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Abstract

Do self-formed teams perform bet ter than other team structures? Using

unique data from Virgo, a Nobel-prize-winning scient ifi c organizat ion with self-

formed teams, fi rst , I uncover new evidence on team format ion and perfor-

mance. Then, I develop a st ructural model to i) est imate which teams perform

bet ter cont rolling for self-format ion and ii) evaluate the performance of coun-

terfactual team structures. Regarding i), est imat ion results show that small

teams perform bet ter than large teams. Regarding ii), counterfactual results

show that randomly formed teams perform worse than the observed self-formed

teams, and teams with a more diverse membership perform bet ter.
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No man is an Iland, int ire of itselfe;

every man is a peece of the

Cont inent , a part of the maine [...].

John Donne - 1624

Teams are fundamental for the success of organizations. They may be formed in

different ways. In scientific institutions, researchers are usually free to choose their

teams of co-authors (Jones, 2021; Guimera et al., 2005; Wuchty, Jones, and Uzzi,

2007). In companies, the management generally determines the composition of teams

(Katzenbach and Smith, 2015). However, this is changing: several big firms, such as

Google, ING, and IBM, have recently granted their employees flexibility in choosing

their working conditions, projects, and teams (e.g., side project time, agile business

practices, open workflows).1

The increasing relevance of self-formed teams naturally raises a question: how

do they perform relative to other team structures? The question hinges on a crucial

trade-off. If individuals can choose their teams, their choice might be driven by utility-

maximization considerations not aligned with management’s objectives. At the same

time, they may have access to better information on how to form teams efficiently, and

this information might be hard to acquire for the management. Hence, the answer is

unclear.

In this paper, I empirically address the above question by exploiting a novel data

source from a knowledge production institution, Virgo. Virgo is an institution of

about 200 scientific researchers that proved successful in detecting gravitational waves.

The founders of Virgo (joint with LIGO, the corresponding experiment in the U.S.)

received the Nobel Prize in Physics in 2017.2 Virgo represents an ideal framework to

study team formation because it relies on projects carried out by self-formed teams

who report their activities in a diary of work, the Virgo Logbook. The Logbook

contains detailed information on the timestamp, name, outcome, teams of researchers

1. Side project t ime: ht tps:/ / built in.com/ software-engineering-perspect ives/ 20-percent -t ime.

Agile: VersionOne, C. (2020). 14th annual state of the agile report . Open workfl ows: Let Employees
Choose When, Where, and How to Work, Harvard Business Review, N. Koloc, 2014.

2. ht tp:/ / www.virgo-gw.eu/ . The scient ifi c st ructure of Virgo is similar to other major scient ifi c

experiments, like CERN (ht tps:/ / home.cern/ science/ experiments).
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participating, and other project characteristics.

To exploit this rich source, I collect and transform the unstructured textual data

of the Logbook into a machine-readable dataset containing information on projects

and researchers. With these data, I first uncover new descriptive evidence on teams

in science. Self-formed teams are a relevant part of the institution: of about 3,000

projects carried out at Virgo between 2012 and 2016, 66% are team projects, with

an average size of 2.3 people. Teams differ in members’ characteristics: 60% of the

researchers hold a degree in Physics and the remaining in Engineering and other

technical fields. Almost 80% of the researchers have a junior position, and only 20%

have a senior position. In terms of project outcome, I show that the average project

completion is 51%. Moreover, researchers specialized in Physics are associated with

a lower probability of project completion relative to those specialized in Engineering.

By looking at this evidence, one might be tempted to conclude that specific char-

acteristics of the researchers cause better performance. However, this conclusion does

not consider how teams are formed. To account for this, I develop a two-stage struc-

tural model to i) estimate the team performance controlling for team self-formation

and ii) determine whether self-formed teams perform better than other team struc-

tures.

The first stage (participation stage) is an entry game with incomplete information.

Similar models have been empirically estimated by Seim (2006) and Aguirregabiria

and Mira (2007) to study endogenous market entry. For every given project, re-

searchers decide whether or not to join.3 By revealed preference, a researcher joins

a project if and only if the expected payoff from doing so exceeds the payoff of not

joining. The expected payoff depends on preferences regarding potential teammates,

the researcher’s exogenous characteristics (field of research and professional seniority),

and exogenous project characteristics. I also include as a project-specific component

the ex-ante project potential to control for unobserved factors related to the project

that might influence the decision to participate (such as project complexity), and I

allow for match specificity, i.e., a project-researcher-specific component. Solving the

game allows me to obtain the equilibrium probabilities of joining a project.

3. Note that I model the decision to join a project instead of a team, as some projects at Virgo

are single-authored.
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In the second stage of the model (outcome stage), the participating researchers

work on the project, which may be completed or not. The probability of each out-

come depends on a knowledge production function of several inputs: the number and

characteristics of team members, the observed project characteristics, and the ex-ante

project potential.

Bringing the model to the data poses a major econometric challenge. The ex-

ante project potential, unobserved by the econometrician, affects the project outcome

directly (as a shock) and indirectly because of the selection of researchers into projects.

To overcome endogeneity, I simultaneously estimate the two stages of the model. In

other words, I control for selection by estimating the participation stage together with

the outcome stage consistently with a control function approach. The approach is

similar to that of Olley and Pakes (1996), and more recently Ciliberto, Murry, and

Tamer (2021). These papers use it in the context of endogenous market decisions,

such as entry or exit. The set of potential entrants represents the main exclusion

restriction as it enters only the participation stage. The identification hinges on the

fact that, for each project, the set of potential entrants is defined by the pool of

available researchers, which is exogenous to the project.

Three key findings emerge. Regarding the participation stage, controlling for re-

searchers’ and project characteristics (including project complexity), an additional

teammate decreases the probability of another researcher participating in a project

by 14%. The finding is consistent with the idea that researchers internalize the coor-

dination and communication costs of working in larger teams (Becker and Murphy,

1992).

Regarding the outcome stage, controlling only for project characteristics, one more

researcher in a project is associated with a 1% lower probability of project completion,

consistent with higher coordination and communication costs associated with larger

teams. Moreover, when I additionally control for selection, the effect becomes ten

times larger. The negative effect holds regardless of the field of specialization and the

professional position, but the magnitude is heterogeneous across researchers.

To answer the question of whether self-formed teams perform better than other

team structures, I compare the estimated probability of project completion of the

observed self-formed teams to that of various counterfactual scenarios. The counter-
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factual results show that 1) randomly composed teams in composition and size have,

on average, a 5% lower probability of project completion relative to the observed

self-formed teams, and 2) teams that are composed to be more diverse in member

characteristics (namely, with members who differ in field of specialization and pro-

fessional seniority) have a 3% higher probability of completion relative to actually

observed teams. The latter holds when team sizes are the same as the observed ones.

The counterfactual results highlight two relevant implications for the organization

of knowledge production. When researchers can choose their projects, they internalize

some of the costs and benefits of working together as they are aware of efficient team

size. At the same time, they also tend to work with (too) similar peers, though

working with more diverse peers could increase project efficiency (homophily bias).

This shows that diversity may boost performance and act as a correction tool for the

homophily bias, but it is preferable from a policy perspective if one takes into account

decreasing returns to team size.

The paper contributes to several strands of the literature. Starting from the sem-

inal work of Holmstrom (1982), many papers have studied the performance of teams.

Hamilton, Nickerson, and Owan (2003) have been the first to evaluate empirically

the endogenous formation of teams within a firm. Papers on peer effects have ana-

lyzed group interactions and how they affect productivity (Mas and Moretti, 2009;

Bandiera, Barankay, and Rasul, 2010). Some of the recent literature has focused

on identifying the effect of single team members on team output (Agha et al., 2018;

Devereux, 2018; Ahmadpoor and Jones, 2019; Bonhomme, 2021). This paper is the

first to provide a tool to analyze empirically the determinants of self-formed teams

and test the performance of alternative team structures.

The second contribution is to bring methods developed for firms’ endogenous

market entry to an organizational setting. Since Bresnahan and Reiss (1990), the

empirical literature in industrial organization has developed tools to analyze the de-

terminants of market structures. The main goal is to better inform policymakers on

the effect of endogenous changes in market structure on consumers and overall wel-

fare.4 In organizational economics, because of the increasing relevance of self-formed

4. See Aguirregabiria (2021) and Berry and Compiani (2021) for recent surveys of the literature

on market ent ry.
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teams, there is a growing interest in understanding the determinants of endogenous

team formation, but no tool has been provided to address this issue yet. To the best

of my knowledge, this is the first paper to adapt the methodology of Seim (2006),

Aguirregabiria and Mira (2007), and Bajari et al. (2010) to an organizational set-

ting by modeling team formation and analyzing the resulting implications for team

performance.

The third contribution is to the literature on innovation economics. Hard science

happens in teams (Jones, 2021). Part of the literature studies the performance of

collaborations in the development of innovation (Waldinger, 2012; Akcigit et al., 2018;

Ganglmair, Simcoe, and Tarantino, 2018; Anderson and Richards-Shubik, 2021). I

contribute to this literature by leveraging the wealth of the Virgo data to estimate

a model of team formation and performance and hence analyzing the mechanisms

behind knowledge creation in science.

The last key contribution is to study which team structures are more desirable

for complex organizations. Policymakers have encouraged diversity and interdisci-

plinarity in scientific institutions.5 My counterfactual results speak to the literature

on team diversity (Morgan and Várdy, 2009; Becker, 2010; Calder-Wang, Gompers,

and Huang, 2021; Békés and Ottaviano, 2022) and contribute to the policy-relevant

discussion on the value of diversity for science and knowledge production.

The paper proceeds as follows: Section 1 provides a description of the institutional

details and the Virgo data. Section 2 presents the model and Section 3 the empirical

implementation. Results are discussed in Section 4. Counterfactuals are presented in

Section 5 and the conclusion in Section 6.

1 Data and Descriptive Evidence

I use unique data from a scientific institution named Virgo. This institution is

particularly interesting for three reasons. First, researchers working at Virgo are

free to choose their teams and projects. Hence, Virgo represents an ideal setting

to study the determinants of self-formed teams. Second, these researchers report

detailed information about their projects, including the outcome. Third, there is

5. ERC Synergy Grant : ht tps:/ / erc.europa.eu/ apply-grant / synergy-grant .
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considerable variation in team characteristics and outcomes across projects, which is

likely associated with selection into projects.

The dataset comprises several sources. I web-scrape information regarding the

organization of Virgo, the characteristics of the projects, their outcomes, and partic-

ipants from the Logbook of Virgo from 2012 to 2016. I supplement the dataset by

hand-collecting data on researchers’ characteristics from several online public sources,

mainly personal websites, available curricula, and LinkedIn profiles. I merge these

sources into one comprehensive dataset that I pass on to estimate my structural

model. The dataset is discussed in turn.

1.1 Institutional Details

Virgo studies the detection of gravitational waves and has two twin institutions

in the U.S., LIGO Livingston and LIGO Hanford. Gravitational waves, predicted

by Albert Einstein’s general relativity, are generated by events happening in the

Universe, such as the accelerated masses of orbital binary systems. The first event

was recorded by LIGO in 2015 (the merger of a pair of black holes of 36 and 29

solar masses). Subsequently, similar events were recorded by Virgo. The institution

has proven successful and the founders have been awarded the 2017 Nobel Prize in

Physics.6

Virgo was founded by the French National Center for Scientific Research (Centre

National de la Recherche Scientifique, CNRS) and the Italian National Institute for

Nuclear Physics (Istituto Nazionale di Fisica Nucleare, INFN)7 in 1987 and put in

operation in 2003. Virgo is located in Italy, on the site of the European Gravita-

tional Observatory (EGO), and run by an international collaboration of about 200

researchers.

Researchers are employed directly by Virgo and are paid a fixed wage by regu-

lated contracts, in line with the national collective agreements and depending on the

6. “ Pioneers Rainer Weiss and Kip S. Thorne, together with Barry C. Barish, the scient ist , and

leader who brought the project to complet ion, ensured that four decades of eff ort led to gravitat ional

waves fi nally being observed.” Source: ht tps:/ / www.nobelprize.org/ prizes/ physics/ 2017/ press-

release/ .

7. Nat ional Research Centers in France and Italy.
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level of seniority. For juniors, a typical contract is the so-called assegno di ricerca.8

Senior researchers are usually affiliated with a university or a research institution.

Crucially, working contracts do not specify any formal obligations in terms of project

participation and there exist no bonuses based on performance.9

As in many scientific settings, intrinsic motivation plays an important role for

the researchers working at Virgo. Moreover, adding this experience to the CV is a

positive signal for the job market. Last, there are internal long-term monetary and

career incentives for these researchers: future career development might depend, for

instance, on making a good impression on a senior researcher while working with

her. At Virgo, the assignment of researchers to scientific projects and teams is self-

organized: each researcher voluntarily decides what to work on and with whom. These

motivating forces impact the decision to join a project.10

The scientific purpose of Virgo is to develop, build and put in function a laser in-

terferometer. Interferometers are devices that extract information from interference,

hence they work by merging two or more sources of light to create an interference

pattern, which can be measured and analyzed (Figure 4 in Appendix A). The in-

terference patterns generated by the interferometers contain information about the

phenomenon that produces gravitational waves (e.g. the merger of two black holes).

Building up the interferometer requires an effortful amount of resources and time.

The process from the development to the operation of the interferometer is divided

into intermediate steps, defined as macro-projects. Macro-projects relate to different

phases of the development of the interferometer, from the Infrastructure System,

which concerns building the infrastructure of the interferometer, to the Injection

System, which takes care of the optics of the high-power laser. Therefore, different

sets of skills and knowledge are required depending on the actual task to perform.

Macro-projects are then split into projects, which relate uniquely to a phase of the

8. ht tps:/ / it .wikipedia.org/ wiki/ Assegnista di ricerca. There are also other short -term contracts

that can be renewed for a limited amount of t ime, the so-called RTD (ricercatori a tempo deter-
minato). For an overview of the current legislat ion on RTD contracts, see Legge n. 240/10 del 30
dicembre 2010, art. 24.

9. Figure 5 in Appendix A.2 shows the general organizat ional chart of Virgo in 2016.

10. By talking to people at Virgo, it emerged that the main reason for this decentralized allocat ion

is that typically researchers know what to work on and, hence, they do not need to have someone

who tells them what to do.
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macro-project. A project can consist in analyzing data or building a system of mirrors

in a lab. I provide some examples in Appendix A.3.

The dataset spans more than 4 years from June 2012 to September 2016. June

2012 is the starting point of a new phase of the experiment (Advanced Virgo).11

Projects were set up in advance and written in the Technical Design Report in April

2012, hence before the sample period. The Report contains detailed descriptions of

Virgo’s objectives and how projects should develop. It has been edited and signed

by the researchers working in Virgo at that time and covers the whole interferom-

eter construction. The Report is meant to be the project reference document for

all the design aspects of the experiment. As explicitly written, each configuration

change with respect to what is stated in the document requires a formal Change Re-

quest Procedure, and this almost never happened. Hence, the set of projects can be

considered fixed and projects pre-determined.

Researchers at Virgo communicate using an online platform: the Logbook.12 It

comprises web pages held by project teams (McAlpine et al., 2006). Other scientific

institutions work with electronic Logbooks. For instance, LIGO uses a similar Log-

book platform, and CERN in Geneve uses the so-called CMS electronic Logbook.13

The Logbook proves useful for the advances of scientific research, as it allows

researchers to record information on working projects and experiences such as results

of measurements, tests, and data taking. Researchers are obliged to report their work

in the Logbook. This obligation facilitates monitoring, as reports are observable and

their content is verifiable.14

Each web page of the Logbook consists of logs. A log presents a description of a

project; it is identified by the title of the macro-project and the project it refers to,

the name of the author(s), the time and date, the (chronological) number, the main

text and possibly images, comments or other files attached. A screenshot example of

a Logbook web page is given in Figure 7 of Appendix A.

11. The phase ended in January 2017, when the interferometer was turned on.

12. ht tps:/ / tds.ego-gw.it / it f / oslz virgo/ index.php.

13. ht t ps:/ / alog.l igo-wa.calt ech.edu/ aLOG/ , ht t ps:/ / alog.l igo-la.calt ech.edu/ aLOG/ , ht tp:

/ / cds.cern.ch/ record/ 1272667.

14. Because of these features, free riding is of limited concern in the set t ing.
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1.2 Descriptive Statistics Logbook

Table 1 shows descriptive statistics about the Logbook data for the period of

observation (June 2012 – September 2016). The initial dataset contains 3, 778 logs.

For the purpose of the analysis, logs that do not belong to the Advanced phase of the

experiment (147), logs that only contain external participants (277), and logs that

are not related to actual projects (299) are dropped from the sample, together with

logs with more than 8 participants (10 projects). The final dataset contains 3, 045

logs that identify unique projects belonging to 16 different macro-projects. Table 8

in Appendix C reports the frequency of the macro-projects in terms of the number of

projects. The data cleaning process is discussed in Appendix B.

When a project ends, researchers write a final report in a log. There do not exist

multiple logs related to one project. However, there can be follow-ups of a project

that are easily identified as the titles contain the words “Comment to” and the title

of the project they refer to. One can think that projects with follow-ups (defined

as “parent” projects) are more complex or more crucial for the development of the

experiment; hence I control for these characteristics in the empirical analysis. In

particular, I define a dummy for whether a project is a “comment” and a dummy for

whether a project is a “parent.” In the sample, 18% are parent projects, and 23% are

comment projects.

In some projects (8% in total) there are external companies or groups. External

companies, for instance, supply Virgo with instruments and tools for lab experiments

and help researchers set up those instruments. I account for them in the empirical

analysis.

Table 1: Descriptive Statistics

Sample Period June 12 - Sept. 16
No. of Projects (obs) 3,045
No. of Macro-projects 16

Mean St. Dev.

Parent Projects 18% 0.38
Comment Projects 23% 0.42
Projects with External Groups 8% 0.27
No. of Projects/Month 62 55.38
Team Projects 66% 0.48
Team Size 2.27 1.41
Max Team Size 8
Completed Projects 51%

Figure 1: Project Participants
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It is not possible to determine the duration of a project because the logs do not

contain information on the initial project date. However, Table 1 shows that on

average in a month 62 projects are carried out at Virgo.15 This value indicates that

projects are short-lived. For this reason, it is also unlikely that researchers coordinate

beforehand and outside the platform about who is joining projects.16

In terms of project participation, around 66% are team projects, and the rest are

solo projects. The average team size has 2.27 participants with a maximum of 8.

Figure 1 shows the distribution of project participants by the number of projects.

Projects with one participant are the most frequent, followed by projects with two

and three participants. The frequency decreases substantially for projects with four

and more participants.17

To evaluate the outcome of a project, I require a measurable output. One pos-

sibility would be to use publications that resulted from the projects. Unfortunately,

this is not a viable option for two reasons. First, not all projects end with a publica-

tion. Second, at Virgo, the general rule is that publications that follow from a project

must contain the names of all Virgo researchers in alphabetical order, regardless of

the contribution.18 Therefore publications do not represent adequately the outcome

of a single project. Likewise, as projects do not generally yield standards or patents,

I cannot use them as an outcome measure.

The logs represent a critical source for this scope. I examine the text to attribute

an outcome to each project. In particular, I classify each text into one of two different

categories, completed and not completed.19

The last row of Table 1 shows that 51% of the projects are completed. Table

9 in Appendix D presents additional descriptive statistics for project completion in

terms of the number of participants. Notice that while completion cannot be mapped

15. Figure 8 in Appendix C shows how the average number of logs changes over the sample period.

16. I perform some robustness analysis to address this potent ial concern. Results are discussed in

Sect ion G.

17. Because only one fi nal log for each project is reported, I only observe the fi nal list of project

part icipants. One might wonder if in some cases researchers join projects sequent ially. The data

limitat ion does not allow me to test this hypothesis. However, given that projects are frequent and

short -lived, it is plausible to assume that this is unlikely to happen.

18. By checking the research outputs of someresearchers (for instance, on Researchgate), it appears

that many publicat ions related to Virgo have above 1, 000 authors.

19. Appendix D contains more details about the outcome classifi cat ion.
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directly into a standard measure of success, it is still a useful outcome measure in

this framework, as it allows Virgo to progress, and in science in general.20

Finally, I merge the described data on projects with information about researchers

at Virgo, which I discuss in turn. Details on the merging are in Appendix B.

1.3 Descriptive Statistics Researchers at Virgo

I hand-collect data on researchers’ demographic characteristics (e.g., nationality,

gender, education, professional seniority, field of research) from several online sources,

mainly personal websites, available curricula, and LinkedIn profiles. Around 160

different researchers write in the Logbook. All the researchers are highly qualified.

At the same time, the pool is heterogeneous: researchers can have different levels of

seniority, work in various fields, and have different nationalities. In order to coherently

classify them in terms of seniority and education, I use the criteria provided on the

websites of the main European National Research Centers (Appendix B).21

Table 2 provides descriptive statistics of researchers’ demographics. Not surpris-

ingly, around 60% of researchers at Virgo are specialized in Physics, and the rest is

mainly specialized in the area of Engineering and Electronics (31%), with a smaller

percentage (9%) specialized in other fields. Around 14% of the researchers are doc-

toral students or post-docs, 63% are at a higher level of seniority (Researchers or

Assistant Professors), and 23% are Seniors Researchers or Full Professors.22 In terms

of gender and nationality, the majority are male (82%) and are either Italians or

French (93%), with a low fraction (7%) belonging to a different nationality.

The last row of Table 2 shows the monthly average of projects per researcher.

Conditional on being active at Virgo (namely, being on at least one project before),

each researcher works on 3.7 projects per month. I use this piece of information i) to

construct a proxy of experience by computing the cumulative number of projects a

researcher worked on at each point in time, and ii) to measure the availability of the

20. For instance, in the development of a drug, the fi nal goal is reached after several steps of t rial

and error.

21. For some researchers (around 3% of the total number of project part icipants) I did not fi nd

any informat ion. Most likely they are technicians or seniors that do not have an online ident ity.

22. Seniors include technicians that do not necessarily hold an academic degree.
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%
Field of Specialization
Physics 60%
Engineering and Electronics 31%
Informatics and Others 9%
Professional Position
Ph.D., Post-doc 14%
Researcher, Ass. Prof. 63%
Senior Researcher, Full Prof. 23%
Male 82%
Nationality
Italian 67%
French 26%
Other 7%
Avg # projects/month/researcher 3.7

Table 2: Descriptive Statistics Researchers

researchers when I define the potential entrants for each project (see Section 3.4 for

more details).

As the field of specialization and the professional position exhibit a higher degree

of variation than other characteristics, I exploit these characteristics in the structural

model. In particular, I assign each researcher to mutually exclusive types, defined as

a combination of field of specialization and professional position. This also allows me

to reduce the computational burden of the empirical model. I define five researcher

types: Physics Senior, Physics Junior, Engineer Senior, Engineer Junior, and Other.23

Table 3 shows descriptive statistics in terms of researcher types. Physics Juniors

are the majority, accounting for 71 researchers. This is reflected also in the number

of projects: Physics Juniors are in 1,851 projects, followed by Physics Seniors (1,467)

and the others. Interestingly, by looking at the numbers of completed and not com-

pleted projects and at their ratios (last three columns), one can see that researchers

who specialize in Physics are associated with a lower ratio of completed to not com-

pleted projects than other researchers types: Physics Juniors, for instance, are in

885 completed projects and 996 not completed projects, which gives a ratio of 0.88

completed to not completed projects; Engineer Juniors instead are in 468 completed

projects and 363 not completed projects, which gives a ratio of 1.29 completed to

not completed projects. Based on this evidence, one would be tempted to conclude

23. The lat ter includes researchers belonging to any other fi eld or professional posit ion as well as

non-classifi ed researchers.
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that specific characteristics of the researchers cause better performance. However,

this conclusion does not consider how teams are formed. In the empirical analysis, I

investigate further what are the determinants of project completion, after controlling

for selection.

Researchers Projects
Total Completed Not Completed Completed/Not Completed

Physics Senior 26 1,467 696 771 0.90
Physics Junior 71 1,851 885 996 0.89
Engineer Senior 2 18 10 8 1.25
Engineer Junior 28 831 468 363 1.29
Other 32 876 494 382 1.29
Note: The Table shows in the first column the number of researchers by type, in the second to fourth
column the total number of projects, the number of completed and not completed projects and the
ratio completed/not completed projects by researcher type.

Table 3: Descriptive Statistics Researcher Types

As discussed above, researchers might join projects because of who else is joining.

Figure 2 gives a comprehensive illustration of the bilateral project connections among

researcher types. The orange flow that links Physics Juniors and Physics Seniors

represents the projects in which the two researcher types collaborate. The orange flow

that turns back into the orange part represents the projects in which Physics Juniors

collaborate with other researchers of the same type. One can easily see that Physics

Juniors are working more frequently with researchers specialized in Physics (both

Juniors and Seniors) than with Engineers. Moreover, Engineer Juniors collaborate

more frequently with others than with researchers of the same type, as suggested by

the pink flows. The evidence suggests that the matching of researchers is non-random.

In the structural model, I explore these paths to identify the main determinants of

project participation.

2 Model

In this Section, I present the two-stage structural model that quantifies the de-

terminants of team performance controlling for endogenous participation. In the first

stage (participation stage), each researcher type observes the set of exogenous project

characteristics and the set of potential entrants, a project-specific shock, and her own
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Figure 2: Chord Diagram Bilateral Project Connections Researcher Types

The graph shows the bilateral connect ions among researcher types. The length of the arches cor-

responds to the total number of projects with at least one researcher of each type. The bilateral

connect ions are represented by the fl ows.

idiosyncratic shock. She decides whether to join a working project by comparing

post-joining single-period payoffs. In the second stage (outcome stage), the partici-

pating researcher types work on the project, which ends with a certain outcome. In

this Section, I discuss in detail the two stages.

2.1 Participation Stage

I model the decision to join a project as an entry game with incomplete information

(Seim, 2006; Aguirregabiria and Mira, 2002). The model is static and researcher types

make their decisions simultaneously.24 The payoff from joining a project is assumed to

be positive, while the payoff from not joining is normalized to zero.25 For every given

project, a researcher type decides whether to join a project by comparing single-period

24. As already discussed in Sect ion 1.1, the project logs contain the names of every team member.

This rules out the possibility of modeling the decision as sequent ial.

25. This assumpt ion is standard in the literature of ent ry games.
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payoffs.

Consider a set of projects J “ t1, ..., Ju indexed by j over a certain time span,

and a set of researcher types i, with i “ 1, ..., I. For a given project at time t, a

researcher type decides whether or not to join. The variable Participationijt takes

on a value of 0 or 1 depending on whether researcher type i is in the project or not.

It can be rationalized by the following payoff function:

Participationijt “ f
`

N̄j, Xit, Dj, Zt, qj
˘

` ϵij (1)

The function depends first, on the number of potential teammates, N̄j. In the

decision to join a project, a researcher type takes into account who else might be

joining for, say, personal reasons or for potential externalities in production. In the

empirical specification, the coefficient for N̄j captures how the participation probabil-

ity changes if an additional teammate joins the project: if the coefficient is positive

(negative), it means that adding an additional potential teammate to the project

increases (decreases) the probability of the project participation.26

Additionally, the function depends on the exogenous characteristics of the re-

searcher type, Xit, namely a dummy for the researcher type and the average cumula-

tive number of projects a researcher type is prior to time t. The latter can be viewed

as a stock variable and, hence, a measure of experience. The function also depends on

project controls Dj and monthly controls Zt, which account for time trends related

to participation. In particular, the vector Dj includes macro-project categories, a

dummy for whether the project has external participants, and dummies for whether

it is a comment or a parent project.

Finally, the function contains two stochastic components: a project-specific shock

qj, the ex-ante potential (similar in spirit to Hill and Stein, 2021), which captures

all unobserved (by the econometrician) factors that influence the decision to join a

project including complexity, and a researcher type-project-specific shock ϵij, that

gives information about the match of the researcher type for the project.

A researcher type might decide not to participate in a project because of no

time availability. In this framework, I do not explicitly model the time constraint.

26. I allow the coeffi cient to be either posit ive or negat ive to capture complementarit ies or subst i-

tutabilit ies.
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However, I take it into account first by controlling for the average number of projects

a researcher type is in before time t, and second, when defining the set of project

potential entrants empirically. I discuss this in detail in Section 3.

I assume that each researcher type observes her own project-specific shock, but

only knows the distribution of the others’ shocks; therefore, the described entry game

is a game of incomplete information. Because of this information structure, i can only

form an expectation of the others’ optimal choices. Based on the expected teammate

distribution across projects, each researcher type chooses whether to join a project

by maximizing her expected payoffs.

Assuming that the error terms ϵij are iid draws from a continuous distribution,

the Bayes-Nash equilibrium probability of joining project j at time t for i, p˚

ij, is then:

p˚

ijt “ Φ
`

Xit, Dj, Zt, p
˚

gjt, qj
˘

(2)

for all i and g, where Φp‚q is a continuous CDF. Researcher type i’s vector of

equilibrium conjectures over all projects is given by the set of J equations that define

the equilibrium probabilities. The Bayesian Nash equilibrium(a) of the game consists

of finding the optimal response(s) that maximizes the researcher type’s expected

payoff, given her conjecture about others’ strategies.27 Lastly, I define as dijt the

choice of researcher type i for project j at time t. Hence, dijt “ 1 if and only if

Participationijt ě 0.

2.2 Outcome Stage

Researcher types work on projects which end with a certain outcome. The variable

Outcomejt takes on a value of 0 or 1, depending on the project classification (as

discussed in Section 1). It underlies a continuous variable Outcome˚, which is a

latent variable for the degree of project completion (details in Section 3) and can be

expressed as a knowledge production function of different “inputs” in the following

way:

27. As it is standard for these games, the equilibrium existence is given by Brouwer’s Fixed Point

Theorem. The types’ own conjectures enter the probability simplex and are cont inuous in others’

expected behavior.
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Outcomejt “ f pN j, Cj, Ztq ` qj. (3)

The production function includes a vector of researcher types N j, who endogenously

participate in the project (similar in spirit to Akcigit et al. (2018)). It also includes

project controls Cj, to allow for exogenous project characteristics, and monthly con-

trols Zt, to allow for time trends in production. The vector Cj includes macro-project

categories, a dummy for whether the project has external participants, and dummies

for whether the project is a parent or comment project. Moreover, a project might

end with a better outcome because of some unobservable factors, such as complexity.

These factors fall in the error term qj.
28

In the empirical specification, the vector of coefficients for N j indicates how addi-

tional researcher types affect project outcome, and hence can be viewed as measures

of researcher types performance: if the coefficient for a particular researcher type is

positive (negative), it means that adding a researcher type to the project increases

(decreases) the probability of the project completion.

3 Empirical Implementation

Using the Virgo data, I estimate the structural model that allows quantifying the

main determinants of project participation and outcome. The model is then used to

answer the question of whether self-formed teams perform better than other team

structures.

Notice that if one was to estimate the participation stage alone, then that would

be analogous to estimating an entry game. If one was to estimate the outcome

stage alone, that would mean estimating a production function. Here, a complication

to be tackled is that the ex-ante project potential qj, which is unobserved by the

econometrician, affects both the decision to join a project and the final outcome. The

latter occurs through two different channels. First, qj enters the outcome directly

28. Complementarit ies in product ion could, in principle, be embedded in the outcome stage as

interact ion terms. In the two-stage est imat ion procedure, allowing for the ident ifi cat ion of comple-

mentarit ies requires addit ional assumpt ions on the set of potent ial ent rants and, hence, complicates

further the analysis.
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as a residual; second, it affects it indirectly through the project participants, who

endogenously join the project.

To solve the unobservability issue, one could compute the residuals from the out-

come equation and use them to estimate the parameters of the structural model.

However, because of selection, the measure of the residual from the outcome equation

would likely be biased.

To overcome the selection issue, I estimate the two empirical components jointly.

This way I combine both participation and performance and hence I am able to see

what would happen under alternative team structures, after controlling for selection.

This is similar in spirit to Ciliberto, Murry, and Tamer (2021), that estimate simul-

taneously entry and pricing decisions of firms, hence accounting for selection in the

pricing stage.

I make additional assumptions to parametrize the participation and the outcome

functions for the empirical implementation. In the main specification, the functions

are linear in the parameters. More details can be found in Appendix E.1.

In this Section, I present the estimation procedure for the project participation

stage and the outcome stage, I describe the procedure for the joint estimation and

finally, I discuss the identification of the model parameters.

3.1 Participation Stage

Entry games with strategic interactions are likely to lead to multiple equilibria,

especially in the presence of strategic complementarities. Solutions to the multiplic-

ity problem have been proposed by, among others, Bresnahan and Reiss (1991) and

Berry (1992). Papers on moment inequalities (Ciliberto and Tamer, 2009) allow for

general forms of heterogeneity across players providing a methodology for set identi-

fication without making equilibrium selection assumptions. However, bounds for the

estimated coefficients are likely to give very little information on the kind of strategic

interactions among players if their ranges are too broad. This is not well suited in

this setting given that one of the goals is to measure the degree of complementarity

and substitutability among researcher types. Alternatively, Schaumans and Verboven

(2008), for example, imposes assumptions on the sign of the strategic parameter, but
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in this framework, any assumption would appear to be ad hoc.

Part of the literature deals with the multiplicity issue by using a two-step esti-

mation procedure (Aguirregabiria and Mira, 2002, 2007; Bajari et al., 2010), without

imposing any further assumptions on the strategic parameter. The method eliminates

the need to solve the fixed-point problem when evaluating the corresponding (pseudo)

likelihood function that is implied by the structural choice probabilities.

I adapt the two-step method to my static framework and allow for strategic com-

plementarity and substitutability. In the first step, I estimate the probabilities of

participation conditional on project observables.29 In the second step, I find the

structural parameters that are most consistent with the observed data and the es-

timated equilibrium probabilities. A key assumption for the consistency of this ap-

proach is that, in the data, two projects feature the same equilibrium conditional on

observables.30

Let dijt be the choice of researcher type i for project j at time t and Ψi “

ΦpXit, Dj, Zt, qj,p
˚q, where Ψi follows a logistic distribution. In line with the lit-

erature (Aguirregabiria and Mira, 2007), the Pseudo-Likelihood Function is the fol-

lowing:

QJpθ,pq “
1

T

1

J

1

I

T
ÿ

t“1

J
ÿ

j“1

I
ÿ

i“1

log Ψipdjt|X,D,Z, q;p, θ1q (4)

3.2 Outcome Stage

I estimate the outcome stage using a standard discrete choice model. I assume

that the error terms are iid logistically distributed across observations and I set the

location and scale parameters equal to 0 and 1, respectively.

As previously discussed, I need to get an estimate of the unobserved ex-ante poten-

tial, which is given by the residual. In the case of latent models (probit, logit, ordered

probit, etc.) it is not possible to calculate the residuals directly since the latent de-

pendent variable Outcome˚ is not observed. Following Gourieroux et al. (1987), I

compute an estimate of the conditional distribution of Outcome˚ conditioned on the

29. The two-step procedure is embedded in a joint maximum likelihood est imat ion, therefore I

est imate the fi rst step parametrically to ease the computat ional procedure.

30. Appendix E discusses this in more details.
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observables. From this, I obtain an estimate of the conditional distribution of the error

term qj, from which I construct the generalized residuals q̃jt “ Erqjt|N,C, Z, θ̂2s. The

vector of estimated parameters θ̂2 “ pτ̂ , κ̂, λ̂, ξ̂q is obtained by maximum likelihood.31

The residual captures all the unobserved factors that enter the ex-ante project poten-

tial. Researchers are likely to sort into projects because of this component. Sorting

creates a problem of endogeneity that biases the results of the estimation.

3.3 Joint Estimation

To overcome the endogeneity issue, I estimate the participation probability and

the probability of project completion jointly. In a similar framework, Seim (2006)

estimates a model of entry with endogenous product-type choices by computing the

joint equilibrium prediction for the location probabilities and the equilibrium number

of entrants in a market. Likewise, I compute the joint prediction for the probability

of project completion and the equilibrium number of project participants. In Seim

(2006), however, the location decision does not depend on the market-level unobserv-

able, which influences only the probability of entry.

In this setting, the project-level unobservable qj affects both the decision to join

a project and the project outcome, directly and indirectly through Nj. Therefore,

to account for this issue, I express the generalized residual q̃j as a function of the

outcome variables and I substitute it into the payoff function. By doing so, I estimate

the equilibrium parameters of the model of project participation taking into account

the project ex-ante potential (unobserved by the econometrician) and I solve for the

endogeneity in the outcome equation. The inversion procedure resembles that of Olley

and Pakes (1996) in terms of the control-function approach.

For given dijt, the joint pseudo-likelihood is:

fpd, outcomeq “
T

ź

t“1

J
ź

j“1

I
ź

i“1

Prpdijt|X,D,Z, q̃;P, θ1qˆ

ˆ
T

ź

t“1

J
ź

j“1

PrpOutcomejt|N,C, Z; θ2q.

(5)

31. See Appendix E.2 for details.
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Equation (5) consists of two parts. The first computes the likelihood of observing the

participation choices conditional on the project-level unobservable q̃. Recall that q̃ is

the random factor that affects also the probability of observing a particular outcome

realization. Therefore, to derive the unconditional likelihood, the first component

of the joint pseudo-likelihood is multiplied by the probability of observing a certain

outcome such that the predicted and actual probability of project completion are

equal.

Because of simultaneity, I derive the unconditional likelihood by expressing q̃

as a function of the outcome parameters and regressors and substitute it into the

payoff function of the model of project participation. I follow Olley and Pakes (1996)

in inverting the function. I assume that the error terms of the model of project

participation and the outcome equation follow a logistic distribution.32 The joint

pseudo-loglikelihood is:

LLpθq “
1

T

1

J

1

I

T
ÿ

t“1

J
ÿ

j“1

I
ÿ

i“1

log Ψipdjt|X,D,Z, q̃;p, θ1q`

`
1

T

1

J

T
ÿ

t“1

J
ÿ

j“1

log ΨpOutcomejt|N,C, Z; θ2q.

(6)

In line with the estimation procedure for the model of project participation described

above, I perform the joint estimation in two steps. The details of the empirical

implementation are discussed in Appendix E.

1. I maximize the joint log-likelihood without the vector p and obtain the reduced-

form estimates of the equilibrium probabilities of participation, together with

the estimates of θStep11 , θ
Step1
2 . In this step, I account for the correlation between

the project outcome and participation through q̃j, but not for the endogenous

participation as I ignore the strategic interactions.

2. With the probabilities predicted in the first step, I construct the joint pseudo-

log-likelihood function expressed in (6) and obtain the final estimates for θ̂1, θ̂2.

32. I rest rict the variance-covariance matrix of the joint dist ribut ion of the error terms to be the

ident ity matrix.
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3.4 Identification

I now discuss the sources of exogenous variation that allow the identification of

the parameters of the two stages and the exclusion restrictions for the joint estima-

tion. Recall that the participation stage is at the researcher-project level whereas the

outcome stage is at the project level. The variation in the macro-projects and project

characteristics identifies the project-level parameters both in the participation and

in the outcome stage. For the joint estimation, one needs to include something that

affects project participation but not the outcome.

Two important sources of variation only enter the participation stage. First,

type-specific characteristics (field or research and professional seniority) that are ex-

ogenously fixed and identify the type-dummy coefficients. The second and main

exclusion restriction comes from the set of potential entrants. Notice that the payoff

function in the participation stage contains the number of expected potential entrants

in a project, while the outcome equation contains the number of actual researcher

types in a project. The expectation varies across projects and is formed before the

researcher type makes the decision to participate. As an important exclusion re-

striction, I use the set of characteristics of the potential entrants. The choice of this

variable is motivated by the fact that the number of projects a researcher type worked

on before a project start is fixed in the past and, hence, exogenous to the project. In

turn, the set of potential entrants only affects the decision to participate in a project

but not directly the project outcome.

Using the universe of researchers as potential entrants is not a plausible assump-

tion. At each point in time, some researchers might not be active at Virgo or might

be busy working on other projects. Hence, I define the set based on a measure of non-

business of researchers. First, I fix at five projects the threshold for this set, meaning

that, at each point in time, researchers already working on five or more projects will

not enter the set of non-busy researchers. This threshold is justified by the descriptive

evidence that conditional on being active at Virgo, researchers work in a month on

average on 3.6 projects, as shown in Section 1.3. With the remaining pool, I make

random draws from a uniform distribution to construct the set of potential entrants
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per project.33

Finally, simulation exercises show that a crucial source of exogenous variation that

reinforces the identification power of the exclusion restriction is the variation in the

identity and number of potential entrants across projects, and hence the variation

in the predicted participation probabilities from Step 1 across researcher types. I

observe the same researchers working both on solo and team projects, where teams

are heterogeneous and can have different sizes. The identification strategy exploits

also this variation in team memberships.

4 Results

I present the results in two steps. First, I show reduced-form results from esti-

mating the outcome stage alone without controlling for participation. This exercise

represents a meaningful benchmark once I move to the discussion of the results of the

structural model. Moreover, it provides an intuition of what are the crucial drivers

of project completion. Then, I show the results from the estimation of the structural

model that accounts for project participation and ex-ante project potential.

4.1 Reduced-Form Analysis

First, I present the results from reduced-form regressions of the outcome stage

(equation (3)). The dependent variable can take values 0 or 1 (“not completed” or

“completed”, depending on the classification explained in Section 1.2).34 Results are

reported in Table 4.

Column (1) includes only the total number of project participants as a covariate.

The coefficient is negative and significant: an additional participant is associated with

a decrease in the probability of project completion by 1.5%. Column (2) includes

also a dummy for whether there is an external firm or group in the project and

33. With thisprocedure, 7% of theset of actual ent rantsaremechanically dropped from thesample.

In a robustness analysis, I show that my results are similar also when I use a diff erent threshold

level.

34. I use Logit specifi cat ions. Results from Probit and Cobb-Douglas specifi cat ions are similar in

spirit .

23



Outcome Stage
(1) (2) (3) (4) (5) (6)

No. of Project Participants
-0.015
(0.006)

-0.018
(0.007)

-0.018
(0.007)

0.011
(0.023)

No. of Project Participants2
-0.004
(0.003)

No. of Physics Seniors
-0.042
(0.13)

-0.041
(0.07)

No. of Physics Juniors
-0.034
(0.008)

-0.033
(0.009)

No. of Engineer Seniors
0.005
(0.121)

0.000
(0.12)

No. of Engineer Juniors
0.019
(0.018)

0.018
(0.018)

No. of Others
0.025
(0.014)

0.021
(0.014)

Dummy for External Firm or Group
-0.042
(0.033)

-0.068
(0.034)

-0.065
(0.034)

-0.081
(0.018)

-0.093
(0.035)

Dummy for Parent Project
-0.172
(0.023)

-0.167
(0.023)

-0.166
(0.024)

-0.161
(0.024)

-0.160
(0.024)

Dummy for Comment
-0.060
(0.023)

-0.054
(0.023)

-0.054
(0.023)

-0.054
(0.023)

-0.053
(0.023)

Macro-Project Controls No No Yes Yes No Yes
Time Controls No No Yes Yes No Yes
LL at convergence -2107.65 -2081.83 -2077.25 -2076.38 -2067.07 -2065.62
Notes: The Table reports the marginal effects from reduced-form regressions of the outcome stage. Col-
umn (1) includes only the total number of project participants. Column (2) adds various project con-
trols. Column (3) adds macro-project and time controls. Column (4) adds the square of the total num-
ber of participants. Column (5) includes the number of researcher types and Column (6) adds various
controls. The number of observations is 3,045. All regressions include the constant. Standard errors in
parenthesis. The last row of the Table reports the value of the log-likelihood at convergence.

Table 4: Results Outcome Stage

dummies for whether the project is a parent or a comment project. The effect of an

additional team member on the probability of project completion remains negative

and significant, and slightly larger. The presence of an external firm or group does

not seem to significantly affect the probability of project completion (though the

coefficient is negative) while being a parent project or a comment is associated with

a negative probability of project completion. In particular, parents or comments are,

respectively, 17% and 6% less likely to be completed relative to standard projects.

This is not surprising as these variables can be interpreted as proxies for complexity.

Results are similar in column (3), where I add macro-project and time controls. To
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sum up, from columns (1)-(3) of Table 4 it clearly emerges that projects with more

participants are associated with a lower probability of completion. Notice that one

cannot give a causal interpretation to these results because of the likely selection into

projects.

To explore the presence of non-monotonicities in the number of participants, in

Column (4) I include all the covariates previously specified together with a quadratic

term for the number of project participants. Interestingly, though not significant,

the linear coefficient is now positive while the coefficient of the quadratic term is

negative. Though there is not enough power to give statistical meaning to this result,

it points to the existence of a non-monotonic relationship. Two main rationales can

explain non-monotonicity. First, decreasing returns to scale in team production. In

particular, the marginal contribution of an additional researcher of a given type can

be decreasing as the improvement on the pre-existing stock of skills already present

in the project can shrink. Alternatively, free-riding in teams can imply that, as the

number of researchers increases, some researchers can exploit the work of the other

teammates. Free-riding does not play an important role in this setting, as discussed

in Section 1, hence the first mechanism seems to be in place.

Researchers with different characteristics might affect differently the probability

of project completion. To further investigate the heterogeneous effects related to

researcher types, in columns (5) and (6) of Table 4 I present results from specifica-

tions where I include the number of project participants for each researcher type.

Column (5) shows that an additional participant specialized in Physics is associated

with a lower probability of project completion, whereas the contrary holds for partici-

pants specialized in Engineering and other fields. For example, an additional Physics

researcher in the team is associated with a decrease in the probability of project

completion of around 3%. These results remain also when adding macro-project and

time controls (column (6)). Appendix F shows additional reduced-form results from

estimating the participation stage alone.

To sum up, the results from Tables 4 show that larger teams are associated with

a lower probability of project completion. Moreover, it is important to notice that

the effect on the probability of project completion is not randomly distributed across

researcher types. It is not possible to give an economic interpretation to the results
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as researchers might select into projects with better ex-ante potential or because they

want to work with certain teammates.

4.2 Structural Model

I now present the results from the joint estimation of the full structural model,

as discussed in Section 3. First, I show the results from a simpler specification where

the selection effect is homogeneous across different researcher types. Then, I turn to

the results with heterogeneous selection effects. Finally, I discuss the results and the

potential mechanisms.

Homogeneous Selection Effects Across Researcher Types

The first column of Table 5 reports the results from Step 1 of the procedure described

in Section 3.3. I allow for correlation in the project ex-ante potential both in the

outcome and in the participation by estimating the joint likelihood expressed by

equation (6), but I ignore the effects of the potential teammates on the probability of

participation (namely, there are no strategic effects). In the model of participation,

the number of potential entrants is 10 for every project.35

The first set of variables refers to the outcome stage. Controlling for correlation in

ex-ante potential has a substantial impact on the estimates of the outcome stage: an

additional project participant decreases the probability of project completion by 10%,

i.e., ten times more than the effect found in the reduced-form analysis (Table 4). This

result shows that ignoring correlation in ex-ante potential leads to an overestimation

of the effect of teams on the probability of project completion. Moreover, the effects

for the presence of external firms or groups and that for being a comment almost

double in size relative to those of Table 4.

The second set of variables refers to the participation stage (equation (1)). Ce-

teris paribus, being a Physics Senior increases the probability of participation by 4%

relative to the left-out category (Others). Vice versa for the other researcher types,

which exhibit a negative probability of participation: being an Engineer Senior, for

instance, decreases the probability of participation by 31%. By comparing these re-

35. I perform robustness analyses with diff erent sets of potent ial ent rants, as discussed in Appendix

G.
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Step 1 Step 2
No Endogenous Participation Two-Step Pseudo-Likelihood

Outcome Stage

No. of Project Participants
-0.099
(0.001)

-0.108
(0.001)

Dummy for External Firm or Group
-0.082
(0.006)

-0.068
(0.006)

Dummy for Parent Project
-0.117
(0.006)

-0.115
(0.006)

Dummy for Comment
-0.121
(0.005)

-0.100
(0.005)

Participation Stage

Dummy for Physics Senior
0.039
(0.002)

0.088
(0.002)

Dummy for Physics Junior
-0.034
(0.002)

0.017
(0.002)

Dummy for Engineer Senior
-0.312
(0.004)

-0.255
(0.005)

Dummy for Engineer Junior
-0.312
(0.004)

-0.037
(0.003)

Dummy for External Firm or Group
-0.037
(0.004)

-0.039
(0.005)

Dummy for Parent Project
-0.014
(0.002)

-0.039
(0.003)

Dummy for Comment
-0.099
(0.003)

-0.129
(0.004)

No. of Potential Teammates
-0.146
(0.002)

Notes: The Table reports the marginal effects at the mean from the structural model. Column (1) reports the
results from Step 1 of the two-step procedure. Column (2) reports the results from Step 2. The number of obs-
ervations is 3,045. The number of potential entrants is 10. All regressions include macro-project and time con-
trols, and a constant. Bootstrapped standard errors in parenthesis.

Table 5: Results Structural Model

sults to those found in a reduced-form analysis of the participation stage (Table 10

in Appendix F), one can see that, both in terms of sign and magnitude, controlling

for selection into the project ex-ante potential has an impact on the probability of

participation.

The second column of Table 5 reports the results from Step 2 of the procedure

described in Section 3.3, namely the full structural model where I control for the

correlation in the project ex-ante potential and endogenous participation. The effects

in the outcome stage remain stable and significant. However, the results of the par-

ticipation stage are affected. The effect of being a Physics Junior turns out positive

compared to that of the first column: holding other things fixed and controlling for
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selection and endogenous participation, Physics Juniors are 2% more likely to partic-

ipate in projects relative to researchers in fields other than Physics and Engineering.

Intuitively, junior researchers are willing to join projects once they take into account

who else might be in the project. This is likely because they want to learn from

others and gain experience. Moreover, the negative effect of Engineer Juniors is only

one-tenth of the effect reported in the first column (-0.037). Hence, there is evidence

of endogenous selection. The second and most important finding relates to the effect

shown in the last row. On average, an additional teammate decreases the probability

of participation by 14% and this effect is statistically significant: researchers dislike

working with large groups.

To conclude, two are the main takeaways from the results of Table 5. First, larger

teams decrease the probability of project completion. As selection into projects is

non-random, controlling for ex-ante potential and endogenous project participation

matters for obtaining unbiased estimates of team performance (the effect is ten times

larger than without controlling for selection). Second, the larger the number of po-

tential teammates, the lower the probability of joining a project. Hence, there seem

to be strategic substitutabilities in teaming up.

Heterogeneous Selection Effects Across Researcher Types

Selection might differ by researcher type. The results in Table 6 explore the effect

of heterogeneity of researcher types on the probability of project completion and

participation. The first column corresponds to the first column of the previous (Table

5) in terms of covariates; the only difference is that now the outcome depends on the

number of project participants of each researcher type.

The first set of covariates relates to the outcome stage. An additional participant

(of any type) lowers the probability of project completion. One can see that this

effect is not randomly distributed across researcher types. Moreover, it is important

to notice that in the reduced-form analysis (columns (5) and (6) of Table 4), holding

other things constant, an additional Engineer Junior was associated with an increase

in the probability of completion. The results from this Table show that it is no longer

the case. Controlling for selection, now an additional Engineer Junior decreases the

probability of completion by 8%. The effects are also larger for the other researcher
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Step 1 Step 2
No Endogenous Participation Two-Step Pseudo-Likelihood

Outcome Stage

No. of Physics Seniors
-0.108
(0.003)

-0.107
(0.003)

No. of Physics Juniors
-0.110
(0.002)

-0.110
(0.002)

No. of Engineer Seniors
-0.098
(0.143)

-0.098
(0.140)

No. of Engineer Juniors
-0.084
(0.005)

-0.084
(0.005)

No. of Others
-0.076
(0.003)

-0.076
(0.003)

Dummy for External Firm or Group
-0.096
(0.007)

-0.096
(0.007)

Dummy for Parent Project
-0.112
(0.004)

-0.112
(0.004)

Dummy for Comment
-0.120
(0.004)

-0.120
(0.004)

Participation Stage

Dummy for Physics Senior
0.037
(0.002)

0.021
(0.002)

Dummy for Physics Junior
-0.036
(0.002)

-0.044
(0.002)

Dummy for Engineer Senior
-0.313
(0.065)

-0.209
(0.064)

Dummy for Engineer Junior
-0.313
(0.003)

-0.104
(0.002)

Dummy for External Firm or Group
-0.037
(0.003)

-0.037
(0.003)

Dummy for Parent Project
-0.013
(0.003)

-0.013
(0.003)

Dummy for Comment
-0.099
(0.002)

-0.099
(0.002)

No. of Potential Teammates for Physics Senior
0.016
(0.003)

No. of Potential Teammates for Physics Junior
0.008
(0.003)

No. of Potential Teammates for Engineer Senior
-0.112
(0.002)

No. of Potential Teammates for Engineer Junior
0.012
(0.002)

Notes: The Table reports the marginal effects at the mean from the structural model. Column (1) reports the results
from Step 1 of the two-step procedure. Column (2) reports the results from Step 2. The number of observations is
3,045. The number of potential entrants is 10. All regressions include macro-project and time controls, and a constant.
Bootstrapped standard errors in parenthesis.

Table 6: Results Structural Model – Heterogeneity

types. An additional Physics Senior, for instance, lowers the probability of completion

by 11% (compared to 3% of the previous Table).

In the second column of Table 6, I estimate the full structural model accounting

for heterogeneity in researcher types. The effects of the outcome stage remain similar
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to those of the first column. The coefficients for the researcher-type dummies in the

participation stage change in magnitude but not in sign: being an Engineer Junior,

for instance, lowers the probability of participation by 10% (previously 31%).

More importantly, the effect of an additional potential teammate affects the prob-

ability of participation differently for each researcher type. This can be seen in the last

four rows of column 2. Ceteris paribus, with an additional teammate the probability

of project participation increases by 2% for a Physics Senior, and by 1% for a Physics

Junior and an Engineer Junior. For Engineer Seniors instead, an additional potential

teammate decreases the probability of participation by 11%. Table 5 showed that, on

average, the higher the number of potential teammates, the lower the probability of

joining a project. Table 6 shows that this effect differs across researcher types. This

suggests that heterogeneity in researchers’ characteristics plays an important role in

explaining selection into projects and that there are both strategic complementarities

and substitutabilities in teaming up. I discuss the potential mechanisms behind the

results below. Other robustness results are discussed in Section G.

Discussion

The two key findings from the estimation of the structural model are that first,

controlling for project characteristics and endogenous selection, one more researcher

in a project decreases the probability of project completion. Second, controlling for

researchers’ and project characteristics (including the ex-ante potential), one more

teammate decreases the probability of participating in a project.

As already discussed, the first result can be interpreted in terms of congestion and

coordination costs. The existence of coordination costs that increase with team size

represents an important obstacle for collaborative work (Becker and Murphy, 1992).

In fact, lowering coordination costs can increase the returns to collaborative work.

Agrawal and Goldfarb (2008) for instance show that a decrease in collaboration costs

through the adoption of Bitnet facilitated increased research collaboration between US

universities and the specialization of research tasks. Hence, the first finding is in line

with the mentioned papers and contrasts with Anderson and Richards-Shubik (2021).

Optimal team size hinges on the trade-off between the benefits of specialization and

division of labor and the increased coordination costs (Adams et al., 2005); in this
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setting, the second component plays a prominent role.

Two possible mechanisms can explain the second finding. First, researchers might

anticipate that larger teams are allowing for less information about individual contri-

butions. As Jones (2021) discusses, individuals need to take credit when working in

teams. There are career concerns and internal signaling, especially for juniors (Meyer,

1994; Jeon, 1996). To find empirical support for this mechanism, it helps to look at

the heterogeneity results (Table 6).

Should the mechanism of internal signaling be in place, one would need to find that

the costs of working in larger teams are bigger for juniors. As shown in the previous

Section, Physics Seniors and Juniors exhibit complementarities in participation. This

is plausible as 1) they work in the most relevant field and, in the case of Seniors, 2)

they are most likely taking up a managerial position in the team. Engineer Juniors

also seem to benefit from working in larger teams. Engineering Seniors instead seem

to be disincentivized by working in larger teams. Hence, signaling does not seem to

explain the results.

As a second potential mechanism, researchers might internalize the congestion and

coordination costs of working in larger teams, and hence suffer more from these costs.

This can be particularly true for Engineers as they have less expertise in handling

projects related to Physics and, in fact, they exhibit a negative coefficient for the

strategic effect. This piece of evidence supports the second mechanism.

To conclude the discussion, the evidence strongly suggests that team size plays

a crucial role in the self-formation and performance of teams, as larger teams have

higher costs of communication and coordination.

5 Counterfactuals

Ultimately, we are interested in how self-formed teams perform relative to other

team structures. It is hard to empirically assess the performance of the same individ-

uals within one organization under alternative team structures. This would require

either quasi-random variation in team composition, which is not easy to find in real-

world settings, or an experiment that randomly assigns individuals to different teams,

which can be costly to implement.
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The approach of this paper is ideally suited for this purpose: I use the parameter

estimates of the structural model (Table 5) to investigate the performance of alter-

native team structures with counterfactual exercises. Crucially, I use the unbiased

residuals from the regressions of the structural model, i.e., the estimates of the ex-ante

project potential that take into account the endogenous selection.

Keeping the projects fixed, I consider teams that instead of self-forming, are ex-

ogenously formed by a hypothetical manager. In doing so, I simulate different sce-

narios leveraging two dimensions: team composition and team size. To assess the

performance of the observed self-formed teams relative to that of counterfactual team

structures, I compare the average predicted probability of project completion in the

data (0.57) with the average predicted probability in the various scenarios.

As a benchmark, I first simulate teams randomly. Random matching of individ-

uals represents a standard benchmark when studying the causal effects of certain

outcomes.36 In the context of an organization, for a manager it might be costly to

acquire information about team members and how they efficiently team up. Hence,

in terms of organizational practices, one could interpret the random assignment as

having no information on team members or having high costs of extracting this infor-

mation. Under random assignment, I simulate two scenarios: one with random team

sizes and another keeping the team sizes the same as the observed ones.

As a second counterfactual exercise, I simulate teams to maximize diversity in

terms of field of specialization and professional position. Suppose for instance that

a project has four researchers. In this case, I simulate the team being composed

of four researchers belonging to four different researcher types (Physics Junior and

Senior, and Engineers Juniors and Seniors). Theoretical work has highlighted the

main trade-off of diversity: in an environment diverse in terms of skills and knowledge,

individuals benefit from information gains; at the same time, they suffer from less

efficient communication among members, and this might lower productivity (Lazear,

1999). Hence, it is not clear which effect prevails. Again, under this assignment, I

simulate two scenarios: one with random team sizes and another keeping the team

sizes the same as the observed ones.

36. For instance, random assignment of students to teams (Calder-Wang, Gompers, and Huang,

2021).
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Figure 3 shows the distributions of the average probability of project completion

for the four simulated team structures described above: random teams with size kept

the same as the observed one (Panel 3a), teams with maximum diversity with size

kept the same as the observed one (Panel 3b), random teams with random size (Panel

3c) and teams with maximum diversity and random size (Panel 3d). The blue line in

the four panels indicates the average completion in the observed data (0.57).37

Interestingly, all the distributions except for that in Panel 3b lie to the left of

the blue line: all team structures except for one perform worse than the observed

self-formed teams in terms of project completion. The distributions in panels 3a and

3c show that randomly composed teams in size and composition have, on average,

between 5% and 1% lower probability of project completion relative to actually ob-

served teams. These benchmark results show that self-formed teams exhibit some

optimality in teaming up relative to a pure random assignment. Panel 3b shows in-

stead that team diversity improves project completion by about 2% on average when

the team size is the same as the observed one. In contrast, in Panel 3d one can

see that teams with diverse members and random size perform worse than any other

scenario, with a probability of project completion of around 20%. The results are

likely a direct consequence of the increased coordination costs associated with larger

teams. To sum up, teams that are more diverse in member characteristics perform

better than actually observed teams. This holds when team sizes are the same as the

observed ones.

The counterfactual results highlight two relevant implications for the organization

of scientific production. When researchers can choose their projects, they internalize

some of the costs and benefits of working together as they are aware of efficient team

size. At the same time, they also tend to work with similar peers, though working

with more diverse peers could increase project efficiency (homophily bias).

Diversity is often considered to be a crucial condition for radical innovation (Nelson

and Winter, 1982; Singh and Fleming, 2010). From an empirical perspective, it has

been shown that structurally diverse teams are more likely to produce breakthroughs

(Guimera et al., 2005; Jones, Wuchty, and Uzzi, 2008; Banal-Estañol, Macho-Stadler,

and Pérez-Castrillo, 2019) and that diversity in endogenously formed teams reduces

37. 10,000 simulat ions of researcher types drawn from a uniform dist ribut ion in r0, 1s.
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Figure 3: Counterfactual Results Exogenous Team Structure
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The graphs show the dist ribut ions of the probabilit ies of project complet ion from 10,000 simulat ions

under the four counterfactual scenarios. The blue bar represents the average predicted probability

of project complet ion in the data (0.57). The left panels show the counterfactuals with researcher

types allocated randomly to teams that have the same sizes as the one observed in the data (Panel

3a) and random sizes (Panel 3c). The right panels show the counterfactuals with researcher types

allocated to maximize diversity in characterist ics with the same team sizes as the one observed in

the data (Panel 3b) and random team sizes (Panel 3d).

the negative effect on team performance relative to the case of randomly-assigned

teams (Calder-Wang, Gompers, and Huang, 2021). Policymakers have encouraged

diversity and interdisciplinarity in scientific institutions.38 These counterfactual re-

38. ERC Synergy Grant ht tps:/ / erc.europa.eu/ apply-grant / synergy-grant .
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sults suggest that diversity may increase performance and correct the homophily bias.

At the same time, one needs to account for decreasing returns to team size as coor-

dination costs increase with larger teams.39

6 Conclusion

Leveraging new data from a scientific institution consisting of self-formed teams,

this paper develops and estimates a structural model to quantify the main drivers of

team formation and performance. The key methodological innovation is to provide an

econometric framework that combines both team self-formation and performance into

one empirical model that accounts for selection of researchers into projects and allows

for testing the performance of alternative counterfactual team structures. There are

three main takeaways from the results. First, the larger the number of teammates,

the lower the probability of joining a project. Second, the bigger the team, the lower

the probability of completion, controlling for project characteristics and selection into

projects. These two effects are heterogeneous across researchers. Finally, counterfac-

tual exercises show that randomly composed teams in composition and size have a

lower probability of project completion relative to the observed self-formed teams, and

teams that are composed to be more diverse in member characteristics (namely, with

members who differ in field and seniority) have a higher probability of completion

relative to the observed teams, provided that team sizes are the same as the observed

ones. Taken together, these results suggest that i) self-formation of teams might be

efficient under certain circumstances and ii) diversity may increase performance but

it is crucial to account for team size as coordination costs increase when working in

larger teams.

The procedure of this paper is flexible enough to be adapted to several other set-

tings. One straightforward application would be to study the mechanisms behind

endogenous alliances and partnerships (e.g., R&D joint ventures) and, importantly,

39. Another interest ing counterfactual would be to compute the team structure that maximizes

the overall probability of project complet ion. The implementat ion of this counterfactual might not

be st raight forward in this set t ing. The object ive funct ion of the manager might not necessarily be

to maximize only project complet ion; moreover, there might be t iming decisions that I do not take

into considerat ion here.
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their consequences on outcomes. Using counterfactual experiments, one could ana-

lyze the consequences of policy restrictions targeted at joint-venture participants on

developing patents and more in general on innovation. Another application could

be to other team contexts in organizations with some (at least partial) flexibility in

team formation. One could test for instance, under which circumstances specific team

structures achieve better performance.

So far, the empirical literature has mainly focused on the performance of teams

that are exogenously formed. However, many organizations are moving toward a more

flexible allocation of workers to teams. This paper provides the first step toward

understanding whether self-formed teams are desirable for complex organizations.

The approach proposes a tractable empirical framework using a novel source of data

and allows for evaluating the performance of counterfactual team structures. This can

shed a light on our comprehension of teams’ organization and allows us to understand

why no man is an island.
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Appendix for Online Publication

A Institutional Setting

A.1 The Interferometer

Figure 4 shows the configuration of an Interferometer (on the left) and the actual

Virgo Interferometer (on the right).

Figure 4: Laser Interferometer

The Figure on the left represents the basic confi gurat ion of a Michelson laser interferometer. It

consists of a laser, a beam split ter, a series of mirrors, and a photodetector (the black dot)

that records the interference pat tern (LIGO website: ht tps:/ / www.ligo.caltech.edu/ page/ what-is-

interferometer). The picture on the right represents the Interferometer at Virgo. It is the largest

ult ra-high vacuum installat ion in Europe, with a total volume of 6,800 cubic meters. It is placed in

Cascina, Italy.

A.2 Organizational Chart Virgo

Figure 5 represents the organizational chart of Virgo for the year 2016. The

Director is the head of the organization and is sided by a Spokesperson, who is

responsible for external communication together with the Communication Office. The

Administration Office takes care of all the bureaucratic and administrative duties

related to the institution. The scientific core identifies with three scientific branches:

General Infrastructure, Information Technology, and Interferometer Technology. A

responsible person is assigned to each branch. The scientific activities of Virgo used

for the empirical analysis lie within these three areas.
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Figure 5: Organizational Chart Virgo

The Figure presents the general Organizat ional Chart of Virgo as of 2016. To keep anonymity, the

names of the individuals responsible for each offi ce have been blacked out .

A.3 Examples of Projects

Projects at Virgo are heterogeneous in terms of skills and work required. Figure

6 shows two images that are related to two different projects.

In project 1 (Panel 6a), researchers compare actual measurements with simula-

tions. The text of the log to which the image is attached says the following: “To

verify some simulations, we measured some resonances of the MC payload. [...] The

measurements agree pretty well, the only big difference seems the change in frequency

of the mirror mode from around 4 Hz to 3.5 Hz.” It is clear that this kind of task

requires analytical skills and knowledge of simulation analysis.

Figure 2 (Panel 6b) represents a dehumidifier researchers have constructed. The

text of the log to which the image is attached says the following: “We have realized

and put in operation a system to keep under control the humidity around the SAT

mechanical filters stored on the CB high terrace. The system (see fig1) consists of

[...]”. Compared to the other project, here a more technical set of skills is required.

A.4 The Logbook

Figure 7 shows a screenshot of a Logbook web page. Each web page of the Logbook

consists of logs. A log presents a description of a project; it is identified by the title
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Figure 6: Examples of Projects

(a) Project 1 (b) Project 2

The Figure shows two examples of projects at Virgo. The left fi gure shows two graphs in comparison.

The top graph is the result of simulat ion analysis, while the bot tom graph comes from actual

measurements. The right fi gure shows a tool that has been built as a dehumidifi er in a room lab.

of the macro-project and the project it refers to, the name of the author(s), the time

and date, the (chronological) number, the main text and possibly images, comments

or other files attached.

B Data Processing

For the final dataset, I merge two main data sources. The first includes infor-

mation from the Logbook. The other consists of information about the researchers.

In this Section, I discuss in detail the data cleaning, the merging process, and the

construction of the final dataset.

B.1 Logbook

The Logbook dataset initially contains 3,778 logs. Each log includes the project

title, timestamp and date, macro-project groupings, and the names of the authors.
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Figure 7: Example of a Logbook Web page

This web page example consists of two logs belonging to diff erent projects. For each log, the fi rst

row ident ifi es the t it le of the macro-project ; the second row ident ifi es the name(s) of the project

part icipants, together with the t ime and day of the log; the third row ident ifi es the project ; the

fourth part ident ifi es the actual text of the project . In this example, the fi rst is a project with two

part icipants, the second is a single-author project .

B.1.1 Authors

The authors of a given project enter their names into the database in plain text;

hence, there could be name variations, typos, and potential mistakes in the raw data.

For example, a researcher named “John Smith” may have entered their name as

“jsmith” on one project, “john smith” on the next, and “jogn smith” on the third.

The first step of the data cleaning is to minimize variations of an author’s name to

get a single consistent version that could then be matched to a known researcher.40

After an initial cleaning to remove white spaces and punctuation and to set all logs

to the same (lower) case, fuzzy matching is used to identify matches between author

logs that may be different versions of the same name. The most basic form of fuzzy

matching uses the Levenshtein distance ratio to calculate the similarity between two

strings. The Levenshtein distance measures the minimum number of edits (insertions,

deletions, or substitutions) used to replace one string with another. The Levenshtein

40. Throughout this Sect ion, “ researcher” will refer to a known, ident ifi ed person and the set of

personal characterist ics in the researcher dataset , whereas “ author” will refer to the version(s) of a

name (belonging to a researcher, team, or company) entered in plain text in the Logbook logs.
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ratio is a similarity calculation between the two strings based on the Levenshtein

distance.

The software package used to process the text logs is the “fuzzywuzzy” package

(since renamed “TheFuzz”) for Python. The most basic “ratio” method is math-

ematically identical to the Levenshtein ratio. However, the package also contains

more advanced fuzzy matching methods, partialratio and tokensortratio (a fourth

method, tokensetratio, was not used). The partial ratio allows for matching only

substrings; for example, “JohnSmith” and “Smith” represents a 100% partial ratio

match as the substring ”Smith” is identical in both, rather than the lower ratio of a

basic Levenshtein ratio given the Levenshtein distance added by the substring “John.”

Mathematically, the package takes the number of characters in the shorter string and

compares it via the Levenshtein ratio to each possible substring of the same length

in the longer string. The token sort ratio method deals with strings of similar length,

but with substrings in a different order (for example, “JohnSmith” vs “SmithJohn”).

In this case, the package tokenizes the strings and organizes the tokens alphabetically

before performing a basic Levenshtein ratio calculation.

The appropriate method depends on how a researcher has entered her name into

the data. Hence, all three methods are used to identify different variations of the

same name, with any matches of less than 100 but greater than 90% similarity in at

least one method of fuzzy matching identified as a potential match. Because of the

exponential computational complexity of comparing every entry of a dataset to every

other entry directly, the matching is performed on a list of unique entries.

Out of the 3,778 Logbook logs, there are 8,616 different author-name-entries. In

some cases, two names are entered into a single cell. After correcting this, there are

a total of 8,625 author entries. Of these, 307 unique names are found. Comparing

each of the 307 entries to every other entry in the data, 81 matches are found at a

threshold of at least 90% similarity with at least one of the three matching methods.

Once these matches are reviewed manually, a single name for all possible variants

of an author’s name is chosen and the alternative variants are replaced throughout

the dataset. After the manual review, the remaining number of unique names is 258,

with 5 remaining fuzzy matches, which are either false positive matches or ambiguous

situations with unknown authors.
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B.1.2 Parent and Comment Projects

A number of projects in the dataset are follow-ups to previous projects. These

projects are denoted by the format of the project name, which is “Comment to [name

of original project]” followed by an internal reference number. Partial ratio matching

from the fuzzywuzzy package can again be used to identify both “parent” projects

(projects that have later follow-ups) and “comment” projects (the projects following

up the initial parent project). In order to do this, each project identified as a comment

project is compared using partial ratio fuzzy matching to every project in the dataset

that did not contain “Comment to.” In total, there are 947 comment projects. All

but 14 can be easily matched to a parent project using a partial ratio match threshold

of 95%. Of the remaining 14 unmatched comment projects, 7 are identified manually,

leaving only 7 total unmatched comment projects. In total, 616 projects are identified

as parent projects by being matched with a comment (note that a parent project may

have multiple comments).

After parent-comment pairs are created, dummy variables are constructed for

comments (contains “comment to”) and parents (matched via partial ratio fuzzy

matching to a comment project). Then, to retain additional information about the

pair, an additional variable is constructed for each comment project containing the

parent project’s project number (being NA for every project that is not a comment

project), alongside variables for each parent project identifying each comment project

(of which there are in some cases up to 9).

B.1.3 Macro-Projects

In addition to time, authors, and title, each log contains a broader group to which

the project belongs. In most cases, this is denoted by AdV-XXX and followed by a

more detailed clarification in parentheses. For example, one group is “AdV-SBE (Mul-

tiSAS for end benches commissioning).” For simplification, a variable containing only

the “AdV-XXX” component and not the more detailed clarification is constructed

and it is defined as “Macro-project.” In total, across the 3,778 logs in the dataset,

there are 24 unique “Macro-projects”. Of the 3,778 logs, 3,258 belong to a group with

contains the format “AdV-XXX”, as opposed to projects which belong to a group of
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a different format. The latter refers to projects related to the previous phase of the

experiment and hence are dropped from the final sample.

B.2 Researcher Characteristics

B.2.1 Professional Position and Field Variables

Before merging the researcher characteristics data to the projects, a number of

additional researcher characteristic variables are constructed. In order to investigate

the role of seniority in team formation, variables representing the seniority of different

researchers are of prime interest.

To be able to compare the positions of researchers belonging to different nation-

alities, information is collected from the following websites: http://www.differenc

ebetween.net/miscellaneous/dif ference-between-technician-and-technologist,

http://www.guide-des-salaires.com/fonction/technicien-datelier, http://www.cnrs

.fr/en/join/engineer-technician-permanent.htm, https://cadres.apec.fr/Emploi/Ma

rche-Emploi/Fiches-Apec/Fiches-metiers/Metiers-Par-Categories/Etudes-recherc

he-et-developpement/charge-de-recherche,https://www.dgdr.cnrs.fr/drhchercheurs

/concoursch/chercheur/carriere-en.htm. Figure 7 shows the table of conversion for

professional positions.41

Each researcher’s position is initially categorized into one of four categories de-

pending on the seniority of their position: Senior, Junior, Senior without a degree,

and Junior without a degree. The “no degree” category refers to non-academics,

such as technicians. The positions classified as Junior are “Ph.D.,” “Post-doc,” “Re-

searcher, Ingénieur de recherche, Chargé de recherche,” and “Ingénieur d’Etudes,

Engineer, Technologist,” and “Assistant Professor.” Positions classified as Senior are:

“First Researcher,” “Director of research,” “Associate Professor,” “Full Professor,”

and “Director Technologist.” The Junior without degree position is “Technician, Tech-

nicien d’atelier, Assistant ingénieur” and Senior without degree position is “First

Technician.” Then, a two-category version of the classification system is constructed

combining all juniors and all seniors without regard to degree.

41. When I am not able to fi nd a professional posit ion, I deduce it from the age, h-index, or fi eld

of research. When two diff erent levels of seniority are stated, I take the highest .
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Table of conversion professional seniority
Academia Research Institution (Italy) Research Institution (France) Technical Profession (no degree)
PhD Engineer

Technologist
Ingénieur d’études

Post-doc Post-doctoral fellow
Researcher/Assistant Prof Researcher Ingénieur de recherche Technician

Chargé de Recherche (Technicien d’atelier) Assistant ingénieur
Associate Prof First Researcher First Engineer First technician
Full Prof Director of Research Diriger des Recherches

Director technologist

Table 7: Table of Conversion Professional Positions

In addition to seniority, information about the field of a researcher is collected. The

researcher’s characteristic data contains detailed information regarding the research

field, for example, Astrophysics, Cosmology, Optics, Interferometry, etc. These are

grouped together into “Engineering,” “Physics,” and “Others,” with the vast majority

of researchers (and, when later matched, authors) being in “Physics” or “Engineer-

ing.” Similarly to the procedure used for the professional position, each researcher’s

field of specialization is categorized into one of three categories: Physics, Engineers,

and Others.

B.3 Datasets Merging

B.3.1 Matching Authors, Researchers, and External Companies

Unique names in the cleaned author dataset have to be matched to a known

researcher so that the personal characteristics of the researchers are attached to each of

the 3,778 logs in the dataset. This is accomplished using the tokensortratio method.

Each known researcher’s name is compared to each of the cleaned plain text entries

in the cleaned author dataset. For each known researcher, the match with the highest

similarity is reported. In most cases, this similarity ratio is 100% as the plain text

entry is typically the author’s last name. The list is reviewed manually to check

imperfect and missing matches. With 169 known researchers, all had positive 100%

matches except 12. Of these 12, 6 were partial matches determined by manual review

to be correct matches, with most partial matches being caused by accented characters

in the researcher’s name that do not appear in the author dataset. In 3 different cases,

authors with similar or identical last names also caused false 100% matches, leaving
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9 known researchers unaccounted for in the dataset. These researchers with very

similar names are then identified with an ”ambiguous match” characteristic variable.

Out of 258 unique author names identified in the data, 150 are accounted for

by being matched to a known researcher, leaving 108 unmatched author names. Of

these, 52 are known to belong to either a third-party contractor company or a specific

predefined group at Virgo, such as the vacuum or electronics teams. This leaves a

total of just 56 author names that cannot be identified.

Out of 8,625 author entries, 7,744 can be matched to a specific known researcher.

Of the remaining 881 author entries, 665 can be matched to a known company or

group, with more than half (395) belonging to the vacuum team. Thus, the total

number of unknown author entries in the dataset is 216, namely 2.5% of the total

dataset.

B.3.2 Merging Researcher Characteristics to Projects

After each researcher is matched to an author’s name, a dataset in wide format

associating each project with the characteristics of the researchers involved is con-

structed. First, variables are constructed for each researcher’s characteristics in the

researcher data, with an initial value of NA for each observation/project. The re-

searcher data consists of dummy variables for gender, nationality, field, and position.

Then, a nested loop cycles through each of the 3,778 logs and author positions, in

order to ultimately check each of the 8,625 author entries against the list of matched

researchers detailed in the previous section. When a match is found, the character-

istics of that research are attached to the project. This results in a dataset in which

each observation is a project that contains all of the variables already attached to

each project (project name, time, task, supertask, etc.) and binary dummy vari-

ables for each possible characteristic of each possible author position. Based on the

classification in terms of professional position and field described in the previous sec-

tion, for each researcher, a dummy variable given by the combination of these two

characteristics is constructed.

Finally, among the 3,778 logs in the merged dataset in wide format, those that do

not belong to the Advanced phase of the experiment (147), those that only contain

external participants (277), and those that are not classifiable (299) are dropped
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from the sample, together with logs with more than 8 people (10 projects). The final

dataset contains 3,045 logs associated with unique projects.

C Other Descriptive Statistics

In this Section, I present more descriptive evidence related to the Logbook data.

Table 8 shows the frequency of macro-projects in terms of the number of projects. One

can see that there is substantial variation, with macro-projects appearing between 23

and 425 times in the sample (Macro-Project 9 only appears once). I construct a cat-

egorical variable to account for macro-project controls in the empirical specification.

Number of Projects
Macro-Project 1 298
Macro-Project 2 424
Macro-Project 3 234
Macro-Project 4 94
Macro-Project 5 214
Macro-Project 6 591
Macro-Project 7 49
Macro-Project 8 23
Macro-Project 9 1
Macro-Project 10 196
Macro-Project 11 124
Macro-Project 12 425
Macro-Project 13 66
Macro-Project 14 70
Macro-Project 15 90
Macro-Project 16 137
Total 3,045

Table 8: Frequency of Macro-projects

Figure 8 reports the average number of monthly logs in the Logbook between June

2012 and October 2016. Over time, a clear upward trend emerges: at the beginning

of the period, on average less than 20 projects are carried out monthly. The monthly

average goes above 200 at the end of the observation. Interestingly, one can see that

there are some forms of seasonality: around December/January, for instance, fewer

logs are written. I account for this time trend in the empirical specification by adding

month-specific controls.
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Figure 8: Monthly Evolution of Logs (2012-2016)

Note: The Figure reports the average number of monthly logs writ ten at Virgo (blue dots) between

June 2012 and October 2016.

D Project Outcome

Two categories are identified for the outcome classifications. The categories are

the following:

Category 0 : Describe a problem or a task proposing possible solutions (with no actual

intervention); fix or understand a problem or perform a task temporarily/partially,

do a measurement still in progress.

Category 1 : Fix or understand a problem, successfully perform a task, and complete

or improve a measurement or survey.

For the classification procedure, I make sure that these are sensitive classification

criteria also with researchers at Virgo. Methods from Supervised Machine Learning

(in particular, classification methods) to determine measures of completion proved

less fruitful than manual classification because the jargon of the text is very detailed;
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therefore any set of features I gave as inputs to the classifiers was not improving

the classification. Hence, I implement the classification manually. Two examples of

classified projects are reported below.

Project with classification 0:

Looking at NARM LOCK state it seems that the lock could hold until around 10

UTC this morning. From that time a series of relocks attempts (with lock periods of

different duration) has triggered until around 14:20 UTC were the lock could not be

achieved anymore [...].

Project with classification 1:

As foreseen after the completion of Long Towers scaffolding [...] also the DET Tower

has been equipped with a Frigerio Style scaffolding. The installation could be com-

pleted, yesterday, in a single day [...].

Table 9 presents descriptive statistics for project completion in terms of the num-

ber of participants. Notice that 36% of completed projects have one participant

(similarly for not completed projects - 37%). Projects with two participants are asso-

ciated with a probability of completion of 32%, and this percentage decreases to 27%

for not completed projects. Finally, projects with more than two participants have a

32% probability of being completed, compared to 36% for not completed projects.

Number %
Completed Projects 1,541 51%
One Participant 561 36%
Two Participants 488 32%
More Than Two Participants 482 32%
Not Completed Projects 1,504 49%
One Participant 561 37%
Two Participants 403 27%
More Than Two Participants 546 36%
Notes: The Table shows the number and % of
completed and not completed projects in total
and by number of project participants.

Table 9: Descriptive Statistics Project Completion
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E Details on Empirical Implementation

E.1 Parametrizing the Model

Following the standard literature on entry (Seim, 2006), equation (1) can be

parametrized as:

Participationijt “ α ` βiXit ` δiN̄j ` η1Dj ` ζ 1Zt ` qj ` ϵij (7)

I allow the vector of strategic coefficients δi to differ across researcher types.

The vector of parameters to estimate for the participation stage is defined as θ1 “

pα,β, δ,η, ζq.

Given the assumption on the information structure, researcher type i joins project

j at time t if and only if:

ErParticipationijts “ α ` βiXit ` δi ErNjs ` η1Dj ` ζ 1Zt ` qj ` ϵij ě 0. (8)

Likewise, the outcome function expressed in equation (3) takes the following form:

Outcomejt “ τ `
G

ÿ

g“1

κgNgj ` λ1Cj ` ξ1Zt ` qj. (9)

for every researcher type g in the project. The vector of parameters to estimate

for the outcome stage is defined as θ2 “ pτ,κ,λ, ξq.42

E.2 Generalized Residuals

Gourieroux et al. (1987) show that for the logistic distribution, the score vector

can be expressed in terms of generalized errors. In the following, I ignore the index t

42. For sake of simplicity and in line with part of the literature on entry games of incomplete infor-

mat ion, I assume that the number of potent ial teammates enters the payoff linearly. In alternat ive

specifi cat ions, I allow the outcome to be a quadrat ic funct ion of the number of researcher types.
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for simplicity. Define the log-likelihood as:

lnL “
J

ÿ

j“1

log ΨpOutcomej|N,C, Z; θ2q. (10)

The first order derivative (score function) with respect to the constant (Greene, 2003)

produces the generalized residual. Let ϕ and Φ be respectively the pdf and the CDF of

the logistic distribution. Given the parametrization discussed in the previous section,

for Outcomej “ 0:

q̃j “ Erqj|Outcomej “ 0, N, C, Z, θ̂2s “
´ϕpτ̂ ´ κ̂Nj ´ λ̂1C ´ ξ̂1Zq

1 ´ Φpτ̂ ´ κ̂Nj ´ λ̂1C ´ ξ̂1Zq
. (11)

For Outcomej “ 1:

q̃j “ Erqj|Outcomej “ 1, N, C, Z, θ̂2s “
ϕpτ̂ ´ κ̂Nj ´ λ̂1C ´ ξ̂1Zq

Φpτ̂ ´ κ̂Nj ´ λ̂1C ´ ξ̂1Zq
. (12)

E.3 Estimation and Optimization Routine

In the estimation, I minimize the log-likelihood function expressed in equation

(5) by comparing the likelihood of the data to the model-predicted analog. First,

I define a function that computes the equilibrium probabilities of having 1, 2, etc.

potential teammates as the convolution of independent probabilities (in log terms).

This results in a matrix of probabilities, where each row is the vector of probabilities

for each project. Then, I define the joint likelihood of Step 1. I use as an initial

guess of the parameters the estimated parameters of the separated regressions for the

participation and the outcome stage. The log-likelihood of Step 1 is the log-likelihood

of the participation stage with exogenous entry where the project’s unobservable term

is expressed as a function of the outcome equation. In other words, I invert the

generalized residuals from the outcome stage and replace them in the participation

stage. Then, I minimize the joint log-likelihood.

After I compute the predicted probabilities of participation in Step 1, I initialize

Step 2 using the parameters and the predicted probabilities from Step 1 to construct
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the expected number of potential entrants for each project. Following the same

procedure I use to construct the log-likelihood of Step 1, I define the log-likelihood of

Step 2, with the additional term related to endogenous participation. I calculate the

marginal effects at the mean by using the predicted probabilities of Step 2. For the

bootstrapped standard errors, I initialize the estimation of the bootstrapped sample

at the global minimum found in the main estimation. I fix the random seed and I

make 50 draws of sub-samples with 500 projects (Efron and Tibshirani, 1994).

For the main specification, I use the Sequential Least SQuares Programming op-

timizer (SLSQP). It is an iterative method used for constrained non-linear optimiza-

tions, and in case of unconstrained problems (like this one) it reduces to the Newton

method. The level of tolerance is set at 1e-8 and the optimal minimum for Step 2

is found after 26 iterations and 642 function evaluations. It takes approximately 2

hours to find the global minimum for the main specification, but the computational

time increases exponentially with the number of potential entrants, as it needs to

compute 2n, where n is the number of potential teammates. The same results are

found with the Newton Conjugate-Gradient Trust-region method and with different

sets of initial values (all zeros, all ones). The log-likelihood goes from an initial value

of 19002.29761 in the first iteration of Step 1 to 18291.398057 at the minimum.

E.4 Multiplicity of Equilibria

Several papers discuss the issue of multiplicity of equilibria (Bajari et al., 2010;

De Paula, 2013; Aguirregabiria and Mira, 2019). De Paula and Tang (2012) propose a

test for the signs of state-dependent interaction effects that do not require parametric

specifications of players’ payoffs, the distributions of their private signals, or the

equilibrium selection mechanism. Yu (2021) provides as a detecting criterion for

multiple equilibria the possibility to check discontinuities in the density function of

the conditional choice probabilities.
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F Other Results

F.1 Reduced-form Results

In this paragraph, I discuss the results from reduced-form regressions of the par-

ticipation stage (equation (1)) without including the number of potential teammates

and without controlling for the project ex-ante potential (the unobserved project

component that accounts also for complexity). In other words, I estimate equation

(1) ignoring the strategic interactions and not conditioning on qj. The dependent

variable is equal to 1 if a researcher joins a project and 0 otherwise.

Participation Stage Participation Stage
(1) (2)

Dummy for Physics Senior
0.085
(0.009)

0.076
(0.009)

Dummy for Physics Junior
0.003
(0.007)

0.014
(0.007)

Dummy for Engineer Senior
-0.165
(0.011)

-0.156
(0.013)

Dummy for Engineer Junior
-0.049
(0.007)

-0.039
(0.008)

Dummy for External Firm or Group
-0.024
(0.008)

-0.027
(0.008)

Dummy for Parent Project
-0.007
(0.006)

-0.006
(0.006)

Dummy for Comment
-0.081
(0.005)

-0.080
(0.005)

Average Stock of Projects by Type
0.000
(0.000)

0.001
(0.000)

Macro-Project Controls No Yes
Time Controls No Yes
LL at convergence -15593 -15588
Notes: The Table reports marginal effects from preliminary regressions of the participation
stage. Column (1) includes various research-type and project controls. The number of obs-
ervations is 3,045. The number of potential entrants is 10. All regressions include the con-
stant. Standard errors in parenthesis. The last row reports the value of the log-likelihood
at convergence.

Table 10: Results Participation Stage: No Strategic Interaction

In Table 10 column (1), I include researcher types’ dummies (Physics Seniors and

Juniors, and Engineer Seniors and Juniors) as well as other project covariates. The

excluded dummy for researcher type is Others. One can see that ceteris paribus,

being specialized in Physics is associated with a positive probability of joining a
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project (relative to the left-out researcher type Others). For example, for a Physics

Senior, this probability is around 9%. The contrary holds for Engineers: being an

Engineer Junior is associated with a negative probability of participating of 5%. This

is plausible as many projects are in physics and hence require specialized skills in that

field.

A project with an external firm or group is associated with a negative and signifi-

cant probability of participation and the same holds for parent and comment projects.

This is plausible as these variables are proxies for complexity. Last, the coefficient

for the average stock of projects by researcher type exhibits a positive coefficient,

but the effect is very small and insignificant. Results remain similar when adding

macro-project and time controls (column (2)), except for the fact that the dummy

for Physics Juniors is now significant.

To sum up, the results from Table 10 show that researchers may have different

incentives to participate in a project, depending on their characteristics. Though it is

hard to interpret these results because I do not control for endogenous participation

and selection on unobservables, one could already have an intuition of what may drive

the decision to join a project.

F.2 Results Structural Model

In Table 11, I show the results of a specification of the structural model where

I include the quadratic term for the number of potential teammates. I perform the

analysis to account for non-monotonicities in the strategic interaction coefficients. In

particular, I include a quadratic term for the number of potential teammates. One

can see that there are indeed non-monotonicities in teaming up, as the quadratic

term is negative and significant. This additional result corroborates the idea that

researchers suffer from increasing coordination costs associated with larger teams.

G Robustness Analysis

In this Section, I present a number of robustness analyses in support of the em-

pirical findings of Section 4. Note that in this Section I present only the results for
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Stage 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Physics Seniors
-0.121
(0.004)

No. of Physics Juniors
-0.123
(0.004)

No. of Engineer Seniors
-0.112
(0.150)

No. of Engineer Juniors
-0.088
(0.006)

No. of Others
-0.091
(0.004)

Participation Stage

Dummy for Physics Senior
0.098
(0.003)

Dummy for Physics Junior
0.021
(0.002)

Dummy for Engineer Senior
-0.276
(0.078)

Dummy for Engineer Junior
-0.042
(0.003)

No. of Potential Teammates
-0.133
(0.007)

No. of Potential Teammates2
-0.012
(0.005)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 3,045. The number of pot-
ential entrants is 10. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 11: Results Non-Monotonicity Potential Teammates

Step 2 of the analysis.

The decision to participate in one project might potentially affect the decision

to participate in subsequent projects because of, for instance, some accumulated

expertise. Potential spillovers across projects are a concern for the validity of the

estimates as the model would not be able to capture them, given that the decisions to

join projects are treated as independent. This could bias the results if the spillovers

are due to unobserved factors. If these factors are common to all projects belonging

to the same macro-project, adding macro-projects eliminates the concern. Any other

unobserved component not captured by macro-project controls can create correlation

in unobservables across projects.43

43. It is computat ionally challenging to defi ne a correlat ion st ructure in unobservables in this
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To alleviate this concern, I re-estimate the model using the sub-sample of projects

that are far apart in time. It is plausible to think that a project in the early devel-

opment of the experiment (say, in 2012) is not directly connected to a project at the

end of the time period. To do so, I list the projects in chronological order and divide

the set of projects into three chunks. Then, I make random draws from the first and

last chunks to determine the set of projects in the sub-sample. Results are presented

in Table 12.

Notice that the effects remain similar to those found in the main specification

of the structural model. In particular, i) an additional project participant of any

researcher type decreases the probability of project completion and ii) an additional

potential teammate decreases the probability of participation, though the effect is

slightly smaller than the one found in Table 5. Hence, correlation across projects

does not seem to be a concern for the results.

A second concern is that project participation might be the result of coordinated

decisions among teammates. The model of project participation assumes that the

participation decision is non-cooperative. Although projects are short-lived and very

frequent, and hence there is presumably little time for coordination, I cannot exclude

that some coordination might happen offline outside the Logobook, hence generating

bias in the results of the participation stage.44 If anything, this should be stronger for

teammates that work together more frequently, as the cost of coordination is much

lower relative to less frequent teams.

Hence, to partially rule out this concern, I re-estimate the model excluding from

the sample those couples that collaborate together on more than 50 projects.45 Results

are shown in Table 13. Similarly to the other robustness results, the effects are in

line with those found in the main specification of the full structural model. This is

reassuring as one can partially rule out coordination as a potential factor confounding

the results.

Table 14 reports robustness results conducted on a sub-sample of projects carried

framework.

44. Anecdotal evidence shows that this seems not to be the case, as confi rmed by researchers

working at Virgo.

45. As a criterion, I use couples and not teams because the costs of coordinat ion are likely lower

for couples than for larger teams.
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Step 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Physics Seniors
-0.069
(0.003)

No. of Physics Juniors
-0.068
(0.002)

No. of Engineer Seniors
-0.041
(0.070)

No. of Engineer Juniors
-0.069
(0.007)

No. of Others
-0.081
(0.004)

Dummy for External Firm or Group
-0.055
(0.010)

Dummy for Parent Project
-0.075
(0.009)

Dummy for Comment
-0.078
(0.008)

Participation Stage

Dummy for Physics Senior
0.041
(0.004)

Dummy for Physics Junior
0.012
(0.004)

Dummy for Engineer Senior
-0.176
(0.032)

Dummy for Engineer Junior
-0.018
(0.001)

Dummy for External Firm or Group
-0.065
(0.006)

Dummy for Parent Project
-0.005
(0.000)

Dummy for Comment
-0.105
(0.002)

No. of Potential Teammates
-0.099
(0.008)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 1,780. The number of pot-
ential entrants is 10. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 12: Results Robustness 1: Projects Far in Time

out exclusively by juniors. The analysis addresses the potential concern that juniors

might be forced by seniors to participate in projects with them, undermining the

non-cooperative assumption in the participation stage, as discussed before. Also for

this case, the estimated effects remain similar in spirit to those found in the main

specification (Table 5).
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Step 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Physics Seniors
-0.076
(0.003)

No. of Physics Juniors
-0.076
(0.002)

No. of Engineer Seniors
-0.083
(0.034)

No. of Engineer Juniors
-0.057
(0.008)

No. of Others
-0.064
(0.004)

Dummy for External Firm or Group
-0.047
(0.011)

Dummy for Parent Project
-0.080
(0.008)

Dummy for Comment
-0.069
(0.008)

Participation Stage

Dummy for Physics Senior
0.040
(0.004)

Dummy for Physics Junior
0.014
(0.004)

Dummy for Engineer Senior
-0.143
(0.030)

Dummy for Engineer Junior
-0.017
(0.001)

Dummy for External Firm or Group
-0.038
(0.005)

Dummy for Parent Project
-0.001
(0.000)

Dummy for Comment
-0.101
(0.003)

No. of Potential Teammates
-0.136
(0.008)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 2,057. The number of pot-
ential entrants is 10. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 13: Results Robustness 2: No Frequent Couples

Recall from Section 3 that to define for each project the set of potential entrants

I make random draws from the pool of available researchers. Based on descriptive

evidence, the availability threshold is defined as being involved in four or more projects

in the month a project is about to start. In an alternative specification, I lower this

threshold to three or more projects. Table 15 reports robustness results from an
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Step 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Project Participants
-0.050
(0.005)

Dummy for External Firm or Group
-0.067
(0.005)

Dummy for Parent Project
-0.098
(0.006)

Dummy for Comment
-0.088
(0.003)

Participation Stage

Dummy for Physics Junior
-0.110
(0.005)

Dummy for Engineer Junior
-0.069
(0.004)

Dummy for External Firm or Group
-0.039
(0.003)

Dummy for Parent Project
-0.078
(0.004)

Dummy for Comment
-0.115
(0.005)

No. of Potential Teammates
-0.188
(0.006)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 1,100. The number of pot-
ential entrants is 10. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 14: Results Robustness 3: Only Juniors

alternative specification where the set of potential entrants is defined over a different

threshold for availability. As one can see, the effects are very similar to those found

in the main specification (Table 5).

In the final robustness, I address the potential concern that the results might

be influenced by the size of the pool of potential entrants, as discussed in Section

3.4. Table 15 reports robustness results from an alternative specification where the

number of potential entrants is 9 and not 10. As one can see, also for this set of

results, the effects are similar in spirit to those found in the main specification (Table

5).
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Stage 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Project Participants
-0.101
(0.001)

Dummy for External Firm or Group
-0.069
(0.005)

Dummy for Parent Project
-0.114
(0.006)

Dummy for Comment
-0.101
(0.004)

Participation Stage

Dummy for Physics Senior
0.089
(0.002)

Dummy for Physics Junior
0.019
(0.002)

Dummy for Engineer Senior
-0.240
(0.004)

Dummy for Engineer Junior
-0.040
(0.004)

Dummy for External Firm or Group
-0.039
(0.003)

Dummy for Parent Project
-0.042
(0.004)

Dummy for Comment
-0.100
(0.004)

No. of Potential Teammates
-0.127
(0.003)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 3,045. The number of pot-
ential entrants is 10. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 15: Results Robustness 4: Different Threshold Availability
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Stage 2
Two-Step Pseudo-Likelihood

Outcome Stage

No. of Project Participants
-0.100
(0.001)

Dummy for External Firm or Group
-0.071
(0.005)

Dummy for Parent Project
-0.112
(0.005)

Dummy for Comment
-0.099
(0.004)

Participation Stage

Dummy for Physics Senior
0.098
(0.002)

Dummy for Physics Junior
0.016
(0.002)

Dummy for Engineer Senior
-0.257
(0.003)

Dummy for Engineer Junior
-0.039
(0.004)

Dummy for External Firm or Group
-0.039
(0.003)

Dummy for Parent Project
-0.046
(0.004)

Dummy for Comment
-0.098
(0.004)

No. of Potential Teammates
-0.133
(0.003)

Notes: The Table reports the marginal effects at the mean from Step 2 of the structural
model without heterogeneity. The number of observations is 3,045. The number of pot-
ential entrants is 9. All regressions include macro-project and time controls, and a con-
stant. Bootstrapped standard errors in parenthesis.

Table 16: Results Robustness 5: 9 Potential Entrants
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