable commercial value (see Appendix Figure E-3).

We find that the estimates derived from OLS and instrumental variable regression amplify in

magnitude when focusing on particularly valuable opposed patents (Appendix Table E-1). For in-

stance, in the infringement subsample, the OLS estimate yields a coefficient practically identical to

that in GS2015. Similarly, the invalidation effect derived from the subsample using our composite

patent value indicator stands at 0.33, approximating 80% of the effect magnitude found in GS2015.

Hence, we infer that the average invalidation effect in GS2015 can be replicated with our data by

emulating the selection into costly infringement disputes.

Based on the results of several heterogeneity analyses, GS2015 come to the conclusion that

licensing failure due to transaction costs causes the observed invalidation effect in their sample. No-

tably, they locate the largest effect in complex technology fields and argue that this reflects licensing

55We create the infringement sample by matching the opposed patents to infringement disputes filed before European

courts or—via their patent family—before US courts. To this end, we match patents with litigation data from Cremers

et al. (2017) and Darts-IP. Altogether, we link 2,369 patents to infringement disputes (6% of the sample).
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Table E-1: Effect of patent invalidation on follow-on innovation – high-value and infringement sub-

samples of opposed patent

(1) (2) (3) (4) (5)
Estimation method OLS OLS OLS OLS OLS
Dep var log(Citations)

Sample: High-value patents based on: Claims IPC classes EP family size Value (PC1) Infringement

Invalidated (d) −0.003 −0.022 −0.002 −0.018 −0.050
(0.015) (0.014) (0.014) (0.015) (0.036)

Covariates Full Full Full Full Full

Dep var mean 0.50 0.50 0.48 0.53 0.60
Adjusted-R2 0.113 0.116 0.098 0.111 0.145
Observations 8,800 9,359 9,464 9,354 2,369

(6) (7) (8) (9) (10)
Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS
Dep var log(Citations)

Sample: High-value patents based on: Claims IPC classes EP family size Value (PC1) Infringement

Invalidated (d) 0.267∗ 0.225∗ 0.295∗∗ 0.327∗∗ 0.263
(0.143) (0.116) (0.124) (0.136) (0.239)

Covariates Full Full Full Full Full

Dep var mean 0.50 0.50 0.48 0.53 0.60
Underidentification test 90.5 104.1 116.3 104.2 41.7
Weak identification test 108.6 172.9 145.8 139.3 38.3
Observations 8,767 9,347 9,431 9,324 2,354

Notes: Columns (1) to (5) and (6) to (10) correspond to the OLS and 2SLS regression specifications in Table 2, columns

(3) and (4), respectively. The subsamples in columns (1) to (4) and (6) to (9) are restricted to patents that are in the top

quartile of the respective patent value indicator variable. The patent value distribution is stratified by technology field

and year to account for time- and technology-specific variation. The sample in columns (5) and (10) are patents that

could be linked to infringement disputes. One is added to all citation variables before taking the logarithm to include

patents without citations. In each 2SLS regression, the “Invalidated” dummy is instrumented with the corresponding

probability predicted by a probit regression on the “Examiner participation” dummy and all other exogenous variables.

The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen and Paap (2006) rk LM

and Wald F statistics, respectively, as reported by Stata’s ivreg2 command (Baum et al., 2010). A comprehensive list of the

control variables can be found in Appendix Table B-1. Robust standard errors are presented in parentheses. Significance

levels: * p<0.1, ** p<0.05, *** p<0.01.

failure due to the high transaction costs of finding licensing agreements when multiple parties have

a stake in the original innovation.56

We therefore estimate as a second step the invalidation effect on citations by others for patents in

complex and discrete technology fields separately (Appendix Figure E-1).57 For patents in discrete

technology fields, the invalidation effect is significant and only slightly smaller than the correspond-

ing one in GS2015. In contrast, for patents in complex technology fields, we find an insignificant

invalidation effect close to zero. This result resonates well with our earlier finding that the high

density of patent thickets in complex technology fields lowers the invalidation effect on citations in

Table 2. It stands, however, in stark contrast to the large corresponding estimate in GS2015.

56They further observe a more pronounced invalidation effect when large patentees face smaller follow-on innovators

compared to small patentees facing large follow-on innovators. We are not able to replicate this specific effect differential.

The underlying factors accounting for this discrepancy warrant further investigation.
57The time-invariant classification of technologies into discrete and complex fields follows Von Graevenitz et al. (2013).
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Figure E-1: Effect of patent invalidation on follow-on innovation – discrete and complex technologies
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Notes: The figure provides the point estimates and 90% confidence intervals for the invalidation coefficient on other

citations in distinct subsamples. The value subsamples are restricted to patents with a patent value (based on the principal

component of claims, IPC classes, and family size) in the stated percentile range. The value distribution is stratified by

year and technology field. The infringement subsample consists of patents that could be linked to infringement disputes.

The classification of technology areas into discrete and complex follows Von Graevenitz et al. (2013). The corresponding

regression results can be found in Appendix Table E-4.

We find that the invalidation effect for patents in complex technologies increases with patent

value. Narrowing down the set of patents unavoidably decreases the precision of the estimates, espe-

cially in the subsample above the 90th percentile of the value distribution. Notwithstanding, among

these high-value patents, the invalidation effect in complex technology fields reaches a consider-

ably larger magnitude. We further examine the invalidation effects in the infringement subsample.

For these infringement patents, the invalidation effect is large and significant in complex technol-

ogy fields but statistically indistinguishable from zero in discrete technology fields—mirroring the

ordering of the estimates in GS2015.

Several reasons may explain why the invalidation effect in complex technology fields increases

with innovation value. First, patentees likely face considerable rent dissipation effects as these

patents protect particularly valuable original innovations. This results in many firms in the market

without FTO through licensing. Second, the invalidated patents likely protect aspects of the original

innovation with an asymmetric (i.e., disproportionately large) share of the combined innovation

value. This implies that many firms gain FTO through invalidation despite the possible existence

of other patentees holding complementary patent rights. Relatedly, the CAFC patents, which are

significantly older with validity decisions made between 1983 and 2008, may not be surrounded by

as many patent thickets compared to the patents in our sample.

Finally, GS2015 argue that the distribution of the marginal treatment effect (MTE) of invalidation

provides additional evidence for licensing failure due to transaction costs. We therefore compare
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the MTE in our study with the MTE reported by GS2015. The MTE is based on patents that are

invalidated because of the instrument. This concerns patents with common support, which ranges

from a predicted probability of invalidation of about 0.35 to 0.95 (see Appendix Figure E-2a).

In Appendix Figure E-2b, we plot the estimates of the MTE (dark blue line) and the weighted

MTE (light blue line) against the predicted probability of invalidation, which can also be described

as the unobserved resistance to treatment. The estimates emerge from patents that are at the margin

of getting invalidated despite their predicted probability of invalidation based on observables. The

mean of the weighted MTE (light blue dashed line) is close to our 2SLS coefficient, which indicates

that the MTE curve is well-specified. The estimated MTE is particularly pronounced at both extremes

of unobservable resistance to treatment. While the large MTE at the high end is consistent with

GS2015, the elevated MTE at the lower end supports our contention that two distinct reasons for

licensing failure exist within our sample.

Figure E-2: Common support and marginal treatment effect
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Notes: The MTE is calculated based on the specification in Table 2, column (4).

In summary, despite the markedly different setting, we successfully replicate several key findings

from GS2015.
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Table E-2: Institutional and econometric comparison with GS2015

GS2015 This study

Institutional context

Institution Court of Appeals for the Federal Circuit

(CAFC)

European Patent Office

(EPO)

Geographical jurisdiction United States EPC member states (Europe)

Patents Granted by USPTO Granted by EPO

Type of proceeding Civil proceeding Administrative proceeding

Timing of action No restriction Within first 9 months after patent grant

Initiator Patentee (82%)§ Third party (100%)§

First action Infringement action (85%)§ Validity challenge (100%)§

Prior decision Yes (District court/USPTO) Yes (EPO)

Decision made by Three judges Three patent examiners

(+ one legally qualified examiner)

Appeal possible Yes Yes

Litigation costs 650,000 to 5.5 million USD† 6,000 to 50,000 EUR‡

Settlement rate ∼ 90% (lower court)†† / ∼ 20% (CAFC)‡‡ ∼ 12%§

Sample

Patents 1,258 38,405

Share of granted patents ∼ 0.05% ∼ 6%§

Court decisions 1982-2008 1993-2013

Case to patent relationship m:n 1:1

Econometric model

Model Two-stage least squares estimation Two-stage least squares estimation

Instrumental variable Predicted probability of invalidation Predicted probability of invalidation

Exclusion restriction Judge invalidity propensity Participation of granting examiner

Citation measure

Citation source USPTO EPO/WIPO

Citation origin Applicant / examiner Applicant / examiner

Citing patents Granted patents

and applications (post AIPA)

Granted patents

and applications

Citing patent applicants Domestic applicants All applicants

Citation date Filing year (Priority) filing year

Pre-decision citation window From grant to decision First three years from (priority) filing

Post-decision citation window First five years from decision First five years from decision

Invalidation measure

Operationalization At least one claim invalidated At least one claim invalidated

Invalidation rate 39% 71%

Control variables

Patent characteristics Claims, pre-cites, age Claims, pre-cites, age, + various

Patentee characteristics No Various

Other party characteristics No Various

Technology fields 6 categories (Hall et al., 2001)

or 36 subcategories (Hall et al., 2001)

567 categories (IPC4 classes)

or 34 categories (Schmoch, 2008)

Complexity definition Electronics, computers, medical instruments See Von Graevenitz et al. (2013)

Time fixed effects Outcome year Grant year, outcome year

Notes: AIPA: American Inventor’s Protection Act of 1999. EPC: European Patent Convention. USPTO: United States

Patent and Trademark Office. WIPO: World Intellectual Property Office. Sources: §own data, †AIPLA (2009), ‡Mejer and

van Pottelsberghe de la Potterie (2012), ††Galasso and Schankerman (2010); Moore (2001), ‡‡CAFC Year Statistics.
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Figure E-3: Distribution of first action types (CAFC)
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Notes: The figure shows the distribution of cases by first action type and technology field (NBER technology categories).

Information on the first action type was collected from Darts-IP.

Table E-3: Comparison between characteristics of EPO opposition (CAFC litigation) patents and

matched controls

Opposed (N= 36,661) Controls (N= 183,305)

Mean Median Std. Dev. Mean Median Std. Dev. Diff. p-value

−1st claim length −143.30 −126.00 92.78 −159.62 −139.00 110.68 −16.33 0.000∗∗∗

Claims 13.59 11.00 10.14 12.14 10.00 8.62 −1.45 0.000∗∗∗

Family size 10.76 8.00 11.10 8.93 7.00 8.03 −1.83 0.000∗∗∗

Inventors 2.64 2.00 1.78 2.57 2.00 1.78 −0.06 0.000∗∗∗

IPC classes 2.61 2.00 2.35 2.60 2.00 2.30 −0.01 0.379

KPSS (2017) values 24.36 6.22 56.16 18.78 4.75 47.04 −5.57 0.000∗∗∗

Principal component 0.18 −0.14 1.37 −0.04 −0.29 1.11 −0.22 0.000∗∗∗

CAFC (N= 1, 330) Controls (N= 6,200)

Mean Median Std. Dev. Mean Median Std. Dev. Diff. p-value

−1st claim length −159.43 −139.00 100.35 −174.19 −154.00 132.36 −14.76 0.001∗∗∗

Claims 21.97 14.00 39.27 13.42 10.00 13.29 −8.55 0.000∗∗∗

Family size 7.41 3.00 15.99 4.40 2.00 7.30 −3.01 0.000∗∗∗

Inventors 2.00 1.00 1.76 2.01 2.00 1.48 0.01 0.809

IPC classes 3.03 2.00 2.95 2.44 2.00 2.31 −0.59 0.000∗∗∗

KPSS (2017) values 23.02 6.36 57.96 13.47 4.50 38.16 −9.54 0.000∗∗∗

Principal component 0.39 −0.07 1.70 −0.09 −0.31 1.00 −0.48 0.000∗∗∗

Notes: This table presents summary statistics of patent characteristics of EPO opposition (CAFC litigation) patents and

matched control patents. Patents are matched on the (priority) filing year and the IPC4 technology class. Only granted

patents are considered. Claims information for US patents before 1976 is not available. Patents with fewer than five

controls in the respective strata are excluded. The unit of observation is at the patent level. Reported p-values are based

on an unpaired t-test. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table E-4: Effect of patent invalidation on follow-on innovation – discrete and complex technology

fields

(1) (2) (3) (4) (5)

Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS

Dep var log(Citations)

Sample: Complex tech All Value (PC1) ≥ p30 Value (PC1) ≥ p60 Value (PC1) ≥ p90 Infringement

Invalidated (d) 0.055 0.039 0.125 0.434 0.648∗

(0.110) (0.128) (0.162) (0.299) (0.337)

Covariates Full (TF34) Full (TF34) Full (TF34) Full (TF34) Full (TF34)

Dep var mean 0.42 0.46 0.51 0.62 0.63

Underidentification test 68.1 58.9 69.6 27.7 21.6

Weak identification test 203.2 159.8 99.5 34.7 22.4

Observations 17,624 12,521 7,212 1,955 1,259

(6) (7) (8) (9) (10)

Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS

Dep var log(Citations)

Sample: Discrete tech All Value (PC1) ≥ p30 Value (PC1) ≥ p60 Value (PC1) ≥ p90 Infringement

Invalidated (d) 0.257∗∗∗ 0.245∗∗ 0.414∗∗∗ 0.494 −0.091

(0.091) (0.102) (0.134) (0.372) (0.201)

Covariates Full (TF34) Full (TF34) Full (TF34) Full (TF34) Full (TF34)

Dep var mean 0.40 0.43 0.47 0.55 0.56

Underidentification test 162.5 146.4 97.3 16.2 57.5

Weak identification test 268.8 232.0 148.5 21.3 65.0

Observations 20,781 14,666 8,419 2,197 1,098

Notes: Columns (1) to (5) and (6) to (10) correspond to the 2SLS regression specifications in Table 2, column (4), with

technology field fixed effects. The value subsamples are restricted to patents with a patent value (based on the principal

component of claims, IPC classes, and family size) in the stated percentile range. The value distribution is stratified by

year and technology field. The infringement subsample consists of patents that could be linked to infringement disputes.

The classification of technology areas into discrete and complex follows Von Graevenitz et al. (2013). One is added

to all citation variables before taking the logarithm to include patents without citations. In each 2SLS regression, the

“Invalidated” dummy is instrumented with the corresponding probability predicted by a probit regression on the “Examiner

participation” dummy and all other exogenous variables. The underidentification and weak identification tests are the

heteroskedasticity-robust Kleibergen and Paap (2006) rk LM and Wald F statistics, respectively, as reported by Stata’s

ivreg2 command (Baum et al., 2010). A comprehensive list of the control variables can be found in Appendix Table B-1.

Robust standard errors are presented in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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F Institutional Details

F.1 Examination

The majority of patent applications at the EPO are based on national first filings or international PCT

filings (see Harhoff and Wagner (2009) for a detailed description). Only a small share of filings takes

the EPO as its priority office. Publication of patent applications occurs at the EPO (as in many other

patent authorities) almost exactly 18 months after the priority date; the publication of the patent

document is usually accompanied by the EPO Search Report. In the case of PCT filings, which are

published by the World Intellectual Property Organization (WIPO), an International Search Report is

generated by an International Search Authority (ISA). Most International Search Reports are actually

generated by the EPO. While the patent application may contain many references to prior art inserted

by the applicant, only the prior art listed in the search report is relevant for the examination process.

The examiner controls the selection of prior art references, including those already listed by the

applicant, but also generates references via her own search efforts.

Within six months after the publication of the search report compiled by the patent office, the

patent applicant has to request examination of the patent application. If the applicant fails to do

so, the application is deemed to be withdrawn. With the end of the search procedure, the respon-

sibility for examining the application passes internally from the receiving section to an appointed

examining division, which consists of a primary examiner, a secondary examiner, and the chairman.

The primary examiner assesses whether the application and the invention meet the requirements

of the European Patent Convention and whether the invention is patentable based on the search

report. The primary examiner then either grants the patent directly, contingent on the approval by

the other two members of the division, or requests a reply from the applicant that addresses the

objections raised in the search report. If the objections are successfully overcome by the applicant,

the primary examiner sends the version in which he intends to grant the patent, including his own

amendments, to the applicant. After the applicant’s approval and the completion of formalities (e.g.,

fee payments, the provision of translations), the grant of the patent is published. The publication

date of the B1 document is the official grant date of the patent.

Currently, it takes on average more than four years from the filing of the application to the final

decision on the grant of the patent (Harhoff and Wagner, 2009). Since the grant comes along with

validation fees and costly translations into national languages, some applicants deliberately delay

the examination process. Other applicants are interested in fast resolution of the patent examination

and file a request for accelerated examination (about 12% of opposed patents).
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F.2 Opposition

The examiner’s decision to grant the patent can be opposed by any party except the patentee

herself. The opposition may be filed on the grounds that the subject matter is not new or inventive,

the invention is not sufficiently disclosed, or the granted patent extends beyond the application’s

content as filed. In the case of multiple independently filed oppositions, all objections are dealt with

in one combined proceeding.

The opposition division, which consists of three technically qualified examiners, hears the case.

Case law has established that the patentee and the opponent cannot object to the appointment of a

particular examiner in the opposition division. The opposition division’s decision can, in principle,

be appealed on the ground of a suspected lack of impartiality among the division members. However,

there are only very few cases where this has occurred, and these cases typically refer to different

allegations than the involvement in the previous grant decision. If appointed, the granting examiner

participates as one of the three members of the opposition division with an equal vote on the patent’s

validity.

The opposition proceeding involves the exchange of communications between the patentee and

the opponent. The patentee can propose amendments to the description, claims, and drawings of the

patent. An oral proceeding is summoned if requested by one of the parties, including the opposition

division itself. Despite being optional, the oral proceeding before the opposition division is a rarely

omitted part of the opposition procedure. About 90% of all oppositions conclude in a decision by

the opposition division.

On average, about three years after the grant, the opposition division rules the opposed patent

as either fully valid, valid but in amended form (i.e., with a narrowed scope), or invalid. Amended

patents typically have a reduced number of claims, which narrows their scope. The patentee and

the opponent can appeal the opposition division’s decision at the EPO’s Boards of Appeal. Almost

half of all opposition decisions are appealed, but the reversal rate is low (7%).
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G Collection of Examiner Information

As explained in Section 3, we use the presence or absence of the primary examiner in the oppo-

sition division as an instrument to allow for causal inference concerning follow-on innovation for

the sample of all opposed EP patents between 1993 and 2012. For this purpose, we first identify

the relevant set of patents by the EPO PATSTAT Register – 2015 Autumn Edition. Second, to deter-

mine the names of the examination and opposition division’s members, we download three types of

(scanned) pdf-documents from the European Patent Register for each of the identified patents: the

grant decision for the examination division and the minutes of the oral proceedings as well as the

opposition outcome decision for the opposition division.58 We use two types of documents for the

latter to reduce the likelihood of errors. Third, we extract and pre-process the image files included

in the pdf-files and read the contained information to txt-files using optical character recognition

(OCR) software. Fourth, using a keyword search specific to each document type and language, we

identify and parse the names of the respective division’s members to a standardized format with first

and last names separated. Fifth, we check whether one person is a member of both the examination

and the opposition division by comparing the names of both divisions with different string similarity

measures.

Two aspects are worth noting. First, using both the minutes of the oral proceedings and the

opposition decision document to identify the opposition division is justified since the division holding

the oral proceedings must be the same as the opposition division rendering the decision in writing.

Otherwise, the decision is deemed to be void.59 Second, in some cases, we are unable to identify

all relevant members, for example, because the EPO database holds the wrong document under the

specific link, and in some cases, we might erroneously identify the substantive examiner as being

present or absent, for example, because the scanned document and thus the OCR is of poor quality.

However, the read-out quality and success do not depend on the outcome of the opposition since

the corresponding decision document has the same format across all three outcomes and thus does

not affect identification.

58The European Patent Register provides access to digital documents in the public part of a patent file (also known

as online file inspection or “file wrapper”). The documents are grouped by procedural stage and include the full written

correspondence between the EPO, the applicant, and the opponent. Outgoing communications become available online

on the day after the date of dispatch. Incoming communications become available once the filed document has been

coded by the EPO.
59See for instance T 390/86 with a decision from 17 November 1987.
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Table G-1: Overview and definition of samples

Sample definition N %

All patents with filed opposition and grant date 1993-2012 54,023 100.00%

− destroyed files 8 0.01%

− unavailable files 150 0.28%

⇒ available in online file inspection register 53,865 99.71%

− no readable examiner information 1,203 2.23%

⇒ with examiner information 52,662 97.48%

− patent holder requests revocation 2,221 4.11%

− patent holder withdraws patent 514 0.95%

− opponent withdraws opposition 4,057 7.51%

− no readable opposition information 362 0.67%

− opposition proceeding still pending 1,130 2.09%

⇒ with opposition division information 44,378 82.15%

− first decision after 2013 5,913 10.95%

⇒ sample of analysis 38,405 71.09%
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