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Abstract

I show that deterministic dynamic contracts between a principal and

an agent are always at least as profitable to the principal as stochastic

ones, if the so-called first-order approach in dynamic mechanism design is

satisfied. The principal commits, while the agent’s type evolution follows a

Markov process. My results demonstrate, even when allowing for potential

correlation of stochastic contracts across periods that the usual restriction

in the literature to deterministic contracts is admissible, as long as the

first-order approach is valid.

JEL Code: D82, D86
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1 Introduction

In recent years, there has been an increased interest in dynamic mechanism de-

sign, e.g. Courty and Li (2000), Battaglini (2005), Pavan et al. (2009), Kapicka

(2010), Gershkov and Perry (2012), Eső and Szentes (2013), Li and Shi (2013),

∗Humboldt-Universität zu Berlin, Institute for Economic Theory 1, Spandauer Str. 1,
D-10178 Berlin (Germany), thomas.schacherer@hu-berlin.de. Financial support by Deutsche
Forschungsgemeinschaft through CRC TRR 190 is gratefully acknowledged.
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Pavan et al. (2014), Battaglini and Lamba (2017), Deb and Said (2015) and

Krähmer and Strausz (2015) discuss this issue. All these papers, however, restrict

to deterministic mechanisms accepting that this assumption is often with loss of

generality. Moreover, most of these papers use the local approach to characterize

optimal mechanisms, the so-called first-order approach, which means that only

local downward binding IC-constraints have to be taken into account.

Extending Strausz (2006) to a dynamic framework, I show that the ad hoc re-

striction to deterministic contracts is without loss valid if the first-order approach

is valid.

The extension is not immediate, because stochastic mechanisms in a dynamic

framework also allow for intertemporal correlation, an issue which in a static

framework does not arise.1

2 Model

There are two players, a principal and an agent. In each period t ∈ T :=

{1, . . . , T}, T > 2,2 the agent consumes a quantity qt ∈ R+ at some price pt ∈ R.

This generates a per-period utility of u(θt, qt) − pt for the agent, where θt ∈

Θ := {θN , . . . , θ0} ⊂ R represents agent’s type in period t ∈ T . I follow the

standard assumptions in the literature that u is twice continuously differentiable

in both arguments, increasing in both arguments, with u(·, 0) = 0, is concave in

qt and satisfies the single crossing condition, i.e. marginal utility is higher for

higher types. The principal produces qt given a cost function c(qt). This function

fulfills as well usual conditions. There are no fixed costs, it is twice continuously

differentiable, increasing and convex. To guarantee an interior solution, I assume

that marginal costs vanish at 0 and tend to infinity if the quantity tends to

infinity.

In the first period, the principal commits to a long term contract to the agent

who has the opportunity to accept or reject it. In every later period t ∈ T \{1}, he

decides to continue or to terminate the relationship. Once the agent terminates

1Pavan et al. (2014) in Corollary 2 (iv) mention without formal proof that results of Strausz
(2006) imply an optimality of deterministic contracts, but they neglect the possibility of in-
tertemporal correlation.

2It is not important for the analysis if T is finite or not. The results still hold for T = ∞,
the proofs become however more extensive.
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the contract, he has no possibility to rejoin the contract.

2.1 Basic Assumptions

For notational convenience, I assume that agent’s types are equidistant, i.e. ∆θ :=

θi−1 − θi > 0 for all i ∈ I\{0}, where I := {0, . . . , N} is the set of all indices of

types.3 The initial type of the agent is chosen from a prior distribution f(θi) =:

µi ∈ ]0, 1[ for all i ∈ I, with
∑

i∈I µi = 1, which is common knowledge. Its

cumulative distribution function is therefore F (θi) =
∑N

j=i µj, for all i ∈ I. In all

later periods the type changes according to a Markov process. The probability

that the agent’s type changes from θi to θj is given through f(θj|θi) =: αij ∈ ]0, 1[,

for all i, j ∈ I and for every period t ∈ T . This reflects the Markov property

of independence regarding time and earlier types. It fulfills
∑N

j=0 αij = 1, for

all i ∈ I and for simplicity, I assume full support of the conditional distribution,

i.e. αij > 0 for all i, j ∈ I. The corresponding cumulative distribution function

F is given through F (θk|θi) =
∑N

j=k αij, for all i, k ∈ I. I also follow the usual

convention of first order stochastic dominance, i.e. F (θk|θi) > F (θk|θi−1) or

0 ≤ ∆F (θk|θi) := F (θk|θi)− F (θk|θi−1), for all k ∈ I and all i ∈ I\{0}.

In the following, I use the notation θt to characterize the agent’s type in

period t ∈ T .4 Moreover, let θt ∈ Θt be the evolution vector θt := (θ1, . . . , θt)

of agent’s types from period 1 up to period t, for all t ∈ T . The whole type

path is denoted by θ := θT ∈ ΘT . In addition, let Θt+τ (θt) := {ϑt+τ ∈ Θt+τ :

ϑs = θs, ∀ 1 6 s 6 t}, for all t ∈ T , all θt ∈ Θt and all 0 6 τ 6 T − t.

Furthermore, let qt := (q1, . . . , qt) ∈ R
t
+ be the vector of quantity realizations

and pt := (p1, . . . , pt) ∈ R
t the price-vector with pt = p(qt), each from period 1

up to period t ∈ T , where q := qT , p := pT are the corresponding vectors over

the whole time horizon T . By the revelation principle, it suffices that qt and pt

depend on the current report θt and earlier reports and realizations. Recursively,

one can denote qt as the occurred realization of q(θt|q
t−1, θt−1) for all t ∈ T ,

whereby q0, θ0 ∈ ∅.

3As in Strausz (2006), I assume a finite number of types to circumvent measure theoretical
complications.

4The notation θt characterizes the stochastic process of agent’s type which takes values in
Θ, whereas θi specifies a possible event of agent’s type in any period. Therefore, expressions
like θ1 are ambiguous, but it should become clear in the specific situation.

3



2.2 Stochastic contracts

In order to represent stochastic contracts, I distinguish between the realized quan-

tity qt and the random variable q(θt|h
t−1), which depends on agent’s report θt

in the current period and the history ht−1 of previous reports θt−1 and quantity

realizations qt−1. Here, I use ht := (θt, qt) the history of previous types and oc-

curred realizations with ht ∈ H t := Θt × R
t
+, for all t ∈ T and let h0 ∈ H0 := ∅.

Therefore, q(θt|h
t−1) defines on the image space (R+,B(R+)) the implementation

function

ξ(·|ht−1, θt) : R+ −→ [0, 1],

ξ(qt|h
t−1, θt) = P(q 6 qt|h

t−1, θt),

for all qt ∈ R+.

Indeed, the principal can choose the weights of possible outcomes over R+

of the implementation function depending on the history of type reports θt−1,

the current report θt and the history of previous realized quantities qt−1. This,

however, creates in addition to the reports of agent’s type, a second uninforma-

tive channel for both, the agent and the principal.5 Furthermore, it allows for

interdependences between the random variables over several periods. I use the

notation

ξθt(qt|q
t−1) := ξ(qt|h

t−1, θt), (1)

which illustrates the dependence of ξ of current and previous reports. With

Bayes’ rule and the fact that qt−1 is independent of θt one obtains

dξθt(qt|q
t−1) . . . dξθ1(q1) = dξθt(q

t),

for all t ∈ T . Hence, ξθ reflects the implementation function of the whole alloca-

tion vector q ∈ R
T
+.

5I assume that prices p(qt) are deterministic, which is due to quasi-linear utilities without
loss of generality.
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2.3 Agent’s continuation utility

After signing the contract, the agent receives in every period t ∈ T a quantity

qt ∈ R+ chosen from a lottery for a price pt ∈ R. Moreover, he discounts future

utilities by δ ∈]0, 1[. Therefore, one can define his continuation utility recursively

as

Definition 1. The agent’s continuation utility under truth-telling in period t ∈ T

is given through

U(θt|h
t−1)

:=

∫ ∞

0



u(θt, qt)− pt + δ
∑

θt+1∈Θ

f(θt+1|θt)U(θt+1|h
t−1, θt, qt)



 dξθt(qt|q
t−1).

2.4 Timing

The time structure is as follows. At the beginning, the agent learns his ini-

tial type θ1 ∈ Θ. Then, the principal offers a contract {p, ξθ} or equivalently

{U, ξθ}, which incorporates in every period t all possible type reports θt of the

agent and all possible histories ht−1 ∈ H t−1. U represents the vector U =

(U(θ1|h
0), . . . , U(θT |h

T−1)) of agent’s continuation utility. After the contract pro-

posal, the agent decides whether to accept or reject the offer. If he accepts, he

gives in a report θ1 and ξθ1(q
1) is realized. In the beginning of every later period

t > 1, the agent learns his new type drawn from f(θt|θt−1) and decides to con-

tinue or terminate the contract. If he continues, he gives in a new report θt and

ξθt(qt|q
t−1) is realized.

Since in every period, the agent can terminate the contract, the principal has

to take into account the IR-constraints in every period. If the agent terminates,

he cannot resume to the contract, therefore the IR-constraint IR(θt|h
t−1) can be

described as

U(θt|h
t−1) > 0, (2)

for all θt ∈ Θ, all ht−1 ∈ H t−1 and all periods t ∈ T .

For the IC-constraints, in every period t ∈ T , the principal has to give incen-

tives to the agent to report his true type θt ∈ Θ instead of any other type ϑt ∈ Θ.

Since the history-path ht−1 only depends on previous type reports and not on
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previous true types, the IC-constraint IC(θt, ϑt|h
t−1) can be characterized by

U(θt|h
t−1) > U(ϑt|h

t−1) +

∫ ∞

0

(u(θt, qt)− u(ϑt, qt))dξ(θt−1,ϑt)(qt|q
t−1)

+ δ
∑

θt+1∈Θ

(f(θt+1|θt)− f(θt+1|ϑt))
∫ ∞

0

U(θt+1|h
t−1, ϑt, qt)dξ(θt−1,ϑt)(qt|q

t−1),

(3)

for all θt, ϑt ∈ Θ, all ht−1 ∈ H t−1 and all periods t ∈ T . Note that only one time

deviations have to be considered since after any deviation to ϑt, the highest future

continuation utility is given by U(θt+1|h
t−1, ϑt, qt) if all future IC-constraints are

fulfilled.

Given these inequalities the principal’s objective is to maximize her expected

surplus, i.e.

max
{U,ξθ}

{

∑

θ1∈Θ

f(θ1)(S(θ1)− U(θ1))
}

, (4)

s.t. (2) and (3) are satisfied, whereby

S(θt|h
t−1) :=

∫ ∞

0



s(θt, qt) + δ
∑

θt+1∈Θ

f(θt+1|θt)S(θt+1|h
t−1, θt, qt)



 dξθt(qt|q
t−1)

(5)

is the aggregated continuation surplus and s(θt, qt) := u(θt, qt) − c(qt) the per-

period aggregated surplus in period t, for all t ∈ T , with S(θT+1|h
T ) := 0, for all

histories hT ∈ HT .

3 Optimal contracting under the first-order ap-

proach

As in Battaglini and Lamba (2017), I define the first-order approach as follows:

Definition 2. A contract is first-order optimal if and only if it is sufficient to

consider the relaxed problem, including only {IR(θt = θN |h
t−1)}t∈T and {IC(θt =

θi, ϑt = θi+1|h
t−1)}t∈T , for all i ∈ I\{N}, and the other constraints can be

disregarded.

Following now the same arguments as in Battaglini and Lamba (2017), I get
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the following Lemma, which differs only to their result by allowing for stochastic

contracts.

Lemma 1. In the relaxed problem, the principal’s objective (4) simplifies to

∑

θ1∈Θ

f(θ1)(S(θ1)− U(θ1)) =
∑

θ∈ΘT

T−1
∏

s=0

f(θs+1|θs)

∫

R
T
+

V (θ, q)dξθ(q), (6)

where V (θ, q) :=
∑T−1

τ=0 δ
τv(θτ+1, qτ+1) captures the virtual surplus over the whole

time horizon T depending on reported types θ and occurred realizations of quan-

tities q and

v(θτ , qτ ) := s(θτ , qτ )−
1− F (θ1)

f(θ1)

τ−1
∏

s=1

∆F (θs+1|θs)

f(θs+1|θs)
∆u(θτ , qτ )

denotes the virtual surplus in period τ ∈ T .

With this representation, principal’s objective simplifies to a maximization

problem of V with respect to ξθ, which allows for any kind of mixing across

periods. Given that such a representation of principal’s objective exists, the static

proof of Strausz (2006) extends to dynamic environments, i.e. the principal gets

the maximal profit if she maximizes V with respect to q for every given θ ∈ ΘT .

Hence, for any q̂ ∈ argmaxq∈RT
+
V (θ, q), a contract with implementation function

ξ̂θ(q) that is equal to 1 if q > q̂ maximizes principal’s objective, i.e.

∑

θ∈ΘT

T−1
∏

s=0

f(θs+1|θs)

∫

R
T
+

V (θ, q)dξθ(q)

6
∑

θ∈ΘT

T−1
∏

s=0

f(θs+1|θs)

∫

R
T
+

V (θ, q)dξ̂θ(q)

=
∑

θ∈ΘT

T−1
∏

s=0

f(θs+1|θs)V (θ, q̂).

Hence, stochastic contracts are at most as profitable for the principal as deter-

ministic contracts. This result is summarized in

Proposition 1. Consider a dynamic setting with T < ∞ periods in which the

first-order approach holds. Then, deterministic contracts are always superior
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than stochastic contracts.

The idea of the proof is as follows. Since the principal has full commitment to

her initially offered contract, she cannot react to history ht−1 ∈ H t−1 in any later

period t > 2. Therefore, the principal maximizes her expected discounted sum

of virtual surpluses V (θ, q) with respect to q ∈ R
T
+. Hence, she always prefers to

choose such quantities that maximize the expectation of V (θ, q) like q̂ ∈ R
T
+. If

there are multiple maximizers, she could randomize between them, but still, the

deterministic quantity q̂ would provide at least the same surplus to the principal.

Battaglini and Lamba (2017), however, already mention that the first-order

approach is often not justified, and they state the optimal deterministic contract

in a specific but enlightening example, which is even optimal in the wider set of

all stochastic contracts. In a more general setup, however, it could be with loss

of generality to restrict to deterministic contracts only.

4 Conclusion

This paper shows that stochastic contracts do not yield higher profits to the

principal in dynamic contracting, if the first-order approach is valid. In situations

for which the first-order approach does not work, it remains an open question

whether stochastic contracts could yield higher profits to the principal. However,

a proper analysis of stochastic contracts in such environments is complicated,

since already no characteristic result of optimal deterministic contracts exists

when the first-order approach fails.

5 Appendix

To prove Lemma 1, I show first two necessary Lemmata:

Lemma 2. If the first-order approach is valid, the agent’s continuation utility

U(θt|h
t−1) has the explicit representation

U(θt = θi|h
t−1) =

N
∑

j=i+1

T−t
∑

τ=0

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

t+τ−1
∏

s=t

∆F (θs+1|θs)

·

∫

R
τ+1

+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|q
t−1),
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for all i ∈ I and all t ∈ T .

Proof of Lemma 2. Let t ∈ T , and ht−1 ∈ H t−1 be an arbitrary history-path.

Under the first-order approach, the IR-constraint is always binding for θN , i.e.

U(θt = θN |h
t−1) = 0.

Moreover, the IC-constraints are downward binding, i.e.

U(θt = θi|h
t−1) = U(θt = θi+1|h

t−1) +

∫ ∞

0
∆u(θt = θi+1, qt)dξ(θt−1,θt=θi+1)(qt|q

t−1)

+δ

N
∑

k=0

(αik − α(i+1)k)

∫ ∞

0
U(θt+1 = θk|h

t−1, θt = θi+1, qt)dξ(θt−1,θt=θi+1)(qt|q
t−1),

for all i ∈ I\{N}. Plugging in recursively all binding IC-constraints for all

i < j < N , and the binding IR-constraint for θN , one obtains

U(θt = θi|h
t−1) =

N
∑

j=i+1

∫ ∞

0

∆u(θt = θj, qt)dξ(θt−1,θt=θj)(qt|q
t−1)

+
N
∑

j=i+1

δ

N
∑

k=0

(α(j−1)k − αjk)

∫ ∞

0

U(θt+1 = θk|h
t−1, θt = θj, qt)dξ(θt−1,θt=θj)(qt|q

t−1),

for all t ∈ T , and all histories ht−1 ∈ H t−1, whereby U(θT+1|h
T ) := 0 for all

histories hT ∈ HT . Now, I show the explicit representation of U(θt = θi|h
t−1)

by means of backward induction. The basis for t = T is given through the last

equality. For the inductive step for t+ 1 to t, one has

U(θt = θi|h
t−1) =

N
∑

j=i+1

∫ ∞

0
∆u(θt = θj , qt)dξ(θt−1,θt=θj)(qt|q

t−1)

+
N
∑

j=i+1

δ

N
∑

k=0

(α(j−1)k − αjk)

·

∫ ∞

0

N
∑

l=k+1

T−(t+1)
∑

τ=0

δτ
∑

θt+τ+1∈Θt+τ+1(θt−1,θj ,θl)

t+τ
∏

s=t+1

∆F (θs+1|θs)

·

∫

R
τ+1

+

∆u(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt+1|q
t)dξ(θt−1,θt=θj)(qt|q

t−1)
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=
N
∑

j=i+1

∫ ∞

0
∆u(θt = θj , qt)dξ(θt−1,θt=θj)(qt|q

t−1)

+

N
∑

j=i+1

T−t
∑

τ=1

δτ
N
∑

l=0

∆F (θl|θj)
∑

θt+τ∈Θt+τ (θt−1,θj ,θl)

t+τ−1
∏

s=t+1

∆F (θs+1|θs)

·

∫ ∞

0

∫

R
τ
+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt+1|q
t)dξ(θt−1,θt=θj)(qt|q

t−1)

=
N
∑

j=i+1

∫ ∞

0
∆u(θt = θj , qt)dξ(θt−1,θt=θj)(qt|q

t−1)

+

N
∑

j=i+1

T−t
∑

τ=1

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

∆F (θt+1|θt)
t+τ−1
∏

s=t+1

∆F (θs+1|θs)

·

∫ ∞

0

∫

R
τ
+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt+1|q
t)dξ(θt−1,θt=θj)(qt|q

t−1)

=
N
∑

j=i+1

T−t
∑

τ=0

δτ
∑

θt+τ∈Θt+τ (θt−1,θj)

t+τ−1
∏

s=t

∆F (θs+1|θs)

·

∫

R
τ+1

+

∆u(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|q
t−1),

for all i ∈ I.

�

Lemma 3. Under the first-order approach, the explicit representation of the con-

tinuation surplus S(θt|h
t−1) is given through

S(θt|h
t−1) =

T−t
∑

τ=0

δτ
∑

θt+τ∈Θt+τ (θt)

t+τ−1
∏

s=t

f(θs+1|θs)

·

∫

R
τ+1

+

s(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|q
t−1),

for all i ∈ I, all t ∈ T and all histories ht−1 ∈ H t−1.

Proof of Lemma 3. Using again backward induction, the basis for t = T follows
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directly from equation (5). The Lemma is therefore shown with

S(θt|h
t−1) =

∫ ∞

0
s(θt, qt)dξθt(qt|qt−1)

+δ
∑

θt+1∈Θ

f(θt+1|θt)

T−(t+1)
∑

τ=0

δτ
∑

θt+τ+1∈Θt+τ+1(θt+1)

t+τ
∏

s=t+1

f(θs+1|θs)

·

∫ ∞

0

∫

R
τ+1

+

s(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt+1|q
t)dξθt(qt|qt−1)

=

∫ ∞

0
s(θt, qt)dξθt(qt|qt−1)

+

T−t−1
∑

τ=0

δτ+1
∑

θt+τ+1∈Θt+τ+1(θt)

t+τ
∏

s=t

f(θs+1|θs)

·

∫

R
τ+2

+

s(θt+τ+1, qt+τ+1) dξθt+τ+1(qt+τ+1, . . . , qt|q
t−1)

=

∫ ∞

0
s(θt, qt)dξθt(qt|qt−1)

+
T−t
∑

τ=1

δτ
∑

θt+τ∈Θt+τ (θt)

t+τ−1
∏

s=t

f(θs+1|θs)

·

∫

R
τ+1

+

s(θt+τ , qt+τ ) dξθt+τ (qt+τ , . . . , qt|q
t−1).

�

Proof of Lemma 1. Now, it is easy to deduce Lemma 1 from Lemmata 2 and 3

by inserting U(θt = θi|h
t−1) and S(θt|h

t−1) for t = 1 into principal’s maximization

problem:

N
∑

i=0

µi(S(θ1 = θi)− U(θ1 = θi))

=
N
∑

i=0

µi





T−1
∑

τ=0

δτ
∑

θτ+1∈Θτ+1(θi)

τ
∏

s=1

f(θs+1|θs)

∫

R
τ+1

+

s(θτ+1, qτ+1) dξθτ+1(qτ+1)

−
N
∑

j=i+1

T−1
∑

τ=0

δτ
∑

θτ+1∈Θτ+1(θj)

τ
∏

s=1

∆F (θs+1|θs)

∫

R
τ+1

+

∆u(θτ+1, qτ+1) dξθτ+1(qτ+1)




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=

T−1
∑

τ=0

δτ
N
∑

i=0

µi





∑

θτ+1∈Θτ+1(θi)

τ
∏

s=1

f(θs+1|θs)

∫

R
τ+1

+

s(θτ+1, qτ+1) dξθτ+1(qτ+1)

−
1− F (θi)

µi

∑

θτ+1∈Θτ+1(θi)

τ
∏

s=1

∆F (θs+1|θs)

∫

R
τ+1

+

∆u(θτ+1, qτ+1) dξθτ+1(qτ+1)





=
T−1
∑

τ=0

δτ
∑

θ1∈Θ

f(θ1)
∑

θτ+1∈Θτ+1(θ1)

τ
∏

s=1

f(θs+1|θs)·

∫

R
τ+1

+

(

s(θτ+1, qτ+1)−
1− F (θ1)

f(θ1)

τ
∏

s=1

∆F (θs+1|θs)

f(θs+1|θs)
∆u(θτ+1, qτ+1)

)

dξθτ+1(qτ+1)

=

T−1
∑

τ=0

δτ
∑

θτ+1∈Θτ+1

τ
∏

s=0

f(θs+1|θs)

∫

R
τ+1

+

v(θτ+1, qτ+1)dξθτ+1(qτ+1)

=
T−1
∑

τ=0

δτ
∑

θτ+2∈Θτ+2

τ+1
∏

s=0

f(θs+1|θs)

∫

R
τ+2

+

v(θτ+1, qτ+1)dξθτ+2(qτ+2)

= . . .

=
∑

θ∈ΘT

T−1
∏

s=0

f(θs+1|θs)

∫

R
T
+

V (θ, q)dξθ(q).

�
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