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Abstract

Platforms often display their products ahead of third-party products in search.

Is this due to consumers preferring platform-owned products or platforms engag-

ing in self-preferencing by biasing search towards their own products? What are

the welfare implications? I develop a structural model of mobile application mar-

kets to identify self-preferencing and quantify its welfare effects, taking into account

third-party developers’ quality adjustment. A new dataset on app downloads, prices,

characteristics, and search rankings is used to estimate the model. Estimates indicate

self-preferencing. Simulations show higher consumer welfare and third-party profits

without self-preferencing.
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1 Introduction

In many digital platforms, search algorithms shape the competition landscape due to the

tension between numerous products and limited consumer attention. Thus, when plat-

forms play a dual role of first-party seller and intermediary between third-party sell-

ers and consumers, people worry about biased recommendations in favor of platform-

owned products (Feasey and Krämer, 2019). In other words, platforms may be "self-

preferencing" in search results (Crémer, de Montjoye and Schweitzer, 2019). In fact, in

many important markets, the press has reported that platform-owned products dominate

top positions.1 In light of the potential damage to competition and consumer welfare,

regulation against self-preferencing is under discussion in the US and Europe.2

Two questions are at the core of dealing with self-preferencing. First, do platforms

use self-preferencing? Despite widespread media coverage of first-party dominance,

platforms deny engaging in self-preferencing. Instead, they argue that platform-owned

products receive higher rankings because consumers prefer them over third-party prod-

ucts. Second, what is the welfare effect of self-preferencing? The resulting competitive

advantage enjoyed by platform-owned products reduces both pre-innovation and post-

innovation rents of existing third-party producers (Aghion et al., 2005). Hence, its equi-

librium impacts on innovation and welfare remain ambiguous.

To address these questions, I develop a structural model for the mobile application

markets on the US Apple App Store. This model incorporates consumer search, potential

self-preferencing, and quality-upgrading competition among developers. I estimate the

model with a newly compiled dataset from multiple data sources, covering market-level

information on consumer search and downloads, installation prices, product characteris-

tics, and search rankings of popular apps on the US Apple App Store between April 2018

and February 2020. To deal with endogeneity concerns on installation price, update fre-

quency, average rating, and search ranking, I exploit exogenous choice set variations to

construct instrumental variables. After detecting self-preferencing in estimation, I simu-

late counterfactuals without self-preferencing to quantify the welfare effects.

1Example markets include restaurant search engines, e-commerce, and mobile applications. See the

stories covered by (1) Dougherty, Conor. 2017. “Inside Yelp’s Six-Year Grudge Against Google.” The New

York Times, July 1, (2) Mattioli, Dana. 2019. "Amazon Changed Search Algorithm in Ways That Boost

Its Own Products" The Wall Street Journal, Sept. 16, and (3) Mickle, Tripp. 2019. "Apple Dominates App

Store Search Results, Thwarting Competitors", The Wall Street Journal, July 23, respectively.
2For example, American Choice and Innovation Online Act in the US and Digital Markets Act in Eu-

rope.
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I motivate the structural model with empirical evidence from an unexpected search

algorithm change in Apple App Store in July 2019. Specifically, Apple twisted a feature in

the search algorithm so that fewer of its own apps appear in top search results.3 Applying a

difference-in-differences (DiD) approach, I find that the algorithm change leads to higher

rankings, increased downloads, and more updates for third-party apps in categories with

Apple’s apps, compared to third-party apps in categories without Apple’s apps. However,

I find no significant effects on other app characteristics, such as installation price and

average rating. These findings drive my focus on developers’ choice of update frequency

as the primary strategic response to search algorithm changes in the structural model,

taking installation price as given.

The structural estimation results confirm two primary factors contributing to first-

party dominance in search results: consumer preference and platform self-preferencing.

First, demand estimation reveals a preference for Apple’s apps over third-party apps, indi-

cating higher unobserved quality of Apple’s apps on average. Second, search ranking es-

timation shows that Apple’s ownership significantly increases the probability of receiving

top rankings, conditional on the revealed app quality and other observed ranking shifters.

Thus, while iPhone users prefer Apple’s apps, their preference is not strong enough to

fully explain the prominence of platform-owned products on the Apple App Store.

Based on the estimated model parameters, I conduct simulations that eliminate self-

preferencing on the Apple App Store during June and July of 2019. The simulation results

show that, without self-preferencing, the average update frequency increases by 1.86 per-

cent in an average market. However, this effect varies significantly across apps. While

some apps experience an increase in update frequency by up to 65.61 percent update fre-

quency, others see a decrease of up to 21.42 percent. A correlation analysis reveals that the

decrease in update frequency is associated with the business-stealing effect of boosted-

up third parties on other third-party products, as well as the cannibalization concerns of

multiple-app developers.

As for the welfare effect, I find that consumer surplus increases by 0.28 percent, and

third-party profits increase by 0.66 percent without self-preferencing. In equilibrium, the

search ranking and downloads of an average third-party app rise up by 1.22 percent and

1.95 percent, respectively. While the downloads of an average Apple’s app decrease by

22.56 percent, total downloads increase by 1.47 percent due to the much smaller number

3Nicas, Jack and Collins, Keith. 2019. "How Apple’s Apps Topped Rivals in the App Store It Controls".

The New York Times, Sept. 9.
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of first-party apps than third-party apps. Therefore, while self-preferencing is detrimental

to consumer welfare, third-party innovation and profits, the magnitude of these effects is

limited within the empirical context of this study. In scenarios where consumers’ prefer-

ence for platform-owned products is weaker, and thus self-preferencing is stronger given

similar observed first-party dominance, the welfare effect of self-preferencing is likely to

be larger.

This article contributes to three branches of literature. First, it belongs to the broad

literature on information frictions and competition, dated back to Stigler (1961) and Dia-

mond (1971).4 Many papers in the literature study the effects of search costs on price and

its dispersion. Examples include Hortaçsu and Syverson (2004), Brown (2017), Brown

(2019), Dinerstein et al. (2018), and Salz (2020).5 An emerging group of literature studies

the effects of search costs on quality. The theoretical papers in this group find ambigu-

ous relationships between search cost and product quality (Wolinsky, 2005, Fishman and

Levy, 2015, and Moraga-González and Sun, 2023). Empirically, Ershov (2020) shows

that reduced discovery costs for game apps lead to lower entrant quality. However, em-

pirical studies on the quality provision of existing products are rare. This article adds to

the literature by showing that the quality effect largely contributes to the welfare effect of

self-preferencing.

A handful of recent papers study the issue of self-preferencing. Empirically, Chen

and Tsai (2019) and Farronato, Fradkin and MacKay (2023) show evidence of self-

preferencing on Amazon using product-level data and micro-level consumer search data,

respectively. To quantify the welfare effects of self-preferencing on Amazon, Lam (2021)

and Lee and Musolff (2021) take the structural approach and incorporate directed con-

sumer search and firm entry, respectively. Complementing these papers, I look at a large

marketplace for digital products and naturally incorporate quality upgrading. Further-

more, Lam (2021) and Lee and Musolff (2021) quantify the welfare effects based on

4See Goldfarb and Tucker (2019) for a review on the papers studying the effects of reduced search costs

in digital economies.
5Closely related to this paper, Dinerstein et al. (2018) studies the trade-off between promoting price

competition and displaying the most desired product to consumers on eBay. They estimate a parameter

governing the emphasis on lower prices in the search design and simulate the effects of a redesign with

an increase in the parameter. In similar spirits, I estimate a parameter governing the emphasis on platform

ownership and simulate the effects of reducing the parameter to zero to study the effect of self-preferencing.

However, while I do not have browsing data as available in Dinerstein et al. (2018), I build on the method

in Moraga-González, Sándor and Wildenbeest (2023a) to estimate search cost distributions and consumer

preference with market-level data.
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Amazon’s discoverability advantage that is unconditional on consumers’ unobserved pref-

erences for Amazon’s products. Both studies find that such first-party advantage improves

consumer welfare at least in the short run. In contrast, this article finds self-preferencing

conditional on consumers’ preference for platform-owned products and its negative ef-

fects on consumer welfare.6

Second, this article builds on the literature on endogenous product choice (Crawford,

2012).7 Papers in the literature model product characteristics as either discrete product

choices (e.g., Draganska, Mazzeo and Seim, 2009) or continuous characteristic choices

(e.g., Fan, 2013). This article adapts the framework to product characteristics featuring

corner solutions, like update frequency, modeling it as outcomes of two-stage discrete-

continuous choices. Furthermore, many papers in the literature study markets without

information frictions. I extend the framework to a frictional context where consumers

incur search costs to visit products.

Finally, this article is also related to the emerging literature on mobile applications.

Examples include Ghose and Han (2014), Leyden (2019), Ershov (2020), Allon et al.

(2021), Singh, Hosanagar and Nevo (2021), and Janssen et al. (2021). This article com-

plements existing papers by examining the welfare effects and contributing factors of

first-party dominance, which is a salient but understudied feature of the mobile applica-

tion industry.

The rest of the paper is organized as follows. Section 2 describes the data. Section

3 provides background on the search algorithm change in the U.S. market on the Apple

App Store and presents descriptive evidence. Section 4 describes the structural model of

demand, search ranking, and update competition in mobile application markets. Section 5

describes the estimation procedure and presents the estimation results. Section 6 presents

counterfactual simulations. Section 7 concludes.

6There is a group of theoretical papers studying self-preferencing or “own-content bias” (De Corniere

and Taylor, 2019, Hagiu, Teh and Wright, 2022, Zennyo, 2022), who find mixed welfare implications of

self-preferencing under different market conditions.
7Examples include Mazzeo (2002), Seim (2006), Augereau, Greenstein and Rysman (2006), Dragan-

ska, Mazzeo and Seim (2009), Chu (2010), Crawford and Yurukoglu (2012), Fan (2013), Eizenberg (2014),

Berry, Eizenberg and Waldfogel (2016), Wollmann (2018), Crawford, Shcherbakov and Shum (2019), Hris-

takeva (2022), Fan and Yang (2020), and Fan and Yang (2022).
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2 Data

For this study, I compile a new dataset from various sources covering the US Apple App

Store’s mobile application markets in 38 categories from April 2018 to February 2020.8

The dataset contains aggregated information on consumer search and purchase. Regard-

ing consumer purchase, I observe downloads, installation prices, and total revenues from

installations and in-app purchases. One download represents the initial installation by a

unique consumer. However, due to the confidential nature of actual download and rev-

enue data, I obtain estimated figures from AppTweak.9 To calculate market shares, I then

obtain the number of US iPhone users from Comscore. Regarding consumer search, I

observe the ratio of app downloads over the number of consumers who encounter the app

during search, commonly known as the conversion rate. Although the conversion rate

data is only available at type/category/month level, with type being free or paid apps, the

data is uniquely informative of consumer choice among searched apps.

The dataset contains two search ranking variables, aggregated from various search

results information. Given an app and a keyword, I observe the position of the app in

the search result of the keyword.10 For each app, I focus on the relevant keywords where

the app shows up in the top 50 positions.11 Then, as the main search ranking variable, I

calculate the app’s weighted average position across these relevant keywords. The weight

is an Apple-constructed search volume index, reflecting how many consumers search for

the keyword. When I do not observe any keyword where the app shows up in the top-50

positions, I use an indicator to document the case.12

The dataset also comprises app characteristics, including ratings, age, file size, in-

app purchase availability, the number of screenshots, description length, and update fre-

quency. Note that updates differ in content and importance, with major updates often

surpassing bug-fix updates in improving apps and typically entailing longer release notes.

Thus, I assign higher weights to updates with longer release notes and calculate the

8Table D.1 lists the 22 non-game categories and 16 game categories in the sample.
9Figure E.1 shows the fitness of AppTweak’s estimated downloads based on their confidential data on

actual downloads.
10The search results on Apple’s App Store are non-personalized, alleviating the misspecification concerns

for demand estimation when personalized search results are typically unobservable.
11Figure E.2 plots residual downloads against the granular position data observed at app/keyword/day

level. It shows a fast decline of downloads as position increases from 1 to 50. In the data, total downloads

across the top-50 apps account for 60% total downloads across the top-500 apps in search results on average.
12Specifically, I find the 60 keywords that are mostly used in each category and check whether a given

app in a given category shows up in the top-50 positions in any of the 60 keywords.
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weighted number of updates in a given month. Recognizing the heterogeneity across

categories, I normalize the weights within each category by comparing release notes of

app versions in the same category.

I find popular independent apps based on top charts and annual downloads in 2019.

Then, I combine them with Apple’s apps to construct the sample. In the end, there are

47,977 app/month pairs in the sample, 17.5% of which operate in multiple categories,

leading to 56,570 observations at app/category/month level. Appendix A provides a de-

tailed explanation of the sample selection process, data sources, and variable definitions.

Table 1 reports the summary statistics of the main variables used in the empirical analysis.

Table 1: Summary Statistics

Variable Mean Median SD Min Max Obs

Downloads (million) 0.06 0.01 0.23 0 7.00 56,570a

Revenues (million) 0.37 0.01 1.81 0 56.51 56,570

Conversion Rates (%) 0.05 0.04 0.06 0.00 0.45 1,337b

Type (paid app?) 0.49 0.00 0.50 0 1 3,110c

Apple 0.01 0.00 0.08 0 1 3,110

Offer In-app Purchase? 0.67 1.00 0.47 0 1 3,110

Installation Price|Paid ($) 4.15 2.99 4.69 0 99.99 23,884a

Top 50 in Search Results? 0.62 1.00 0.49 0 1 56,570

Search Ranking 14.51 12.52 14.63 0 50 56,570

Update Frequency 0.68 0.25 1.00 0 11 56,570

Average Rating 4.40 4.57 0.55 1 5 56,570

Age (month) 51.16 49.00 32.66 1 140 56,570

File Size (MB) 225.69 115.20 411.01 0.73 4096 56,570

#Screenshots 5.54 5.00 1.96 0 10 56,570

Description Length (character) 2212.50 2180 1035.02 0 3998 56,570

Market Share (%) 0.06 0.01 0.21 0 6.36 56,570

#iPhone users (million) 105.90 107.58 5.31 98.55 117.72 23d

aThese observations are at app/category/month level.
bThese observations are at type/category/month level.
cThese observations are at app level.
dThese observations are at month level.

3 Descriptive Evidence

3.1 Search Algorithm Change on Apple App Store

In July 2019, Apple launched a search algorithm change on Apple App Store that re-

duced the dominance of Apple’s apps in search results. Specifically, the algorithm change
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"tweaked a feature of the app store search engine that sometimes grouped apps by maker"

so that "Apple apps would no longer look as if they were receiving special treatment".13

There was no official report on why Apple changed the search algorithm. Given the tim-

ing, the algorithm change is likely due to increasing antitrust challenges against Apple;

however, most of the challenges were about commission instead of self-preferencing. For

example, in May 2019, the Supreme Court voted 5 to 4 to allow a antitrust lawsuit brought

by Apple App Store customers against Apple regarding Apple using monopoly power to

raise the prices of iPhone apps.14 Furthermore, this algorithm change was firstly reported

in September of 2019 by New York Times, two months later than the launch. There-

fore, I argue that the algorithm change was unanticipated by independent developers and

consumers.15

Figure 1 compares the search rankings of Apple’s apps and independent apps and

covey multiple messages. First, on average, Apple’s apps enjoy higher search rankings

than independent apps between October 2018 and February 2020. Second, the search

ranking of Apple’s apps become sharply lower after the search algorithm change in July

2019. Third, although the new search algorithm tweaked a feature that groups apps by

makers, multiple-app developers do not see a different pattern than single-app developers

on average.16 The figure confirms that the algorithm change reduced the dominance of

Apple’s apps. To focus on the effect of the algorithm change, I examine the sample period

between June and November of 2019 in a difference-in-differences (DiD) analysis.

3.2 Difference-in-Differences Analysis

The algorithm change provides a quasi-natural experiment to study the effect of platform-

owned products’ dominance in search results on third-party products. To that end, I use in-

dependent apps competing with Apple’s apps in the categories as the treatment group and

independent apps in categories that do not contain Apple’s apps as the control group.17

13Nicas, Jack and Collins, Keith. 2019. "How Apple’s Apps Topped Rivals in the App Store It Controls".

The New York Times, Sept. 9.
14Liptak, Adam and Nicas, Jack. 2019. "Supreme Court Allows Antitrust Lawsuit Against Apple to

Proceed". The New York Times, May. 13.
15Even if independent developers and consumers expect a similar search algorithm change to come;

however, I argue that they would not know exactly when the search algorithm change would come.
16In the data, 16.83% developer/month pairs possess more than one app.
17There are 16 non-game categories containing Apple’s apps while 22 non-game and game categories do

not. Table D.6 shows the summary statistics on observations in categories with and without Apple’s apps,

before and after the search algorithm change.
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Figure 1: Average Search Ranking of Apple’s Apps around July 2019

Following the literature, I use the two-way fixed effects specification:

y jgt = β (AppleCompetitor jg ×Postt)+λ jg +λt +ν jgt (1)

where AppleCompetitior jg indicates whether independent app j is in a category g with

Apple’s Apps; Postt indicates if month t is after July 2019. I include app-category fixed

effects, λ jg, to capture time-invariant confounders and month-fixed effects, λt , to control

for time-varying factors. I consider a variety of outcome variables, y jgt , including search

ranking, downloads, conversion rate, update frequency, price, average rating, and file size.

When the outcome variable is conversion rate, j denotes app type rather than app, in order

to align with the observation level. The coefficient on the interaction term, β , captures

the average treatment effect of the search algorithm change.

Table 2 presents the estimated average treatment effects from Equation 1. After the

search algorithm change that reduces the dominance of Apple’s apps, there are significant

increases in independent app’s search ranking (3.6%), downloads (22.1%), and update

frequency (2.1%) of independent apps in categories that contain Apple’s apps, compared

to independent apps in categories that do not; while the other outcome variables of interest

8



Table 2: Effects of the Search Algorithm Change on Independent Apps: Difference-in-

Differences Estimates

Outcome Variable ATE SE Obs Adj. R2 FE Mean Level

log(Search Ranking) −0.04 0.01 11,642 0.86 A 24.17

log(Downloads) 0.22 0.02 20,423 0.95 A 0.06

log(Conversion Rates) 0.09 0.07 330 0.95 B 0.07

log(1+Update Frequency) 0.02 0.01 20,423 0.62 A 0.63

log(1+Price) (×10) 0.01 0.04 20,423 0.98 A 1.91

log(Avg.Rating) (×10) 0.02 0.02 20,423 0.94 A 4.37

log(File Size) (×10) −0.07 0.04 20,423 0.99 A 216.30

Notes: ATE is the estimate of β in Equation (1) for the outcome variable on the row. SE are robust standard errors.

Search ranking is observed for apps that have ranked in top-50 search results of any popular keyword in a given category

and month. Conversion rates are observed at type/category/month level. The other outcome variables are observed at

app/category/month level. FE: (A) app/category-fixed effects, month-fixed effects; (B) type/category-fixed effects, month-

fixed effects, where type indicates paid or free apps. For exposition, the last three outcome variables are multiplied by 10

during estimation. Mean levels are not in logarithms nor enlarged.

remain unaffected.18 It implies that third-party developers’ main strategic response to the

search algorithm change is update frequency, rather than installation price, file size, or

unobserved efforts to improve average ratings. The result motivates my focus on update

frequency in the structural model.

Figure 2 presents the pre-trends between the treatment and control groups.19 In the

period before the search algorithm change, there is no significant effect for independent

apps in categories that contain Apple’s apps relative to independent apps in categories

that do not on any of the outcome variables of interests. This provides evidence that the

independent apps competing with Apple’s apps had similar trends in the preperiod as the

independent apps that do not compete with Apple’s apps, supporting the common trends

assumption. Figure E.5 shows that the results are robust to multiple preperiods when

examining half-month treatment effects.

Figure 2, panels (a) and (b), demonstrate that the downloads effect precedes the rank-

ing effect, which needs further explanation. It indicates that the algorithm change initially

drops the ranking of certain independent apps while boosting others. Furthermore, the

dropped independent apps turn out to experience fewer download losses compared to the

18Within the sample period, developers may choose to reset ratings after updates. Appendix A.2 argues

that such reset behaviors rarely happen in the data.
19The specification used for Figure 2 is y jgt = ∑τ βτ (AppleCompetitor jg ×1{t = τ})+ λ̃ jg + λ̃t + ν̃ jgt ,

where τ ∈ {−1,1,2,3,4}. The interaction with July 2019 is omitted, because the search algorithm change

is launched on July 22, near the end of the month.

9



Figure 2: Effect of the Search Algorithm Change on Independent Apps, by Month

(a) Search Ranking (b) Downloads (c) Conversion Rate

(d) Update Frequency (e) Price

(f) Average Rating (g) File Size

Notes. The charts present point estimates for each month using the difference-in-differences specification as specified in Section 3.2.

The omitted period is the month at the end of which the search algorithm change was launched. Error bars indicate 95% confidence

interval using standard errors robust to heteroscedasticity.
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download gains of the boosted independent apps. Later on, the average independent apps

rise in search ranking due to the algorithm change.20 Thus, the algorithm change goes

beyond eliminating self-preferencing, if any; otherwise, there would be no decline in any

independent app. Therefore, one should be cautious to interpret the algorithm change as

evidence for self-preferencing and its effect.

The panel (c) of Figure 2 shows a zero conversion rate effect, indicating that the

increased downloads are proportional to the increased consumer views on average. In

similar spirits of the random rankings exploited in Ursu (2018), the result implies that the

exogenous rise in search ranking does not cause consumers to perceive the boosted-up

apps as better than before. Otherwise, conditional on seeing an app, consumers should

be more likely to download the app after the algorithm change, leading to a positive

conversion rate effect. It motivates me to assume that search ranking only affects demand

through affecting search costs in the structural model.

Figure 2, panels (d) to (g), reflect the stickiness of installation price, average rating,

and file size, in contrast with the sensitivity of update frequency with respect to search

algorithms. Simiarly, Table D.4 compares the within-app variation of these app charac-

teristics in the data, confirming that update frequency varies more within apps than how

the other studied app characteristics do. Figure E.3 illustrates the stickiness of installation

prices over time.21 While my sample focuses on popular apps and thus is short of repre-

sentative industry-level entry observations, Figure E.6 shows that there was no significant

effect on the entry of independent apps due to the search algorithm change.

4 Model

4.1 Demand

To study self-preferencing in search, it is essential to incorporate the effect of search

ranking on demand. To that end, I use a random-coefficient discrete choice model aug-

mented with consumer search to describe app downloads. The model is based on Moraga-

González, Sándor and Wildenbeest (2023a), and I tailor it to the mobile application mar-

20Figure E.5b shows that the ranking effect is robust to controlling for one-period lagged downloads,

supporting the direct (though slow) ranking effect of the search algorithm change.
21In-app prices for purchase and subscription may be more sensitive to search algorithms; however, data

on these prices are typically unavailable.
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kets.

In the model, a market is a category/month pair. While it is likely that consumers

download multiple new apps in a month, multiple downloads are less likely within cate-

gories. For example, in 18 months in the data, the total downloads of all apps are larger

than the number of iPhone users. However, within all category/month pairs in the data,

the total downloads are smaller than 25% of the number of iPhone users. Thus, I assume

that a consumer may download apps from multiple categories in a month and remain ag-

nostic about category choices, but within a category, the consumer downloads no more

than one app in a month

In each market, consumers incur search costs to learn about the indirect utilities from

downloading apps, and choose the app with the highest indirect utility among the searched

apps.

Specifically, by downloading the app j in category g and month t, a consumer i re-

ceives the following indirect utility:

ui jgt = α p jt +x jtβ+ γ̃ia jgt + ξ jgt + εi jgt (2)

where p jt is the installation price, x jt is a high-dimensional vector of observable app fea-

tures, a jgt is log(1+ update frequency), and εi jgt is an idiosyncratic match value, i.i.d.,

and follows the Type I extreme value distribution.22 The outside option is not download-

ing any app, which gives the indirect utility εi0gt .
23

Previous updates may continuously contribute to future app quality (Leyden, 2019).

The term ξ jgt is a partially unobservable (to researchers) category/year-specific taste for

app j. It follows an AR(1) process as below.

ξ jgt = ρξ jgt−1 + γa jgt +η jgt , E[ξ jgt−1η jgt ] = 0 (3)

22The vector of app features, x jt , includes i) indicators of Apple ownership, paid installation, offering

in-app-purchase, game apps, and whether the category g contains pre-installed apps; ii) the logarithms of

age (in months), file size (in MB), one plus the length of description (in characters); iii) average rating, and

month indicators to capture month-fixed effects omitting the first month. Note that x jt does not contain a jgt ,

as update frequency changes across categories within app/month pairs due to the category-specific weights

explained in Section 2.
23The outside option lumps all cases where consumers do not download any app in a given category

in a month, which are i) using no app; ii) using one or multiple previously downloaded apps; iii) using

pre-installed apps. The likelihood of the second case may increase over time as a consumer develops the

habit of using a previously downloaded app. Such dynamics in downloads are flexibly captured by the

month-fixed effects in (x jtβ). Note that pre-installed apps serve as a part of the outside option; thus, they

are not included in the estimation sample for the empirical model.
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where η jgt is an unobservable taste. I interpret γ as the mean static effect of updates

on indirect utility. And γ̃i in Equation (2) is i.i.d. and follows the normal distribution

N (0,σ), capturing consumers’ temporary and heterogeneous tastes over updates.24

Two key assumptions come along with Equation (2). First, the equation does not in-

clude search ranking, meaning that search ranking does not affect product value – once

searched by a consumer, an app’s search ranking does not matter anymore for the con-

sumer to download the app or not. This assumption is motivated by the insignificant effect

of the search algorithm change on conversion rates, as discussed in Section 3.2. It helps

with the separate identification of consumer tastes and search costs.25 Second, following

the literature, consumers are at a relatively late stage in search – before search, they know

(p jt , x jt , ξ jgt).
26 Consumers only search to know the idiosyncratic match value εi jgt , by

incurring a search cost ci jgt .

Note that search cost ci jgt may change across search rankings and across consumers.

For example, it may include the cost of scrolling down along the search rankings to see

the app, clicking on the app, and digesting the information on the app page. Meanwhile,

for a given app, some consumers might know the match value from friends before search,

and thus have a zero search cost, while others do not. To model the heterogeneity, I use

the following cumulative distribution function for ci jgt .

Fc
jgt(c|µ jgt) =

1− exp(−exp(−H−1
0 (c)−µ jgt))

1− exp(−exp(−H−1
0 (c)))

µ jgt(λ) = log [1+ exp(λ1E jgt +λ2 log(ranking jgt))]

(4)

where µ jgt is the location parameter of the distribution, shifted by two ranking variables:

i) E jgt , an indicator of appearing in the top-50 search results; ii) ranking jgt , the average

24For example, while some consumers may like the availability of new features, others may dislike the

inconvenience to adjust to the new features.
25In principle, without the assumption, consumer preference and search costs can be separately identified

by matching the observed conversion rates with model predictions. However, the conversion rates are ob-

served at a much coarser level (type/category/month level) compared to the main data (app/category/month

level). Thus, I go with this simplification assumption. One main resulting caveat is that the constant search

cost that does not change with search rankings is not disentangled from the constant term in indirect utility.

See Moraga-González, Sándor and Wildenbeest (2023b) for a discussion on how the separate identification

affects estimation and policy predictions in a simultaneous consumer search framework.
26As a weaker assumption, consumers have rational expectations of the observable app characteristics.

Appendix A.3 shows descriptive patterns that are consistent with the weaker assumption. When consumers

have imperfect information on observable app characteristics, the estimated demand parameters with respect

to these characteristics are biased towards zero as if consumers do not care about these characteristics.
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ranking conditional on E jgt = 1.27 To interpret the coefficients, note that the distribution

has a mass point at 0, i.e., Fc
jgt(0|µ jgt) = exp(−µ jgt). It shows that as µ jgt , the search

cost parameter, increases, fewer consumers have low search costs. Thus, if higher ranking

leads to lower search costs, then one expects that λ1 < 0 and λ2 > 0.

Following Proposition 1 in Moraga-González, Sándor and Wildenbeest (2023a), when

consumers search according to the optimal sequential search model in the spirit of Weitz-

man (1979), the distributional assumption in Equation (4) rationalizes a closed-form

choice probability in the Berry, Levinsohn and Pakes (1995) (BLP) framework.28 Specif-

ically, the probability of consumer i downloading app j in category g and month t is given

by

si jgt(θ
D, γ̃i) =

exp(δ jgt + γ̃iã jgt −µ jgt + Igµ0gt)

1+∑l∈Jgt
exp(δlgt + γ̃iãlgt −µlgt + Igµ0gt)

(5)

where θD = (α ,β,ρ ,γ ,σ ,λ), the relative mean utility δ jgt = α p jt +x jtβ+ ξ jgt , Jgt is

the set of apps in the market, and Ig indicates categories with pre-installed apps.29

Then, I aggregate the consumer-level choice probability to market level and obtain the

following model-implied market share (s jgt) and downloads (Q jgt) of app j in category g

and month t:

s jgt(θ
D,σ) =

∫

si jgt(θ
D, γ̃i)dFγ̃(γ̃i), γ̃i ∼ N (0,σ).

Q jgt(θ
D,σ) = Mt · s jgt(θ

D,σ)
(6)

where Mt is the number of iPhone users in month t.

27H0(r) = Euler Constant− r+
∫ ∞

exp(−r)
exp(−t)

t
dt.

28During the optimal sequential search, consumers visit apps in the descending order of reservation

values, stop searching when the highest realized utility so far is above the reservation value of the next

product to be searched, and choose the product with the highest realized utility. To clarify, the descending

order of reservation values does not necessarily coincide with the ascending order of search rankings. This

is realistically possible thanks to the fact that the variable ranking jgt is a weighted average search ranking

across different keywords. For example, product A might have rankings 1 and 4 in two equally-weighted

keywords respectively; while product B has rankings 9 and 1 in the same two keywords respectively. Thus,

product A’s average search ranking is 3, while product B’s is 5. A consumer may have a higher reservation

value for product B such that s/he firstly search for the second keyword and sees product B first, and find

himself/herself unsatisfied. Then, s/he searches for the first keyword and sees product A next.
29The term Igµ0gt roots in the assumption that consumers may incur search costs to learn ε0gt when there

are pre-installed apps in the category, as pre-installed apps are lumped into outside options and they show

up in search results. In reality, such search costs may happen when consumers do not know which apps

are pre-installed, where are the pre-installed apps on the smartphone, or whether they have deleted the pre-

installed apps. When a category does not have pre-installed apps, the outside option is either not using any

app or using a previously-downloaded app; thus, consumers incur zero search cost to learn ε0gt .
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The demand estimation equation is given by

δ̃ jgt(sgt ;σ) = α p jt +x jtβ+ρξ jgt−1 + γa jgt +η jgt
︸ ︷︷ ︸

relative-mean utility(δ jgt)

− (µ jgt(λ)− Igµ0gt(λ))
︸ ︷︷ ︸

relative search cost parameter

(7)

where the variable δ̃ jgt is the output of the BLP inversion (Berry, Levinsohn and Pakes,

1995), which I interpret as a search-augmented relative mean utility. On the right-hand

side is the traditional relative mean utility (δ jgt) minus the relative search cost parameter

between the choice j and the outside option, after replacing the ξ jgt in δ jgt with the AR(1)

process in Equation (3). The estimation is based on the General-Methods-of-Moments

(GMM) with iterated guesses of the non-linear parameters (σ ,ρ ,λ).30 The moments are

between the error term η jgt and the instruments to be specified in Section 5.1.

Now I define app j’s quality index, δ̌ jgt in the following equation:

δ̌ jgt := δ jgt −α p jt −β paid paid j (8)

where paid j, as an entry in x jt , indicates paid installation. Thus, the app quality index

is the part of the relative mean utility that is independent of installation payment. Im-

portantly, since x jt includes the indicator of Apple ownership, δ̌ jgt captures consumers’

preference for Apple’s apps. It will serve as a key control variable in the following search

ranking model to identify self-preferencing.

4.2 Search Ranking

Given that Apple’s search ranking algorithm is proprietary, I apply a rank-ordered logistic

regression model (Beggs, Cardell and Hausman, 1981) to approximate the algorithm. The

model predicts the probability of a given ordering of products based on latent ranking

scores.

Specifically, I model the ranking score of an app j in category g and month t as

score jgt = θ1tk(g)Apple j +P(δ̌ jgt) ·θ2 + zs
jgt ·ϑk(g)+ e jgt (9)

where θ1tk is a flexible self-preferencing parameter that changes across months t and

30Appendix B.2 details the steps to transform Equation (7) into a linear equation given a guess of

(σ ,ρ ,λ).
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across category group k, Apple j indicates Apple ownership, P(δ̌ jgt) is a third-order poly-

nomial function of the app quality index δ̌ jgt , z
s
jgt is a vector of observed search ranking

shifters, and e jgt is independently and identically drawn from the Type-I Extreme Value

distribution.

Equation (9) gives the technical definition of self-preferencing in this paper: θ1tk > 0,

i.e., a positive effect of platform ownership on search ranking, conditional on product

quality and other non-discriminatory ranking shifters. Because the constructed app qual-

ity includes consumers’ preference for platform-owned apps, the model can directly test

a typical defense for platforms’ dominance in top positions, namely "Our products are

ranked higher because they are preferred by consumers". In particular, if consumers’

preference is strong enough to justify Apple apps’ higher ranking, then the coefficient

on app quality should be significantly positive and the coefficient on Apple’s ownership

should be insignificantly different from zero.

Let y denote an ordering of products, where y(k) is the k-th product in the ordering.

The conditional probability of y is given by

P[y|xs] = py(1) ·
py(2)

1− py(1)
·

py(3)

1− py(1)− py(2)
· · · ·

py(J−1)

py(J−1)+ py(J)
·

py(J)

py(J)
(10)

where xs = (Apple, δ̌,zs), p j = exp(xs
j ·θ

s)/(∑l∈J exp(xs
l ·θ

s)), θs = (θ1,θ2,ϑ), and

J is the number of products in the market. I estimate the model with Maximum-Likelihood-

Estimation (MLE).31

4.3 Supply

I develop a supply model to describe how independent developers choose update fre-

quency, taking other app features as given.32 This model can predict how updates and

thus app quality of independent apps change with search ranking algorithms.

The model is a static two-stage game of quality-upgrading competition among multiple-

product firms (app developers). In the first stage, each firm chooses its update portfolio

– the set of apps to be updated, by incurring a fixed cost of update that does not change

with the content of update. In the second stage, after observing idiosyncratic shocks to

31Appendix B.3 provides the conditional log-likelihood function, as well as the list of variables in zs
jgt .

32The event study on the search algorithm change in Section 3, along with the stickiness of installation

price discussed in Section 2, motivates my focus on update frequency.
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the marginal cost of update, the firm chooses how much to update for each app in the up-

date portfolio. Altogether, the two stages determine the value of update frequency: zero

or positive (first stage); if positive, how large (second stage).33 Throughout the game,

developers form beliefs on search rankings based on the previously specified search rank-

ing model. In equilibrium, the beliefs are self-fulfilling.34 I describe the two stages in

backward order. For exposition, I omit the market index gt in this section.

Stage 2 - Update Frequency. App developers have three revenue sources: i) installa-

tion, ii) in-app purchase and subscription, and iii) in-app advertising. The first revenue

source generates p jQ j. For the second revenue source, while I do not observe prices for

in-app purchase and subscription, I fit a fixed effects model for the observed revenues,

using downloads and update frequency as main revenue shifters. For the detailed spec-

ification of the revenue model, please see Appendix B.4. I estimate the revenue model

separately from the supply model, obtain the model-fitted revenues R(Q j,a j), and treat

R(·) as known functions.

For the third source of revenue, I do not have data on in-app advertising. Thus, I

estimate an in-app-advertising profit function together with the marginal cost of update.

Specifically, I assume that the variable in-app-advertising profit is a simple quadratic func-

tion of downloads as below.

F(Q j;ψ) = ψ1Q j +ψ2Q2
j (11)

And I specify the marginal cost of update at a j in the following equation.

g′(a j,ω j;φ) = φ1a j +z
g
jφ+ω j (12)

33The timing assumption implies that the fixed cost of update serves a role of commitment: even if

the second-stage marginal cost shock turns out to be so large that the ex-post total cost of update exceeds

the benefit, the developer still upgrades the app to the level that balances the marginal cost and marginal

benefit. For example, based on past experience, the developer calculates the fixed cost, expects an update to

be profitable, and incurs some sunk costs (e.g. planning) as a commitment device. As the developer works

on the update, unexpected bugs appear and require extra effort, i.e., a positive idiosyncratic shock to the

marginal cost. Then, the developer might end up with a smaller and even ex-post unprofitable update than

expected.
34Due to the continual effect of update on quality, developers may consider the impacts of current update

on future installations. However, modeling the dynamic and competitive portfolio choice of multiple-

product firms is out of the scope of this paper. Leyden (2019) and Allon et al. (2021) develop dynamic

structural models for app updates, treating developers as single-product firms and abstracting away from

market competition.
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where the vector z
g
j contains app age and month-fixed effects, and ω j is an idiosyncratic

marginal cost shock. I assume that ω j’s are revealed at the beginning of the second stage.

Since whether an app is updated or not is determined in the first stage, updated apps are

not selected based on ω j’s.

Developers cannot perfectly predict rankings or downloads when choosing update

frequency. Ex-post, given an ordering y, the variable profit of an independent developer

f is given by

π I
f (y,a,ω f ) = ∑

j∈J f

0.7p jQ j(y,a)+ 0.7R(Q j(y,a),a j)

+F(Q j(y,a);ψ)−g(a j,ω j;φ)

(13)

where 0.7 comes from the 30% commission rate charged by Apple, J f is the set of apps

owned by the developer f , the vectorω f = (ω j : j ∈J f ), and the function g(a j,ω j;φ) =
φ1

2 a2
j +(zg

jφ +ω j)a j. I assume zero marginal distributional cost for mobile applications

to serve additional consumers. The only uncertainty about downloads conditional on

updates comes from search rankings.

Ex-ante, developers form beliefs on y based on the ranking probability in Equation

(10). However, the original belief space, denoted as B, is infeasibly large for computa-

tion because the number of possible orderings increases factorially with the number of

products.35 To deal with the computational challenge, I construct a heuristic belief space,

denoted as Ba, by assuming that developers only consider some most likely orderings

when choosing updates. In particular, they always consider the most likely ordering, i.e.,

the descending order of ranking scores, and only consider up to two sequential swaps

of products in the most likely ordering.36 By construction, depending on the number

of products in the market, the heuristic belief space has at most 141 possible orderings,

35In the data, an average market has 65 products. Thus, it is infeasible to allow developers to consider

all possible orderings of search rankings. It is likewise generally infeasible to closely approximate B. For

example, I test with a market consisting of 10 products in the data. To reach ∑y∈B P[y] ≥ 0.2, I find that

one needs to evaluate at least 1% of the elements in B, which corresponds to 36,288 orderings.
36For example, suppose the most likely ranking is (1,2,3,4,5), one example for the first swap is

(2,1,3,4,5), built on which, one example for the second swap is (2,1,4,3,5). Appendix B.4.2 provides

the full list of swaps that the heuristic belief space contains and explains the mathematical motivation.

Furthermore, the construction implies that the heuristic belief space may change with updates: as one app

updates more, its ranking score may rise, and the most likely ordering may change accordingly, which in

turn changes the heuristic belief space. I use the subscript a in Ba to denote this relationship.
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which turns out to capture 8.5 out of the top-10 most likely orderings on average.37

On the heuristic belief space Ba, a well-defined probability measure is the following

conditional probability for any ordering y ∈ Ba:

P̃[y|a] := P[y|a]/

(

∑
y′∈Ba

P[y′|a]

)

(14)

where P[y|a] is the ranking probability defined in Equation (10) with a highlight on a in

xs. Then, the ex-ante variable profit of a developer f is given by

π II
f (a,ω f ) = ∑

y∈Ba

π I
f (y,a,ω f )P̃[y|a] (15)

In equilibrium, the following necessary conditions hold true: marginal ex-ante vari-

able profit of update equals zero, given other developers’ decisions. Let D j indicate

whether app j is updated. Then the necessary conditions are given by,

MB j(a j,ψ) = φ1a j +z
g
jφ+ω j, ∀ j s.t. D j = 1 (16)

where the marginal benefit of update, MB j(a j,ψ), is given by

MB j(a j,ψ) ≡ MB
[0]
j +MB

[1]
j ψ1 +MB

[2]
j ψ2,

MB
[0]
j = ∑

y∈Ba






∑

l∈J f ( j)

(

0.7pl + 0.7
∂R(Ql ,al)

∂Ql

)
∂Ql

∂a j

+ 0.7
∂R(Ql ,al)

∂al






P̃[y|a]

+ ∑
y∈Ba






∑

l∈J f ( j)

(0.7plQl + 0.7Rl)







∂ P̃[y|a]

∂a j

MB
[1]
j = ∑

y∈Ba






∑

l∈J f ( j)

∂Ql

∂a j






P̃[y|a]+ ∑

y∈Ba






∑

l∈J f ( j)

Ql







∂ P̃[y|a]

∂a j

MB
[2]
j = ∑

y∈Ba






∑

l∈J f ( j)

2Ql

∂Ql

∂a j






P̃[y|a]+ ∑

y∈Ba






∑

l∈J f ( j)

Q2
l







∂ P̃[y|a]

∂a j

where MB
[0]
j is the marginal benefit of update from the first two revenue sources, and the

sum of MB
[1]
j ψ1 and MB

[2]
j ψ2 is the marginal benefit of update from in-app advertising.

These marginal benefits consist of two parts: the direct effect of update on downloads

37In contrast, |Ba|/|B|< 0.03 for markets with more than 5 products in the data.
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while holding ranking probability fixed implied from the demand model (e.g., ∂Ql

∂a j
), and

the indirect effect of the update on downloads through affecting ranking probabilities

implied from the search ranking model (e.g.,
∂ P̃[y|a]

∂a j
).38 I take Equation (16) to GMM

with the instruments for update frequency detailed in Appendix B.1.

Stage 1 - Update Portfolio. In the first stage, developers do not observe ω j’s. Denote

the second-stage equilibrium update frequency as a+(D,ω+), where D = (D1, · · · ,DJ)

and ω+ = (ω j : D j = 1). The objective function of developer f in the first stage is given

by,

π III
f (D) := Eω+ [π II

f (a
+(D,ω+),ω+

f )|D]− ∑
j∈J f

C jD j (17)

where C j is the fixed cost of update for app j.

In Nash Equilibrium, each developer chooses his/her update portfolio, denoted as

D f = (D1, · · · ,DJ f
), that maximizes the objective function in Equation (17), given others’

update portfolios D− f . Following Fan and Yang (2020), the equilibrium condition implies

no profitable deviation from the observed update decisions, which enables researchers to

back out bounds on C j without specifying any equilibrium selection rule for potential

multiple equilibria. Specifically, when an app j is not updated, a necessary inequality

is that the expected increase in ex-ante variable profits cannot offset the fixed costs, i.e.,

∀D j = 0,

C j ≥Eω+ [π II
f ( j)(a

+(1,D− j,ω
+),ω+

f ( j)
)|1,D− j]

−Eω+ [π II
f ( j)(a

+(0,D− j,ω
+),ω+

f ( j)
)|0,D− j]

(18)

Meanwhile, when an app j is updated in category g and month t, a necessary inequal-

ity is that the expected increase in ex-ante variable profits can offset the fixed costs, i.e.,

∀D jgt = 1,

C j ≤Eω+ [π II
f ( j)(a

+(1,D− j,ω
+),ω+

f ( j)
)|1,D− j]

−Eω+ [π II
f ( j)(a

+(0,D− j,ω
+),ω+

f ( j)
)|0,D− j]

(19)

During estimation, I use Equation (18) to yield the lower bounds (C j’s) on the fixed

costs of update for apps that are not updated, and Equation (19) to obtain the upper bounds

(C̄ j’s) on the fixed costs of update for apps that are updated.

38I numerically compute
∂ P̃[y|a]

∂a j
based on the estimated search ranking model with a perturbation step

of 1e-4. For more technical details, see Appendix B.4.3.
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5 Estimation

5.1 Estimation Procedure

I estimate the three pieces of the empirical model separately. I start with demand estima-

tion in Equation (7). Then I carry the estimated app quality to the search ranking prob-

ability in Equation (10). Lastly, in the supply estimation, I treat the estimated demand

function and ranking probability function as known functions, and take Equation (16) and

inequalities (18) and (19) to data. The estimation sample consists of non-preinstalled Ap-

ple’s apps and popular third-party apps on Apple’s App Store, while pre-installed apps

are lumped into outside options.

The identification of app demand parameters is similar to that in Berry, Levinsohn and

Pakes (1995). However, unlike BLP, apart from endogenous price (p jt), I consider three

endogenous product characteristics: update frequency (a jgt), average rating (x2 jgt), and

search ranking (E jgt ,ranking jgt). I therefore exploit two different sources of exogenous

variation in the above endogenous variables.

First, I construct indirect markup shifters based on the endogenous characteristics of

products in other markets that are owned by other developers in the same market. Given

a developer, his/her products’ characteristics in other markets serve as a proxy for the

developer’s productivity (Hausman, 1996, Nevo, 2000).39 Thus, these indirect markup

shifters capture "how productive are my competitors" as opposed to "how attractive are

my competitors" in the classical BLP instruments. They indirectly affect the markup

of a product by affecting the product’s rivals’ strategic decisions on price, update, and

ratings.40

Second, I exploit two exogenous search ranking shifters: i) the unanticipated search

algorithm change; ii) the match between app titles and keywords. For the latter, I assume

that app title does not affect indirect utility. It shifts demand only by affecting ranking

probability as described in Equation (10). For the other excluded instruments and first-

stage regression results, please see Appendix B.1.

The identification of the self-preferencing parameters relies on consistent estimates of

39Table D.5 provides summary statistics on the source of variation for the Hausman IV and the indirect

market shifters in the data.
40On top of the assumption for exclusion restrictions of the cost proxies, the exclusion of the indirect

markup shifters additionally depends on a timing assumption that the unobserved demand shocks are real-

ized after app entry, so that developers cannot perfectly foresee their competitors’ η jgt when entering the

market.
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app quality. Given that, categories with and without Apple’s apps also help with iden-

tification. How much higher quality contributes to higher search ranking in categories

without Apple’s apps reveals the effects of app quality. Then, how much Apple owner-

ship reverses this relationship between quality and search ranking identifies the extent of

platform self-preferencing.

In the last step of estimation, evaluating inequalities (18) and (19) involves solving

the second-stage game for each drawn vector of marginal cost shocks, as well as com-

puting market shares for each possible ordering of products in the heuristic belief space.

Following the literature, to alleviate the computational burden, I restrict the sample for

computing the cost bounds with two steps. First, I focus on relevant markets, namely, the

categories with Apple’s apps during the difference-in-differences sample period, since

only these categories may have a different counterfactual equilibrium than the status quo.

Second, I focus on the top 5 developers in each category and only allow these top 5 de-

velopers to change their updates.41 As a result, there are 506 upper bounds and 176 lower

bounds to be computed.

5.2 Estimates of Demand

Table 3 reports the estimates for the parameters of the demand model. Regarding con-

sumer preference, it shows that an average consumer significantly prefers apps with higher

update frequency, Apple ownership, higher average rating, and lower installation price,

among other app features. Quantitatively, the results indicate that an average consumer

is willing to pay $5.2 more for downloading an Apple’s app developed than a third-party

counterpart. As a result, the estimated quality of Apple’s apps is 2.25% higher than com-

peting third-party apps on average. The quality premium may reflect better integration of

Apple’s apps into iPhones. Regarding search costs, it shows that consumers are signifi-

cantly more likely to incur low search costs when searching for apps with higher search

rankings in the top 50 search results.

To quantify the power of search ranking, Table 4 shows the semi-elasticities of de-

mand with respect to price (Panel A) and search ranking (Panel B) for four popular apps

in the entertainment category in July 2019. Panel A shows that a $1 increase in the instal-

lation price of an app leads to about 0.21% decrease in its demand. Panel B shows that a

41The category-specific top 5 developers are constructed based on total downloads of owned apps during

the post-July difference-in-differences sample period.
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Table 3: Estimates of the Demand Model

Variables Parameter Standard Error

Quality Coefficients

log(1+Update Frequency) 0.166 0.084

Apple 1.133 0.447

Average Rating 0.512 0.175

log(Age) (month) 0.345 0.143

log(File Size) (MB) 0.423 0.055

#Screenshots −0.042 0.015

log(1 + Description Length) −0.041 0.147

1{Offer In-App-Purchase} 0.221 0.134

Game −0.041 0.147

One-month Lagged Unobserved Quality 0.920 0.004

1{Category Contains Pre-installed Apps} 0.246 0.134

Constant −13.806 1.030

Price −0.216 0.048

Paid Installation −1.719 0.240

Random Coefficients

log(1+Update Frequency) 0.682 0.119

Search Cost Parameter Coefficients

1{Top50 in Search Results} −5.266 2.670

log(Search Ranking)|Top50 1.419 0.758

Month-FE YES

Average Estimated Quality −8.261 (1.893)

Observations 52,959

Notes: Standard deviation of estimated quality is in parenthesis.
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10-position decline in the search ranking of an app leads to about 0.18% decrease in its

demand. Dividing own-ranking semi-elasticity by own-price semi-elasticity returns an in-

tuitive measure of position effect: a 10-position decline in search ranking is equivalent to

a $0.83 increase in price. The position effect is relatively small compared to those found

in the other industries, reflecting that some consumers know their match values with these

four apps before searching and therefore have zero search costs for these four apps.42

Table 4: (Semi-)Elasticities of Demand

Netflix TikTok Hulu Amazon Prime Video

Panel A. Price Semielasticities

Netflix −0.205 0.008 0.004 0.003

TikTok 0.010 −0.209 0.004 0.002

Hulu 0.009 0.007 −0.212 0.002

Amazon Prime Video 0.008 0.006 0.003 −0.214

Panel B. Ranking Semielasticities

Netflix −0.178 0.007 0.004 0.002

TikTok 0.008 −0.182 0.003 0.002

Hulu 0.008 0.006 −0.175 0.002

Amazon Prime Video 0.007 0.005 0.003 −0.175

Panel C. Update Elasticities

Netflix 1.395 −0.073 −0.038 −0.024

TikTok −0.073 0.994 −0.026 −0.016

Hulu −0.068 −0.048 0.954 −0.015

Amazon Prime Video −0.043 −0.030 −0.016 0.601

Notes. Panel A reports the percentage change in the market share of the column-product with a $1 in-

crease in the row-product’s installation price. Panel B reports the percentage change with a ten-position

decline of the row-product’s search ranking. Panel C reports percentage change in market share of the

column-product with a 1 percent increase in the row-product’s log(1+ update frequency).

The effect of update frequency on demand supports the hypothesized direct incen-

tive for developers to update apps. Quantitatively, Panel C of Table 4 shows that a 1

percent increase in log(1+ update frequency) is associated with a 0.6 percent to 1.4 per-

cent increase in market shares among the four Entertainment apps. Unsurprisingly, the

own-update elasticities are larger than the cross-update elasticities.

42For example, in the online hotel industry, Ursu (2018) finds the effect of 1 position decline between

$0.55 and $3.19, Chen and Yao (2017) find it to be $0.21, Koulayev (2014) finds it ranging from $2.93 to

$18.78.
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5.3 Estimates of Self-Preferencing

Table 5 reports the estimation results of the search ranking model. It first confirms that

higher quality leads to higher search ranking. Combined with the estimated preference for

Apple’s apps in Table 3, it implies that everything else equal, Apple’s apps would receive

higher rankings than third-party counterparts, even without platform self-preferencing.

However, the estimated self-preferencing parameters are significantly positive in all cat-

egories with Apple’s apps. It implies that consumers’ preference for Apple’s apps is not

strong enough to justify the observed higher ranking of Apple’s apps than third-party

apps. Last but not least, the significantly positive coefficient on update frequency, as well

as the quality coefficients, confirms the hypothesized indirect incentive for developers to

update apps, namely, enhancing downloads through higher rankings.43

Table 5: Estimates of the Search Ranking Model

Variables Parameter Standard Error

Quality 0.126 0.013

Squared Quality (× 0.1) −0.065 0.010

Squared Quality (× 0.01) −0.046 0.005

Apple × Category Group 1 0.636 0.213

Apple × Category Group 2 1.981 0.184

Apple × Category Group 3 1.534 0.207

log(1+Update Frequency) 0.073 0.011

Apple × Months (Omit July 2019) Yes

Paid Installation × Category Groups Yes

Price× Category Groups Yes

Title Match × Category Groups Yes

Subtitle Match × Category Groups Yes

Lagged %5-star × Category Groups Yes

Lagged %4-star × Category Groups Yes

Lagged #Ratings × Category Groups Yes

Observations 52,959

Average Latent Score -0.393

Pseudo R-sq 0.069

Notes: Category Groups are i) Game apps; ii) Non-Game categories without Apple’s non-

preinstalled apps; iii) Category Group 1/2/3: non-game categories with 1/3/7 Apple’s non-

preinstalled apps.

Figure 3 presents the coefficients on the interaction terms between Apple ownership

43Table D.11 reports estimates of the other parameters in the search ranking model. They are all qualita-

tively intuitive. Appendix B.3 reports the robustness of the estimates with respect to alternative specifica-

tions.
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and month indicators, normalizing the month of the search algorithm change. As a cross-

validation, it shows that the search ranking estimates reveal the search algorithm change in

July 2019. Specifically, the self-preferencing parameters are estimated to be significantly

lower after the search algorithm change.

Figure 3: Relative Self-preferencing Parameters across Months, Normalizing the Month

of Algorithm Change

Notes. The figure presents point estimates of the effects of Apple ownership on ranking score in each month during the sample period,

relative to July 2019. The bars indicate 95% confidence interval using standard errors clustered at the category-month level.

Figure 4 visualizes the fitness of the search ranking model. It plots the most-likely

within-market ordering against the observed within-market ordering.44 It shows that the

model fits the data relatively well. For example, in most cases, the average fitted within-

market orderings are close to the observed ones, and the intervals between the first and

the third quartiles of the fitted orderings cover the observed ones.

5.4 Estimates of Supply

Table 6 reports the estimates of the supply model. In the second-stage supply model, Panel

A shows that i) the in-app-advertising profits insignificantly increase with downloads; ii)

the variable cost of update is convex with respect to update frequency; iii) the marginal

44For example, the search ranking of an app might be 33.5 in a market where there are 9 apps whose

positions are strictly higher than 33.5. Then, the within-market ordering of this app is 10.
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Figure 4: Fitness of the Search Ranking Model

Notes. The figure presents the most-likely within-market ordering (y-axis) against the observed within-market ordering (x-axis) across

markets. The bars indicate the first and third quartiles of the predicted ranking.

cost of update is lower for non-game free apps with in-app purchase. Quantitatively,

the results imply that an average app earns $0.14 from in-app advertising with each new

download. The implied average marginal cost of update is $0.32 million. This is roughly

equivalent to hiring 17.3 computer engineers in a month.45 In the first-stage supply model,

Panel B shows that the average upper bound is $1.47 million, and the average lower bound

is $1.11 million.46 The large update cost reflects the fact that the data focuses on popular

apps and the average market size is as large as 105.9 million iPhone users per month.

Appendix C.2 compares structural and reduced-form estimates of the ATEs of the

search algorithm change on update frequency, search ranking, and downloads. It shows

that the structurally estimated ATEs have the same sign as those estimated from DiD,

with smaller magnitudes. The discrepancy in magnitudes may reflect additional structural

45The figure comes from the following back-of-envelope calculation. The first-order Taylor Expansion

of log(1+ x) has 1/(1+ x) as the coefficient on the first-order difference. The average update frequency

among updated apps is 1.35. Then the cost of one additional release-note-augmented update is roughly

0.32/(1+ 1.35) = 0.14 million dollars. The average salary for a computer engineer is about $97,000 per

year in California in 2020. Therefore, the cost is roughly equivalent to hiring 17.3 computer engineers in a

month.
46Figure E.9 plots the density curves of the estimated upper and lower bounds of the fixed costs of update.

It shows that the estimated upper bounds turn out to first-order stochastically dominate the estimated lower

bounds.
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Table 6: Estimates of the Supply Model

Variables Parameter Standard error

Panel A: Second-Stage Supply Model

In-App-Advertising Profit

Downloads 0.137 0.358

Squared downloads −0.010 0.074

Marginal Cost of Updates

log(1+Update Frequency) 3.008 0.108

Paid Installation 0.107 0.031

1{Offer In-App Purchase} −0.216 0.034

Game 0.271 0.015

Constant −2.127 0.098

Month-FE YES

Average Marginal In-App-Advertising Profit ($) 0.135

Average Marginal Cost (million$) 0.322

Observations 25,326

Panel B: First-Stage Supply Model

Fixed Costs of Updates (million$) Observations Mean

Upper bounds 506 1.469

Lower bounds 176 1.114

Notes: Marginal marginal profit IS with respect to downloads. Marginal update cost is with respect to

log(1+Update Frequency).
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changes in the search algorithm change other than self-preferencing.

6 Counterfactual Simulations

To quantify the welfare effect of self-preferencing, I simulate counterfactuals where the

estimated self-preferencing parameters, {θ1tk} in Equation (9), become zero. The differ-

ence between the counterfactual and the status-quo market outcomes captures the effect

of self-preferencing in the studied empirical context. The simulations involve all cate-

gories with Apple’s non-preinstalled apps and the two months with the largest estimated

self-preferencing parameters.47

The following definition equation of consumer surplus summarizes how self-prefe-

rencing could affect welfare.

CSgt := Mt ·E(ε,c,σ,y,ω)

[

−(ui j(i)gt − ∑
l∈Sigt

cilgt)/α

]

(20)

where j(i) denotes the chosen app of consumer i, Si· denotes the set of searched apps of

consumer i.48 Holding product characteristics fixed, an alternative ordering of products

changes the search cost of a given product l for a consumer i, cilgt , which changes the

set of searched products by consumer i, Sigt , as well as the chosen product of consumer

i, j(i). This leads to changes in the incurred search costs , ∑l∈Sigt
cilgt , and the choice

quality, ui j(i)gt . Furthermore, eliminating self-preferencing may encourage independent

apps to provide better apps through more updates. This in turn affects choice quality and

search costs on the consumer side, as well as profits on the supply side. I first examine the

effect on update frequency, then examine the effect on consumer surplus and developer

profit.

47In particular, the categories are weather, utilities, productivity, music, entertainment, health, and shop-

ping. The two months are June and July in 2019 as reported in Figure 3. For more details on the simulations,

please see Appendix C.1.
48All expressions for expected consumer surplus are up to a constant. See Small and Rosen (1981).

Recall that α is the price coefficient in Equation (2). For more details on the computation, please see

Appendix C.3.
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6.1 Effects of Self-Preferencing on Update Frequency

I take four main steps to find counterfactual update frequencies and app qualities. First, I

take five simulation draws of the fixed costs of update from a range that is consistent with

the identified bounds. Second, for each drawn vector of fixed costs, I compute the first-

stage equilibrium update portfolios based on best-response iterations. Third, assuming

that the shocks to the marginal cost of update remain the same between status-quo and

counterfactual, I compute the counterfactual second-stage equilibrium update frequency

with the backed-out ω jgt’s whenever possible, given the counterfactual first-stage equilib-

rium update portfolios.49 Finally, I feed the counterfactual update frequency into Equation

(8) to calculate counterfactual app quality. I report the average market outcomes over the

five draws of fixed costs of update. For more details on each step, please see Appendix C.

Table 7: Effects of Self-preferencing on Update Frequency and App Quality

Status-quo Shut-down Percentage Change (%)

obs mean mean mean std min max

Market-Level Results

Average Update Frequency 13 1.21 1.23 1.86 3.60 0 10.29

Average App Quality 13 −6.29 −6.29 0.01 0.02 0 0.05

Number of Updated Apps 13 6.08 6.06 −0.19 0.69 −2.5 0

App-Market-Level Results

Update Frequencya 105 1.22 1.25 1.41 9.93 −21.42 65.61

App Quality 105 −6.34 −6.33 0.02 0.22 −0.58 1.64

Probability of Updatea 105 0.75 0.75 −0.25 2.25 −20.00 0

Notes: Update frequency is the monthly number of updates weighted by the length of release notes. Each market is

a category/month pair. For the status-quo case, there is the estimated self-preferencing. For the shut-down case, there

is no self-preferencing. In casesa, the percentage changes are conditional on 79 observations that upgrade in the status

quo.

Table 7 shows the counterfactual simulation results for update frequency and app qual-

ity. The top panel shows that, at market level, eliminating self-preferencing increases

update frequency by 1.86% and app quality by 0.01% on average. The small quality in-

crease reflects the limited positive effects of updates on app quality. The bottom panel

shows that, at product level, the average effects are similar. Sizeable heterogeneity exists

49Backed-out ω jgt ’s are not available when the app is not updated in the data but updated in the coun-

terfactual. In such cases, I use the same draws of ω’s as those for computing the bounds on fixed costs of

update. This step ensures that the difference between the simulated updates and observed updates is not

due to different ω’s.
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in update effects. The percentage change of update frequency has a standard deviation

that is 1.9 or 7 times the mean at market or product level. The range of the percent-

age change of update frequency, as well as the extensive-margin effects captured by the

probability of update and the number of updated apps, shows that some independent apps

update less without platform self-preferencing while others update more.50

The following regression sheds light on the heterogeneous update effects (standard

errors are in parenthesis).

1{∆UpdateFreq jgt < 0} = 0.18×1{∆RankingNG
jgt = 0} + 0.24×#Apps f ( j)gt

(0.08) (0.01)

+ 0.01 + ε jgt

(0.04)

where the left-hand side is the indicator of fewer updates without self-preferencing, the

right-hand-side variables include an indicator of higher search ranking in non-game sim-

ulation without platform self-preferencing, the number of active apps owned by the app’s

developer, and a constant. The correlation results show that negative update effects are

associated with indirectly affected apps whose rankings remain fixed without platform

self-preferencing and those apps of multi-product developers. The first factor is consistent

with a business-stealing effect of directly affected apps: indirectly affected apps lose busi-

ness to directly affected apps that are boosted up by the elimination of self-preferencing.

Eliminating self-preferencing shifts the residual demand curves of the indirectly affected

apps leftward and discourage them from upgrading apps.51 The second factor is consis-

tent with cannibalization within firms: a multi-product developer might update an app

less if the app receives a higher search ranking and cannibalize the revenues of other apps

that s/he has.

6.2 Effects of Self-Preferencing on Welfare

Table 8 shows the effects of eliminating self-preferencing on search rankings, downloads,

and welfare. The first row confirms that eliminating self-preferencing does not change

average search rankings; it only re-allocates the positions. Therefore, eliminating self-

preferencing is a differential change in search costs across different products instead of a

50Table D.19 reports the quantiles of update effects by the sign of update effects.
51To verify the business-stealing effect, I regress the indicator of lower downloads without self-

preferencing in non-game simulation on the indicator of unchanged search ranking without self-

preferencing and a constant. The coefficient on the indicator is 0.55 with a robust standard error of 0.08.
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Table 8: Effects of Self-preferencing on Search Rankings, Installations and Welfare

Variable Status-quo Shut-down Mean ∆ Mean %∆

(1) Average Search Rankings 40.54 40.54 0.00 0.00

(2) - Independent apps 41.24 40.74 −0.50 −1.22

(3) - Apple’s apps 15.63 32.71 17.08 173.30

(4) Total Downloads (million) 6.29 6.45 0.16 1.47

(5) - Independent apps 6.20 6.38 0.18 1.95

(6) - Apple’s apps 0.09 0.07 −0.02 −22.56

(7) Consumer Surplus (million $) 297.10 298.00 0.94 0.28

(8) Search Costs (million $) 25.22 25.16 −0.06 0.37

(9) Choice Quality (million $) 322.30 323.20 0.88 0.25

(10) Third-party Profits (million $) 48.72 49.05 0.34 0.66

Number of Markets 13

Notes: For the status-quo case, there is identified self-preferencing. For the shut-down case, there is no self-

preferencing. Third-party profits are subject to a constant that does not change with downloads. Reported values

are average across markets and fixed cost draws.

uniform reduction in search costs and thus only affects equilibrium search costs endoge-

nously. It makes the self-preferencing issue different from most studies in the literature

on information friction and product competition.52 Specifically, the second and third rows

show that, in an average market, the elimination boosts up independent apps by 0.5 posi-

tions and decreases their search costs while lowering Apple’s apps by 17.1 positions and

increasing the search costs for Apple’s apps. The smaller change in independent apps’

search rankings reflects that there are much more independent apps than Apple’s apps in

the market.

The fourth row shows that eliminating self-preferencing increases total downloads by

1.5 percent in an average market. Considering platforms’ revenues from independent apps

and platform-owned apps, one can do a back-of-envelope calculation with the changes

in downloads: independent apps’ downloads increase by 0.18 million, contributing to

0.05 million increase in the commission revenue measured in the unit of downloads with

the 30% commission rate. Such an increase in commission revenue is larger than the

decreased downloads of 0.02 million for Apple’s apps.53 Therefore, it remains a mystery

52Examples for uniform changes in information frictions include the introduction of internet (Orlov,

2015, Ellison and Ellison, 2018), price transparency tools (Brown (2019)), intermediaries (Salz, 2020), and

the influx of novice investors in the mutual fund industry (Hortaçsu and Syverson, 2004).
53Appendix Table D.21 shows that the platform revenues will increase by 0.16 million dollars with the

elimination.
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why Apple was self-preferencing, which is out of the scope of this paper.54

The last four rows show positive and modest welfare benefits from eliminating the

estimated self-preferencing. In an average market, consumer surplus increase by 0.28%,

and third-party profits increase by 0.66%. As a comparison, from the first three rows, one

can calculate that the gap between the search rankings of independent apps and Apple’s

apps shrinks by 69% after the elimination.55 Search costs turn out to account for a smaller

portion of consumer surplus than choice quality. The elimination decreases the incurred

search costs by 0.06 million dollars and increases choice quality by 0.88 million dollars.56

The fact that search costs are low in the studied empirical context might lead to the small

welfare effect of self-preferencing: consumers can still scroll down to their preferred

products with self-preferencing.

Figure 5 illustrates the heterogeneity of welfare effects across categories and months.

It shows that the most affected category is Entertainment, where consumer surplus in-

creases by 1.1% to 1.2% and third-party profits increase by 2.0% to 2.3% after eliminat-

ing the estimated self-preferencing. This result is not surprising, given that Entertainment

is also the category where Apple is historically good and competes intensely with third-

party products. The figure also shows a positive correlation between welfare effects and

the extent to which Apple’s apps have benefited from self-preferencing in the market. For

example, in the Entertainment category where the welfare effects are large, the three Ap-

ple’s non-preinstalled apps’ search rankings would decrease by 10.1 to 11.2 times in total

without self-preferencing, which is also among the largest x-axis values across categories.

Table 9 compares the welfare effects with or without update adjustment. It shows

that not incorporating independent apps’ update adjustment will under-predict the gains

in consumer surplus by 44% and over-predict the gains in third-party profits by 6.7%.

While the average quality does not increase much due to update adjustment on average,

as reported in Table 7, the results reflect that consumers disproportionately benefit from

apps that update more and achieve higher quality after eliminating self-preferencing.

54I argue that self-preferencing might be beneficial for the platforms’ search ads revenue, because self-

preferencing increases the value of the sponsored positions for independent apps.
55The calculation is: 1-(40.74-32.71)/(41.24-15.63)=0.69.
56As a comparison to other markets, in mortgage markets, Allen, Clark and Houde (2019) finds that 50%

of consumer surplus gain from reduced search frictions is associated with reduced search costs, while 22%

gain is associated with inefficient matching.
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Figure 5: Heterogenous Welfare Effects across Categories and Months

Notes. The x − axis variable is ∑ j∈JApple
(pos0

j − pos1
j )/pos1

j , where pos1/0
j is the search ranking with/without platform self-

preferencing, holding update frequency fixed; and JApple collects non-preinstalled apps owned by Apple. The vertical axes are

percentage changes of consumer surplus (left) and third-party profits (right). The unlabeled category/month pairs are Productiv-

ity/July, Health/June, Health/July, Shopping/June, Shopping/July, Weather/June, and Weather/July. They are too close to be labeled in

the figure. The reported welfare effects on Music/July allow all observed independent developers to change update frequency while

holding update portfolios fixed.
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Table 9: Welfare Effects With and Without Update Adjustment

Update Adjustment Yes No Difference (%)

Mean ∆Consumer Surplus (million $) 0.94 0.53 44.01

Mean ∆Third-Party Profits (million $) 0.34 0.36 −6.65

Notes: The first column is from the third column in Table 8. The second column

is from simulations of eliminating self-preferencing while holding update frequencies

fixed at observed values.

7 Conclusion

This paper provides a structural model of consumer search and quality-upgrading compe-

tition, in order to deal with potential platform self-preferencing in search ranking. I apply

the model to the U.S. Apple’s App Store data. I find positive effects of platform owner-

ship on search ranking, conditional on app quality, pointing to platform self-preferencing.

In counterfactual simulations without the estimated self-preferencing, I find positive and

modest innovation effects and welfare effects of eliminating self-preferencing in the stud-

ied empirical context. For example, in an average market, update frequency increases by

1.86%, consumer surplus increases by 0.28%, and third-party profits increase by 0.66%,

after the elimination. I also find heterogeneous effects across different independent apps

and categories. For example, the most affected category is Entertainment. When motivat-

ing and estimating the structural model, I exploit an unexpected search algorithm change

that dropped some Apple’s apps from top search results.

It remains a mystery why Apple was self-preferencing its own products in search

results. The counterfactual simulations show that the lost commission revenue from inde-

pendent apps due to self-preferencing is larger than the increased revenues from Apple’s

apps. Answering this question is an interesting topic for future research. One potential

reason is to increase search-ads revenue with self-preferencing, because self-preferencing

increases the value of sponsored positions in search results for independent apps.

The modest welfare gains from eliminating self-preferencing support regulations against

self-preferencing on the one hand, but also imply that self-preferencing might not be the

most beneficial margin for antitrust policies in the studied empirical context. The struc-

tural model can be applied in other contexts where search ranking algorithms may affect

suppliers’ incentives and total welfare.
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Appendix A Details on Data

A.1 Sample Selection

Here I describe my sample selection. A category is in the sample if it has benchmark

conversion rates data from AppTweak. Within each category, the set of apps and keywords

are selected with the following process.

App Selection Process:

1. Find apps that have ranked top-50 in the top-grossing charts for the given category

on any day between April 2019 and September 2019.

2. Conditional on selection into step 1, find the 50 mostly downloaded apps in the

given category based on the annual downloads in 2019.

3. Repeat the above steps for top-paid charts, in order to ensure enough price variation

to identify price elasticity.57

4. Drop an app-month observation if i) the app has zero downloads in that month, or

ii) the app has unobserved file size or ratings in that month. I assume the missing is

at random.

Keyword Selection Process:

1. Find keywords that have entered the list of recently used keywords of a selected

app, based on AppTweak’s keyword suggestions. The "recency" on AppTweak is

the last 3 months, which corresponds to March 2020 to June 2020. The suggested

keywords are keywords that either i) the app has ranked in top 100 in the keyword

recently; ii) the app’s title, subtitle, or description contains the keyword.

2. For each app/keyword pair, track the app’s historical search ranking in the keyword

on each day during 2019. Define an app’s adoption of a keyword as the app showing

up in the top 500 search results of the keyword. For each category, find the 60

keywords that have the most apps in the category adopting the keyword.

57To be clear, the sample does not include apps that only show up in top-free charts. Examples include

apps that monetize only through in-app advertising or provide complementary values to other products

owned by the firm, such as Google Map. These apps are likely to have different objective functions than

those modeled in this paper and do not quite rely on the app store to earn profits.
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A.2 Variable Definition and Data Sources

• Downloads are the estimated monthly downloads from AppTweak. A download is

the first-time installation by a unique consumer.

• Revenues are the estimated monthly revenues from AppTweak. Revenues include

installation revenue and before-Apple-tax revenues from in-app purchase and sub-

scription.

• Conversion rate is the average ratio of downloads over impressions across con-

nected apps in the same type/category/month group in percentage. An impression is

a view by a consumer. Connected apps are apps owned by customers of AppTweak.

These customers are third-party app developers. By connecting to AppTweak and

receiving service from AppTweak, they allow AppTweak to get access to their busi-

ness data, including conversion rates. For confidentiality, AppTweak only provides

conversion rate data at type/category/month level. I observe conversion rates for

1337 type/category/month combinations. However, 411 type/category/month com-

binations miss conversion rates data, which I assume as missing at random.

• Type indicates whether an app requires payment for installations. It is observed at

app level. Type data is from AppTweak.

• Apple indicates whether an app is developed by Apple. Developer ID data is from

AppTweak.

• Offer In-app Purchase indicates whether an app offers in-app purchase and sub-

scription (IAP). It is observed at app level. IAP availability data is from AppTweak.

• Installation Price | Paid is the price for installation conditional on paid apps. Oc-

casionally, the price may be zero even for paid apps. It might reflect temporary

sales of the app. Historical price data is from AppTweak.

• Top-50 in Search Results indicates whether an app shows up in the top-50 po-

sitions of any keyword selected for its category on any day in a given month. It

changes across apps, categories, and months.

• Search Ranking is the average ranking of an app across the keywords and days

where it shows up in the top-50 positions in a category and month. Historical
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search results data is from AppTweak for non-preinstalled apps and SensorTower

for pre-installed apps.

• Update Frequency is the weighted number of updates in a month. The weight is

based on category-specific quartiles of release notes. Specifically, for each category,

I calculate the three quartiles of release note length across all versions released by

apps in the category during the sample period. Then, if an update has a release

note shorter than the first quartile, the update is weighted by 0.25. If an update

has a release note longer than the first (second) quartile but shorter than the second

(third) quartile, the update is weighted by 0.5 (0.75). If an update has a release note

longer than the third quartile, the update is weighted by 1. Then, the sum of the

weighted updates of an app in a month based on the category-specific weights gives

the update frequency of the app in the category and month. Version history data is

from AppTweak.

• Average Rating is the average number of stars of an app’s ratings from consumers

in a category and month. A rating ranges from 1 to 5 stars in integers.58 Historical

rating data is from AppTweak.

• Age is the number of months since the release date of the app. Release date data is

from AppTweak.

• File Size is the average size of an app in a month in megabytes (MB), weighted by

the number of days. Historical file size data is from AppTweak.

• #Screenshots is the average number of screenshots on the view page of an app in

a month, weighted by the number of days when the set of screenshots show up.

Historical screenshots data is from AppTweak.

• Description Length is the average number of characters of the descriptions of an

app in a month, weighted by the number of days when the description shows up.

58Developers may reset an app’s summary rating when releasing a new app version, while written cus-

tomer reviews are kept unchanged. The app’s product page will display a message stating that the app’s

summary rating was recently reset, until enough customers rate the new version and a new summary rating

appears. Therefore, the reset behavior will lead to a reduced number of ratings as time goes by. In my

data, on a daily base, 1.4 percent to 2.5 percent of observations see a decrease in the number of a given

star-level ratings as time goes by. Intuitively, there is a cost of resetting ratings: the resulting fewer ratings

may discourage consumers from downloading the app. Thus, I argue that reset behaviors rarely happen in

my sample.
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Historical description data is from AppTweak.

• Market Share is the ratio of downloads over market size in percentage.

• #iPhone users is the number of iPhone users in the US in a month, from Comscore.

I use it as the measurement of market size.

Now I provide definitions for other variables used in the empirical analysis. Table D.3

provides their summary statistics.

• Brand Keyword indicates whether a keyword is an app’s name. It is provided by

AppTweak.

• Search Volume is an integer between 5 and 100 that indexes how many consumers

search for a keyword on a day. It is constructed by Apple. I obtain the historical

search volume data from SensorTower.

• Title (Subtitle) Match is the average value of an app/keyword/day-specific indi-

cator across different keywords and days for a given app in a category and month,

weighted by keywords’ search volume. The indicator tells whether a keyword con-

tains any word in the title (subtitle) of the app on a given day. It measures the

average likelihood that an app’s title (subtitle) matches the popular keywords in a

category in a month. Historical title and subtitle data is from AppTweak.

• %5-star ratings (%4-star ratings) is the ratio of 5-star (4-star) ratings over the

number of ratings an app has received until a given day.

• #Pre-installed Apps is the number of pre-installed apps in the category. During

the sample period, there is no newly pre-installed apps on Apple. The data is from

public information.

• min. Top-50 is the minimum value of the indicators for getting into the top-50 posi-

tions across pre-installed apps in a category in a month. It serves as the counterpart

of "Top-50 in Search Results" to calculate the µ0gt(λ ) for the outside option.

• min. Search Ranking is the minimum value of the "Search Ranking" defined

above across pre-installed apps in a category in a month. It serves as the counterpart

of "Search Ranking" to calculate the µ0gt(λ ) for the outside option. Historical

search results data for pre-installed apps are from SensorTower.
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A.3 Descriptive Patterns from the Search Volume Data

Here I provide descriptive test results for consumers having rational expectations of the

observable app characteristics before search. I exploit data on search volumes of key-

words, an integer between 5 and 100 indicating the number of consumers searching for

the keyword. Different keywords have different sets and orderings of apps in the search

results. If consumers know app characteristics before search, they should search for key-

words that have more high-value apps more and search for keywords that have less high-

value apps less. In other words, the characteristics of apps in the search results of an

keyword should affect the search volume of the keyword. The above theoretical implica-

tion motivates the following regression equation:

SearchVolumekgt =βV
1 AllPreinstallkgt +AllPreinstallkgt ×{x̄V

kgt ·β
V
2 +βV

3 p̄kgt}

+βV
4 Applekgt +βV

5 Preinstallkgt +βV
5 brandk +λV

gt + εV
kgt

(A.21)

where AppPreinstallkgt indicates whether all the top50 search results in keyword k month

t contain no apps in category g other than pre-installed apps. Within each category/month

pair gt, in the case of there are non-pre-installed apps showing up in the top50 search

results for a keyword k, I calculate the average prices across these apps, denoted by p̄kgt .

Similarly, x̄kgt denotes the vector of average levels of app characteristics, including up-

date levels, average rating, age, file size, number of screenshots, description length, offer

in-app-purchase or not, and paid installation or not. To capture the idea that higher-

ranked products are more considered by consumers, these characteristics are weighted by

1/log(1+ ranking jkt), where ranking jkt is the average ranking of app j in keyword k in

month t. Applekgt denotes the ratio of observed positions that are taken by Apple’s apps

in search results of keyword k. Similarly, Preinstallkgt denotes the ratio of observed posi-

tions that are taken by pre-installed apps in search results of keyword k. brandk indicates

whether the keyword is a brand-name keyword.λgt denotes category-month fixed effects,

capturing unobservables that are keyword-invariant and change across markets. In the

robustness check, I use keyword-category fixed effects and month-fixed effects, omitting

the brand-name keyword indicator. The keyword-category fixed effects capture unobserv-

ables that are time-invariant and change across keyword/category pairs. The month-fixed

effects capture unobservables that are keyword/category-invariant and change over time.

Table D.7 reports the summary statistics of the data for estimating the above equation.
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The left panel reports the data used for the main specification: search volume and average

app characteristics across observed apps in top50 search results. The right panel reports

the data used for robustness check: search volume and app characteristic of the observed

top1 app. It shows that, for an average keyword/category/month pair, there are 2% of

observed top50 positions taken by Apple’s apps. It also shows that, about 5% of observed

top1 positions are taken by Apple’s apps. It also presents that, compared to an average

observed top50 app, an average top1 app has more experiences, larger file size, more

screenshots, longer descriptions and higher installation prices. In the left panel, it shows

that, among keyword/category/month combinations that have observed top50 search re-

sults, the average search volume is 48.29 with a standard deviation of 13.88, and 34% of

them are generated with brand-name keywords.

Table D.8 presents the estimation results of Equation A.21. The first column reports

the main specification results. It shows that consumers are significantly more likely to

search for keywords whose top50 search results contain apps that on average update

more, have more experience, smaller in file size, have more screenshots and shorter de-

scription, offer in-app-purchase, have lower or even zero installation price. It indicates

that consumers at least know these app characteristics to some extent such that they can

predict what apps they will see in the search results and thus choose what keywords to

search for. Although average rating does not significantly affect search volume in the

main specification, its coefficient is insignificantly positive across all specifications, and

becomes significantly positive when only looking at top1 search results and controlling

for keyword-category fixed effects and month-fixed effects. Overall, the descriptive evi-

dence is consistent with the idea that consumers know the observable app characteristics

to some extent before search.

Appendix B Details on the Model and Estimation

B.1 Instrumental Variables

Table D.9 presents the F-statistics of first-stage IV regressions on the demand side (col-

umn 1-5) and supply side (column 6). All F-statistics for excluded instruments are larger

than 40. Table D.10 lists the included and excluded instrument variables and reports the

coefficients and standard errors in the first-stage estimation.

During demand estimation, I consider five endogenous variables: installation price
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(p jt), update frequency (a jgt), average rating (x2 jgt), and search ranking (E jgt , ranking jgt).

From the empirical model, search ranking is correlated with η jgt through the app quality

index, and update frequency is endogenous because developers know the unobserved de-

mand shocks η jgt at the beginning of the update competition game. Intuitively, price and

ratings may also be correlated with unobserved demand shifters such as advertising.

Apart from the two exogenous variations explained in the main text, I use two ad-

ditional groups of excluded instruments following the existing approach in the litera-

ture. First, I construct cost proxies following the approach in Hausman (1996) and Nevo

(2000). Specifically, I calculate cost proxies as the average value of the endogenous vari-

able of other apps owned by the same developer in other categories in the same month,

provided that the app’s developer has other apps in other categories. The exclusion of

these cost proxies relies on independent category-specific demand shocks so that the aver-

age product characteristics of the same developer in other categories will not be correlated

with the unobserved demand shock in the given category through cross-category correla-

tions of demand shocks. To that end, I use month-fixed effects as included instruments on

the right-hand-side of Equation (7) to absorb national demand shocks.

Among other cost proxies, two variables constructed based on search results need ex-

planation: i) ratio of keywords where the app does not show up in the search results at all,

and ii) ratio of days that the app does not show up in any search results of the selected

keywords in a given month. One example of the underlying cost shifters of these search-

result variables is subscribing to app-store-optimization (ASO) service where developers

can monitor search rankings of their own apps as well as their competitors across differ-

ent keywords. Based on such unobserved (to researchers) ASO service, developers may

strategically change the keywords where they would like their products to show up over

time. Exclusion of these cost shifters relies on that such ASO service does not directly

affect the indirect utility of consumers downloading apps.

Second, I use BLP-type instruments that provide exogenous variation for market

shares, including i) category-fixed effects; ii) the ratio of multiple-app developers. As

discussed in Berry and Haile (2016), together with the cost proxies and markup shifters,

these direct market-share shifters, or choice set variation, help identify the random coef-

ficient on the endogenous product characteristic.

On the supply side, developers know unobserved (to researchers) marginal update cost

shocks ωgt when choosing update frequency (a jgt). It makes a jgt an endogenous variable

in Equation (16). For example, subscribing to ASO services might save the additional cost
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of updating an app one more time by exposing the developer to suggestions for changes.

Such unobserved advice is positively correlated with update frequency and will bias the

coefficient on update upwards in Equation (16).

To deal with endogenous update frequency, I use category-fixed effects and pre-

determined app features as excluded instruments. The exclusion restriction relies on the

timing assumption that marginal cost shocks ω jgt’s are realized after the update portfolio

choice. Thus, the pre-determined app features are determined before the second-stage

supply model, such as price, file size, and app titles, among other instrumental variables

listed in Table D.10.

B.2 Details on Demand Estimation

Here I provide more details about demand estimation. First, to be clear, the downloads

and market shares are observed at app/month level, meanwhile, there are apps that oper-

ate in multiple categories simultaneously. However, due to the lack of category-specific

downloads data, I take a simplification solution: treat the same app that shows up in mul-

tiple categories as a unique app in each category. Then, the market shares are well-defined

at app/category/month level, denoted as s jgt , which is to be matched with model-predicted

values given by Equation (6) during estimation.

Second, note that (ρ ,λ) are non-linear parameters in Equation (7), since ξ jgt−1 is un-

observed and µ jgt(·) is non-linear. To speed up estimation, I get around the non-linearity

by subtracting ρδ̃ jgt−1 from δ̃ jgt . Specifically, I use δ̃ jgt−1 = α p jt−1+x jt−1β+ξ jgt−1−

µ jgt−1(λ)+ Igµ0gt−1(λ) and Equation (7). This returns a linear equation as below, given

a guess of (σ ,ρ ,λ).

δ̃ jgt(sgt ;σ)−ρδ̃ jgt−1(sgt−1;σ) = α ṗ jt + ẋ jtβ+ γa jt +η jgt − µ̇ jgt(λ)+ Igµ̇0gt(λ)

(B.1)

where v̇ jt = v jt − ρv jt−1 for any variable y in the above equation. Then, removing the

search cost parameters to the left-hand side, I define the dependent variable as below.

yd
jgt(sgt ;σ ,ρ ,λ) ≡ δ̃ jgt(sgt ;σ)−ρδ̃ jgt−1(sgt−1;σ)+ µ̇ jgt(λ)− Igµ̇0gt(λ) (B.2)

Therefore, Equation (B.1) is equivalent to the following linear regression equation,
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given a guess of (σ ,ρ ,λ).

yd
jgt(sgt ;σ ,ρ ,λ) = α ṗ jt + ẋ jtβ+ γa jt +η jgt (B.3)

where η jgt is the econometric error term.

Now I provide details on the GMM estimation of Equation (7). For notation, let x0
jt :=

(Age jt , FileSize jt , #Screenshots jt , DescriptionLength jt) denote the vector of exogenous

time-varying app characteristics. Let x j := (AppleOwnership j, PaidInstallation j, InAp-

pPurchase j) denote the vector of time-invarying app characteristics. Let zd,e
jgt denote the

vector of excluded instruments explained in Appendix B.1.

The moment condition based on Equation (7) is given by

E[zd
jgtη jgt ] = 0, zd

jgt := (1,x j,x
0
jt ,ξ jgt−1,zd,e

jgt ). (B.4)

I take the following steps to compute the GMM objective function, which a sample

analog to the moment condition.

1. Given a guess of σ , use BLP inversion to calculate δ̃ jgt(sgt ;σ).

2. Given a guess of (ρ ,λ), calculate the dependent variable yd
jgt(sgt ;σ ,ρ ,λ) defined

in Equation (B.2), and the independent variables ( ṗ jt , ẋ jt) where ṗ jt = p jt −ρ p jt−1

and likewise for variables in the vector ẋ jt .

3. Estimate the linear equation (B.3) with the instruments zint
jgt := (1,x j,x

0
jt ,z

d,e
jgt ).

This step will return the estimates on the linear parameters (α ,β,γ) given the esti-

mated (σ ,ρ ,λ).

4. Calculate η jgt based on Equation (B.3).

5. Calculate ξ jgt based on Equations (7) and (3).

6. Calculate the following GMM objective function:

(

1

n
∑
j,g,t

zd
jgtη jgt

)′(

1

n
∑
j,g,t

zd
jgtz

d
jgt

′

)−1(

1

n
∑
j,g,t

zd
jgtη jgt

)

(B.5)

For each guess of (σ ,ρ ,λ), I use the above steps to compute the GMM objective

function until the objective function is minimized.
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The last detail involves the initial guess of (σ ,ρ ,λ). To have a good initial guess and

thus to speed up estimation, I use the following steps to find the initial guess (σ0,ρ0,λ0).

1. Search for (ρ0,λ0) that minimizes the above GMM objective function while setting

σ = 0, with the initial guess being (0,0,0).

2. Search for σ0 that minimizes the above GMM objective function while setting

(ρ ,λ) = (ρ0,λ0), with the initial guess being 0.

Then, for the main estimation, I search for (σ̂ , ρ̂ , λ̂) that minimizes the above GMM

objective function, with the initial guess being (σ0,ρ0,λ0).

B.3 Details on the Search Ranking Model

Why Rank-Ordered Logistic Model? One advantage of this model lies in the model-impli-

ed intuitive correlations between rankings. To see it, a regression equation with search

ranking on the left-hand side and an additively separable error term on the right typically

assumes that the error terms are independent across observations. Thus, a higher ranking

of a product may not result in a lower ranking of others. In contrast, the rank-ordered

logistic model assumes independent error terms for a latent variable, namely the score,

and ranks products according to the score. It implies that a higher probability of one

product being ranked first is associated with a lower probability of another product being

ranked first.

Specification Details. In the ranking score Equation (9), I consider five exhaustive

groups of categories: game categories (k = Games), non-game categories that do not

have Apple’s non-preinstalled apps (k = 0), and non-game categories that have 1 or 3 or

7 Apple’s non-preinstalled apps (k = 1,2,3). For θ1tk, only the last three groups matter.

For ϑk, I normalize the game categories.

The vector zs
jgt includes a jgt , an indicator for paid installation, price, the match be-

tween app title (subtitle) and keywords, one-month lagged ratios of 5-star and 4-star rat-

ings and the number of ratings. I argue that these variables capture quite some important

factors. For example, they match with what Apple says about its search algorithm: "Ap-

ple has agreed that its Search results will continue to be based on objective characteristics

like downloads, star ratings, text relevance, and user behavior signals."59 Some examples

59See Apple. 2021. "Apple, US developers agree to App Store updates that will support businesses and
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of unobserved score shifters may be consumers’ usage of apps, uninstallations, and re-

tention. Finally, there is no constant term because the model fits the ordering of products

rather than the exact values of rankings.

Estimation. The conditional log-likelihood for observing product orderings in the data

is given by

L(θ|xs) = ∑
g,t

logP[ygt |x
s
gt ] (B.6)

where the ranking probability P[ygt |x
s
gt ] is defined in Equation (10). Notice that, the

ranking probability can be interpreted as the product of the probability of the first-ranked

product being ranked in position 1, and the probability of the second-ranked product being

ranked in position 2 conditional on the first-ranked product being ranked in position 1,

until the probability of the last-ranked product being ranked in the last position conditional

on all other products being ranked before it (which is equal to 1).

During estimation, for products with no appearance in the top 50 search results across

the popular keywords in a given category and month, because they do not have average

search ranking conditional on showing up in the top 50 search results, they are ranked

below the other apps that have shown up in the top 50 search results, and they are pooled

together as ties. Moreover, because we use lagged ratings, there is no estimation result

for the first month in the sample.

Alternative Specifications. To illustrate the roles of the ranking shifters, I start with the

simplest version of Equation (9) by abstracting away from category-specific and month-

specific effects and focusing on average effects. Table D.12 reports the estimates of the

baseline search ranking model. First, it summarizes the intuitive roles of the ranking

shifters: apps with higher quality, lower installation price, a more matched title or subtitle

with keywords, and better previous ratings performance are more likely to receive a higher

search ranking. It also shows that updates have a significant positive effect on search

ranking, conditional on the effect of quality. In particular, a back-of-envelope calculation

gives that a one-percent increase in the quality of an average app leads to a 2.7 percent

increase in the latent score. The positive effects of quality and update on search ranking

will provide indirect incentive for developers to upgrade their apps.

Second, it also shows evidence for self-preferencing: Apple’s ownership has a signifi-

cantly positive effect on ranking performance, conditional on app quality. In other words,

maintain a great experience for users". August 26. https://www.apple.com/newsroom/2021/08/apple-us-

developers-agree-to-app-store-updates/.
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the higher quality of Apple’s apps is not strong enough to justify their higher search

ranking; some self-preferencing of the platform is necessary to explain the dominance of

platform-owned products in top positions.

Then, I add monthly flexibility of self-preferencing. Table D.13 shows that there is no

month seeing significantly negative self-preferencing. Last, I add category-specific self-

preferencing without monthly self-preferencing. Table D.14 shows that there is significant

self-preferencing in categories with more than one Apple’s non-preinstalled apps, namely,

music, entertainment, and utilities; while the self-preferencing in categories with only one

Apple’s non-preinstalled apps is insignificant. The search ranking model reported in the

main text allows the most flexibility regarding self-preferencing as well as the effects of

other ranking shifters.

B.4 Details on the Supply Model

B.4.1 The Model of In-App-Purchase-and-Subscription Revenues

While I do not observe in-app prices for purchase and subscription, I calculate the rev-

enues from in-app purchase and subscription by subtracting installation revenues, p jtQ jt ,

from the observed total revenues. Then, I fit a linear equation as below for the in-app-

purchase-and-subscription (IAP) revenue, R jgt .

R jt =τ0 +(τ1 + τ2 ×game j)×Q jt +(τ3 + τ4 ×game j)×Q2
jt

+(τ5 + τ6game j)×a jgt +λ R
g +λ

[0]
t + game j ×λ

[1]
t + eR

jt

(B.7)

where game j indicates game apps, λ R
g are category-fixed effects, λ

[0]
t are month-fixed

effects, λ
[1]
t are month-fixed effects interacted with the game indicator, eR

jgt are conditional

mean-zero idiosyncratic error terms. Apart from the effect of downloads on revenues, in

the case of new in-app-purchase items available along with updates, the model includes

a direct revenue effect of update, captured by τ5 and τ6. The error term eR
jt , therefore,

captures transient, month-to-month variations of IAP revenue shocks specific to an app,

category, and month combination. I assume the transitory shock eR
jt is uncorrelated with

the explanatory variables.

Define function R(Q jt ,a jgt) as R(Qlgt ,algt ;τ ) := (τ1 + τ2 × game j)×Q jgt + (τ3 +

τ4 × game j)× Q2
jgt + (τ5 + τ6game j)× a jgt . Note that R(Qlgt ,algt ;τ ) is the model-
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implied variable IAP revenue with respect to updates.

Estimation. With the rich fixed effects in the model, I use Ordinary Least Square

(OLS) to estimate Equation (B.7). The estimation sample excludes observations without

valid IAP revenues. Specifically, 10.0% of observations of apps with in-app purchases

and subscriptions have negative IAP revenues. These negative estimated in-app-purchase-

and-subscription revenues may reflect flaws in the estimated revenues from AppTweak.

Their total downloads account for 0.67% of total downloads of apps with in-app purchases

and subscriptions. I also drop these observations from the sample for supply-model esti-

mation. In the simulations, these apps’ update frequency will be fixed.

Meanwhile, I apply the following constraints during estimation to guarantee condi-

tional profit maximization in Nash Equilibrium.

1. first-order increasingness: τ1 > 0, τ1 + τ2 > 0

2. concavity: τ3 < 0, τ3 + τ4 < 0

The estimation results are reported in Table D.15. The estimation results for in-app-

purchase and in-app-subscription revenues show intuitive results: i) revenues increase

with downloads concavely, and ii) updates directly contribute to revenues, especially for

game apps. The estimates imply that an average app receives $4.3 from in-app purchases

and subscriptions with each new download (consumer) within the sample.

B.4.2 Heuristic Belief Space for Possible Orderings

For markets with strictly more than 5 products, I use a truncated set of possible orders Ba

to construct firms’ heuristic beliefs on search rankings given updates a. Now I explain

how Ba is constructed. The most-likely ordering, denoted as y∗, is the descending order

of products according to the mean ranking scores. It maximizes the ranking probability

in Equation (10). For convenience, I copy the ranking probability equation here

P[y] = py(1) ·
py(2)

1− py(1)
·

py(3)

1− py(1)− py(2)
· · · · ·

py(J−1)

py(J−1)+ py(J)
·

py(J)

py(J)

Notice that the numerator of P[y] is unchanged with y. Thus, to find the other highly

likely orderings, I only need to enlarge the denominator of P[y]. In particular, I consider

the following five tractable ways to enlarge the denominator.60 For the exposition, I use

60Another type of permutation that also marginally enlarges the denominator is to alter the positions

of two products with the closest mean ranking scores. However, this will cause the truncation set to be

sensitive to marginal changes in update levels. Therefore, it’s not considered here.
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12345 to denote the first five products in the most likely ordering. Furthermore, I only

consider products that show up in the top-50 search results for possible orderings, and

denote their number as J
[1]
m .

1. first-layer enlargement-1: alter the positions of two nearby products. For example,

12345 → 21345. ∀ j ∈ [1,J
[1]
m −1].

2. first-layer enlargement-2: alter the positions of two products that only have one

other product located between them. For example, 12345 → 32145. ∀ j ∈ [1,J
[1]
m −

2].

3. second-layer enlargement-1: alter the positions of two nearby products; then for

the positioned higher product among the two after the shift, alter its position with

the product that’s right above it. For example, 12345 → 13245 = 13245 → 31245.

∀ j ∈ [2,J
[1]
m −1].

4. second-layer enlargement-2: alter the positions of two nearby products; then for the

positioned lower product among the two after the shift, alter its position with the

product that’s right below than it. For example, 12345 → 21345 = 21345 → 23145.

∀ j ∈ [1,J
[1]
m −2].

5. second-layer enlargement-3: alter the positions of two nearby products; then alter

the positions of two nearby products that are right below them. For example, 12345

→ 21345 → 21435. ∀ j ∈ [1,J
[1]
m −3].

The above enlargements have an intuitive interpretation as limited sophistication of

developers. Specifically, these enlargements require the developers only consider up to

2 sequential swaps of products based on the most likely ordering. In the last step to

construct Ba, I conduct the above enlargement until position 30, whenever it applies.

The resulting size of Ba is

|Ba|= 5×min{Jm,30}−9 ≤ 141

B.4.3 Second-Stage Supply Model

Remarks on Equation (16). A technical assumption underlies the first-order-condition ap-

proach: the objective function is locally differentiable with respect to updates a j. How-

ever, updates might discretely affect the expected variable profits by changing Ba. Thus, I

assume that marginal changes in update a j do not change Ba. I argue that this assumption

is not strong for two reasons. First, when Ba = B, this assumption is a fact. Second, be-

cause the rank-ordered logistic regression model only requires a higher score to be ranked
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higher in the most likely ranking rather than a one-to-one mapping from score to rank-

ing, marginal changes of updates a j typically change the ranking scores without changing

the most likely ranking (but it will change the ranking probability and the distribution on

Ba).61

Equation (16) implies an ambiguous effect of self-preferencing on updates. Assum-

ing that an independent app j is boosted up in search results due to eliminating self-

preferencing, then the demand curve shifts up, which increases the marginal download

from updates, i.e., higher
(

∂Q j

∂a j
(ranking j)

)

with smaller ranking j. At the same time,

the shifted-up demand curve moves the developer rightward along the marginal revenue

curve, which will decrease the marginal revenues from downloads, i.e., lower (0.7p j +

0.7
∂R(Q j,a j)

∂Q j
+ψ1 + 2ψ2Q j) with smaller ranking j, when the revenue curve is concave

in quantity. The ultimate effect of platform self-preferencing on the update frequency of

independent apps depends on the dominating force between the two.

Estimation Details. I apply the following constraints during the estimation of Equa-

tion (16) to guarantee conditional profit maximization in Nash Equilibrium.

1. Necessary Second-order Condition (negative Hessian Diagonal) for update level of

app j, a j > 0:

∂ 2π II
f (a j,a− j,ω j;φ,ψ)

∂a2
j

< 0

2. Non-negative marginal update benefits: g′(a jgt ,ω jgt ;φ) ≥ 0.

3. Non-negative marginal in-app-advertising profit wrt downloads: F ′(Q jgt ;ψ) ≥ 0.

4. Constraints on signs of parameters:

(a) Higher update, higher costs: φ1 > 0.

(b) Increasing and concave in-app-advertising profit with respect downloads: ψ1 >

0, ψ2 < 0.

After the supply estimation of the first-stage game, I run a profit-maximization sim-

ulation for each firm to confirm that the observed update frequencies are optimal condi-

tional on observed update portfolios, given the model estimates. Only 1 observation out

of 25,326 observations fails the test, whose update frequency is treated as exogenous in

the bounds computation and counterfactual simulation.

61In the data, there are 9 of the 52,959 observations that violate this assumption. I drop these 9 obser-

vations from the supply-model estimation and take its update frequency as exogenous in the counterfactual

simulation.
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B.4.4 First-Stage Supply Model: Bounds Computation

In order to calculate the upper (lower) bound for an app j in category g and month t,

following Fan and Yang (2020), I compute the change of expected second-stage variable

profits of its owner f due to adding (dropping) the app j into (from) the update portfolio

D
f
gt . The expectation is over marginal update cost shocks ωgt . I draw the marginal update

cost shocks from their empirical distribution. The empirical distribution is based on the

backed-out ω jgt from the estimation of the second-stage supply model in Equation (16).

I draw the vector ωgt based on the sparse-grid integration methods (Heiss and Winschel,

2008).

For each drawn vector ωgt and specified update portfolio D, I compute the second-

stage equilibrium for each cost-shock draw as explained in the following section. This

step returns the second-stage variable profits for the given draw. Finally, I take the average

of these second-stage variable profits across all cost-shock draws and obtain the expected

second-stage variable profits.

B.4.5 Algorithm to Find Second-Stage Equilibrium

Name log(1+update frequency) as "update level". Given a drawn vector of marginal cost

shocks, ω, and an update portfolio D, I find the equilibrium update levels (including

zeros), a∗(ω;D) in the following steps. They ensure that the equilibrium beliefs and

update frequencies are reinforcing each other.

1. Initial update levels: a0 = (0,a− j) if D j = 0; a0 = (a j,a− j) if D j = 1, where

• if D j = 1 in the data, then a j takes the value in the data;

• otherwise, a j = log(1.25).

2. Use the truncation method to construct the heuristic belief space B0 with the fol-

lowing specific steps:

(a) predict probabilities to be ranked first, p0 j = exp(xs
0 j ·θ

s)/(∑l∈J exp(xs
0l ·

θs)), based on the rank-ordered logit model, given a0 as the defining entry of

the vector variable xs
0 j .

(b) use the probabilities, p0 j, to find B0 := Ba0
.

3. Solve for the equilibrium update levels, a∗, based on the ranking set, Ba0
.

4. Check if Ba0
= Ba∗ or ||a∗−a0||∞ < 0.001.

• If true, equilibrium found.

• If false, set Ba0
= Ba∗ , a0 = a∗, repeat steps 3 and 4.
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Appendix C Details on Simulation

C.1 Details on Counterfactual Simulations

This section provides more details on counterfactual simulations than Section 6.

Simulation Range. The simulations involve all categories where, according to the

search ranking model, eliminating self-preferencing would have an effect on the market

outcome. This criterion rules out three cases: i) categories without Apple’s apps; ii)

categories that only have pre-installed Apple’s apps; iii) categories that have Apple’s

non-preinstalled apps, but these apps do not occupy top-50 positions in search results.

The second case needs further explanation. Because pre-installed apps do not have well-

defined downloads, they do not show up in the demand model and thus the search ranking

model. Therefore, due to data constraints, the welfare effect of self-preferencing for

pre-installed apps in search results is out of the scope of this paper. I argue that non-

preinstalled apps are more relevant for self-preferencing in search. Figure E.4 plots the

average search ranking of non-preinstalled Apple’s apps around July 2019. Comparing

Figure E.4 to Figure 1, one can see that Apple’s non-preinstalled apps have a sharper drop

in search rankings after July 2019 than an average Apple’s app.

One market, Music/July, is additionally excluded from full-game simulations, due to

a lack of estimated bounds on the constant costs of updates. In particular, during the es-

timation of the bounds, when I add (or drop) certain products from the vector of update

decisions in the Music/July market, I cannot find the corresponding equilibrium, and thus

I cannot find the additional variable profits from updating the product. After taking out

this market, based on the seven categories that satisfy the above criterion and the two

months with the estimated largest self-preferencing parameters, there are 13 markets in-

volved in the full-game simulations. Then, considering the top-5 developers’ apps whose

cost bounds are calculated, I have 105 independent apps whose update frequencies are

subject to changes in the counterfactuals without platform self-preferencing. On average,

these active apps account for 45.1% of total downloads in a market. In Appendix Table

D.17 and D.18, I allow all independent developers to change update frequency but hold

update portfolios fixed in the counterfactual. The results are robust.

Details on Simulation Steps. In the first step during counterfactual simulation, I fol-

low Fan and Yang (2020) to draw the constant costs of update. For each updated app in

the data, I have obtained an upper bound for the fixed cost of updating it, C jgt . For such
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an app, I uniformly draw five sunk-cost draws from the range [0.5C jgt ,C jgt ]. On the other

hand, for each app that is not updated in the data, I have obtained a lower bound for the

fixed cost of updating it, C jgt . For such an app, I uniformly draw five sunk-cost draws

from the range [C jgt ,5C jgt ].

In the second step where I compute the first-stage equilibrium update portfolios, to

deal with the computational burden due to the high dimensionality of the action space

when the developers have multiple apps, I follow the heuristic algorithm for finding the

best-response product portfolio in Fan and Yang (2020).

Details on Reported Simulation Results. To be clear, Table 8 reports the expected

search rankings and downloads in equilibrium. The expectation is with respect to po-

tential drawn ω jgt’s for newly updated apps and the possible orderings of products. In

particular, during best-response iterations, given a vector of update frequencies in a mar-

ket, the active developers form a heuristic belief space of possible orderings as described

in Section B.4.2 and a probability function on the belief space according to the search

ranking model. Based on the equilibrium beliefs, I calculate the expected search rankings

and downloads as the average values of rankings and downloads across each possible

ordering of apps within the heuristic belief space, weighted by the probability of the or-

dering. Notice that the expected search ranking and downloads may be different from

the observed ones even with the status-quo search algorithm and update frequency. To

exclude this confounding factor for welfare effects, I calculate and report the status-quo

expected search rankings and downloads in Table 8.

When reporting market outcomes other than update frequency, the market outcomes

are calculated using all observed products. For example, in Table 8, the average search

rankings of independent apps is the average across all observed independent apps in a

given market, and the reported value is the average across the 13 markets. For the top-5

developers’ products who are subject to changes in update frequency in counterfactuals,

their search rankings may change due to the direct effect of the re-shuffling after eliminat-

ing self-preferencing as well as the indirect effect from their new update frequency. For

the other apps, their search rankings are subject to the same direct effect and a different

indirect effect through the top-5 developers’ new update frequency; their own update fre-

quencies are fixed in counterfactuals. Similarly, the reported third-party profits are total

profits summed across all observed independent products, based on the inferred variable

costs of updates from the supply model. Since inactive independent apps’ update frequen-

cies are fixed in the counterfactual, these inferred variable costs of updates cancel with
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each other when computing the change in third-party profits.

C.2 Compare with Difference-in-Differences Estimates

Here I compare the structural and difference-in-differences (DiD) estimates of the average

treatment effect (ATE) of the search algorithm change in July 2019. To compute the

structural estimates of the ATE, I simulate the post-July market outcomes if the self-

preferencing parameters were backed to the values in July 2019 – the normalization month

in the DiD specification. The simulations involve the same categories as those in Section

6 and the months from August to November 2019. The simulation process is the same

as described in Section 6, allowing top-5 developers to change both update portfolios and

update frequencies while holding the other apps’ update frequency fixed. The structural

estimate of the average treatment effect on a market outcome is the change of the market

outcome in the simulations compared to the status quo.

Table D.16 reports the simulation results. It shows that the structurally estimated

ATEs have the same signs as those estimated from DiD, with smaller magnitudes. The

reasons for the discrepancy in magnitudes are three-fold: i) the DiD specifications cover

categories where there are only pre-installed apps or below-50 non-preinstalled Apple’s

apps, while the structural simulations do not; ii) the expected search ranking does not

perfectly fit the observed search ranking; iii) the search algorithm change in July 2019

not only changes the self-preferencing parameters but also changes how the other app

characteristics affect search ranking, which is not captured by the structural simulations.

C.3 Calculation of Consumer Surplus

This appendix gives details on computing the expected consumer welfare in Equation

(20). The expectation is over i) the vector of consumer-app-specific unobserved match-

values (ε), ii) the vector of consumer-app-specific search costs (c), iii) consumer-specific

random coefficients over updates (σ), iv) the vector of app-specific search rankings (y),

and v) the vector of marginal cost shocks of updates for newly updated apps (ω).

To compute consumer welfare, I take 10,000 draws of the idiosyncratic unobserved

match values (ε) and consumer search costs (c). The match values are drawn from the

Type-I Extreme Value distribution. The search costs are drawn from the app/category/mon-
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th-specific distribution given in Equation (4).62 On top of these random shocks, there are

i) 4 sparse-grid nodes for the one-dimension random coefficient, σ, generated from the

sparse-integration method in Heiss and Winschel (2008) with an accuracy level of 4; ii)

the truncated set of possible search rankings (y); iii) sparse-grid nodes for Jadd-dimension

marginal cost shocks of updates when the equilibrium update frequencies involve Jadd

apps that are newly updated in simulations (ω). Given each drawn ω, there is an equilib-

rium vector of update frequency. Given each equilibrium vector of update frequency, each

draw of the random coefficients, each vector of possible search rankings in the truncated

set, and each draw of match values and search costs, I simulate the optimal sequential

search problem in each market(a category/month pair) in the following steps based on the

three rules in Weitzman (1979):

1. Implement the searching rule. Sort all apps in the markets by reservation values

in descending order. This is the order of search by the consumer. The consumer-

app specific reservation values, ri j, are computed based on Lemma 1 in Moraga-

González, Sándor and Wildenbeest (2023a), i.e., ri j = δi j +H−1
0 (ci j), where δi j

is the known utility before search, equating ui j· − εi j· in Equation (2); ci j is the

consumer-app specific search costs; and the function H0(·) is given in Equation

(4).

2. Implement the stopping rule. Along the order of search, compare the highest real-

ized utility to the reservation value of the next app to be searched. The consumer

stops search when the highest realized utility is higher than the reservation value of

the next app to be searched. The search costs incurred by the consumer is the sum

of search costs for all the apps that have been searched.

3. Implement the purchasing rule. The consumer downloads the app with the highest

realized utility among the apps that have been searched. This is also the realized

utility of this consumer. The welfare of this consumer is (realized utility - search

costs) in the unit of util. Divide the consumer welfare by the estimated price coef-

ficient in Table 3 gives the consumer welfare in dollars.

Then I take the average of simulated consumer welfare and multiply it by market size

to get market-level consumer surplus. Notice that, by simulating the optimal sequential

62A useful detail in computing the consumer-product specific search costs is that I save the search costs

across consumers for each evaluated pair of product-position. This significantly saves computational time.
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search problem, I have computational market shares derived from the discrete choices

of simulated consumers. Therefore, there might be some distance between the compu-

tational market shares and analytical market shares derived from the closed-form choice

probability. This can be used to measure the accuracy of the consumer surplus measure-

ment. Table D.20 presents the computational error during the computation of consumer

surplus. It shows that all computational errors are smaller than 0.4%.

Appendix D Additional Tables

Table D.1: App Categories in the Sample

Non-Game Categories Game Categories

(1) Book (23) Games-Action

(2) Business (24) Games-Adventure

(3) Education (25) Games-Arcade

(4) Entertainment (26) Games-Board

(5) Finance (27) Games-Card

(6) Food & Drink (28) Games-Casino

(7) Health & Fitness (29) Games-Family

(8) Lifestyle (30) Games-Music

(9) Medical (31) Games-Puzzle

(10) Music (32) Games-Racing

(11) Navigation (33) Games-Role Playing

(12) News (34) Games-Simulation

(13) Newsstand (35) Games-Sports

(14) Photo & Video (36) Games-Strategy

(15) Productivity (37) Games-Trivia

(16) Reference (38) Games-Word

(17) Shopping

(18) Social Networking

(19) Sports

(20) Travel

(21) Utilities

(22) Weather
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Table D.2: List of Pre-installed Apps and Data Availability

App Name Data Available? Category App Name Data Available? Category

App Store 0 Measure 1 Utilities

Calculator 1 Utilities Messages 0

Calendar 0 Productivity Music 1 Music

Camera 0 News 1 News

Clock 0 Notes 0 Productivity

Compass 0 Navigation Numbers 1 Productivity

Contacts 1 Utilities Pages 1 Productivity

FaceTime 1 Social Networking Passbook 0

Files 1 Utilities Phone 0

Find My Friends 1 Social Networking Photos 0

Find My iPhone 1 Utilities Podcasts 1 Entertainment

Game Center 0 Reminders 0 Productivity

Health 0 Safari 0

Home 1 Lifestyle Settings 0

iBooks 1 Book Stocks 1 Finance

iCloud Drive 0 Tips 1 Utilities

iMovie 1 Photo & Video TV 1 Entertainment

iTunes Store 1 Entertainment Videos 0

iTunes U 1 Education Voice Memos 1 Utilities

Keynote 1 Productivity Wallet 0 Finance

Mail 0 Productivity Watch 0 Utilities

Maps 1 Navigation Weather 1 Weather

Notes: For apps without data availability, there is category information if it shows up on the Apple App Store.

Table D.3: Additional Summary Statistics

Variable Mean Median SD Min Max Obs

Brand Keyword? 0.34 0 0.47 0 1 1,340a

Search Volume 47.68 48 13.88 5 100 718,500b

Title Match 0.02 0.02 0.03 0 0.16 56,570c

Subtitle Match 0.02 0.01 0.03 0 0.17 56,570

%5-star ratings 0.73 0.77 0.16 0 1 56,570

%4-star ratings 0.12 0.11 0.06 0 1 56,570

#Pre-installed Apps 0.63 0 1.32 0 7 38d

Among categories with pre-installed apps:

min. Top-50 0.83 1 0.37 0 1 299e

min. Search Ranking 6.93 3.13 9.31 0 50 299

aThese observations are at keyword level.
bThese observations are at keyword/day level.
cThese observations are at app/category/month level.
dThese observations are at category level.
eThese observations are at category/month level.

62



Online Appendix

Table D.4: Variation of App Characteristics: Overall v.s. Within Apps

Variable SD Range

overall within app ratio overall within app ratio

Update Frequency 1.00 0.48 0.49 11 1.6 0.15

Average Rating 0.55 0.09 0.15 4 0.23 0.06

Installation Price|Paid 4.69 0.32 0.07 99.99 0.82 0.01

File Size 411.01 17.84 0.04 4095.28 49.41 0.01

Notes. Overall SD and Range are taken from Table 1. Given a variation measurement (standard deviation or range), the

average within-app variation is the average of X j , where X j = ( the variation measurement of x jt across months indexed

by t). For update frequency, x jt is average x jgt across categories indexed by g. The ratios between within-app variation

and overall variation show that update frequency changes more within apps than how the other app characteristics change

within apps.

Table D.5: Variation of Product Offerings by Multiple-Category Developers

Variable Within-Developer SDa SD of Developers’ Within-Market SDa

Update Frequency 0.73 0.52

Price ($) 0.34 0.75

Average Rating 0.09 0.13

Ever Top50 0.15 0.17

aThe reported figure is the average SD cross categories within developer/month pairs. Specif-

ically, the reported figure is the average of X f t , where X f t = ( standard deviation of

(1/#J f gt)∑ j∈J f gt
x jgt across categories indexed by g), where J f gt is the set of apps owned

by developer f in category g/month t. The column shows that developers’ product offerings

are different across markets. Such variation is exploited to construct cost proxies as excluded

instruments.

The reported figure is the average SD cross developers’ within-category/month SD. Specifically,

it is the average of Ygt , where Ygt = ( standard deviation of X f ( j)t across apps j ∈ Jgt), where

X f ( j)t is the X f t of the developer of app j, and Jgt is the set of apps in category g/month t.

The column shows that competing developers in the same market are different in how diversified

their product offerings are across markets. This variation is exploited to construct indirect markup

shifters as excluded instruments.
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Table D.6: Summary Statistics Before and After the Search Algorithm Change

Categories with Apple Categories without Apple

Before Jul.2019 After Jul.2019 Before Jul.2019 After Jul.2019

Variable Mean SD Mean SD Mean SD Mean SD

Panel A. App Data

Downloads 0.07 0.22 0.06 0.26 0.06 0.23 0.04 0.14

Price 1.95 3.74 2.00 3.67 1.75 3.77 1.90 3.89

log(1+Update Freq.) 0.40 0.48 0.39 0.49 0.36 0.45 0.33 0.45

Average Rating 4.32 0.62 4.30 0.63 4.43 0.52 4.40 0.58

File Size 98.49 143.90 93.01 139.30 302.80 503.80 302.60 512.50

#Screenshots 5.60 1.94 5.68 1.96 5.72 1.81 5.83 1.87

Description Length 2.40 1.05 2.38 1.06 2.06 1.00 2.03 1.00

Search Ranking |Top 50 24.08 11.71 23.95 11.82 24.07 11.73 24.20 11.67

Obs |Top 50 1,552 3,103 2,266 4,651

Obs(app/category/month) 2,709 5,784 3,729 8,219

Panel B. Conversion Rates Data

Rates 0.06 0.05 0.09 0.09 0.04 0.03 0.06 0.06

Type 0.35 0.48 0.39 0.49 0.21 0.41 0.28 0.45

Obs(type/category/month) 46 99 58 127

Notes. "Type" indicates whether the average conversion rate is average across paid apps, given a category/month pair. Alternatively,

the average conversion rate is average across free apps.
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Table D.7: Summary Statistics: Search Volume and Characteristics of Apps in the Search

Results of Keywords

Top50 Search Results Top1 Search Results

Variable Obs Mean SD Obs Mean SD

Search Volume 41,974 48.29 13.88 18,789 48.90 14.07

Brand-name Keywords? 41,974 0.34 0.47 18,789 0.42 0.49

Pre-installed 41,974 0.02 0.08 18,789 0.05 0.22

Apple 41,974 0.02 0.09 18,789 0.06 0.24

Update Level 41,908 0.60 0.33 17,858 0.60 0.50

Average Rating 41,908 4.55 0.22 17,858 4.55 0.34

Age(month) 41,908 50.27 19.32 17,858 53.72 28.03

File Size (GB) 41,908 0.24 0.29 17,858 0.27 0.47

#Screenshots 41,908 5.78 1.29 17,858 5.86 1.94

Description Length(1,000 characters) 41,908 2.44 0.63 17,858 2.46 0.98

Offer In-app-purchase 41,908 0.93 0.19 17,858 0.92 0.27

Paid Installation 41,908 0.11 0.23 17,858 0.13 0.33

Price 41,908 0.53 1.57 17,858 0.73 2.68

Notes. App characteristics are reported as average levels across the observed apps in the top50 or top1 search results for a

given keyword/category/month combination.
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Table D.8: Estimation Results: Known App Characteristics before Search

Top50 Search Results Top1 Search Results

Search Volume

Variable (1) (2) (1) (2)

All Pre-install? 1.18 -2.00*** 5.86** -3.14***

(1.97) (0.74) (2.29) (1.04)

Update Level 1.39*** 0.46*** 1.13*** 0.16**

(0.28) (0.08) (0.22) (0.07)

Average Rating 0.33 0.06 0.24 0.30*

(0.33) (0.11) (0.29) (0.17)

Age(month) 0.01*** -0.01*** 0.02*** -0.02***

(0.00) (0.00) (0.00) (0.00)

File Size(GB) -0.95*** 0.22 -0.34 0.06

(0.37) (0.17) (0.26) (0.20)

#Screenshots 0.79*** 0.05** 0.40*** 0.01

(0.07) (0.02) (0.05) (0.03)

Description Length(1,000 characters) -1.11*** -0.09* -0.50*** 0.14

(0.14) (0.05) (0.11) (0.09)

Offer In-app-purchase 3.14*** -1.75*** 3.66*** -3.00***

(0.63) (0.35) (0.51) (0.66)

Paid Installation -12.61*** -0.71** -8.76*** -2.68***

(0.57) (0.34) (0.46) (0.85)

Price -0.21*** 0.00 -0.09* 0.15***

(0.08) (0.04) (0.05) (0.04)

Apple 10.99*** -1.61*** 12.31*** -2.35***

(1.52) (0.51) (1.08) (0.84)

Pre-install -2.58 1.49** -10.23*** 3.21***

(1.73) (0.60) (2.06) (0.98)

Brand-name Keywords? 5.33*** 5.74***

(0.13) (0.18)

Constant 40.32*** 50.05*** 40.36*** 51.22***

(1.67) (0.67) (1.38) (0.91)

Category-Month FE YES YES

Keyword-Category FE YES YES

Month FE YES YES

Observations 41,974 41,964 18,787 18,708

R-squared 0.26 0.96 0.35 0.97

Mean level 48.29 48.90

Notes. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. The dependent variable is the

monthly average search volume of keywords. The independent variables are the average characteristics of apps shown

in the top-50 search results (columns 1 and 2) or the top-1 search result (columns 3 and 4) of the keyword in the month.

The results shed light on whether consumers’ choice of keywords is correlated with the search results of the keywords.
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Table D.9: First-stage IV Regression Results: F statistics

Demand Supply

(1) (2) (3) (4) (5) (6)

Variables Price Average log(1+Update Search Ranking Ever Top50 log(1+Update

Rating Frequency) ×Ever Top50 Frequency)

Fa 591.6 84.04 322.8 335.8 1011 1645

Excluded Fb 51.28 81.76 68.89 68.59 217.5 40.47

aOn the demand side, the reported F is F(84,52874). On the supply side, the reported F is F(73,25252)
bOn the demand side, the reported excluded F is F(56,52874). On the supply side, the reported excluded F is F(50,25252).
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Table D.10: First-Stage IV Regression Results
Demand Supply

(1) (2) (3) (4) (5) (6)
Variables Price Average log(1+Update Search Ranking Ever Top50 log(1+Update

Rating Frequency) ×Ever Top50 Frequency)

Included Instruments
Apple -0.53*** -0.14** -0.07** 1.01 0.24***

(0.14) (0.06) (0.03) (1.12) (0.03)
Paid Installation? 4.22*** -0.11*** -0.27*** -10.41*** -0.41*** -0.07***

(0.05) (0.01) (0.01) (0.18) (0.01) (0.01)
Offer In-app-purchase? -0.56*** 0.04*** 0.10*** 1.12*** 0.03*** 0.10***

(0.06) (0.01) (0.00) (0.18) (0.01) (0.01)
log(Age) (month) 0.13*** 0.01* -0.02*** -0.28** 0.02***

(0.02) (0.00) (0.00) (0.11) (0.00)
log(File Size)(MB) 0.49*** 0.02*** 0.04*** 0.26*** 0.02***

(0.02) (0.00) (0.00) (0.05) (0.00)
#Screenshots -0.06*** 0.02*** 0.03*** 0.03 -0.00

(0.01) (0.00) (0.00) (0.03) (0.00)
log(1+Description Length)(1,000 characters) 0.30*** 0.04*** 0.01*** 0.84*** 0.04***

(0.03) (0.00) (0.00) (0.09) (0.00)
Constant -3.99*** 3.74*** 0.14*** 7.15*** 0.08*** 0.44***

(0.25) (0.05) (0.04) (1.08) (0.03) (0.04)
Month-FE YES YES YES YES YES YES

Excluded Instruments
Search Ranking Shifters:

Title Match 1.61*** 0.51*** 0.10 39.95*** 4.40*** 0.20**
(0.58) (0.09) (0.08) (2.43) (0.06) (0.09)

Subtitle Match 0.81* 1.62*** 0.96*** 47.98*** 2.35*** 0.53***
(0.45) (0.08) (0.08) (2.53) (0.06) (0.10)

Apple×Post 0.37*** 0.04 0.01 9.78*** 0.10**
(0.14) (0.09) (0.04) (1.38) (0.04)

AppleCompetitor×Post 0.18*** -0.01 -0.00 -0.05 -0.01
(0.06) (0.01) (0.01) (0.24) (0.01)

Cost Proxies: Average Value across Other Apps Owned by the Same Developer in the Other Categories in the Same Month
Multiple-Category Developer? 0.05 -2.16*** -0.14*** -1.21 -0.41*** 0.04

(0.23) (0.08) (0.04) (1.46) (0.05) (0.07)
#Category Where the Developer Operate in the Month 0.065*** -0.01*** -0.00*** -0.08*** -0.00***

(0.01) (0.00) (0.00) (0.03) (0.00)
Price 0.19*** 0.01*** -0.00* 0.03 -0.00 -0.01***

(0.02) (0.00) (0.00) (0.04) (0.00) (0.00)
log(1+Update Frequency) 0.12*** -0.02*** 0.16*** -0.10 -0.02***

(0.02) (0.00) (0.01) (0.14) (0.00)
Average Rating 0.13*** 0.47*** -0.02** 0.16 0.10*** -0.02

(0.05) (0.02) (0.01) (0.25) (0.01) (0.01)
Top50 in Search 0.07 -0.00 0.04* 1.16 -0.09***

(0.18) (0.04) (0.02) (0.96) (0.03)
Ratio. Keywords without Search Results -1.57*** 0.15*** 0.05** 0.32 0.19***

((0.10) (0.02) (0.02) (0.66) (0.02)
Ratio. Days without Search Results -0.55*** -0.01 0.02 -0.08 -0.13***

(0.15) (0.03) (0.02) (0.93) (0.03)
Indirect Markup Shifters: Average Value of Cost Proxies of Apps Owned by Competitors in the Same Category and Month

Price -0.48*** 0.02 0.04* 0.62 0.03** 0.05***
(0.09) (0.02) (0.02) (0.58) (0.02) (0.02)

log(1+Update Frequency) -1.15*** 0.01 -0.08 0.75 0.03
(0.22) (0.05) (0.04) (1.41) (0.04)

Average Rating 0.95** 0.15** -0.24*** -2.27 -0.12** -0.04***
(0.37) (0.07) (0.06) (1.88) (0.05) (0.01)

Top50 in Search -2.79* -0.22 0.57** 21.69*** 1.28***
(1.64) (0.30) (0.26) (8.33) (0.23)

Ratio. Keywords without Search Results 1.79*** -0.56*** 0.60*** -14.27*** -1.00***
(0.67) (0.16) (0.16) (4.37) (0.12)

Ratio. Days without Search Results -2.45* -0.55** 0.22 14.61** 0.86***
(1.48) (0.26) (0.24) (7.42) (0.20)

BLP-Style Instrument:
Ratio. Multiple-App Developers 0.83*** 0.11** 0.06 3.60** 0.08* 0.14**

(0.27) (0.06) (0.05) (1.46) (0.04) (0.07)
Supply Model: Pre-Determined Characteristics

Age (month) 0.00
(0.00)

log(File Size)(MB) 0.05***
(0.00)

Price 0.00**
(0.00)

Ratio. Paid Apps 0.12*
(0.07)

Category-FE YES YES YES YES YES YES
Observations 52,959 52,959 52,959 52,959 52,959 25,325
Adjusted R-squared 0.37 0.18 0.30 0.64 0.75 0.07

Notes. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.11: Estimates of the Search Ranking Model

Variables Parameter Standard Error

Quality 0.126 0.013

Squared Quality (× 0.1) −0.065 0.010

Squared Quality (× 0.01) −0.046 0.005

log(1+Update Frequency) 0.073 0.011

Apple × Non-Game Group-1 0.636 0.213

Apple × Non-Game Group-2 1.981 0.184

Apple × Non-Game Group-3 1.534 0.207

Paid Installation × Non-Game Group-0 −0.436 0.024

Paid Installation × Non-Game Group-1 −0.643 0.048

Paid Installation × Non-Game Group-2 −0.414 0.079

Paid Installation × Non-Game Group-3 −0.627 0.053

Paid Installation × Game −0.740 0.034

Price × Non-Game Group-0 −0.020 0.003

Price × Non-Game Group-1 −0.027 0.003

Price × Non-Game Group-2 −0.063 0.004

Price × Non-Game Group-3 −0.035 0.002

Price × Game −0.013 0.003

Title Match × Non-Game Group-0 15.345 0.448

Title Match × Non-Game Group-1 17.581 0.721

Title Match × Non-Game Group-2 16.478 0.756

Title Match × Non-Game Group-3 15.766 1.204

Title Match × Game 11.424 0.354

Subtitle Match × Non-Game Group-0 7.740 0.518

Subtitle Match × Non-Game Group-1 11.567 0.368

Subtitle Match × Non-Game Group-2 7.894 0.727

Subtitle Match × Non-Game Group-3 1.981 0.974

Subtitle Match × Game 4.434 0.345

Lagged % 5-stars × Non-Game Group-0 0.876 0.052

Lagged % 5-stars × Non-Game Group-1 0.430 0.092

Lagged % 5-stars × Non-Game Group-2 0.614 0.105

Lagged % 5-stars × Non-Game Group-3 0.628 0.088

Lagged % 5-stars × Game 0.520 0.042

Lagged % 4-stars × Non-Game Group-0 1.303 0.107

Lagged % 4-stars × Non-Game Group-1 1.265 0.224

Lagged % 4-stars × Non-Game Group-2 1.691 0.364

Lagged % 4-stars × Non-Game Group-3 −0.463 0.386

Lagged # Ratings × Non-Game Group-0 1.687 0.124

Lagged # Ratings × Non-Game Group-1 0.367 0.033

Lagged # Ratings × Non-Game Group-2 0.012 0.038

Lagged # Ratings × Non-Game Group-3 6.942 0.527

Lagged # Ratings × Game 0.581 0.041

Apple × Months (Omit July 2019) YES

Observations 52,959

Average Latent Score -0.393

Pseudo R-sq 0.069

Notes: Clustered standard errors at category-month level. There are five groups

of categories: Game apps, Non-Game Group-0 (non-game categories without Ap-

ple’s non-preinstalled apps), Non-Game Group-1/2/3 (non-game categories with

1/3/7 Apple’s non-preinstalled apps, covering all categories with Apple’s non-

preinstalled apps). Coefficients on Apple × Months (omit July 2019) are reported

in Figure 3.
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Table D.12: Estimates of the Baseline Search Ranking Model

Variables Parameter Standard Error

Apple 0.678 0.102

Quality 0.144 0.012

log(1+Update Frequency) 0.071 0.011

Paid Installation −0.566 0.020

Price −0.023 0.002

Title Match with Keywords 14.321 0.273

Subtitle Match with Keywords 6.924 0.265

One-month Lagged %5-star Ratings 0.741 0.032

One-month Lagged %4-star Ratings 0.710 0.084

One-month Lagged #Ratings 0.269 0.037

Squared and Cubed Quality YES

Observations 52,959

Average Latent Score -0.437

Pseudo R-sq 0.065

Notes: Clustered standard errors at category-month level.
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Table D.13: Search Ranking Estimation: Self-Preferencing Estimates by Month

Variables Parameter Standard Error

Quality 0.124 0.013

log(1+Update Frequency) 0.072 0.011

Apple × May 2018 0.141 0.711

Apple × Jun 2018 0.016 0.819

Apple × Jul 2018 0.911 0.470

Apple × Aug 2018 0.389 0.636

Apple × Sep 2018 0.771 0.692

Apple × Oct 2018 0.316 0.544

Apple × Nov 2018 0.539 0.521

Apple × Dec 2018 −0.117 0.415

Apple × Jan 2019 0.522 0.429

Apple × Feb 2019 0.638 0.410

Apple × Mar 2019 −0.164 0.499

Apple × Apr 2019 0.715 0.474

Apple × May 2019 0.956 0.479

Apple × Jun 2019 1.589 0.403

Apple × Jul 2019 1.314 0.253

Apple × Aug 2019 0.718 0.315

Apple × Sep 2019 0.500 0.311

Apple × Oct 2019 0.621 0.306

Apple × Nov 2019 0.671 0.314

Apple × Dec 2019 0.543 0.285

Apple × Jan 2020 0.413 0.262

Apple × Feb 2020 0.395 0.237

Squared and Cubed Quality YES

Paid Installation × Category Groups YES

Price × Category Groups YES

Title Match × Category Groups YES

Subtitle Match × Category Groups YES

Lagged %5-star Rating × Category Groups YES

Lagged %4-star Rating × Category Groups YES

Lagged #Ratings × Category Groups YES

Observations 52,959

Average Latent Score -0.377

Pseudo R-sq 0.069

Notes: Clustered standard errors at category-month level. There are five groups of categories: Game

apps, Non-Game Group-0 (non-game categories without Apple’s non-preinstalled apps), Non-Game

Group-1/2/3 (non-game categories with 1/3/7 Apple’s non-preinstalled apps, covering all categories

with Apple’s non-preinstalled apps).
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Table D.14: Search Ranking Estimation: Self-Preferencing Estimates by Group of Cate-

gories

Variables Parameter Standard Error

Quality 0.126 0.013

log(1+Update Frequency) 0.074 0.011

Apple × Non-Game Group-1 0.061 0.120

Apple × Non-Game Group-2 1.377 0.098

Apple × Non-Game Group-3 0.693 0.274

Squared and Cubed Quality YES

Paid Installation × Category Groups YES

Price × Category Group YES

Title Match × Category Groups YES

Subtitle Match × Category Groups YES

Lagged %5-star Rating × Category Groups YES

Lagged %4-star Rating × Category Groups YES

Lagged #Ratings × Category Groups YES

Observations 52,959

Average Latent Score -0.392

Pseudo R-sq 0.069

Notes: Clustered standard errors at category-month level. There are five groups of categories: Game

apps, Non-Game Group-0 (non-game categories without Apple’s non-preinstalled apps), Non-Game

Group-1/2/3 (non-game categories with 1/3/7 Apple’s non-preinstalled apps, covering all categories

with Apple’s non-preinstalled apps).

Table D.15: Estimates of the In-App-Purchase-and-Subscription Revenue Model

Variables Parameter Standard error

Downloads (million) 5.619 0.641

Downloads × Game −2.765 0.701

Squared Downloads −0.401 0.196

Squared Downloads × Game 0.163 0.231

log(1+Update Frequency) 0.078 0.030

log(1+Update Frequency) × Game 0.400 0.040

Constant 0.052 0.188

Category-FE YES

Month-FE YES

Month-FE × Game YES

Average Marginal Revenue ($) 4.298

Observations 37,382

adjusted R-sq 0.27

Notes: Marginal revenue is with respect to downloads.
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Table D.16: Compare Structural Estimates with Difference-in-Differences Estimates of

Average Treatment Effects of the Search Algorithm Change

ATE log(1+Update Frequency) log(Search Ranking) log(Downloads)

Structural Estimates 0.0078 −0.0123 0.0032

DiD Estimates 0.0212 −0.0355 0.2210

Notes. Difference-in-Differences (DiD) estimates are taken from Table 2. Structural estimates are computed from dif-

ferences between market outcomes with and without the search algorithm change in categories with Apple’s apps during

the same post-change period as the DiD specification. When simulating the counterfactual without the search algorithm

change, I set the self-preferencing parameter back to the value in July 2019, the normalization month in the DiD specifi-

cation, and allow top-5 developers to change both update portfolios and update frequencies while holding the other apps’

update frequency fixed. Thus, the reported structural estimates of the ATE for log(1+update frequency) is conditional on

these top-5 developers’ apps.

Table D.17: Partial-Game Simulation: Effects of Self-preferencing on Update Frequency

without Update Portfolio Adjustment

obs Status-quo Shut-down Percentage Change(%)

mean mean mean std min max

Average Update Freq. 14 1.31 1.32 0.57 1.11 0.00 3.57

Update Freq. 535 1.33 1.34 0.28 3.72 −17.22 65.31

Notes. In the partial game, all independent apps with valid profit functions and updates may change their update frequencies, while

update portfolios are holding fixed. Update frequency is the monthly number of updates weighted by the length of release notes. Average

update frequency is the average value of update frequency across active independent apps in the market. Each market is a category/month

pair. For the status-quo case, there is the estimated self-preferencing. For the shut-down case, there is no self-preferencing.
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Table D.18: Partial-Game Simulation: Effects of Self-preferencing on Search Rankings,

Installations and Welfare without Update Portfolio Adjustment

Variable Status-quo Shut-down Mean ∆ Mean %∆

(1) Average Search Rankings 40.23 40.23 0.00 0.00

(2) - Independent apps 40.95 40.43 −0.52 −1.27

(3) - Apple’s apps 15.32 32.79 17.46 175.02

(4) Total Installations (million) 6.52 6.68 0.16 1.48

(5) - Independent apps 6.43 6.61 0.18 1.97

(6) - Apple’s apps 0.09 0.07 −0.02 −23.10

(7) Consumer Surplus (million $) 300.21 301.15 0.94 0.28

(8) - Search Costs 23.56 23.50 −0.06 0.16

(9) - Choice Quality 323.77 324.65 0.88 0.25

(10) Third-Party Profits (million $) 48.30 48.64 0.35 0.70

Number of Markets 14

Notes. In the partial game, all independent apps with valid profit functions and positive update frequencies may

change their update frequencies, while update portfolios are holding fixed. For the status-quo case, there is the

estimated self-preferencing. For the shut-down case, there is no self-preferencing.

Table D.19: Percentage change of Update Frequency without Platform Self-Preferencing

(%)

Case Obs. Min Q1 Q2 Q3 Max

Positive Update Effect 28 0.00 0.15 0.53 1.42 65.61

Negative Update Effect 17 −21.42 −0.70 −0.09 −0.01 0.00

Notes: Each observation is a combination of app/category/month. There are 60 observations that do not

see a change in update frequency without platform self-preferencing.

Table D.20: Computational Error in Consumer Surplus

Max Relative L2 Norm Max Relative L-infinity Norm

Status-quo Shut down Status-quo Shut down

Error (%) 0.35 0.35 0.28 0.22

Notes. Figures are the percentage of computational errors with respect to analytical market shares. The com-

putational error is the distance between the computational market shares from the simulated optimal sequential

search model for computing consumer surplus and analytical market shares. The distance is measured by the

maximum relative L2 norm in the left panel, and the maximum relative L-infinity norm in the right panel, across

all simulated observations.
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Table D.21: Effects of Self-Preferencing on Revenues and Profits

Variable Status-quo Shut-down Mean ∆ Mean %∆

Panel A. Subsample: active apps

Revenue 11.19 11.59 0.40 2.13

Revenue + IAA Profits 11.58 11.99 0.41 2.13

Profits 6.76 6.95 0.19 2.67

Mean %active apps 9.20

Panel B. Full Sample: all apps

Revenue 24.52 25.06 0.54 1.55

- Independent apps 24.51 25.05 0.54 1.58

- Apple’s apps 0.01 0.01 0.00 −18.88

Revenue + IAA Profits 25.35 25.90 0.55 1.53

- Independent apps 25.32 25.88 0.56 1.58

- Apple’s apps 0.03 0.02 −0.01 −22.49

Number of Markets 13

Notes. Both panels report average values across 13 markets. Profits are subject to a constant that

does not change with downloads. The top panel only considers apps that may adjust updates in

counterfactuals, all of which are independent apps. The bottom panel considers all observed apps.

The ratio of active apps ranges from 5.56% to 16.16% across the 13 markets, with a median of

7.53%. Considering the 30% commission rates, the platform’s revenue increases by 0.16 million

dollars with the elimination of the estimated self-preferencing.
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Figure E.1: From AppTweak: Fitness of Estimated Downloads for Actual Downloads of

Apps in All-Categories Top Charts in the US Market

Notes: The figure is from AppTweak, source: https://www.apptweak.com/en/aso-blog/introducing-

worldwide-ios-download-and-revenue-estimates.
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Figure E.2: Weighted Average Residual Downloads and Search Ranking

Notes. The x-axis is keyword/day-specific search ranking. The y-axis is the weighted average residual

downloads. The downloads are observed at app/day level. The residuals are from category-fixed effects,

daily fixed effects, free/paid indicator, and installation price. The average is across apps, keywords, and

days for a given search ranking. The weight is based on keyword/day-specific search volume, an integer

between 5 and 100, constructed by Apple to index how many consumers search for the keyword.

Figure E.3: Within-App De-Meaned Installation Price of Paid Apps ($)

Notes. The figure shows that there is limited within-app price change over time. The median within-app

deviation from the mean price is zero, the average is between -$0.10 and $0.06, and the second and third

quartiles are tight surrounding zero. Overall, installation prices are sticky over time in the data.
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Figure E.4: Average Search Rankings of Non-preinstalled Apple’s Apps around the

Search Algorithm Change in July 2019.
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Figure E.5: Effect of Reduced Dominance of Platform-owned Products on Independent

Apps, by Half-month from Search Algorithm Change
(a) Search Ranking (b) Search Ranking (with lagged downloads)

(c) Downloads (d) Conversion Rate

(e) Update Frequency (f) Price

(g) Average Rating (h) File Size

Notes. The charts present point estimates for each half-month using the difference-in-differences specifica-

tion as specified in Section 3.2. The omitted period is the half-month prior to launch of the search algorithm

change. Error bars indicate 95% confidence interval using standard errors robust to heteroscedasticity. Panel

(b) include controls for lag downloads.
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Figure E.6: Entry Around the Search Algorithm Change

Panel A. Number of New Apps Panel B. DiD Estimates

Notes. The sample to draw the figures include independent apps that were ever ranked top50 in category-

specific top grossing charts during April - September 2019. Panel A shows the number of new apps in

categories with Apple’s apps and categories without Apple’s apps. To generate Panel B, I regress the

logarithm of category-month specific number of new apps as an outcome variable on the interaction terms

of monthly indicator and whether the category contains Apple’s apps (taking July 2019 as the reference

point), as well as category-fixed effects and month-fixed effects. Panel B reports the coefficients on the

interaction terms for each month. The results indicate that entry of competing independent apps did not

significantly change due to the search algorithm change.

Figure E.7: Independent Apps v.s. Apple’s Apps: Residual Downloads at Each Search

Ranking, Before and After the Search Algorithm Change

Panel A. Before Panel B. After

Notes. The figure compares the average residual downloads of independent apps and Apple’s apps on

the same position in the search results for the same keyword across different days.The residual downloads

are residuals from price, installation payment type,category-fixed effects and daily fixed effects. Panel

A presents the comparison result before the search algorithm change(July 2019). Panel B presents the

comparison result after the search algorithm change(July 2019). While Apple’s apps always need lower

residual downloads to achieve the same position than independent apps, the gap is smaller after the search

algorithm change.
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Figure E.8: Observed Rankings Relative to Rankings by Residual Downloads of Apple’s

Apps

Notes. The figure presents the gap between average observed within-market search rankings of Apple’s

apps to average within-market rankings of residual downloads of Apple’s apps in each month. The residual

downloads are residuals from price, installation payment type, category-fixed effects, and daily fixed effects.

It shows that an average Apple’s apps would be ranked lower according to residual downloads in each of

the month. More importantly, it shows that the gap were flat before April 2019, and reached peak during

April and July 2019, then significantly dropped after July 2019. Such pattern is consistent with identified

self-preferencing across months.

Figure E.9: Estimated Bounds of the Fixed Costs of Updates (million $)
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