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AbstractÐLogic Mill is a scalable and openly accessible soft-
ware system that identifies semantically similar documents within
either one domain-specific corpus or multi-domain corpora. It
uses advanced Natural Language Processing (NLP) techniques
to generate numerical representations of documents. Currently
it leverages a large pre-trained language model to generate
these document representations. The system focuses on scientific
publications and patent documents and contains more than 200
million documents. It is easily accessible via a simple Application
Programming Interface (API) or via a web interface. Moreover,
it is continuously being updated and can be extended to text
corpora from other domains. We see this system as a general-
purpose tool for future research applications in the social sciences
and other domains.

I. INTRODUCTION

There is a growing need for tools that allow researchers to

identify related documents within the same, but also across

different domains. With the ever-growing volume of scien-

tific publications and patents, scholars find it burdensome

to manage relevant documents and search important prior

contributions efficiently. Finding relevant documents plays a

significant role in building coherent scientific arguments, but

is also important in assessing the use of scientific research

outside academia [1, 2]. Patent examination is another field

in which finding related documents and identifying prior art

is essential. In ex post analyses, researchers often rely on

citation data to identify relations between documents. While

citations are helpful in tracing citation networks and in un-

covering important patterns in the production and diffusion of

knowledge within the same corpus, they are typically limited

when searching for relations across different corpora. Even

within the same corpus, citations can be selective or even

systematically biased (see [3, 4]). Finally, references may not

exist for texts that are in the process of being created, so that

authors are faced with the challenge of identifying relevant

references in the first place. Therefore, tools are needed that

allow for processing and analyzing the textual contents of

high-volume text corpora and of establishing measures of

relatedness (similarity) between them.

We refer to the system described here as a knowledge navi-

gation system, since it allows for tracing knowledge elements

within and across text corpora (e.g., the corpus of all patents
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Algorithms for Science, Technology & Innovation Studies at KU Leuven. We
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or of all scientific publications). Previous attempts include

[5] for scientific publications and [6] for patent documents,

both of make use of bag-of-words approaches. While such

systems are sometimes referred to as recommender systems

[7], recommendation of related documents is only one possible

application of knowledge navigation (see below for a non-

exhaustive list of use cases). However, these systems often use

proprietary algorithms, usually focus on one domain corpus,

are not openly accessible, or are not continuously being up-

dated. A knowledge navigation system of the kind envisioned

here should be capable of efficiently retrieving, storing, and

processing hundreds of millions of documents. Moreover, it

requires capabilities for fast detection of particularly similar

documents within and across corpora.

An important problem that needs to be addressed is how to

implement the concept of document similarity. This requires

representing documents in a numerical form that computers

can process, with the goal of generating similar representations

for similar documents at large scale. In the field of natural

language processing (NLP) this process is known as document

encoding.

There are various methods for representing documents

numerically. Traditional NLP approaches like TF-IDF [8]

are used widely in the literature. However, these traditional

methods are not scalable, since an extension of the vocabulary

requires a re-computation of all representations of the corpus.

In addition, these approaches do not capture the semantics

of the documents; that is the meaning of words, or the

interpretation of sentences in context, is lost.

Therefore we propose Logic Mill, a software system aiming

to satisfy the shortcomings of existing systems and approaches.

The system creates document representations using modern

NLP techniques and contains large document sets with pre-

calculated encodings. It is easy to use and allows users to

access and compare texts from different text corpora. Further-

more, it is scalable and built on non-proprietary algorithms. We

regularly update the datasets based on their release schedule.

Our objective is to provide a fast system of high accuracy that

is openly accessible.

In the release version, the system encodes text documents

using the SPECTER document encoder [9] which leverages

the bi-directional transformer architecture (BERT) [16]. This

model, in combination with the database containing numerical

representations of documents from different corpora (analo-

gous to a vector search database), is the backbone for the

Logic Mill system.



At present, we provide the numerical representations for

the scientific articles of Semantic Scholar and for the patent

publications issued by the United States Patent and Trademark

Office (USPTO), the European Patent Office (EPO), and

the World Intellectual Property Organization (WIPO). To be

precise, we use the titles and abstracts of these, since BERT-

based models are restricted to vectors of 1,024 tokens.

An important feature is that users can also feed their

own text data to Logic Mill for encoding and for obtaining

similarity measures, both within their data and between own

data and standard text data of the system. They can thus

link their own curated documents to patents and scientific

publications according to textual similarity.

Logic Mill can be used in a number of different research

applications, such as:

• Explore literature: Search for research papers, and find

the best matches based on textual similarity to a paper in

the database or to own text documents.

• Prior art search in patent examination: Look for previ-

ously granted patents or (not yet granted) patent applica-

tions, but are similar to the focal one.

• Link patents to related scientific publications: Search for

patents that the scientific publication might be based on

or have a strong similarity to.

• Recommend citations and readings for new documents:

Find documents that are very similar to a focal one and

may be useful as a reference or reading.

• Assess the novelty of patents and publications: Check if

a patent or publication is new or not by comparing it

to prior texts. Documents that have few highly similar

documents may be new or even unique.

• Trace concepts across domains and over time: Identify

documents across domains (e.g. publications and patents)

that are highly similar and possibly related.

II. DOCUMENT ENCODING

Document encoding in natural language processing (NLP)

is a process for representing textual data in a numerical form.

There are various approaches to encode documents.

a) Bag of words: Simple and fast procedures construct

a vector whose binary elements indicate the presence of a

word in a document (ºbinary term encodingº), the number of

occurrences of a word in a document (ºcount matrixº) or the

weighted number of occurrences of a word in a document

(ºTerm frequency-inverse document frequency (TF-IDF)º).

These approaches have the drawback of not capturing the

meaning or context of the words in the document ± hence

the common term bag-of-words. Furthermore, they are not

scalable since the whole model must be retrained if a new word

is added to the vocabulary and the length of each vector equals

with the vocabulary size. From a computational perspective,

they are inefficient since they generate sparse matrices where

most elements equal 0.

b) Word embeddings: Word embeddings are dense, fixed-

size, and continuous-valued vector representations of words

that capture the meaning of the words in the document.

These word representations are learned via training over large

corpora of textual data using methods such as Word2Vec

[11], GloVe [12], or FastText [13]. The advent of these word

embedding methods was a leap towards memory-efficient

dense numerical representation for words and documents from

the bag of words models’ sparse representation. A baseline

approach to representing a document is to average or sum the

learned word embeddings of the words in a document.

c) Sentence/Paragraph Embeddings: Sentence embed-

dings can be understood as an extension of the basic idea of

word embeddings. Word embeddings are static representation

of words and do not change even in the presence of multiple

contexts in the document collection. However, the same word

can have different meanings in different contexts. For example,

the word ”bank” can be a financial institute or can relate

to a river bank. Hence, the neural network architecture such

as Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM) [14] are used for representing the word

to its true context dynamically with a notion that words

appearing either before or after the focal word reveal the

context around the focal word. RNN and LSTM also aid

the vector representation of the context of the sentences or

paragraph [15].

However, RNN and LSTM architectures cannot appropri-

ately capture the meaning of the words at the beginning of a

very long sentence or paragraph in its numerical representation

due to their sequential structure. The rise of deep neural net-

works and recent advancements in the field of NLP introduced

the transformer architecture [10]. Transformers looks at each

word of a sentence together, unlike RNN and LSTM, and

learns the degree to which the words reflect the context of

that sentence using the so-called attention mechanism. The

transformer architecture can translate the meaning of each

word in a sentence through its network into the numerical

representation of the sentence, also called sentence embedding.

As stated before, a baseline approach to representing a doc-

ument is to average or sum the learned sentence embeddings

of that document.

d) BERT Language Model: Bidirectional Encoder Rep-

resentations from Transformer, BERT [16] is another recent

development that uses transformer architecture. It exhibits all

the traits of transformer architecture, meaning it learns the

sense of the words of an input sentence, the context of that

sentence, and the semantic relation between the words and the

context. BERT being a ºbidirectionalº model, considers the

context of a word from both sides (left and right) at the same

time in a sentence, which makes this model effectively process

long contiguous text sequences, such as entire paragraph, not

limited to short phrase. The BERT architecture is designed

with a limitation of 512 input tokens. This means that before

the text is fed into the model, it is tokenized and truncated

if necessary. Any model built on BERT must take this into

account. Based on our own data, a word usually consists of

≈ 1.2 tokens.

e) SciBERT: SciBERT is a BERT language model for

tasks involving scientific publications [17]. It was trained on
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a large corpus of 1.14M scientific publications from computer

science and the broad biomedical field. This model also

outputs numerical representation like BERT.

Fine-tuning a general purpose BERT model on scientific

papers produces more accurate result in this domain [17, 18],

because it uses a domain-specific vocabulary. This also extends

to similar domains, in this case patents, where SciBERT

model outperforms the original BERT for tasks such as IPC

classification and similar patent finding [19]. SciBERT is

thus particularly well-suited for tasks such as information

extraction, document classification, and text representation in

the scientific domain.

f) SPECTER: SPECTER is an extension of SciBERT to

encode scientific publications also with the help of inter-

document relatedness [9]. In the scientific literature, cita-

tions signal relatedness, but this information is not used by

SciBERT. SPECTER transfers the learned relatedness signal to

the representation of a scientific article. During the application

of this model, it generates similar embeddings for related

scientific documents without knowing citation information.

We use SPECTER model as our workhorse document en-

coder model.1 It generates embeddings for scientific publica-

tions and patents using all available information based on a

domain-specific pre-learned vocabulary, even without citation

information during the encoding process. Because BERT has

a limitation of 512 tokens, only the title and abstract will be

used as input. Based on our data, most of the tile + abstract

is below the 512 token limitation.

III. SYSTEM SPECIFICS

Logic Mill system is designed using a Microservice Archi-

tecture. This software design approach breaks down a large,

monolithic application into smaller, independent components

that can be developed, deployed, and maintained separately.

Each microservice is a self-contained unit that performs a

specific function and communicates with other microservices

through well-defined interfaces, typically using APIs.

Figure 1 shows the multiple services of our system. From

a high-level perspective, there are 6 distinct parts:

a) External Data Sources: where patent documents and

scientific publications are obtained from

b) Document Encoder: transforms the text of the document

into a numerical representation using a machine learning

model

c) Extract, Transform, Load (ETL): processes move docu-

ments from the external sources, process and store them

d) Vector Search Database: stores the computed numerical

representation along with metadata and the text

e) Backend with Web API: propagate the user requests to

the database

f) User-Interface: provides the users with a web application

where they can interact with the API via our website or

using their own scripts, for example in Python or R.

1There is one other BERT-based language model specifically trained on
patents, namely PatentBERT [20]. Its task is to classify patents, and therefore
not suitable for our purpose.

a) External Data Sources: The system can be connected

to various external data sources. The release version of the

system retrieves patent documents and scientific publications

from public and access-restricted sources.

Scientific publications are obtained from the Semantic

Scholar dataset, including abstracts and additional metadata

such as publication date, journal name, or Digital Object

Identifier (DOI) [21]. The bulk dataset of Semantic Scholar is

published as JSON files and contains more than 200 million

documents. We automatically retrieve the latest version every

month.

We obtain patent documents from multiple sources, namely

the European Patent Office (EPO), the United States Patent

and Trademark Office (USPTO), and the World Intellectual

Property Organization (WIPO).

The EPO offers various data sets and data feeds.2 We

use DocDB and the API of the European Publication Server

(EPS)3 to obtain full text and metadata. DocDB includes

bibliographic data from over 100 countries worldwide, and

for some patent authorities, the data goes back as far as the

1830s. The EPS API gives online access to all the European

patent documents published by the EPO, which Logic Mill

retrieves as XML feeds. Currently the system contains more

than 7 million full-text patent documents from the EPO EPS

and 145 million metadata records from the EPO DocDB.

We also retrieve XML files from the USPTO containing

the full text and all relevant metadata. Currently, there are

more than 10 million patent documents, which are obtained

through the USPTO Bulk Api. 4 Currently the system contains

more than 10 million full-text patent documents issued by the

USPTO.

WIPO likewise provides XML files for the full text of

international patents with metadata. Presently, there are around

3.8 million patent documents in the system, which were

obtained via the WIPO’s file server.

Logic Mill retrieves continuously the latest patent docu-

ments from the respective sources once per week and feeds

them into the system automatically.

b) Extract, Transform, Load: Through various Extract,

Transform, and Load (ETL) processes, the system obtains

the raw documents from external data sources and processes

them. In the first step, the textual content and the metadata are

extracted and stored in a global data structure. The structure

is independent of the document type (patent or scientific

publication). In the second step, the document encoder encodes

the text parts of the document and generates the numerical rep-

resentation. Finally, the search database stores the numerical

representation of a document along with the metadata and the

full text.

c) Document Encoder: The document encoder is

machine-learning model that transforms text documents into

a numerical representation. We use SPECTER [9] to encode

2See https://www.epo.org/searching-for-patents/data.html
3See https://data.epo.org/publication-server/.
4See https://developer.uspto.gov/api-catalog.
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Fig. 1: Logic Mill Architecture Overview

documents. The output of this model is a dense vector with

768 dimensions.

Since the encoding of all documents requires significant

computing power, the encoding was conducted on desktop

workstations with Nvidia graphics processing units (GPU) and

in high-performance cloud computing facilities. To allow for

real-time inference, a CPU container was deployed in the cloud

and is connected to the system and accessible for end-users

via the API.

d) Storage & Search: For the search and the storage of

documents with their numerical representation ElasticSearch is

used. This database is capable of full-text search and can be

used in a distributed context, which is essential for scalability

reasons.

Finally, ElasticSearch allows storing dense vectors that

nearest-neighbor search algorithms can use. Exact Nearest

Neighbor searchers are guaranteed to find a solution, but are

inefficient and not scalable.5 Therefore we use approximate

Nearest Neighbor searches (ANN), which trade-off precision

for lower computational and resource burden. ElasticSearch

uses the Hierarchical Navigable Small World graphs (HNSW)

[22] algorithm (as of version 8.0).6 HNSW organizes vectors

as a graph based on their similarity to each other. Together,

this setup finds the most similar documents with very high

probability for any query document within milliseconds.7

In our current setting the cluster consists of 12 nodes with

the 8 vCPU cores, 128 GB of RAM, and 1 TB of SSD storage

each. This setting is needed to allow for fast and efficient

computation, because the RAM required by the ElasticSearch

database can be distributed over multiple nodes. The database

cluster as well as all other components are running on the

5They would require to pre-compute all distance metrics between the query
vector and every vector in the database. In our setting this amounts to 220M+
pairs.

6Compared to a wide spectrum of alternative ANN and according to various
distance measures, HNSW performs consistently well [23]; see also http://
ann-benchmarks.com.

7We intend to provide further information on the time-accuracy trade-off
in future research.

GWDG OpenStack Cloud IT infrastructure8 in GÈottingen,

Germany.

e) Computation & API: The back-end extends the soft-

ware stack for more functionality and to handle the user

interactions. It is written in the language Go and provides

a plug-and-play Application Programming Interface (API) for

end-users using GraphQL. This query language for APIs is

a strongly typed interface that provides complete and under-

standable API documentation. Furthermore, it allows the users

to retrieve the data precisely that they have asked for.

The back-end also connects the document encoder with the

client-facing run-time environment. Doing that ensures that

end-users can send text, which can then be encoded to the

numerical representation, and finally, this representation can

be used to query similar documents from the database.

It can also be used to calculate distances between texts

provided by the user using their numerical representation

and distance metrics like the Cosine Similarity (Eq. (1)),

the Manhattan (L1) Distance (Eq. (2)) or the Euclidean (L2)

Distance (Eq. (3)).

cos(a, b) =
ab

∥a∥∥b∥
=

∑

n

i=1
aibi

√

∑

n

i=1
(ai)2

√

∑

n

i=1
(bi)2

(1)

l1(a, b) = ∥a − b∥ =

n
∑

i=1

|ai − bi| (2)

l2(a, b) = ∥b − a∥2 =

√

√

√

√

n
∑

i=1

(bi − ai)2 (3)

Furthermore, the back-end authenticates and authorizes the

end-users. This is ensured with the help of JSON Web Tokens

(JWT), which are sent in the HTTP header of each request.

8Gesellschaft fÈur wissenschaftliche Datenverarbeiting mbH GÈottingen, see
https://www.gwdg.de/.
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f) User Interfaces: The website https://logic-mill.net/

features user registration, project presentation, and documen-

tation in a Single Page web Application (SPA). It uses the

Vue JavaScript framework9 and consumes the GraphQL API

provided by the backend.

IV. USAGE

The general idea behind the user interface is to enable a

simple and easy plug-and-play interaction that simplifies the

project setup. The machinery to use the document encoder

model is already available, and the embeddings of large

corpora (Semantic Scholar, EPO, USPTO, WIPO) are pre-

computed and ready to be used. Users can do their projects in

less time with fewer resources, since there is no need to down-

load the raw data (time, storage), set up the machine learning

pipeline (time, CPU/GPU, memory), encode the documents

(time), and search through results (time, CPU/GPU, memory,

internal storage).

a) User interfaces: Upon registration on the website,

users can access the system either through the web application

on https://logic-mill.net/ (Fig. 2) or the Application Program-

ming Interface (API).

The web application aims to help users familiarize them-

selves with the queries and data structure. It explains the

different functionalities of the system and interactively shows

the syntactically correct GraphQL queries. Thus users can

experiment, design, and adapt their queries.

The web app auto-generates these queries for various pro-

gramming languages and tools. The release version of Logic

Mill provides these examples in GraphQL for Curl, Python,

R, and Go. However, any programming language with the

ability to make HTTP requests and retrieve and process JSON

responses can interact with the API endpoint.

b) API Functionality: Logic Mill provides 9 API end-

points for retrieval, pairwise similarity metric computation,

and Nearest Neighbor search. Each functionality can be ex-

tended to multi-domain corpora (i.e., searching the most sim-

ilar scientific publications for a patent), and they can involve

available documents in the database as well as user-supplied

documents or texts. The endpoints are summarized in Table I.

TABLE I: Overview of Logic Mill’s API functionality.

Purely database with own documents

Retrieval
Document, Documents
searchDocuments

encodeDocument, encodeDocuments

Calculation similarityCalculation encodeDocumentAndSimilarityCalculation

NN Search SimilaritySearch embedDocumentAndSimilaritySearch

A. Retrieval

a) Document Retrieval: In many cases, users can use the

system at the beginning of their research projects. One can

retrieve the pre-computed embeddings for a set of documents,

e.g., patent documents or scientific publications, that already

exist in the database via the Document and Documents

endpoints. Users would provide the IDs and corresponding

9See https://vuejs.org.

database of the documents along with an indication as to what

information they wish to access, e.g. title, abstract, claims,

description, authors, inventions, classifications, country, DOI,

journal name, and the embedding. The information the system

will return depends on the document type and the data source.

The online API documentation shows the fields that are

available in the current version.

b) Document Search: To conduct a keyword-based

search, the searchDocuments endpoint can be used. Logic

Mill will retrieve the documents matching the given keywords

and metadata from the available corpora. It returns the same

information as a retrieval via Document and Documents.

c) Encode own documents: The embeddings for own

curated documents can be generated and retrieved via the

encodeDocument and encodeDocuments endpoints of

our API. Users provide the title and the abstract, and the

document encoder model returns the numerical representation.

B. Calculation

Users often will be interested in pairwise similarities be-

tween documents. Although it is possible to retrieve em-

beddings for a set of documents one-by-one and compute

similarity metrics, the system also provides an endpoint for

doing precisely the same.

a) Calculate Document Similarities: The endpoint

similarityCalculation is used to retrieve the similar-

ity matrix of multiple documents in the database and compare

them. The input is a list of source documents and target

documents (by providing identifiers and indices) as well as

the type of distance calculation metric (cosine, l1, l2).

b) Calculate Similarities with Own Documents: To re-

trieve the similarities between a set of own curated doc-

uments and documents in the database, users use the

encodeDocumentAndSimilarityCalculation end-

point. The user provides, for instance, title and abstract of the

different documents, identifiers for later reference, and the type

of distance calculation metric (cosine, l1, l2). The system

encodes the documents with the help of the document encoder

and uses provided metric to compute the distances among the

encoded documents. The user could then transform the results

into a similarity matrix.

C. Nearest Neighbor search

a) Database Document Similarity Search: Given a

known document, users can search for the approximate nearest

neighbor within the same or other corpora for the most

similar documents, based on the cosine similarity using the

SimilaritySearch query. For example, the five most

similar scientific publications for a specific patent can be

requested. The title and the similarity score will be returned

alongside their IDs within the respective index.

b) Own Document Similarity Search: Users can also

provide their own documents and search for similar ones

of Semantic Scholar, EPO, USPTO, WIPO, that have al-

ready been encoded and stored in the database using the

embedDocumentAndSimilaritySearch query.

5
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Fig. 2: Logic Mill Website - Overview

V. CONCLUSION AND FUTURE DEVELOPMENTS

Logic Mill is a novel software system that helps navigating

knowledge embedded in scientific publications, patent doc-

uments and other text corpora. The system is scalable and

openly accessible. It is being updated regularly and easy to

use. We plan to expand its scope by adding more text corpora

such as the English-language Wikipedia and corpus-specific

encoders.

Users can leverage the system in the following contexts:

• retrieve numerical representations of existing documents

in Logic Mill’s database

• generate numerical representations for their own docu-

ments

• calculate similarities between users’ given documents,

or documents in the database, or between users’ given

document and the one in the database

• search for similar documents present in the database given

a query document that either exists in the database or

users can provide the query document

Researchers interested in innovation, science of science and

knowledge transfer may be particularly interested in these

capabilities. Its search capabilities may also be of interest to

patent examiners and inventors looking for prior art related to

their current inventions. Researchers in many fields may want

to use Logic Mill as a literature and citation recommender

system.

APPENDIX

Logic Mill provides an API endpoint that uses GraphQL.

The GraphQL query determines what should be executed and

what information should be returned. Users needs an API key

to access the API.

Logic Mill web app provides a user-interface where dynamic

GraphQL queries are generated for cURL, Python, R and Go.
10

Once a query is constructed in GraphQL, it can be im-

plemented and executed using any modern programming lan-

guage.

a) Basic structure of a request: A basic request writ-

ten in Python is displayed in source code .11 The variable

called query defines the GraphQL query. User specific

variables and requested information. By providing the

index and the ID (in this case an EPO patent with the

number of EP19164094B1), the title of the document and

the vector (the numerical representation) of the encoded text

are requested. The return variables can be customized (lines

8-11) to include other information about the document. The

object called response (line 19) is a dictionary that can be

processed further. As one can see, the Python code directly

includes the GraphQL query.

10Stata is another commonly used statistics tool, but cannot retrieve these
JSON responses. Recent versions of Stata can, however, embed Python code.

11Our examples are written in Python using the requests package for
http requests.
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Fig. 3: Logic Mill Website - Example Query

b) Example code showing the structure of any interaction
with the web API in Python:

import requests

import json

TOKEN = ’XXX’

ENDPOINT = ’https://lm/api/endpoint/url/here’

headers = {

’content-type’: ’application/json’,

’Authorization’: ’Bearer ’ + TOKEN,

}

query="""{

Document(index: "epo_cos", id: "EP19164094B1") {

documentParts {

title

}

vector

}

}"""

r = requests.post(ENDPOINT,

headers=headers,

json={’query’: query})

if r.status_code == 200:

response = r.json()

print(response)

else:

print(f"Error executing\n{query}\non {url}")

c) Parameters: While the previous example is the most

straightforward and basic implementation, it is not always the

most suitable in practice. In many cases, one has to make mul-

tiple requests to retrieve all the data. For example, it is possible

to request the encoding for multiple documents in one request,

however, it is not possible to retrieve them, for example,

10,000 documents. To do this the code needs to include a loop

where, with each iteration, a query with different parameters

is executed. We will call this a parameterized query. The user

provides two parameters to interact with the web API. These

are the GraphQL query and the query parameters. Doing the

loop with parameters will make the code more readable. The

code example 0d shows the example with the query and the

variables object. The code for looping is omitted as well as

the base code for handling the request.

7



d) Example code showing with a query with parameters:

# (same setup as above)

# Build GraphQL query

query="""

query Documents($index: String!, $keyword: String!) {

Documents(index: $index, keyword: $keyword) {

id

documentParts {

title

}

vector

}

}

"""

# Build variables

variables = [

{"keyword": "EP19164094B1", "index": "epo_cos"},

{"keyword": "20130226771", "index": "uspto_cos"}

]

# Send request

r = requests.post(ENDPOINT,

headers=headers,

json={

’query’: query,

’variables’: variables

})

# Handle request

# (...)

e) Other languages: Using the GraphQL queries in other

languages is very similar and the GraphQL structure stays

the same. In Code Sample blow, a query in the R-language

is shown. The ghql library is used to be able to use the

GraphQL query directly.

f) Example code showing with a query with parameters
in R:

library(jsonlite)

library(ghql)

URL <- ’https://lm/api/endpoint/url/here’

variables <- fromJSON(’{

"data": {

"id": "ID",

"parts": [

{

"key": "title",

"value": "Airbags"

},

{

"key": "abstract",

"value": "Airbags are (...) crash."

}

]

}

}’)

conn <- GraphqlClient$new(

url = URL,

headers = list(Authorization = "Bearer <TOKEN>")

)

query <- ’

query encodeDocument($data: EncodeObject) {

encodeDocument(data: $data)

}

’

new <- Query$new()$query(’link’, query)

res <- conn$exec(new$link,

variables = variables) %>%

fromJSON(flatten = F)

res$data
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