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Abstract

We analyze platform competition where user data is collected to improve ad-

targeting. Considering that users incur privacy costs, we show that the equilibrium

level of data provision is distorted and can be inefficiently high or low: if overall

competition is weak or if targeting benefits are low, too much private data is collected,

and vice-versa. Further, we find that softer competition on either market side leads

to more data collection, which implies substitutability between competition policy

measures on both market sides. Moreover, if platforms engage in two-sided pricing,

data provision is efficient.
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1 Introduction

Online platforms often do not charge monetary prices from users but monetize through

an advertisement-based business model building on the collection and processing of user

data. Typical examples include social networks (e.g. Facebook, LinkedIn), search engines

(e.g. Bing, Google) or video platforms (e.g. Youtube, Vimeo). The role of user data in this

context is ambiguous. From the platform perspective user data is an input factor which

can be used to gain insights about users and improve the targeting of advertisement,

resulting in a superior product for potential advertisers. This commodity attribute of data

is mirrored to a lesser extent on the user side. Users typically accept some conditions to

what extent personal data is collected and processed when using a platform service. In

some cases the provision of personal data is necessary to make meaningful use of a platform

service (e.g. social networks) while in other cases services do not require the collection of

user data per se (e.g. search engines, mail providers, video platforms). In both cases the

provision of data from a user perspective can be interpreted as a price the user is willing

to accept in exchange for the use of the platform including the display of ads.1 To put

it in terms of platform economics, user data requirements exhibit price characteristics on

the one hand, and affect indirect network effects (e.g. targeting) at the same time.

This ambiguity makes it especially hard for policy makers as standard economic arguments

might not be applicable. Indeed, the European Data Protection Supervisor (EDPS) argues

that competition authorities should take privacy and data related aspects more into ac-

count (EDPS, 2014).2 And indeed, recent cases demonstrate that competition authorities

acknowledge the peculiarities of data-driven industries. Germany’s Federal Cartel Office

(Bundeskartellamt, BKartA) initiated investigations against Facebook in 2016 based on

alleged abuse of market power. In particular, the BKartA investigates whether Facebook

uses its dominant position in the market for social networks to expand the terms of service

1A study by the Pew Research Center (2014) shows that 91 percent of respondents agree that they lost
control over how companies collect personal data while 55 percent state that they are willing to share some
information in exchange for using a free service. The European Commission (2015), however, reports that
72 percent of internet users worry that they provide too much data online. This indicates that users are
aware and willing to exchange personal data for services, however, the actual extent worries them.

2Whether competition authorities should incorporate aspects of privacy and data protection is, however,
controversial. For arguments in favor we refer to Stucke and Grunes (2016), arguments against can be found
e.g. in Cooper (2013).
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outlining how much data is collected and processed by the platform.3 Therefore, we want

to shed some light on the role of competition intensity in a two-sided market framework

when users provide data and this data is monetized on the opposing market side.4

We analyze a setting of two competing ad-financed platforms in a two-sided market frame-

work. On the user market side, platforms strategically set the required level of data pro-

vision, to which users have to agree to obtain access to the platform service. Platforms

process this user data to sell improved ad targeting on the advertiser market side. While

users incur disutility from providing data (privacy concerns, opportunity costs), they ben-

efit from seeing more relevant ads. Users and advertisers are assumed to single-home.

Our model predicts that platforms will extract a distorted amount of data compared to

the efficient benchmark. The distortion is induced through the one-sided monetization in

a way that platforms do not perfectly balance the costs of data provision, i.e. privacy costs

incurred by users, against the targeting benefits on both market sides, but put too much

or too little weight on the benefit captured by the monetized market side. This distortion

depends on the net effect of cross-group externalities as well as the degree of competition

intensity on both market sides. If targeting benefits are small or competition is weak, an

inefficiently high level of data is collected. On the other hand, if competition is strong or

targeting benefits sufficiently outweigh nuisance costs, too little data is collected. From

the point of view of consumers the competitive level of data provision is always too high,

suggesting that applying a consumer standard to online platforms leads to underprovision

of personal data. The competitive equilibrium level of data provision, however, is monotone

in the degree of competition intensity: the weaker the competition on either side of the

market, the higher the equilibrium amount of data provision. This result is interesting

because it does not follow the common two-sided platform logic that less elasticity on one

side typically decreases the other side’s price.

3Bundeskartellamt, ‘Bundeskartellamt initiates proceeding against Facebook on suspicion of hav-
ing abused its market power by infringing data protection rules’, Press Release, 2 March 2016,
http://www.bundeskartellamt.de/SharedDocs/Meldung/EN/Pressemitteilungen/2016/02_03_2016_

Facebook.html.

4Classical examples include ad-based business models where data is used to improve ad targeting or
matching / recommendation platforms, where users are presented offers which become more relevant the
more the platform knows about its users. For illustration purposes we stick to the example of targeted
advertising and refer to the extension part of this paper for a more general consideration of cross-group
externalities, i.e. also the possibility of users enjoying the presence of firm’s offers.
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Our findings indicate that the inefficiency of data provision can be reduced by careful

privacy regulation or competition policies on either market side. One interpretation of

this result is that (competition) policy measures in these data-driven industries should

take into account the effects they have on the extent of private data collection.

We also consider a variety of extensions to this setup. In the first one we depart from

the assumption that platforms are restricted in their price setting on the user side, and

allow for non-zero user prices. In fact, lifting the restriction leads to an efficient level of

collected data, while user prices can be positive, negative (or zero). This gives rise to two

interpretations. The first is a Coasian one, where establishing the missing market on the

user side leads to an efficient outcome. This reflects the idea of Laudon (1996) that users

should be adequately compensated for the provision of their data, while the problem of the

‘data economy’ lies precisely in the absence of such a market. The second interpretation

is of counterfactual nature. In particular we argue that whenever the unrestricted model

would yield positive (negative) user prices, the restricted model exhibits overprovision

(underprovision) of user data as platforms can no longer adequately charge or compensate

users for collecting data. The second extension considers different degrees of platform

collusion and we conclude that the amount of collected data is excessively high under

full collusion, while this is not necessarily the case under partial collusion. In the third

extension we discuss the robustness of our results with respect to multi-homing and elastic

total demand. Lastly, we demonstrate that our results naturally extend to settings with

positive cross-group externalities (matching platforms).

The remaining paper is structured as follows. Section 2 relates our analysis to the existing

literature. Section 3 introduces the model. Section 4 characterizes the efficient benchmark

and competitive equilibrium outcomes, for which we present comparative statics in Section

5. Section 6 compares these outcomes and outlines policy implications. In Section 7 we

extend and discuss the baseline model. Section 8 concludes.

2 Related literature

Methodologically, our research is related to the literature on platform competition in

general and on applications in media markets in particular. We consider a competitive
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setting with two-sided single-homing which has been analyzed by Armstrong (2006) in a

more general framework and later extended in Armstrong and Wright (2007). However,

both papers consider the case where platforms engage in two-sided pricing while non-

monetary aspects (as e.g. user data) are not modelled. We also share a common component

with the literature on media platforms in the sense that we, at least in our baseline model,

consider the case of opposing indirect network effects, where advertisers like to reach many

users but users dislike the presence of advertisers. This reflects the idea of ‘peace and

quiet’ privacy in Posner (1981) and is a common assumption in the media literature (see

Anderson and Gabszewicz (2006) for a review). This setup is used e.g. to study competition

in TV markets (see e.g. Anderson and Coate (2005) or Peitz and Valletti (2008)) where

platforms do not engage in targeted advertising and therefore the expected revenue per

user as well as perceived nuisance are constant. Our research differs in the sense that we

endogenize those indirect network effects as we let them to be affected by the level of data

collected. The concept of endogenous network effects is captured in Reisinger (2012) where

users spend time using platform services and platforms translate this activity into better

targeting and reduced nuisance. A similar setup is presented in Bourreau et al. (2017),

however the research question differs substantially. The key difference is that in our model

the level of data provision is a strategic decision of the competing platforms, while in the

two previously mentioned papers consumers voluntarily spend time/provide data on the

platforms which changes the competitive dynamics significantly.

We also contribute to the broader literature on efficient provision of personal data and

the role of privacy as a competition instrument. The aspect of data provision being a

strategic choice made by platforms is captured to some extent by Spiegel (2013) who

compares commercial software (full privacy) to adware (positive privacy costs) and shows

that adware is welfare superior. De Corniere and De Nijs (2016) consider a setting where

a monopolistic platform auctions off advertising slots and decides whether to disclose

consumer information (no privacy) or not (privacy). They show that platforms might prefer

information disclosure, which comes at the cost of some consumers leaving the market

such that from a welfare point of view it is not clear which regime is preferable. Bloch and

Demange (2017) present a setting where consumers are heterogeneous with respect to their

privacy cost and a monopolistic platform decides how much data to extract. They show
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that depending on parameter values the amount of data collection can be excessively high.

A similar setting is presented in Lefouili and Toh (2017) where a monopolistic platform

monetizes on disclosing personal information to third parties. The authors conclude that

one of the inefficiencies arising is excessive information disclosure. The mentioned papers

consider the case of monopolistic platforms, while we consider the case of competing

platforms, allowing for varying degrees of competition intensity on both market sides.

The role of privacy in a competitive environment is considered in Casadesus-Masanell

and Hervas-Drane (2015) where firms not only compete in a price dimension but also in

a quality dimension which the authors motivate as privacy. They show that compared

to a monopolistic firm, competition leads to a higher degree of privacy while increasing

competition intensity does not necessarily imply that privacy improves even further. A key

assumption in their model is that prices for disclosing consumer information are exogenous,

while in our model platforms have market power vis-à-vis advertisers and hence face a

tradeoff. They also show that low privacy firms tend to subsidize consumers, while high

privacy firms charge positive consumer prices. Similarly, Kummer and Schulte (2016) show

empirically that there is a trade-off between money and privacy for users. They analyze

mobile application data and find that apps are cheaper when more personal data can be

collected. These results reoccur in our two-sided pricing extension as we show that user

prices can be positive or negative as well, while the degree of privacy provision is excessively

high or low once firms can no longer compensate users for their data provision. To our

knowledge there are very few empirical studies examining the interaction between market

power and privacy. In fact, the only study we are aware of is Bonneau and Preibusch

(2010) who relate the extent of data collection policies of various online services to the

competitiveness of the market they are operating in. They show that the more market

power a firm has, the more personal information is asked to be provided which is in line

with our model.

3 Model

We analyze a setting where two symmetric platforms, i, j ∈ {1, 2} with j 6= i, compete for

advertisers and users. Advertisers and users are distributed uniformly on different Hotelling
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lines of unit length and are assumed to both single-home. This assumption allows us to

focus on the role of competition intensity more clearly.5 Platforms are located at the ends

of the respective Hotelling lines such that platform i is located at location li = 0 and

platform j at lj = 1. Note that on the advertiser and the user side we have distinct

Hotelling lines and therefore distinct parameters of transportation costs, which we will

later interpret as different degrees of competition intensity. The idea is that the degree of

competition faced by platforms does not have to be same for all market sides. For example,

online platforms from different segments, such as search engines, social networks, video

streaming platforms or mail providers, may all compete for the same advertisers, however

competition for users may occur separately and independently of the other segments.

3.1 Users

A user located at x on the Hotelling line obtains utility ui(x) from joining platform i,

ui(x) = u− κ(di)− ν(di)Ai − tu|li − x|. (1)

The first term of the utility function is a fixed utility component u from using platform

services, which is the same for both platforms. Second, κ(di) ≥ 0 denotes the privacy

(opportunity) costs of providing user data di to the platform, whereby we assume that

costs are strictly convex and twice differentiable, and specifically that κ′(0) = 0, while

κ′(d) > 0 for all d > 0 and κ′′(d) > 0 for all d. Third, users incur nuisance cost ν(d) ≥ 0

per advertisements Ai on the platform. We assume that users (weakly) prefer personalized

to non-personalized ads, i.e. ν(d) is a convex and twice differentiable function s.t. ν ′(d) ≤ 0

and ν ′′(d) ≥ 0. This setup reflects the idea that the more relevant an ad, the higher

the chance of value creation through a possible follow-up purchase.6 Finally, users face

transportation costs due to horizontal platform differentiation, whereby we assume uniform

user distribution on the Hotelling line, i.e. x
u
∼ [0, 1], while tu > 0 is the associated

transportation cost parameter.

5In Section 7 we discuss multi-homing.

6Note that our set-up allows for positive utility of seeing advertisement as well, as long as this positive
utility is again concave in the amount of provided data. However, for sake of clarity we stay with the
notion of negative utility of nuisance in the subsequent text and consider the case of positive cross-group
externalities as an extension in Section 7.
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Consumers in our baseline model are not charged a monetary price explicitly, which makes

our model comparable to e.g. Reisinger (2012). We follow the same line of reasoning as

e.g. in Peitz and Reisinger (2016) and Waehrer (2015) that there are some exogenous

constraints preventing platforms from charging non-zero consumer prices. This restriction

is, however, relaxed in Section 7.1. In order to join a platform users have to provide some

personal data di in our model. This is different to the setup in Reisinger (2012) or Bourreau

et al. (2017) as in our model platforms can set the level of data which has to be provided

by the users, whereas in their models consumers voluntarily provide a certain amount of

time. The idea behind our setup is that consumers accept terms and conditions when using

a platform which requires them to accept a certain level of data provision or alternatively

cases where users have to register for an account by providing personal information before

they can use the platform service. This specification on the consumer side allows us to

focus on user data di as primary strategic aspect for competition.

3.2 Advertisers

An advertiser located at a on the Hotelling line obtains an expected profit of πi(a) from

posting a single ad on platform i,

πi(a) = τ(di)(1− pi)Xi − ta|li − a|. (2)

The interaction with Xi users on platform i generates a normalized expected revenue of

1, if users decide to ‘click on the ad’, which happens with probability τ(di). The strictly

concave and twice differentiable function τ(d) ≥ 0 can be interpreted as the targeting

ability of platforms: the more data d can be collected from users, the more effective the

targeting and hence the higher the probability that a user clicks on this ad, i.e. we have

that τ ′(d) > 0 and τ ′′(d) < 0. At the same time we assume that advertisers only pay the

platform a price pi if the ad has been clicked (cost-per-click) such that the expected revenue

per user is given by τ(di)(1 − pi), which is consistent with real-world pricing practices.

The second term reflects advertisers transportation costs when joining platform i. Again

we assume uniform advertiser distribution on the Hotelling line, i.e. a
u
∼ [0, 1], and ta > 0

as the transportation cost parameter on the advertiser side.
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3.3 Platforms

The business model of platforms in our model is purely ad-based. While they offer (ex-

ogenous) platform services (u) to users, revenue is only generated through presenting ads

to users.7 Platform profits are then given by

Πi (di, pi) = AiXiτ(di)pi (3)

i.e. Ai advertisers at platform i pay pi whenever the platform’s users Xi click on an ad

with probability τ(di).
8 The crucial novelty in our model is that we assume that besides

charging prices to advertisers, platforms extract data di from their users. While di shares

some price characteristics from the point of view of users, data is an essential input factor

for the click-probability the advertisers are facing. At the same time we assume that

not only the click probability increases through better targeting possibilities but also the

nuisance decreases.

3.4 Assumptions

We make the following assumptions to ensure full advertiser and user market coverage,

allowing us to study environments of full platform competition.9

Assumption 1 Competition for advertisers is sufficiently strong, i.e. ta ≤ t̄a.

This implies that competition for users is sufficiently weak and that there are gains of trade

for all advertisers, even without data collection, i.e.

(a) tu > ν(0),

(b) ta < τ(0).

The upper bound on ta is given by t̄a := tuτ(0)−ν(0)τ(0)
3tu+ν(0) . This assumption on the upper

bound of ta allows us to isolate effects in a competitive environment. Intuitively, this

7In Section 7 we discuss two-sided pricing.

8Note that platforms and advertisers share the profit created by each targeted user on the platform.
However, this does not mean that their incentives are perfectly aligned, since platforms additionally care
about the number of advertisers joining.

9In Section 7 we discuss relaxing the full-market coverage assumptions.
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constitutes a sufficient condition, such that for any level of (symmetric) data provision d ≥

0, it is assured that all advertisers obtain non-negative profits. Consequently, competition

for advertisers is sufficiently strong.

The condition on the consumer nuisance function, i.e. the necessary condition (a) of As-

sumption 1, can be motivated as follows: no platform will obtain the entire user mar-

ket, even if all ads were placed on the rival platform. Technically, this is established by

tu > ν(0).10 The condition on the targeting technology, i.e. the necessary condition (b) of

Assumption 1, states that even without collecting any data advertisers can still profitably

join a platform. In particular we assume that there are gains of trade for all advertisers.

Intuitively, this assumption states that there is a positive probability for users to click an

ad even if the ad is not targeted at all. And this probability, τ(0), exceeds the transporta-

tion cost incurred by any advertiser ta, so that we need not exclude any advertisers, even

if too little data is collected.

Assumption 2 The fixed utility component u is large enough to ensure full participation

on the user side.

Intuitively, the platform service provides sufficient utility such that users are not deterred

through the provision of personal data and seeing ads.

The timing of the game is as follows. In the first stage platforms simultaneously set prices

pi and the required level of data di to join their platform. In the second stage advertisers

and users observe the platforms’ choices and simultaneously decide which platform to join,

hence determining Ai and Xi.
11 The equilibrium concept is subgame perfection and we

solve the game by backward induction.

4 Equilibrium analysis

In this section we will first present the results for the second-stage subgame of user and

advertiser allocation. Then we will show the efficient and the user-optimal outcome as well

10Note that tu > ν(0) ⇒ tu > ν(d) ∀d because ν′(d) ≤ 0. Given any (symmetric) amount of data d ≥ 0
collected by both platforms, even if all advertisers used platform j such that Ai = 0 and Ai = 1, at least
the user most loyal to platform j, i.e. located directly at lj , would rather stay at this platform j, even
though it is full of ads. In other words, competition for users is sufficiently weak.

11We could also consider an alternative timing where advertisers choose first and users last. The outcome
is equivalent in our model.
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as the market outcome in the Subgame Perfect Nash Equilibrium.

4.1 Second stage market shares

In the second stage the market shares on the consumer and advertiser side are given by

the standard Hotelling procedure. Utilizing the unit length of the Hotelling line, and given

full user market coverage due to Assumption 2, the number of users joining a platform is

then determined by the indifferent consumer x̂ : ui(x̂) = uj(x̂) such that

Xi = x̂ =
1

2
+

1

2tu
[κ(dj)− κ(di) + ν(dj)Aj − ν(di)Ai] , Xj = 1− x̂. (4)

Similarly, market shares on the advertiser side are given by the indifferent advertiser

â : πi(â) = πj(â). Note that Assumption 1 assures market coverage gross of advertising

prices. For now we therefore assume that prices permit full market coverage and check

later that in equilibrium this is indeed the case. Market shares are then given by

Ai = â =
1

2
+

1

2ta
[τ(di)(1− pi)Xi − τ(dj)(1− pj)Xj ] , Aj = 1− â. (5)

Solving the system of equations given in (4) - (5) yields unique market shares Xi, Xj , Ai

and Aj as functions of data requirements di, dj and prices pi, pj . Explicit solutions are

provided in the Appendix.

4.2 Efficiency benchmark

For the derivation of the welfare-efficient benchmark, we define welfare as the sum of all

indirect utilities and profits, anticipating second stage market shares as in 4.1, i.e.

W (di, dj , pi, pj) =

∫ Xi

0
ui(x)dx+

∫ 1

Xi

uj(x)dx+

∫ Ai

0
πi(a)da+

∫ 1

Ai

πj(a)da+Πi +Πj .

(6)

Proposition 1 Welfare is maximized by the unique symmetric solution (do, po) = (doi , p
o
i )
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for i ∈ {1, 2}, where do is characterized by

κ′(do) =
τ ′(do)

2
−

ν ′(do)

2
(7)

resulting in equal advertiser and user market shares, i.e. Ao
i = 1/2 and Xo

i = 1/2. The

price po can be freely chosen to split the rent between advertisers and platforms.12

The welfare-optimal level of data do is chosen in a way such that users’ marginal cost of

data provision κ′(do) equals the sum of marginal benefits across both market sides, i.e.

the marginal benefit of enhanced targeting τ ′(do)/2 and the marginal benefit of reduced

nuisance −ν ′(do)/2, while the factor 1/2 is due to the symmetric market shares.13 Further-

more, the optimal level of data provision is independent of transportation cost parameters

ta and tu. Since prices are just transfers from advertisers to platforms they do not affect

welfare.14

4.3 User-optimal outcome

Let us now turn to the user-optimal level of data provision. If users are free to decide on

the amount of data provided, the user-optimal level du is derived from consumer surplus,

which is identical to the first two terms in equation (6), anticipating second stage market

shares as in 4.1.15

Proposition 2 User utility is maximized by the unique symmetric solution (du, pu) =

12Note that po has to be sufficiently small such that the advertiser market remains fully covered. The
upper bound on po is then obtained from the participation constraint of the indifferent advertiser at a = 1/2
such that πi(1/2) ≥ 0 ⇐⇒ po ≤ 1− ta/τ(d

o) < 1. The last inequality follows from Assumption 1.

13For very low transportation cost parameters and sufficiently high net benefits τ(·)−ν(·) on the platform
it might be efficient from a welfare perspective to shut one platform down and let the entire market be
served by the other platform due to high network effects. In this case the very fact of having a competing
platform is an inefficiency. While this corner solution exhibits an interesting property of platform markets,
it is not the focus of this paper and we therefore stick to the case where we have an interior, i.e. duopoly
solution as the efficient benchmark.

14The same data level do would result if we only choose di to maximize welfare, while anticipating firms
setting ad prices pi subsequently. These prices would be identical to the prices in the market outcome,
given by equation (13). The same argument applies for the user optimal level du.

15See footnote 14.
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(dui , p
u
i ) for i ∈ {1, 2}, where du is characterized by

κ′(du) = −
1

2
ν ′(du), (8)

while the price pu can be freely chosen to split the rent between advertisers and platforms,

resulting in equal advertiser and user market shares, i.e. Au
i = 1/2 and Xu

i = 1/2. 16

Intuitively, the user-optimal data level balances privacy costs and reduced nuisance benefits

for users, at the margin. Note that for constant nuisance costs we get the corner-solution

where users would not provide any private data, i.e. du = 0. For general decreasing nuisance

costs, users would be willing to provide a positive level of data du > 0.

4.4 Market outcome

For the market outcome, in the first stage platforms maximize their profits, anticipating

second stage market shares as in Section 4.1.

max
pi,di

Πi (di, pi) = Ai τ(di) piXi ∀i ∈ {1, 2} (9)

We obtain solutions for prices and data levels from the first-order conditions, i.e.

τ ′(di)

τ(di)
=−

∂Ai

∂di
Xi +

∂Xi

∂di
Ai

AiXi
, (10)

pi =
AiXi

∂Ai

∂pi
Xi +

∂Xi

∂pi
Ai

. (11)

Intuitively, targeting benefits of data collection must equal the effects on user and adver-

tiser shares, at the margin. Similarly, also prices must reflect their impact on user and

advertiser shares. Regarding the curvature of the maximization problem we note that the

solution to the first-order conditions represents a maximum as long as the targeting tech-

nology τ(·) is sufficiently concave, the nuisance cost ν(·) is sufficiently convex, or both.

The details of this condition are given in Appendix A.

16Note that pu has to be sufficiently small such that the advertiser market remains fully covered. The
upper bound on pu can be obtained as outlined in footnote 12.
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Proposition 3 There exists a (symmetric) Subgame Perfect Nash Equilibrium with

(d∗i , p
∗
i ) = (d∗, p∗) for i ∈ {1, 2}, such that the level of data collected from a users is

implicitly given by

κ′(d∗) =

(

ν(d∗) + tu
τ(d∗)− ta

)

τ ′(d∗)

2
−

ν ′(d∗)

2
(12)

and prices per advertisement are

p∗ = 2
tatu + ν(d∗)τ(d∗)

τ(d∗) [tu + ν(d∗)]
, (13)

resulting in equal advertiser and user market shares, i.e. A∗
i = 1/2 and X∗

i = 1/2.

Comparing the market level of data provision d∗ in (12) to the efficient level do in (7) we

see that the marginal targeting benefit τ ′(d∗)
2 is additionally weighted by ν(d∗)+tu

τ(d∗)−ta
. This

distortion is analyzed in detail in chapter 6. Note that the equilibrium price p∗ does not

exceed one and that profits are positive for all advertisers due to Assumption 1.17

Before we continue we state a corollary concerning the equilibrium effect of data provision

on user utility.

Corollary 1 In equilibrium, κ′(d∗) > −ν ′(d∗)/2.

Proof. See Appendix A.4.

Intuitively, Corollary 1 implies that in equilibrium users’ data provision is such that the

(negative) privacy costs effect on user utility is larger than the (positive) effect of re-

duced nuisance. Consequently, in the market outcome too much personal data is provided

compared to the user-optimal level.18

5 Comparative statics

In this section we want to provide economic intuition for the equilibrium results of our

model. For this we will provide comparative statics, given changes in advertiser-side com-

petition intensity ta and user-side competition intensity tu as well as nuisance ν(d) and

17 In Appendix A we provide the details for this result.

18 In Section 6 we provide a detailed comparison of the market outcome and the user-optimal outcome.

14



targeting τ(d) on equilibrium values of personal data provision d∗, ad-per-click price p∗,

as well as platform profits Π∗
i , advertiser profits π

∗
i and user utility u∗i .

As most of the comparative statics effects are in line with standard intuition from two-sided

platforms, we delegate these analyses to the Online Appendix B and refer to the table in

Figure 1 for an overview of all derived comparative statics results. In this section we focus

on the important and seemingly counter-intuitive effects of competition intensities of both

market side.

Figure 1: Overview of comparative statics

z dd∗/dz dp∗/dz dΠ∗
i /dz dπ∗

i /dz du∗i /dz

ta + + + − −

tu + − − + −

ν(d) + + + − −

τ(d) − ? + ? +

Note that we distinguish between the platform competition intensity on the user side and

on the advertiser side. As platforms are horizontally differentiated vis-à-vis both mar-

ket sides, competition intensity on each side can be measured through the corresponding

transportation cost parameter: higher transportation costs mean higher platform differen-

tiation and thus higher switching costs on this market side, which can be interpreted as

more platform market power and hence lower competition intensity.

5.1 Advertiser-side competition

First, we consider the effects of advertiser-side competition on data collection. For this

consider the platform’s first-order condition in equation (10) and note that the data level

choice depends on the effects of di on advertiser and user market shares Ai and Xi.

Regarding market share reactions we obtain ∂Xi/∂di < 0 and ∂Ai/∂di < 0 at equilibrium

values.19 Intuitively, additional data provision di would shy away usersXi because marginal

privacy costs are higher than marginal benefits of reduced nuisance (compare Corollary

1). Although more data provision increases targeting, overall, advertisers would still be

repelled by additional data provision because of the detrimental effect on user market

share at that platform.

19Note that derivations can be found in Appendix A.5.
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In equilibrium, if competition for advertisers softens, i.e. transportation costs ta increase,

advertisers become ‘more sticky’, i.e. less sensitive to changes in data provision (and hence

user demand) such that ∂2Ai/(∂di∂ta) > 0. Contrary, users become more sensitive to data

provision such that ∂2Xi/(∂di∂ta) < 0. Overall, the former effect dominates the latter

effect in magnitude. Consequently, and recalling X∗
i = A∗

i = 1/2, the right-hand-side of

equation (10) decreases in ta such that the equilibrium level of data provision must increase

as the left-hand-side is falling in di, i.e.

dd∗

dta
> 0. (14)

This effect might seem counter-intuitive initially. However note that in equilibrium plat-

forms balance the following trade-off for the data level. On the one hand, more data

collection yields higher targeting rates, higher advertiser demand and in sum higher prof-

its. On the other hand, collecting more data decreases user demand, which in turn repels

advertisers and thus decreases platform profits. If competition for advertisers softens, the

latter effect is dampened more than the former effect is strengthened. This yields a new

balance of the trade-off, where more user data is collected.

While advertiser prices p∗ rise in ta (compare Online Appendix B), the effect on user

data collection d∗ does not follow ‘standard’ two-sided platform logic as here less competi-

tion for advertisers, i.e. less sensitive advertiser demand, increases users’ data ‘payment’.

Therefore, users actually benefit from increased competition on the advertiser side, such

that also du∗i /dta < 0, as discussed in the Online Appendix B. Also, since dd∗/dta > 0

and dp∗/dta > 0 we naturally have dΠ∗
i /dta > 0.

5.2 User-side competition

Second, we evaluate the effects of user-side competition intensity on data collection. Sim-

ilar to the analysis above, we know that ∂Xi/∂di < 0 and ∂Ai/∂di < 0 in equilibrium. If

competition for users softens, i.e. transportation costs tu increase, on the one side users

become less sensitive to changes in data provision such that ∂2Xi/(∂di∂tu) > 0. Therefore,

advertisers also become less sensitive to data provision such that ∂2Ai/(∂di∂tu) > 0 be-

cause they care about the share of users on that platforms. Therefore the right-hand-side
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of equation (10) decreases in tu such that the equilibrium level of data provision must

increase, i.e.

dd∗

dtu
> 0. (15)

Two effects are intuitively relevant here. On the one hand, platforms care about the share of

users on their platform because it increases their profits directly, but also indirectly through

more attracted advertisers. On the other hand, platforms want to increase the level of user

data collected as it enhances targeting, attracts advertisers and hence increases profits. In

equilibrium, stronger competition for users impacts the former effect of attracting users

more than the latter of increasing targeting, therefore, platforms will collect less user

data. Following the same intuition, platforms would be willing to lose some advertisers in

order to not repel valuable users. Hence, also equilibrium advertiser prices increase in tu

(compare Online Appendix B.1). Contrary to the effects of advertiser-side competition,

these results reflect the ‘standard’ two-sided platform logic: stronger competition for users

reduces the ‘price’ on the user side, while it increases the price on the advertiser side.

Furthermore, we discuss the effect of user-side competition intensity on platform profits.

One could expect that platforms’ profit increases if competition for users becomes less

intense, however the opposite is true. For this note that their profit function in equilibrium

is Π∗
i = p∗τ(d∗)A∗

i X
∗
i = (1/4) p∗τ(d∗). Then, a change in user-side competition intensity

tu gives

dΠ∗
i

dtu
=

1

4

[

dp∗

dtu
τ(d∗) + τ ′(d∗)

dd∗

dtu
p∗
]

. (16)

On the one hand, advertiser prices decrease if competition for users becomes less intense

(tu increases), which reduces platform profits. Hence the first term on the right-hand

side of (16) is negative. On the other hand, the second term is positive, because when

competition for users becomes less intense (tu increases), more data can be collected from

users, which leads to more effective ad targeting and therefore increased platform profits.

As can be seen from the derivation in Appendix A, overall, the negative first-term effect

is stronger in equilibrium, such that platforms suffer from weaker competition for users,

i.e. dΠ∗
i /dtu < 0.
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6 Policy implications

In this section we draw comparisons between the different outcomes outlined in Section 4

and present policy implications.

6.1 Comparison of outcomes

First, we want to compare the outcome of the efficiency benchmark with the market

equilibrium outcome. If we compare the right-hand-side of the competitive level d∗ in (12)

and the efficient level do in (7) we can see that the difference will crucially depend on the

distortion induced by

δ(d∗) :=
ν(d∗) + tu
τ(d∗)− ta

, (17)

which gives more or less weight to the marginal benefit on the advertiser market side

τ ′(d∗)/2. Note that by Assumption 1 the denominator of δ(d∗) is positive, so that we have

δ(d∗) > 0. As the efficient level do does not depend on parameter values, we can see that

there can be underprovision (d∗u < do) as well as overprovision (d∗o > do) of personal data

in the competitive equilibrium. Depending on the structure of the market too much or too

little weight is put on the advertiser side of the market. In particular we can infer from

equations (12) and (7) that the competitive outcome leads to underprovision of personal

data if δ(d∗) < 1 and to overprovision if δ(d∗) > 1. Note for δ(d∗) = 1 expression (12)

simplifies to (7), the efficient level of data provision. Using our definition of δ(d∗) we can

then see that d∗ < do if

δ(d∗) < 1 ⇐⇒ τ(d∗)− ν(d∗) > ta + tu (18)

and d∗ > do if

δ(d∗) > 1 ⇐⇒ τ(d∗)− ν(d∗) < ta + tu. (19)

These results are summarized in the following proposition.

Proposition 4 The competitive outcome leads to overprovision of personal data if com-
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petition on both market sides is weak and/or if net cross-group externalities are small. If

competition on both market sides is strong and/or net cross-group externalities are large,

the competitive outcome exhibits underprovision of personal data.

Proof. See Appendix A.4.

We want to interpret this finding by first holding the functions κ(d), ν(d) and τ(d) fixed

and asking the question which competitive environment leads to which scenario. From our

comparative statics results we know that the amount of data is a monotone function of

the transportation cost parameters, i.e. dd∗

dtu
> 0 and dd∗

dta
> 0. Proposition 4 then gives us a

threshold for how the resulting level of data collection compares to the efficient benchmark:

if competition is too strong, i.e. ta + tu is small, platforms tend to collect and process an

inefficiently small amount of data as users and advertisers shy away too easily. If in turn

competition on both sides is weak, i.e. ta+ tu is high, the market sides become more sticky

and platforms are able to extract high amounts of personal data.

We can also hold the competitive environment ta, tu on both sides fixed and analyze the

effects of relatively strong or weak opposing cross-group externalities. On the one hand,

an additional user imposes a positive externality on advertisers (and platforms), which is

equal to the targeting effect τ(d∗). On the other hand, an additional advertiser imposes a

negative externality on users, which is equal to the nuisance costs −ν(d∗). The net effect

can therefore be interpreted as available gains from trade in this economy. If the net effect

is relatively large, there are significant gains of trade which could be seized by increasing

the amount of data collected. If the net effect is small, the gains from trade could be

increased by lowering the amount of collected data.

Comparing the user-optimal level du to the welfare-optimal level do we immediately see

that users would provide an inefficiently low level of data. This result is summarized in

the following proposition.

Proposition 5 The user-optimal level of data provision is inefficiently low.

The reason for this result is straightforward. As users do not internalize the effect the

data has on the advertiser market, they will provide data up to the point where the

marginal decrease in nuisance equals marginal cost of data provision. Since from a welfare

perspective the value creation aspect on the advertiser market is omitted, the resulting level
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of data provision is inefficiently low. Furthermore, since δ(d∗) > 0 we also have d∗ > du

for all exogenous parameters and functional forms, as shown in Corollary 1. Unlike users,

platforms act as intermediaries and are able to internalize parts of the value creation on

both sides of the market.

6.2 Policy conclusions

In this subsection we briefly discuss what conclusions can be drawn from our previous

analyses when it comes to policy implications and regulation.

In our model, an omnipotent regulator could obviously achieve the first-best outcome by

forcing di = dj = do and increasing competition on both sides of the market such that

tu → 0 and ta → 0. In this case the efficient amount of data is provided while the total

transportation costs approach zero.

In practice, regulation and policy discussions typically focus on data and privacy regula-

tion or on competition policy measures (or merger regulation) to assure competitiveness

on the user side, for example in the recent Facebook case at the BKartA or the Face-

book/Whatsapp merger case in the US and the EU. In this section we want to present

answers our model provides for privacy and competition policy, taking into account both

market sides and at the same time the effect on privacy.

Privacy regulation

Holding the competitive structure of the market fixed, the regulator could improve upon

the market outcome by enforcing the efficient level of private data provision di = dj = do.

However, a direct regulation of the amount of data in our model requires knowledge of the

cross-group externalities, i.e. functions τ(d) and ν(d), as well as users’ privacy concerns

κ(d).

A regulator could also consider switching to a consumer standard and let consumer freely

choose how much data they would like to provide. Our results show that the user-optimal

amount of data is always inefficiently low as users do not internalize the benefit on the

advertiser side. In particular our results suggest that we can only improve in terms of

welfare by switching to a consumer standard when there is extreme overprovision of data

in the economy, i.e. platforms have significant market power on both sides of the market.
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If the market exhibits underprovision, switching to the consumer standard always reduces

welfare.

Competition policy

An approach which is less demanding when it comes to information requirements is the

regulation of the competitive environment on both market sides, i.e. tu and ta. Our results

(Proposition 4) suggest that if competition is very weak on both sides (tu + ta high), the

amount of data collected is likely to be inefficiently high. Similarly, if competition is too

strong (tu+ta low), too little data is provided from a welfare point of view. While regulators

still have to know whether there is overprovision or underprovision in the market in the

first place, our results can still provide some guidance.

Our comparative statics results suggest that increasing competition works in the same

direction for both sides of the market. The equilibrium amount of data provision is a

monotone function of the transportation cost parameters ta and tu and by altering either

one of the parameters it is possible to push the competitive equilibrium amount of data

d∗ towards the welfare optimum do. Typical examples include reducing switching costs on

the user side (see e.g. GDPR/data portability in the EU) or policing vertical integration

on the advertiser side (see e.g. debate around Google/DoubleClick acquisition). Further,

our results suggest that more competition between platforms is not necessarily welfare

enhancing as it further limits the ability to create economic value through the collection

of personal data in the case of underprovision.

Also, our results suggest that policy measures, although they work in the same direction,

are not equally effective across market sides, i.e. dd∗

dta
6= dd∗

dtu
. This might be particularly

important in a scenario where the market exhibits underprovision and a regulator would

have to reduce competition as this implies increasing transportation costs in the economy.

Increasing transportation costs would then lead to more data collection in the subsequent

market outcome. Whether we can increase total welfare by increasing transportation costs,

however, depends crucially on whether the benefit of higher and thus more efficient data

provision (non linear) exceeds the increased costs of transportation (linear).20 This trade-

20Note that also in a situation of overprovision, the market structure might be such that it is socially
beneficial to decrease transportation costs, i.e. increase competition, even beyond the level where it induces
efficient data provision (as established in equation 7), such that the benefits of decreased transportation
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off could call for a second-best regulation, where competition intensity is regulated in such

a way that the amount of data provided in the subsequent market outcome balances the

above mentioned benefits and costs at the margin.

From these results on competition policy we want to draw two main conclusions. First,

regulating competition on either or both market sides can address the privacy / data

collection distortion in the market outcome. Second, whenever regulators consider com-

petition policy or merger regulation in these data-driven industries, they should take into

account the impact on data collection in the market.

7 Discussion

In this chapter we sketch and briefly discuss extensions and variations of the baseline

model presented in Section 3.

7.1 User prices

In this section we consider an alternative setup where platforms can charge prices on the

user side of the market. All other model specifications remain as before, i.e. specifically

users now have to pay a monetary price additional to their personal data ‘payment’. In a

sense, this setup could be considered as an unrestricted model, where platforms are not

restricted to zero user prices. Let pui denote the price a user has to pay to join platform i.

User utility is then given by

ui(x) = vi + d− κ(di)− ν(di)Ai − pui − tc|li − x|, (20)

while advertisers still face the same decision as in Section 3. Market shares are obtained as

before by pinning down indifferent users and advertisers and solving the resulting system

of equations. The resulting profit maximization problem of platform i is then given by

max
pi,di,p

c
i

= Aiτ(di)piXi + pui Xi ∀i ∈ {1, 2}. (21)

costs outweigh the costs from data underprovision.
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Following the same procedure as in our baseline model we obtain symmetric equilibrium

values pi = pj = p̃, pui = puj = p̃u and di = dj = d̃ where advertiser prices are given by

p̃ = 2[ta + ν(d̃)]/τ(d̃), user prices by

p̃u = ta + tc + ν(d̃)− τ(d̃), (22)

while the equilibrium amount of data is given by

κ′(d̃) =
1

2

[

τ ′(d̃)− ν ′(d̃)
]

. (23)

We immediately see from equations (7) and (23) that d̃ = do.

Proposition 6 If platforms can charge prices on both market sides, the efficient level of

data is collected.

Since platforms can now extract rents from both sides of the market, they maximize the

aggregate value, whereas in our baseline model platforms only profited on the advertiser

side of the market and hence set a data requirement level which is distorted. Taking a

closer look at equilibrium user prices in (22) we immediately see that negative, positive or

zero user prices are possible, depending on parameter values and functional forms.

Proposition 7 If user prices in the two-sided pricing model are positive, the one-sided

pricing constraint would result in data overprovision. Contrary, if user prices are negative,

this constraint would yield underprovision.

Proof. See Appendix A.4.

The intuition for this result is that now platforms can extract the efficient amount of

data by adequately compensating users. If net benefits of data collection are large or

competition is rather strong, platforms can extract large amounts of data from users and

then compensate them by charging negative user prices, whereas in the one-sided pricing

model platforms do not have the instrument for compensation and therefore are forced to

collect less data than the efficient level. Vice versa, if net benefits are small or competition

rather weak, platforms are not forced to monetize through ads by extracting an inefficiently
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high amount of data, but can obtain positive revenue from the user side instead and leave

the amount of data at the efficient level.

We would like to mention at this point that this result may depend on the fact that even

with positive user prices we assume the user market to remain fully covered. However,

remember that under a market solution with overprovision users gain in terms of utility

by decreasing d from d∗ to do. If this difference in utility is enough to cover the associated

positive user price, the user market remains covered. If the consumer price exceeds the

utility gain, the two-sided pricing may lead to users leaving the market and efficiency

may not be feasible any longer. We provide a more detailed discussion of the full market

coverage assumption in the subsequent section. A similar argument can also be made if

we consider heterogeneous users as then our uniform pricing setup may not be sufficient

to ensure efficiency but platforms would need to engage in price discrimination.

Nevertheless, we would like to draw two further conclusions from these results. Firstly,

observing a user price p̃u = 0 empirically is consistent with the equilibrium result above as

well as with our baseline model. By observing zero prices we can not infer whether a price of

zero is an optimal choice, making the model above the ’correct’ model, or whether there are

constraints which prevent platforms from setting user prices at all, making our baseline

model more suitable. Secondly, since user prices depend on parameters of competition

intensity and externalities, observing zero prices across different markets, jurisdictions

and industry sectors makes it unlikely that p̃u = 0 is a profit maximizing choice in all

cases. This strongly supports the argument made by Waehrer (2015) that user prices are

not a (practical) variable of interest in real-world platform maximization problems.

7.2 Collusion

Full collusion

Let us consider a collusive game where platforms agree on prices pi = pj = p and data

requirements di = dj = d such that joint profits are maximized. Since advertisers face

transportation costs, the profit maximizing collusive price is such that the participation

constraint of the indifferent advertiser is binding πi
(

1
2

)

= 0 which yields p = 1 − ta
τ(d) .

Plugging the collusive price p into the platforms’ profit functions (3) we obtain Πi =
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1
4(τ(d) − ta) and immediately see that profits are increasing in d up to the point where

the participation constraint of the indifferent user binds d : ui(
1
2) = 0. Since we assumed

u to be high enough to have interior solutions in the previous sections, we can infer that

the collusive amount of data will be excessively high.

Partial collusion

In this section we consider an alternative collusive environment where platforms coordi-

nate on setting a symmetric level of data d but still compete in prices on the advertiser

market. The idea is that platforms might influence privacy regulation in a collusive ef-

fort without coordinating their pricing decisions. We therefore introduce a collusive stage

where platforms agree on a symmetric level d prior to the price setting decision. It is easy

to verify that symmetric prices are then given by pi = pj = p(d) ≡ 2 tatu+ν(d)τ(d)
τ(d)[tu+ν(d)] , similar

to the market outcome outlined in Section 4. The key difference, however, is the collusive

choice of d. As prices (and d) are symmetric, market shares can be anticipated to be given

by Ai = Aj = Xi = Xj = 1/2 such that industry wide platform profits are given by

Π(d) := Πi(d) + Πj(d) =
τ(d)p(d)

2 .

If we have Π′(d) > 0 for all d, the collusive level will be the same as in full collusion case,

such that the participation constraint of the users will be binding, and if Π′(d) = 0 has

a solution, a possible interior solution exists. The comparison to the market outcome (or

to the efficient outcome) is in this case, however, ambiguous and depends on functional

forms and parameter values.

Interestingly, industry profits are not necessarily increasing in d. In fact if Π′(d) =

p(d)τ ′(d) + p′(d)τ(d) < 0 for all d then the collusive level of data will be zero. The reason

for this seemingly counter-intuitive result is that increasing d can effectively propagate

competition on the advertiser market. In particular if we go back to the definition of ad-

vertiser market shares in (5) we can see that increasing a symmetric level d has the same

effect on the advertiser market as a decrease in transportation costs in the sense that it

makes advertisers more reactive towards changes in prices. The intuition is straightfor-

ward: if the click-probability is very high, small differences in prices become magnified.

The trade-off faced by the platforms is then the following. An increase in click probability

(through increasing d) results in tighter competition on the ad market (depressing p). The
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optimal d can therefore vary widely depending on which effect dominates.

To briefly summarize this section we can conclude that full collusion amongst platforms

should be avoided whenever possible. When it comes to partial collusion, however, a more

nuanced analysis is necessary as competition on the ad market might be sufficiently strong

to prevent inefficient regulatory capture.

7.3 Market coverage and multi-homing

In this section we want to briefly discuss the effects of relaxing the assumptions guaran-

teeing full market coverage and single-homing. We consider market-coverage and multi-

homing together because without these assumptions in both cases the market share of a

platform is determined by the user/advertiser who is indifferent between joining a plat-

form and the outside option, whereas in the baseline model it was determined by the

user/advertiser who is indifferent between joining both platforms. Note that this changes

the interpretation of transportation costs in the model substantially. While in the baseline

model transportation costs measured a restriction to switching to the other platform and

hence a degree of platform competition, now they rather exhibit a restraint on a platform’s

demand, independent of the other platform. Essentially, lower transportation costs can now

be interpreted as more elastic demand, whereas in the baseline model they reflected less

elastic (sticky) demand. While our assumptions for the baseline model were chosen to

study full competition between platforms, relaxing the assumptions on one market side

significantly changes the setting in the sense that platforms now only compete indirectly

through the other market side. Nevertheless, we want to provide some intuition for the

robustness of our results. For a more detailed analysis consider the Online Appendix B.

Advertiser side

On the advertiser side, lifting Assumption 1 of a covered market together with the single-

homing assumption can result in two cases, depending on parameters. First, if transporta-

tion costs ta are sufficiently small, some advertisers ’in the middle’ will use both platform

(multi-homing). The comparison of the new equilibrium level of data provision to the new

efficient level or the baseline level of data provision is, however, ambiguous. This is be-

cause less advertiser demand elasticity on the one hand could allow firms to readjust d,
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while at the same time the total number of advertisers on a platform could rise. From

an efficiency perspective, though, more data should be collected than was efficient in the

baseline model. Second, if transportation costs ta are sufficiently high, some advertisers

in the middle might choose not to use any platform (no full market coverage). Then it

would also be efficient to exclude some advertisers such that the new efficient level of data

provision is below the efficient baseline level. The comparison to the equilibrium outcomes

remains however ambiguous, as above.

User side

On the user side, relaxing the full-market Assumption 2 and the single-homing constraint

similarly leads to either some users ’in the middle’ joining both platforms (multi-homing)

or some user joining neither platform (no full market coverage), depending mainly on

transportation costs tu. In both cases user demand is then merely scaled by the demand

elasticity, i.e. the transportation costs tu, and users’ role essentially reduces to being a

resource of data needed to create advertising surplus.21 We find that there would always

be over-provision of user data in equilibrium because the efficient benchmark takes into

account the trade-off between total value creation and user exclusion, whereas the market

outcome only balances targeting benefits and potential user exclusion. However, still less

data is collected than in the baseline model and also the efficient level of data decreases.

Further, we find that now the transportation costs parameters have no effect on the equi-

librium level of data provision. This is because tu merely scales demand while the relevant

trade-off for the choice of d involves the actual utility when joining the platform and is

not influenced by the demand scale. Furthermore, equilibrium prices now increase in tu

and decrease in ta. Because of the reversed role transportation costs now play, this is not

contradictory to the baseline model results: the harder it is to keep users, the higher the

price for advertisers. Consequently, platform profits still increase and advertiser profits

still decrease in user-side elasticity.

21Note that on the advertiser side this was not the case because advertisers pay money rather than a
value-creating resource.
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7.4 Positive cross-group externalities

In the baseline model we considered the case where users incur nuisance cost from seeing

ads on the platform, i.e. a negative cross-group externality incurred by users. As explained

in the beginning we consider this case because we think it illustrates the main results in

a very intuitive way. What we demonstrate in the Online Appendix B is that the model

can in fact be generalized to have positive cross-group effects in both directions while the

major results remain unchanged.

8 Conclusion

We analyze the role of competition intensity in a two-sided market framework where plat-

forms collect data from users and monetize through ad-sales. Our model predicts that the

equilibrium amount of collected data will be distorted compared to the welfare efficient

benchmark. Depending on the net effect of cross-group externalities and the competition

intensity on both sides of the market, the distortion can lead to underprovision or overpro-

vision of personal data. Since the level of collected data increases the more market power

platforms have on either side of the market, side specific regulations are substitutable.

We also show that a consumer standard would always lead to underprovision of data as

users do not internalize improvements in the targeting capabilities. Lastly, we showed that

two-sided pricing induces platforms to choose the efficient level of data by adequately

compensating users.

While we think our model provides useful insights we would also like to discuss some

limitations. It would be interesting to further explore the role of multi-homing on the

advertiser side as it changes the competitive dynamics substantially. Secondly, one could

alter the setting on the user side and consider heterogeneous users, while platforms engage

in second degree discrimination by offering a menu of data choices. We think those are

interesting avenues for future research.
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Appendix

A Omitted proofs

A.1 Second stage market shares

Note that equations (4) - (5) are consistent, non-redundant and linear in Xi, Xj , Ai, Aj

such that the resulting solution in (4.1) is unique. Explicit market shares are then given

by:

Xi =
ta(2κ(dj)− 2κ(di) + ν(dj)− ν(di) + 2tu) + (1− pj)τ(dj)(ν(di) + ν(dj))

4tatu + (ν(di) + ν(dj))((1− pi)τ(di) + (1− pj)τ(dj))

Xj =
ta(2κ(di)− 2κ(dj) + ν(di)− ν(dj) + 2tu) + (1− pi)τ(di)(ν(di) + ν(dj))

4tatu + (ν(di) + ν(dj))((1− pi)τ(di) + (1− pj)τ(dj))

Ai =
(1− pi)τ(di)(κ(dj)− κ(di) + ν(dj) + tu)− (1− pj)τ(dj)(κ(di)− κ(dj)− ν(dj) + tu) + 2tatu

4tatu + (ν(di) + ν(dj))((1− pi)τ(di) + (1− pj)τ(dj))

Aj = 1−
(1− pi)τ(di)(κ(dj)− κ(di) + ν(dj) + tu)− (1− pj)τ(dj)(κ(di)− κ(dj)− ν(dj) + tu) + 2tatu

4tatu + (ν(di) + ν(dj))((1− pi)τ(di) + (1− pj)τ(dj))

A.2 Second order conditions

In the following we derive sufficient conditions such that the equilibrium values p∗, d∗ de-

rived from the maximization problem presented in Section 3 characterize a local maximum.

Let us consider the Hessian evaluated at equilibrium values. Starting with

∂2Πi

∂p2i

∣

∣

∣

∣

d∗,p∗

= −
t2u τ(d∗)2(ν(d∗) + tu)

4(tu − ν(d∗))2(ν(d∗)τ(d∗) + tatu)

we immediately see that ∂2Πi

∂p2i

∣

∣

∣

d∗,p∗
< 0, a necessary condition for the Hessian to be negative

definite. In the next steps we argue that we can always find functions τ(·), ν(·) such that

det(H)|d∗,p∗ > 0. First, it is helpful to look at the numerator and the denominator of the

Hessian separately

det(H)|
d∗,p∗

=
Hnum

Hden

where the numerator Hnum and the denominator Hden are given by

Hnum = τ(d∗)2
[

−4t2u(ta − τ(d∗))(ν(d∗)τ(d∗) + tatu)
(

ν′′(d∗)(ta − τ(d∗)) + τ ′′(d∗)(ν(d∗) + tu)
)

−t2uν
′(d∗)2(ta − τ(d∗))3 − τ ′(d∗)2(ν(d∗) + tu)

2
(

ν(d∗)(ν(d∗)(ta − τ(d∗)) + 4tcτ(d
∗)) + 4tat

2

u

)

+2tuν(d
∗)ν′(d∗)τ ′(d∗)(ta − τ(d∗))2(ν(d∗) + tu)

]

Hden = 64(ta − τ(d∗))(tu − ν(d∗))2(ν(d∗)τ(d∗) + tatu)
2
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Note that Hden < 0 as we have (ta − τ(d∗)) < 0 from Assumption 1. Rewriting Hnum as

Hnum = τ(d∗)2
[

H1num

(

H2numν′′(d∗) +H3numτ ′′(d∗)
)

+H4num +H5num +H6num

]

H1num = −4t2u(ta − τ(d∗))(ν(d∗)τ(d∗) + tatu) > 0

H2num = (ta − τ(d∗)) < 0

H3num = (ν(d∗) + tu) > 0

H4num = −t2uν
′(d∗)2(ta − τ(d∗))3 ≥ 0

H5num = −τ ′(d∗)2(ν(d∗) + tu)
2
(

ν(d∗)(ν(d∗)(ta − τ(d∗)) + 4tuτ(d
∗)) + 4tat

2

u

)

≶ 0

H6num = 2tuν(d
∗)ν′(d∗)τ ′(d∗)(ta − τ(d∗))2(ν(d∗) + tu) ≤ 0

we can see that requiring Hnum < 0 is equivalent to the condition

−
1

H1num

(H4num +H5num +H6num) > H2numν′′(d∗) +H3numτ ′′(d∗)

where LHS ≶ 0 while RHS < 0 due to our functional requirements on τ(·) and ν(·). The

important thing to realize is that, firstly, the condition for negative definiteness reduces to

a condition which is linear in ν ′′(d∗) and τ ′′(d∗), the curvature information of the targeting

and the nuisance functions, and secondly, is given by an upper bound. If the sign of the

upper bound is positive then this condition is always fulfilled as we have RHS < 0. Only if

the sign of the upper bound is negative, the condition may bind. But then we can assume

that τ(·) is sufficiently concave and/or ν(·) is sufficiently convex such that this condition

holds since for our results we only require τ ′′(·) < 0 and ν ′′(·) ≥ 0 which is in line with

this condition.

A.3 Market outcome

In equilibrium p∗ < 1 and π∗
i (a) ≥ 0. To see this note that given equation (13), p∗ < 1 if

2
tatu + ν(d∗)τ(d∗)

τ(d∗)tu + ν(d∗)τ(d∗)
<1 ⇐⇒ ta < τ(d∗)

(tu − ν(d∗))

2tu
< τ(d∗) (A.1)

By Assumption 1 we have that τ(d) > ta for all d and therefore in particular also τ(d∗) >

ta. Further, we have that 0 < (tu − ν(d∗)) /2tu < 1, hence the last inequality. Thus,

Assumption 1 is sufficient for the expression above to hold and p∗ < 1.

Even the indifferent advertiser with highest transportation costs has positive profits in
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equilibrium because

π∗
i (

1

2
) =

τ(d∗)

2
−

tatu + ν(d∗)τ(d∗)

tu + ν(d∗)
−

ta
2

≥ 0 ⇐⇒ τ(d∗)
tu − ν(d∗)

3tu + ν(d∗)
≥ ta, (A.2)

which is guaranteed by Assumption 1 for all d and especially for d∗. For this note that the

term on the left in the last inequality is increasing in d.

A.4 Proofs of Propositions & Corollaries

Proof of Corollary 1

Proof. Rearranging terms in the first-order condition of platform profit maximization,

given by equation (12), yields 2κ′(d∗)+ ν ′(d∗) = τ ′(d∗)ν(d
∗)+tu

τ(d∗)−ta
. By Assumption 1 we have

τ(d∗) > ta. Hence the right hand side is positive, such that 2κ′(d∗) + ν ′(d∗) > 0.

Proof of Proposition 4

Proof. The proof relies on the monotonicity of the LHS and RHS in equations (7) and

(12). Suppose, δ(d∗) > 1 but d∗ < do and hence κ′(d∗) < κ′(do). Using the implicit

definition of do in (7) and d∗ in (12) this implies δ(d∗)τ ′(d∗) − ν ′(d∗) < τ ′(do) − ν ′(do).

Rearranging yields δ(d∗) < τ ′(do)
τ ′(d∗) +

ν′(d∗)−ν′(do)
τ ′(d∗) . But due to the curvature of τ(·), ν(·) we

have τ ′(do)
τ ′(d∗) < 1 and ν′(d∗)−ν′(do)

τ ′(d∗) ≤ 0 for d∗ < do, contradicting δ(d∗) > 1. Now suppose

δ(d∗) > 1 and d∗ > do, and hence δ(d∗) < τ ′(do)
τ ′(d∗) +

ν′(d∗)−ν′(do)
τ ′(d∗) . For d∗ > do we then have

τ ′(do)
τ ′(d∗) > 1 and ν′(d∗)−ν′(do)

τ ′(d∗) ≥ 0 and hence δ(d∗) > 1.

Proof of Proposition 7

Proof. To see that positive user prices in the two-sided model correspond to data overpro-

vision in the one-sided pricing model, note that user prices are positive in the two-sided

pricing model if τ(do)−ν(do) < ta+ tu. From Proposition 4 we know that in the one-sided

pricing model too little data is provided if ta + tu < τ(d∗) − ν(d∗). But this would mean

that d∗ < do, which contradicts τ(do)− ν(do) < ta+ tu < τ(d∗)− ν(d∗), as τ(d) is increas-

ing and ν(d) decreasing in d. Hence it can only be that in the one-sided model there is

overprovision, such that d∗ > do and τ(do)− ν(do) < τ(d∗)− ν(d∗) < ta + tu.

To see that negative user prices in the two-sided model correspond to data underprovision
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in the one-sided pricing model, note that user prices are negative in the two-sided pricing

model if τ(do) − ν(do) > ta + tu. From Proposition 4 we know that too much data is

provided if ta + tu > τ(d∗)− ν(d∗). But this would mean that d∗ > do, which contradicts

τ(do) − ν(do) > ta + tu > τ(d∗) − ν(d∗). Hence it must be that in the one-sided model

there is underprovision, such that d∗ < do and τ(do)− ν(do) > τ(d∗)− ν(d∗) > ta + tu.

A.5 Proofs for comparative statics

For the effect of transportation costs ta and tu on di note first that

∂Xi

∂di

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
{tatu + ν(d∗) [tap

∗ + (1− p∗)τ(d∗)]} τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
< 0, (A.3)

∂Ai

∂di

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
(1− p∗) [tatu + ν(d∗)τ(d∗)] τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
< 0, (A.4)

because τ ′(d∗) > 0 , while τ(d∗) > ta by Assumption 1 and p∗ < 1 as established in Section

A.3. Differentiating (A.3) and (A.4) with respect to transportation costs yields

∂2Xi

∂di∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
(1− p∗)ν(d∗) [tatu + ν(d∗)τ(d∗)] τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]2
< 0,

∂2Ai

∂di∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
(1− p∗)tu [tatu + ν(d∗)τ(d∗)] τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
> 0,

∂2Xi

∂di∂tu

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
ta {tatu + ν(d∗) [tap

∗ + (1− p∗)τ(d∗)]} τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
> 0,

∂2Ai

∂di∂tu

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
(1− p∗)τ(d∗) {tatu + ν(d∗) [tap

∗ + (1− p∗)τ(d∗)]} τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
> 0.

Further note that

∂2Ai

∂di∂ta
−

∂2Xi

∂di∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
(1− p∗) [tu + ν(d∗)] [tatu + ν(d∗)] τ ′(d∗)

4 [τ(d∗)− ta] [tatu + (1− p∗)ν(d∗)τ(d∗)]
> 0.

To see that dΠP
i /dtu < 0, note that

dΠP
i

dtu
=

− [τ(d∗)− ta]
[

ν(d∗)− tuν
′(d∗)dd

∗

dtu

]

+ dd∗

dtu
ν(d∗)τ ′(d∗) [tu + ν(d∗)]

[tc + ν(d∗)]2

=
[τ(d∗)− ta]

2 [(tu + ν(d∗)) ν′(d∗)τ ′(d∗)− ν(d∗) {(τ(d∗)− ta) [κ
′′(d) + ν′′(d∗)]− tc (tu + ν(d∗)) τ ′′(d∗)}]

[tu + ν(d∗)]2 Ψ(d∗)

< 0, (A.5)
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where dd∗/dtu is from equation (15), while the term in the denominator is given by

Ψ(d∗) =
[

2κ′′(d∗) + ν′′(d∗)
]

(τ(d∗)− ta)
2
− ν′(d∗)τ ′(d∗) (τ(d∗)− ta) (A.6)

+ (ν(d∗) + tu)
[

τ ′(d∗)2 − (τ(d∗)− ta) τ
′′(d∗)

]

> 0.

Note for the inequalities that τ ′(d∗) > 0, τ ′′(d∗) < 0 while ν ′(d∗) ≤ 0, ν ′′(d∗) ≥ 0 by

construction, and τ(d∗) > ta by Assumption 1.
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B Online appendix

In this online appendix we will provide derivations and intuition for comparative statics

not covered in the main text. Further, we present extensions to our baseline model where

we consider multi-homing, elastic total demand and positive cross-group externalities.

B.1 Comparative static effects on prices in equilibrium

For this analysis consider the platform’s first-order condition in equation (11) and note

that the price depends indirectly on the effects of pi on advertiser and user market shares

Ai and Xi as given in Section 4.1.

∂Xi

∂pi

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
ν(d∗)τ(d∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]
> 0, (B.1)

∂Ai

∂pi

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
tuτ(d

∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]
< 0, (B.2)

because p∗ < 1 as established in Appendix A.

Competition for advertisers

Note that in Section 5 we discussed that lower advertiser-side competition intensity in-

creases the level of data collection in equilibrium, i.e. dd∗/dta > 0. Here we analyze the

effects of competition intensity for advertisers on p∗. Differentiating (B.1) with respect to

transportation costs ta yields

∂2Xi

∂pi∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
tuτ(d

∗)ν(d∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]2
< 0,

∂2Ai

∂pi∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
t2u τ(d

∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]2
> 0.

Further note that

∂2Ai

∂pi∂ta
−

∂2Xi

∂pi∂ta

∣

∣

∣

∣

∣

di=d∗

pi=p∗

=
tu [tu + ν(d∗)] τ(d∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]2
> 0.
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If competition for advertisers softens, i.e. transportation costs ta increase, advertisers be-

come less sensitive to changes in prices such that ∂2Ai/(∂pi∂ta) > 0. Consequently, users

become more sensitive to prices (which repel advertisers) such that ∂2Xi/(∂pi∂ta) < 0.

Overall, the former effect dominates the latter effect in magnitude. Consequently, and

as X∗
i = A∗

i = 1/2, the right-hand-side of equation (11) increases in ta such that the

equilibrium price must rise, i.e.

dp∗

dta
> 0. (B.3)

Intuitively, higher advertiser transportation costs mean more sticky advertisers and hence

decreased platform competition for advertisers. Therefore, it is straightforward that ad-

vertiser prices rise, which is line with standard intuition.

Competition for users

In Section 5 we discussed that lower competition intensity for users decreases platforms’

equilibrium level of data collection, i.e. dd∗/dtu > 0. Here we analyze the effects of compe-

tition intensity for users on p∗. Differentiating (B.1) with respect to transportation costs

tu yields

∂2Xi

∂pi∂tu

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
taτ(d

∗)ν(d∗)

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]2
< 0,

∂2Ai

∂pi∂tu

∣

∣

∣

∣

∣

di=d∗

pi=p∗

= −
(1− p∗)ν(d∗)τ(d∗)2

4 [tatu + (1− p∗)ν(d∗)τ(d∗)]2
< 0.

If competition for users softens, i.e. transportation costs tu increase, users become less

sensitive to changes in prices such that ∂2Xi/(∂pi∂tu) < 0. Consequently, advertisers, too,

become less sensitive to prices (which now repel less users) such that ∂2Xi/(∂di∂tu) < 0.

Therefore the right-hand-side of equation (11) decreases in tu such that the equilibrium

price must fall, i.e.

dp∗

dtu
< 0. (B.4)

Again, this is in line with standard platform intuition: advertiser prices fall if the user side
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becomes less sensitive (elastic).

Nuisance

First, we consider the effects of nuisance on data collection.22 Totally differentiating the

first-order conditions from equations (12) and (13) w.r.t. ν(d) and solving for dd∗/dν(d)

yields

dd∗

dν(d)

∣

∣

∣

∣

d=d∗
=
(τ(d∗)− ta) τ

′(d∗)

Ψ(d∗)
> 0. (B.5)

Second, we evaluate the effects of nuisance on p∗. Solving for dp∗/dν(d) and dropping the

argument d∗ of ν(d∗) and τ(d∗) to abbreviate, yields

dp∗

dν(d)

∣

∣

∣

∣

d=d∗
=
−2tu (ta − τ)2

[

τ (τ ′′ (ν + tu)− (τ − ta) (2κ
′′ + ν ′′))− (ν + tu) τ

′2
]

(ν + tu) τ2Ψ(d∗)
> 0,

(B.6)

where Ψ(d∗) is defined in equation (A.6). Intuitively, higher (absolute) nuisance results

in lower user demand. To counterbalance this effect, platforms would increase ad prices

as ads become relatively less attractive. Additionally, more user data would be collected

in order to soften the nuisance increase. Interpreted from the point of view of users, they

are now willing to incur marginally more privacy costs in order to obtain some nuisance

reduction.

22Note that nuisance is a function in our model. To assess an increase in nuisance we treat it as fixed
and consider an upward shift, without changing any curvature. For this we slightly abuse notation to stay
consistent with the rest of our comparative statics, such that e.g. by dd∗/dν(d)|d=d∗ we intuitively consider
the effect of adding a positive constant c to the function, i.e. ν(d) + c where c > 0, on d∗.
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Targeting

First, we consider the effects of the targeting technology on data collection.23 Solving for

dd∗/dτ(d) yields

dd∗

dτ(d)

∣

∣

∣

∣

d=d∗
= −

(ν(d∗) + tu) τ
′(d∗)

Ψ(d∗)
< 0. (B.7)

Second, we evaluate the effects of nuisance on p∗. Solving for dp∗/dτ(d) and dropping

again the argument d∗ to abbreviate, yields

dp∗

dτ(d)

∣

∣

∣

∣

d=d∗
=
2tu (τ − ta) [τ

′′ (ν + tu) ta − (τ − ta) [ν
′τ ′ + ta (2κ

′′ + ν ′′)]]

(ν + tu) τ2Ψ(d∗)
≷ 0. (B.8)

platforms to create the same ad value with less personal data, hence in equilibrium plat-

forms will compete to ‘relax’ the data requirement for users. Two effects are relevant for

the effect on ad prices. On the one hand ads become more valuable, hence platforms might

increase the price, i.e. their share, of this value (intensive margin). On the other hand,

platforms might prefer to attract more of these valuable advertisers by reducing the ad

price (extensive margin). Overall, the effect on ad prices depends on which of the opposing

effects is stronger.

B.2 Comparative static effects on platform profits, advertiser profits

and user utility

In this subsection we provide further intuition on equilibrium profits and utility by pre-

senting comparative statics.

Effects on platform profits

The effects on platform profits Π∗
i = p∗τ(d∗)X∗

i A∗
i = (1/4) p∗τ(d∗) can be written as

dΠ∗
i

dz
=

1

4

[

dp∗

dz
τ(d∗) + τ ′(d∗)

dd∗

dz
p∗
]

. (B.9)

We look at the effects of advertiser competition intensity. For z = ta both terms on the

23Note that targeting is a function, which we treat as fixed here, such that comparative statics are
performed as described in footnote 22.
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right-hand side are positive and hence dΠ∗
i /dta > 0. Intuitively, when competition for

advertisers becomes more intense (ta decreases), then prices for ad-placing decrease. In

turn, less data is collected from users, such that targeting becomes less effective, and less

total revenue is made on the ad market. Both these effects decrease platform profits.

The intensity of user-side competition increases platforms’ surplus, i.e. dΠ∗
i /dtu < 0. This

effect is discussed in the main text in Section 5.

Increased nuisance (higher z = ν(d)) increases platforms’ surplus, i.e. dΠ∗
i /dν(d) > 0.More

data is collected, which increases targeting and hence the (residual) value of a placed ad,

thus also higher prices can be sustained. Overall, this unambiguously benefits platforms.

Increased targeting (higher z = τ(d)) increases platforms’ surplus, i.e. dΠ∗
i /dτ(d) > 0.

Although less data is collected, the absolute externality of users, i.e. targeting, increases

the value to be shared between platforms and advertisers. While the effect on prices

remains ambiguous, overall, platforms benefit. To see that note that

dΠ∗
i

dτ(d)
=

τ(d∗)− ta
(tu + ν(d∗))Ψ(d∗)

[

− (tu + ν(d∗)) ν ′(d∗)τ ′(d∗)

+ν(d∗)
{

(τ(d∗)− ta)
[

κ′′(d) + ν ′′(d∗)
]

− tc (tu + ν(d∗)) τ ′′(d∗)
}]

> 0, (B.10)

where dd∗/dtu is from equation (15), while Ψ(d∗) is defined in equation (A.6).

Effects on advertiser profits

The effects on advertiser profits π∗
i (a) = (1−p∗)τ(d∗)X∗

i −ta|li−a| = (1/2) (1− p∗) τ(d∗)−

ta|li − a| are given by

dπ∗
i (a)

dz
=

1

2

[

−
dp∗

dz
τ(d∗) + τ ′(d∗)

dd∗

dz
(1− p∗)

]

− |li − a|
dta
dz

. (B.11)

Stronger competition for advertisers (lower z = ta) makes advertisers overall better off,

i.e. dπ∗
i /dta < 0. However, there are multiple effects at work. Firstly, prices fall, such that

the first term on the right hand side increases. Secondly, less personal data from users can

be collected, which makes targeting less effective, therefore the second term is negative.

Thirdly, also transportation costs decrease, which increases advertiser profits. Overall, the

price and transportation cost reduction effects outweigh decreased targeting effectiveness.
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For this note that

dπA

dta
=

1

4 [tu + ν(d∗)]2

{

−6tuν(d
∗)− ν(d∗)2

[

1 + 2τ ′(d∗)
dd∗

dta

]

+ tc

[

−4ν ′(d∗)
dd∗

dta
(τ(d∗)− ta) + tc

(

−5 + 2τ ′(d∗)
dd∗

dta

)]

}

= −
1

4 [tu + ν(d∗)] Ψ(d∗)

{

−ν ′(d∗) (tu + ν(d∗)) (τ(d∗)− ta) τ
′(d∗) + 3 (tu + ν(d∗))2 τ ′(d∗)2

− (5tu + ν(d∗)) (τ(d∗)− ta)
[

−ν ′′(d∗) (τ(d∗)− ta) + (tu + ν(d∗)) τ ′′(d∗)
]

}

< 0, (B.12)

where dd∗/dta is from equation (14), while Ψ(d∗) is defined in equation (A.6).

Stronger competition for users (increase z = tu) hurts advertisers, hence dπA
i /dtu > 0.

The platforms’ bottleneck position allows them to increase prices (negative first term)

and, further, less user data can be collected, such that targeting becomes less effective

(negative second term).

Increased nuisance (higher z = ν(d)) decreases advertisers’ surplus, i.e. dπA
i /dν(d) < 0.

Although more data is collected, which increases targeting and hence the value of a placed

ad, also prices increase. Overall, this hurts advertisers. To see that, note

dπA

dν(d)
= −

[τ(d∗)− ta]

2 [tu + ν(d∗)]2Ψ(d∗)

{

(tu + ν(d∗))2 τ ′(d∗)2

+ 2 [τ(d∗)− ta] tc
{

(τ(d∗)− ta)
[

κ′′(d) + ν ′′(d∗)
]

− tc (tu + ν(d∗)) τ ′′(d∗)
}

}

< 0, (B.13)

Increased targeting (higher z = τ(d)) has an ambiguous effect on advertisers’ surplus.

While the targeting function becomes better, less data needs be collected which again

reduces targeting effectiveness. Further, the effect on prices is ambiguous. Hence, overall

effects on advertiser surplus remain unclear.
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Effects on user utility

The effects on a user’s utility u∗i (x) = u − κ(d∗) − ν(d∗)A∗
i − tu|li − x| = u − κ(d∗) −

(1/2) ν(d∗)− tu|li − x| are given by

u∗i (x)

dz
= −

dd∗

dz

[

κ′(d∗) +
ν ′(d∗)

2

]

−
dtu
dz

|li − x|. (B.14)

Note that by Corollary 1 the term in brackets on the right-hand side is positive and that

for z ∈ {ta, tu} we have dd∗/dz > 0 such that dui/dz < 0.

Intuitively, less competition for advertisers (higher z = ta) increases the amount of data

collected in equilibrium, which overall leaves users worse off, as privacy concerns are in-

creased, although ads are more targeted and hence nuisance smaller.

Less competition for users (higher z = tu) increases the amount of data collected, such that

privacy concerns are increased, although it reduces nuisance costs. Further strengthened

by increased transportation costs for users, quite naturally users’ utility overall decreases.

Increased nuisance (higher z = ν(d)) decreases users’ utility, i.e. dui/dν(d) < 0 because

again more data is collected.

Increased targeting (higher z = τ(d)) increases users’ utility, i.e. dui/dτ(d) < 0. Although

targeting does not directly affect users, less data is collected, which is beneficial for users.

B.3 Market coverage and multi-homing

Advertiser side

We start this section by lifting Assumption 1 for full market coverage and the single-homing

assumption for advertisers. Analytically, this is achieved by pinning down advertisers which

are indifferent between joining a platform and abstaining such that the total mass of

advertisers joining platform i is determined by πi(a) = 0.

Figure 2 shows two potential outcomes of this alternative setup. In the first case the total

mass of participating advertisers in the market is smaller than 1 while advertisers ’in the

middle’ choose not to participate as their transportation costs are too high. In the second

case the sets of advertisers joining platform i and j are overlapping such that advertisers

’in the middle’ join both platforms, i.e. they multi-home. The remaining analysis follows

the steps from the baseline model and is omitted at this point.
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Figure 2: Relaxed advertiser market assumption

The welfare maximizing level of data doa is then given by

κ′(doa) = Ao
i (d

o
a)τ

′(doa)−Ao
i (d

o
a)ν

′(doa) (B.15)

where Ao
i (d) denotes the symmetric mass of advertisers on each platform and is given by

Ao
i (d) = [τ(d)− ν(d)]/(2ta). The equilibrium level of data under platform competition d∗a

is then given by

κ′(d∗a) =

(

A∗
i (d

∗
a)
ν(d∗a)

τ(d∗a)
+

tu
τ(d∗a)

)

τ ′(d∗a)−A∗
i (d

∗
a)ν

′(d∗a) (B.16)

while A∗
i (d

∗
a) = [(1−p∗a(d

∗
a))τ(d

∗
a)]/(2ta). We can see immediately that whether the result-

ing allocation is an equilibrium with multi-homing or with excluded advertisers depends

on functional forms and parameters. We will therefore discuss the two cases separately in

the following.

Assume transport costs ta are sufficiently low to allow a multi-homing allocation of ad-

vertisers under the efficient benchmark, i.e. Ao
i (d

o
a) > 1/2. Comparing the condition for

the resulting efficient level of data provision to our baseline condition in (12) we see that

doa > do, under multihoming the efficient level of data provision is higher than under

single-homing. The idea is that additional advertisers are attracted in order to maximize

total value creation in the economy. The comparison of the new competitive level of data

provision d∗a to the new efficiency benchmark as well as to our baseline model is, however,

ambiguous. As competition for advertisers is now relaxed, platforms might not be forced

to offer high levels of d to attract additional advertisers. At the same the value creation
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aspect from a larger total number of advertisers is still valid, such that the net effect on

the level of data provision remains ambiguous.

When transportation costs ta are sufficiently large, some advertisers ’in the middle’ would

not join any platform, such that Ao
i (d

o
a) < 1/2 and also A∗

i (d
∗
a) < 1/2. Note that the

efficient level is then also lower than in our benchmark doa < do as attracting advertisers

becomes relatively expensive and it becomes more efficient to exclude some advertisers than

to offer very high levels of d. The comparison to the market outcome, however, remains

ambiguous. While the same efficiency argument applies, platforms also have an additional

incentive to increase their intensive margin by increasing d to offset the reduction in

advertising demand. Again, depending on functional forms either effect may dominate.

User side

Similarly on the user side, by relaxing Assumption 2 it is possible that u becomes suf-

ficiently small relative to transportation costs, such that users ’in the middle’ prefer to

abstain from both platforms. If u is sufficiently large relative to transportation costs, users

’in the middle’ might choose to join both platforms. In both cases user market shares are

determined through the utility of the indifferent user relative to the outside option.

The symmetric welfare-maximizing level of data dou is then given by

κ′(dou) = Xo
i (d

o
u)

tu
τ(dou) + 2u− 2κ(dou)− ν(dou)

τ ′(dou)−
1

2
ν ′(dou), (B.17)

where Xo
i (d

o
u) denotes the symmetric mass of users on each platform and is given by

Xo
i (d

o
u) = [2u− 2κ(dou)− ν(dou)]/(2tu). The equilibrium level of data under platform com-

petition d∗u is then given by

κ′(d∗u) = X∗
i (d

∗
u)

tu
τ(d∗u)

τ ′(d∗u)−
1

2
ν ′(d∗u), (B.18)

whileX∗
i (d

∗
u) = [2u−2κ(d∗u)−ν(d∗u)]/(2tu). From this we can immediately see that d∗u > dou,

i.e. there is always over-provision of user data. While the efficient benchmark takes into

account the tradeoff between excluding users and total value creation, the market outcome

only compares the targeting benefit to the exclusion of users. Further note that if the

market is not covered such that Xi(du) < 1/2, the efficient as well as the equilibrium level
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of data provision is lower than in the baseline model, i.e. dou < do and d∗u < d∗ because

tu/τ(d) < δ(d) ∀d.

It is worthwhile to note that under user multi-homing as well as under relaxed user market

coverage we get that dd∗u/dtu = dd∗u/dta = 0, i.e. the transportation cost parameters on

either market side are irrelevant for the equilibrium (and also the efficient) level of data

collection. This is because tu now merely scales demand while the relevant trade-off for

the choice of d involves the actual utility from joining the platform, which is unaffected

by the demand scale.

Under this setup user demand becomes more elastic than in the baseline model which

undermines platforms’ incentive to increase d. At the same time platforms would also

increase prices dp∗u/dtu > 0 if it becomes increasingly difficult to attract users. Note that

we seemingly found the opposite effect in our baseline model dp∗/dtu < 0, however, the

interpretation of tu changes substantially such that the two results do not contradict each

other: the harder it is to keep users, the higher the prices for advertisers.

In fact platforms are able to overcompensate the reduction in user demand such that

dΠ∗
u/dtu > 0 (and for advertisers dπ∗

u/dtu < 0). Again, as the interpretation of tu essen-

tially reverses, we had the opposite results in our baseline model where platform profits

decreased in tu (while advertiser profits increased). This is also reflected in the effect on

the advertiser side where equilibrium prices rise in ta under both model specifications, i.e.

dp∗u/dta > 0 as the interpretation remains identical.

B.4 Positive cross-group externalities

Consider the following modification of the users’ utility function:

ui(x) = u− κ(di) + ρ(di)Ai − tu|li − x|. (B.19)

The concave and twice-differentiable function ρ(d) represents the relevance from a user’s

point of view of seeing Ai offers, where ρ′(d) ≥ 0 and ρ′′(d) ≤ 0. However, ρ(d) can now

be entirely negative, positive or might even switch signs. The first case is discussed in

depth in the main paper, where we consider the case ρ(d) = −ν(d). The second case,

a strictly positive effect, can be thought of as a traditional ‘dating’ model, where one
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group strictly enjoys the presence of the other group. The last case can be thought of as

a more nuanced version of our nuisance cost in the baseline model. While for low values

of d, i.e. the platform has very little information about the consumer, a user dislikes the

interaction with the other market side, the interaction might turn out to be valuable once

the platform has sufficient information, i.e. d is sufficiently large. A typical example would

be the recommendation system on Amazon. While it is debatable, whether Amazon is a

two-sided market in the traditional sense, the product recommendation system might serve

as a useful example. A new customer might see all kind of product recommendations, some

of which are completely useless to the user and are just a waste of attention. However, once

Amazon has acquired sufficient information about the user’s preferences through analyzing

the purchasing and browsing history, the recommendations become more personalized, and

the user finds actual value in looking through them.

From a modelling perspective we only require that the relevance is monotonically in-

creasing in the amount of data, but with decreasing returns. Since the curvature of the

maximization problem therefore remains unchanged, the characterization of the second or-

der conditions given in the Appendix A also remain qualitatively unchanged. The absolute

value of the function ρ(d) is in the end of minor importance regarding the key mechanics

of the model, however, it has to be taken care of through appropriately adjusting the

modelling assumptions. In order to assure full market coverage on the offer side, we now

have the following set of assumptions.

Assumption 3 Competition for advertisers is sufficiently strong, i.e. ta ≤ t̄a.

For this, it is necessary that competition for users is sufficiently weak and that there are

gains of trade for all advertisers, even without data collection, i.e.

(a) tu > |ρ(0)|, ρ(d) < tu

(b) ta < τ(0)

The upper bound on ta is then given by t̄a := tuτ(0)+ρ(0)τ(0)
3tu−ρ(0) . Since now net cross-group

externalities might be positive, a problem of platform tipping must be taken into account.

In particular the following assumption ensures that the competitive symmetric equilibrium

leads to positive prices (and therefore positive platform profits), so that a platform would
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not be indifferent whether to enter the market if just one platform serves the entire market.

Assumption 4 To ensure market participation of both platforms it is necessary to have

tatu > ρ(·)τ(·).

Note that for negative ρ(·) as in our main model, this assumption is always fulfilled as then

the RHS is always negative, while the LHS is always positive. Accordingly, if ρ(·) switches

signs, the range in which ρ(·) is negative is unproblematic. Therefore the only potentially

problematic case is if ρ(·) is positive or can turn positive since it further restricts the

parameter space in addition to the previous assumption.24 Given that both assumptions

are satisfied, the analysis is analogous to our main model and all major results still hold.

24In the following we sketch a set of conditions under which both assumptions would be satisfied. Note
Assumption 4 specifies a lower bound ta > ta with ta ≡ 1

tu
ρ(·)τ(·). It is therefore necessary to show that

the set of ta satisfying Assumptions 3 and 4 is non-empty. In particular, if it holds that limd→∞ta < t̄a we
can always find intermediate values of ta satisfying both conditions. For this to be the case it is necessary
that limd→∞ta < τ(0) and that ρ(·) is small if positive.
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