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Abstract

Automated decision-making gains traction, prompting discussions on regulation with

calls for human oversight. Understanding how human involvement affects the acceptance of

algorithmic recommendations and the accuracy of resulting decisions is vital. In an online

experiment, 66% of times participants preferred to delegate the decision to an algorithm

over an equally accurate human. The preference for an algorithm increased by 7 percentage

points if participants could monitor and adjust the recommendations. Participants followed

algorithmic recommendations more closely. Importantly, they were less likely to intervene

with the least accurate recommendations. Human-in-the-Loop increases the uptake but

decreases the accuracy of the decisions.
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1 Introduction

Today, algorithms are increasingly used to make decisions of economic and legal importance.

Automated decision supports are already used by companies and public institutions for a variety

of tasks - from evaluating job applications, to deciding what salary or bonus to offer or even to

bail and parole decisions (Fisher, 2019; Van Esch et al., 2019; Riberolles, 2021; Kleinberg et al.,

2018). The increased use of such (partially) automated decisions may have significant legal and

economic effects and has been accompanied by calls for policies that put a ªhuman in the loopº

(e.g., Art. 22 of the EU’s General Data Protection Regulation (GDPR) or Art. 14 of the EU’s

draft AI Act).1 These policies envision a system where a human monitors and interacts with an

automated decision support system by both relying on the inputs provided by the system, but

also consistently and thoughtfully analyzing them. From a legal perspective, a human monitor

is introduced to exercise oversight over the decision-making process to maintain human agency

and accountability, provide legal safeguards, or perform quality control (Enarsson et al., 2022).

Behavioral research raises concerns about the seamless functioning of such hybrid decision sys-

tems and emphasizes that human behavior in them might be systematically different. However,

there is a need for further understanding of the exact patterns of the differences (Chugunova and

Sele, 2022). When deciding whether to use the automated decision support system, people were

found both averse to using algorithms in decision-making (see algorithm aversion in Dietvorst

et al., 2015; Burton et al., 2020, for an overview) and appreciative of them (see algorithm

appreciation in Logg et al., 2019; Bogert et al., 2022). When engaging with the algorithmic

recommendations, users relied on the automated support too little by not incorporating the rec-

ommendations into their decisions (Logg et al., 2019; Abeliuk et al., 2020) - and too much by

failing to appropriately correct their mistakes (automation bias and automation-induced com-

placency, see Parasuraman and Manzey, 2010; Goddard et al., 2012, for an overview). Against

the backdrop of the importance of legal and policy discussion, the existing evidence provides

little guidance for the role of human agency in interaction with automated decision supports.

In this paper, we consider two research questions: First, we study if moving from a fully au-

tomated decision-making system to a human-in-the-loop system increases the preference for

1Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection

of natural persons with regard to the processing of personal data and on the free movement of such data, and

repealing Directive 95/46/EC (General Data Protection Regulation) and Proposal for a Regulation of the European

Parliament and of the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act)

and amending certain Union legislative acts, COM/2021/206 final.
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using an algorithmic decision support (over a human one). As conjectured in Chugunova and

Sele (2022), one possible explanation for seemingly inconsistent and conflicting findings is

the allocation of decision-making authority between humans and machines in an automated

decision-making situation. In this case, introducing a Human-in-the-Loop system can increase

the uptake of the automated decision supports. Second, we study if keeping a human in the

loop results in effective monitoring of algorithmic decisions. We consider how human moni-

tors engage with recommendations from different sources and if their adjustments improve the

accuracy of the decisions. If the monitoring human blindly rubberstamps the recommenda-

tions of the system and follows them as ªdefaultº decisions (Thaler and Sunstein, 2009), the

human-in-the-loop might not play the role that policy makers hope for.

Answering these questions is of high applied importance to organizations introducing auto-

mated decision-making supports into their work processes or developing them as well as to

policy-makers who aim to introduce regulatory safeguards. An important example of such reg-

ulatory safeguards that apply to automated decision-making is Art. 22 of the EU GDPR. It

prohibits fully delegating a decision to automated means if it produces legal effects on a human

decision subject or similarly impacts that individual.2 The draft of the EU’s AI Act further de-

velops the idea that automated decision systems require human oversight. In Art. 14 a specific

obligation to human oversight in the development of high-risk AI systems is proposed. The AI

act will be the first law on AI by a major regulator and is likely to have a global impact both due

to ªBrussels effectº3 (Bradford, 2020) and setting a legislative precedent for comprehensive AI-

specific regulation in other countries (Engler, 2022). The widely signed MontrÂeal Declaration

of Artificial Intelligence4 also states that ª[i]n all areas where a decision that affects a person’s

life, quality of life, or reputation must be made, where time and circumstance permit, the fi-

nal decision must be taken by a human being and that decision should be free and informedº

(principle 9.1).

To provide empirical evidence to answer these questions we conduct an online experiment with

a prediction task: Participants are asked to predict the performance of a student in a standardized

math test based on the student’s profile (as previously used in Dietvorst et al., 2018). To assist

the performance prediction, participants are offered an estimate from one of two sources: either

2The effectiveness of this article is disputed by some commentators, see e.g. Wachter and Mittelstadt (2019) or

conversely Edwards and Veale (2017)).
3Organizations voluntary apply higher standards required by the EU regulation outside of the EU.
4https://www.montrealdeclaration-responsibleai.com
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from another human participant (generated in a pre-experimental session) or from a statistical

model. Participants are informed that both the estimates of the other participants and the model

are of equal quality on average. Using a between subject design, we vary if participants delegate

the prediction fully to the provider of the estimate (Delegation condition) or whether they can

adjust it before submitting the performance prediction (Human-in-the-Loop condition).5

We find both a general preference for automated decision support, and that this preference

increases further when the human principal is allowed to retain some agency over the deci-

sion. Indeed, even in the Delegation condition, participants chose to delegate the decision to

an algorithm rather than to another human in 66% of cases. As human and algorithmic rec-

ommendations were curated to be equally accurate and participants were informed about it,

this finding speaks for a preference for an algorithm. This result is in line with several recent

papers (e.g., Candrian and Scherer, 2022; Germann and Merkle, 2020) that also do not find

algorithm aversion even under full delegation. Allowing participants to adjust the recommen-

dation further significantly increases the likelihood to opt for a recommendation by an algorithm

by 11% (7 percentage points). Hence, we find evidence that the retention of human oversight

can significantly increase the willingness to use automated decision-making support. In the

Human-in-the-Loop condition participants also report feeling more confident in the predictions

they submitted regardless of the source of the recommendation.

When investigating how participants engage with the recommendations, we find evidence of

automation bias (i.e., of over-reliance on the automated inputs): Participants tend to follow rec-

ommendations produced by algorithms more closely than those by humans (although they are

almost always identical). In our experimental environment, we also find that the participants’

adjustments decrease the accuracy of the final predictions: Within the Human-in-the-Loop con-

dition, participants appear to particularly struggle to appropriately adjust the recommendations

that stem from an algorithm. Predictions submitted following the algorithmic recommendation

appear to be (insignificantly) less accurate. Probably most problematically from the perspective

of decision quality, the human monitors are less likely to adjust recommendations that contain

larger errors as compared to smaller ones regardless of the source. Moreover, the adjustments

made to recommendations with larger errors also tend to be smaller. All of these findings raise

questions on the effectiveness of policies that propose the retention of a human in the loop to

5In the following, for the sake of brevity we refer to the estimates participants receive from either a human

or an algorithm as ªrecommendationº in both the Delegation and Human-in-the-Loop conditions, although in the

Delegation condition participants cannot adjust the ªrecommendationº.
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ensure the quality of the decision-making. The vivid discussions around such policies however

point to a wish to retain such human oversight. Indeed, as a final result of our experiment (and

similar to the general population (Grzymek and Puntschuh, 2019; Pew Research Center, 2018)),

the vast majority of participants believe that a human should almost always be put in place to

monitor algorithmic decisions.

In summary, the findings of our experiment will hence highlight an important trade-off: while

the retention of human oversight can increase the uptake of automated decision-making support,

it may also decrease the quality of the final decisions.

2 Design & Procedures

Our online experiment adopts the task first used in Dietvorst et al. (2018), which requires par-

ticipants to forecast the percentile ranks of U.S. high school students at a nationwide standard-

ized math test based on a short student profile. The profile contains nine characteristics of a

student (see Appendix B).6 The task uses real, public data from the U.S. High School Lon-

gitudinal Study of 2009. To make their test performance prediction, participants are offered

estimates from one of the two sources: either from another human participant or from a sta-

tistical model7. The human estimates were drawn from data generated in a pre-study with

US-based participants on Amazon MTurk. The estimates of an algorithm come from a model

developed in Dietvorst et al. When introduced to the task, participants are provided with some

basic information about the statistical model and the other participant. The description of both

sources was purposefully written to be similar. In particular, participants were informed that

both the model and another participants were imperfect, and that both make average mistakes

of 15 to 20 percentiles.8 In the experiment, the recommendations of the algorithm or the other

6The profile consists of the student’s race, their family’s socio-economic status (in quintiles), their desired

occupation at age 30, their self-predicted highest educational degree, the region of the USA they live in, the number

of times they took the PSAT, the number of the student’s friends who are not going to college, their favorite subject,

and whether the student has taken any AP test (see examples in Appendix B). Participants in the study, which took

place in Switzerland, where provided with additional explanatory information about all of these items.
7In the further text we use the terms statistical model and algorithm interchangeably.
8In more details, participants were informed that the statistical model was designed to forecast the percentile

score of a student in the math test, that for its estimations it uses only the information in the displayed profiles and

that it is developed in the US by thoughtful analysts. They were also informed that the model’s estimates are off by

15 to 20 percentiles on average. About the other participants they learned that the predictions were made during a

pre-study with participants located in the US who also used the information in displayed profiles. They were also

informed that the other participants’ estimates are off by 15 to 20 percentiles on average.
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participant were curated to differ at most by ±2 percentiles, yet participants were only informed

about the identical average performance.

Participants could choose if they want to receive the recommendation from an algorithm or

another human - rather than choosing between an algorithm’s recommendation and unassisted

decision. With this design choice, we deviate from the design of Dietvorst et al. (2018) and

follow another seminal paper in the field (Logg et al., 2019). By looking at the choice between

two sources of recommendations we are able to take into account that people generally discount

advice relative to their own judgment (Bonaccio and Dalal, 2006; Yaniv and Kleinberger, 2000).

Put differently, we aim to investigate the participants’ willingness to use automated rather than

human advice without the impact of (potential) over-confidence in their own capabilities.

We conducted two treatments in a between subject design. In the Delegation condition, par-

ticipants fully delegated the decision to the chosen source of a recommendation. That is, the

participants could choose between receiving the ªrecommendationº from either another partici-

pant or an algorithm and this ªrecommendationº was then directly recorded as the participant’s

prediction of the student’s performance. In the Human-in-the-Loop condition, participants also

chose if they want to receive a recommendation from an algorithm or a human but could then

either submit this recommendation as is or adjust it. If they chose to adjust the recommenda-

tion, they were able to do so without any restrictions (see Figure 1 and Appendix B for example

screens).

Participants were asked to make predictions for 20 profiles, which were split into four blocks of

five profiles. Before the start of each block, participants were asked to choose if they prefer to

receive the recommendations from another participant or from the algorithm. Each participant

hence made four choices regarding their preferred source of recommendations.The sequence

of profiles was constant for all participants. Importantly, in our experiment we do not provide

feedback on the accuracy of the performance predictions during the experiment. This design

choice is motivated by the fact that for many applications of algorithmic decision supports,

information on the correctness of the prediction is not immediately available.

It is conceivable that participants who select a certain type of the recommendation source might

be better able to engage with the recommendations by this type of a source. To explore if selec-

tion of the recommendation source affects how its recommendations are used, in the Human-in-

the-Loop condition, 40% of times participants were assigned to the source of recommendations
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Figure 1: Overview of the experiment and the treatments.

different to the one they desired.9 Participants were informed about this in the beginning of the

experiment. They were clearly informed about the source of the estimate, both with an intermit-

tent screen after the choice of the source and consistently on their screens. Due to this feature,

we opted for an unequal number of participants per treatment. 292 participants took part in the

experiment in total.10 Upon starting the experiment, participants were assigned to Delegation

condition with 40% change, and to Human-in-the-Loop with 60% chance. Therefore, 108 were

randomly assigned to the Delegation condition and 184 to the Human-in-the-Loop condition.

Participants were invited using the UAST subject pool jointly used by the University of Zurich

and ETH Zurich. The only exclusion criteria was a good command of English and a minimum

age of 18. Most of the participants were students at ETH Zurich (54%). The average age was

24 years old. 53% of participants were female. 62% were students in a STEM discipline.

9For instance, if a participant in the Human-in-the-Loop condition chose to receive the recommendations by the

algorithm, she would receive the algorithm’s recommendations with p = 0.6 and be given the other participant’s

recommendations with p = 0.4.
10The experiment received prior approval from the ETH Zurich ethics approval board (EK 2021-N-121). Written

and informed consent from participants was obtained prior to the experiment. The payment was administered by

ETH DeSciL, the researchers had no access to personally identifying information about the participants. The

collection of data took place between 30th of September and 11th of October 2021.
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The main experiment was implemented and conducted by the ETH Zurich Decision Science

Laboratory (ETH DeSciL) using oTree (Chen et al., 2016). Participants received a show-up fee

of 5 CHF and were additionally incentivized to make accurate predictions of the high school stu-

dent’s performance according to the following system: One of the 20 predictions was randomly

chosen at the end of the experiment and participants could earn 15 CHF if the performance

prediction was within 5 percentiles of the true performance. Participants were paid according

to a step function with smaller bonuses paid for less accurate predictions: For every additional

5 percentiles difference between the prediction and true performance of the student the bonus

was reduced by additional 3 CHF. Therefore, there was no bonus if the prediction was more

than 25 percentiles away from the true performance. Participants earned on average 6.10 CHF

as a bonus.

To generate the recommendations from the other human participants that were used in the main

experiment, we conducted a pre-study with 200 participants on Amazon MTurk.11 Participants

in this study were U.S. residents and at least 18 years old. There were no further exclusion

criteria for the pre-study. Participants made a series of performance predictions and received a

bonus payment contingent on the accuracy of one randomly selected performance estimate.

3 Results

Preference for the source of recommendation Our study finds a general preference for al-

gorithmic recommendations. Participants were informed that both recommendations from a

human and from an algorithm are on average equally accurate, yet, already in the Delegation

condition in 66% of choices participants preferred to receive recommendations from an algo-

rithm. This share is significantly different from 50% which would be expected due to equal

performance of the two sources (one-sample test of proportions, p < 0.0001). Putting a human

in the loop by allowing participants to adjust the received recommendation further increases the

preference for using a recommendation from an algorithm by 11% (7pp). The difference be-

tween the two treatments is significant (p = 0.01).12 Figure 2 depicts the shares of participants

who chose to receive a recommendation of an algorithm across conditions.13 The difference

11The data of the pre-study was collected on 21/09/2021. Participants expressed written informed consent.
12Unless specified otherwise, we report results and significance levels of two-sided t-tests.
13The result is reconfirmed by a probit regression controlling for an iteration and a set of demographic charac-

teristics (Table A1).
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Figure 2: A share of participants who chose to receive a recommendation by an algorithm. 95%

confidence intervals.

is largely driven by a share of participants who always preferred an algorithm to a human in

the Human-in-the-Loop condition (see Figure A6, Kalmogorov-Smirnov test of the equality of

distributions, p < 0.001).

While the direction of the effect is in line with the results of Dietvorst et al. (2018), who find that

allowing people to make small corrections to the algorithm increases uptake, the level of the ef-

fect and the fact that we find a preference for an algorithm even in the Delegation condition is of

interest. Earlier work by Dietvorst et al. (2015) had documented widespread algorithm aversion

when participants learn that an algorithm can err, leading the authors to suggest that humans

may forgive other humans mistakes but remain skeptical to (imperfect) algorithms. Their study

also documented that without receiving feedback about the performance of the algorithm, peo-

ple are either indifferent between receiving the (superior) algorithmic advice or prefer it. In

our experiment, the strong preference for an algorithm is striking as unlike in Dietvorst et al.
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the algorithm and human recommendations were equally good and participants knew that both

the statistical model and the other human make mistakes. Yet, an important caveat to this com-

parison, which only reinforces our result, is that, in the mentioned study participants decided

between receiving the algorithmic recommendation or not and not between the source of rec-

ommendation. In Logg et al. (2019, Experiment 3), where participants choose between the

source of recommendation, the share of participants choosing an algorithm in human-in-the-

loop treatments is somewhat higher than documented in this paper. Logg et al. find that 88%

of participants preferred an algorithm over a human recommendation. The difference to our

somewhat lower share might be possibly explained by the almost perfect performance of the

algorithm in the study of Logg et al.

Result 1. We find a general preference for receiving recommendations from an algorithm

rather than from another human. Moving from a full delegation of the decision to a Human-in-

the-Loop system increases the uptake even further.

Confidence in the decision In the Human-in-the-Loop condition, participants also report hav-

ing more confidence in their own estimates than do the participants in the Delegation condition

(41 out of 100 in Delegation, 48 out of 100 in Human-in-the-Loop, p = 0.008). In general, the

result that a Human-in-the-Loop system not only increases uptake but also confidence of the

users mirrors the results of Dietvorst et al. (2018). Interestingly, although the participants knew

that a human and an algorithm are on average equally accurate, participants of both treatments

felt more confident about the recommendations by the algorithm (57 out of 100 as compared to

confidence of 46 for human estimates, p < 0.0001). This question was asked at the end of the

experiment and can only inform us about ex post confidence.

Result 2. Participants in the Human-in-the-Loop condition are more confident in the perfor-

mance predictions they submit.

Accuracy of the predictions A crucial question is how accurate, i.e., how close to the true

performance of a student, the performance predictions are. As recommendations that partic-

ipants receive are by design largely identical, the difference in accuracy of final predictions

comes from the adjustments the participants can make in the Human-in-the-Loop condition.
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(1) (2) (3) (4)

Panel Logit Fixed Effects Fixed Effects Fixed Effects

VARIABLES Binary: adjusted conditional adjustment adjustment inaccuracy

Another Participant 0.0623 0.868*** 0.494* -0.761

(0.0810) (0.330) (0.289) (0.700)

Binary: Adjusted -0.616

(0.599)

Another participant ×

Binary: Adjusted
0.437

(0.857)

Constant 10.50*** 6.650*** 18.61***

(0.215) (0.188) (0.472)

Observations 3,560 2,320 3,680 3,680

Number of id 178 181 184 184

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 1: Column (1) reports estimates of fixed effects logit for binary outcome (adjust a recom-

mendation or not). The decisions of 6 participants (120 decisions) were omitted because of all

positive or all negative outcomes. Columns (2)-(4) report results of fixed effect models on the

size of an adjustment and inaccuracy respectively. Column (2) reports coefficients conditional

on non zero adjustment of the recommendation. Column (3) lifts this restriction.

We measure accuracy as an absolute deviation between a submitted decision and a true perfor-

mance percentile of a high school student. A smaller deviation between the prediction and the

true performance indicate a more accurate prediction. It emerges that the decisions in Delega-

tion condition, where participants could not adjust the received recommendation, are signifi-

cantly more accurate than in Human-in-the-Loop (17.4 and 18.0, p = 0.04, see Fig. A1). This

result is in line with previous literature that finds that algorithmic forecasts tend to be superior to

human ones in a variety of domains (e.g., Logg et al., 2019; Goodwin and Fildes, 1999; Grove

et al., 2000; Agrawal et al., 2018).14

Result 3. Adjustments made by human monitors in the Human-in-the-Loop condition lead to

the average decrease in the decision accuracy.

14Recall that performance predictions of human participants used as recommendations in the main experiment

were curated to be of an equal quality with an algorithm.
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Engagement with recommendation As the overall accuracy decreases in the Human-in-the-

Loop condition, it is important to consider how people engage with the recommendations they

receive and where inaccurate adjustments of recommendations happen. In the Human-in-the-

Loop condition the recommendation was pre-filled. This design choice made it easy for par-

ticipants not to engage with the recommendation and simply ªrubberstampº it due to default

effects (e.g., Thaler and Sunstein, 2009; Dinner et al., 2011). If human in the loop blindly ac-

cepts recommendations by the algorithm, it raises concerns as to how much they contribute to

the desirable features of the system such as maintaining human agency and accountability.

This appears to be less of a concern in our experiment: In 63% of estimations in Human-in-the-

Loop treatment participants adjusted the provided recommendation. The average adjustment

was 6.9 percentiles (6.7 for recommendations received form an algorithm and 7.1 from another

human). To consider if participants are less likely to adjust recommendations received from

an algorithm and how the source of the recommendation affects the accuracy of performance

predictions, we construct a panel and estimate a fixed effects model.15 It allows us to focus on

the systematic difference in adjustments by the source of recommendation abstracting from in-

dividually invariant characteristics. We first consider if participants are more likely to adjust the

recommendation all together depending on its source and then if (conditional on being adjusted)

the adjustments systematically differ (see Table 1). We fail to find evidence for algorithmic bias

on the extensive margin: participants are equally likely to adjust the received recommendations

regardless of the source (Table 1, specification 1). Yet, if participants intervene, the size of

the adjustment is larger for human recommendations (Table 1, specification 2).16 On average

the predictions submitted following the recommendation by an algorithm tend to be (insignifi-

cantly) less accurate than the recommendation by a human (18.3 and 17.7 percentiles from the

true performance, Table 1, specification 4). As provided recommendations for each profile are

in most of the cases identical (at most ±2 percentile) and as participants appear to be correcting

human recommendations by more, this suggests that participants may particularly struggle with

correcting algorithmic recommendations.

15As participants made four choices and in 40% of cases participants were assigned to an alternative recommen-

dation source only 8.7% of participants in the Human-in-the-Loop treatment were exposed only to algorithmic or

to human recommendations and had no within subject variation.
16Our preferred specification is specification 2 that considers the size of adjustment among the participants

who engaged with recommendation and adjusted it. This approach allows to abstract from any differences in the

levels of engagement in general, which (although are shown insignificant as per column 1) might bias the results.

We report the alternative approach of considering the effect of the source of the recommendation on the size of

adjustment including zero adjustments in specification (3) and document a marginally significant effect.
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Result 4. Participants are equally likely to intervene following the recommendations from

either source. Yet, in line with automation bias, conditional on intervening the size of the

adjustment is smaller for algorithmic recommendations.

Correcting larger errors The human monitor in Human-in-the-Loop systems is intended to

supervise an algorithm and interfere if decisions it produces are inaccurate. One can argue that

the task of the monitor is not to correct every recommendation of the system, but to spot and

correct recommendations that contain a large error. To consider if monitors in the Human-in-

the-Loop treatment are better at correcting larger as compared to smaller errors, we classify

the recommendations that are least accurate (in the top 25% of the absolute deviation from the

truth) as larger errors.17 Our results suggest that human monitors are less likely to intervene

when the recommendations are least accurate (64% adjusted a recommendation if it had a small

error and 60% if large, p = 0.02). If participants decide to intervene, the size of the adjustment

is significantly larger for smaller mistakes than for larger ones (adjustment of 11.3 for smaller

error and 9.6 for larger ones, p < 0.001). The fixed effects and pooled OLS specifications

reconfirm this result (see Table 2). We do not find an additional interaction effect: Larger errors

are adjusted by less regardless of the source of recommendation. These results suggest that

human monitors fail to serve as an ªemergency brakeº for the recommender system.

We additionally explore what features of the profiles or received recommendations tend to in-

crease the likelihood that the participants intervene and affect their accuracy (see Table A3). We

find that seeing low or high recommendations18 on the profile decreases the likelihood that the

participant adjusts the recommendation.

Result 5. Human monitors are less likely to adjust recommendations that contain larger errors

and, if they do so, correct them less than those with smaller errors. Participants tend to intervene

less with very high or very low recommendations.

17Following this definition, profiles where the recommendation is at least 26 percentiles away from the true

performance were classified as large errors. Results are not sensitive to variations in the definition. Classifying

errors as large and small allows to consider an interaction effect. In fact, the larger the error the less likely people

are to interfere and the smaller is their adjustment (Table A2).
18As low and high recommendations we classified recommendations that fall in the lowest 25% (below 42

percentiles) and highest 25% (above 65.5 percentiles) of the distribution. The results under other definitions of low

and high recommendations are qualitatively similar. Table A2 reports the estimation without the classification of

errors.
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(1) (2) (3) (4) (5)

Panel Logit OLS OLS Fixed Effects Fixed Effects

VARIABLES Binary: Adjusted Adjustment Adjustment Adjustment Adjustment

Large error -0.221** -1.533*** -1.261*** -1.530*** -1.398***

(0.0859) (0.298) (0.431) (0.308) (0.437)

Another Participant 0.0639 0.401 0.527 0.502* 0.561*

(0.0811) (0.311) (0.344) (0.288) (0.320)

Large error ×

Another Participant -0.562 -0.272

(0.619) (0.639)

Constant 7.037*** 6.978*** 6.988*** 6.961***

(0.307) (0.318) (0.199) (0.209)

Observations 3,560 3,680 3,680 3,680 3,680

Number of id 178 184 184

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 2: As large errors we classified recommendations with a deviation from the truth in the

top 25 percentiles. In model (1) the decisions of 6 participants (120 decisions) were omitted

because of all positive or all negative outcomes. In models (2) and (3) we estimate an OLS

specification with standard errors clustered at the individual level. (4) and (5) report fixed

effects specification.
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Selection Our design allows to see if participants who chose a certain source of recommen-

dations are better able to monitor its recommendations as compared to those who were exoge-

nously assigned to it. Our results do not offer strong evidence of a selection. Participants might

be more likely to adjust a recommendation from an ªimposedº source (Chosen 62% and Im-

posed 65%, ttest p = 0.07). Yet, this result is not robust (see Table A4). Furthermore, there is

no difference in the size of the adjustments or their accuracy if we compare those who selected

themselves to receive a certain type of recommendations and those who were exogenously as-

signed (Table A4, specifications 3 and 4).

Result 6. We do not observe that participants are better able to monitor the recommendations

stemming from their preferred source.

General attitudes As we conduct our experiment at the leading technical university, our sam-

ple might be believed to be more technology friendly than general population. Our participants

generally report to be positive towards algorithms and statistical models. On the scale from 0

(strongly negative) to 100 (strongly positive) average answer is 67 with the distribution skewed

to the right (Fig.A2). Yet, even in this sample the attitudes towards using algorithms to make

economic, legal or other important decisions that may affect a human are mixed with an average

reply of 50 and almost uniform distribution along the scale (Fig.A3). Regardless of their atti-

tudes towards the use of algorithms for such decisions, even our technology friendly participants

are almost unanimous that a human needs to always remain in the loop (0 never, 100 always, av-

erage 75.3 with over 30% of participants choosing 100 and 50% of participants choosing values

larger than 85, Fig.A4). However, as our results show, while Human-in-the-Loop increases ac-

ceptance of algorithmic recommendations, as such it does not guarantee neither higher accuracy

of decisions on average nor avoiding ªextremeº mistakes.

Result 7. Our sample is in general technology friendly and technology-savvy, yet the majority

is of the opinion that that algorithms used for important decision-making should (almost) always

be monitored by a human.
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4 Discussion and Conclusion

Automated decision-making can exist in many variations, from a full delegation of the decision

to the automated agent to the human staying in the loop. This study considers how such differ-

ences in the distribution of decision authority between humans and automated decision supports

affect the human principals’ willingness to use and engage with them. It has also considered

the effects on decision accuracy, highlighting a potential trade-off.

In more details, and as the first main finding, our experiment documents a widespread will-

ingness to use automated decision supports - that is, in contrast to some previous studies, our

experiment fails to document algorithm aversion. Indeed, when given the choice, the majority

of participants across all treatments prefers to receive an estimate produced by an algorithm

over the one produced by an equally well-performing human. This preference for algorithmic

recommendations becomes even stronger if participant can remain in the decision loop to mon-

itor or intervene. If allowed to adjust the recommendation, participants are also more confident

in the resulting decisions regardless of the source of the recommendation. We hence find that

people are not algorithm averse, in particular when the automated decision is construed with a

human-in-the-loop. In line with public opinion surveys (Grzymek and Puntschuh, 2019; Pew

Research Center, 2018), a clear majority of participants thinks humans should remain involved

in automated decision-making when these decisions are legally, economically or similarly im-

portant.

However, we also find that when the human monitors are allowed to adjust recommendations

in such a Human-in-the-Loop setup, the accuracy of the performance predictions decreases.

Participants are even found to be less likely to intervene when the errors in the recommendations

are larger - and, if they do intervene, they correct these larger errors by less. In other words, if

the main motivation of putting a human in loop is quality control, human monitors seem to fail

at their task. Yet, as stated above, our participants state a clear preference for keeping human

monitors - either revealing that they are unaware of this accuracy reduction or showing that

they are willing to forego some decision quality in return for keeping human oversight. Future

studies to investigate this further could prove insightful.

From the perspective of designing environments that involve automated decision-making such

as the Artificial Intelligence Act or the Council of Europe’s current discussion on an AI con-

vention, our results point to a trade off: the retention of human involvement may improve the
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uptake of algorithmic recommendations, yet decrease accuracy. However, in interpreting these

results, two caveats deserve special attention: First, for the purpose of the experiment, the rec-

ommendations from the other human/the algorithm were curated to be equally accurate, both

on average and for each iteration of the task. In reality, ample empirical evidence suggests al-

gorithms generally make better forecasts than humans (e.g., Grove et al., 2000; Agrawal et al.,

2018; Meehl, 1954). In our experiment participants who chose a human recommendation did

not necessarily make less accurate final performance predictions and therefore lower uptake of

the algorithmic recommendations did not affect the quality of the decisions.

Second, in our experiment human interventions decreased accuracy. Accuracy of adjustments

may depend on the expertise of human monitors and information available to them. Regarding

the former point, one may argue that engaging experts as monitors would improve the quality of

human interventions. Yet, based on the previous literature it also seems sensible to suggest that

our participants may have relied on the recommendations more than experts would have, thus

improving their accuracy (e.g., Logg et al., 2019). On the latter point, our experiment tested

an environment where human monitors had access to and could process the same information

as the algorithm. In a more sophisticated system, the number of features incorporated into the

automated recommendation may exceed human capacity. If this is the case, human monitors

may have to rely on inferior (or at least limited) information when deciding on the adjustment

or may be overwhelmed if all features included by the algorithm are revealed in an attempt

to make the system more explainable (Poursabzi-Sangdeh et al., 2021). This imbalance may

increase the risk of decreasing decision accuracy due to human intervention further.

Our study hence brings to attention an important trade-off in the design of automated decision-

making: On the one hand, allowing humans to supervise the algorithm’s decision-making pro-

cesses can increase the willingness to use such automated decision support and the confidence

in the final predictions. This reflects current policy proposals and the stated preferences of

our (highly technology-friendly) subject group, who generally think that algorithms should re-

main under human supervision at least for impactful decisions. Yet, keeping such a Human-

in-the-loop may result in erroneous adjustments by the human monitors - and thus, as in our

experiment, reduce the accuracy of the final decisions. These findings show the need for care-

ful consideration of the distribution of agency in automated decision-making situations. More

pointedly, they show that the simple inclusion of a human in the loop at least in some deci-

sion enviroments is unlikely to prevent inaccurate predictions based on algorithmic recommen-
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dations - though this seems to be a wide-spread suggestion in the current policy discussions

surrounding automated decision-making (Enarsson et al., 2022; Crootof et al., 2022).
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A Additional Tables and Figures

A.1 Additional Figures
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Figure A1: Accuracy measured as an absolute deviation between a submitted estimation and

a true performance percentile. A smaller deviation corresponds to higher accuracy of the pre-

diction. In Delegation treatment it reflects accuracy of the received recommendation itself as

participants could not adjust it. 95% confidence intervals.

22



0

.01

.02

.03

D
en

si
ty

very negative 20 40 60 67 80 very positive
General attitude to algorithms

Figure A2: What is your general attitude

towards algorithms or statistical mod-

els? The vertical line represents average

response. The question appeared in the

post-experimental questionnaire.
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Figure A3: How acceptable do you find

the use of statistical models or algorithms

to make economic, legal or other impor-

tant decisions that may affect a human?

The vertical line represents average re-

sponse. The question appeared in the post-

experimental questionnaire.
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Figure A4: If a statistical model or an algo-

rithm were to be used to make an economic

or legal decision that affects a human, how

often do you think a human should remain

involved to oversee this statistical model or

algorithm? The vertical line represents av-

erage response. The question appeared in

the post-experimental questionnaire.
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Figure A5: Number of times (out of 4 possible choices) participants chose to receive recom-

mendations by an algorithm across both treatments.
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Figure A6: Number of times (out of 4 possible choices) participants chose to receive recom-

mendations by an algorithm. Percentages calculated by treatment.
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A.2 Additional Tables

(1) (2) (3)

Choice of Algorithm

Human-in-the-Loop 0.0709** 0.0698** 0.0783**

(0.0320) (0.0322) (0.0329)

Observations 1,168 1,168 1,096

Round FE YES YES

Demographics YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Standard errors clustered at the participant level

Table A1: Marginal effects of the probit estimation. Demographic controls include age, gender

and if participant studies a STEM discipline or social sciences as dummy variables.

(1) (2) (3)

Panel Logit OLS Fixed Effects

VARIABLES Binary: Adjusted Adjustment Adjustement

Error -0.0122*** -0.0701*** -0.0701***

(0.00338) (0.0122) (0.0119)

Another Participant 0.0615 0.383 0.494*

(0.0812) (0.313) (0.288)

Constant 7.922*** 7.870***

(0.414) (0.279)

Observations 3,560 3,680 3,680

R-squared 0.009 0.011

Number of id 178 184

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A2: In model (1) the decisions of 6 participants (120 decisions) were omitted becasue

of all positive or all negative outcomes. In models (2) and (3) standard errors are clustered at

individual level.
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(1) (2)

Panel Logit Fixed Effect

VARIABLES Binary:Adjusted inaccuracy

lowSES -0.0257 -2.879***

(0.112) (0.765)

nonWhite 0.143 5.473***

(0.0884) (0.609)

Took AP -0.206** 3.826***

(0.0990) (0.667)

Fav Subject STEM 0.318*** -4.849***

(0.0917) (0.607)

High recommendation -0.292** -4.229***

(0.116) (0.798)

Low recommendation -0.418*** 2.500***

(0.106) (0.743)

Constant 16.50***

(0.542)

Observations 3,560 2,320

Number of id 178 181

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A3: Likelihood to adjust the recommendation and accuracy by features of the profile and

the recommendation. Specification (2) is conditional on non-zero adjustment. High and low

recommendations are classified as those in the lowest 25% (below 42 percentile) and highest

25% (above 65.5 percentile) of the distribution.
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(1) (2) (3) (4)

Panel Logit Panel Logit Fixed Effects Fixed Effects

VARIABLES Binary:Adjusted Binary:Adjusted Adjustment Inaccuracy

Chosen Source Reverted 0.0591 0.0644 0.492 -0.861

(0.0822) (0.153) (0.619) (0.848)

Another Participant 0.0624 1.197** -0.854

(0.121) (0.496) (0.676)

Reverted×Another participant -0.0452 -0.879 1.198

(0.218) (0.888) (1.207)

Binary: Adjusted -0.410

(0.449)

Constant 10.41*** 18.65***

(0.247) (0.437)

Observations 3,560 3,560 2,320 3,680

Number of id 178 178 181 184

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A4: Selection: Adjustment of recommendations if the choice of the preferred source was

followed or reverted. Models (1) and (2) omit decisions of 6 participants (120 obs decisions)

because of all positive or all negative outcomes. Models (3) is conditional on adjusting the

received recommendation.

28



B Example Screens

Figure A7: Example Screen. Delegation

condition. Submission of an estimate.

Figure A8: Example Screen. Human-in-

the-Loop condition. Submission of an es-

timate. Clicking on ªNo, amedº opens a

new field.
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