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Abstract

We study the inference and experimentation problem of an agent
in a situation where the outcomes depend on the individual’s in-
trinsic ability and on an external variable. We analyze the mistakes
made by decision-makers who hold inaccurate prior beliefs about
their ability. Overconfident individuals take too much credit for
their successes and excessively blame external factors if they fail.
They are too easily dissatisfied with their environment, which leads
them to experiment in variable environments and revise their self-
confidence over time. In contrast, underconfident decision-makers
might be trapped in low-quality environments and incur perpetual

utility losses.
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1 Introduction

Individuals usually have imperfect knowledge about their ability to suc-
ceed in their projects. Since many studies have claimed that people tend to
think too highly of their intrinsic characteristics in important dimensions—
intelligence, skills, willpower—the psychology and economics literature has
devoted a lot of attention to investigating the consequences of overconfi-
dence on behavior and welfare.

In many situations, the outcomes of agents’ endeavors not only depend
on their intrinsic ability but also on some characteristics of their environ-
ment, which they may at first know imperfectly. In this paper, we show
that overconfidence distorts the process by which individuals learn about
these exogenous payoff-relevant variables. For instance, a student who ini-
tially holds confident expectations about his skills but who repeatedly fails
at exams might revise his beliefs about his ability, but also conclude that
the academic system is less fair than he had thought. This pessimistic in-
ference, in turn, conditions his future decisions, such as how much effort to
invest for the next exams, or even whether to drop out of the university.

An agent repeatedly performs a task and receives a binary outcome:
success or failure. At each date the probability of succeeding p(A, @) is
an increasing function of the agent’s fixed ability #, and of an exogenous
parameter A that summarizes the characteristics of the external contingen-
cies in which the agent operates: the difficulty of the task, the abilities
and intentions of the co-workers, the returns to human capital, etc. To
understand the causal effect of self-confidence, we compare two individuals
who only differ in their prior beliefs about #, one being overconfident in the
monotone likelihood ratio ordering relative to the other.

In Section 3 we study the passive inferences made by individuals who
operate in a stable environment after a finite number of periods. We show
that overconfident individuals are prone to a misattribution of outcomes
when forming beliefs about A. Perhaps surprisingly, the mistake takes a
subtle form that depends on the degree of complementarity of # and A in
the production function p: in particular, it is not true that overconfident in-
dividuals are always too pessimistic about the quality of their environment.

We give a precise characterization of the misattribution and we show that



its interpretation is related to the self-serving attribution bias documented
in psychology: overconfident individuals tend to overestimate the infor-
mativeness of positive outcomes about their ability, as they take too much
merit for their achievements, and they underestimate the informativeness of
negative outcomes, as they hold external contingencies responsible for any
failures. This mistake implies a variety of related misperceptions, which we
outline in Section 3. As an example, overconfidence leads successful indi-
viduals to overestimate of the productivity of investment in human capital,
and leads less successful individuals to underestimate it.

In Section 4, we embed the baseline model into an active experimenta-
tion framework and we focus on the asymptotic properties of the process
of updating one’s beliefs. Analyzing whether endogenous learning opportu-
nities ultimately eliminate initial misperceptions is important in knowing
whether inaccurate self-assessments are a transient bias limited to inexperi-
enced decision-makers or whether this distortion can survive in the long run.
We show that the agent’s initial beliefs about his ability have a long-lasting
influence on his behavior and beliefs. This result contrasts with standard
Bayesian models with one-dimensional uncertainty, where the influence of
prior beliefs vanishes in the long run.

The agent’s ability 6 is fixed throughout the infinite horizon. At each
period the agent decides whether to stay in the current environment or to
replace it by another (randomly drawn) environment, for instance changing
jobs, re-orienting one’s academic career, etc. The individual is patient and
faces a trade-off between exploration, that is, acquiring knowledge about
himself and the current environment, and exploitation, that is, maximizing
the expected reward. Our main result is that overconfidence and under-
confidence have different implications for long-run beliefs, behavior, and
welfare. An overconfident individual tends to be too easily dissatisfied
with the external conditions and to expect (incorrectly) higher rewards
elsewhere. A consequence of this is to tend to switch too early from one
environment to another. This experimentation effort provides the agent
with a large data set of outcomes received in variable external conditions.
Accordingly, blaming external factors for his failure is no longer credible in
the long run, and the agent’s overconfidence is asymptotically reduced to

the point where his decisions and payoffs are optimal. In contrast, under-



confident decision-makers are too easily satisfied with their environment. A
consequence might be that they—wrongly—stop experimenting, and never
learn the truth about their ability, as they perpetually and incorrectly at-
tribute their surprisingly high success rate to the quality of their current
conditions. Underconfident individuals might therefore be trapped in low-
quality environments and incur utility losses forever due to their misper-
ception (Proposition 4).

Contrary to common wisdom, our analysis therefore suggests that un-
derconfidence is more problematic than overconfidence, since these two dis-
tortions have different implications for long-run learning. We believe that
this finding is consistent with the existing evidence. First, our model pre-
dicts that overconfidence generates utility losses in the short run in any
new environment. Second, the theory also predicts that the rate of learn-
ing about one’s ability is slowed down by the identification challenge which
is at the core of the model, and that complete learning is not achieved
in the long run for individuals who stay in stable conditions. This might
explain why even experienced decision-makers, e.g., CEOs (Malmendier
and Tate, 2005), are sometimes found to be overconfident. Finally, the
prediction that overconfidence is reduced by active learning while under-
confidence persists is compatible with the fact that underconfident reports
are rarely encountered in field data. This latter finding might be due to
selection effects. Since underconfident individuals endogenously stay away
from ability-intensive activities, they might be underrepresented in the sam-
ples studied by researchers: for instance, individuals who are unconfident
about their skills as CEOs endogenously choose a different career path.
Our model suggests that these individuals, who are absent from the field
evidence, are those who incur the largest welfare costs in the long run since
their decisions endogenously prevent them from correcting their beliefs.

Our paper connects the literature on self-confidence with the litera-
ture on learning with misperceptions. We use the term overconfidence to
describe the inflated beliefs that many individuals hold about their own
skills, talent, or personal traits, as suggested by a large literature in psy-

chology and economics.! Early evidence, such as the better-than-average

IThis definition is conceptually distinct from others used in the economics literature,
for instance individuals’ tendency to overestimate the precision of their information



effect (Svenson, 1981; Thaler, 2000; Weinstein, 1980) or behavioral ineffi-
ciencies in competitive environments (Camerer and Lovallo, 1999; Hoelzl
and Rustichini, 2005), has led many scholars to conclude that overconfi-
dence is widespread, an observation corroborated by field data, e.g., on
CEOs (Malmendier and Tate, 2005), truck drivers (Burks et al., 2013), and
professional chess or poker players (Park and Santos-Pinto, 2010).% A large
theoretical literature has been devoted to analyzing the costs of overconfi-
dent beliefs. An unreasonably high self-confidence might lead individuals
to exert too much effort with little chance of succeeding (Bénabou and Ti-
role, 2002), set unrealistic goals (Baumeister et al., 1993), or compete too
much. As an illustration, Barber and Odean (2001) link overconfidence to
excessive trading and show that men, who are known for being more over-
confident, trade 45% more than women and incur important losses from
this. In this literature, the effect of overconfidence generally comes down
to making the individual too optimistic about future outcomes.

We go beyond this literature by showing that overconfident individuals
have a tendency to attribute their achievements to their own merits, but
their failures to external factors. This self-serving attribution bias has been
noted by psychologists in various contexts: academic outcomes (Arkin and
Maruyama, 1979), car accidents (Stewart, 2005), collective or individual
performance in sport (Lau and Russell, 1980), outcome of joint projects,

for instance among couples (Ross and Sicoly, 1979).> We give a precise

(Grubb, 2009).

2Two criticisms have been addressed to this literature. First, several explanations for
the existing evidence based on rational individual Bayesian learning have been offered
(see in particular Van den Steen, 2004; Zabojnik, 2004; K8szegi, 2006; Santos-Pinto
and Sobel, 2005; Benoit and Dubra, 2011). Recent research provides tests that over-
come these limitations, (for instance Benoit et al., 2015; Eil and Rao, 2011; Mobius
et al., 2013). Second, the evidence for aggregate overconfidence appears to be mixed:
overconfidence is commonly observed for easy tasks, but several studies report aggregate
underconfidence for difficult tasks (see for instance Moore, 2007; Moore and Healy, 2008;
Kruger et al., 2008; Benoit and Dubra, 2011).

3To our knowledge, the only literature in economics that has explored the conse-
quences of self-serving attribution biases has focused on financial applications. Gervais
and Odean (2001) model traders who become overconfident by taking too much credit
for successes; they show that the attribution bias leads them to make overconfident
decisions and incur losses in the long run. Billett and Qian (2008) present empirical
results consistent with self-serving attributions. Libby and Rennekamp (2012) verify
experimentally that overconfident beliefs due to biased attributions influence financial
decisions. In all these papers, biased attributions are the channel by which people be-
come overconfident and—contrary to our setting—have no direct effect on decisions.



definition and characterization of the attribution bias as a function of the
degree of complementarity between the ability of the individual and the
quality of the environment. Our model shows that the attribution bias does
not necessarily indicate motivated reasoning at the inference stage (Kunda,
1990; Zuckerman, 1979), since an individual who applies Bayes’ rule to
incorrect prior beliefs makes inferences that appears biased to an external
observer, as documented in the experiment by Grossman and Owens (2012).

Our second contribution is to analyze the effects of overconfidence on
asymptotic posterior beliefs. Our result that passive learning is not neces-
sarily complete asymptotically complements a literature that questions and
extends the standard results on the consistency of posterior beliefs. Some
of the papers in this literature assume a departure from Bayesian updating
(Rabin and Schrag, 1999; Schwartzstein, 2014; Gottlieb, 2017; Benjamin
et al., 2016), while others analyze the updating of an agent who initially
attaches a null probability to the true data-generating process (Berk, 1966;
Bunke and Milhaud, 1998). Our model is instead based on an identification
issue: an agent provided with an infinite number of signals received in a
stable environment cannot learn about two dimensions at the same time,
as several distinct theories can explain the outcomes. A related result by
Acemoglu et al. (2016) shows that two Bayesian agents can disagree about
the data-generating process in the long run when they have different initial
beliefs about the signal likelihood ratio.

That active experimentation need not result in complete learning is
already well-known (Aghion et al., 1991; Easley and Kiefer, 1988). The de-
cision problem that we study extends the standard experimentation frame-
works (Banks and Sundaram, 1992) by assuming that the decision-maker
learns about two uncertain parameters, one of which () influences only the
value of the current arm, while the other (#) conditions the rewards to all
arms. Our model is also distinct from recent work on active learning with
a misspecified model (Esponda and Pouzo, 2016; Fudenberg et al., 2017),
which assumes that agents’ beliefs assign zero probability to the true map-
ping between actions and consequences. We assume that prior beliefs have
full support, which guarantees that learning is feasible and in turn implies
that agents who face a stable process are no longer surprised by their out-

comes in the long run. We see two benefits of this specification. First,



incompleteness in long-run learning can be attributed to endogenous data
limitations resulting from the agent’s own choices rather than to inconsis-
tent prior beliefs. Second, our model circumvents the standard criticism
addressed to theories of misspecified learning, according to which decision-
makers should reconsider their prior beliefs after a sufficiently long history
that contradicts their expectations.

The effect of overconfident beliefs on learning about exogenous variables
was independently explored by Heidhues et al. (2018), who characterize
the vicious circle of suboptimal actions and incorrect attributions resulting
from the joint evolution of beliefs and behavior. Our model studies this
question with a different angle. Heidhues et al. (2018) rule out learning
about one’s ability, which we allow for throughout the paper and which
is the main focus of Section 4. They also restrict attention to decisions
made in a stable environment while the problem that we study consists in
deciding whether to opt out of one’s current environment. Interestingly,
the effects of overconfidence are distinct in the two models. Heidhues et al.
(2018) show that, in a stable environment and under some assumptions on
the technology, overconfidence results in greater utility losses than under-
confidence. Our model shows that exactly the opposite is true for an agent
who has the opportunity to experiment in different environments. While
most of the literature has focused on the costs of overconfidence, our results
suggest that in dynamic settings underconfidence is the most problematic
distortion due to its self-confirming nature.*

The paper is organized as follows. Section 2 presents the environment.
Section 3 analyzes the attribution bias in finite time. Section 4 focuses on
asymptotic learning. Section 5 discusses some interpretations of the model

and concludes.

4Dubra (2004) and Zabojnik (2004) also analyze the link between self-confidence and
insufficient sampling. Dubra (2004) studies a search model and shows that optimism
is less harmful than pessimism, as optimists are less likely to accept suboptimally low
offers. Zabojnik (2004) assume that individuals are information-loving when their self-
confidence is low but information-averse when their self-confidence is high, and thus
stop sampling in the latter case. The lack of complete learning in our model is instead
based on the identification issue that arises in stable environments, as individuals keep
receiving information in every period.



2 Environment

Payoffs An individual is engaged in a repeated task over an infinite hori-
zon indexed by ¢t € {1,2,---}. On each date t, the individual receives a
binary outcome m;: a success is denoted by m = 1, whereas a failure is
denoted by m = 0. The agent’s outcome at date ¢ is stochastic and de-
pends on two variables. The first variable is the agent’s intrinsic ability at
the task, written § and drawn on the non-degenerate support © = [6, d].
The second variable is a task-specific parameter \ that is exogenous to
the agent. The variable A is distributed according to the continuous full-
support pdf gy on the non-degenerate interval A = [\, \]. The variable \
describes some permanent features of the task or the environment about
which the agent learns by experimenting. The variables A\ and 6 are inde-
pendent. Conditional on a pair (A, #), the outcomes are independently and
identically distributed across periods. The agent’s probability of succeed-
ing at the task is therefore stationary and written p(\, ), and increases
with the agent’s ability # and with the quality of the environment A. The
function p is of class C? and bounded away from 0 and 1. We write py and

py for the partial derivatives of p, and assume that p) > 0 and py > 0.

Stability of the environment We assume that @ is fixed. In Section
3 we also assume that A is fixed, reflecting the idea that the nature of
the environment remains stable over time. In Section 4 we allow for the
possibility that the environment changes, which we model as a new random
draw of A from A, either for exogenous reasons (automatic job rotation,
beginning of a new academic year with new instructors, etc.), or as the

result of the agent’s own decisions.

Self-confidence Our analysis consists in comparing the beliefs and de-
cisions of two agents who differ only in their initial self-confidence. Agents
1 and 2 share the same prior distribution over A, given by the pdf gq, but
hold different initial beliefs about their ability. Agent ¢ (i = 1,2) starts
the game with a prior pdf fy; that represents his beliefs about 6. The
functions fo; and fp2 are linked by a monotone likelihood ratio property,

which introduces a notion of comparative self-confidence. We write > for



the monotone likelihood ordering applied to pdfs: if u and v are two func-
tions of a real variable x defined on the same interval, u > v means that
the function 2 — u(x)/v(zx) is well-defined and nondecreasing. We assume
that fo1 = foz-

We also assume throughout the paper that f,; and fj 2 have full support
on ©. This assumption ensures that learning is not impeded by the fact
that the agent’s prior beliefs ascribe probability zero to the true state of
the world as in misspecified learning models (Esponda and Pouzo, 2016;
Fudenberg et al., 2017; Heidhues et al., 2018).

Our results can be interpreted in two different ways. In the first inter-
pretation, foo is the “correct” prior distribution, and the behavior of fj
reflects the mistakes caused by overconfidence in an absolute sense. In the
second interpretation, the disagreement is considered in a relative sense
only, and comparing the behaviors of the two agents informs us about the
causal effect of self-confidence on attributions and experimentation behav-
ior without taking a stance as to which of fy; or fy 2 is more correct. Under
both interpretations, we refer to agent 1 as being overconfident.

For each date t, a history h; is characterized by the identity of the
environment tried out at any date s up to date ¢ and the resulting outcome
ms. We use the subscripts ¢ and ¢ to write agent i’s posterior beliefs at date
t. For instance, f; 5, is agent ¢’s posterior pdf regarding ¢ following history
hi, and F}y, ; is the corresponding cdf.

Claim 1 establishes that the monotone likelihood ratio ordering is pre-
served by Bayes’ rule. Our definition of comparative self-confidence is thus
robust to learning: agent 1 remains more confident than agent 2 after any

common sequence of observations.

Claim 1.
For any (t,he), frhea = fohe2-

3 Attribution bias

We begin by analyzing the agents’ inferences in a situation where they
repeatedly perform the task in a stable environment. A value of A is drawn

at date 0 from A and remains fixed for several periods.



3.1 General results

Our first result characterizes the direction of the misperception of A
that results from overconfidence about 6. To build intuition, consider the
example of a manager of ability 6 who works on a project together with an
employee of unknown ability \. Manager 1 believes that he is high-skilled
(0 = 0), while manager 2 believes that he is low-skilled (§ = 6); both
believe that the employee is high-skilled (A = ) or low-skilled (A = \)
with probability 0.5 each.

Suppose that the project fails. Will manager 1 become more or less
optimistic about the type of the employee than manager 27 We show
that the answer to this question depends on the degree of complementarity
between 6 and A. Suppose first that # and A are complements in the
production function p. For instance, there exists e close to zero such that
p(X,0) = 1 — ¢ while p(),0) = € for all other values of (\,6): that is (in
approximation), the project succeeds if and only if both the manager and
the employee are skilled. After a failure, manager 1 infers that the employee
is high-skilled with probability close to zero, while manager 2 infers very
little about A: the first manager explains the failure by the low skills of
the employee, while the more realistic manager takes responsibility for it.
That is, manager 1 believes that he is working with an employee whose
type makes his own skills irrelevant for the success of the venture, while
manager 2 believes that the project would be more successful if he were
himself more skilled.

Suppose instead that # and A are substitutes in the production function
p. For instance, p(),0) = € while p(A,0) = 1 — e for all other values of
(A, 0): the project succeeds if and only if at least one of the team members
is high-skilled. The direction of the attribution bias is opposite to the
previous case: after a failure, manager 2 infers that the employee is not
skilled, while manager 1 does not update at all about \. However, the
intuition is similar: while manager 2 believes that his own ability makes a
large difference for a project with this employee, manager 1 underestimates
the importance of his ability for the collective venture.

These examples illustrate that the distortion implied by overconfidence

depends on whether the outcomes are more informative about the agent’s

10



ability in a favorable or in an unfavorable environment. Overconfident
agents who fail have a tendency to think that their own ability is not
important. Conversely, overconfident agents who succeed believe that their
own skills were instrumental to the success. This distortion does not require
any inferential mistake, as it is implied by Bayes’ rule applied to potentially
incorrect prior beliefs.

The formal characteristic of the technology that determines the nature
of the attribution bias is linked to the value of the cross-partial derivative
Pag- We say that p is log-submodular (or log-sbm) if prep < paps. We say
that p is log-supermodular (or log-spm) if the inequality is reversed, and
use the adjective strict when the inequality is strict on A x ©.

We assume that pygp — pape and prg(1 — p) + pape have constant signs,
which leaves three possible cases. In the first case, both p and 1 —p are log-
sbm. This implies that, for any A > ), the likelihood ratios p(), 8)/p(), 0)
and (1—p(X,0))/(1—p(A,0)) are both nonincreasing in #: a success (good
news) in a good environment is then less informative about 6 than a success
in a bad environment, while a failure (bad news) contains more information
if it is obtained in a good environment. The usual additive (p(\,0) =
u(A) 4+ v(0)) and multiplicative (p(X,0) = u(f)v(A)) forms belong to this
category.

In the second case, p is strictly log-spm, which implies that 1 — p is
strictly log-sbm. The likelihood ratio p(X, #)/p(), 0) is then increasing in 6.
This assumption describes situations where succeeding in a good environ-
ment is more informative about the agent’s ability than succeeding in a bad
environment: this can be due to the fact that even high-skilled individuals
are very unlikely to succeed in an unfavorable environment, which implies
that a successful outcome would be attributed to an unlikely lucky break
rather than to intrinsic dispositions.

In the third case, 1—p is strictly log-spm, which implies that p is strictly
log-sbm. The likelihood ratio (1 — p(},8))/(1 — p(A, ) is then increasing
in 6: failing in a bad environment is more informative about the agent’s
ability than failing in a good environment. This can be due to the fact that
succeeding in the good conditions is extremely likely even for low-skilled
individuals, which implies that failures are attributed to an adverse random

shock.
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Proposition 1 summarizes the direction of the bias in these three cases.
We write h; = n; for a history composed of n; successes out of t attempts
and g, for the conditional posterior beliefs about A. Except when p
and 1 — p are log-sbm, we can only compare g;,,1 and g, for extreme
scenarios (large success rate, or small success rate), as a comparison in the
monotone likelihood ordering is not possible in general for intermediate

success frequencies.

Proposition 1. 1. If p and 1 — p are log-sbm, then Gipn,1 = Gin,2
for any (ny,t).

2. If p is strictly log-spm, there exists ag, By € (0,1) such that
Gl = Geme2 f N/t > a0, and Grn,q = Geme2 if 1/t < Bo.

3. If 1 — p is strictly log-spm, there exists ay, B € (0,1) such that
Gl = G2 Sf neft > o1, and Gun, 1 = Ging2 if ne/t < Br

Proposition 1 states that the overconfident agent misperceives his envi-
ronment relative to the more realistic agent. This result does not require
any correlation between # and A from the ex ante perspective, and follows

from the correct application of Bayes’ rule to heterogeneous prior beliefs.

3.2 Misperception of the informativeness

As Proposition 1 shows, the bias in inference due to overconfidence thus
takes different forms depending on the shape of p. We now argue that this
set of results relies on a similar intuition, which is closely linked to the
notion of self-serving attribution bias in psychology. In this section, we
give a precise definition of the attribution bias and provide a result that
unifies the three cases considered in Proposition 1.

The attribution bias is commonly understood in the following way: “We
are prone to alter our perception of causality [...]. We attribute success to
our own dispositions and failure to external forces.” (Hastorf et al., 1970,
p. 73) In typical experiments on the attribution bias, participants learn
about their performance at a task and are asked to formulate a causal
explanation of their outcome. For instance, in the study by Johnson et al.

(1964), participants teach arithmetic concepts to fourth-grade boys and

12



learn about the performance of the pupils at a subsequent test. Johnson
et al. (1964) show that teachers tend to attribute positive performance to
their own teaching skills, whereas they place the responsibility for poor
performance on external factors, such as the pupil’s lack of motivation for
learning.

To formalize the notion of a causal explanation of success and failure,
consider the following hypothetical elicitation. Suppose that subjects 1 and
2 participate in the experiment by Johnson et al. (1964). Both subjects
fail at teaching arithmetic to a child, and learn that another subject 3
who was paired with the same pupil has also been unsuccessful at the
task. Subjects 1 and 2 are then asked to use this information in order to
form beliefs about the teaching ability of subject 3. Subject 2 has taken
responsibility for the child’s disappointing performance. He thus believes
in a causal link between poor teaching skills and the learning outcomes of
the pupil. Thus, he should update his beliefs about the ability of subject 3
downward by a large amount. In contrast, subject 1 believes that the poor
performance is mostly due to the child’s lack of motivation for learning:
he should thus not revise his beliefs about the skills of subject 3, as he
thinks that the child is responsible for the outcome. To sum up, due to
his overconfidence, subject 1 has a tendency to overestimate the ability of
the other participants who have been unsuccessful in the same conditions.
The same intuition applies in the case where subjects 1, 2 and 3 have
been successful: the overconfident subject 1 overestimates the importance
of teaching ability in the learning outcome, and thus he overestimates the
ability of other successful participants.

We now formally establish that this bias is predicted by Bayesian up-
dating applied to overconfident prior beliefs, and that this observation is
true irrespective of the shape of the function p. Corollary 1 below unifies
the seemingly disparate results exposed in Proposition 1. Formally, the two
agents 1 and 2 observe the common history (¢,n;), and are asked to form
beliefs about the ability of an agent 3 who has performed the task in the
same conditions (that is, with the same \) and obtained the same history
(t,n;). Initially, agents 1 and 2 share a common prior distribution over the

type 0 of agent 3, represented by the continuous pdf f defined on ©. By
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Bayes’ rule, agent i (i = 1,2) estimates

Jol6) / PO B) (1= (A B)) "Gy (V)

ft,nt,i<§) = N N .
/A . fo(0)p(X, 0)™ (1 — p(X, 0)) " dGy pn,i(N)dFp(6)

The comparison of ft,nt’l and ft,nt,Q informs us about the theories formed
by the two agents about the determinants of success and failure in their
environment. Definition 1 formalizes our definition of the self-serving at-
tribution bias: an agent is prone to this bias if he overestimates, in relative
terms, the ability of other individuals who have obtained the same out-

comes.

Definition 1. Agent 1 is prone to a self-serving attribution bias relative
to agent 2 after the history (ny,t) if ft,m,1 - ft,nt,g.

Corollary 1 shows that overconfident prior beliefs causally generate a
self-serving attribution bias. This result covers the three cases exposed in

Proposition 1.°

Corollary 1. Suppose that paxgp — pape and pre(1—p) + pape have constant
signs. Then there exists g, B2 € (0,1) such that, for any (t,n;) such that
ny/t > o or ng/t < By, agent 1 is prone to a self-serving attribution bias

relative to agent 2 after the history (ny,t).

3.3 Additional implications

In this section, we briefly mention two other implications of the dis-
tortion in inferences generated by overconfident prior beliefs and uncov-
ered by Proposition 1. First, while static models predict a positive rela-
tionship between overconfidence (overestimation of #) and optimism about

future outcomes (overestimation of p(A,#)), this effect is not robust to

°If fo,1 is interpreted as the most accurate prior distribution, the model also predicts
an inverse attribution bias for an agent 2 who starts from an unrealistically low self-
confidence. This finding resonates with casual evidence on the imposter syndrome,
whereby high achievers understate their own merit and exaggerate the role of luck in
their accomplishments. Consistently with the model, this mindset if found more often
among women or minority groups whose self-confidence levels tend to be below the
population average (Clance and Imes, 1978; Sonnak and Towell, 2001).
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updating in a situation of two-dimensional uncertainty. Consider for in-
stance the manager—employee example of subsection 3.1 and suppose that
p(A,0) = p(\,0) = 1/3,p(\,0) = 2/3,p(\,0) = 1 — ¢, where € is close
to zero. After a failure, an overconfident manager estimates that his fu-
ture probability of success, if he keeps working with the same employee,
is close to 1/3, whereas a realistic manager predicts a future success rate
strictly greater than 1/3. The excessive inference drawn by the overconfi-
dent manager about the ability of the employee makes him more pessimistic
regarding the future productivity of the venture.

Second, the overconfident agent misperceives the productivity of human
capital in the environment. To formalize this result, suppose that based
on his own outcomes, the agent tries to estimate the difference in expected
productivity between an individual of known ability 8, and an individual

of known ability 8y > 6. Formally, the agent estimates

Jom s — / DO\ O5) — DN, 60)]dCm s ().
A

This subjective parameter potentially governs important decisions, such
as how much to invest in one’s own (or one’s children’s) human capital. We
restrict attention to the second and third cases in Proposition 1, in which
the role of A has an unambiguous interpretation: if p is strictly log-spm,
A measures the extent to which human capital is important in the agent’s
environment, whereas if 1 — p is strictly log-spm, A is an inverse measure
of this variable.%

After a successful history, agent 1 forms the belief that talented indi-
viduals are appropriately rewarded relative to their low-skilled peers. As a
consequence, he sees large benefits from investment in human capital. Af-

ter failing, in contrast, agent 1 doubts that people obtain their just deserts,

OIf p is strictly log-spm, the ratio p(\, 8)/p(\, @) is increasing in A, and thus successes
are more indicative of high skills if A is large; the ratio (1 — p(A,0))/(1 — p(A,8)) is
decreasing in A, and thus failures are more indicative of low skills if A is large. The
higher is A, the more important is intrinsic ability in the agent’s outcomes. If 1 — p is
strictly log-spm, the opposite statements are true: the higher is A, the less 6 is important.
If p and 1 — p are log-sbm, after a failure, an observer infers more about € in a large \
environment than in a low A environment, but the opposite holds after a success. Thus,
whether an increase in A makes ability more or less important has no unambiguous
answer in that case.
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and therefore underestimates the benefits from investment in 6.

Corollary 2. Suppose that either p or 1—p is strictly log-spm. There exists
a3aﬁ3 € (07 1) SUCh that ﬂt,nt,l 2 19t,nt,2 Zf nt/t 2 asg, cmd ﬁt,nt,l S ﬁt,m,? Zf
nt/t < Bs.

4 Asymptotic learning

We now turn to analyzing the individuals’ beliefs after they receive in-
finite sequences of outcomes. Our objective is to analyze the conditions
under which the initial miscalibrations in self-confidence are eliminated
asymptotically by Bayesian learning. We first consider a passive learn-
ing situation in subsection 4.1 before making the agents’ experimentation

decisions endogenous in subsection 4.2.

4.1 Passive learning

We start by analyzing the agents’ asymptotic beliefs in situations where
they perform the task in every period in an environment which is exoge-
nously imposed on them. The following results are a useful preliminary to
studying the active experimentation decision in subsection 4.2. They are
also of independent interest for those applications where individuals do not
make active experimentation decisions. Our main result is that whether
Bayesian individuals eventually learn the truth about themselves crucially
depends on the stability of their external conditions.

We first analyze the case where the value of A is drawn at the be-
ginning of the game and fixed thereafter, reflecting the assumption that
the external conditions are uncertain but stable. We write f;; and ¢;; for
the unconditional posterior beliefs at date ¢, and k;; for the posterior pdf
formed over the probability p(A,#) of succeeding in this environment. We
use capital letters (F,G and K) for the cdfs. The true parameters of the
data-generating process are written Ao and 6. We assume that p(\o, 0p)
belongs to the interior of [infp, sup p|.

Our full-support assumptions ensure that the learning process is cor-

rectly specified, in the sense that the agents’ prior beliefs regarding the
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probability of success attribute a positive probability to any open neigh-
borhood of the true value p(\g, 6p).

The individuals receive an infinite sequence of informative signals. Stan-
dard statistical learning theorems prove that the sequence of posterior be-
liefs about p is consistent: almost surely, K;, converge weakly to the Dirac
measure dp(x,.g,) centered at p(Ag, fy), which is approximated by the empir-
ical success rate.

Nevertheless, the information received is not sufficient to extract the
true values of A and € individually: since several pairs (A, 6) predict the
same success rate, neither parameter is identifiable separately. Since the
agents initially, and at each point in time, have different beliefs about 6,
they form two different theories that both correctly explain their observa-
tions. In the limit, the two individuals agree on the future empirical success
rate, but the overconfident agent keeps overestimating 6 and forms more

pessimistic beliefs about the quality of the environment.

Proposition 2. Suppose that A = \g remains fived and that the true prob-
ability of success is p(Xo,6p) € (infp,supp). With probability one the pos-
terior beliefs Ky ;, Gy, and F;; converge weakly to limit distributions K ;,
Goo,i and F; such that

1. Koo,l = Koo,Q = 5p(>\o,90);
2. Goor1 and Goo o admit densities goo1 and goo2 that Satisfy goo1 = goo2-
3. Foor1 and Fy o admit densities foo1 and foo o that satisfy foo1 = fooo-

Note that, unlike Proposition 1, Proposition 2 is independent of the
nature of the interaction between \ and 6.

Proposition 2 has the following behavioral implications. Individuals
who perform a task in a stable environment form correct limiting beliefs
about their future outcomes in this environment. All the behavioral dis-
tortions associated with initial overconfidence (e.g., incorrect effort invest-
ment, excess entry) therefore vanish asymptotically: in the limit, the indi-
viduals make decisions based on accurate expectations of the consequences
and obtain the maximum possible payoffs. However, since overconfidence

is not eliminated by experimentation, an incorrect self-assessment affects
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decisions in any new environment, irrespective of the amount of experi-
mentation previously performed: agent 1 is more optimistic than agent 2
regarding the future outcomes if a new value of A is drawn while 6 is kept
constant.

Let us now contrast this result to the case where a new value for \ is
drawn every m periods according to the density go and independently of the
past history. This assumption represents situations where individuals are
regularly exposed to new external conditions for reasons that are outside
their control: automatic job rotation, turnover in a team, beginning of a
new academic year with different professors, evaluation of their performance
by different individuals, etc. In the long run, blaming external factors
for the disappointing empirical success rate is no longer credible since the
individual has been operating in many different environments, and he must
therefore admit that he was himself responsible for the outcomes all along.

Overconfidence is therefore entirely eliminated asymptotically.

Proposition 3. Suppose that a new value of A is drawn independently ev-
ery m periods and that the true ability of the agent is 0y € (6,0). With
probability one the posterior beliefs Fy,; converge weakly to limit distribu-
tions Fu ; such that Foo 1 = Fio 2 = 0, -

Together, Propositions 2 and 3 establish that the possibility of over-
confidence in the long run depends on the stability of the environment.
Unrealistic levels of self-confidence can persist even for Bayesian learners:
for instance, a worker who performs the same job for a long time can remain
overconfident by blaming his colleagues, or the firm more generally, for the
disappointing success rate. The model predicts that exogenous variation
in the external conditions fosters realism about one’s ability. In the next
subsection we study the joint evolution of beliefs and behavior in a situ-
ation where the stability of external conditions is an endogenous feature

resulting from the agents’ decisions.

4.2 Active learning

We now study the joint evolution of beliefs and experimentation deci-

sions. Our objective is to analyze the conditions under which individuals’
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decisions endogenously generate enough data to allow them to overcome
the identification challenge faced in stable environments and to learn their
true ability in the long run.

We incorporate the model into an infinite-horizon bandit problem (Berry
and Fristedt, 1985). On each date t, the agent performs the task, observes
the outcome, and decides whether to stay in the current conditions or to
opt out and start performing the activity in a randomly selected new envi-
ronment. For instance, a manager decides whether to replace the current
employees; a worker chooses whether to look for a new position in another
company; a married individual decides whether to divorce and marry a new
partner; a student chooses whether to persevere in their current field or re-
orient their educational choices, etc. This decision is conditioned by the
decision-maker’s beliefs about his ability and by his beliefs about the type
of his current environment, since both dimensions determine the payoff that
the agent expects from switching to a new environment.

We impose the simplest information structure that keeps the analysis of
the two-dimensional bandit tractable while maintaining the key properties
of the updating problem considered in the general model. Agents are either
high-skilled (6 = ) or low-skilled (6 = ), and environments are either
favorable (A = A) or unfavorable (A = )). We maintain the identification
issue at the core of the model by assuming that p(),0) = p(A,6).7 To
simplify the notation we write p; = p(A,0), pm = p(A,0) = p(A,8) and
Pn = p(X, @)_

The agent initially attaches a weight ¢y € (0,1) to the state #. An
increase in gg can thus be interpreted as an increase in the individual’s initial
self-confidence. The individual faces an infinite and countable number of
different environments. All conditions look similar ex ante: the qualities of
the environments are independent and identically distributed, so that any
given environment has a probability v € (0,1) of being of quality . We
make no assumptions on p other than 0 < p; < p,, < pr < 1.

On each date t, the agent chooses an environment and obtains the
outcome ;. We assume that quitting an environment is irreversible: if an
environment has been tried and discarded by the agent, it is no longer avail-

able. This assumption entails a loss of generality since individuals might

"Footnote 8 states how our results are modified if one relaxes this assumption.
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find it optimal to come back to a previously tried environment, but this
restriction is inessential for our main result and simplifies the exposition.
Since all untried environments look identical to the agent, we therefore for-
mulate the experimentation problem as a two-armed bandit: arm 1 consists
in staying in one’s current conditions, while arm 2 consists in switching to
a new environment. We say that the agent experiments if he decides to
pull arm 2.

The agent is a risk-neutral discounted expected-utility maximizer with a
discount factor § < 1. A history is a finite sequence h; = [(0g, m0), - - , (04, T)],
where oy € {1,2} denotes the identity of the arm selected at date ¢ and
m; € {0,1} denotes the Bernoulli outcome at date ¢. A strategy is an infi-
nite sequence o = [0g, 01(my = 1), 01(my = 0), - - -] that specifies which arm
is selected by the agent initially and after any finite history.

The individual faces a trade-off between exploration and exploitation.
The choice of an arm at date ¢ is governed by two concerns: first, maxi-
mizing the immediate probability of success; second, gaining information
about the quality of the current environment A and about the agent’s own
ability 6.

In the Appendix we show with standard arguments that an optimal
strategy exists and that the value function V' of the decision problem is
well-defined and characterized by a Bellman equation. However, solving
this decision problem with two-dimensional learning is not feasible with
the standard tools and results from the literature on bandit problems (e.g.,
Gittins indices), as the arms are correlated: the uncertain parameter ¢
governs the rewards to both arms. We therefore characterize the optimal
behavior only in the case of a myopic agent (§ = 0) who does not value
experimentation, and we then proceed to show that our main result on
asymptotic beliefs and behavior extends to the general case of a patient

decision-maker (§ > 0).

4.2.1 Myopic behavior

In this section we assume that 6 = 0, and thus the agent maximizes the

immediate expected reward. Let By (p) = p™(1 — p)'~—™.
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Experimentation decisions Suppose that the agent selects arm 2 at
some date ty. The weight ¢ that he attaches to 0 at date t is a sufficient
statistic for the information acquired so far. Suppose that the agent then
stays t periods and receives n; successes in the new conditions.

Since the agent is myopic, it is optimal to select the arm which delivers
the greatest probability of success. After some algebra, arm 2 is optimal if

and only if

(1=q) (P —p)[B{"* (pm) = B (p) ] +q(pr =) [ B (pr) = B} (pm)] < 0. (1)

Condition 1 has two important properties. First, for fixed ¢, it is sat-
isfied if and only if n, is lower than some threshold. As the intuition
suggests, the decision-maker thus opts out when a disappointing sequence
of outcomes has led him to form pessimistic beliefs regarding the quality
of his current environment relative to the average external conditions. Sec-
ond, for fixed n; it is satisfied if and only if ¢ is larger than some threshold.
A decision-maker who initially perceives a larger ¢ than what is realistic
tends to see the grass as being greener on the other side of the fence: this
belief endogenously encourages opting out. In contrast, underconfident
decision-makers are too easily satisfied with their external conditions and

experiment too little relative to the payoff-maximizing behavior.

Overconfidence We now turn to analyzing the possible asymptotic sce-
narios resulting from these endogenous experimentation choices. Suppose
first that the agent’s true type is 6, and that he starts the game with a
confident prior belief ¢y close to but different from one. Suppose that the
first environment tried is of type A. If the agent stays long enough in this
environment, his success rate converges almost surely to p;. The agent then
learns his own ability and the type of environment perfectly. Knowing that
the current conditions are unfavorable, he therefore opts out in finite time.
Suppose now that the first environment is instead of type A, in which case
the success rate converges almost surely to p,,. Asymptotically, Condition

1 is then equivalent to

Pm < qopn + (1 — qo)p1. (2)
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Equation 2 is satisfied if and only if ¢ is large enough. Intuitively, by
performing the task infinitely often in the current environment, the agent
progressively learns that the future success rate in that environment equals
Pm; Since qq is close to one, the agent attributes his empirical success rate
to the fact that the current conditions are of type A. Since the agent
expects a probability of success larger than p,, in the average environment,
he therefore decides to switch from the current environment in finite time.
In both cases (A = A, A = )), he opts out in finite time after forming
pessimistic beliefs about the environment but also revising his level of self-
confidence downwards.

The same arguments apply to the analysis of the continuation history
that the agent receives after switching to a new environment. Environ-
ments of type A are thus always left in finite time, whereas environments
of type X are left in finite time if the agent’s self-confidence is large enough
for Condition 2 to be satisfied. Yet, over time, the individual’s endogenous
experimentation effort provides more information about the true value of
6, in line with Proposition 3. By performing the task in variable external
conditions, the individual gradually realizes that his ability is lower than he
thought, until his level of self-confidence ¢ becomes small enough to satisfy
Pm > qpn + (1 — @)p. At that point, if the individual stays long enough in
an environment of type X, he expects a reward close to p,, in the current
environment, and a reward lower than p,, in an average environment, due
to his low self-confidence. He therefore prefers to stop experimenting in
the current conditions. As we argue in Proposition 4 below, this scenario
happens with probability one. In the long run, learning is incomplete since
the individual stops experimenting in finite time and therefore cannot dis-
entangle the states (), 0) and (), ). However, learning is adequate in the
sense that the individual eventually settles into an environment of type A

and receives the highest possible long-run payoff p,, for an agent of ability

6.

Underconfidence Suppose now that the individual has true ability 6
and initial self-confidence ¢y € (0,1). If the first environment is of type
A, Condition 1 can be violated at each period with positive probability.
Asymptotically, the individual learns that he is high-skilled and that the

22



environment is favorable. Learning is thus complete in both dimensions.

However, if the first environment is of type A and if ¢y is small enough
to revert Equation 2, Condition 1 can also be violated at each period. The
individual then stops experimenting since he attributes his high success rate
pm to the quality of the external conditions rather than to his own merit.
This decision prevents him from receiving further information, and from
revising his beliefs about his ability upwards. Learning is then not only
incomplete but also inadequate: by experimenting more, this individual
would have achieved a long-run payoff equal to py, but instead finds himself
trapped in an inferior environment, receiving a suboptimal long-run success
rate equal to p,,,. In contrast to the case of an overconfident agent, the initial
miscalibration in prior beliefs thus generates asymptotic inefficiencies and
incorrect decisions.

Note that this scenario happens with positive probability for the first
environment if ¢o is small, but it also happens with positive probability
asymptotically for any value of ¢y € (0,1): even an initially confident
individual might fall into the underconfidence trap if his first attempts are,
unluckily, unsuccessful, up to the point where his self-confidence ¢ falls
below the threshold defined by Condition 2.

4.2.2 Limiting beliefs

We now generalize these asymptotic results by relaxing the assumption
0 = 0. We write ¢; for the posterior weight that the individual ascribes to
the state 6.

Proposition 4. The individual stops experimenting in finite time almost

surely. In addition, for any qo € (0,1),

1. If the true ability of the agent is 0, then with probability one the last

environment is of type X\. Moreover, there exists a threshold g € (0,1)

such that q; converges almost surely to a limit g € (0, q]

2. If the true ability of the agent is 0, there exists a threshold q€(0,1)

such that only the two following scenarios have a positive probability:

(a) The last environment is of type X and q, converges to 1.
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(b) The last environment is of type A and q; converges to some limit

4o € (0,q].

Proposition 4 establishes two main results. First, for any value of 6,
with probability one the agent decides in finite time to stop experimenting,
a common finding from the literature on active experimentation (Aghion
et al., 1991; Easley and Kiefer, 1988; Brezzi and Lai, 2000). Intuitively,
infinite experimentation would lead the individual’s self-confidence ¢; to
converge to zero or one, depending on his true ability. In the limit where
q: ~ 0 or q¢; ~ 1, the individual’s problem consists of sampling the possible
external conditions until finding an environment of type A in which to stay.
This happens in finite time almost surely. The assumption that the prior is
correctly specified is crucial for this result. Indeed, an individual with initial
self-confidence gy = 1 but true ability § would perpetually experiment with
probability one.

Second, if the agent starts with overconfident beliefs, his learning pro-
cess is incomplete but adequate, meaning that the agent eventually finds
good conditions and obtains the maximum possible asymptotic payoff. In
contrast, an agent who starts with underconfident prior beliefs faces a pos-
itive probability of making suboptimal choices forever, attributing his sur-
prisingly large success rate to extrinsic characteristics instead of taking
credit for it. The mistakes induced by miscalibrated prior beliefs are there-
fore not symmetric: overconfidence inflicts a transient cost to the agent by
inducing him to over-experiment, but this distortion disappears in the long
run. Underconfidence generates a persistent distortion that might survive

endogenous experimentation.®

8 If the agent does not face any identification issue, i.e., if p(),0) # p(\, ), then it
remains true that experimentation stops in finite time almost surely. However, asymp-
totic learning is then both adequate and complete since the long-run outcomes obtained
in any stable environment perfectly inform the decision-maker about his true ability.
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5 Discussion and conclusion

5.1 Interpretation of the parameters

In this section we discuss the interpretation and the predictions of the

model in different contexts.

The nature of the activity The variable A can be viewed as the nature
of the task, or its intrinsic difficulty. The form of p then reflects whether
easier activities are more or less informative than difficult activities about
the ability of the agent. The model predicts that overconfident individuals
misperceive the difficulty of the task, and that they are also more prone
to experimenting variable activities since they are easily disappointed with

the outcomes received at a given task.

Just world The variable A can also be viewed as a measure of the ex-
tent to which people are responsible for their own outcomes, as opposed
to luck or other uncontrollable factors. If p is strictly log-spm, a low-\
environment can for instance refer to a situation where some social groups
are discriminated against because of fixed individual traits (gender, eth-
nicity, socio-economic background), in which case their talent can do little
to compensate for the fundamental inequity. This contrasts with a high-
A environment, which describes a society where people obtain their just
deserts. Individuals’ beliefs about A can then be understood as their locus
of control.

The model predicts that successful individuals understate the impor-
tance of socio-economic rigidities: believing in a “just world” (Lerner, 1980;
Bénabou and Tirole, 2006), they attribute others’ misfortunes to their dis-
positions, such as their supposed lack of ability or willpower (Corollary
1). Conversely, they overestimate the merits of their high-achieving peers.
Less successful individuals underestimate the fairness of the social mobility
system and believe that the outcomes of others do not reflect their dispo-
sitions.

If citizens factor distributive-justice concerns into judgments about re-
distributive policies (Alesina and Angeletos, 2005), their view of the nature

of social competition determines their political preferences. Our model pre-
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dicts that, even supposing that they are only motivated by concerns for
social justice, the rich are too prone to advocate pro-market policies and
low levels of redistribution, whereas the reverse holds for the poor. The
experiment by Deffains et al. (2016) offers evidence consistent with this
theory. After performing a real effort task whose returns are uncertain,
subjects tend to choose lower redistribution levels for their peers if their
own performance lies in the top half of the distribution.

The model can also account for the effect of “role models” whose accom-
plishments in various domains (sport, science, business, etc.) are frequently
showcased by popular culture as a source of inspiration. The exposure to
success stories is thought of as a way to promote faith in the long-term re-
turns to effort, especially for groups who face unfavorable conditions (eth-
nic minorities, female scientists, etc.). Interestingly, this strategy some-
times backfires (Lockwood and Kunda, 1997). In our model, an individual
who observes a successful role model revises his beliefs about A upwards,
which tends to fosters his belief that succeeding in his conditions is possible.
However, if the agent already has some experience at the task, receiving
information about A also leads him to reexamine his own history and to
update his self-confidence. The direction of this effect depends on the suc-
cess ratio and specific history, as Proposition 1 suggests. As an example,
if 1 — p is log-sbm, an individual who has received disappointing outcomes
so far realizes, upon observing a successful peer, that the environment is
more favorable than he thought, but that his own ability is lower than
he thought. The overall impact on the perceived probability of success

depends on which of these two effects dominates.

Production externalities In a team production context, A can describe
the performance, intentions, or skills of the decision-maker’s co-workers.
The model predicts that attributions of merit and blame in teams depend
on the nature of the strategic relationship between the co-workers’ contribu-
tions, that exogenous variation in external conditions fosters learning about
one’s ability, and that overconfident workers are more prone to change jobs

or teams if they have the opportunity to do so.
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Information structure Suppose that the agent receives a sequence of
informative signals about his own ability, and that the correlation between
signals is uncertain ex ante. The model predicts that an overconfident in-
dividual overestimates the correlation when receiving a series of bad news,
and underestimates it when receiving a sequence of good news. For in-
stance, consider a student or worker who receives feedback on a project
from two advisers. The advisers might form their judgment independently,
or the second adviser might simply consult the first adviser’s opinion with-
out properly analyzing the project on his own. The informativeness of the
feedback is greater in the former case. The model predicts that the student
overestimates the independence of his advisers’ judgments if they both re-
port favorably on the project, and overestimates their correlation if they

both express adverse opinions.

Self-control In another interpretation of the model, 8 represents the in-
dividual’s capacity to exert self-control and to stick to his contingent plans,
while A measures the extent to which external conditions are intrinsically
tempting. The model predicts that naive agents who repeatedly succumb to
temptation blame persistent external conditions instead of acknowledging
their self-control issues. For instance, an individual who fails at quitting
smoking might explain his difficulties by the fact that he has recently gone
through a stressful period at work. Such an individual might therefore
maintain the optimistic belief that quitting smoking will be easy once he
faces more favorable conditions. Becoming sophisticated about one’s self-
control and making correct predictions about one’s behavior in new situ-
ations requires exposure to a variety of external conditions. Interestingly,
our model predicts that naiveté is self-correcting through endogenous ex-
perimentation while pessimism is self-confirming, which adds to the puzzle

of the persistence of naiveté in the field.’

9This observation parallels a result by Ali (2011) obtained with a different mecha-
nism. Ali (2011) shows that naiveté is self-correcting due to the insufficient take-up of
commitment devices, while underconfidence is self-confirming as it can lead the individ-
ual to overcommit and stop receiving information about his self-control.
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5.2 Conclusion

This paper shows that overconfidence generates distortions in the pro-
cess by which individuals learn about their environment. Overconfidence
causes a self-serving bias in the attribution of blame and merit (Proposition
1). This distortion leads individuals to make incorrect causal attributions
of others’ outcomes (Corollary 1) and to form incorrect beliefs about the
returns to human capital (Corollary 2). Trying out different environments
is a necessary and sufficient condition for overconfidence to vanish in the
long run (Propositions 2 and 3). Since overconfidence fosters experimenta-
tion in different environments, it is self-correcting in the long run whereas
underconfidence is self-confirming (Proposition 4).

We conclude by mentioning two directions in which the analysis can
be extended. First, in some situations, observing the outcomes received
by peers exposed to the same external conditions would provide additional
information to the individual about A. In general, social learning might
therefore mitigate the identification challenge, but our comparative statics
results would survive, provided that the individual does not have access
to an infinite quantity of observations generated in his environment. More
importantly, the agent’s own inferences might prevent him from learning
efficiently from observing his peers. For instance, an overconfident indi-
vidual who has failed repeatedly would attribute others’ outcomes to luck
rather than to their own merit, a belief which would not easily be dismissed
by subsequent observations.

Second, the individual decision problem can be used as a foundation
to study the strategic interaction between an agent and a principal or an
audience. The agent might be motivated by the opportunity to signal his
ability to third parties, which would influence the type of environment or
tasks into which he strategically self-selects. Principals might strategically
release information about the difficulty of the task to maintain the agent’s
optimism and motivation, or sabotage the agents’ self-esteem to reduce
their willingness to opt out of the relation. More generally, the interac-
tion between a principal who can influence the nature of the task or the
environment and an agent prone to misperceptions raises interesting and

important questions, that we leave for future research.
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Appendix

We write Ly ,,(A,0) = p(\,0)™(1 —p(A, 0))™ for the (normalized) likelihood
function and we skip the variables (), #) when it is not confusing. We will make
extensive use of the continuous version of Chebyshev’s sum inequality, restated

below (see Mitrinovic et al., 2013, , chapter 9).

Lemma A.1. Consider a compact interval X C R. If f,g : X — R are inte-
grable functions, both nondecreasing or both nonincreasing, and h : X — Ry 1is

integrable, then

/X F(@)g(2)h(z)dz /X h(z)dz > /X F@)h(x)da /X g(@)h(@)dz. (A1)

If f is nonincreasing and g is nondecreasing, inequality A.1 is reversed.

A Proofs of Section 3

A.1 Proof of Claim 1

Supposed that the agent has tried out the activity in m; different environ-
ments up to date ¢, and let j = 1,--- ,m; be an index for the identity of the
environments. Let n; be the number of successes in the environment indexed by
j and t; the total number of attempts in this environment. Given the history

hi = (t1,n1, -+, tm,, m, ), Bayes’ rule yields

i(0 Lt n. (N, 0)dGo(N;
fo,()]Hl/A t;m; (Aj, 0)dGo(A))

Jthei(0) =

9

/dFO,i(el)H/‘Ctj,nj()\j’el)dGo(Aj)
e =1
and therefore

dFp(0') [ Lt; n; (A, 0))dGo(N))
funsa(®) _ fou(0) ) U/A j j

Fine2(0) f0,2(9)/
o

me
ko1 () [ /A Liymy (g, )dGo ()
j=1

is nondecreasing in 6.
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A.2 Proof of Proposition 1

In the main text we prove Proposition 1.2. In the footnotes we explain how
to adapt the arguments to prove Propositions 1.1 and 1.3.

The proof proceeds in two steps. First, we show that the likelihood ratio
Lin,(A1,0)/Len,(A2,0) is nondecreasing in 0 for any Ay > Xy whenever the suc-
cess rate n;/t is large enough, and nonincreasing whenever the success rate is
small enough.!®:!! This property is straightforward for fixed (A1, A2); the crux
of the proof is to obtain bounds that are uniform in (A1, A2). The second step

consists of an application of Lemma A.1.

Claim A.2. Suppose that p is strictly log-spm and consider the domain D =
{(A1,A2,0) € A2 x © | A1 > A2} and the function v defined on D by

£t,’nt (>\17 9)

A, Ao, 0) = .
(A1, A2, 0) Lo O, 0)

There ezist o, Bo € (0,1) such that if ny/t > ag (respectively ni/t < o), 1 is

nondecreasing (respectively nonincreasing) in 0 for any Ay > Aa.

Proof. The function ¢ is continuously differentiable and vy satisfies

YoM, A2, 0)  pe(M,0) pe(&ﬁ)} B (t—nt)[ po(A1,0) po(A2,0)

b0 0)  Lp(0,0)  p(Ae,0) T—p(\,0)  1—p(a,0))

(A.2)
Consider the functions ¢ and £ defined on D by

o pe()‘lve) _ p@()\Qag)
(A2 0) =2 T 0 0)

and

o p@()\lve) p@()\%e)
S A2 0) = T T T . 0)

Since p is strictly log-spm the functions A\ — pp(A,0)/p(A,0) and A —

po(X,0)/(1 — p(A,0)) are increasing in A for any 6. Thus on the domain D the

functions ¢ and & take only positive values. In addition (we drop the dependence

10Tf p and 1 — p are log-sbm we show that the likelihood ratio is nonincreasing in 6 for
any A1 > Ao and any sequence of outcomes.

HTf 1 — p is strictly log-spm we show that the likelihood ratio is nonincreasing in
for any Ay > Ao whenever the success rate is large enough, and nondecreasing whenever
the success rate is small enough.
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in (A, ) of all functions to lighten the notational burden),

pro(1—p) + pape
o EQE N0 (T p)?
—0C(A+ 6N, 0) PP — PAPY
p2

> 0.

Hence the function £/{ can be extended by continuity to the compact domain
D = {(A\1,X2,0) € A2x O | \; > Ao} and its extension takes positive values only.
This proves that /¢ admits a positive lower bound inf¢/¢ and a positive upper
bound sup&/¢ on D.

Let
£ inf &
sup in
aozicandﬁozicf.
1+sup= 1+ inf=
¢ ¢

It is clear that ag € (0,1) and fp € (0,1). In addition, for any (n,t) such

that n;/t > ap we have

Uz §
> sup —,
t—ng — p<

which implies by Equation A.2 that )9 > 0 on D, i.e. that 1) is nondecreasing

in 6. If ny/t < By we have ny/(t —n;) < inf¢/( and therefore v is nonincreasing
in 6.12.13 O

To complete the proof, suppose first that n;/t > «p defined in Claim A.2.
Take any A1 > Aa. The function fp1/fo2 is nondecreasing in 6, and, by Claim

A2, the function ¥ (A1, Ag, ) is also nondecreasing in 6. Lemma A.1 delivers

A1, 0) fo1(0)
A2,0) fo2(0)
)
)

[ [ Lin, gtm(AQ,e)dFo,z(e)} [ /@ ct,nt(Ag,G)dFo,z(O)] > (A3)

A1, 0 fo,1(0)
o ﬁt,nt(Ag,e)dFO,z(e)H o H)Q,m(xg,e)dFog(e)].

12If p and 1 — p are log-sbm, ¢ is nonpositive whereas ¢ is nonnegative, and thus 1y
is nonpositive for any (n¢,t), which proves that 1 is nonincreasing in 6.

131f 1 — p is strictly log-spm, the functions ¢ and ¢ take negative values only and &/
can be extended by continuity to D, where it takes positive values only. Define (a1, 31)
similarly as (aq, 8o) above. For any n:/t > «; the function vy is nonpositive, i.e. ¥ is
nonincreasing in 6. For any n;/t < 8 the function ¢ is nondecreasing in 6.
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Rearranging A.3 yields

/ Loy (M, 0)dFy1(6) / Loy (N2, 0)dFy(6)
© > (€]

/ Loy O\, 0)dFy 2(6) / Loy o, 0)dF 2(6)
(€] ©

9

which is simply

gt (A1) > Gt (A2) (A1)
gt,m,Z()\l) gt,nt,Q()\Q)

Since Equation A.4 is true for any A1 > A2, Geni1 = Gene,2- 1 e/t < B then

by Claim A.2 v is nonincreasing in 6, which implies that inequalities A.3 and

A4 are reversed, i.e. that g; pn, 1 = gt,nt72.l4’15

A.3 Proof of Corollary 1

We first observe that, whenever pyxp — papp and px(1 — p) + papg have con-
stant signs, then there exists ag, B2 such that n;/t > ag or ny/t < [o im-
plies that, for any 0; > 0y, the functions A\ — Gt 1(N)/ Gt 2(A) and A —

Lin, (X, 01)/Lt .0, (N, 0) are both nonincreasing or both nondecreasing.

Case 1: p and 1—p are log-sbm Then Proposition 1 and a claim analogous
to Claim A.2 (inverting the roles of A\ and €) show that, for any (nt), A —
Gtmi1(N)/Gtme2(X) and A = Ly, (X, 9~1)/£t,nt()\, 0) are both nonincreasing.

Case 2: p is strictly log-spm Then by a reasoning analogous to Claim
A.2 it is possible to find «s, B2 such that

A0 A
s = tinn (A ~1) and Geoni,1 (V) are nondecreasing
t t,n¢ ()\7 02) gt,nt,2(>\)
Lin, (N0 A
and % < By = (A Nl) and Ginr.1 (V) are nonincreasing.
t £t,nt ()\7 2) gt,nt,Q(/\)

141f p and 1 — p are log-sbm the function v is nonincreasing in 6 for any (n,t), and
thus Equation A.4 is reversed for any (ng,t).

151f 1 — p is strictly log-spm, for any n;/t > a; the function v is nondecreasing in 6.
Therefore by Lemma A.1 inequality A.3 is reversed, and hence condition A.4 is reversed
as well, which proves that g, n, 1 < g¢n, 2. The case n,/t < 1 is symmetric.
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Case 3: 1—p is strictly log-spm Then by a reasoning analogous to Claim
A.2 it is possible to find a9, B2 such that

(A0 nest (A N
e > ag = Lt ~1) and 2t 10 are nonincreasing
t Et,m ()\, 92) gt,m,2(>\)
Lin, (N, 0 1 (A -
and ™t < By = e ~1) and w1V are nondecreasing.
t *Ct,nt()\a 2) gtanh?()\)

Suppose that ny/t > a9 or n;/t < B2, where ag and (33 are constructed above.

Then by Lemma A.1, for any 6; > 6, we have

/ﬁt,nt()H él)th,nt,l()\)/ﬁt,nt(A7§2)th,nt,Q(A) 2
A A

/Et,nt(A79~2)th,nt71(A)/‘Ct,nt(A7§1)th7nt72(A)
A A

which simplifies to . 3 . )
Jtne,1(01) S ftne1(02)

ft,nhQ(el) B ft,nt,Q (92)

This proves that ft,nt,l - ftmt’g.

A.4 Proof of Corollary 2

Suppose first that p is strictly log-spm, which implies that the difference
p(A\, 0r) — p(A, 01) is nondecreasing in A. Consider ayg, Sy defined in Proposition
1. Suppose first that n;/t > og. By Proposition 1, g¢n, 1 = G¢n,,2, which implies

that g¢n, 1 first-order stochastically dominates gy, 2. Thus,

A[p(AveH)_p()‘79L)]th,nt,1()‘)2/A[p(AaaH)_p()‘aeL)]th,nz,2()‘)7 (A5)

which is simply ¥¢p,1 > U4 n, 2. If 0/t < Bo, gen,,1 is first-order stochastically
dominated by gy, 2 and therefore the inequality is reversed. Defining (a3, 83) =
(g, Bo) completes the proof.

If 1 — p is strictly log-spm the difference p(\, ) — p(A, 01) is nonincreasing
in A. For any n;/t > a1 we have g pn, 1 = gtn,,2, and thus inequality A.5 remains
true. For any n:/t < 51, gtni1 = G2 and the inequality is reversed. The
result follows from defining (a3, 83) = (a1, B1).
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B Proofs of Section 4

B.1 Proof of Proposition 2

In the following we write pg = p(Ag, 0y) for the true success rate.

B.1.1 Proof of Proposition 2.1

Both agents are learning the value of a one-dimensional parameter py from
a sequence of i.i.d. Bernoulli trials. In addition, the full-support assumptions
guarantee that both agents’ prior beliefs put positive mass on a neighborhood of
po. Standard statistical learning theorems (see for instance Gelman et al., 2013)
prove that with probability one K ;(p) — 0 for any p < pp and K ;(p) — 1 for
any p > po. Thus, with probability one K;; converges pointwise to the cdf of 4y,
at any p # po, i.e. at any point where the limit cdf is continuous. This proves

that with probability one the distribution K;; converges in distribution to dy,.

B.1.2 Proof of Proposition 2.2

Let

Qp) ={r e A|p(A,0) <p<pA0)}

Let us define the function 6 : {(p,A) € (0,1) x A | A € Q(p)} — © by

p(\,0(p, ) = p.

By the implicit function theorem (., A) is continuously differentiable and its
partial derivative 6, is positive.
Let h; : (0,1) x A — R be defined by

otherwise.

hi(p, ) = { goﬂ‘(e(P’ M)bp(p, A) if X € Q(p)

The proof relies on the following lemma.

Lemma A.2. With probability one the sequence Gy; converges weakly to a limit

distribution G ; characterized by the density

_ 90Nhi(po, A)
S 90(N)hi(po, N)dN~

oo,i(A)
Proof lemma A.2. We show that with probability one g¢i(\) — gooi(A) for all
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A € A that does not belong to the boundary of Q(pg). Since the boundary of
Q(po) has measure zero, Scheffe’s lemma then implies that with probability one
G converges weakly to Gog ;-

For all A € A, a change of variables delivers

1
/ foi(O)p(A, )" (1 = p(A,0)) " do = /0 hip ™ (1 — p)! " dp.
Fix A\ and a history (¢,n;). By Bayes’ rule,
/ fo.i(@)p(X,0)™ (1 — p(X, 0))~"™do
gt,nt, (
/ go(N)| / foi(0 0)™ (1 — p(N,0)) "t dldN
90()‘)/0 hi(p, \)p"™ (1 — p)'™dp

: |
/ [ / o) (p, N)dN]p™ (1 — p)'="dp
0 A

(A.6)

Lemma A.3. Let u : [0,1] — [0,00) and v : [0,1] — [0,00) be integrable and
bounded functions. Suppose that u and v are continuous on a neighborhood of pg

and that v(po) > 0. Then for any sequence ny such that ny/t — po,

1
/0 u(p)p™ (1 — p)'"dp

lim T -
t——+o00 —n
/ o)™ (1 — )t dp
0

Proof. Suppose first that u(pg) = 0. Let

1
/ u(p)p™ (1 —p)"~"dp
I = =2
t

- .
/0 v(p)p™ (1 —p)""dp

Fix € > 0. By continuity of © and v on a neighborhood of py there exists
d > 0 and a constant m > 0 such that v(p) > m and u(p) < me/2 for any
p € (po — 6,po + d). Let us decompose the integral in three regions [0, py —

8], [po — &, po + 6], [po + 6, 1].
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First, note that for any t € N

po+0 po+0
/ u(p)p™ (1 —p)'"dp /
po—90 P

) u(p)p™ (1 — p)'"dp
.
1 ' = po+4
/ v(p)p™ (1 —p)~"dp / v(p)p™ (1 — p)'™dp
0 po—9
€
- 20m 2

(A.7)
Since n;/t — po there exists tg € N such that pg — d/4 < ny/t for any t > to.

If t > to the function z — 2™ (1 — z)'™™ is increasing on (0, py — §/4). Thus,

po—3 . po—0 .
/ u(p)p™ (1 —p)" "dp / u(p)p™ (1 —p)"~™dp
0 < 0
1 . —  rpo—96/4
/ v(p)p™ (1 —p)~"dp /
0 D

0—0/2

v(p)p™ (1 —p)~"dp

_ (po—d)supu (po —8)" (1 —po+0)"~™
= om

o 4] ’
- — _\n¢ 1 — Z\t—n¢
1 (po 2) (I—po+ 2)
Note that the expression on the right-hand side converges to zero. Therefore
there exists t1 > tg such that for all ¢t > ¢q,

Do—0 .
/0 u(p)p™ (1 —p)""tdp

€
i t < 7 (A.8)
/ v(p)p™ (1 —p)" " dp
0
Similarly, there exists t2 in N such that for any t > to,
1
/ Julp)p™ (1= p)Mdp
Po-*l- t < 7 (A.9)
/0 v(p)p™ (1 —p)™dp

Combining inequalities A.7, A.8 and A.9 shows that for any ¢ > max(t1, t2),

L<<+°

LE
9 4—6.

W

This proves that limy_, Iy = 0.

Suppose now that u(pg) > 0. Since |u(p)v(po) —v(p)u(po)| = 0 for p = py we
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have

1
/“w@w@@—v@M@MWW1—m“m@
hm 0 = 07

t—+o00 1
/0 v(p)p™ (1 —p)*™dp

which implies

1
/ u(p)p™ (1 —p)'~"dp
lim 29
t——+o0

1
/0 v(p)p™ (1 —p)"™dp
0

To complete the proof of Lemma A.2, note by the law of large numbers that
the sequence n;/t converges almost surely to pg. Consider any such sequence and
any A € A that does not belong to the boundary of Q(pg). Let u(p) = hi(p, \)

and
MMZA%Q%MAWX

The functions v and v are integrable and bounded. If A belongs to the interior
of Q(po) then u(p) = fo.:(6(p,N))8p(p,A) on a neighborhood of py and thus u
is continuous on this neighborhood. If A does not belong to the interior of
Q(po) then u(p) = 0 on a neighborhood of py, and thus w is continuous on this
neighborhood. Furthermore, since infp < py < supp the function h;(pg, \') is
positive on a subset of A of positive measure. Thus, v(pg) > 0 and v is continuous
on a neighborhood of py. Therefore u and v satisfy all the assumptions of Lemma
A.3, which by A.6 implies

lim gtmt,@'()\) = goo,i()‘)'

t—4o00
This completes the proof of Lemma A.2. O

To conclude the proof of Proposition 2.2, note that g1 and goo 2 have the
same support Q(pg). Take A1, Ao € Q(pg) such that A\; > Ao. We have

O(A1,p0) < 0(A2,po) since p is increasing

fo1(8(A1,p0)) _ fo,1(0(N2,p0))
fo2(0(A1,p0)) — fo,2(0(A2,po))
h1(po, A1) < h1(po, A2)
ha(po, A1) = ha(po, A2)
900,1(/\1) < 900,1()‘2)

900,2(/\1) B 900,2()‘2).

E

since fo,1 = fo,2
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This proves that goo1 =< goo,2-

Proof of Proposition 2.3 We omit the details for the sake of brevity. With
arguments similar to the proof of Proposition 2.2 it is possible to prove that fu 1
and fs 2 have the same (non-empty) support and that f 1/ fs,2 is proportional

to fo,1/fo2 on that support.

B.2 Proof of Proposition 3

We prove the result for the subsequence that consists only of dates that are
multiples of m, as extending the result to intermediate dates is straightforward.
To simplify the notation we therefore write F} p, ; for the beliefs held after trying
t environments, i.e. mt periods in total.

For any 0 and any k € {0,--- ,m}, let

e (0) = (Z“) /A Lo (X, 0)dGo(N)

be the probability of succeeding k times out of m trials in a stable an environment
randomly drawn according to gg and conditional on ability being equal to 6.

For any date ¢t and any k € {0,--- ,m}, let ny;, € {0,--- ,t} be the number
of environments up to date t at which the individual has succeeded k times and
failed m — k times, and hy = (n4,0, -+, Nm)-

Fix € and take any 6 < 6y and any d such that 6 < 6y — § < 6. Bayes’ rule

delivers ~

g m

[ L@ dne

Ft,htﬂ:(e) _ Q7 k=0 (A 10)
1— Fyp,(0 o . '

beilf) [ ax(0)rdFi(0)

k=0
Take 67 < 6.

%m e :i%ln [q’“((%l)}. (A.11)

k=0

By the law of large numbers, n¢;/t — gi(6y) almost surely for any k. For
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any such sequence, the right-hand side of A.11 converges to

Drr(Qa,1Qg) — Drr(Qa,|Qp,)

where for any 6, D, (Qg,||Qs) is the Kullback-Leibler divergence from @y to
the true distribution @)y, defined by

m

Dk 1(Qo,l1Q0) =D ar(6o) In

k=0

qx(0o)
ar(0)

Since 61 < 0 < 6 it is easy to see that
DKL(QGOHQ@) < DKL(Q90HQ91)
and thus by Equation A.11,

TT a0 < T an(@)"
k=0 k=0

when ¢ is large enough.

Similar arguments prove that for any 0y € [0y — 0, 0],

T 2 (02)™* = T ar (60 — 6)™*
k=0 k=0

when ¢ is large enough.

Hence by Equation A.10, there exists ¢ty such that for any ¢ > ¢,

R g LLa®™
. t’;’“i( )5 < . (A.12)
= Fomald) H qr (0o — )"+
k=0
Note that
1 11 a(0) m (6)
k=0 . Nt k dk
tln{ } —Z " In {7%(00_5)] (A.13)

H (0 — 0)"™* k=0
k=0

The right-hand side of A.13 converges to Dxr,(Qg,||Qo,—s) — Drr(Qs,|1Q5)
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which is negative since < y—6 < 6. Thus, the left-hand side of A.13 converges
to a negative limit, which implies that the argument of the logarithm tends to

zero. As a consequence there exists t; such that ¢ > t; implies

H qk(g)nz,k
k=0

i 0
1T a0 — 6y B
k=0

Equation A.12 implies that for any ¢ > max (to, 1),

Ft,ht,i(a)

— < €.
1—Fip,i(0)

This proves that Fjp,;(d) — 0 almost surely for any § < 6. Similar ar-
guments show that Fj,;(f) — 1 almost surely for any 6 > 6. Thus with
probability one F}, ; converges in distribution to Fi; defined by Fi ; = dg,-

B.3 Proof of Section 4.2.1

We first explain Equation 1. By Bayes’ rule, the agent’s subjective probabil-

ity of success from selecting arm 1 at the next trial equals

(1—-q)(1 = v)p B () + [(1 = @)v + q(1 = v)|pm B (pm) + qupn By (pn)
(1 —=q)(1 —=v)B"(p) + (1 = q)v + q(1 = v)]B{" (pm) + qvBi" (pn)

A.14)

His subjective probability of success from selecting arm 2 equals

(1 =1 = v)B" () + vB" (pw)][(1 — v)p1 + vpii]
(1-q)(1—=v)B(p) + (1 = Qv+ q(1 = v)] By (pm) + qvB;" (pn)
q[(1 = v)B;" (pm) + vBi" (pn)][(1 = v)pm + vpa]
(1—=q)(X=v)B () + (1 = qv + q(1 = v)]Bi" (pm) + qvBi" (pr)

(A.15)

_|_

The agent strictly prefers selecting arm 2 if and only if expression A.14 is
smaller than expression A.15. After some algebra, this condition simplifies to
condition 1.

We now prove that if condition 1 is satisfied for some parameter values
(q,m4,t), it is also satisfied in (¢’,ny,t) for any ¢’ > ¢ and in (¢,n’,t) for any
n < ng.

Indeed, given that p; < p,, < pp it is easy to check that, for any (ng,t),
B (pn) > B{"(pm) implies that B;"(p,) > By (p)). Hence, if condition 1 is
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satisfied for some ¢ < 1 we must have By (py) < B;"(pm), which implies that
the condition is satisfied in ¢’ = 1; since Equation 1 is affine in ¢, it is therefore
satisfied for any ¢ > ¢. In addition, if condition 1 is satisfied after n;, > 1

successes then

(1= @) (pm — P)IB (pm) — BY* (1)) + a(pr — pm) (B (pn) — B (pm)]

1- 1-
B (pm) — B ()]

m

1 — Ph 1
B{"(pn) —

= (1= q)(Pm —m)I
— Pm

(1= 0)(pm = P)B () = By (0] + a(pn = P B (pn) = B} (o)

l=p . 1=pm 1=Dn < L —pm

p Pm Ph Pm

+ q(pr — pm)| By (pm)]

1 — Pm
Pm

<

since —

<0

and thus the condition is satisfied after n; — 1 successes. By induction it is

satisfied for any n’ < n;.

B.4 Proof of Proposition 4

We start by establishing some general properties of the decision problem and
of the value function. We then prove Propositions 4.1 and 4.2 in turn. The proof
that the agent stops experimenting in finite time almost surely is included in
both parts.

B.4.1 Preliminaries

In all this subsection we assume that the agent’s true ability is 6.

The agent’s beliefs about his own ability and the current environment are
summarized by the probability distribution A = («, 3,7, w) over the two-dimensional
variable (X, 0): (a, 8,7, w) are the weights assigned to the states (), 8), (A, 8), (), 8),
and (A, ). If the agent tries a new environment while his current beliefs assign
a weight ¢ to 0, then A = [(1 —v)(1 —q),v(1 — q), (1 — v)q, vq].

Let

p(A) = apy + (B + 7)pm + wpn

be the immediate expected reward from the current environment under beliefs
A.
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Let .
W(A,0) =Ea)_d'm(oy)
=0

be the value of a strategy o given initial beliefs A. The value function of the
problem is
V(A) =supW (A4, o).
g

For any A = (o, 5,7,w), let

1

A= apy, Bpm, YPm, wWph
Oépl+(,8+7)]9m+wph[ e ]

be the updated distribution after a success in the current environment. Let ¢A
be defined similarly, as the updated distribution after a failure in the current

environment. Lastly, let
hA = |(a+B)(L—v),(a+ B, (y+0)(1 —v),(y+ o)

be the distribution of states corresponding to arm 2.
The space of possible distributions A is endowed with the Euclidean topology

on the three-dimensional simplex.

Lemma A.4. There exists an optimal strategy. The value function V is contin-

uous in A and satisfies
V(A) = max |p(A) + dp(A)V (A) + 6(1 — p(A))V(9A), V(hA)]-

Proof. The existence of an optimal policy and the Bellman equation follow from
standard arguments since the value of any strategy is bounded between 0 and
1/(1=9).

To prove the continuity of V| fix a distribution A, an optimal strategy o
under A and € > 0. Fix T such that §771/(1 — §) < ¢/4.

Since the rewards are Bernoulli, there exists a constant a > 0 such that, for
any distribution B such that |A — B|| < a, the probabilities of any history up
to date T under A and under B differ by at most ¢/ (T + 1). This implies that

€

T T T
E Stry —E Sty < __c __ <
| U,A; ¢ a,B; 7Tt| > nz:OnT(T—i—l) 9
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T T

T T
<W(A,0) =~ EBoa)  6'm| + [Eoa) 6'm —Eopd  'm|+|EepY  o'm — W(B,o0)]
t=0 t=0 t=0 t=0

Hence, in the B-bandit the strategy o delivers a value at least equal to
V(A) — €, which implies V(B) > V(A) — e. The symmetric reasoning shows that
V(A) > V(B)—¢, and thus |[V(B) —V(A)| < € for any B such that |A—B|| < a.
This proves the continuity of V. O

Let us write V1(A) = p(A) + 0p(A)V (P A) + (1 — p(A))V(pA) and Va(A) =
V (hA) for the expected payoffs obtained after pulling arm 1 or arm 2 respectively,
and playing optimally thereafter.

For any ¢ € [0,1], let Ag, = [(1 — ¢)(1 — v),(1 — ¢)v,q(1 — v),qv] be the

agent’s beliefs if he tries a new environment with a self-confidence gq.
Lemma A.5. V(Ag,) is strictly increasing in q.

Proof. Consider ¢ < ¢’ and let Ag 4 and Ag 4 be the corresponding initial distri-
butions. Consider any date ¢ and a history h; of outcomes up to date ¢, possibly
in different environments. Let fy g(h:) be the (ex ante) probability of observing
the history h; conditional on the true type being  and the current environment
at date t being of type A; let f) 5(ht), fx o(ht), and f55(h¢) be defined similarly.

Starting from the distribution Ao g the agent’s posterior beliefs A; , at date

t are proportional to

(1= @) =) fap(he), (1= Qv 5 g(he), a1 = v) £y 5(he), av 5 5(Re)]-

Thus, the agent’s subjective distribution over the immediate success probability
of arm 1 is strictly increasing in ¢ in the monotone likelihood ratio ordering.
Hence, p(Asq) > p(Atq) for any ¢’ > gq.

The agent’s posterior beliefs hA;, over arm 2 are proportional to

(1= @)1 = )1 =) fap(he) + v f55(h)], (1= @[ = v) fap(he) + v 5 5(he)],
a(1 = )[(1 = v) fy5(he) + v fzg(ho)], av[(L = ) fy 5(he) + v f55(he)]].

Ay
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Similarly, the agent’s subjective distribution over the immediate success proba-
bility of arm 2 is strictly increasing in ¢ in the monotone likelihood ratio ordering.
Hence, p(hA;y) > p(hAy ) for any ¢’ > q.

Hence at any date ¢t and for any history h;, the reward from each arm is
strictly greater under distribution A; , than under distribution A;,. If o is an
optimal strategy for the g-bandit the value of o in the ¢’-bandit is therefore
strictly greater than V' (Agg). This implies V/(Ag 4) > V(Aoq)- O

Lemma A.6 relies on arguments similar to the proof of Proposition 3 and is

provided without proof.

Lemma A.6. On any path on which the agent experiments an infinite number

of environments, g — 0 almost surely.

Lemma A.7. There exists 1 > 0 and ¢* > 0 such that for any q < q*, if
the agent tries a new environment with initial self-confidence q then the agent’s

probability of staying in this environment forever is greater than .

Proof. For any ¢ € [0,1], let A, , be the agent’s posterior distribution up-
dated from the prior Ap, following n; successes and ¢ — n; failures in the same

environment.

Claim A.3. There exists k1 > 0, € > 0 such that

n
Tt 2 Pm — K1 = W(At,nt,O) - V2(At,nt,0) > €.

Proof. Take k1,¢ > 0 such that

1
(P — 51) I 2™ (1= pp + 1) In =2 > (A.16)
DI L—p
Such a pair (K1, ) exists by continuity since the left-hand side of A.16 is positive
for k1 = 0.

Consider any (ng,t) such that ny/t > p,, — k1. Then

Nt . Pm uz 1—pm
—In—+(1——)In >
t m ( t) 1—m

which implies

P (L= p) 7" > ept (1 =)' 7" > pft (1 —pr)' =",
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Note that

(L= v)p L = p)™"™ 4+ vpt (1 — pp)t ™

A p—
p( tynt70) (1 _ V)plnt(l . pl)tfnt + I/p%(l _ pm)tfnt

and

p(hAtn,0) = (1= v)pr + vpm

which implies that

v(1 = v)(pm — )P (1 = pm) ™™ — 9" (1 —Pz)t_"t]'

At o) —p(hA4n, 0) =
p( t, t,O) p( t, z,(]) (1 _ V)p?t(l _ pl)tfnt + Vp;l,f(l _pm)tfnt

Hence, for any (ny,t) such that n;/t > p,, — k1, we have

t—n¢

v(1=v)(pm —p)(1 — e “)ppt (1 — pm)
At o) — p(RAs o) > ——
p( t) 70) p( t7 70> 1 _ pm)t ng

> €

where e = v(1 — v)(pm — p1)(1 — e7*) is positive since ¢ > 0.

In addition, arguments similar to those used in the proof of lemma A.5 show
that if p(A¢n,.0) > p(hAtn,0) then the continuation value after pulling arm 1 is
greater than the continuation value after pulling arm 2. Hence, for any (n,t)

such that n;/t > p,, — k1 we get

Vi(Atne0) = Va(Aing0) = (At 0) — (A, 0) > €.

This completes the proof of claim A.3. O

Claim A.4. There exists ko > 0 and M > 0 such that

n
V(] € [0, 1]7 Tt S DPm + Ko = HhAt,nt,q - hAt,nt,O | < MQ~

Proof. The posterior distribution hA; , 4 is given by
hAt,nt,q == [(1 - V)(l - Qt,nt)a V(l - Qt,nt)7 (1 - V)Qt,n“ VQt,nt]

where ¢ p,, is characterized by

G q vp'(L=pn)"" 4 (L= v)pi (L= pm) ™
L=, 1—qupn(l—pn) =™+ 1 —v)p"(1—p)""

(A.17)
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Take ko > 0 such that

]__
(pm—I—mg)ln;)—h—i-(l—pm—m)lnl P

m — Pm

< 0. (A.18)

Such a number ko exists by continuity since the left-hand side of A.18 is negative
for ko = 0.
Consider any (n¢,t) such that ny/t < p,, + k2. Then

PPl —pp)t T < PRl — p)t ™

which together with A.17 implies

Gim 4 pr(l — pp)t™
L—qim, — 1—qupni(1—pp)t=™ + (L —v)p/* (1 — py)t—m
q 1
“1—qv

which implies g, < ¢/v.
Then for any (n,t) such that n./t < p,, — ko,

||hAt,nt,q - hAt,nt,OH = Qt,nt\/i\/ v? 4 (1 - V)2
L oN RN )
14

1
The proof follows from defining M = —v/2,/v2 + (1 — v)2. O
v

Claim A.5. There exists tg € N such that, conditional on staying in an envi-

ronment of type \ forever, the condition

n n
[Vt, 715 > pm — K1) and [Vt > to, Tt < Pm + f‘fz]

1s satisfied with positive probability.

Proof. We write A for the complement of an event A. Let Q be the event
{Vt,n/t > pm — K1}. Suppose that the environment is of type A and consider
the martingale Y; = 3" _, (ny — pin) and the stopping time « € NU{+00} defined
by ¢« = inf{t € N | ¥; < 0}. Suppose that ¢ is finite with probability one. The
optional stopping theorem implies that E[Y,] = E[Y1] = 0. But since ¢ is finite

with probability one we also have E[Y;] < 0, which is a contradiction. Hence,

51



with some positive probability ¢ is infinite, i.e.
¢
Znt > pmt > (pm — K1)t for all ¢
s=1

This implies that the event Q has positive probability. Let v = P(2) > 0.
Let E; be the event {n; > (pm, + k2)t}. By Hoeffding’s inequality,

P(Ey) < exp (—2#5t)

and thus ), P(E;) < +00. The Borel-Cantelli lemma implies that

P(F]OUE) ~0

t=1 s>t

and thus
tlg-noop( U ES) =0

s>t

Take ty such that

We have

This completes the proof.

Claim A.6. There exists ¢* > 0 such that, for all ¢ < ¢*,
Vt < t07vnt7 ‘/Q(At,nt,q) < VQ(At,nt,O) +e€

and
n
vt > to, 7': < pm + k2 = Vo(Arn,q) < Va(Ain,0) +e

Proof. By claim A.4, the distance between hA;,, , and hA;,, o is uniformly

bounded by an expression of the form Mg when ¢t > tg and ny/t < pp, + Ko.

Since t is fixed, it is easy to see that the distance between hA; ,, 4 and hA;p, 0

can also be uniformly bounded by an expression of the form M’q for all (ny,t)

such that ¢t < tg. Since V is continuous, it is thus possible to select ¢* small
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enough to make sure that ¢ < ¢* implies that V(hA;,,0) — V(hALn, q) < € for
all (ng,t) that satisfy one of the two above conditions. Conditions A.19 and A.20
follow from Vo =V o h. O

To complete the proof of lemma A.7, take €, k1, K9,y as defined in claims
A.3—A.6, and let 7’ > 0 be the probability with which the condition of claim
A5 is satisfied in an environment of type A. By claims A.3 and A.6, for all
t we have Vi(Atn,0) > Va(Ain,0) + € and Vo(Ain,q) < Va(Ain,0) +e In
addition, arguments similar to those used in the proof of lemma A.5 show that
Vi(Atneg) = Vi(Agn, o) for all ¢ > 0. Hence, for any ¢t we have

Vl(At,m,q) - VQ(At,nt,q) > Vl(At,m,O) - %(At,nt,q)
2 Vl (At,nt,(]) - ‘/Q(At,nt,O) - [%(At,nt,q) - ‘/YQ(At,nt,O)]

-~ -~

>€ <e

> 0.

Hence, at any date t the agent finds it optimal to stay in the current environment.
Thus if the environment is of type X the probability with which the agent stays in
this environment forever is at least 7’. Note that 7’ is independent of q. Defining

m = v’ completes the proof. ]

B.4.2 Proof of Proposition 4.1

First step We first prove that the agent stops experimenting in finite time
almost surely. Let us proceed by contradiction and assume that the agent ex-
periments forever. Suppose first that ¢; converges to 0. There exists tg such
that ¢¢ < ¢* for any t > t3. Thus, by lemma A.7 for any new environment
tried at a date t > ty the probability of staying in this environment forever is
at least m > 0. This implies that the agent stops experimenting in finite time
with probability one. The other case in which ¢; does not converge to zero also
happens with probability zero due to lemma A.6. This shows that the agent
stops experimenting in finite time almost surely.

In addition, suppose that the last environment is of type A. If A; converges
to (1,0,0,0), by continuity of the value function the value of arm 1 converges
to V[(1,0,0,0)] whereas the value of arm 2 converges to V[(1 — v), v, 0, 0] which
is strictly greater. Thus for t sufficiently large it must be optimal to leave the
environment, which is a contradiction. Hence, if the last environment is of type

A the sequence A; does not converge to (1,0,0,0), which is a zero-probability
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event. This proves that with probability one the agent stops experimenting in

finite time in an environment of type \.

Second step Now, let us prove that ¢ is bounded above. Let ¢ be the agent’s
initial self-confidence when he tried his last environment for the first time. With

probability one ¢; converges to

q(1—v)
g1 —v)+(1-qv

oo =

To prove that g is bounded above, note that V' (Ag ) is a strictly increasing
and continuous function of ¢ that satisfies V(Aoo) < pm/(1 —98) < V(Apa).
Thus there exists ¢ € (0,1) such that

T 1-=94

Suppose that goo > q. Ay converges to (0,1 — ¢oo, oo, 0) almost surely, in
which case the value of arm 1 converges to p,,/(1 — §) whereas the value of arm
2 converges to V(Ao q..) > pm/(1 — 0); thus, the agent must find it optimal to

leave in finite time, which is a contradiction. Hence g, < ¢ almost surely.

B.4.3 Proof of Proposition 4.2

Lemma A.7 implies that there exists ¢* > 0 such that for any ¢ < ¢*, if the
agent tries an environment of type A with initial self-confidence ¢ then the agent

stays forever in this environment with positive probability.

First step That the agent stops experimenting in finite time almost surely

and that g, converges relies on arguments similar to the proof of Proposition 4.1.

Second step We first show that with probability one either of cases 4.2a or
4.2b is realized. If the last environment is of type A, then with probability one
the asymptotic success rate converges to pp and thus ¢; converges to 1. If the
last environment is of type A, a reasoning similar to the proof of Proposition 1
shows that with probability one ¢, must be bounded above by some constant

q, otherwise the agent would leave the environment in finite time.

16Indeed, lemma A.7 only requires that with positive probability the agent selects an
environment in which the expected success rate is p,,. This is the case here if § = 6 for
an environment of type .
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Our final step is to show that both cases 4.2a and 4.2b happen with positive
probability. First, we argue that for any initial self-confidence g there exists
an integer tg > 1 such that, if the first ¢y attempts made by the agent in a
new environment are unsuccessful, the agent’s optimal action is to switch to a
new environment. Thus, there exists an integer ¢ such that, if the agent has
failed at every period up to date t (and switched optimally on that path), then
g < ¢*. Such a number ¢ exists since ¢ — 0 when t — oo if the agent fails at each
period. In addition, ¢ can be chosen to make sure that the agent switches to a new
environment at date ¢. Failing ¢ consecutive times is a positive-probability event,
and the agent stays forever in an environment of type A with positive probability
thereafter. This proves that case 4.2a happens with positive probability.

Arguments similar to those used in the proof of lemma A.7 show that we
can construct a path on which the agent succeeds at every period until ¢ exceeds
some threshold ¢, after which the agent has a positive probability of staying in
his current environment if this environment is of type X. Case 4.2b thus also

happens with positive probability.
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