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We consider a single object allocation problem with multidimensional signals

and interdependent valuations. When agents’ signals are statistically independent,

Jehiel and Moldovanu [Efficient design with interdependent valuations, Economet-

rica, 69(5):1237-1259, 2001] show that efficient and Bayesian incentive compatible

mechanisms generally do not exist. In this paper, we extend the standard model

to accommodate maxmin agents and obtain necessary as well as sufficient con-

ditions under which efficient allocations can be implemented. In particular, we

derive a condition that quantifies the amount of ambiguity necessary for efficient

implementation. We further show that under some natural assumptions on the

preferences, this necessary amount of ambiguity becomes sufficient. Finally, we

provide a definition of informational size such that given any nontrivial amount

of ambiguity, efficient allocations can be implemented if agents are sufficiently in-

formationally small.
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1 Introduction

One of the fundamental problems in mechanism design is the conflict between

efficiency and incentive compatibility. That is, there are situations in which effi-

cient allocations are not implementable. A prominent impossibility result is ob-

tained by Jehiel and Moldovanu (2001): in a general mechanism design setting

with multidimensional signals and interdependent valuations, if signals are statis-

tically independent, then except in some special, nongeneric cases, ex post efficient

and interim incentive compatible mechanisms do not exist.1 This result is obtained

under the standard assumption that agents are expected utility maximizers. How-

ever, there is both experimental and empirical evidence challenging the expected

utility assumption: due to lack of knowledge about the environment, agents may

perceive ambiguity, that is, they might not have a unique prior that fully describes

the uncertainty that they face, and moreover, agents desire strategies that are ro-

bust to their ambiguity.2 Thus, the primary question we ask is: does the conflict

between efficiency and incentive compatibility extend to environments with am-

biguity averse agents? In the case of maxmin expected utility (Gilboa and Schmei-

dler (1989)), our answer is: No. That is, we show that the presence of ambiguity

aversion overturns the impossibility result of Jehiel and Moldovanu (2001). In par-

ticular, we extend the Myersonian approach to a single object allocation problem

with maxmin agents and explicitly identify necessary and sufficient conditions for

efficient implementation. In addition, we provide conditions under which the effi-

cient allocation is implementable with a small amount of ambiguity.

Our first step is to derive a necessary condition for an allocation rule to be im-

plementable which generalizes the envelope formula familiar from Bayesian mech-

1Jehiel and Moldovanu (2001) generalize earlier results by Maskin (1992) and Dasgupta and Maskin
(2000).
2Experimental results on the Ellsberg paradox reveal that agents exhibit ambiguity averse behavior
in many situations (e.g., Ellsberg (1961), Halevy (2007)). Aryal et al. (2018) find empirical evidence
of ambiguity in U.S. timber auctions.
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anism design. This condition quantifies a nontrivial amount of ambiguity, which

we call Minimal Ambiguity, that is necessary for efficient and incentive compatible

mechanisms to exist. That some ambiguity is necessary is consistent with the im-

possibility result obtained by Jehiel and Moldovanu (2001) in the sense that with-

out ambiguity the requirements of efficiency and incentive compatibility become

incompatible.

Our next step is to identify conditions under which this necessary amount of

ambiguity is sufficient for efficient and incentive compatible mechanisms to exist.

A key observation is that if Minimal Ambiguity is satisfied, we can construct effi-

cient mechanisms that satisfy local incentive compatibility constraints. Thus, our

question becomes: under what conditions does local incentive compatibility imply

global incentive compatibility? In Bayesian settings, Myerson (1981) showed that

under a monotonicity condition, global incentive compatibility constraints can be

obtained from adding up a sequence of local incentive compatibility constraints.

To extend the classic Myersonian approach to environments with maxmin agents,

we need to address two issues. The first is to identify the monotonicity condition

in our setting. The other is to deal with the nonadditivity of the maxmin represen-

tation: the belief used in each constraint is endogenously determined and, hence,

the sum of these local constraints can differ from the global one. Regarding the

first issue, the desired monotonicity condition turns out to be a multidimensional

extension of the familiar single-crossing condition from one-dimensional settings.3

Regarding the second issue, if each agent’s valuation function is linear in his own

signal, such nonadditivity does not arise. Otherwise, the linearity condition on val-

uation functions can be replaced by two other restrictions on preferences: agents’

valuation functions satisfy a familiar increasing differences condition and agents’

preferences satisfy the comonotonic independence axiom of Schmeidler (1989).

Another contribution of the paper is to identify conditions under which the

3See Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), and Bergemann and Välimäki
(2002).
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amount of ambiguity sufficient for efficient implementation can be arbitrarily small.

Specifically, we link the required size of ambiguity perceived by an agent to his in-

formational size, a notion studied by McLean and Postlewaite (2002, 2004, 2015a,b).

Intuitively, an agent is informationally small if his private information has a small

marginal effect on other agents’ valuations. We show that given any nontrivial

amount of ambiguity, efficient allocations can be implemented if agents are suf-

ficiently informationally small. One instance in which informational smallness

arises naturally is when the number of agents is large. As a result, efficient and

incentive compatible mechanisms exist in a large economy even when each agent

perceives only a small amount of ambiguity. An immediate consequence of this

result is that complete ambiguity is generally not necessary for implementing effi-

cient allocations when agents have quasilinear utilities.4

The paper is organized as follows. In Section 2, we describe the general model.

In Sections 3 and 4, we derive necessary and sufficient conditions for an allocation

rule to be implementable. We then apply these results to the implementation of the

efficient allocation rule in Section 5. In Section 5.1, we present results on informa-

tional smallness. In Section 6, we present a simple example to illustrate the main

insight for our results. We conclude with discussion and related literature in the

final section.

2 The Model

Information structure. Suppose that there is a single object to be allocated

among N agents, indexed by i ∈ I := {1, ..., N}. We assume that agent i observes

a signal (or type) si = (si
1, ..., si

N) drawn from a space Si ⊆ R
N. The coordinate si

j

represents agent i’s one-dimensional piece of information affecting agent j’s valua-

4Complete ambiguity means each agent’s set of beliefs contains all probability measures over the
other agents’ signals.
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tion for the object.5 This information structure is used by many models that appear

in the literature on mechanism design with multidimensional signals, including Je-

hiel and Moldovanu (2001) and Jehiel et al. (1996).

We assume that each agent i’s signal space Si is compact and convex, and that it

has a nonempty interior and a piecewise smooth boundary. We further assume that

each Si is a sublattice in R
N according to the usual product order. Let S := ×N

i=1Si

with s as generic element and let S−i := ×j 6=iS
j with s−i as generic element. For

every i, j ∈ I , let Si
j := {si

j|s
i ∈ Si} and S−i

j := ×l 6=iS
l
j.

Given the information structure defined above, agent i’s valuation for the ob-

ject is given by vi(s1
i , ..., sN

i ) ∈ R+. We assume that each vi is continuously dif-

ferentiable and ∂vi

∂s
j
i

> 0 for every j ∈ I . Moreover, we assume that the family of

functions {
∂vi(si

i,s
−i
i )

∂si
i

}
s−i

i ∈S−i
i

is equicontinuous at every si
i.

Observe that given s−i
i ∈ S−i

i , vi is solely a function of si
i. Thus, for every si

i ∈ Si
i,

agent i is indifferent among all signals whose ith components are equal to si
i. This

leads to the following notation:

e(si
i) := {ti ∈ Si|ti

i = si
i} ∀si

i ∈ Si
i, ∀i ∈ I .

Notice that the set e(si
i) is a singleton in two special cases: the case of private valu-

ations and the case of one-dimensional signals.

Mechanisms. An allocation rule is a function p : S → R
N such that for every

s ∈ S, 0 ≤ pi(s) ≤ 1 and for every s ∈ S, ∑
N
i=1 pi(s) = 1. For reported signals s, the

term pi(s) is the probability that agent i is awarded the object. An allocation rule p

is efficient if

pi(s) > 0 ⇒ i ∈ argmax
j

vj(s1
j , ..., sN

j ) ∀s ∈ S.

A transfer scheme is a function x : S → R
N, where xi(s) represents the transfer

to agent i given the reports s. A direct mechanism is a pair (p, x) where p is an

5The essential assumption is si
i, the part of agent i’s information affecting his own valuation, is

one-dimensional. All of our results extend to environments where si
j is multidimensional for j 6= i.
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allocation rule and x is a transfer scheme. A direct mechanism is efficient if the

associated allocation rule is efficient.

Interim utilities. Let Σ−i be the Borel algebra on S−i and F i be a set of proba-

bility measures on (S−i, Σ−i). This set represents agent i’s beliefs about the other

agents’ signals. A key assumption here is agent i’s set of beliefs F i is independent

of the realization of his signal.6 We assume that F i is weak∗ compact and convex.

We assume that agents have quasilinear preferences. Given a direct mechanism

(p, x), agent i’s interim utility from reporting ti when his signal is si and everyone

else reports truthfully is

ui(ti, si) := min
Fi∈F i

∫

S−i

(

pi(ti, s−i)vi(si
i, s−i

i ) + xi(ti, s−i)
)

dFi.

The function µi : Si → R defined by µi(si) := ui(si, si), is called agent i’s indirect

utility function associated with (p, x). Notice that when an agent is not awarded

the object and receives zero transfer, his utility is normalized to be zero.

Environment. An environment is a tuple 〈I , {vi}N
i=1, {Si}N

i=1, {F i}N
i=1〉. We as-

sume that the environment is common knowledge, but the realizations of the sig-

nals are private information.7

Next we define completeness of sets of signals under an allocation rule.

Definition 1. The collection {Si}N
i=1 is complete under the allocation rule p if for

every i ∈ I and every si
i ∈ Si

i, there exist signals si(si
i) = (si

1(s
i
i), ..., si

N(s
i
i)), si(si

i) =

(si
1(s

i
i), ..., si

N(s
i
i)) ∈ e(si

i) such that

pi
(

si(si
i), s−i

)

≥ pi
(

ti, s−i
)

≥ pi
(

si(si
i), s−i

)

∀ti ∈ e(si
i), ∀s−i ∈ S−i.

In words, the collection {Si}N
i=1 is complete under an allocation rule p if within

each e(si
i), there exist a “best” signal and a “worst” signal that generate respec-

tively the highest and the lowest probability of obtaining the object, regardless of

6A discussion about what would happen if an agent’s set of beliefs can depend on the realization
of his signal is given in Section 7.
7A discussion about relaxing the assumption that the sets F i are common knowledge is given in
Section 7.
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the signals of the others. To simplify the analysis, throughout this paper we will

focus on allocation rules under which the collection {Si}N
i=1 is complete. Clearly,

the collection {Si}N
i=1 is complete under any allocation rule in the case of private

valuations and the case of one-dimensional signals, as the set e(si
i) is a singleton

in those two cases. In general, the collection {Si}N
i=1 is complete under monotonic

allocation rules, in the sense that keeping agent i’s valuation fixed while increasing

the valuations of other agents will not increase agent i’s probability of obtaining

the object. For example, we show in Section 5 that the collection {Si}N
i=1 is com-

plete under the efficient allocation rule.8

3 Interim Incentive Compatible Mechanisms

We first derive a first-order condition which quantifies a necessary amount of

ambiguity for an allocation rule to be implementable. In Section 3.2, we present

conditions under which the first-order condition is sufficient for implementability.

By the revelation principle, it is without loss of generality to restrict attention

to incentive compatible direct mechanisms. A direct mechanism (p, x) is interim

incentive compatible if

µi(si) = ui(si, si) ≥ ui(ti, si) ∀si, ti ∈ Si, ∀i ∈ I .9

An allocation rule p is implementable if there exists a transfer scheme x such that

the direct mechanism (p, x) is interim incentive compatible.

8More generally, the collection {Si}N
i=1 is complete under an allocation rule p if for every i ∈ I

and every si
i ∈ Si

i, there exists a continuous function α : ×j 6=iS
i
j → R

K for some K ∈ N such that

p̂i(si
i, α(si

1, ..., si
i−1, si

i+1, ..., si
N), s−i) := pi(si, s−i) is monotone in α for every s−i ∈ S−i. The efficient

allocation rule corresponds to the case in which K = N − 1 and α is the identity function for all
i ∈ I and si

i ∈ Si
i. A trivial example is when the allocation rule p depends on si only through si

i.
Another example is when agent i’s probability of obtaining the object increases in his externality,
which corresponds to the case when α(si

1, ..., si
i−1, si

i+1, ..., si
N) = maxj 6=i si

j (e.g., the agent with the

largest externality is awarded the object, that is, pi(s) > 0 ⇒ maxj 6=i si
j ≥ maxk 6=l sk

l ).
9Observe that the definition of interim incentive compatibility only invokes pure strategies. This
is without loss of generality if either of the following assumptions holds: (i) agents cannot reduce
ambiguity by randomizing ex ante; (ii) agents cannot commit to the results of their randomizations.
For a more detailed discussion about these assumptions see Saito (2015) and Ke and Zhang (2017).
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3.1 First-order Condition

We start by deriving a necessary condition for a mechanism to be interim incen-

tive compatible, which generalizes the envelope formula familiar from Bayesian

mechanism design. Recall that in a Bayesian environment, the envelope formula

yields an expression for the derivative of an agent’s equilibrium utility with re-

spect to his signal in any interim incentive compatible mechanism (e.g., Theorem

3.1 in Jehiel and Moldovanu (2001)). However, when agents are ambiguity averse,

the envelope theorem may fail due to the nondifferentiability of the interim utility

functions.10 Instead, we establish lower and upper bounds for the derivative of an

agent’s equilibrium utility.

Lemma 3.1. If p is implementable, then for every i ∈ I , the associated indirect utility

function µi is a Lipschitz continuous function of si
i; its derivative is defined almost every-

where and satisfies the following inequalities

min
Fi∈F i

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi ≤
∂µi(si)

∂si
i

≤ max
Fi∈F i

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi.

One implication of Lemma 3.1 is that an agent’s equilibrium utility associated

with a given allocation rule may not be uniquely determined up to a constant.

Thus, the payoff equivalence result may fail in the presence of ambiguity aver-

sion.11 However, it follows from Lemma 3.1 that the range of indirect utilities is

determined by the allocation rule.

Another immediate implication of Lemma 3.1 is that a minimum requirement

on the sets of beliefs must be imposed in order for the allocation rule p to be im-

plementable. We now define the key concept of the paper—Minimal Ambiguity.

Definition 2. The collection {F i}N
i=1 satisfies Minimal Ambiguity under the allo-

10It is well known that maxmin preferences have “kinks at certainty”. See, for example, Dow and
Werlang (1992).

11This point has already been noted by Bodoh-Creed (2012) and Wolitzky (2016). Carbajal and Ely
(2013) state a similar result in a more general mechanism design setting.
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cation rule p if for every i ∈ I and every si
i ∈ Si

i,

min
Fi∈F i

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi ≤ max
Fi∈F i

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi. (1)

Since the inequality in (1) is necessary for implementation, it is easily seen that

when agents are Bayesian, an allocation rule p is implementable only if p depends

on si only through si
i. For example, this is the case when valuations are private

or when signals are one-dimensional. However, agent i’s information si
j for j 6= i

generally affects his probability of being awarded the object. Consequently, Min-

imal Ambiguity is violated when agents are Bayesian. For example, the signals

si
j for j 6= i are clearly relevant to determining the efficient allocation. Thus,

given the efficient allocation rule p, there exist si
i ∈ Si

i and s−i ∈ S−i such that

pi
(

si(si
i), s−i

)

> pi
(

si(si
i), s−i

)

. As a result, a nontrivial amount of ambiguity is

necessary for Minimal Ambiguity to hold and, hence, for the efficient allocation

rule p to be implementable.

To see explicitly how the inequality in (1) quantifies a minimal amount of am-

biguity for implementation, we consider two particular specifications of sets of

priors that offer scalar parametrizations of ambiguity aversion and that are com-

monly used in the literature on robust Bayesian analysis.

Example 1. [ε-contamination12] We refer to ε-contamination if agent i’s set of be-

liefs F i is given by

Cε(Fi
∗) := {(1 − ε)Fi

∗ + εGi|Gi ∈ ∆(S−i)}

where Fi
∗ ∈ ∆(S−i) and ε ∈ [0, 1].13 Intuitively, agent i puts a weight of 1 − ε on

the other agents’ signals being drawn from the distribution Fi
∗, but puts ε weight

that the signals could be drawn from any other distribution. Thus, 1 − ε can be

interpreted as the agent’s “degree of confidence” in the belief Fi
∗. The larger ε is,

12The axiomatic foundation for the ε-contamination model is provided by Kopylov (2016). Bose
et al. (2006) and Bose and Daripa (2009) adopt this formulation to study the problem of optimal
auction design.

13For any measurable space (Ω, Σ), let ∆(Ω) denote the set of all probability measures on (Ω, Σ).
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the more ambiguity averse the agent is.14 For simplicity, suppose that
∂vi(si

i,s
−i
i )

∂si
i

is

independent of s−i
i for every i ∈ I . Then when agents’ preferences are represented

by ε-contamination, the inequality in (1) reduces to

ε ≥

∫

S−i

(

pi
(

si(si
i), s−i

)

− pi
(

si(si
i), s−i

)

)

dFi
∗

1 +
∫

S−i

(

pi
(

si(si
i), s−i

)

− pi
(

si(si
i), s−i

)

)

dFi
∗

∀si
i ∈ Si

i, ∀i ∈ I .

Recall that by construction, pi
(

si(si
i), s−i

)

≥ pi
(

si(si
i), s−i

)

for every si
i ∈ Si

i, s−i ∈

S−i, and i ∈ I . Clearly, if p depends on si only through si
i, that is, pi

(

si(si
i), s−i

)

−

pi
(

si(si
i), s−i) = 0, then Minimal Ambiguity is satisfied for all ε ≥ 0; otherwise,

Minimal Ambiguity establishes a positive lower bound on ε for implementing the

allocation rule p.

Example 2. In the second specification, agent i’s set of beliefs F i is an entropy-

constrained ball. Fix a focal belief Fi
∗ ∈ ∆(S−i) for every i ∈ I . For any belief

Gi ∈ ∆(S−i), its relative entropy is R(Gi ‖ Fi
∗) ∈ [0, ∞], where

R(Gi ‖ Fi
∗) :=

∫

S−i
ln

dGi

dFi
∗

dGi

if Gi is absolutely continuous with respect to Fi
∗ and ∞ otherwise. Though R(Gi ‖

Fi
∗) is not a metric, it is a measure of the distance between Gi and Fi

∗. In particular,

R(Gi ‖ Fi
∗) = 0 if and only if Gi = Fi

∗. Let each agent i’s set of beliefs be

F i = {Gi ∈ ∆(S−i)|R(Gi ‖ Fi
∗) ≤ λ}

for some λ ≥ 0. Similarly, if p depends on si only through si
i, then Minimal Am-

biguity is satisfied for all λ ≥ 0. When λ = ∞, F i = ∆(S−i) for all i and Minimal

Ambiguity is always satisfied. In general, there exists a threshold λ ≥ 0 such that

Minimal Ambiguity is satisfied if and only if λ ≥ λ.

14Following Ghirardato and Marinacci (2002), we say that the agent with the set of priors F is more
ambiguity averse than the agent with the set of priors F ′ if F ⊇ F ′.
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3.2 When is the First-order Condition Sufficient?

As in the standard Myersonian approach to Bayesian mechanism design prob-

lems, we first construct mechanisms that satisfy the first-order condition given by

Lemma 3.1. Intuitively, this first-order condition can be interpreted as local incen-

tive compatibility. In a Bayesian environment, a monotonicity condition is then

used to ensure that local incentive compatibility implies global incentive compati-

bility. However, with maxmin agents, monotonicity alone may no longer suffice to

establish the sufficiency of local incentive compatibility. To tackle this problem, we

establish a technical condition under which the Myersonian first-order approach

applies in our setting. We want to emphasize that the main goal of this paper

is to identify natural conditions on primitives of the model so that this technical

condition is satisfied, and this is addressed in Section 4.

3.2.1 Monotonicity

We start with the definition of monotonicity in our setting. Recall first that

for every i ∈ I and every si
i ∈ Si

i, the signals si(si
i) = (si

1(s
i
i), ..., si

N(s
i
i)), si(si

i) =

(si
1(s

i
i), ..., si

N(s
i
i)) ∈ e(si

i) are chosen such that

pi
(

si(si
i), s−i

)

≥ pi
(

ti, s−i
)

≥ pi
(

si(si
i), s−i

)

∀ti ∈ e(si
i), ∀s−i ∈ S−i.

Definition 3. The allocation rule p satisfies Monotonicity if for every i ∈ I , every

si
i, ti

i ∈ Si
i such that si

i < ti
i, and every s−i ∈ S−i,

pi
(

si(si
i), s−i

)

≤ pi
(

si(ti
i), s−i

)

and pi
(

si(si
i), s−i

)

≤ pi
(

si(ti
i), s−i

)

.

Under the efficient allocation rule, Monotonicity becomes a multidimensional

version of the single-crossing condition familiar from one-dimensional settings.

To see this, recall that the efficient allocation rule requires that agent i should be

awarded the object when vi(si
i, s−i

i ) > vj(si
j, s−i

j ) for every j 6= i. Thus, a sufficient

11



condition for Monotonicity is

∂vi(si
i, s−i

i )

∂si
i

≥
∂vj(si

j(s
i
i), s−i

j )

∂si
j

dsi
j(s

i
i)

dsi
i

and
∂vi(si

i, s−i
i )

∂si
i

≥
∂vj(si

j(s
i
i), s−i

j )

∂si
j

dsi
j(s

i
i)

dsi
i

, (2)

at any point where vi(si
i, s−i

i ) = vj(si
j, s−i

j ) = maxl vl(si
l, s−i

l ), and
dsi

j(s
i
i)

dsi
i

and
dsi

j(s
i
i)

dsi
i

exist. As is clear from condition (2) above, whether pi
(

si(si
i), s−i

)

and pi
(

si(si
i), s−i

)

increase in si
i depends both on how responsive agent j’s valuation is to agent i’s sig-

nal and on the shape of agent i’s signal space Si. In a setting in which signals are

one-dimensional, only the former matters and condition (2) reduces to the stan-

dard single-crossing condition, which says that one agent’s signal has a greater

marginal effect on his own valuation than on that of any other agent; in a setting

in which signals are multidimensional, the shape of the signal space also plays

an important role. Therefore, Monotonicity imposes joint restrictions on valuation

functions and signal spaces.

Two examples are provided below to help in understanding when condition (2)

is satisfied and, consequently, Monotonicity is satisfied by the efficient allocation

rule.

Example 3. Suppose that si
i and si

j are independently distributed for all i ∈ I and

j 6= i.15 Since
∂vj(si

j,s
−i
j )

∂si
j

> 0, we have si
j(s

i
i) = min Si

j and si
j(s

i
i) = max Si

j for all

j 6= i. Thus,
dsi

j(s
i
i)

dsi
i

=
dsi

j(s
i
i)

dsi
i

= 0. By the assumption that
∂vi(si

i,s
j
i)

∂si
i

> 0, condition (2)

is always satisfied.

Example 4. We now present an example with a simple information structure in

which each agent’s signal can be decomposed into a “private” and a “common”

element.16 Each agent i has a signal (θi, ci) ∈ [0, 1] × [0, 1], where θi and ci are

15Our general model allows for correlation between si
i and si

j for j 6= i, as is shown in Example 4.
16Similar examples have been discussed by Maskin (1992), Dasgupta and Maskin (2000), Jehiel and
Moldovanu (2001), and Compte and Jehiel (2002).
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independently distributed. Agent i’s valuation for the object is given by

vi = θi + aci + b ∑
j 6=i

cj ∀θi ∈ [0, 1], ∀ci, cj ∈ [0, 1],

where a, b ∈ R++. The element θi is the private component of agent i’s signal, as it

is of interest to him only, while ci is the common component as it is relevant to all

agents. Using the notation presented in Section 2, we have si
i = θi + aci and si

j = ci

for all i ∈ I and j 6= i. Notice that in contrast to Example 3, si
i and si

j are positively

correlated and, hence,
dsi

j(s
i
i)

dsi
i

> 0 (or
dsi

j(s
i
i)

dsi
i

> 0) for some si
i and j 6= i. We can verify

that condition (2) is satisfied if and only if a ≥ b.17 This is actually a single-crossing

condition: the common component of an agent’s signal has a larger marginal effect

on his own valuation than on the valuations of the other agents.

3.2.2 Additivity

We now introduce the technical condition which, combined with Monotonicity,

guarantees the sufficiency of local incentive compatibility:

∫ ti
i

ri
i

min
Fi∈F i

∫

S−i
pi(si, s−i)

∂vi(ŝi
i, s−i

i )

∂ŝi
i

dFidŝi
i

= min
Fi∈F i

∫ ti
i

ri
i

∫

S−i
pi(si, s−i)

∂vi(ŝi
i, s−i

i )

∂ŝi
i

dFidŝi
i ∀ri

i < ti
i, ∀si ∈ Si, ∀i ∈ I .

(3)

Observe that this is an additivity requirement: it requires the sum of the minimum

be equal to the minimum of the sum. One immediate observation is that (3) is sat-

isfied trivially in Bayesian environments. In the presence of ambiguity, the former

17To see this, observe that for every i ∈ I , j 6= i, and si
i ∈ [0, 1], we have si

j(s
i
i) = 0 and

dsi
j(s

i
i)

dsi
i

= 0;

for every si
i ∈ (1, 1 + a], we have si

j(s
i
i) =

1
a (s

i
i − 1) and

dsi
j(s

i
i)

dsi
i

= 1
a . Given the change of variables,

agent i’s valuation can be rewritten as vi(si
i, s−i

i ) = si
i + b ∑j 6=i s

j
i , which implies

∂vi(si
i ,s

−i
i )

∂si
i

= 1 and

∂vj(si
j(s

i
i),s

−i
j )

∂si
j

= b for all i ∈ I and j 6= i. Therefore, the first inequality in condition (2) is satisfied

if and only if a ≥ b. Following analogous arguments, we can show that the second inequality in
condition (2) is satisfied if and only if a ≥ b.
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in general is less than the latter due to hedging against ambiguity.18 However, we

show that this condition is actually satisfied under some natural specifications of

preferences. To be more precise, fix i ∈ I and si ∈ Si. For every ŝi
i ∈ Si

i, the func-

tion pi(si, ·)
∂vi(ŝi

i,·)

∂ŝi
i

: S−i → R can be considered as an asset. Then condition (3) is

satisfied if the assets {pi(si, ·)
∂vi(ŝi

i,·)

∂ŝi
i

}ŝi
i∈Si

i
cannot hedge one another. There are two

circumstances, besides the subjective expected utility framework, in which such

hedging does not arise. One is when the assets {pi(si, ·)
∂vi(ŝi

i,·)

∂ŝi
i

}ŝi
i∈Si

i
are perfectly

correlated. This is because within maxmin models, no matter how the set of beliefs

is specified, combining perfectly correlated assets cannot hedge against ambiguity.

A sufficient condition for this case to arise is that the valuation functions are linear

in a sense to be made precise in Section 4.1. The other circumstance is known as

comonotonic additivity in the literature (e.g., see Schmeidler (1986)), which says

combining comonotonic, weaker than perfectly correlated, assets does not reduce

ambiguity if the set of beliefs has a particular shape. This case involves joint re-

strictions on valuation functions and beliefs which are specified in Section 4.2.

3.2.3 Sufficiency

The following lemma establishes the sufficiency result.

Lemma 3.2. Let p be an allocation rule that satisfies Monotonicity and (3). Then p is

implementable if and only if {F i}N
i=1 satisfies Minimal Ambiguity under p.

The necessity of Minimal Ambiguity is given by Lemma 3.1. We now demon-

strate why Monotonicity and the technical condition (3) together can guarantee

the sufficiency of Minimal Ambiguity. The proof follows similar steps of the proof

of Lemma 2 in Myerson (1981). To account for ambiguity aversion, we make two

modifications to the proof in Myerson (1981): the first is that we construct a spe-

cific transfer scheme that implements p; the second is that we make explicit use of

18This feature of maxmin preferences is captured by the uncertainty aversion axiom of Gilboa and
Schmeidler (1989).
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the technical condition (3), which is trivially satisfied in Myerson (1981). Define a

transfer scheme x f ull as follows:

xi
f ull(s

i, s−i) := Ri(si)− pi(si, s−i)vi(si
i, s−i

i ), ∀s ∈ S, ∀i ∈ I ,

where Ri : Si → R is called the reward function for agent i.19 Observe that the

transfer scheme x f ull is constructed so that if everyone reports truthfully, the ex

post utility of agent i who receives signal si is a constant function of the other

agents’ reports and equal to the reward Ri(si). Thus, agent i is fully insured against

ambiguity in the interim stage. Following Bose et al. (2006), who first introduced

this class of transfer schemes, x f ull is called a full insurance transfer scheme and

(p, x f ull) is a full insurance mechanism. We now construct a specific reward func-

tion for each agent i as follows:

Ri(si) :=
∫ si

i

τi
i

min
Fi∈F i

∫

S−i
pi(si(ŝi

i), s−i)
∂vi(ŝi

i, s−i
i )

∂ŝi
i

dFidŝi
i,

where τi
i := minti

i∈Si
i
ti
i for every i ∈ I .20 Let x f ull be the full insurance transfer

scheme associated with the reward functions Ri and let µi be the indirect utility

functions associated with (p, x f ull). Notice that µi(si) = Ri(si) by construction of

the transfer scheme x f ull. We are going to prove that (p, x f ull) is interim incentive

compatible. Fix i ∈ I and si, ti ∈ Si. To show µi(si) ≥ ui(ti, si), there are two cases

to consider. Suppose first that ti
i ≤ si

i. By Monotonicity and (3), we obtain

µi(si)− µi(ti) = Ri(si)− Ri(ti) ≥
∫ si

i

ti
i

min
Fi∈F i

∫

S−i
pi(si(ti

i), s−i)
∂vi(ŝi

i, s−i
i )

∂ŝi
i

dFidŝi
i

= min
Fi∈F i

∫ si
i

ti
i

∫

S−i
pi(si(ti

i), s−i)
∂vi(ŝi

i, s−i
i )

∂ŝi
i

dFidŝi
i.

19Although x f ull depends on the allocation rule p, we suppress this dependence for notational sim-

plicity. A similar comment applies to Ri and x f ull defined below.
20We show in Appendix A .3 that Ri is well defined.
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Changing the order of integration and using the definition of si(ti
i) yield

µi(si)− µi(ti) ≥ min
Fi∈F i

∫

S−i
pi
(

si(ti
i), s−i

)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi

≥ min
Fi∈F i

∫

S−i
pi
(

ti, s−i
)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi.
(4)

Similarly, if ti
i > si

i, then

µi(si)− µ(ti) ≥ −
∫ ti

i

si
i

max
Fi∈F i

∫

S−i
pi(si(ŝi

i), s−i)
∂vi(ŝi

i, s−i
i )

∂ŝi
i

dFidŝi
i

≥ −
∫ ti

i

si
i

max
Fi∈F i

∫

S−i
pi(si(ti

i), s−i)
∂vi(ŝi

i, s−i
i )

∂ŝi
i

dFidŝi
i

= min
Fi∈F i

∫

S−i
pi
(

si(ti
i), s−i

)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi.

The first inequality follows from Minimal Ambiguity; the second inequality fol-

lows from Monotonicity; the equality follows from (3). Combining the inequalities

above and the definition of si(ti
i), we can conclude that

µi(si)− µ(ti) ≥ min
Fi∈F i

∫

S−i
pi
(

ti, s−i
)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi. (5)

The combination of (4) and (5) yields

µi(si) ≥ µi(ti) + min
Fi∈F i

∫

S−i
pi
(

ti, s−i
)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi = ui(ti, si).

The equality follows from the construction of the transfer scheme x f ull. Since si

and ti were arbitrarily chosen, this shows that interim incentive compatibility is

satisfied.21

From the proof of Lemma 3.2, we can see that the role of condition (3) is to

guarantee that local incentive constraints are sufficient to imply global incentive

constraints in maxmin settings, which is the key to the Myersonian approach. A

combination of this condition and the maxmin preferences allows us to extract as

much as possible out of the fact that agents’ utilities are quasilinear in transfers.22

21There exist other transfer schemes that can implement p. Nevertheless, we can show that any
interim incentive compatible mechanism is payoff equivalent to a full insurance mechanism.

22Another commonly used model of ambiguity in the literature is the smooth ambiguity model of
Klibanoff et al. (2005). It is readily seen that if we adopt the the smooth ambiguity model, agents’
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We end this section by remarking that Monotonicity is not necessary for an al-

location rule to be implementable in an environment with maxmin agents. For

example, in the extreme case of complete ambiguity, any allocation rule is imple-

mentable.

4 Sufficient Conditions

In this section, we provide two natural specifications of preferences under which

the technical condition (3) is satisfied.

4.1 Linear Valuation Functions

Say that agent i’s valuation vi is linear if there exist functions gi : Si
i → R+ and

f i, hi : S−i
i → R+ such that

vi(si
i, s−i

i ) = gi(si
i)h

i(s−i
i ) + f i(s−i

i ) ∀si
i ∈ Si

i, ∀s−i
i ∈ S−i

i . (6)

Notice that this notion of “linearity”, which is also used by Carroll (2012) and

Archer and Kleinberg (2014), is very “permissive”. For example, additively or

multiplicatively separable valuation functions are linear in the sense of (6).23

Assumption 1 (Linearity). For every i ∈ I , agent i’s valuation function vi is linear

in the sense of (6).

We can show that under Linearity, any allocation rule satisfies (3). Then the

next result follows.

Theorem 4.1. Let p be an allocation rule that satisfies Monotonicity. Assume that Lin-

earity holds. Then p is implementable if and only if {F i}N
i=1 satisfies Minimal Ambiguity

under p.

utilities in general are not quasilinear in transfers; moreover, local incentive compatibility is typi-
cally violated. Thus, our results do not extend to the smooth ambiguity model.

23Agent i’s valuation function is additively separable if hi in (6) is a constant function; agent i’s
valuation function is multiplicatively separable if f i is a constant function.
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4.2 Nonlinear Valuation Functions

Linearity imposes a strong restriction on valuation functions so that the tech-

nical condition (3) is satisfied without restricting agents’ beliefs. Now we pursue

another route. Namely, we impose a weaker restriction on valuation functions but

combine it with a restriction on beliefs: each agent’s valuation function satisfies

a suitably defined increasing differences condition and each agent’s preferences

satisfy the comonotonic independence axiom of Schmeidler (1989). The increasing

differences condition is a familiar restriction on valuation functions in the mech-

anism design literature and the comonotonic independence axiom is a standard

assumption in the decision theoretic literature24. Other than the two restrictions

discussed above, the approach used in this section can only be applied to deter-

ministic allocation rules.25 We show that when the restrictions on beliefs and valu-

ation functions are imposed, (3) is satisfied by all the deterministic allocation rules.

We first introduce the assumption on valuation functions. The valuation func-

tion vi has increasing differences if for all s−i
i , ŝ−i

i ∈ S−i
i and all ri

i < si
i < ti

i,

vi(ti
i, s−i

i )− vi(ti
i, ŝ−i

i ) > vi(si
i, s−i

i )− vi(si
i, ŝ−i

i )

implies that

vi(si
i, s−i

i )− vi(si
i, ŝ−i

i ) ≥ vi(ri
i, s−i

i )− vi(ri
i, ŝ−i

i ).

Observe first that if vi is linear in the sense of (6), then vi has increasing differences.

Thus, increasing differences is a weaker restriction on valuation functions than lin-

earity. In addition, increasing differences is quite weak when N = 2. For exam-

ple, standard supermodular and submodular valuation functions satisfy increas-

ing differences. However, when N > 2, the standard notion of supermodularity or

submodularity is neither sufficient nor necessary for increasing differences.

24Maxmin preferences that satisfy the comonotonic independence axiom are the intersection of
maxmin and Choquet expected utility model.

25An allocation rule p is deterministic if pi(s) = 1 or 0 for all s ∈ S and i ∈ I .
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Assumption 2 (Increasing Differences). For every i ∈ I , agent i’s valuation func-

tion vi has increasing differences.

We next define the comonotonic independence axiom of Schmeidler (1989). Let

(Ω, Σ) be a measurable space. Two acts f , g : Ω → R are comonotonic if

(

f (ω)− f (ω′)
)(

g(ω)− g(ω′)
)

≥ 0 ∀ω, ω′ ∈ Ω.

Suppose that an agent’s set of priors is given by F . His preferences satisfy the

comonotonic independence axiom if for all pairwise comonotonic acts f , g, h :

Ω → R, we have minF∈F

∫

Ω
f dF ≥ minF∈F

∫

Ω
gdF implies minF∈F

∫

Ω
( f + h)dF ≥

minF∈F

∫

Ω
(g + h)dF. In words, this axiom says that if the agent prefers act f to act

g, then combining both acts with h will not reverse his preferences, provided that

f , g and h are pairwise comonotonic. Intuitively, this axiom requires that combin-

ing two comonotonic acts do not reduce ambiguity.

We now present the representation of preferences that satisfy the comonotonic

independence axiom. A capacity is a function ν : Σ → [0, 1] such that (i) ν(∅) = 0

and ν(Ω) = 1; (ii) ν(A) ≤ ν(B) whenever A ⊆ B. A capacity is convex if it also

satisfies

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B) ∀A, B ∈ Σ.

The core of a capacity ν is

core(ν) := {π ∈ ∆(Ω)|π(A) ≥ ν(A), ∀A ∈ Σ}.

Schmeidler (1989) shows that ambiguity averse preferences that satisfy the comono-

tonic independence axiom can be represented by maxmin expected utility with

the agent’s set of priors being the core of a convex capacity.26 Thus, the desired

assumption can be stated as follows.

Assumption 3 (Comonotonic Independence). For every i ∈ I , agent i’s set of

beliefs F i is the core of a convex capacity.

26Shapley (1971) shows that the core of a convex capacity is not empty.
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The ε-contamination model introduced in Example 1 provides a natural class

of preferences where an agent’s set of beliefs is a core. For any Fi
∗ ∈ ∆(S−i) and

any ε ∈ [0, 1], it can be easily verified that Cε(Fi
∗) is the core of the convex capacity

νFi
∗(A) := (1 − ε)Fi

∗(A) ∀A ∈ Σ \ {Ω} and νFi
∗(Ω) := 1.

Theorem 4.2. Let p be a deterministic allocation rule that satisfies Monotonicity. Assume

that Increasing Differences and Comonotonic Independence hold. Then p is implementable

if and only if {F i}N
i=1 satisfies Minimal Ambiguity under p.

5 Implementation of the Efficient Allocation Rule

We show in this section how Theorems 4.1 and 4.2 can be applied to the imple-

mentation of the efficient allocation rule. Notice that the efficient allocation rule is

uniquely defined and deterministic almost everywhere. From now on, we focus

exclusively on the efficient allocation rule, denoted by p∗, which resolves ties in a

deterministic way.

We first demonstrate that the collection {Si}N
i=1 is complete under p∗. We show

this by explicitly constructing si(si
i) and si(si

i). For every i ∈ I and every si
i ∈ Si

i,

let

si
j(s

i
i) := min

ti∈e(si
i)

ti
j and si

j(s
i
i) := max

ti∈e(si
i)

ti
j ∀j 6= i.

Then take si(si
i) =

(

si
1(s

i
i), ..., si

i, ..., si
N(s

i
i)
)

and si(si
i) =

(

si
1(s

i
i), ..., si

i, ..., si
N(s

i
i)
)

. By

the assumption that Si is a sublattice, we have si(si
i), si(si

i) ∈ e(si
i). Since vj(si

j, s−i
j )

increases in si
j for every j 6= i, the construction of si

j(s
i
i) and si

j(s
i
i) indicates that

vj(si
j(s

i
i), s−i

j ) ≤ vj(ti
j, s−i

j ) ≤ vj(si
j(s

i
i), s−i

j ) ∀ti ∈ e(si
i), ∀s−i

j ∈ S−i
j , ∀j 6= i.

Therefore, efficiency implies that

pi
∗

(

si(si
i), s−i

)

≥ pi
∗

(

ti, s−i
)

≥ pi
∗

(

si(si
i), s−i

)

∀ti ∈ e(si
i), ∀s−i ∈ S−i.

That is, the collection {Si}N
i=1 is complete under p∗. Then the following result is an

20



immediate consequence of Theorems 4.1 and 4.2.

Corollary 5.1. Assume that Linearity holds and the efficient allocation rule p∗ satisfies

Monotonicity. Then p∗ is implementable if and only if {F i}N
i=1 satisfies Minimal Ambigu-

ity under p∗. The same conclusion holds if Linearity is replaced by Increasing Differences

and Comonotonic Independence.

We now explain intuitively how the presence of ambiguity aversion facilitates

efficient implementation.27 The main idea is that ambiguity aversion weakens in-

terim incentive compatibility constraints under full insurance transfer schemes. To

see this, consider a full insurance transfer scheme that implements p∗. Recall that

under such a transfer scheme, the agent who is awarded the object pays his val-

uation conditional on all the reports and every agent receives a reward which is

solely a function of his report. Thus, irrespective of other agents’ reports, the ex

post utility of agent i who receives si is always equal to the reward Ri(si) as long

as everyone reports truthfully—agent i is fully insured against ambiguity. In con-

trast, if agent i misreports, his interim utility is evaluated according to a worst-case

belief: if agent i receives si but reports ti, then his interim utility is

Ri(ti) + min
Fi∈F i

∫

S−i
pi
∗(t

i, s−i)
(

vi(si
i, s−i

i )− vi(ti
i, s−i

i )
)

dFi.

The first term is the reward made to agent i based on his report ti; the second term

is agent i’s expected gain or loss from being awarded the object. Specifically, if

agent i reports a signal that results in a lower valuation, that is, ti
i < si

i, then he

attains a gain if he is awarded the object. This is because he pays for the object at

a price lower than his true valuation. By ambiguity aversion, he assigns the lowest

probability of being awarded the object. Likewise, if ti
i > si

i, he suffers a loss if he

is awarded the object, because he pays more than his true valuation. In this case,

ambiguity aversion drives him to assign the highest probability of being awarded

27It should be noted that the same intuition applies to the implementation of all allocation rules. We
provide the intuition in terms of the efficient allocation rule to contrast with the impossibility result
of Jehiel and Moldovanu (2001).
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the object. As a result, the presence of ambiguity aversion minimizes the potential

gain and maximizes the potential loss—the incentive to lie is thus diminished. The

final question is then how much ambiguity is needed to ensure interim incentive

compatibility. This is addressed by Minimal Ambiguity: it quantifies the minimal

amount of ambiguity that guarantees local incentive compatibility. Then, com-

bined with Linearity (or Increasing Differences and Comonotonic Independence)

and Monotonicity, this minimal amount of ambiguity also guarantees global in-

centive compatibility.28

5.1 Informational Size

A natural question to ask is under what conditions the efficient allocation rule

p∗ is implementable with an arbitrarily small amount of ambiguity. This section

addresses this question by linking the required amount of ambiguity perceived by

an agent to his informational size.

Our definition of informational size is a counterpart of the notion introduced

in McLean and Postlewaite (2004, 2015a,b): it measures the degree to which one

agent’s signal can affect the valuations of other agents. Formally, define the infor-

mational size of agent i as

γi := max
j 6=i,si

j∈Si
j,s

−i
j ∈S−i

j

∂vj(si
j, s−i

j )

∂si
j

.

Recall that si
j is agent i’s information affecting the valuation of agent j. Thus, in a

model with private values, the informational size of each agent is 0.

One final definition is required before stating the main result of this section.

For every ε ∈ (0, 1], we say that a set of probability measures F on (Ω, Σ) contains

an ε-ball if there exists G ∈ ∆(Ω) such that {F ∈ ∆(Ω)|d(F, G) ≤ ε} ⊆ F , where d

28We want to emphasize that our results depend on agents’ utilities being quasilinear in transfers.
Only then, the mechanism designer can use transfers as instruments to fully insure agents against
ambiguity under honest reporting but induce ambiguity otherwise.
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is the Prokhorov metric.29

Theorem 5.1. Assume that Linearity holds and the efficient allocation rule p∗ satisfies

Monotonicity. For every ε ∈ (0, 1], if each agent i’s set of beliefs F i contains an ε-ball,

then there exists a δ > 0 such that if γi
< δ for every i ∈ I , the efficient allocation

rule p∗ is implementable. The same conclusion holds if Linearity is replaced by Increasing

Differences and Comonotonic Independence.

An immediate observation from condition (2) is that if
dsi

j(s
i
i)

dsi
i

and
dsi

j(s
i
i)

dsi
i

are

bounded almost everywhere, Monotonicity is automatically satisfied if the infor-

mational size of each agent is sufficiently small.

Informational smallness arises naturally when the number of agents is large.

Intuitively, a single agent’s private information would have a small effect on other

agents’ valuations in the presence of many agents. We can show that if the in-

formational size of each agent converges to zero as the number of agents grows,

then given any nontrivial amount of ambiguity, the efficient allocation rule is im-

plementable as long as the number of agents is sufficiently large. The proof is

essentially identical to that of Theorem 5.1.

6 An Example

In this section, we first present a simple example to illustrate the main insight

for our results. In particular, it exhibits the conflict between Bayesian incentive

compatibility and efficiency, and indicates how a certain amount of ambiguity can

resolve this conflict. We further demonstrate that if the informational size of each

agent converges to zero in a sequence of environments with an increasing number

of agents, then the minimal amount of ambiguity that induces truth telling also

converges to zero as the number of agents increases.

29We use Prokhorov metric to measure the distance between probability measures and the definition
is provided in Appendix C .
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Consider a special case of Example 3: each agent i’s valuation for the object is

given by

θi +
1

N − 1 ∑
j 6=i

cj ∀θi ∈ [0, 1], ∀cj ∈ [0, 1],

where si
i = θi ∈ [0, 1] and si

j = ci ∈ [0, 1] for all j 6= i. Let θ−i := ×j 6=iθ
j and c−i :=

×j 6=ic
j. One readily sees that the efficient allocation is determined by θi − 1

N−1 ci.

Fix i and take (θ̃i, c̃i) and (θ̂i, ĉi) such that

θ̃i
> θ̂i and θ̃i −

1

N − 1
c̃i
< θ̂i −

1

N − 1
ĉi. (7)

Intuitively, (7) implies that the common component swamps agent i’s idiosyncratic

value. Since θ̃i − 1
N−1 c̃i

< θ̂i − 1
N−1 ĉi, efficiency requires that agent i have a higher

chance of obtaining the object by reporting (θ̂i, ĉi) than (θ̃i, c̃i) under any belief Fi

with full support, that is,
∫

pi
∗(θ̂

i, ĉi, θ−i, c−i)dFi
>

∫

pi
∗(θ̃

i, c̃i, θ−i, c−i)dFi. (8)

On the other hand, simple manipulation of incentive constraints yields

min
Fi∈F i

∫

pi
∗(θ̂

i, ĉi, θ−i, c−i)dFi ≤ max
Fi∈F i

∫

pi
∗(θ̃

i, c̃i, θ−i, c−i)dFi. (9)

Observe that in a Bayesian framework, the inequality in (9) contradicts (8), show-

ing that efficient and incentive compatible mechanisms do not exist. The basic

intuition behind this impossibility result is that incentive compatibility requires

agent i’s probability of obtaining the object to increase in his private component θi;

efficiency requires this probability to increase only in θi − 1
N−1 ci. Therefore, agent

i’s private incentives are not aligned with social optimality. However, if agent i

perceives a nontrivial amount of ambiguity and is ambiguity averse, the require-

ment of incentive compatibility becomes weaker. When he is sufficiently ambigu-

ity averse so that the inequality in (9) is satisfied, there is no conflict between agent

i’s personal incentives and social optimality.

Next we show heuristically that the necessary amount of ambiguity for efficient
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implementation converges to zero as N increases. By incentive compatibility, the

inequality in (9) must hold for all pairs of signals (θ̃i, c̃i) and (θ̂i, ĉi) satisfying (7).

One can verify that a sufficient condition for (9) to hold is

min
Fi∈F i

max
ci∈[0,1]

∫

pi
∗(θ

i, ci, θ−i, c−i)dFi ≤ max
Fi∈F i

min
ci∈[0,1]

∫

pi
∗(θ

i, ci, θ−i, c−i)dFi ∀θi ∈ [0, 1],

which is equivalent to the following condition:

min
Fi∈F i

Fi({(θ−i, c−i)|max
j 6=i

θ j −
1

N − 1
cj ≤ θi})

≤ max
Fi∈F i

Fi({(θ−i, c−i)|max
j 6=i

θ j −
1

N − 1
cj ≤ θi −

1

N − 1
}) ∀θi ∈ [0, 1].

(10)

The inequality in (10) imposes a minimum requirement on the size of F i, which

can be interpreted as the required amount of ambiguity for efficient implementa-

tion.30 Observe that as N → ∞, this required amount of ambiguity goes to zero.

It is straightforward to verify that (10) is the Minimal Ambiguity condition in this

example. Since the valuation functions are linear and moreover, the efficient allo-

cation rule satisfies Monotonicity as is shown in Example 3, our sufficiency result

Theorem 4.1 applies: given any nontrivial amount of ambiguity, the efficient allo-

cation rule is implementable if the number of agents is sufficiently large.

7 Discussion and Related Literature

Independence assumption. We assume that each agent’s set of beliefs does

not depend on the realization of his signal, which is an analogue of the “indepen-

dence of signals” assumption from Bayesian settings. In the literature on efficient

mechanism design, a correlated information condition proposed by Cremer and

30To see this, suppose that all agents’ signals are identically and independently distributed. Let

F̂i be a cumulative density function of θ j − 1
N−1 cj for all j 6= i. Suppose that agent i’s set of

beliefs about θ j − 1
N−1 cj for all j 6= i is Cε(F̂i). Then the inequality in (10) reduces to ε ≥

maxθi∈[0,1]
F̂i(θi)−F̂i(θi− 1

N−1 )

1+F̂i(θi)−F̂i(θi− 1
N−1 )

> 0.
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McLean (1985, 1988) is used extensively to bypass the impossibility result.31 They

show that efficient implementation is possible if the conditional distribution on

other agents’ signals varies with the realized signal of an agent exogenously; our

model suggests that even if there is no a priori heterogeneity among beliefs given

different realized signals, such heterogeneity can emerge endogenously due to am-

biguity aversion. More importantly, the belief used to evaluate a misreport is the

one that makes this misreport the least profitable. Furthermore, the efficient mech-

anism from Cremer and McLean (1985, 1988) relies on the construction of lotteries

whereas our full insurance mechanism does not.

If an agent’s set of beliefs can depend on his type, an immediate consequence

of Cremer and McLean (1985, 1988) is that ambiguity is not necessary for efficient

implementation. Our necessity result hence fails in settings with correlated infor-

mation.

Yet we are able to extend our sufficiency result to a special case of correlated

information, namely affiliation. We can generalize the Minimal Ambiguity con-

dition and full insurance transfer schemes to a setting with affiliated signals, and

show that under some standard conditions, Minimal Ambiguity is still sufficient

for efficient implementation. Details are provided in Appendix D . Notice that a

straightforward application of the lottery mechanism from Cremer and McLean

(1985, 1988) has its limitations in maxmin settings (e.g., see Renou (2015)): when

agents are ambiguity averse, the belief used to evaluate a lottery is endogenously

determined and, hence, it is difficult to construct a lottery for each type with the

desired property.

Common knowledge assumption. In Section 2, we assume that each agent’s

set of beliefs is common knowledge. However, all our results continue to hold

under a weaker condition: it is common knowledge that each agent’s set of beliefs

31Cremer and McLean (1985, 1988) assume finite signal space. McAfee and Reny (1992) and Miller
et al. (2007) extend their results to allow for infinite signal space.
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contains a certain set.32 Formally, we assume it is common knowledge that a set

of probability measures F i
∗ ⊆ ∆(S−i) is contained in agent i’s set of beliefs for

all i ∈ I .33 This common knowledge condition is clearly weaker than the one

in Section 2. Furthermore, if we replace F i with F i
∗ in the definition of Minimal

Ambiguity, the conclusions of Theorems 4.1 and 4.2 will continue to hold.34 Also,

Theorem 5.1 can be strengthened: as long as it is common knowledge that for

every i ∈ I , there exists Gi ∈ ∆(S−i) such that agent i’s set of beliefs contains an

ε-ball around Gi, the conclusion of Theorem 5.1 continues to hold. Notice that this

statement does not require the mechanism designer to acquire full knowledge of

each agent’s beliefs.

Efficiency. There are three notions of efficiency for settings with incomplete

information: ex ante efficiency, interim efficiency, and ex post efficiency. In a

Bayesian setting with quasilinear utilities, if all agents and the mechanism designer

share the same ex ante belief, the three notions coincide.35 However, they gener-

ally differ in a setting with maxmin agents. The notion we use in this paper is ex

post efficiency, which is not affected by the presence of ambiguity aversion. In Ap-

pendix E , we show that our results remain valid if we adopt the notion of interim

efficiency. However, there exist situations in which ex ante efficiency cannot be

attained.

Mechanism design with maxmin preferences. Bose et al. (2006), Bodoh-Creed

(2012), and Carroll (2017) study revenue maximization with maxmin agents.36 By

32I am very grateful to Pietro Ortoleva for suggesting this weakening of the common knowledge
assumption.

33Since the closed convex hull of a set of beliefs and that set generate the identical preference, an
equivalent assumption is that it is common knowledge that F i

∗ is contained in the closed convex
hull of agent i’s set of beliefs for all i ∈ I .

34To see why, consider a full insurance transfer scheme that implements the allocation rule if each
agent i’s set of beliefs were F i

∗. Suppose now that agent i becomes more ambiguity averse, that
is, his true set of beliefs contains F i

∗. His interim utility when he reports truthfully remains the
same, but his interim utility when he misreports is lower under a larger set of beliefs. Since truthful
revelation is optimal when agent i’s set of beliefs were F i

∗, it remains optimal when agent i is in fact
more ambiguity averse.

35See Laffont (1985).
36Lopomo et al. (2014) study mechanism design problems where agents have incomplete prefer-
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comparison, our paper focuses on efficient implementation. Also, those papers

adopt a setting with private valuations, whereas we focus on a setting with inter-

dependent valuations. Bose and Daripa (2009) show that a descending auction can

extract almost all surplus. However, their approach does not extend to settings

with interdependent valuations and multidimensional signals. In our setting, full

surplus extraction is impossible except in the case of complete ambiguity.

Wolitzky (2016) studies the bilateral trade problem of Myerson and Satterth-

waite (1983) with each agent’s set of priors taking a particular form. In contrast, we

fix an object allocation problem and identify the minimal requirement on agents’

sets of priors for efficient implementation. Moreover, we focus on efficient mecha-

nisms without imposing balanced budget constraint.37

Bose and Renou (2014) study situations in which the mechanism designer can

create ambiguity deliberately through an ambiguous communication device.38 Con-

sequently, the allocation rules that are not implementable with respect to the priors

become implementable. Our paper complements their paper in the sense that we

show precisely how much ambiguity is sufficient for implementing an efficient

allocation rule and their result suggests that this amount of ambiguity can be gen-

erated through an ambiguous communication device. We provide an example in

Appendix F to illustrate how to generate the required amount of ambiguity for

efficient implementation through an ambiguous communication device.

Mechanism design with approximate implementation. McLean and Postle-

waite (2015b) show that a generalized VCG mechanism39 is approximately incen-

tive compatible if agents are informationally small. Roughly speaking, a mecha-

ences as in Bewley (2002).
37If the mechanism designer employs a full insurance mechanism, there exist realizations of types
such that the mechanism designer runs a deficit ex post. However, whether the mechanism de-
signer can achieve an ex ante surplus depends crucially on his ex ante beliefs. Generally speaking,
if the agents face more ambiguity than the mechanism designer, then the mechanism designer can
generate positive revenue ex ante.

38Di Tillio et al. (2016) and Guo (2017) study the effects of introducing ambiguity in mechanisms.
39See Clarke (1971), Groves (1973) and Vickrey (1961).
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nism is approximately incentive compatible if an agent would not misreport when

there is a small utility gain. The literature does not provide an explicit reason why

an agent would forgo a small utility gain. Alternatively, we adopt a different class

of transfer schemes, full insurance transfer schemes, and show that the realization

of weaker interim incentive compatibility constraints arises endogenously as a re-

sult of ambiguity aversion. We should point out that our result is not an immediate

extension of the result of McLean and Postlewaite (2015b). This is because the gen-

eralized VCG mechanism fails to take into account the ambiguity aversion of the

agents and, hence, is not incentive compatible except in the case of complete ambi-

guity, regardless of the informational size of the agents. In contrast, full insurance

mechanisms exploit the ambiguity aversion of agents so as to create correct incen-

tives for the agents. Even in a Bayesian environment with private values, the full

insurance mechanism does not reduce to the standard VCG mechanism.

Appendix

A Appendix for Section 3

A .1 Preliminary Lemmas

Lemma A 1. Suppose that the allocation rule p is implementable with associated indirect

utility functions {µi}N
i=1. For every i ∈ I and si, ti ∈ Si, we have

max
Fi∈F i

∫

S−i
pi(ti, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi ≥ µi(ti)− µi(si)

≥ min
Fi∈F i

∫

S−i
pi(si, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi;
(A1)

in particular, if si
i = ti

i, then µi(si) = µi(ti).

Proof. By definition, for every i ∈ I and si, ti ∈ Si,

ui(ti, si) = min
Fi∈F i

∫

S−i

(

pi(ti, s−i)vi(si
i, s−i

i ) + xi(ti, s−i)

)

dFi

≥ µi(ti) + min
Fi∈F i

∫

S−i
pi(ti, s−i)

(

vi(si
i, s−i

i )− vi(ti
i, s−i

i )
)

dFi.
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Thus, the interim incentive compatibility constraint µi(si) ≥ ui(ti, si) implies

µi(si) ≥ µi(ti) + min
Fi∈F i

∫

S−i
pi(ti, s−i)

(

vi(si
i, s−i

i )− vi(ti
i, s−i

i )
)

dFi. (A2)

Reversing the roles of si and ti, we obtain

µi(ti) ≥ µi(si) + min
Fi∈F i

∫

S−i
pi(si, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi. (A3)

The desired inequalities in (A1) follow by combining (A2) and (A3).

If si
i = ti

i, then vi(si
i, s−i

i ) = vi(ti
i, s−i

i ) for every s−i
i ∈ S−i

i and µi(si) = µi(ti) is

an immediate consequence of (A1).

Lemma A 2. For every i ∈ I , there exists M > 0 such that

|vi(ti
i, s−i

i )− vi(si
i, s−i

i )| ≤ M|ti
i − si

i| ∀si
i, ti

i ∈ Si
i, ∀s−i

i ∈ S−i
i .

Proof. Fix i ∈ I . For every si
i, ti

i ∈ Si
i and s−i

i ∈ S−i
i , the Mean Value Theorem allows

us to write |vi(si
i, s−i

i )− vi(ti
i, s−i

i )| = |
∂vi(ŝi

i,s
−i
i )

∂ŝi
i

(ti
i − si

i)| for some ŝi
i between si

i and

ti
i. Since vi is continuously differentiable, the compactness of the signal spaces

implies there exists M > 0 such that |
∂vi(ŝi

i,s
−i
i )

∂ŝi
i

| < M for all ŝi
i and s−i

i .

Lemma A 3. If the allocation rule p is implementable, the associated indirect utility

function µi is Lipschitz continuous on Si
i for every i ∈ I .

Proof. Fix i ∈ I . Lemmas A 1 and A 2 imply that there exists M > 0 such that for

every si, ti ∈ Si with µi(si)− µi(ti) ≥ 0, we have

µi(si)− µi(ti) ≤ max
Fi∈F i

∫

S−i
pi(si, s−i)

(

vi(si
i, s−i

i )− vi(ti
i, s−i

i )
)

dFi ≤ M|si
i − ti

i|.

Similarly, for every si, ti ∈ Si with µi(si)− µi(ti) ≤ 0, we have

µi(ti)− µi(si) ≤ max
Fi∈F i

∫

S−i
pi(ti, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi ≤ M|si
i − ti

i|.

Combining the two inequalities above, we can conclude that µi is Lipschitz contin-

uous.
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Lemma A 4. For every i ∈ I , every ri ∈ Si, every si
i ∈ Si

i, and every Fi ∈ F i,

lim
ti
i→si

i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi =
∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

Proof. Fix i ∈ I , ri ∈ Si, si
i ∈ Si

i, and Fi ∈ F i. For every ti
i ∈ Si

i, the Mean Value

Theorem allows us to write
vi(ti

i,s
−i
i )−vi(si

i,s
−i
i )

ti
i−si

i

=
∂vi(ŝi

i,s
−i
i )

∂ŝi
i

for some ŝi
i between si

i and

ti
i. Then the equicontinuity condition implies

| lim
ti
i→si

i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi −
∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi|

≤ lim
ŝi

i→si
i

∫

S−i
pi(ri, s−i)|

∂vi(ŝi
i, s−i

i )

∂ŝi
i

−
∂vi(si

i, s−i
i )

∂si
i

|dFi = 0.

Lemma A 5. For every i ∈ I , every ri ∈ Si, and every si
i ∈ Si

i,

lim
ti
i→si

i

min
Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi = min
Fi∈F i

∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

Proof. 40Fix i ∈ I , ri ∈ Si, and si
i ∈ Si

i. It follows from Lemma A 4 that for all

F̃i ∈ F i,

lim
ti
i→si

i

min
Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi

≤ lim
ti
i→si

i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dF̃i =
∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dF̃i.

Thus,

lim
ti
i→si

i

min
Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi

≤ min
Fi∈F i

∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

(A4)

On the other hand, for every ti
i 6= si

i, let Fi(ti
i) ∈ F i be such that

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi(ti
i) = min

Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi.

40This proof follows similar arguments as in the proof of Proposition 2 in Bose et al. (2006).
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Such Fi(ti
i) exists as F i is weak∗ compact. By passing to a subsequence, Fi(ti

i)

converges to Fi ∈ F i as ti
i → si

i. Observe that

|
∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi(ti
i)−

∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi|

≤|
∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi(ti
i)−

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi|

+ |
∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi −
∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi|.

The first term approaches 0 as ti
i → si

i since Fi(ti
i) → Fi and

vi(ti
i,s

−i
i )−vi(si

i,s
−i
i )

ti
i−si

i

is

continuous and uniformly bounded; from Lemma A 4, the second term approaches

0 as well. Hence,

lim
ti
i→si

i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi(ti
i) =

∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

By the definition of Fi(ti
i), we obtain

lim
ti
i→si

i

min
Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi =
∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi,

which implies that

lim
ti
i→si

i

min
Fi∈F i

∫

S−i
pi(ri, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi ≥ min
Fi∈F i

∫

S−i
pi(ri, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

The previous inequality together with (A4) completes the proof.

A .2 Proof of Lemma 3.1

The Lipschitz continuity of µi is given by Lemma A 3. We are going to show

that
∂µi(si)

∂si
i

lies in the specified interval. Fix i ∈ I and si ∈ Si. For every ŝi ∈ e(si
i)

and every ti /∈ e(si
i), Lemma A 1 implies

µi(ti)− µi(ŝi) ≥ min
Fi∈F i

∫

S−i
pi(ŝi, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi.

For every ŝi ∈ e(si
i), Lemma A 1 implies µi(si) = µi(ŝi). Thus,

µi(ti)− µi(si) ≥ min
Fi∈F i

∫

S−i
pi(ŝi, s−i)

(

vi(ti
i, s−i

i )− vi(si
i, s−i

i )
)

dFi. (A5)
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If ti
i > si

i, it follows from the above expression that

µi(ti)− µi(si)

ti
i − si

i

≥ min
Fi∈F i

∫

S−i
pi(ŝi, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi.

By Lemma A 3, µi is differentiable a.e. in Si
i. Thus, if µi is differentiable at si

i, then

taking the lower limit as ti
i ↓ si

i and applying Lemma A 5 yield

∂µi(si)

∂si
i

≥ min
Fi∈F i

∫

S−i
pi(ŝi, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

Since ŝi ∈ e(si
i) was arbitrarily chosen, the above expression holds for si(si

i), that is,

∂µi(si)

∂si
i

≥ min
Fi∈F i

∫

S−i
pi(si(si

i), s−i)
∂vi(si

i, s−i
i )

∂si
i

dFi.

Similarly, if ti
i < si

i, it follows from the inequality in (A5) that

µi(ti)− µi(si)

ti
i − si

i

≤ max
Fi∈F i

∫

S−i
pi(ŝi, s−i)

vi(ti
i, s−i

i )− vi(si
i, s−i

i )

ti
i − si

i

dFi.

If µi is differentiable at si
i, taking the upper limit as ti

i ↑ si
i and applying Lemma A

5 yield

∂µi(si)

∂si
i

≤ max
Fi∈F i

∫

S−i
pi(ŝi, s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

Since ŝi ∈ e(si
i) was arbitrarily chosen, the above inequality holds for si(si

i), that is,

∂µi(si)

∂si
i

≤ max
Fi∈F i

∫

S−i
pi(si(si

i), s−i)
∂vi(si

i, s−i
i )

∂si
i

dFi.

A .3 Appendix for Section 3.2

We next show that Ri is well defined. Recall that τi
i := minti

i∈Si
i
ti
i. Let τ̂i

i :=

maxti
i∈Si

i
ti
i. Let {a0, ..., an} be a partition of Si

i, that is, τi
i = a0 < ... < an = τ̂i

i . Given

a partition {a0, ..., an}, let |P| := maxk∈{1,...,n} ak − ak−1 and let

mk(s
−i
i ) := min

ŝi
i∈[ak−1,ak]

∂vi(ŝi
i, s−i

i )

∂ŝi
i

and Mk(s
−i
i ) := max

ŝi
i∈[ak−1,ak]

∂vi(ŝi
i, s−i

i )

∂ŝi
i

.

Lemma A 6. Let p be an allocation rule that satisfies Monotonicity. Then the function

minFi∈F i

∫

S−i pi
(

si(ŝi
i), s−i

) ∂vi(ŝi
i,s

−i
i )

∂ŝi
i

dFi is Riemann integrable on Si
i.
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Proof. Take ε > 0. Since
∂vi(ŝi

i,s
−i
i )

∂ŝi
i

is equicontinuous, there exists a δ > 0 such that

|
∂vi(ŝi

i, s−i
i )

∂ŝi
i

−
∂vi(s̃i

i, s−i
i )

∂s̃i
i

| <
ε

2(τ̂i
i − τi

i )
∀|ŝi

i − s̃i
i| < δ, ∀s−i

i ∈ S−i
i . (A6)

Choose a partition that contains n intervals with equal length |P| =
τ̂i

i −τi
i

n with n >

max{
2(τ̂i

i −τi
i )

δ ,
2(τ̂i

i −τi
i )M

ε }, where M := max
ŝi

i∈Si
i ,s

−i
i ∈S−i

i

∂vi(ŝi
i,s

−i
i )

∂ŝi
i

. Since
2(τ̂i

i −τi
i )

n < δ,

(A6) implies

Mk−1(s
−i
i )− mk(s

−i
i ) <

ε

2(τ̂i
i − τi

i )
∀k = 1, .., n, ∀s−i

i ∈ S−i
i . (A7)

Also, Monotonicity implies that for every k = 1, ..., n, every ŝi
i ∈ [ak−1, ak], and

every s−i ∈ S−i, we have pi
(

si(ak−1), s−i
)

≤ pi
(

si(ŝi
i), s−i

)

≤ pi
(

si(ak), s−i
)

. Then,

the difference between the upper sum and the lower sum is41

n

∑
k=1

(

min
Fi∈F i

∫

S−i
pi
(

si(ak), s−i
)

Mk(s
−i
i )dFi − min

Fi∈F i

∫

S−i
pi
(

si(ak−1), s−i
)

mk(s
−i
i )dFi

)

|P|

=
n

∑
k=1

(

min
Fi∈F i

∫

S−i
pi
(

si(ak), s−i
)

Mk(s
−i
i )dFi − min

Fi∈F i

∫

S−i
pi
(

si(ak−1), s−i
)

Mk−1(s
−i
i )dFi

+ min
Fi∈F i

∫

S−i
pi
(

si(ak−1), s−i
)

Mk−1(s
−i
i )dFi − min

Fi∈F i

∫

S−i
pi
(

si(ak−1), s−i
)

mk(s
−i
i )dFi

)

|P|

≤ |P|

(

min
Fi∈F i

∫

S−i
pi
(

si(τ̂i
i ), s−i

)

Mn(s
−i
i )dFi − min

Fi∈F i

∫

S−i
pi
(

si(τi
i ), s−i

)

M0(s
−i
i )dFi

)

+
n

∑
k=1

|P| max
Fi∈F i

∫

S−i
pi
(

si(ak−1), s−i
)

(Mk−1(s
−i
i )− mk(s

−i
i ))dFi

≤
τ̂i

i − τi
i

n
M +

n

∑
k=1

τ̂i
i − τi

i

n

ε

2(τ̂i
i − τi

i )
< ε.

The second inequality follows from the definition of M and the inequality in (A7);

the last inequality follows from the choice of n. By Theorem 11.30 in Aliprantis and

Border (2006), minFi∈F i

∫

S−i pi
(

si(ŝi
i), s−i

) ∂vi(ŝi
i,s

−i
i )

∂ŝi
i

dFi is Riemann integrable.

41The lower sum of a function f : [a, b] → R relative to a partition {a0, ..., an} is defined by

∑
n
k=1 mk

(

ak − ak−1

)

, where mk := infy∈[ak−1,ak ]
f (y). Analogously, the upper sum is ∑

n
k=1 Mk

(

ak −

ak−1

)

, where Mk := supy∈[ak−1,ak ]
f (y). Relevant concepts and results on Riemann integral can be

found in Section 11.7 in Aliprantis and Border (2006).
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B Appendix for Section 4

To prove Theorem 4.1, our first step is to show that under Linearity, any alloca-

tion rule p satisfies the following additivity condition:

min
Fi∈F i

∫

S−i
pi(si, s−i)

∂vi(ri
i, s−i

i )

∂ri
i

dFi + min
Fi∈F i

∫

S−i
pi(si, s−i)

∂vi(ti
i, s−i

i )

∂ti
i

dFi

= min
Fi∈F i

∫

S−i
pi(si, s−i)

(∂vi(ri
i, s−i

i )

∂ri
i

+
∂vi(ti

i, s−i
i )

∂ti
i

)

dFi ∀ri
i, ti

i ∈ Si
i, ∀si ∈ Si, ∀i ∈ I .

(B8)

The next step is then to show that the condition above further implies (3). Then

applying Lemma 3.2 completes the proof of Theorem 4.1.

Lemma B 7. Assume Linearity. Then any allocation rule p satisfies (B8).

Proof. Fix i ∈ I , ri
i, ti

i ∈ Si, and si ∈ Si. By Linearity, for every s−i
i ∈ S−i

i ,

∂vi(ri
i, s−i

i )

∂ri
i

=
dgi(ri

i)

dri
i

hi(s−i
i ) and

∂vi(ti
i, s−i

i )

∂ti
i

=
dgi(ti

i)

dti
i

hi(s−i
i ). (B9)

Plugging (B9) into (B8) establishes the desired equality.

Lemma B 8. Let p be an allocation rule that satisfies (B8). Then p satisfies (3).

Proof. Fix i ∈ I , ri
i < ti

i ∈ Si
i, and si ∈ Si. Let {a0, ..., an} be a partition of [ri

i, ti
i]

that contains n intervals with equal length. Then, using the definition of Riemann

integral and condition (B8), we obtain

∫ ti
i

ri
i

min
Fi∈F i

∫

S−i
pi(si, s−i)

∂vi(ŝi
i, s−i

i )

∂ŝi
i

dFidŝi
i

= lim
n→∞

n

∑
k=1

min
Fi∈F i

∫

S−i
pi(si, s−i)

∂vi
(

ak, s−i
i

)

∂ak

ti
i − ri

i

n
dFi

= lim
n→∞

min
Fi∈F i

∫

S−i
pi(si, s−i)

n

∑
k=1

∂vi
(

ak, s−i
i

)

∂ak

ti
i − ri

i

n
dFi.

Applying similar proofs to Lemma A 5 and the definition of Riemann integral, the

last term above is equal to

min
Fi∈F i

∫

S−i
pi(si, s−i)

∫ ti
i

ri
i

∂vi(ŝi
i, s−i

i )

∂ŝi
i

dŝi
idFi = min

Fi∈F i

∫ ti
i

ri
i

∫

S−i
pi(si, s−i)

∂vi(ŝi
i, s−i

i )

∂ŝi
i

dFidŝi
i,
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as desired.

The proof of Theorem 4.2 follows analogous steps: we first show that under

Comonotonic Independence and Increasing Differences, any deterministic alloca-

tion rule p satisfies (B8). Then applying Lemmas B 8 and 3.2 completes the proof.

Lemma B 9. If the valuation function vi has increasing differences, then
∂vi(si

i,·)

∂si
i

and

∂vi(ti
i,·)

∂ti
i

are comonotonic for all si
i, ti

i ∈ Si
i.

Proof. Suppose that vi has increasing differences. Take si
i ∈ Si

i and s−i
i , ŝ−i

i ∈ S−i
i .

Without loss of generality, assume
∂vi(si

i,s
−i
i )

∂si
i

>
∂vi(si

i,ŝ
−i
i )

∂si
i

. We are going to show that

∂vi(ti
i,s

−i
i )

∂ti
i

≥
∂vi(ti

i,ŝ
−i
i )

∂ti
i

for all ti
i ∈ Si

i. The proof is by contradiction. Suppose that

there exists ti
i such that

∂vi(ti
i,s

−i
i )

∂ti
i

<
∂vi(ti

i,ŝ
−i
i )

∂ti
i

. If ti
i > si

i, there exists l > 0 such that

ti
i − l > si

i and

vi(ti
i, s−i

i )− vi(ti
i − l, s−i

i ) < vi(ti
i, ŝ−i

i )− vi(ti
i − l, ŝ−i

i ),

which is equivalent to

vi(ti
i − l, ŝ−i

i )− vi(ti
i − l, s−i

i ) < vi(ti
i, ŝ−i

i )− vi(ti
i, s−i

i ).

Since vi has increasing differences, for every si
i < ŝi

i < ti
i − l, we have

vi(si
i, ŝ−i

i )− vi(si
i, s−i

i ) ≤ vi(ŝi
i, ŝ−i

i )− vi(ŝi
i, s−i

i ).

Rearranging the inequality above yields

vi(ŝi
i, s−i

i )− vi(si
i, s−i

i ) ≤ vi(ŝi
i, ŝ−i

i )− vi(si
i, ŝ−i

i ).

Dividing both sides by ŝi
i − si

i and taking the limit ŝi
i ↓ si

i yield

lim
ŝi

i↓si
i

vi(ŝi
i, s−i

i )− vi(si
i, s−i

i )

ŝi
i − si

i

≤ lim
ŝi

i↓si
i

vi(ŝi
i, ŝ−i

i )− vi(si
i, ŝ−i

i )

ŝi
i − si

i

.

By the assumption that vi is differentiable, the above inequality is equivalent to
∂vi(si

i,s
−i
i )

∂si
i

≤
∂vi(si

i,ŝ
−i
i )

∂si
i

, a contradiction. The case in which ti
i < si

i can be handled

analogously.
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Lemma B 10. Assume Comonotonic Independence and Increasing Differences. Then any

deterministic allocation rule p satisfies (B8).

Proof. Fix i ∈ I , ri
i, ti

i ∈ Si
i, and si ∈ Si. By Lemma B 9, Increasing Differences

implies that
∂vi(ri

i ,·)

∂ri
i

and
∂vi(ti

i,·)

∂ti
i

are comonotonic functions. Since p is deterministic,

the functions pi(si, ·)
∂vi(ri

i ,·)

∂ri
i

and pi(si, ·)
∂vi(ti

i,·)

∂ti
i

are comonotonic as well. Combining

this observation with Comonotonic Independence, Theorem and Proposition 3 in

Schmeidler (1986) together imply the equality in (B8).

C Appendix for Section 5

For any two probability measures F, G ∈ ∆(Ω), the Prokhorov metric is

d(F, G) := inf{ε > 0|F(A) ≤ G(Aε) + ε, ∀A ∈ Σ},

where Aε := {ω ∈ Ω| infω′∈A d∞(ω, ω′) ≤ ε} and d∞ denotes the uniform metric

in Ω.

Recall that si
j(s

i
i) := minti∈e(si

i)
ti

j and si
j(s

i
i) := maxti∈e(si

i)
ti

j for every i ∈ I , j 6= i,

and si
i ∈ Si

i.

Lemma C 11. For every ε > 0, there exists a δ > 0 such that if γi
< δ for every i ∈ I ,

max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

> max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

− ε ∀i ∈ I , si
i ∈ Si

i, s−i ∈ S−i.

Proof. Take ε > 0 and

δ :=
ε

maxi∈I ,j 6=i,si
i∈Si

i

(

si
j(s

i
i)− si

j(s
i
i)
) .

Suppose that γi
< δ for every i ∈ I . By construction, for every i ∈ I , si

i ∈ Si
i, and

s−i ∈ S−i, we obtain

max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

− max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

≤ max
j 6=i

(

vj
(

si
j(s

i
i), s−i

j

)

− vj
(

si
j(s

i
i), s−i

j

)

)

≤ max
j 6=i

γi
(

si
j(s

i
i)− si

j(s
i
i)
)

< ε.
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Let η := min
i∈I ,si

i∈Si
i ,s

−i
i ∈S−i

i

∂vi(si
i,s

−i
i )

∂si
i

. By assumption, η > 0. For every i ∈ I and

si ∈ Si, define

Asi := {s−i ∈ S−i|vi(si
i, s−i

i ) ≥ max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

},

Bsi := {s−i ∈ S−i|vi(si
i, s−i

i ) ≥ max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

}.

Since maxj 6=i vj
(

si
j(s

i
i), s−i

j

)

≥ maxj 6=i vj
(

si
j(s

i
i), s−i

j

)

, we have Asi ⊆ Bsi .

Lemma C 12. For every ε > 0, there exists a δ > 0 such that if γi
< δ for every i ∈ I ,

we have Bsi ⊆ Aε
si for all i ∈ I and si ∈ Si.

Proof. Take ε > 0. By Lemma C 11, there exists a δ > 0 such that if γi
< δ for every

i ∈ I , we have

max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

> max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

− ηε ∀i ∈ I , si
i ∈ Si

i, s−i ∈ S−i. (C10)

Assume γi
< δ for every i ∈ I . Fix i ∈ I and si ∈ Si. Since Asi ⊆ Bsi , we only

need to show that infŝ−i∈A
si

d∞(s−i, ŝ−i) ≤ ε for every s−i ∈ Bsi \ Asi . Take any

s−i ∈ Bsi \ Asi and construct one ŝ−i as follows:

ŝ
j
j = s

j
j − ε and ŝ

j
k = s

j
k ∀j 6= i, ∀k 6= j.

By construction, d∞(s−i, ŝ−i) = ε. We are going to show that ŝ−i ∈ Asi .42 Let

l ∈ argmaxj 6=i vj
(

si
j(s

i
i), ŝ−i

j

)

. By construction, vi(si
i, ŝ−i

i ) = vi(si
i, s−i

i ). Thus,

vi(si
i, ŝ−i

i )− max
j 6=i

vj
(

si
j(s

i
i), ŝ−i

j

)

= vi(si
i, s−i

i )− vl
(

si
l(s

i
i), ŝ−i

l

)

≥max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

− vl
(

si
l(s

i
i), ŝ−i

l

)

≥ max
j 6=i

vj
(

si
j(s

i
i), s−i

j

)

− ηε − vl
(

si
l(s

i
i), ŝ−i

l

)

≥vl
(

si
l(s

i
i), s−i

l

)

− ηε − vl
(

si
l(s

i
i), ŝ−i

l

)

≥ ηε − ηε = 0.

The first inequality follows from s−i ∈ Bsi ; the second inequality follows from

42If ŝ−i /∈ S−i, we can enlarge the set of signals to include ŝ−i. To see this, define D := {s̃−i|s̃
j
j =

s
j
j − ε, s̃

j
k = s

j
k, ∀j 6= i, ∀k 6= j, ∀s−i ∈ Bsi \ Asi} and A+ := Asi ∪ D. Extend agent i’s beliefs to this

larger domain S−i ∪ D such that Fi(D) = 0 for all Fi ∈ F i. Lemma C 12 then becomes Bsi ⊆ Aε
+

and the proof of Theorem 5.1 remains valid.
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(C10); the last inequality follows from the construction of ŝl
l and the definition of

η.

Proof of Theorem 5.1. Take ε > 0. Assume that each agent i’s set of beliefs F i con-

tains an ε-ball. By Lemma C 12, there exists a δ > 0 such that if γi
< δ for every

i ∈ I , Bsi ⊆ Aε
si for all i ∈ I and si ∈ Si. Assume that γi

< δ for every i ∈ I . Fix

i ∈ I and si ∈ Si. By the definition of Prokhorov metric, Bsi ⊆ Aε
si implies that

there exists a probability measure Ĝi ∈ F i such that Ĝi(Bsi \ Asi) = 0. Therefore,

min
Fi∈F i

∫

S−i
pi
∗(s

i(si
i), s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi = min
Fi∈F i

∫

B
si

∂vi(si
i, s−i

i )

∂si
i

dFi ≤
∫

B
si

∂vi(si
i, s−i

i )

∂si
i

dĜi

=
∫

A
si

∂vi(si
i, s−i

i )

∂si
i

dĜi ≤ max
Fi∈F i

∫

A
si

∂vi(si
i, s−i

i )

∂si
i

dFi = max
Fi∈F i

∫

S−i
pi
∗(s

i(si
i), s−i)

∂vi(si
i, s−i

i )

∂si
i

dFi.

That is, Minimal Ambiguity is satisfied. Applying Corollary 5.1 completes the

proof.

D Affiliated signals

In this section, we show that our result can be generalized to environments with

some correlation of signals. In particular, we consider a special form of correlation:

the variables s1
1, ..., sN

N are affiliated and si
i and s

j
k are independently distributed for

all i, j, k ∈ I and j 6= k.43 Let F be the set of prior distributions of s1, ..., sN and for

each F ∈ F , let Fi(si
i) be the distribution of s−i conditional on si

i that is consistent

with F. We use F i(si
i) to denote agent i’s set of beliefs about other agents’ signals

conditional his realized signal si ∈ e(si
i).

We next generalize Minimal Ambiguity to this setting.

Definition 4. For every i ∈ I and every si
i ∈ Si

i, the set F i(si
i) satisfies Minimal

43Suppose the random variables Z1, ..., ZN have joint density F. Then the random variables are
affiliated if and only if F(z ∨ ẑ)F(z ∧ ẑ) ≥ F(z)F(ẑ) for all z, ẑ ∈ R

N , where z ∨ ẑ denotes the
component-wise maximum of z and ẑ, and z ∧ ẑ denotes the component-wise minimum.

39



Ambiguity under the allocation rule p if

min
Fi(si

i)∈F
i(si

i)

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi(si
i)

≤ max
Fi(si

i)∈F
i(si

i)

∫

S−i
pi
(

si(si
i), s−i

)∂vi(si
i, s−i

i )

∂si
i

dFi(si
i).

Proposition D 1. Assume that Linearity holds. Then p∗ is implementable if for every

i ∈ I and every si
i ∈ Si

i, the set F i(si
i) satisfies Minimal Ambiguity under p∗.

Proof. For every i ∈ I , Linearity implies that there exist functions gi : Si
i → R+

and f i, hi : S−i
i → R+ such that

vi(si
i, s−i

i ) = gi(si
i)h

i(s−i
i ) + f i(s−i

i ) ∀si
i ∈ Si

i, ∀s−i
i ∈ S−i

i .

Define a transfer scheme x f ull as follows:

xi
f ull(s

i, s−i) := Ri(si)− pi
∗(s

i, s−i)vi(si
i, s−i

i ), ∀s ∈ S, ∀i ∈ I ,

where

Ri(si) :=
∫ si

i

τi
i

min
Fi(ŝi

i)∈F
i(ŝi

i)

∫

S−i
pi
∗(s

i(ŝi
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(ŝi

i)dŝi
i.

Let µi be the indirect utility functions associated with (p∗, x f ull). Notice that µi(si) =

Ri(si) by construction of the transfer scheme x f ull. We are going to prove that

(p∗, x f ull) is interim incentive compatible. Fix i ∈ I and si, ti ∈ Si. To show

µi(si) ≥ ui(ti, si), there are two cases to consider. Suppose that ti
i ≤ si

i. By the

assumption that si
i and si

j are independently distributed for all j 6= i, the efficient

allocation rule p∗ satisfies Monotonicity as is shown in Example 3. Therefore,

µi(si)− µi(ti) = Ri(si)− Ri(ti)

≥
∫ si

i

ti
i

min
Fi(ŝi

i)∈F
i(ŝi

i)

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(ŝi

i)dŝi
i.

(D11)

For every ŝi
i ∈ Si

i, let

Hi(ŝi
i) ∈ argmin

Fi(ŝi
i)∈F

i(ŝi
i)

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(ŝi

i).
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Let Hŝi
i
∈ F be the corresponding unconditional prior and Hi

ŝi
i

(s̃i
i) ∈ F i(s̃i

i) be the

conditional distribution function of s−i that is consistent of Hŝi
i
. Then for every

s̃i
i > ŝi

i,

min
Fi(ŝi

i)∈F
i(ŝi

i)

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(ŝi

i)

=
∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dHi(ŝi

i)

≥
∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dHi

ŝi
i
(s̃i

i)

≥ min
Fi(s̃i

i)∈F
i(s̃i

i)

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(s̃i

i).

The first equality follows from the definition of Hi(ŝi
i); the first inequality follows

from the observation that pi
∗(s

i(ti
i), s−i) decreases in s

j
j for all j 6= i, the assumption

that si
i and s

j
j are affiliated for all j 6= i, the assumption that si

i and s
j
i are indepen-

dently distributed for all j 6= i, and Theorem 5.4.5 in Milgrom (2004). Combining

the inequalities above and the inequalities in (D11), we obtain

µi(si) ≥ µi(ti) +
∫ si

i

ti
i

min
Fi(si

i)∈F
i(si

i)

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(si

i)dŝi
i

= µi(ti) + min
Fi(si

i)∈F
i(si

i)

∫ si
i

ti
i

∫

S−i
pi
∗(s

i(ti
i), s−i)

dgi(ŝi
i)

dŝi
i

hi(s−i
i )dFi(si

i)dŝi
i

≥ µi(ti) + min
Fi(si

i)∈F
i(si

i)

∫

S−i
pi
∗

(

ti, s−i
)

(vi(si
i, s−i

i )− vi(ti
i, s−i

i ))dFi(si
i)

= ui(ti, si),

where the second inequality follows from the definition of si(ti
i) and the last equal-

ity follows from the construction of the transfer scheme x f ull. The proof for the case

in which ti
i > si

i follows from analogous arguments. Since si and ti were arbitrarily

chosen, this shows that interim incentive compatibility is satisfied.
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E Ex ante, Interim, and Ex post Efficient Mechanisms

This section formalizes different notions of efficiency and illustrate their rela-

tionships in our setting. For any signal s ∈ S, we assume that the mechanism

designer’s ex post utility is −∑i xi(s), where xi(s) is the transfer to agent i. The

mechanism designer’s ex ante preferences are represented by maxmin expected

utility where GM
i denotes his set of ex ante beliefs about agent i’s signals. Further,

we assume that the mechanism designer believes that all the signals are indepen-

dently distributed and GM := {×iG
M
i |GM

i ∈ GM
i } denotes his set of ex ante beliefs

about all agents’ signals. Also, define GM
−i := {×j 6=iG

M
j |GM

j ∈ GM
j }. In the ex ante

stage, agents have not observed their signals. Each agent’s ex ante preference is

represented by maxmin expected utility with G i being the set of ex ante beliefs of

agent i. In the interim stage, each agent has observed his own signal, but not the

signals of the others. Recall that F i denotes the set of interim beliefs of agent i.

Finally, in the ex post stage, all the signals are publicly revealed.

A mechanism (p, x) is ex ante efficient if there is no other mechanism ( p̂, x̂) that

yields a higher ex ante utility to some agent or the mechanism designer, without

lowering the ex ante utilities of the others. Interim and ex post efficient mecha-

nisms can be defined analogously. Let EA, EI , and EP denote the sets of mecha-

nisms that are respectively ex ante, interim, and ex post efficient.

In a Bayesian setting with quasilinear utilities, if all agents and the mechanism

designer share the same ex ante belief, the three notions coincide: EA = EI = EP =

{(p, x)|p ∈ P∗}, where P∗ := {p|pi(s) > 0 ⇒ i ∈ argmaxj vj(s1
j , ..., sN

j ), ∀s ∈ S}.

In our setting, the three notions generally differ. Obviously, the set of ex post ef-

ficient mechanisms remains the same. We now examine how the sets of ex ante

and interim efficient mechanisms are affected by the presence of ambiguity aver-

sion. Define a transfer scheme xC as follows: xi
C(s) := Ai − pi(s)vi(s1

i , ..., sN
i ) for

all s ∈ S, all i ∈ I , where Ai ∈ R. Each agent is fully insured against ambiguity in

the ex ante stage under xC. Denote the set of all such transfer schemes by XC and
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denote the set of all full insurance transfer schemes by X f ull.

Proposition E 2. If GM ⊆ G i for all i ∈ I , then {(p, xC)|p ∈ P∗, xC ∈ XC} ⊆ EA;If

GM
−i ⊆ F i for all i ∈ I , then {(p, x f ull)|p ∈ P∗, x f ull ∈ X f ull} ⊆ EI .

The proof of Proposition E 2 follows similar lines as that of Proposition 1 in

Bose et al. (2006). The intuition is simple: if the mechanism designer faces less

ambiguity than the agents, he can improve social welfare by fully insuring the

agents.

An implication of Proposition E 2 is that the full insurance mechanisms we

construct are interim efficient. Thus, our results will remain the same if we use the

notion of interim efficiency. However, ex ante efficient and interim incentive com-

patible mechanisms may not exist—there exist situations in which {(p, xC)|p ∈

P∗, xC ∈ XC} = EA.44 Since each agent’s indirect utility is independent of the

realization of his signal under xC, ex ante efficient mechanisms are not interim

incentive compatible except in the case of complete ambiguity.

F Ambiguous Communication Devices

The central idea of Bose and Renou (2014) is that the mechanism designer can

create ambiguity through an ambiguous communication device. To illustrate how

the use of such device can facilitate efficient implementation, we explicitly con-

struct one using the example from Section 6. We assume that there is no prior

ambiguity, that is, each agent has a single prior over the other agents’ types. We

also assume that agents adopt full Bayesian updating. For simplicity, let N = 2 and

let agent i’s prior distribution of θ j − cj be uniform on [−1, 1] for every i ∈ {1, 2}

and j 6= i. The ambiguous communication device is constructed as follows: Before

the standard allocation mechanism is carried out, each agent i can send a mes-

sage (θ̃i, c̃i) ∈ [0, 1]× [0, 1] to the mechanism designer and can receive message a

44For example, as shown in Proposition 3 in Bose et al. (2006), this is the case when the mechanism
designer has a single ex ante belief FM ∈ ∆(S) with full support and there exists ε ∈ (0, 1) such that
Cε(FM) ⊆ G i for every i ∈ I .
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or b from the mechanism designer. All messages are confidential. The messages

sent to agents are drawn according to one of the two probability systems ϕ and

ϕ̂: Denote ϕi(mi|θ̃ j, c̃j) the probability that the mechanism designer sends message

mi ∈ {a, b} to agent i conditional on receiving the message (θ̃ j, c̃j) from agent j 6= i

and let ϕ
(

(m1, m2)|(θ̃1, c̃1), (θ̃2, c̃2)
)

:= ϕ1(m1|θ̃2, c̃2)ϕ2(m2|θ̃1, c̃1) for all (m1, m2),

(θ̃1, c̃1), and (θ̃2, c̃2). Similarly, we can define the other probability system ϕ̂. For

every i ∈ {1, 2} and j 6= i, let

ϕi(a|θ̃ j, c̃j) =







1 if θ̃ j − c̃j ∈ [−1, 0],

0 otherwise;
ϕ̂i(a|θ̃ j, c̃j) =







0 if θ̃ j − c̃j ∈ [−1, 0],

1 otherwise.

Since agents are ambiguous about the probability system that has been used by the

mechanism designer, they perceive ambiguity after one round of communication.

The mechanism designer uses the following two-stage mechanism to imple-

ment the efficient allocation rule p∗. In the first stage, agents communicate with the

mechanism designer through the ambiguous communication device constructed

above. In the second stage, agents report their signals and the mechanism de-

signer carries out the mechanism (p∗, x f ull), where x f ull is constructed according

to posterior beliefs. We can verify that each agent i reporting (θi, ci) truthfully in

both stages is an equilibrium. Thus, the efficient allocation rule is indeed imple-

mentable.
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