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1. Introduction

This paper addresses the problem of estimation of a regression function from selectively
observed data. To explain the problem at stake, consider a partially observed dependent
variable Y∗, a vector of covariates X and a binary indicator ∆. The econometrician observes
a realization of ∆ and X for each individual in the random sample but only observes a
realization of Y∗ when ∆ = 1. In many applications it is important to learn about E[Y∗|X]
which, by the law of total expectation, can be written as

E[Y∗|X] = E[Y∗|X,∆ = 1]P(∆ = 1|X) + E[Y∗|X,∆ = 0]P(∆ = 0|X).

The difficulty arises because the data available cannot identify E[Y∗|X,∆ = 0] nor E[Y∗|X].
In this paper, we address this lack of identification by assuming independence between
the regressors X and the selection mechanism ∆ conditionally on the selectively observed
outcome Y∗. Relying on this assumption we propose a new methodology to consistently
estimate the regression function ϕ(·) = E[Y∗|X = ·].

We also allow for endogeneity of covariates. More precisely, we consider the nonpara-
metric instrumental variable model of Newey and Powell [2003], Ai and Chen [2003] and
Darolles et al. [2011] but where the dependent variable is only observed selectively. That
is, we propose a method to estimate a structural function ψ which satisfies

Y∗ = ψ(Z) +U

for some unobservables U, where Z is endogenous in the sense that E[U|Z] , 0 and an
additional instrumental variable X is available such that E[U|X] = 0. If the instrument X is
independent of the selection given potential outcome Y∗, we show that ψ is identified and
can be consistently estimated under commonly imposed assumptions. The model consid-
ered in Ai and Chen [2003] is more general than the nonparametric instrumental variable
model and, among others, it includes the nonparametric instrumental variable model with
selectively observed Y∗ implied by our assumptions. However, their analysis, while being
an alternative to ours, is not explicitly tailored for this type of model.

Previous literature has proposed different solutions to overcome the problem of lack
of identification of E[Y∗|X]. One solution consists in assuming missing-at-random (MAR),
namely, independence between the selection variable and the outcome conditional on the
observed covariates, see Rubin [1976]. MAR implies E[Y∗|X] = E[Y∗|X,∆ = 1] = E[Y∗|X,∆ =
0]. Unfortunately, the plausibility of this assumption may be questioned in many economic
examples where missing observations arise due to self-selection, nonresponse or because
counterfactual variables are unobservable (see the examples given in Heckman [1979]).

In his seminal work, Heckman [1974, 1979] relies on instruments that determine se-
lection but not the outcome and proposes a consistent parametric estimation method.
Point-identification comes from parametric restrictions. Ahn and Powell [1993] and Das
et al. [2003] extend Heckman’s approach to a semiparametric and nonparametric frame-
work, respectively.

An alternative strategy relies on “identification at infinity”, namely, on the fact that
the selection problem becomes negligible for large values of the covariates. This strategy
requires the existence of a covariate with a large support, see Chamberlain [1986]. Based on
this idea Lewbel [2007] and D’Haultfoeuille and Maurel [2013] propose alternative identi-
fication strategies.
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A completely different approach was proposed by Manski [1989] who poses, as the only
restriction, a bound on the support of Y∗ conditional on X. This implies a bound on E[Y∗|X].
While such a weak restriction has the advantage of ensuring robust inference, only partial
identification of E[Y∗|X] can be achieved. Following Manski [1989], an extensive literature
on bounds and partial identification in econometrics has flourished (see e.g. Chernozhukov
et al. [2013] and Tamer [2010] for a review).

In this paper, we solve the problem of endogenous selection by using the following
instrumental variable assumption. We assume independence between selection ∆ and in-
struments X, conditional on the outcome Y∗ (and possibly additional covariates), namely

∆ y X |Y∗. (1.1)

This assumption is suitable when selection is driven by the outcome Y∗ and, once Y∗ is
present, X does not contain additional information on the missing data mechanism. For
example, if Y∗ denotes income and X expenditure then, typically in survey data, whether
people report their income or not is primarily determined by the level of their income.
Assumption (1.1) has been used in the previous literature on missing data (see e.g. Chen
[2001], Tang et al. [2003], Zhao and Shao [2015] in the statistics literature and D’Haultfoeuille
[2010], Davezies and D’Haultfoeuille [2013], Ramalho and Smith [2013] in the econometrics
literature). This type of assumption is common in the finite mixtures literature (e.g. Henry
et al. [2014]) as well as in the nonclassical measurement error literature (see e.g. Hu and
Schennach [2008]). Moreover, it is a particular case of Assumption (41) in Manski [1994].
Assumption (1.1) alone is not sufficient for nonparametric identification of the regression
functionϕ or the selection probabilityP(∆ = 1|Y∗). In this paper, however, we show that the
function ϕ is identified under additional assumptions. Moreover, under a completeness
condition, Assumption (1.1) can be tested, see Theorem 2.4 in D’Haultfoeuille [2010].

There are many situations where the outcome Y∗ is only selectively observed but there
is an instrument X available satisfying condition (1.1). In survey data, for instance, selective
missingness of Y∗ can be caused by a respondent’s reservation to answer a question that
appears too sensitive, affects confidentiality, or is too complex. Examples of instruments
in these cases, are past health status when the outcome is a symptom of breathlessness
(see Zhao and Shao [2015]) or past income information when the outcome is selectively
observed current labor income (see Breunig [2016]). To overcome the difficulty of selective
nonresponse in financial investment questions, we may also follow the instrumental vari-
able strategy of Huck et al. [2015], by providing information on randomized stock market
returns before asking financial questions. Our approach does not only allow to estimate
the causal effect ψ of beliefs about future stock market returns on investment decision (as
in Huck et al. [2015]) but also to account for a selective response behavior.

Our paper goes beyond what has been proposed in the literature so far. While the
nonparametric inverse selection probability function g(·) = 1/P(∆ = 1|Y∗ = ·) is a nuisance
function, the regression function ϕ or the structural function ψ are the functions of interest.
We allow for settings where the rate of convergence for estimating the inverse selection
probability function g is much slower as that of estimating the functions of interest. Our
first main result is that we achieve the same rates for estimating the regression functionϕ or
the structural function ψ as in the respective model where Y is fully observed. The second
main result is that the sieve variances of estimating these functions of interest are not af-
fected by the slow rate of convergence of g. Our estimator is based on a two-step procedure
where an estimator of g is plugged in when estimating ϕ or ψ in the second step. This
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corresponds to inverse probability weighting estimators but where g is obtained through
a nonparametric instrumental variables estimator. The main difficulty in the proofs lies in
showing that the error contributions coming from estimating g in the first step are canceled
out when the estimator of g is smoothed in the second step. We go beyond the existing
literature by providing inference on the regression functionϕwithout imposing parametric
restrictions on the probability function g (for a semiparametric approach see Zhao and Shao
[2015] and the references therein). Moreover, we use the identification assumption (1.1) to
establish inference on the structural functionψ in an instrumental regression model, which
has not been considered in the literature yet.

The reason for slow convergence of the inverse conditional probability function g is due
to nonparametric instrumental estimation which leads in general to an ill-posed inverse
problem (see e.g. Newey and Powell [2003], Ai and Chen [2003]). In contrast to the rate of
estimating the nonparametric regression function ϕ or the structural function ψ with fully
observed Y, we get an additional bias due to estimation of the selection probability in the
first step. This is in line with Das et al. [2003] who also obtain an additional bias term in their
convergence rate but which is due to estimation of a propensity score. Under additional
smoothness conditions, however, the additional bias for estimating the nuisance function
g is asymptotically negligible and the usual nonparametric (instrumental) regression rate
is obtained.

We establish pointwise asymptotic normality for our estimators of the regression func-
tion ϕ and the structural function ψ. While the derived sieve variance does not suffer from
the potential ill-posed problem of estimating the inverse selection probability g, we see that
the sieve variance is enlarged due to multiplication by g. We also extend these pointwise
results by providing a bootstrap procedure to construct uniform confidence bands.

The remainder of this paper is organized as follows. In Section 2, we present the setup
and discuss identification. In Section 3, we present our two-step estimator for ϕ, we give
rates of convergence of the integrated squared error of our estimator, establish pointwise
asymptotic normality of our estimator and construct uniform confidence bands. In section
4 we extend this analysis to the structural function ψ. The finite sample properties of our
procedure are investigated through Monte Carlo experiments whose results are reported
in Section 5. Section 6 presents an empirical application of our method to estimate the
propensity to work in the German speaking population by using “German Internet Panel”
data. All proofs are postponed to the appendix and Supplementary Material. Moreover,
in the supplementary material we propose a nonparametric testing procedure to test the
identifying assumption (1.1) based on a maintained completeness assumption. The large
and small sample properties of the test are studied in appendix B in the Supplementary
Material.

2. Identification

In this section, we provide assumptions under which the selection probability function
P(∆ = 1|Y∗ = ·) and the regression function E[Y∗|X = ·] are identified. We further motivate
our estimation procedure.
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2.1. Setup and Main Assumptions

Let (∆,Y∗,Xt) be a jointly distributed random vector where (Y∗,Xt) is a random vector which
takes values in R1+dx and ∆ is a random variable which takes values in {0, 1}. A realization
of (∆,Xt) is observed for each individual in the random sample while a realization of
the dependent variable Y∗ is observed when ∆ = 1 and missing when ∆ = 0. We write
Y = ∆Y∗.1 We assume that the marginal distribution of Y∗ (resp. X) admits a probability
density function pY (resp. pX) with respect to the Lebesgue measure. The following three
assumptions are sufficient to identify the joint distribution of (∆,Y∗,Xt).

Assumption 1. It holds that

∆ y X |Y∗.

Assumption 1 states an exclusion restriction of the random vector X with respect to the
selection variable ∆ given potential outcomes Y∗. The vector X is referred to as the vector
of instruments. This assumption can be justified in many settings. An example is provided
by measurement error models where Y∗ is observed with error for some individuals. Then,
for some error ε, X = Y∗+ε can be interpreted as a proxy for Y∗ and satisfies Assumption 1 if
ε y ∆, see e.g. Chen et al. [2011]. Other examples are given by data with nonresponse. For
instance, consider the case where Y∗ is income and X is expenditure. It could be that people
with high income are less likely to report it. Examples of such type of incomplete data sets
are the French “Enquête Budget de famille” of INSEE or the British “Family expenditure
Survey”. For further illustrations of Assumption 1 we refer to Ramalho and Smith [2013].
In particular, Ramalho and Smith [2013] justify the conditional independence condition in
Assumption 1 in a standard crossing ordered choice model where Y∗ denotes latent utility
and X represents individual characteristics and other variables that affect utility (here Y is
the censored discrete outcome).

Assumption 2. For every function φ that is bounded from below almost surely and satisfies
E |φ(Y∗)| < ∞ it holds that E[φ(Y∗)|X = ·] = 0 implies φ(Y∗) = 0.2

Assumption 2 is weaker than L1–completeness (which requires completeness for all
φ ∈ L1) but stronger than bounded–completeness (which requires completeness only for
those functions that are bounded from above and from below). Completeness conditions
have been largely used in econometrics as identification assumptions, see e.g. Darolles
et al. [2011], Newey and Powell [2003], Blundell et al. [2007], Hu and Schennach [2008],
D’Haultfoeuille [2011] and Hoderlein et al. [2016].

Assumption 3. It holds E[1/P(∆ = 1|Y∗)] < ∞.

Assumption 3 restricts the selection probabilityP(∆ = 1|Y∗) to be strictly positive onY∗
almost surely, whereY∗ denotes the support of Y∗. On the other hand, ifY∗ is compact then
P(∆ = 1|Y∗ = y∗) > 0 for every y∗ ∈ Y∗ implies Assumption 3. This assumption can rule
out a selection when it is a deterministic function of Y∗ such as P(∆ = 1|Y∗ = ·) = ✶{· > c}
for some constant c belonging to the interval (min(Y∗),∞). Here ✶ denotes the indicator

1In our setting, Y∗ is assumed to be a scalar. Our results would still hold if we extended this framework to
allow for a p-dimensional vector Y∗ of selectively observed variables. In this case ∆ = (∆( j))16 j6p and the
j-th component of Y∗ would be observed when ∆( j) = 1 and missing when ∆( j) = 0. This extension would
require little modifications of our method but would burden the notation and the presentation. For this
reason we do not consider it.

2Since conditional expectations are defined only up to equality a.s., all (in)equalities with conditional expec-
tations and/or random variables are understood as (in)equalities a.s., even if we do not say so explicitly.
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function. To understand Assumption 3, consider the example where ∆ = ξ(Y∗, η) for some
function ξ(·) and a random variable η. Then, Assumption 3 is verified if the distribution
of η is such that the set {η; ξ(y∗, η) = 1} has positive probability for every y∗ ∈ Y∗ and Y∗ is
compact.

2.2. Identification and idea of the estimator

Our object of interest is E[Y∗|X] while the selection probability P(∆ = 1|Y∗) is a nuisance
(functional) parameter.3 However, knowledge of the latter allows us to identify and es-
timate E[Y∗|X] in a way that we now explain. Let us introduce the inverse selection
probability function g(·) := 1/P(∆ = 1|Y∗ = ·). Under Assumptions 1–3, the function g is
identified through the conditional moment restriction

E
[
∆g(Y∗)

∣∣∣ X
]
= 1, (2.1)

see Theorem 2.3 in D’Haultfoeuille [2010]. In the first step of our two-step procedure, we
make use of (2.1) to estimate the inverse selection probability function g.

Since the function g is identified by equation (2.1), identification of the conditional
expectation E[Y∗|X] follows from

E[Y∗|X] = E[Y∗P(∆ = 1|Y∗)g(Y∗)|X] = E
[

E[Y∗∆g(Y∗)|Y∗]
∣∣∣X

]
= E[Y∗∆g(Y∗)|X] = E[Yg(Y)|X]

(2.2)

where the first equality follows from Assumption 3 and second to last equality follows
from Assumption 1 and the fact that g(Y∗) = g(Y) whenever Y := Y∗∆ differs from zero.
This result shows that E[Y∗|X] can be written as a weighted average of the observed Y
where the weight is equal to the inverse selection probability function. We use equation
(2.2) to construct an estimator for E[Y∗|X] in the second step of our estimation procedure.

Remark 2.1 (Including additional covariates). In empirical applications, only a subset of the
covariates might be independent of selection given potential outcome. We can cover this
case by slightly extending Assumption 1. More precisely, suppose that X = (X1,X2) and that
Assumption 1 is modified as∆ y X1|(Y∗,X2) and hence, X2 can be correlated to∆. Under this
assumption and Assumption 3 modified as indicated below, E[Y∗|X] = E[Yg(Y,X2)|X] where
g(y, x) = 1/P(∆ = 1|Y∗ = y,X2 = x). Moreover, if Assumptions 2 and 3 are modified with
φ(Y∗) replaced by φ(Y∗,X2) and P(∆ = 1|Y∗) replaced by P(∆ = 1|Y∗,X2) > 0, respectively,
then g is identified by E[∆g(Y∗,X2)|X] = 1. �

2.3. Notation

For a random vector V we use the corresponding calligraphic capital letter V to denote
its support. Let L2

V
= {φ : ‖φ‖2

V
:= E |φ(V)|2 < ∞} denote the space of square integrable

functions of V with respect to the distribution of V. We denote by 〈·, ·〉V the inner product
in L2

V
that induces ‖ · ‖2

V
. Moreover, ‖φ‖∞ := supv∈V |φ(v)| denotes the sup norm and ‖ · ‖ is

the usual Euclidean norm. We introduce the following Hilbert space

G =
{
φ : ‖φ‖2G := E[∆φ2(Y)] < ∞

}

3In the following, we simplify the notation and for two random variables V,W we may use E[V|W] as a
shorthand for E[V|W = ·] and P(V = v|W) as a shorthand for P(V = v|W = ·).
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with associated inner product 〈φ1, φ2〉G = E[∆φ1(Y)φ2(Y)] for φ1, φ2 ∈ G. Note that L2
Y

is contained in G. Further, we have g ∈ G since by Assumption 3 it holds E[g(Y∗)] < ∞
and thus E[∆g2(Y)] = E[P(∆ = 1|Y∗)g2(Y∗)] < ∞. Now equation (2.1) can be written in
a more compact form by using the following notation. Let T : G → L2

X
be the linear

operator (Tφ)(·) = E[∆φ(Y)|X = ·]. This mapping is well defined since, for all φ ∈ G, the
Jensen’s inequality implies E[|(Tφ)(X)|2] 6 E[∆φ2(Y)] < ∞. Thereby, equation (2.1) can be
equivalently written as the operator equation

Tg = 1 (2.3)

where the function g is identified under Assumptions 1–3.
Let { f j} j>1 (resp. {e j} j>1) be a sequence of approximating functions in L2

X
(resp. G).

Then, we denote by fmn(X) = ( f1(X), . . . , fmn(X))t (resp. ekn
(Y) = (e1(Y), . . . , ekn

(Y))t) a vector
of functions which are used to approximate the conditional expectation E[Y∗|X] (resp.

the inverse selection probability g(Y)) and by Xmn =
(

fmn(X1), . . . , fmn(Xn)
)t

(resp. Ykn
=

(∆1ekn
(Y1), . . . ,∆nekn

(Yn))t) the n × mn (resp. n × kn) matrix obtained by putting together

the n vectors fmn(Xi), i = 1, . . . ,n (resp. ∆iekn
(Yi), i = 1, . . . ,n, where ∆iekn

(Yi) denotes the

product of ∆i and the vector ekn
(Yi)). We denote by Fmn =

{
φ(·) = ∑mn

j=1
β j f j(·) : β ∈ Rmn

}
the

linear sieve space of dimension mn < ∞ that becomes dense in L2
X

as n tends to infinity. For a
matrix A we denote by A− its generalized inverse and by λmin(A) its minimum eigenvalue.
For a function φ defined on Y, we denote by Mφ : L2

Y
→ L2

Y
the multiplication operator

Mφς = φς which is bounded if φ is bounded on Y. Then (Midς)(y) = yς(y) for all y ∈ Y
and ς ∈ L2

Y
, where id denotes the identity function.

3. Nonparametric Regression with Sample Selection

In this section, we consider estimation of the regression functionϕ. The first step estimation
procedure for the inverse selection probability g is based on constrained sieve minimum
distance. In the second step, we use a plug-in series estimator of the conditional expectation
ϕ(·) = E[Yg(Y)|X = ·]. We also propose an alternative estimator based on normalization
of the inverse probability weights. For both estimators, we derive the rate of convergence
in mean square error and their asymptotic distribution. Finally, we propose a bootstrap
procedure to obtain uniform confidence bands.

3.1. The Estimators and their Rates of Convergence

For every φ ∈ G, denote χ(·, φ) = E[∆φ(Y) − 1|X = ·]. The least squares estimator of χ(·, φ)
is given by

χ̂n(·, φ) = fmn(·)t(Xt
mn

Xmn)−
n∑

i=1

(
∆iφ(Yi) − 1

)
fmn(Xi) (3.1)

for some integer mn which increases with the sample size n. Under conditions given below,
Xt

mn
Xmn will be nonsingular with probability approaching one and hence its generalized

inverse will be the standard inverse. We now introduce some assumptions.
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Assumption 4. (i) We observe a sample ((∆1,X1,Y1), . . . , (∆n,Xn,Yn)) of independent and identi-
cal distributed (iid.) copies of (∆,X,Y) where Y = ∆Y∗ and E[(Y∗−ϕ(X))2|X] < ∞. (ii) There exists a
constant C > 0 and a sequence of positive integers (mn)n>1 satisfying supx∈X ‖ fmn(x)‖2 6 Cmn such

that mn log(mn)/n = o(1). (iii) The smallest eigenvalue of E[ fm(X) fm(X)t] is bounded away from

zero uniformly in m. (iv) Let ϕ ∈ L2
X

and there is Fmnϕ ∈ Fmn such that ‖Fmnϕ−ϕ‖∞ = O(m−α/dx
n )

for some constant α > 0.

Assumption 4 (ii) − (iii) restricts the magnitude of the approximating functions { f j} j>1

and impose nonsingularity of their second moment matrix. Assumption 4 (ii) relaxes
the classical assumption m2

n/n = o(1) and has been introduced in the recent econometric
literature which employs either the Rudelson’s inequality or the Bernstein inequality for
random matrices, see Belloni et al. [2015] and Chen and Christensen [2015b] respectively.
Here, the upper bound on the vector of basis functions holds for instance for polynomial
splines, Fourier series and wavelet bases but rules out orthogonal polynomials and power
series sieves. Assumption 4 (iv) determines the sieve approximation error which in turn
characterizes the bias of the estimated regression functionϕ (see also Belloni et al. [2015] for
a discussion of L2 and L∞ type approximation errors). For further discussion and examples
of sieve bases, we refer to Chen [2007].

In the following, we consider the linear sieve space Gn =
{
φ(·) = ∑kn

j=1
β je j(·) : β ∈ Rkn

}

of dimension kn < ∞ that becomes dense in the function space G as n tends to infinity. We
propose the following sieve minimum distance estimator

ĝn = arg min
{φ∈Gn:φ(·)>1}

n∑

i=1

χ̂2
n(Xi, φ). (3.2)

The constraintφ(·) > 1 imposed on the sieve spaceGn ensures that the estimated conditional
probability of observing Y∗ belongs to the unit interval. This estimator of g corresponds to
the penalized sieve minimum distance estimator suggested by Chen and Pouzo [2012].

If no constraint is imposed then the sieve estimator ĝn has an explicit solution given by

ĝn(·) = ekn
(·)t β̂kn

and β̂kn
=

(
Yt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
Ykn

)−
Yt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
1n (3.3)

where 1n is a n-dimensional vector of ones and kn is some integer such that kn 6 mn and
which increases with the sample size n.

The second step of our estimation procedure consists in using the estimator ĝn in (3.2)

to construct an estimator for ϕ. Let Gn =
(
Y1 ĝn(Y1), . . . ,Yn ĝn(Yn)

)t
. Then, our estimator of

the nonparametric regression function ϕ(·) is given by

ϕ̂n(·) = fmn(·)t (Xt
mn

Xmn)− Xt
mn

Gn. (3.4)

When using inverse probability weights estimators, to account for missing data, the
weights are typically normalized to sum to one (see, e.g., p. 823 in Wooldridge [2010]). We
also pursue a similar strategy by constructing an alternative estimator for ϕ that involves
an additional weighting of the empirical Gram matrix Xt

mn
Xmn by the estimated inverse

selection probabilities. To do so, observe that E[ fmn(X) fmn(X)t] = E[ fmn(X) fmn(X)t∆g(Y)].

Let Dn denote a diagonal matrix with diagonal entries ∆1 ĝn(Y1), . . . ,∆n ĝn(Yn). Then, we
consider the reweighted estimator of the nonparametric regression function ϕ(·) given by

ϕ̃n(·) = fmn(·)t (Xt
mn

DnXmn)− Xt
mn

Gn. (3.5)
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We see below that both estimators attain the same rate of convergence but require a different
normalization factor to be asymptotically Gaussian.

Remark 3.1 (Relation to Ai and Chen [2007] and Chen and Pouzo [2012]). One may alterna-
tively use the very general estimation approach proposed by Ai and Chen [2007], Chen and
Pouzo [2012], and Chen and Pouzo [2015]. Indeed, the unknown nonparametric functions
g and ϕ also satisfy the conditional moment restrictions E[ρ(Y,X,∆; g(·), ϕ(·))|X] = 0, where

ρ(Y,X,∆; g(·), ϕ(·)) =
(
∆g(Y) − 1

Yg(Y) − ϕ(X)

)
.

Their resulting estimator, when there is no penalization and a linear sieve space is used,
coincides with our estimators (ĝn, ϕ̂n). There are, however, two main differences between
Chen and Pouzo’s fundamental work and ours. First, for our estimator the rates of con-
vergence and the asymptotic distribution results are in general not affected by the slow
rate of estimating g. This is because in our particular model only the nuisance function g
but not the regression function ϕ stems from a potentially ill-posed inverse problem. In
contrast, Chen and Pouzo [2012] introduce a scalar sieve measure of (local) ill-posedness
to relate estimation in a strong norm relative to the weak norm induced by the conditional
expectation given X. This scalar parameter depends on the ill-posedness of the inverse
problem for g and influences the rate of convergence of ϕ̂n. Thus, we use in this paper
a different analysis tailored to our particular model to obtain the rates of convergence for
our estimators.

Second, our estimator ϕ̃n given in (3.5) differs from Chen and Pouzo [2012]’s proposed
method as it normalizes the weights via reweighting. Normalizing the weights is common
in the inverse probability weighting as it often stabilizes the estimators. In the treatment
effect literature, it was also shown that normalization of the propensity score improves the
finite sample results (see Frölich [2004]). In a similar way our Monte Carlo simulations
show that normalizing the weights stabilizes and thus improves the finite sample behavior
of our estimator (see Section 5). Therefore, we see our procedure more tailored to the
selection model at hand and we make explicit use of this special structure to get asymptotic
results. �

In the following, the sequence (Rn)n>1 denotes the rate of convergence of the estimator
ĝn w.r.t. to the norm ‖ · ‖2G. The next assumption is used to recover the rate of convergence

of ϕ̂n.

Assumption 5. (i) There exists a projection Fmn : L2
X
→ Fmn such that for all φ ∈ Gn, ‖FmnTφ −

Tφ‖∞ = O(m−α/dx
n ) for some constant α > 0. (ii) There exists a sequence of positive integers

(ξn)n>1 satisfying supy∈Y ‖ekn
(y)‖2 6 ξ2

n such that knξ
2
n/n = o(1). (iii) It holds k2

nRn = O(1) and

Var(Y∗) < ∞. (iv) ‖TMidφ‖X/‖Tφ‖X is bounded uniformly over all φ ∈ G with ‖Tφ‖X , 0.

Assumption 5 (i) holds true, for example, for splines or power series if the family of

functions
{
Tφ : φ ∈ Gn

}
contains only functions which are at least α–times continuously

differentiable (see also Assumption 3 of Blundell et al. [2007]). Assumption 5 (ii) is satisfied
with ξn =

√
kn when the approximating functions are for instance B-splines, Fourier series

and wavelet bases. For Legendre polynomials this assumption is satisfied with ξn = kn.
Assumption 5 (iii) is a mild restriction on the rate of convergence of ĝn which we illustrate
below. Instead of a bound on Y, Assumption 5 (iv) restricts the size of the multiplication
operator Mid in the norm induced by T. Otherwise stated, it requires that the norms of the
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operators TMid and T are equivalent. Assumption 5 (iv) is satisfied for instance under an
additional link condition, like Assumption 6 (ii) below, if the basis functions coincide with
Legendre polynomials or cardinal B-splines (see Example 3.1 below).

Estimation of g requires to ”solve” a conditional moment restriction that is different
from (2.2), namely E[∆g(Y∗)|X] = 1. From Blundell et al. [2007] and Chen and Pouzo
[2012] we obtain the rate of convergence of ‖T(ĝn − g)‖X. Their result, however, is not
enough to obtain the rate of convergence of ϕ̂n as our case requires to determine the rate

of ‖T̂Mid ĝn − TMidg‖X where T̂ is a series least square estimator of T. Thereby, we need
to control for the estimation of T as well as to take into account the smoothing of this
operator which allows to get rid of the ill-posedness in the estimation of g. In the proof
we decompose this error in three parts: one that accounts for the estimation of T, one that
accounts for the variance of Yĝn(Y) and one that account for the sieve approximation error
of ϕ. In the following, for any φ in G let Ekn

φ ∈ Gn be such that ‖Ekn
φ − φ‖∞ = o(1).

Theorem 3.1. Let Assumptions 1 – 5 hold true. Then ‖ϕ̂n − ϕ‖2X and ‖ϕ̃n − ϕ‖2X are of the order

Op

(
max

(
m−2α/dx

n ,
mn

n
, ‖T(Ekn

g − g)‖2X
))
.

As we see from Theorem 3.1, the rate of convergence of our estimators ϕ̂n and ϕ̃n de-
pends on both parameters kn and mn which correspond to the first and second estimation
step, respectively. In addition to the usual nonparametric rate we obtain an additional
bias term ‖T(Ekn

g − g)‖2
X

which is due to the sieve approximation of the inverse selection
probability function g. An additional bias occurs also in the convergence rate for esti-
mating regression functions in Theorem 4.1 of Das et al. [2003]. In their case, however,
the additional bias arises from nonparametric estimation of a propensity score. From
Theorem 3.1 we see that both estimators, ϕ̂n and ϕ̃n, attain the optimal nonparametric

rate of convergence under the assumptions of the theorem if ‖T(Ekn
g − g)‖X = O(m−α/dx

n ).
Also note that if the inverse selection probability g is sufficiently smooth in the sense that

‖Ekn
g − g‖G = O(m−α/dx

n ) then, by the Jensen’s inequality, the optimal nonparametric rate is
obtained. In the following, we provide a rate of convergence under common smoothness
assumptions.

Assumption 6. (i) Assume ‖Ekn
g − g‖∞ = O(k

−β
n ) for some constant β > 0. (ii) There exists a

sequence of non-increasing positive real numbers (τ j) j>1 such that ‖Tφ‖2
X
> c

∑∞
j=1 τ j〈φ, e j〉2G and

‖Tφ‖2
X
6 C

∑∞
j=1 τ j〈φ, e j〉2G for some constants c,C > 0 and all φ ∈ G. (iii) The largest eigenvalue

of
(
τ1/2

j
τ−1/2

l
〈Mide j, el〉G

)
j,l>1

is bounded away from infinity.

Assumption 6 (i) determines the sieve approximation error for estimating the function
g. Assumption 6 (ii) is also known as a link condition and commonly used in the analysis
of inverse problems (see, e.g. Chen and Reiß [2011]). Under this link condition, we show
in the proof of the following corollary that Assumption 6 (iii) implies Assumption 5 (iv).

Corollary 3.2. Let Assumptions 1– 4, 5 (i)–(iii), and 6 hold true. Then ‖ϕ̂n−ϕ‖2X and ‖ϕ̃n−ϕ‖2X
are of the order

Op

(
max

(
m−2α/dx

n ,
mn

n
, τkn

k
−2β
n

))
. (3.6)

Remark 3.2. In the mildly ill-posed case where τ j ∼ j−2t, t > 0, let kn ∼ n1/(2t+2β+1) and
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mn ∼ ndx/(2α+dx).4 Hence, the rate in (3.6) coincides with

Op

(
max

(
n−(2t+2β)/(2t+2β+1),n−2α/(2α+dx)

))

which is Op(n−2α/(2α+dx)) if α 6 dx(t + β). In case of trigonometric basis functions, the
operator T acts like integrating t–times which then automatically implies α = dx(t + β) (cf.
page 12 in Breunig and Johannes [2011]). Also, it holds ‖ĝn − g‖2G = Op(n−2β/(2t+2β+1)) and

in particular we have k2
nRn = O(n(2−2β)/(2t+2β+1)) = o(1) if β > 1. In the severely ill-posed case

where τ j ∼ exp(− j2t), t > 0, we let kn ∼ (log n)1/2t and obtain the rate

Op

(
n−2α/(2α+dx)

)
.

In this case, ‖ĝn − g‖2G = Op(log(n)−2β/t) and in particular, k2
nRn = O(log(n)(2−2β)/t) = o(1)

again if β > 1. We conclude that under mild conditions on the smoothness of ϕ the optimal
nonparametric rate of regression in mean squared error is obtained. �

The following example illustrates that Assumption 6 (iii) can be justified when {e j} j>1

coincides with Legendre polynomials. Similarly to this example, Assumption 6 (iii) can
also be motivated for B-splines (cf. De Boor [1978]).

Example 3.1. Assume that Y is contained in [−1, 1] and consider the Hilbert space G =
L2

[−1,1]
endowed with the usual norm ‖φ‖2G =

∫ 1

−1
|φ(y)|2dy/2. Let {e j} j>1 be the Legendre

polynomials. That is, for y ∈ [−1, 1] we define e1 = 1, e2(y) = y, and

j e j+1(y) = (2 j − 1)y e j(y) − ( j − 1)e j−1(y)

for j > 2. This recursion formula is equivalent to

y e j(y) =
j e j+1(y) + ( j − 1)e j−1(y)

2 j − 1

We also have 〈e j, el〉G = 2/(2 j − 1) whenever j = l and zero otherwise which implies




〈Mide1, e1〉G τ1/2
1
τ−1/2

2
〈Mide1, e2〉G . . .

τ1/2
2
τ−1/2

1
〈Mide2, e1〉G 〈Mide2, e2〉G . . .
...

...
. . .



=




0
2τ1/2

1

3τ1/2
2

0 0 . . .

2τ1/2
2

3τ1/2
1

0
4τ1/2

2

15τ1/2
3

0 . . .

0
4τ1/2

3

15τ1/2
2

0
. . . . . .

...
...

...
...

. . .




.

The norm of the right hand side matrix is bounded by its Frobenius norm which is

∥∥∥∥
(
τ1/2

j
τ−1/2

l
〈Mide j, el〉G

)
j,l>1

∥∥∥∥
2

F
=

∑

j>1

(
τ j

τ j+1

j2

(2 j − 1)2

4

(2 j + 1)2
+
τ j+1

τ j

( j − 1)2

(2 j − 1)2

4

(2 j − 1)2

)

6 2
∑

j>1

τ j

τ j+1

j2

(2 j − 1)2

4

(2 j − 1)2

4 For two sequences of positive integers {an}n>1 and {bn}n>1, an ∼ bn means there exist two constants 0 < c,C < ∞
such that can 6 bn 6 Cbn.
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which is bounded provided sup j>1

{
τ j/τ j+1

}
= O(1). The condition sup j>1

{
τ j/τ j+1

}
= O(1)

is satisfied in the mildly ill-posed case τ j ∼ j−2t for all t > 0. In the severely ill-posed case where

τ j ∼ exp(− j2t), t > 0, this condition is satisfied for all 0 6 t 6 1/2 as sup j>1

{
τ j/τ j+1

}
=

exp
(
( j + 1)2t − j2t

)
6 exp(1) for t 6 1/2. In both cases, Assumption 6 (iii) holds true. As it

is shown in the proof of Corollary 3.2, under the link condition as stated in Assumption 6
(ii), this implies that Assumption 5 (iv) is also satisfied. �

3.2. Pointwise and Uniform Inference for the Regression Function

This subsection is about inference on the regression function ϕ both pointwise, that is
for ϕ evaluated at some point, and uniform over the support of X. We first analyze the
pointwise asymptotic distribution of our estimators at some x ∈ X. For the estimator ϕ̂n(x)
we introduce the sieve variance formula

V1n(x) = fmn(x)tQ−1
n E

[
fmn(X)Var(Yg(Y)|X) fmn(X)t

]
Q−1

n fmn(x),

where, here and in the following, we use the notation Qn = E[ fmn(X) fmn(X)t]. As mentioned

earlier, for the reweighted estimator ϕ̃n(x) we require a different normalization factor,
namely

V2n(x) = fmn(x)tQ−1
n E

[
fmn(X) E[(Y − ϕ(X))2∆g2(Y)|X] fmn(X)t

]
Q−1

n fmn(x).

In both cases, the sieve variance is increased by the multiplication of the inverse selection
probability g and hence, results in larger variances than in the usual series regression. In
contrast to our additional multiplicative term, Das et al. [2003] obtain for their sample
selection estimator an additive term in the sieve variance, which is due to the estimation of
a propensity score. The relation between the termsV1n(x) andV2n(x) is not straightforward
to investigate. On the other hand, note thatV1n(x) 6V2n(x) if and only if

2ϕ(X) E[Yg2(Y)|X] 6 ϕ2(X)
(
1 + E[∆g2(Y)|X]

)
.

We also emphasize that both normalization factors V1n(x) and V2n(x) are not affected by
the ill-posed inverse problem of estimating g in the first step. This is in analogy to the rate
of convergence results we obtain for the estimators ϕ̂n and ϕ̃n. In the next result we replace
the varianceV1n(x) by the estimator

V̂1n(x) = n fmn(x)t(Xt
mn

Xmn)−
n∑

i=1

fmn(Xi)
(
Yi ĝn(Yi) − ϕ̂n(Xi)

)2
fmn(Xi)

t(Xt
mn

Xmn)− fmn(x)

Moreover, we estimate the variance term of the reweighted estimator ϕ̃n(x) by

V̂2n(x) = n fmn(x)t(Xt
mn

DnXmn)−
n∑

i=1

fmn(Xi)∆i

(
Yi−ϕ̃n(Xi)

)2
ĝ2

n(Yi) fmn(Xi)
t(Xt

mn
DnXmn)− fmn(x).

To establish the asymptotic distribution of our estimator we require the following additional
assumptions. We introduce the notation Tn = E[∆ fmn(X)ekn

(Y)t] and TY
n = E[Y fmn(X)ekn

(Y)t].

Assumption 7. (i) Either E[|Yg(Y)−ϕ(X)|4|X] 6 C andVar(Yg(Y)|X) > c or, in case of reweight-
ing, E[|Y − ϕ(X)|4∆g4(Y)|X] 6 C and E[|Y − ϕ(X)|2∆g2(Y)|X] > c for some constants c,C > 0.
(ii) The function g is uniformly bounded away from one. (iii) It holds λmin(Tt

nQ−1
n Tn) ∼ τkn

where
τkn

is uniformly bounded away from zero.
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A bounded fourth moment of the error was also assumed by Newey [1997] to establish
asymptotic normality of series estimators in the regression context. Assumption 7 (iii)
restricts the minimum eigenvalue of Tt

nQ−1
n Tn to be bounded away from zero uniformly

in n. A stronger restriction on λmin(Tt
nQ−1

n Tn) is made when this assumption is considered
together with Assumption 6 (ii). The consistency result established in Theorem 3.1 together
with Assumption 7 (iii) imply that the constraint in (3.2) is not binding asymptotically and
hence the estimator ĝn given in (3.3) coincides with the one in (3.2).

The next result establishes the asymptotic distribution of the estimators ϕ̂n and ϕ̃n

evaluated at some point x in the support of X.

Theorem 3.3. Let Assumptions 1 – 5 and 7 be satisfied. If for some x ∈ X it holds

√
n max

(
(Fmnϕ−ϕ)(x), FmnTMid(Ekn

g− g)(x)
)
= o

(√
Vn(x)

)
and kn = o

(
τkn
Vn(x)

)
(3.7)

withVn(x) being equal toV1n(x) andV2n(x), respectively, then we have

√
n/V1n(x)

(
ϕ̂n(x) − ϕ(x)

)
d→N(0, 1) and

√
n/V2n(x)

(
ϕ̃n(x) − ϕ(x)

)
d→N(0, 1).

If, in addition, Assumption 6 (i)-(ii) is satisfied, Y is bounded, m2
n = o(n), τkn

k
−β
n mn = o(1) and

k2
n = o(τkn

n) then

√
n
/
V̂1n(x)

(
ϕ̂n(x) − ϕ(x)

)
d→N(0, 1) and

√
n
/
V̂2n(x)

(
ϕ̃n(x) − ϕ(x)

)
d→N(0, 1).

The first part of condition (3.7) is an undersmoothing requirement to ensure that the
sieve approximation biases become asymptotically negligible. It does not necessarily
require undersmoothing of the estimator of the inverse selection probability function g. In
the setting of Corollary 3.2, the first part of condition (3.7) is less restrictive than imposing

max
(
nm−2α/dx

n ,nτkn
k
−2β
n

)
= o(1) (see also Comment 4.3 in Belloni et al. [2015] for a discussion

on such undersmoothing conditions). The rate restriction kn = o(τkn
Vn(x)) ensures that

the variance of the first step estimation of g does not enter the asymptotic distribution.
Without this assumption we get a larger normalization factor due to an additional variance
term. Moreover, the second result of the theorem requires the additional rate restriction
k2

n = o(τkn
n). In the setting of Corollary 3.2 this is equivalent to k1+t

n = o(
√

n) in the mildly

ill-posed case and to k2t
n = o

(
log n

)
in the severely ill-posed case. The rate restrictions m2

n = o(n),

τkn
k
−β
n mn = o(1) and k2

n = o(τkn
n) are used to control the rates of ‖ϕ̂n − ϕ‖∞ and ‖ĝn − g‖∞.

An assumption to control the sup norm rate in the estimation of the variance is also made
in Chen and Christensen [2015a, Theorem A.1].

We now show how we can use a bootstrap procedure to construct uniform confidence
bands for ϕ(·). Let (ε1, . . . , εn) be a bootstrap sequence of i.i.d. random variables drawn
independently of the data {(∆1,Y1,X1), . . . , (∆n,Yn,Xn)}, with E[εi] = 0, E[ε2

i
] = 1, E[ε2+δ

i
] <

∞ for all 1 6 i 6 n and some δ > 1. Common choices of distributions for εi include the
standard Normal, Rademacher, and the two-point distribution of Mammen [1993]. Let P∗

denote the probability distribution of the bootstrap innovations (ε1, . . . , εn) conditional on
the data. Let us define the bootstrap process

X
∗
n(x) =

fmn(x)t(Xt
mn

Xmn/n)−
√
V̂1n(x)




1√
n

n∑

i=1

fmn(Xi)(Yi ĝn(Yi) − ϕ̂n(Xi))εi


 .
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Let Σn = E[ fmn(X) fmn(X)t(Yg(Y) − ϕ(X))2] and let dn be the standard deviation semimetric

on X of the Gaussian Process Xn(x) = fmn(x)tXn/
√
V1n(x) with Xn ∼ N(0,Σn) defined as

dn(x1, x2) = (E[(Xn(x1) − Xn(x2))2])1/2, see e.g. van der Vaart and Wellner [2000, Appendix
A.2].

Moreover, let N(X, dn, ε) denote the ε-entropy of X with respect to dn and denote ηn =

max
(
n−1/2(knτ

−1/2
kn
+mn),m−α/dx

n , (1 +
√

mnτkn
) k
−β
n

)
. In the following we assume ξn = O(kn)

to simplify notation. We introduce the following assumption, which is similar to the
assumptions required by Chen and Christensen [2015a] to establish the important result of
validity of their bootstrap uniform confidence bands.

Assumption 8. (i) X is compact and (X, dn) is separable for each n. (ii) There exists a sequence of
finite positive integers cn such that

1 +

∫ ∞

0

√
log N(X, dn, ε)dε = O(cn).

(iii) There exist two sequences of positive integers b1,n, b2,n with b j,n = o(c−1
n ) for j = 1, 2 such that

supx∈X
√

n/V1n(x) |ϕ(x)−Fmnϕ(x)| = O(b1,n) and
√

nmn‖ϕ−Fmnϕ‖X = O(b2,n); (iv) There exists

a sequence of positive integers rn with rn = o(1) such that m5/2
n = o(r3

n

√
n) and

mn

√√
max

(
log(mn), kn

)

nτkn

+ ηncn +

√
kn

τkn
mn
+ k
−β
n max

(√
mn,
√

nτkn

)
= o(c−1

n ).

The next theorem establishes the validity of the bootstrap for constructing uniform
confidence bands for ϕ(·). The proof of the theorem is a slight modification of the proof of
Chen and Christensen [2015a, Theorem B.1], it is based on strong approximation of a series
process by a Gaussian process, and uses an anti-concentration inequality for the supremum
of the approximating Gaussian process obtained in Chernozhukov et al. [2014]. The differ-
ences in our proof with respect to the proof of Chen and Christensen [2015a, Theorem B.1]
are due to the fact that our two-step estimation problem is different than the nonparametric
instrumental regression, with endogeneity, considered in Chen and Christensen [2015a].
For a nonparametric instrumental regression, also Horowitz and Lee [2012] proposed a
boostrap procedure to construct uniform confidence bands. Their procedure is based on
interpolation of joint confidence intervals. In the setting of nonparametric regression with-
out selection, important results on uniform inference and bootstrap uniform confidence
bands can be found in Belloni et al. [2015].

Theorem 3.4. Let the assumptions of Theorem 3.3, Assumptions 6 and 8 hold. Moreover, we

assume kn = o(τkn
mn) and supx∈X

(
‖ fmn(x)tTY

n ‖2/V1n(x)
)
= O(kn/mn). Then,

sup
s∈R

∣∣∣∣∣∣∣∣∣
P



sup
x∈X

∣∣∣∣∣∣∣∣∣

√
n(ϕ̂n(x) − ϕ(x))

√
V̂1n(x)

∣∣∣∣∣∣∣∣∣
6 s



− P∗

(
sup
x∈X

∣∣∣X∗n(x)
∣∣∣ 6 s

)
∣∣∣∣∣∣∣∣∣
= op(1).

This theorem requires supx∈X
(
‖ fmn(x)tTY

n ‖2/V1n(x)
)
= O(kn/mn) which is not a very

strong assumption since fmn(x)tTY
n is a kn-vector and, under Assumption 7 (i), V1n(x) >

c‖ fmn(x)‖.
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Remark 3.3 (Uniform Confidence Bands based on ϕ̃n). Alternatively, we can construct a
bootstrap process based on the reweighted estimator ϕ̃n(·) as follows:

X
∗
2,n(x) =

fmn(x)t(Xt
mn

DnXmn/n)−
√
V̂2n(x)




1√
n

n∑

i=1

fmn(Xi)(Yi − ϕ̃n(Xi))∆i ĝn(Yi)εi


 ,

with bootstrap innovations (ε1, . . . , εn) having the same properties as above. This bootstrap
process can be used to construct valid uniform confidence bands for ϕ(·) and a result as

in Theorem 3.4 holds with ϕ̂n(x), X∗n(x) and V̂1n(x) replaced by ϕ̃n(x), X∗
2,n

(x) and V̂2n(x),
respectively. �

4. Sample Selection with Endogenous Covariates

In many economic applications, it is necessary to correct for both sample selection of
the dependent variable and endogeneity of (some) covariates. In this section, we show
that, under the assumptions of Section 2, identification of the corresponding reduced
form equation can be achieved. Under further conditions, which are common in the
nonparametric instrumental variable literature, identification of the structural function is
also obtained. An estimator of the nonparametric structural function is proposed, we
establish its rate of convergence as well as its asymptotic distribution and we propose a
bootstrap procedure to construct uniform confidence bands.

4.1. Model and Identification

In this section, we consider the instrumental variable model under selectively observed
outcomes given by

Y∗ = ψ(Z) +U where E[U|X] = 0, Y = ∆Y∗, (4.1)

Z is a dz-vector of possibly endogenous regressors in the sense that E[U|Z] , 0 and hence
ψ(Z) need not to coincide with E[Y∗|Z]. Here, X is a vector of instruments used to identify
the structural function ψ. The instrument X is also assumed to satisfy Assumption 1; that
is, ∆ y X|Y∗. An example is the estimation of Engel curves, where Y∗ denotes budget
share allocated to alcohol which is often not reported (see for instance the British “Family
expenditure Survey”) and Z is total expenditure. Expenditure is commonly thought of
as endogenous and typically instrumented for with labor income X. In this case, the
instrument certainly influences Y∗ through Z but is unlikely to directly influence survey
nonresponse. The reduced form equation of the structural model (4.1) is given by

E[Y∗|X] = E[ψ(Z)|X]

where the left hand side is not identified. By making use of equation (2.2), we obtain the
reduced form

E[Yg(Y)|X] = E[ψ(Z)|X] (4.2)

where the left hand side is identified under Assumptions 1–3. Thereby, L2
Z

completeness of
the conditional distribution of Z given X ensures identification of the structural function
ψ. In the following example, we see that Assumptions 1 and 2 are satisfied in a triangular
model.
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Example 4.1. Let us rewrite model (4.1) in reduced form and additionally specify a selection
equation. Then the assumption ∆ y X |Y∗ is satisfied in the triangular model

Y∗ = E[ψ(Z)|X] + ε where E[ε|X] = 0

∆ = ξ(Y∗, η)

and η y (X, ε). As in D’Haultfoeuille [2011] it can be argued that, under regularity condi-
tions imposed on the distribution of (X, ε), Y∗ is complete for X. �

4.2. The Estimator and its Rate of Convergence

In this section, we propose an estimator for the structural function ψ and derive its rate of
convergence. For any φ ∈ L2

Z
we introduce the function ̺(·, g, φ) = E[Yg(Y) − φ(Z)|X = ·].

The least squares estimator of ̺(·, g, φ) is given by

̺̂n(·, g, φ) = fmn(·)t (Xt
mn

Xmn)−
n∑

i=1

(
Yi g(Yi) − φ(Zi)

)
fmn(Xi).

Let us now propose a plug-in minimum distance estimator of ψ which involves the esti-
mator ĝn given in (3.2) of the inverse selection probability g. That is, we estimate ψ by

ψ̂n = arg min
φ∈Ψn

n∑

i=1

̺̂2
n (Xi, ĝn, φ). (4.3)

Here, we consider the linear sieve space Ψn =
{
φ(·) = ∑kn

j=1
β jp j(·) : β ∈ Rkn

}
of dimension

kn < ∞ for some basis functions {p j} j>1 in L2
Z

. In particular, we have the least squares
solution

ψ̂n(·) = pkn
(·)t ϑ̂kn

and ϑ̂kn
=

(
Zt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
Zkn

)−
Zt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
Gn (4.4)

where kn 6 mn, Gn =
(
Y1 ĝn(Y1), . . . ,Yn ĝn(Yn)

)t
and Zkn

= (pk(Z1), . . . , pk(Zn))t. Similarly

to the previous section, we might consider a reweighted version of the estimator ψ̂ by
replacing the empirical counterpart of E[ fmn(X) fmn(X)t] by the empirical counterpart of

E[ fmn(X) fmn(X)t∆g(Y)]. We do not consider such a reweighted version of ψ̂n explicitly
in this paper due to the length of the paper and since such results can be derived from

the previous analysis of ϕ̃n and the subsequent study of ψ̂n. An alternative estimator
is based on the observation that E[ρ(Y,Z,∆; g(·), ψ(·))|X] = 0 with ρ(Y,Z,∆; g(·), ψ(·)) =
(∆g(Y)− 1,Yg(Y)−ψ(Z))t (see also Remark 3.1 in the exogenous case). One might thus use
the sieve minimum distance estimator of Chen and Pouzo [2012], which does not coincide
with our proposed estimator ψ̂n in this case. Our proposed estimator ψ̂n is tailored to
our selection model and does not suffer from the ill-posedness of recovering the inverse
selection probability g, as we see below.

Assumption 9. (i) We observe a sample ((∆1,Y1,Z1,X1), . . . , (∆n,Yn,Zn,Xn)) of iid. copies of
(∆,Y,Z,X) where Y = ∆Y∗ and E[U2|X] < ∞. (ii) There exists a constant C > 1 and a sequence of
positive integers (kn)n>1 satisfying supz∈Z ‖pkn

(z)‖2 6 Ckn such that k2
n/n = o(1). (iii) The smallest

eigenvalue of E[pk(Z)pk(Z)t] is bounded away from zero uniformly in k. (iv) For every ψ ∈ L2
Z

there

exists Πkn
ψ ∈ Ψn such that ‖Πkn

ψ − ψ‖∞ = O(k
−γ/dz
n ) for some constant γ > 0.
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Let us introduce the linear conditional expectation operator K : L2
Z
→ L2

X
with (Kφ)(·) =

E[φ(Z)|X = ·] for all φ ∈ L2
Z

. We introduce the following assumption which ensures
identification of the structural function ψ in model (4.1).

Assumption 10. (i) For some α > 0 and for every φ ∈ Ψn there exists FmnKφ ∈ Fmn such

that ‖FmnKφ − Kφ‖∞ = O(m−α/dx
n ). (ii) For every function φ ∈ L2

Z
, E[φ(Z)|X] = 0 implies

φ(Z) = 0. (iii) There exists a sequence of non-increasing positive real numbers (κ j) j>1 such that
‖Kφ‖2

X
6 C

∑∞
j=1 κ j〈φ, p j〉2Z and ‖Kφ‖2

X
> c

∑∞
j=1 κ j〈φ, p j〉2Z for all φ ∈ L2

Z
and some constants

c, C > 0.

The next result establishes the rate of convergence of the estimator ψ̂n.

Theorem 4.1. Let Assumptions 1–5, 9 and 10 hold true. Then we have

‖ψ̂n − ψ‖2Z = Op

(
max

(
k
−2γ/dz
n ,

kn

nκkn

, κ−1
kn
‖T(Ekn

g − g)‖2X
))
.

In contrast to Theorem 3.1, the additional bias due to sample selection is also effected by
the potential ill-posedness coming from endogeneity of covarites Z. Under the conditions

of Corollary 3.2, the bias κ−1
kn
‖T(Ekn

g − g)‖2
X

can be bounded by κ−1
kn
τkn

k
−2β
n . Thereby, the

usual rate in nonparametric instrumental regression (see Chen and Reiß [2011]) can be

only obtained if τkn
k

2γ/dz
n 6 const. κkn

k
2β
n for all n sufficiently large. In particular, we see that

the rate of convergence derived in Theorem 4.1 does not suffer from estimation of g in an
inverse problem.

Remark 4.1. To conclude this section it is worth to mention that with our estimation method
we can deal with another type of endogeneity, different from the one just considered.
Suppose that the random vector X that satisfies Assumption 1 is endogenous, in the sense
that the relationship of interest is the structural function ψ satisfying

Y∗ = ψ(X) +U where E[U|X] , 0 and Y = ∆Y∗. (4.5)

This situation can be easily dealt with by assuming that there exists another vector W of
instruments such that E[U|W] = 0 and ∆ y X | (Y∗,W). The latter assumption replaces
Assumption 1 and corresponds to the one in Remark 2.1. For simplicity, we assume that W
is observed for all the individuals so that the conditional distribution of X|W is identified
from the data. Moreover, we have to assume that P(∆ = 1|Y∗,W) > 0 and that Assumption
2 holds with φ(Y∗) replaced by φ(Y∗,W). Then ψ is identified through (4.5) and

E[Y∗|W] = E[Y∗P(∆ = 1|Y∗,W)g(Y∗,W)|W] = E[Y∗∆g(Y∗,W)|W] = E[Yg(Y,W)|W].

Consequently, we obtain the identified reduced form equation

E[Yg(Y,W)|W] = E[ψ(X)|W]

and identification of ψ follows as above. �

4.3. Pointwise and Uniform Inference for the Structural Function

This subsection is about inference on the structural function ψ evaluated at some point and
also uniform over the support of Z. We first analyze the pointwise asymptotic distribution

of our estimator at some x ∈ X. For the estimator ψ̂n(z) we introduce the sieve variance

Wn(z) = pkn
(z)tAn E

[
fmn(X)Var(Yg(Y) − ψ(Z)|X) fmn(X)t

]
At

npkn
(z)
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where An = (Kt
nQ−1

n Kn)−1Kt
nQ−1

n with Kn = E[ fmn(X)pkn
(Z)t]. If there is no endogenous

selection (that is, g = 1) then the sieve variance coincides with the one obtained by Chen
and Pouzo [2015] in nonparametric instrumental regression. Under endogenous selection,
however, we see that the sieve variance increases relative to the inverse probability function
g. Again we observe that the variance formula is not affected by the potential ill-posedness
of the inverse problem to estimate the function g, i.e., Tg = 1. We replace the variance
Wn(z) by the estimator

Ŵn(z) = pkn
(z)tÂn

1

n

n∑

i=1

fmn(Xi)
(
Yi ĝn(Yi) − ψ̂n(Zi)

)2
fmn(Xi)

tÂt
npkn

(z),

where Ân =
(
Zt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
Zkn
/n

)−
Zt

kn
Xmn(Xt

mn
Xmn)−. To establish the asymptotic

distribution of our estimator we require the following additional assumptions.

Assumption 11. (i) Let E[|Yg(Y) − ψ(Z)|4|X] 6 C and Var(Yg(Y) − ψ(Z)|X) > c for some
constants c,C > 0. (ii) It holds λmin(Kt

nQ−1
n Kn) ∼ κkn

where κkn
is uniformly bounded away from

zero.

Since E[|Y∗|2|X] = E[|Y|2g(Y)|X] 6 E[|Yg(Y)|2|X], the Cauchy-Schwarz inequality and
using twice the basic inequality (a − b)2

> a2/2 − b2 yields

Var(Yg(Y) − ψ(Z)|X) > E[|Yg(Y)|2|X] − 2

√
E[|Yg(Y)|2|X]

√
E[ψ2(Z)|X] + E[ψ2(Z)|X]

=
(√

E[|Yg(Y)|2|X] −
√

E[ψ2(Z)|X]
)2

> E[|Y∗|2|X]/2 − E[ψ2(Z)|X]

> Var(U|X)/4 − 3 E[ψ2(Z)|X]/2,

where we also used model equation (4.1) for the last inequality. Thus,Var(Yg(Y)−ψ(Z)|X)
is bounded from below by some constant c > 0 if Var(U|X) is sufficiently large, more
precisely, if Var(U|X) > 2(2c + 3 E[ψ2(Z)|X]). On the other hand, assuming a bounded
conditional fourth moment of the structural disturbance U (E[U4|X] 6 const.) implies
E[|Yg(Y) − ψ(Z)|4|X] 6 const. if the support of Y is bounded.

The next result establishes the asymptotic distribution of the estimator ψ̂n evaluated at
some point z in the supportZ of Z.

Theorem 4.2. Let Assumptions 1 – 5, 7 (ii), (iii), and 9 – 11 be satisfied. If for some z ∈ Z it holds

√
n max

(
(Πkn

ψ − ψ)(z), pkn
(z)tAn E[ fmn(X)TMid(Ekn

g − g)(X)]
)
= o

(√
Wn(z)

)

and pkn
(z)tAnTY

n

(
Tt

nTn

)−1(
AnTY

n

)t
pkn

(z) = o
(
Wn(z)

)
, (4.6)

then we have

√
n/Wn(z)

(
ψ̂n(z) − ψ(z)

)
d→N(0, 1).

If, in addition, Assumption 6 (i)-(ii) is satisfied, Y is bounded, k2
n = o

(
n min(τkn

, κ2
kn

)
)
, τkn

k
1−β
n =

o(κkn
) and mn log kn = o(nκkn

) then

√
n
/
Ŵn(z)

(
ψ̂n(z) − ψ(z)

)
d→N(0, 1).
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The first part of (4.6) is an undersmoothing condition. It is less restrictive than im-

posing the assumption max
(
nκkn

k
−2γ/dz
n ,nτkn

k
−2β
n

)
= o(1), which can be seen by using the

lower bound Wn(z) > const.κ−1
kn
‖pkn

(z)‖2 (see also the proof of Theorem 4.2). The second

part of the condition (4.6) ensures that the variance of the first step estimation of g does
not enter the asymptotic distribution. It can be always ensured by choosing the dimension

parameter for ĝn appropriately smaller than the one for ψ̂n.
We now show how we can use a bootstrap procedure to construct uniform confidence

bands for ψ(·). Let (ε1, . . . , εn) be a bootstrap sequence of i.i.d. random variables drawn
independently of the data {(∆1,Y1,X1,Z1), . . . , (∆n,Yn,Xn,Zn)} and satisfying the same mo-
ment conditions as in Section 3.2, and let P∗ be defined similarly as in Section 3.2. Let us
define the bootstrap process

Z
∗
n(z) =

pkn
(z)tÂn

√
Ŵn(z)




1√
n

n∑

i=1

fmn(Xi)(Yi ĝn(Yi) − ψ̂n(Zi))εi


 . (4.7)

Let Σ
ψ
n = E[ fmn(X) fmn(X)t(Yg(Y) − ψ(Z))2] and let d̃n be the standard deviation semimetric

onZ of the Gaussian Process Zn(z) = pkn
(z)tAnZn/

√
Wn(z) with Zn ∼ N(0,Σ

ψ
n ) defined as

d̃n(z1, z2) = (E[(Zn(z1) −Zn(z2))2])1/2. Further, we define

η̃n = mn

√
log kn

nκkn

+
kn√

n min(τkn
, κ2

kn
)
+ k
−γ/dz
n + k

−β
n

(
1 +

√
knτkn

/κkn

)
.

We introduce the following assumption which is similar to Chen and Christensen [2015a,
Assumption 6].

Assumption 12. (i)Z is compact and (Z, d̃n) is separable for each n. (ii) There exists a sequence
of finite positive constants c̃n such that

1 +

∫ ∞

0

√
log N(Z, d̃n, ε)dε = O(̃cn).

(iii) There exist two sequences of positive integers b̃1,n, b̃2,n with b̃ j,n = o(̃c−1
n ) for j = 1, 2 such that

supz∈Z
√

n/Wn(z)|(ψ(z) − (Πkn
ψ)(z))| = O(̃b1,n) and

√
nmn‖ψ − Πkn

ψ‖Z = O(̃b2,n). (iv) There

exists a sequence of positive constants rn with rn = o(1) such that m2
n

√
mn = o(r3

n

√
n) and

mn

√
log kn

nκkn
τkn

+ η̃ncn +
kn

κkn
infzWn(z)

+
(√

mn +
√

nτkn

)
k
−β
n = o(̃c−1

n ).

The next theorem establishes the validity of the bootstrap procedure for constructing
uniform confidence bands for ψ(·). The proof of the theorem is a slight modification of the
proof of Theorem 3.4 only because the bootstrap process we use here implies different rates
of convergence to account for.

Theorem 4.3. Let the assumptions of Theorem 4.2 and Assumption 12 hold. If mn

√
log kn =

o(
√

nκkn
) and kn max(mn, ξ

2
n) = o(nτkn

), then

sup
s∈R

∣∣∣∣∣∣∣∣∣
P



sup
z∈Z

∣∣∣∣∣∣∣∣∣

√
n(ψ̂n(z) − ψ(z))

√
Ŵn(z)

∣∣∣∣∣∣∣∣∣
6 s



− P∗


sup

z∈Z

∣∣∣Z∗n(z)
∣∣∣ 6 s




∣∣∣∣∣∣∣∣∣
= op(1).
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5. Monte Carlo simulation

In this section, we study the finite sample performance of our estimators by presenting
the results of a Monte Carlo simulation. There are 1000 Monte Carlo replications in each
experiment and the sample size is n = 1000.

Regression with exogenous covariates. We consider estimation of the conditional ex-
pectation of Y∗ given X. Let X = Φ(χ) where χ ∼ N(0, 1). Further, generate Y∗ from the
model

Y∗ = ϕ(X) + cVV

where ϕ(x) = Φ
(
8(x − 0.5)

)
with standard normal distribution function Φ, cV = 0.4, and

V ∼ N(0, 1). We generate realizations of the selection variable ∆ from

∆ ∼ Binomial(1, h(Y∗)), (5.1)

where h(y) = 0.4 ∗ ✶{y 6 0.4} + ✶{y > 0.4}. Our estimators of the regression function ϕ are
based on realizations of (∆,Y,X) where Y = ∆Y∗.

We estimate the function ϕ by using the series least squares plug-in estimator ϕ̂n given
in (3.4) and the reweighted series least squares plug-in estimator ϕ̃n given in (3.5). In both
cases, we use B-splines as basis functions, either of order 3 with 2 knots (hence kn = 6) or of
order 3 with 4 knots (hence kn = 8) and for the criterion function we use B-splines of order
3 with 6 knots (hence mn = 10).

For the bootstrap uniform confidence bands, we consider one representative sample
and generate the bootstrap innovations ε according to the two-point distribution suggested

by Mammen [1993], i.e., ε equals (1−
√

5)/2 with probability (1+
√

5)/(2
√

5) and (1+
√

5)/2

with probability 1 − (1 +
√

5)/(2
√

5). Based on the estimator ϕ̂n we generate the bootstrap
processX∗n as described in Subsection 3.2, while for ϕ̃n we use the specific process described
in Remark 3.3. The results are based on 1000 bootstrap iterations.

The first column of Figure 1 depicts the median of the estimators ϕ̂n and ϕ̃n together
with their 95% pointwise confidence bands and the median of the least squares series esti-
mator under the missing at random (MAR) assumption based on listwise deletion. In the
second column of Figure 1, we depict both estimators for a representative sample together
with their bootstrap uniform confidence bands. As we see from Figure 1, MAR estimator
becomes more biased for small values of x, as we expect, and, at least for small x, lies
outside of the pointwise confidence intervals of ϕ̂n.

From Figure 1 we also see that both estimators, ϕ̂n and ϕ̃n, have a similar finite sample
performance in this setting. The conclusion changes, however, when the dimension pa-
rameter kn is increased from 6 to 8, as depicted in Figure 2. As we see from this figure, the
median of the estimators is accurate for ϕ̂n and ϕ̃n but the variance of ϕ̂n is much larger
for any x above 0.5. Hence in this particular setting, the estimator ϕ̃n is much less sensitive
than ϕ̂n to an accurate choice of kn. This can be explained by the normalization of the
inverse probability weights that is only performed for the estimator ϕ̃n.

Regression with endogenous covariates. In the following, we allow for endogeneity
of covariates and aim to analyze the finite sample performance of our estimator of the
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Figure 1: The first column shows the median of the estimators ϕ̂n and ϕ̃n using kn = 6,
with their pointwise 95% confidence intervals and the median of an estimator
under MAR assumption. The second column shows the estimators ϕ̂n and ϕ̃n for
a representative sample together with their uniform 95% confidence bands.

structural functionψ. Let X = Φ(χ) and Z = Φ
(
ρχ+0.4ε

)
whereχ, ε ∼ N(0, 1) independently

and ρ is varied in the experiments. Further, generate Y∗ from the model

Y∗ = ψ(Z) + cUU,

where U = 0.3 ε + 0.7 ν with ν ∼ N(0, 1), cU = 0.4, and ψ(z) = Φ
(
8 (z − 0.5)

)
. We generate

the selection variable ∆ as in equation (5.1). Our estimator of ψ is based on realizations of
(∆,Y,Z,X) where Y = ∆Y∗.

We estimate the function ψ by using the nonparametric instrumental variable plug-in

estimator ψ̂n proposed in (4.4). As basis functions we use B-splines of order 3 with 2 knots
(hence kn = 6) for the estimation of g and ψ. For the criterion function we use B-splines
of order 3 with 6 knots (hence mn = 10). For the bootstrap uniform confidence bands, we
consider one representative sample and generate the bootstrap innovations ε according to

the two-point distribution as described above. Based on the estimator ψ̂n we generate the
bootstrap process Z∗n given in (4.7). Again we use 1000 bootstrap iterations.

The first column of Figure 3 depicts the median of the estimator ψ̂n together with its
95% pointwise confidence intervals and the nonparametric instrumental variable estimator
under the missing at random (MAR) assumption based on listwise deletion. In the second
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Figure 2: The first column shows the median of the estimators ϕ̂n and ϕ̃n using kn = 8,
with their pointwise 95% confidence intervals and the median of an estimator
under MAR assumption. The second column shows the estimators ϕ̂n and ϕ̃n for
a representative sample together with their uniform 95% confidence bands.

column of Figure 3, we depict ψ̂n together with its bootstrap uniform confidence bands
for varying values of ρ. As we see from Figure 3, not surprisingly the confidence bands
become wider as ρ decreases. In both cases, the confidence bands are also wider than in
Figure 1 as we expect. In particular, the MAR does not lie outside of the 95% pointwise
confidence intervals of ψ for any value of z.

6. Empirical Illustration

In this section, we apply our estimation procedure to study the way in which the level of ex-
penditure of an individual affects his/her expected “propensity to work”. We use data from
the German Internet Panel (GIP)5. This data set contains data about individual attitudes
and preferences which are relevant for political and economic decision-making processes.
The survey represents the German speaking population aged 16 to 75 in Germany.

5This paper uses data from the German Internet Panel wave 4 (DOI: 10.4232/1.12610), (Blom et al. [2016]). A
study description can be found in Blom et al. [2015]. The German Internet Panel is funded by the German
Research Foundation through the Collaborative Research Center 884 “Political Economy of Reforms” (SFB
884).
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Figure 3: The first column shows the median of the estimator ψ̂n with their pointwise 95%
confidence intervals and the median of an estimator under MAR assumption. In
the first row, we choose ρ = 0.8 and in the second row, ρ = 0.6. The second

column shows the estimator ψ̂n for a representative sample together with their
uniform 95% confidence bands.

In our application we measure the “propensity to work” by the “number of desired
hours” which is present in our data set. The latter variable is the number of weekly hours a
person would like to work by taking into account that the income would change according
to the hours of work. Let Y∗ denote this variable and X denote the variable “expenditure”.
The latter measures the total average expenditure in one month of a person.

The object of interest in our study is the regression function of Y∗ given X, that is, the
expected number of desired hours given a level of monthly total expenditure.

We also restrict our sample to individuals that report a positive value of labor income.
In our data set, we thus have 932 observations, a small number of missing values in the
variable ”expenditure” (33 observations) and a large number of missingness in the variable
“number of desired hours” (332 missing observations). As the number of missing values
in “expenditure” is small we eliminate these observations from our data set (since the bias
is going to be negligible) so that the sample size we work with becomes n = 899 and the
missing values in the variable “number of desired hours” are now 318.

The fact that Y∗ is not observed is likely to be endogenous since one could think that
in “extreme” situations, where Y∗ is either excessively low or excessively high, a person
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Mean Median Min Max Std. missing

Y = ∆Y∗ 21.91 30 0 60 18.089 318

X 1416 1200 0 6000 852.368 0

Table 1: Descriptive Statistics for Y = ∆Y∗ and X.

would be more likely to not provide this information. While the variable “expenditure” is
statistically related to Y∗, it is reasonable to assume that it is independent of the selection
mechanism once Y∗ is accounted for. In particular, as we restrict our sample to those
individuals with positive labor income, we exclude individuals with high wealth that
prefer not to work or unemployed individuals whose willingness to disclose information
on their ”propensity to work” might be driven by unobservables such as social pressure.
We have also implemented our specification test proposed in the online supplementary
material. We have computed the test statistics for a grid of values for mn and the maximum
value of the (standardized) test statistics is obtained for mn = 42 and is 0.700. Therefore,
our test fails to reject H0 at the level 5%.
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Figure 4: Graph of the estimator of P(∆ = 1|Y∗ = y) = 1/g(y).

Figure 4 depicts our estimator for the conditional probability P(∆ = 1|Y∗), which is
the inverse of the estimator ĝn as introduced in (3.2). We observe that this estimated
probability of reporting increases with potential desired hours of working up to some
point and decreases thereafter. We do not report uniform confidence bands here as they
are too wide to draw any conclusion. As we emphasized in our theoretical analysis, the
estimator of ĝn can be imprecise which we also see in finite samples.

Figure 5 shows the graphs of the estimators ϕ̂n and ϕ̃n for the regression function
of “number of desired hours” on “expenditure” together with the 90% percent bootstrap
uniform confidence bands. The estimator is based on the nonparametric methodology
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Figure 5: Regression curve of “number of desired hours” on “expenditure” using the es-
timators ϕ̂n and ϕ̃n with 90% uniform confidence bands and series least squares
estimator under the MAR assumption.

described in Section 3. The B-splines used here are of order 2 with 2 knots, hence kn =

mn = 5. The uniform boostrap confidence bands are as described in Subsection 3.2 using
bootstrap innovations ε generated by the two-point distribution as in the previous section
and using 1000 bootstrap iterations. We also report the estimated regression function
of “number of desired hours” on “expenditure” estimated under the MAR assumption.
From Figure 5 we see that the reweighted estimator ϕ̃n has smaller uniform confidence
bands than the estimator ϕ̂n. This is similar to our Monte Carlo simulation study in the
previous section. One explanation is that estimation of the inverse probability function g is
associated to a high level of variance as described above. We also see from Figure 5 that the
MAR estimator is slightly beyond the uniform confidence bands of ϕ̂n when expenditure
is around 1000 Euros.
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A. Appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be
different in different uses. Imn denotes the mn × mn identity matrix. Further, for ease of
notation we write

∑
i for

∑n
i=1. For a matrix A, we denote by ‖A‖ its operator norm. In the fol-

lowing, we denote Q̂n = n−1
∑

i fmn(Xi) fmn(Xi)
t and Q̃n = n−1

∑
i fmn(Xi) fmn(Xi)

t∆i ĝn(Yi). By

Assumption 4, the eigenvalues of E[ fmn(X) fmn(X)t] are bounded away from zero and hence,

it may be assumed that E[ fmn(X) fmn(X)t] = Imn . We also denote βkn
= (Tt

nTn)−1Tt
n E[ fmn(X)]

and Ekn
g(·) = E[g(Y)ekn

(Y)t]ekn
(·) where Tn = E[∆ fmn(X)ekn

(Y)t] and TY
n = E[Y fmn(X)ekn

(Y)t].

A.1. Proofs of Section 3.

Proof of Theorem 3.1. The proof is based on the following decomposition

‖ϕ̂n − ϕ‖2X 6 2
∥∥∥Q̂−1

n (Imn − Q̂n)
(
Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]

)∥∥∥2

+ 4
∥∥∥Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]

∥∥∥2
+ 4‖Fmnϕ − ϕ‖2X

= 2In + 4IIn + 4IIIn (say). (A.1)

First observe that

In 6 ‖Q̂−1
n ‖2‖Q̂n − Imn‖2‖Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]‖2.

We have ‖Q̂n − Imn‖2 = Op

(
n−1mn log(mn)

)
see Lemma 2.1 of Chen and Christensen [2015b]

and also ‖Q̂−1
n ‖2 = 1 + op(1). Further, we observe

IIn 6 2

mn∑

j=1

∣∣∣n−1
∑

i

(
Yi g(Yi) − (Fmnϕ(Xi)

)
f j(Xi)

∣∣∣2

+ 8

mn∑

j=1

∣∣∣n−1
∑

i

Yi

(
ĝn(Yi) − (Ekn

g)(Yi)
)

f j(Xi) − 〈TMid(ĝn − Ekn
g), f j〉X

∣∣∣2

+ 8

mn∑

j=1

∣∣∣n−1
∑

i

Yi (Ekn
g − g)(Yi) f j(Xi) − 〈TMid(Ekn

g − g), f j〉X
∣∣∣2

+ 4

mn∑

j=1

〈TMid(ĝn − Ekn
g), f j〉2X + 4

mn∑

j=1

〈TMid(Ekn
g − g), f j〉2X

= 2A1 + 8A2 + 8A3 + 4A4 + 4A5 (say).

Consider A1. Since E[(Y g(Y) − (Fmnϕ(X)) f j(X)] = 0, 1 6 j 6 mn, it holds

E A1 = n−1
mn∑

j=1

E | f j(X)Y g(Y)|2 6 2n−1 sup
x∈X
‖ fmn(x)‖2 sup

x∈X
|ϕ(x)|E |Y g(Y)| = O(mn/n),
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where we used E |Y g(Y)| = E[∆g(Y∗)|Y∗|] = E |Y∗| < ∞. Consider A2. The Cauchy Schwarz
inequality implies

A2 6

∥∥∥β̂n − E[g(Y)ekn
(Y)]

∥∥∥2
mn∑

j=1

∥∥∥n−1
∑

i

Yiekn
(Yi) f j(Xi) − E[Yekn

(Y) f j(X)]
∥∥∥2

=
∥∥∥β̂n − E[g(Y)ekn

(Y)]
∥∥∥2

Op(knmn/n)

= Op(mn/n)

where we used that kn

∥∥∥β̂n − E[g(Y)ekn
(Y)]

∥∥∥2
= Op(1). Consider A3. Since ‖Ekn

g − g‖∞ = o(1)
we have

E A3 6 n−1
mn∑

j=1

E
∣∣∣Y (Ekn

g − g)(Y) f j(X)
∣∣∣2

6 n−1 sup
x∈X
‖ fmn(x)‖2‖Ekn

g − g‖2∞ E Y2

= o(mn/n),

where E Y2 < ∞ holds due to assumption E[(Y∗ −ϕ(X))2|X] < ∞ and since g ∈ G. Consider
A4. We observe

A4 = ‖FmnTMid(ĝn − Ekn
g)‖2X 6 ‖TMid(ĝn − Ekn

g)‖2X

6 sup
{φ∈Gn:φ(·)>1}


‖TMid(φ − Ekn

g)‖2
X

‖T(φ − Ekn
g)‖2

X

 ‖T(ĝn − Ekn
g)‖2X

Due to Assumption 5 (iv) we have

sup
{φ∈Gn:φ(·)>1}


‖TMid(φ − Ekn

g)‖2
X

‖T(φ − Ekn
g)‖2

X

 < ∞.

From Blundell et al. [2007] page 1659 we deduce

‖T(ĝn − Ekn
g)‖2X = Op

(
m−2α/dx

n +mn/n + ‖T(Ekn
g − g)‖2X

)
.

Consequently, we have

A4 = Op

(
m−2α/dx

n +mn/n + ‖T(Ekn
g − g)‖2X

)
.

Further,

A5 6 ‖FmnT(Ekn
g − g)‖2X = O

(
‖T(Ekn

g − g)‖2X
)
,
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which proves the rate of convergence of the estimator ϕ̂n. To prove the rate result for ϕ̃n,
we consider

‖Q̃n − Imn‖2 6 2
∥∥∥∥n−1

∑

i

fmn(Xi) fmn(Xi)
t∆i g(Yi) − E[ fmn(X) fmn(X)t]

∥∥∥∥
2

+ 4
∥∥∥∥n−1

∑

i

fmn(Xi) fmn(Xi)
t∆i(g − Ekn

g)(Yi)
∥∥∥∥

2

+ 4

kn∑

l=1

∥∥∥∥n−1
∑

i

fmn(Xi) fmn(Xi)
tel(Yi)∆i

∥∥∥∥
2 ∥∥∥β̂kn

− E[g(Y)ekn
(Y)]

∥∥∥2

= Op

(
n−1mn log(mn) +

∥∥∥ E[ fmn(X) fmn(X)t(T(g − Ekn
g))(X)]

∥∥∥2

+ k−1
n max

16l6kn

∥∥∥ E[ fmn(X) fmn(X)tel(Y)∆]
∥∥∥2)

where in the last line, we used that k2
n ‖β̂kn

− E[g(Y)ekn
(Y)]‖2 = Op(1). It further holds

max16l6kn
‖E[ fmn(X) fmn(X)tel(Y)∆]‖2 = O(1). Moreover, for an ∈ Rmn with at

nan = 1 we
obtain

∥∥∥ E[ fmn(X) fmn(X)t(T(g − Ekn
g))(X)]

∥∥∥2
6 E[|at

n fmn(X)(T(g − Ekn
g))(X)|2]

= O
(
‖g − Ekn

g‖2∞
)

= o(1),

and thereby the rate result for ϕ̃n follows as above using the decomposition

‖Xt
mn

Gn/n − Q̃n E[ϕ(X) fmn(X)]‖2 62
∥∥∥n−1

∑

i

(
Yi − Fmnϕ(Xi)

)
∆ig(Yi) fmn(Xi)

∥∥∥2

+ 2
∥∥∥n−1

∑

i

(
Yi − Fmnϕ(Xi)

)(
ĝ(Yi) − g(Yi)

)
fmn(Xi)

∥∥∥2

=Op

(
m−2α/dx

n +mn/n + ‖T(Ekn
g − g)‖2X

)
,

where we used that E[(Y − (Fmnϕ(X))∆g(Y) f j(X)] = 0 for all 1 6 j 6 mn. �

Proof of Corollary 3.2. It is sufficient to check that

sup
φ∈Gkn

‖TMidφ‖X
‖Tφ‖X

< ∞. (A.2)

Let T∗ denote the adjoint operator of T which is given by (T∗φ)(·) = E[∆φ(X)|Y∗ = ·]. Since
the multiplication operator Mid is a selfadjoint operator we obtain

‖TMidφ‖2X = 〈TMidφ,TMidφ〉X = 〈Tφ, (T∗)−1MidT∗TMidφ〉X 6 ‖Tφ‖X ‖(T∗)−1MidT∗TMidφ‖X.

From the link condition ‖Tφ‖2
X
> c

∑∞
j=1 τ j〈φ, e j〉2Gwe infer by a duality argument ‖(T∗)−1φ‖2

X
6

c−1
∑∞

j=1 τ
−1
j
〈φ, e j〉2G. Let L be a selfadjoint operator acting on G with eigenvalue decompo-

sition {τ1/2
j
, e j} j>1. Then we conclude

‖TMidφ‖2X 6 c−1‖Tφ‖X ‖L−1MidT∗TMidφ‖X 6 c−1‖Tφ‖X ‖TMidL−1‖X ‖TMidφ‖X
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which gives

‖TMidφ‖X
‖Tφ‖X

6 c−1‖TMidL−1‖X.

Consequently, (A.2) follows since ‖TMidL−1‖X is bounded. �

For the next proof, we recall and define the notations Tn = E[∆ fmn(X)ekn
(Y)t] and

TY
n = E[Y fmn(X)ekn

(Y)t]. Further, we denote βkn
=

(
Tt

nTn

)−1
Tt

n E[ fmn(X)].

Proof of Theorem 3.3. To bound the sieve variance V1n(x) from below we observe that
assumptionVar(Yg(Y)|X) > C yields

V1n(x) > fmn(x)t E
[

fmn(X)Var(Yg(Y)|X) fmn(X)t
]

fmn(x) > C ‖ fmn(x)‖2.

In the following, we also make use of

Var(Yg(Y) − ϕ(X)|X) = E(|Yg(Y) − ϕ(X)|2|X)

= E(|Yg(Y)|2|X) − ϕ2(X)

= Var(Yg(Y)|X).

The proof is based on the decomposition

ϕ̂n(x) − ϕ(x) = fmn(x)t(nQ̂n)−1
∑

i

fmn(Xi)
(
Yig(Yi) − ϕ(Xi)

)

+ fmn(x)t(nQ̂n)−1
∑

i

fmn(Xi)Yi

(
ĝn(Yi) − Ekn

g(Yi)
)

+ fmn(x)t(nQ̂n)−1
∑

i

fmn(Xi)Yi

(
Ekn

g(Yi) − g(Yi)
)

+ fmn(x)t(nQ̂n)−1
∑

i

fmn(Xi)ϕ(Xi) − ϕ(x)

= In + IIn + IIIn + IVn (say). (A.3)

Consider In. We obtain

√
n/V1n(x) In =

∑

i

(
nV1n(x)

)−1/2
fmn(x)t fmn(Xi)(Yig(Yi) − ϕ(Xi)) + op(1)

=
∑

i

sin + op(1).

Moreover, sin, 1 6 i 6 n satisfy the Lindeberg condition which can be seen as follows. It
holds E[sin] = 0 and n E[s2

in
] = 1. For all ε > 0 due to E |Yg(Y) − ϕ(X)|4 6 C we observe

∑

i

E[s2
in ✶{|sin|>ε}] 6 nε2 E |sin/ε|4 6 Cn−1ε−2m2

n = o(1).

Consider IIn. We observe
√

nIIn =
√

n fmn(x)tTY
n (β̂kn

− βkn
) + op(1)

= n−1/2
∑

i

fmn(x)tTY
n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)
+ op(1).
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Further, we have

E
∣∣∣∣n−1/2

∑

i

fmn(x)tTY
n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)∣∣∣∣
2
6 fmn(x)tTY

n

(
Tt

nTn

)−1
(TY

n )t fmn(x).

We obtain

fmn(x)tTY
n

(
Tt

nTn

)−1
(TY

n )t fmn(x) 6
∥∥∥
(
Tt

nTn

)−1∥∥∥ ‖ fmn(x)tTY
n ‖2

6 Cτ−1
kn

kn∑

l=1

∣∣∣∣
mn∑

j=1

f j(x) E
[
Y∆el(Y) f j(X)

]∣∣∣∣
2

= Cτ−1
kn

kn∑

l=1

∣∣∣∣
mn∑

j=1

f j(x) E
[
νl(X) f j(X)

]∣∣∣∣
2

6 Cknτ
−1
kn

max
16l6kn

∣∣∣∣(Fmnνl)(x)
∣∣∣∣
2

= O(knτ
−1
kn

) (A.4)

where νl(x) = E[Y∆el(Y)|X = x]. Thus, the condition kn = o
(
τkn
V1n(x)

)
yields

√
nIIn =

op

(√
V1n(x)

)
. Consider IIIn. We have

E
∣∣∣∣ fmn(x)tn−1/2

∑

i

fmn(Xi)Yi

(
Ekn

g(Yi) − g(Yi)
)∣∣∣∣

2

6 E
[∣∣∣∣ fmn(x)t fmn(X)Y

(
Ekn

g(Y) − g(Y)
)∣∣∣∣

2]
+ n

(
E fmn(x)t fmn(X)Y

(
Ekn

g(Y) − g(Y)
))2

6 ‖Ekn
g − g‖2∞ ‖ fmn(x)‖2 + n|FmnTMid(Ekn

g − g)(x)|2

and thus,
√

nIIIn = op

(√
V1n(x)

)
. Finally,

√
nIVn = op

(√
V1n(x)

)
follows from the condition

√
n(Fmnϕ − ϕ)(x) = o

(√
V1n(x)

)
, which completes the proof of the first statement in the

theorem.

To prove
√

n/V2n(x)
(
ϕ̃n(x) − ϕ(x)

)
d→N(0, 1) we make use of the decomposition

ϕ̃n(x) − ϕ(x) = fmn(x)t(nQ̃n)−1
∑

i

fmn(Xi)
(
Yi − ϕ(Xi)

)
∆ig(Yi)

+ fmn(x)t(nQ̃n)−1
∑

i

fmn(Xi)
(
Yi − ϕ(Xi)

)
∆i

(
ĝn(Yi) − Ekn

g(Yi)
)

+ fmn(x)t(nQ̃n)−1
∑

i

fmn(Xi)(Yi − ϕ(Xi))∆i

(
Ekn

g(Yi) − g(Yi)
)

+ (Fmnϕ)(x) − ϕ(x).

Hence, it is easily seen that the asymptotic normal distribution follows as above. Finally,
by Lemma A.1 we see that the asymptotic distribution results remain valid if we replace
V1n(x) andV2n(x) by their estimators. �

Lemma A.1. Let Assumptions 1 – 5, 6 (i)-(ii) and 7 be satisfied. Moreover, assume that Y is

bounded, m2
n = o(n), τkn

k
−β
n mn = o(1) and k2

n = o(τkn
n). Then, we have

V1n(x)−1V̂1n(x) = 1 + op(1) and V2n(x)−1V̂2n(x) = 1 + op(1)

uniformly in x ∈ X.
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Proof. We start by proving the first result. We denote Σn = E
[

fmn(X)Var(Yg(Y)|X) fmn(X)t
]
,

Σ̂n = n−1
∑

i fmn(Xi) fmn(Xi)
t
(
Yi ĝn(Yi) − ϕ̂n(Xi)

)2
, and Σ̃n = n−1

∑
i fmn(Xi) fmn(Xi)

t
(
Yi g(Yi) −

ϕ(Xi)
)2

. Moreover, let ĥ(x)t = (V1n(x))−1/2 fmn(x)tQ̂−1
n , h(x)t = (V1n(x))−1/2 fmn(x)t. Hence,

V1n(x)̂h(x)tΣ̂n̂h(x) = V̂1n(x) and by noticing that h(x)tΣnh(x) = 1 since Qn = Imn , the triangle
inequality gives

∣∣∣∣(V1n(x))−1/2V̂1n(x)(V1n(x))−1/2 − 1
∣∣∣∣ 6

∣∣∣∣̂h(x)t(Σ̂n − Σ̃n)̂h(x)
∣∣∣∣ +

∣∣∣∣̂h(x)t(Σ̃n − Σn)̂h(x)
∣∣∣∣

+

∣∣∣∣̂h(x)tΣn̂h(x) − h(x)tΣnh(x)
∣∣∣∣ . (A.5)

Remark that, by the Rudelson’s inequality (see e.g. Belloni et al. [2015, Lemma 6.2])

supx∈X ‖̂h(x) − h(x)‖ = Op(
√

mn log(mn)/n) and, in particular, supx∈X ‖̂h(x)‖ = Op(1). Under
Assumptions 4 (ii)-(iii) and 7 (i), we can show similarly as in Newey [1997] page 165 – 166
that

sup
x∈X

∣∣∣∣̂h(x)tΣn̂h(x) − h(x)tΣnh(x)
∣∣∣∣ = Op

(√
mn log(mn)/n

)

and sup
x∈X

∣∣∣∣̂h(x)t(Σ̃n − Σn)̂h(x)
∣∣∣∣ = Op

(√
mn log(mn)/n

)
. (A.6)

Moreover, denote Ŝn = n−1
∑

i fmn(Xi) fmn(Xi)
t|Yi g(Yi)−ϕ(Xi)|,Sn = E[ fmn(X) fmn(X)t|Y g(Y)−

ϕ(X)|], Dĝn
(·) = ĝn(·) − g(·) and Dϕ̂n

(·) = ϕ̂n(·) − ϕ(·) and remark that E ‖Ŝn − Sn‖2 =
O(mn log(mn)/n) under Assumption 7 (i). Also denote the rates ηn,1 = max

(
k2

n/(τkn
n), k

−2β
n

)

and ηn,2 = max
(
m−2α/dx

n ,n−1m2
n,mnτkn

k
−2β
n

)
. Hence,

sup
x∈X

∣∣∣∣̂h(x)t(Σ̂n − Σ̃n)̂h(x)
∣∣∣∣

= sup
x∈X

∣∣∣∣∣∣∣
n−1

∑

i

(̂
h(x)t fmn(Xi)

)2 {(
Yi ĝn(Yi) − ϕ̂n(Xi)

)2 −
(
Yi g(Yi) − ϕ(Xi)

)2}
∣∣∣∣∣∣∣

6 sup
x∈X

∣∣∣∣∣∣∣
n−1

∑

i

(̂
h(x)t fmn(Xi)

)2
(YiDĝn

(Yi) −Dϕ̂n
(Xi))

2

∣∣∣∣∣∣∣

+ 2 sup
x∈X

∣∣∣∣∣∣∣
n−1

∑

i

(̂
h(x)t fmn(Xi)

)2 (
Yi g(Yi) − ϕ(Xi)

)
(YiDĝn

(Yi) −Dϕ̂n
(Xi))

∣∣∣∣∣∣∣

6 2
(
‖MidDĝn

‖2∞ + ‖Dϕ̂n
‖2∞

)
sup
x∈X

∣∣∣∣(Vn(x))−1 fmn(x)tQ̂−1
n fmn(x)

∣∣∣∣

+ 2
(
‖MidDĝn

‖∞ + ‖Dϕ̂n
‖∞

)
sup
x∈X

1

n

∑

i

(̂
h1(x)t fmn(Xi)

)2 ∣∣∣Yi g(Yi) − ϕ(Xi)
∣∣∣

6 Op
(
ηn,1 + ηn,2

)
+Op

(
(ηn,1 + ηn,2)1/2

)
sup
x∈X

∣∣∣∣̂h(x)t[Ŝn −Sn]̂h(x) + ĥ(x)tSn̂h1(x)
∣∣∣∣

= Op


(ηn,1 + ηn,2)1/2

(
(ηn,1 + ηn,2)1/2 +

√
mn log mn

n
+ 1

) = Op

(
(ηn,1 + ηn,2)1/2

)
(A.7)
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where in the third inequality we have used the facts that |(V1n(x))−1 fmn(x)tQ̂−1
n fmn(x)| 6

(V1n(x))−1‖ fmn(x)‖2(1 + op(1)) = Op(1), ‖MidDĝn
‖2∞ = Op

(
ηn,1

)
and ‖Dϕ̂n

‖2∞ = Op
(
ηn,2

)
, and

the Cauchy Schwartz inequality. Then, by (A.5), (A.6), (A.7) and the assumptions of the
lemma the result of the lemma follows. The proof of the second result of the Lemma
proceeds similarly and we omit it. �

A.2. Proofs of Section 4.

Proof of Theorem 4.1. The proof is based on the inequality

‖ψ̂n − ψ‖Z 6 ‖Πkn
ψ − ψ‖Z + ‖ψ̂n −Πkn

ψ‖Z.

By assumption, we have ‖Πkn
ψ − ψ‖Z = O(k

−γ/dz
n ) and thus, it is sufficient to bound ‖ψ̂n −

Πkn
ψ‖Z. By Lemma B.2 of Chen and Pouzo [2012] it holds ‖ψ̂n − Πkn

ψ‖2
Z
6 Cκ−1

kn
‖K(ψ̂n −

Πkn
ψ)‖2

X
. From the proof of Theorem 3.1 we have

mn∑

j=1

∣∣∣n−1
∑

i

Yi ĝn(Yi) f j(Xi) − E[Yg(Y) f j(X)]
∣∣∣2 = Op(rn) (A.8)

where we denote rn = max
(
m−2α/dx

n ,n−1mn, ‖T(g − Ekn
g)‖2

X

)
. Consequently, we observe

∥∥∥n−1
∑

i

(
Yi ĝn(Yi)− (Πkn

ψ)(Zi)
)

fmn(Xi)
∥∥∥2
6 2

∥∥∥ E
[(

Y g(Y)− (Πkn
ψ)(Z)

)
fmn(X)

]∥∥∥2
+Op(rn)

6 2‖K(Πkn
ψ − ψ)‖2X + Op

(
rn + ‖F⊥mn

K(Πkn
ψ − ψ)‖2X

)
.

Further, using the elementary inequality (a − b)2
> a2/2 − b2 and again applying relation

(A.8) gives uniformly in φ

∥∥∥n−1
∑

i

(
Yi ĝn(Yi) − φ(Zi)

)
fmn(Xi)

∥∥∥2
>

∥∥∥ E
[(

Y∗ − φ(Z)
)

fmn(X)
]∥∥∥2
/2

−
kn∑

j=1

max
φ∈Ψn

∣∣∣∣n−1
∑

i

(
Yi ĝn(Yi) − φ(Zi)

)
f j(Xi) − E

[(
Y∗ − φ(Z)

)
f j(X)

]∣∣∣∣
2

> C‖K(Πkn
ψ − ψ)‖2X − Op

(
rn + ‖F⊥mn

K(Πkn
ψ − ψ)‖2X

)
.

For some ε > 0 let us denote Ψ̃n = {φ ∈ Ψn : ‖K(φ−ψ)‖2
X
> ε r̃n}where r̃n = rn+‖F⊥mn

K(Πkn
ψ−

ψ)‖2
X

. Therefore, following the proof of Lemma B.1 of Chen and Pouzo [2012] we obtain

P

(
‖K(ψ̂n − ψ)‖2X > ετn

)

6 P

(
min
φ∈Ψ̃n

∥∥∥
∑

i

(
Yi ĝn(Yi) − φ(Zi)

)
fmn(Xi)

∥∥∥2
6

∥∥∥
∑

i

(
Yi ĝn(Yi) − (Πkn

ψ)(Zi)
)

fmn(Xi)
∥∥∥2)

6 P

(
min
φ∈Ψ̃n

‖K(φ − ψ)‖2X 6 ‖K(Πkn
ψ − ψ)‖2X +Op(̃rn)

)

which goes to zero for all n > 1 as ε → ∞. This shows ‖K(ψ̂n −Πkn
ψ)‖X = Op(̃rn) and thus

proves the result. �
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For the following proofs, recall the notation Ân =
(
Zt

kn
XmnQ̂−1

n Xt
mn

Zkn
/n

)−1
Zt

kn
XmnQ̂−1

n

and An = (Kt
nKn)−1Kt

n where Kn = E[ fmn(X)pkn
(Z)t].

Proof of Theorem 4.2. Observe that the sieve variance Wn(z) is bounded from below.
Indeed, from the conditionVar(Yg(Y) − ψ(Z)|X) > C we infer

Wn(z) > pkn
(z)tAn E

[
fmn(X)Var(Yg(Y) − ψ(Z)|X) fmn(X)t

]
At

npkn
(z)

> C pkn
(z)t

(
Kt

nKn

)−1
pkn

(z),

which we use in the following. Then, we make use of the decomposition

ψ̂n(z) − ψ(z) = pkn
(z)tn−1Ân

∑

i

fmn(Xi)
(
Yig(Yi) − ψ(Zi)

)

+ pkn
(z)tn−1Ân

∑

i

fmn(Xi)Yi

(
ĝn(Yi) − Ekn

g(Yi)
)

+ pkn
(z)tn−1Ân

∑

i

fmn(Xi)Yi

(
Ekn

g(Yi) − g(Yi)
)

+ pkn
(z)tn−1Ân

∑

i

fmn(Xi)ψ(Zi) − ψ(z)

= In + IIn + IIIn + IVn (say). (A.9)

Consider In. We observe

√
n/Wn(z) In =

∑

i

(
nWn(z)

)−1/2
pkn

(z)tAn fmn(Xi)
(
Yig(Yi) − ψ(Zi)

)
+ op(1)

=
∑

i

sin + op(1).

Again, sin, 1 6 i 6 n satisfy the Lindeberg condition which can be seen as follows. It

holds E[sin] = 0 and n E[s2
in

] = 1. From Assumption 5 (iv) we infer ‖TY
n

(
Tt

nTn

)−1
Tt

n‖ 6
C‖Tn

(
Tt

nTn

)−1
Tt

n‖ = C and due to E |Yg(Y) − ψ(X)|4 6 C we observe

∑

i

E[s2
in ✶{|sin|>ε}] 6 nε2 E |sin/ε|4 6 Cn−1ε−2m2

n = o(1).

Consider IIn. We have
√

nIIn =
√

n pkn
(z)tAnTY

n (β̂kn
− βkn

) + op(1)

= n−1/2
∑

i

pkn
(z)tAnTY

n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)
+ op(1)

and, further

E
∣∣∣∣n−1/2

∑

i

pkn
(z)tAnTY

n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)∣∣∣∣
2

6 pkn
(z)tAnTY

n

(
Tt

nTn

)−1(
AnTY

n

)t
pkn

(z)

= o
(
Wn(z)

)
,
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by the second part of assumption (4.6), which yields
√

nIIn = op

(√
Wn(z)

)
. Consider IIIn.

We have

E
∣∣∣∣ pkn

(z)tAnn−1/2
∑

i

fmn(Xi)Yi

(
Ekn

g(Yi) − g(Yi)
)∣∣∣∣

2

6 E
∣∣∣∣ pkn

(z)tAn fmn(X)Y
(
Ekn

g(Y) − g(Y)
)∣∣∣∣

2
+ n

(
E pkn

(z)tAn fmn(X)Y
(
Ekn

g(Y) − g(Y)
))2

6 ‖Ekn
g − g‖2∞

∥∥∥
(
Kt

nKn

)−1∥∥∥ ‖pkn
(z)‖2 + n

(
pkn

(z)tAn E
[

fmn(X)TMid(Ekn
g − g)(X)

])2
,

using that E[Y2|X] 6 C. Thus, by the first part of assumption (4.6) we obtain
√

nIIIn =

op

(√
Wn(z)

)
. Finally,

√
nIVn = op

(√
Wn(z)

)
follows from condition

√
n(Πkn

ψ − ψ)(z) =

o
(√
Wn(z)

)
, which completes the proof of the first statement in the theorem. Finally, by

Lemma A.2 below we see that the asymptotic distribution result remains valid if we replace
Wn(z) by its estimator, which completes the proof. �

LemmaA.2. Let Assumptions 1 – 5, 6 (i)-(ii), 7 (ii), (iii) and 9 – 11 be satisfied. Moreover, assume

that: Y is bounded, k2
n = o

(
n min(τkn

, κ2
kn

)
)
, τkn

k
1−β
n = o(κkn

) and mn log kn = o(nκkn
). Then, we

have

Wn(z)−1Ŵn(z) = 1 + op(1)

uniformly in z ∈ Z.

Proof. In this proof, we use the notation Σ
ψ
n = E

[
fmn(X)Var(Yg(Y) − ψ(Z)|X) fmn(X)t

]
, Σ̂

ψ
n =

n−1
∑

i fmn(Xi) fmn(Xi)
t
(
Yi ĝn(Yi)− ψ̂n(Zi)

)2
and Σ̃

ψ
n = n−1

∑
i fmn(Xi) fmn(Xi)

t
(
Yi g(Yi)−ψ(Xi)

)2
.

Moreover, let

ηn,3 =

√
mn log(kn)

nκkn

,

ĥ(z)t = (Wn(z))−1/2pkn
(z)tÂn, h(z)t = (Wn(z))−1/2pkn

(z)tAn. Hence, Wn(z)̂h(z)tΣ̂
ψ
n ĥ(z) =

Ŵn(z) and by noticing that h(z)tΣ
ψ
n h(z) = 1, the triangle inequality gives

∣∣∣∣(Wn(z))−1/2Ŵn(z)(Wn(z))−1/2 − 1
∣∣∣∣ 6

∣∣∣∣̂h(z)t(Σ̂
ψ
n − Σ̃

ψ
n )̂h(z)

∣∣∣∣ +
∣∣∣∣̂h(z)t(Σ̃

ψ
n − Σ

ψ
n )̂h(z)

∣∣∣∣

+

∣∣∣∣̂h(z)tΣ
ψ
n ĥ(z) − h(z)tΣ

ψ
n h(z)

∣∣∣∣ . (A.10)

Remark that, under Assumptions 4 (ii) – (iii) , 9 (i) – (ii) and 11 (i): supz∈Z ‖̂h(z) − h(z)‖ =
Op(ηn,3) and ‖̂h(z)‖ = Op(1) by using the fact that

‖(Wn(z))−1/2pkn
(z)t(Ân − An)‖ = ‖(Wn(z))−1/2pkn

(z)tAnKn(Ân − An)‖

6 C−1‖Kn(Ân − An)‖ = Op(ηn,3)

where we have used AnKn = Ikn
. Moreover, under the same assumptions, the Rudelson’s

inequality (see e.g. Belloni et al. [2015]) implies that ‖Σ̃ψn − Σ
ψ
n ‖ = Op

(√
mn log mn/n

)
.
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Therefore, we can show similarly as in Newey [1997] page 165 – 166 that:

sup
z∈Z

∣∣∣∣̂h(z)tΣ
ψ
n ĥ(z) − h(z)tΣ

ψ
n h(z)

∣∣∣∣ = Op(ηn,3)

and sup
z∈Z

∣∣∣∣̂h(z)t(Σ̃
ψ
n − Σ

ψ
n )̂h(z)

∣∣∣∣ = Op




√
mn log mn

n


 . (A.11)

Moreover, we denote in the following Ŝ
ψ
n = n−1

∑
i fmn(Xi) fmn(Xi)

t
∣∣∣∣
(
Yi g(Yi) − ψ(Zi)

)∣∣∣∣, S
ψ
n =

E[ fmn(X) fmn(X)t
∣∣∣∣
(
Yi g(Yi) − ψ(Zi)

)∣∣∣∣], Dĝn
(·) = ĝn(·)− g(·) and D

ψ̂n
(·) = ψ̂n(·)−ψ(·) and remark

that ‖Ŝψn − S
ψ
n ‖ = Op(

√
mn log mn/n) under Assumption 11 (i). Hence,

sup
z∈Z

∣∣∣∣̂h(z)t(Σ̂
ψ
n − Σ̃

ψ
n )̂h(z)

∣∣∣∣ =

sup
z∈Z

∣∣∣∣∣∣∣
n−1

n∑

i=1

(̂
h(z)t fmn(Xi)

)2 ((
Yi ĝn(Yi) − ψ̂n(Zi)

)2 −
(
Yi g(Yi) − ψ(Zi)

)2)
∣∣∣∣∣∣∣

6 sup
z∈Z

∣∣∣∣∣∣∣
n−1

n∑

i=1

(̂
h(z)t fmn(Xi)

)2
(YiDĝn

(Yi) −D
ψ̂n

(Zi))
2

∣∣∣∣∣∣∣

+ 2 sup
z∈Z

∣∣∣∣∣∣∣
n−1

n∑

i=1

(̂
h(z)t fmn(Xi)

)2 (
Yi g(Yi) − ψ(Zi)

)(
YiDĝn

(Yi) −D
ψ̂n

(Zi)
)
∣∣∣∣∣∣∣

6 2
(
‖MidDĝn

‖2∞ + ‖Dψ̂
‖2∞

)
sup
z∈Z

∣∣∣∣̂h(z)tQ̂−1
n ĥ(z)

∣∣∣∣

+ 2
(
‖MidDĝn

‖∞ + ‖Dψ̂
‖∞

)
sup
z∈Z

∣∣∣∣̂h(z)t(Ŝn − Sn)̂h(z) + ĥ(z)tSn̂h(z)
∣∣∣∣

= Op

(
(ηn,4 + ηn,5)(ηn,3 + 1)(

√
mn log mn/n + 1)

)

+Op

(
(ηn,4 + ηn,5)1/2(ηn,3 + 1)(

√
mn log mn/n + 1)

)
= Op

(
(ηn,4 + ηn,5)1/2

)
(A.12)

where ηn,4 = max
(
k2

n/(nτkn
), k
−2β
n

)
, ‖MidDĝn

‖2∞ = Op
(
ηn,4

)
,

ηn,5 = max

(
k
−2γ/dz
n ,

k2
n

nκkn

, k
1−β
n τkn

/κkn

)

and ‖D
ψ̂n
‖2∞ = Op

(
ηn,5

)
which converge to zero under the assumptions of the lemma. To

see this, remark that knκ
−1
kn
‖T(Ekn

g− g)‖2
X
= O(k

1−β
n τkn

/κkn
). Then, by (A.10)–(A.12) the result

of the lemma follows. �
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B. Supplementary Material: A Model Specification Test

Our estimation procedure crucially relies on the conditional independence between se-
lection and covariates given potential outcomes (see Assumption 1). Hence, it would be
desirable to test the validity of this assumption before conducting the estimation proce-
dure. An attractive feature of Assumption 1 is that it is indeed testable (cf. Theorem
2.4 in D’Haultfoeuille [2010]) under a maintained completeness assumption of the dis-
tribution of Y∗ conditional on X. In this section we construct a test for this assumption.
As seen in Section 2, given Assumptions 2 and 3, Assumption 1 is equivalent to the op-
erator equation Tg = 1. Let us consider a reasonable class of functions for g namely

F =
{
φ ∈ G : φ(·) > 1 and ‖φ − Ekn

φ‖Y 6 Ck
−β
n for any n > 1

}
for some β > 0. The null hy-

pothesis under consideration is

H0 : there exists a function g ∈ F such that Tg = 1.

The test statistic. Our testing procedure is based on the criterion in (3.2). We verify
whether

∑n
i=1 χ̂

2
n(Xi, ĝn) does not become too large, which is the case if the true inverse

conditional probability function g does not satisfy the minimal smoothness conditions
imposed by H0. By reformulating the quantity

∑n
i=1 χ̂

2
n(Xi, ĝn) we obtain our test statistic

Sn =
( n∑

i=1

(ĝn(Yi)∆i − 1) fmn(Xi)
)t

(Xt
mn

Xmn)−
( n∑

i=1

(ĝn(Yi)∆i − 1) fmn(Xi)
)

(B.1)

where the dimension mn coincides with the second step dimension used for the estimator
ϕ̂n. Our testing procedure builds on Breunig [2015a]. Also related is the test proposed
by Donald et al. [2003] but who consider a parametric function under the maintained
hypothesis. However, as we consider a constraint estimation procedure we cannot apply
the method of Breunig [2015a] directly. A constraint sieve testing procedure was proposed
by Breunig [2015b] but for the specific situation of quantile versions of instrumental variable
models. In addition, note that in these two papers the basis functions used to construct the
test statistics are assumed to be orthonormal, which is not required in the following.

Asymptotic distribution of the statistic. Our test statistic Sn is asymptotically normally
distributed if it is standardized by appropriate mean and variance, which are introduced
in the next definition.

Definition B.1. Let us introduce the matrix

Σmn = E
[(

g(Y)∆ − 1
)2

Q−1/2
n fmn(X) fmn(X)tQ−1/2

n

]

Then the trace and the Frobenius norm of Σmn are respectively denoted by µmn and ςmn .

Assumption 13. There exist constants c,C > 0 such that Var(g(Y)∆|X) > c and E[(g(Y)∆ −
1)4|X] 6 C.

Due to Assumption 13 it holds ςmn > C
√

mn for some constant C > 0. The next result
establishes asymptotic normality of Sn after standardization.

Theorem B.1. Let Assumptions 2–6 and 13 be satisfied. If

m3
n = o(n), knm2

n = O(nτkn
), and max

(
kn,nτkn

k
−2β
n

)
= o(
√

mn) (B.2)
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then it holds under H0

(
√

2ςmn)−1
(
nSn − µmn

)
d→N(0, 1).

Estimation of Critical Values. For the estimation of the critical values of Theorem B.1,

let us define Un =
(
∆1 ĝn(Y1) − 1, . . . ,∆n ĝn(Yn) − 1

)t
. We estimate the matrix Σmn by

Σ̂mn ≡ (Xt
mn

Xmn)−1/2Xt
mn

diag(Un)2 Xmn(Xt
mn

Xmn)−1/2. The asymptotic result of Theorem B.1

continues to hold if we replace ςmn by the Frobenius norm of Σ̂mn , denoted by ς̂mn , and µmn

by the trace of Σ̂mn , denoted by µ̂mn .

Theorem B.2. Let the assumptions of Theorem B.1 be satisfied. Then it holds under H0

(
√

2ς̂mn)−1
(
nSn − µ̂mn

)
d→N(0, 1).

Limiting behavior under local alternatives. In the following, we study the power of
the test, that is, the probability to reject a false hypothesis against a sequence of linear local
alternatives that tends to zero as the sample size tends to infinity. We consider alternative
models defined through a sequence of functions gn that satisfy

‖Tgn − 1 −m1/4
n n−1/2δ‖X = o(m1/4

n n−1/2) (B.3)

for some function δ ∈ L4
X

. Due to (B.3), for any n > 1 the function gn does not satisfy Tgn = 1.
For our analysis of local alternatives we follow Hong and White [1995] and assume that the
model approaches the data generating process rather than vice versa. Indeed, the sequence
of alternative models converges to the model with Tg = 1, that is, Assumption 1 holds in
the limit. The next result is a direct consequence of Proposition 2.4 of Breunig [2015b] and
thus, its proof is omitted.

Proposition B.3. Let Assumptions 2–6, 13, and the rate condition (B.2) be satisfied. Then, under
(B.3) we have

(
√

2ς̂mn)−1
(
n Sn − µ̂mn

)
d→N

(
2−1/2

∞∑

j=1

(
E[δ(X) f j(X)]

)2
, 1

)
.

Monte Carlo Simulations Let us now study the finite sample behavior of our nonpara-
metric specification test. There are 1000 Monte Carlo replications in each experiment and
the sample size is n = 1000. Results are presented for the nominal level 0.05. We generate
Y∗ and X as described in the exogenous case of Section 5. We construct the observations
of ∆ via the function h(y) = (10y + 7/2)−1 + 5/7 for y ∈ [0, 1]. Note that the normalization
constant for h ensures that h(0) = 1. If H0 holds true we generate ∆ ∼ Binomial(1, h(Y∗)).

In the experiments where H0 fails, X is not a valid instrument in the sense that it
influences the endogenous selection. In this case, we generate realizations of ∆ from

∆ ∼ Binomial
(
1,min(1, (1 − ν)h(Y∗) + νρ j(X))

)

for some constant ν > 0 and where j = 1, 2, 3 is varied in the experiments. We consider
the functions ρ1(x) = 1 − (2x − 1)2/6, ρ2(x) = 1 − (2x − 1)2/4, and ρ3(x) = 1 − (2x − 1)2/2.
Clearly, if ν = 0 then the null hypothesis H0 is true. We estimate the regression function ϕ
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Model Empirical rejection probabilities

ρ ν (
√

2ς̂mn)−1(nSn − µ̂mn)

H0 true 0.037

ρ1 0.5 0.139

0.7 0.235

0.9 0.569

ρ2 0.5 0.137

0.7 0.369

0.9 0.754

ρ3 0.5 0.425

0.7 0.793

0.9 0.951

Table 2: Empirical rejection probabilities for the nonparametric specification test under the
nominal level 0.05.

by ϕ̂n as given in (3.4) and implement it as described in Section 5, that is, we use B-splines
as basis functions of order 3 with 4 knots (hence kn = 8) and for the criterion function we
use B-splines of order 3 with 6 knots (hence mn = 10). In Table (B), we report the empirical
rejection probabilities of our test statistic with significance level 0.05. The critical values of
these statistics are estimated as described in Theorem B.2. We see from this table that our
test becomes more powerful as the parameter ν increases.

B.1. Proofs of the Appendix B.

Proof of Theorem B.1. Since we have ‖Q̂n − Imn‖2 = op(m2
n/n) it is sufficient to prove that

(
√

2ςmn)−1
(∑mn

j=1
|n−1/2

∑
i(∆i ĝn(Yi)− 1) f j(Xi)|2 − µmn

)
d→N(0, 1). The proof of this statement

is based on the decomposition

mn∑

j=1

|n−1
∑

i

(∆i ĝn(Yi) − 1) f j(Xi)|2 =
mn∑

j=1

∣∣∣n−1
∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

∣∣∣2

− 2

n2

mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)(∑

i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

)

+

mn∑

j=1

∣∣∣n−1
∑

i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

∣∣∣2 = In − 2IIn + IIIn. (B.4)

Consider In. We calculate

ς−1
mn

(
nIn − µmn

)
=

1

ςmnn

∑

i

mn∑

j=1

(∣∣∣
(
∆ig(Yi) − 1

)
f j(Xi)

∣∣∣2 − E
[(
∆g(Y) − 1

)2
f 2
j (X)

])

+
1

ςmnn

∑

i,i′

mn∑

j=1

(
∆ig(Yi) − 1

)(
∆i′g(Yi′) − 1

)
f j(Xi) f j(Xi′)
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where the first summand tends in probability to zero as n→∞. Indeed,we have

E
∣∣∣∣

1

ςmnn

∑

i

mn∑

j=1

(∣∣∣
(
∆ig(Yi) − 1

)
f j(Xi)

∣∣∣2 − E
[(
∆g(Y) − 1

)2
f 2
j (X)

])∣∣∣∣
2

6
1

ς2
mn

n
E
∣∣∣∣

mn∑

j=1

∣∣∣
(
∆g(Y) − 1

)
f j(X)

∣∣∣2 − E
[(
∆g(Y) − 1

)2
f 2
j (X)

]∣∣∣∣
2

6
1

ς2
mn

n
sup
x∈X
‖ fmn(x)‖4 E

∣∣∣∆g(Y) − 1
∣∣∣4

6
Cm2

n

ς2
mn

n
= o(1).

Therefore, to establish (
√

2ςmn)−1(nIn − µmn)
d→N(0, 1) it is sufficient to show

√
2

ςmnn

∑

i,i′

mn∑

j=1

(
∆ig(Yi) − 1

)(
∆i′g(Yi′) − 1

)
f j(Xi) f j(Xi′)

d→N(0, 1).

This follows from Lemma A.2 of Breunig [2015a].
Consider IIn. We observe

nIIn =

mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑

i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

)

=

mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑

i

∆i

(
ĝn(Yi) − Ekn

g(Yi)
)

f j(Xi)
)

+

mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑

i

∆i

(
Ekn

gn(Yi) − g(Yi)
)

f j(Xi)
)

= Cn1 + Cn2.

Consider Cn1. We have

Cn1 =‖Diag(τ1, . . . , τkn
)1/2(β̂kn

− βkn
)‖

×
mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)
‖Diag(τ1, . . . , τkn

)−1/2 E[∆ekn
(Y) f j(X)]‖ + op(1).

Using

E
∣∣∣∣

mn∑

j=1

(∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

)
‖Diag(τ1, . . . , τkn

)−1/2 E[∆ekn
(Y) f j(X)]‖

∣∣∣∣
2

6 n

mn∑

j=1

E
[(

(∆g(Y) − 1) f j(X)
)2]
‖Diag(τ1, . . . , τkn

)−1/2 E[∆ekn
(Y) f j(X)]‖2

6 Cn‖Diag(τ1, . . . , τkn
)−1/2 E[∆ekn

(Y) fmn(X)t]‖2.
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Since ‖Diag(τ1, . . . , τkn
)−1/2 E[∆ekn

(Y) fmn(X)t]‖2 = O(kn) it holds

Cn1 = ‖Diag(τ1, . . . , τkn
)1/2(β̂kn

− βkn
)‖Op(

√
knn) = Op(kn) = op(

√
mn).

Further, we have

E |Cn2| 6
mn∑

j=1

√
E |(Ekn

g − g)(Y) f j(X)|2
√

E
∣∣∣(∆ig(Y) − 1) f j(X)

∣∣∣2

+ Cn1/2 E
∣∣∣

mn∑

j=1

〈T(Ekn
g − g), f j〉X f j(X)

∣∣∣

6 C
(
mn‖Ekn

g − g‖∞ +
√

n‖T(Ekn
g − g)‖X

)

= O(mnk
1/2−β
n +

√
nτkn

k
−β
n ) = o(

√
mn)

where we used that mnk
1−2β
n = o(1). Consider IIIn. It holds true that

IIIn 6 Cn‖(β̂kn
− βkn

)t E[∆ekn
(Y) fmn(X)t]‖2

+ Cn‖T(Ekn
g − g)‖2X

)

= Op

(
kn + nτkn

k
−2β
n

)

= op(
√

mn)

which completes the proof of the first result in the theorem. �

Proof of Theorem B.2. Remark that (
√

2ς̂mn)−1
(
nSn − µ̂mn

)
= (
√

2ςmn)−1
(
nSn − µmn

)
ςmn

ς̂mn
+

(
√

2ςmn)−1 (
µmn − µ̂mn

) ςmn

ς̂mn
. The statement of the theorem follows from the results of Theo-

rem B.1, Lemma B.4 and Lemma B.5. �

Lemma B.4. Let Assumptions 1 – 6 be satisfied. Then,

ς−1
mn
ς̂mn = 1 + op(1)

where ςmn and ς̂mn are as defined in Theorem B.1.

Proof. Let ‖·‖F denote the Frobenius norm of a matrix. Then ςmn = ‖Σmn‖F and ς̂mn = ‖Σ̂mn‖F.

Let us denote Σ̃mn = n−1
∑

i fmn(Xi) fmn(Xi)
t(Ekn

g(Yi)∆i − 1)2. Observe that

‖Σ̂mn − Σ̃mn‖2F
=

∥∥∥∥n−1
∑

i

fmn(Xi) fmn(Xi)
t
[
|(ĝn − Ekn

g)(Yi)|2∆i + 2(Ekn
g(Yi)∆i − 1)∆i(ĝn − Ekn

g)(Yi)
]∥∥∥∥

2

F

6 2
∥∥∥∥n−1

∑

i

fmn(Xi) fmn(Xi)
t|(ĝn − Ekn

g)(Yi)|2∆i

∥∥∥∥
2

F

+ 2
∥∥∥∥n−1

∑

i

fmn(Xi) fmn(Xi)
t(Ekn

g(Yi)∆i − 1)∆i(ĝn − Ekn
g)(Yi)

∥∥∥∥
2

F

= 2In + 2IIn.
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We further calculate

In 6

∥∥∥∥
1

n

∑

i

∆i(β̂kn
− βkn

)tekn
(Yi) fmn(Xi) fmn(Xi)

tekn
(Yi)

t|(β̂kn
− βkn

)
∥∥∥∥

2

F

6

∥∥∥∥(β̂kn
− βkn

)t E[∆ekn
(Y) fmn(X) fmn(X)tekn

(Y)t](β̂kn
− βkn

)
∥∥∥∥

2

F
+ op(1)

6 ‖β̂kn
− βkn

‖4
mn∑

j,l=1

E[‖∆ekn
(Y)‖2| f j(X) fl(X)|]2 + op(1)

6 Cm2
n‖β̂kn

− βkn
‖4 E

(
‖∆ekn

(Y)‖2
)2
+ op(1)

= Op

(
m2

nk4
n/(τkn

n)2
)
= op(1)

by using kn = o(
√

mn). Similarly, we conclude

IIn 6

∥∥∥∥
1

n

∑

i

(Ekn
g(Yi)∆i − 1) fmn(Xi) fmn(Xi)

tekn
(Yi)

t|(β̂kn
− βkn

)
∥∥∥∥

2

F

6

∥∥∥∥ E[(Ekn
g(Y)∆ − 1)∆ fmn(X) fmn(X)tekn

(Y)t](β̂kn
− βkn

)
∥∥∥∥

2

F
+ op(1)

6 ‖β̂kn
− βkn

‖2
mn∑

j,l=1

kn∑

l′=1

(
E[(Ekn

g(Y)∆ − 1)∆el′(Y) f j(X) fl(X)]
)2
+ op(1)

= ‖β̂kn
− βkn

‖2
mn∑

j=1

kn∑

l′=1

‖FmnT((Ekn
g − 1) · el′) · f j‖2X + op(1)

= Op

(
mnk2

n/(τkn
n)

)
= op(1)

by using kn = o(
√

mn). Next,

E ‖Σ̃mn − Σmn‖2F =
mn∑

j,l=1

E




1

n

∑

i

(
f j(Xi) fl(Xi)(Ekn

g(Yi)∆i − 1)2 − E
[

f j(X) fl(X)(g(Y)∆ − 1)2
])

2

6
1

n

mn∑

j,l=1

E
[

f 2
j (X) f 2

l (X)(Ekn
g(Y)∆ − 1)4

]
+

mn∑

j,l=1

(
E
[

f j(X) fl(X)∆(Ekn
g(Y) − g(Y))2

] )2

6 C
m2

n

n
+

mn∑

j=1

‖FmnT(Ekn
g − g) · f j‖2X = O(m2

nn−1 +mnk
1−2β
n ) = o(1)

Finally, by these results and the reverse triangle inequality we conclude that

∣∣∣ς−1
mn
ς̂mn − 1

∣∣∣ = ς−1
mn

∣∣∣∣‖Σ̂mn‖F − ‖Σmn‖F
∣∣∣∣ 6 ς−1

mn
‖Σ̂mn − Σ̃mn‖F + ς−1

mn
‖Σ̃mn − Σmn‖F = op(1)

which proves the result. �

Lemma B.5. Let Assumptions 1–6 be satisfied. Then,

µ̂mn = µmn + op(ςmn)

where µmn and µ̂mn are as defined in Theorem B.1.
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Proof. The proof of Lemma B.4 establishes ‖Σ̂mn −Σmn‖F = op(1). In particular, convergence

of the trace of Σ̂mn to the trace of Σmn follows by using |̂µmn − µmn | 6
√

mn ‖Σ̂mn − Σmn‖F =
op(ςmn). �

C. Supplementary Material: Proofs of Theorems 3.4 and 4.3

In this appendix we present the proofs of Theorems 3.4 and 4.3. The construction of
these proofs follows the proof of Chen and Christensen [2015a, Theorem B.1] with minor
modifications. In order to make the paper self-contained we report here the main steps
and refer to Chen and Christensen [2015a] for the full description of the proof strategy.
The modifications with respect to the proof of Chen and Christensen [2015a] are due to the
fact that we are estimating a different model and the type of estimator is different, that is,
two-step instead of one step.

Proof of Theorem 3.4. The proof is made of four steps and we use all along the proof
the inequality V1,n(x) > c ‖ fmn(x)‖2 which is valid under Assumption 7 (i). Let Dn =

{(∆1,Y1,X1), . . . , (∆n,Yn,Xn)}.
Step 1. We start by showing that

√
n/V̂1n(x)

(
ϕ̂n(x)−ϕ(x)

)
can be uniformly approximated

by the process

X̂n(x) =
fmn(x)t

√
V1n(x)

1√
n

∑

i

fmn(Xi)(Yig(Yi) − ϕ(Xi)).

From the decomposition (A.3) we can write

∣∣∣∣∣∣

√
n/V̂1n(x)

(
ϕ̂n(x) − ϕ(x)

)
− X̂n(x)

∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣

√
nIn√
V1n(x)

− X̂n(x)

∣∣∣∣∣∣∣

+

√
n|In|√
V1n(x)

∣∣∣∣∣∣∣∣∣

√
V1n(x)

√
V̂1n(x)

− 1

∣∣∣∣∣∣∣∣∣
+

√
n |IIn + IIIn + IVn|√

V̂1n(x)

= In,1(x) + In,2(x) + In,3(x) (say) (C.1)

Because, under Assumption 4 (i)-(iii), ‖Q̂−1
n − Imn‖ = Op(

√
mn log(mn)/n) by the Rudel-

son’s inequality and ‖∑i fmn(Xi)(Yig(Yi) − ϕ(Xi))/
√

n‖ = Op(
√

mn), then supx∈X In,1(x) =

Op(mn

√
log(mn)/n).

Next, we consider term In,2(x). Lemma A.1 implies that supx∈X

∣∣∣∣∣
√
V1n(x)√
V̂1n(x)

− 1

∣∣∣∣∣ = Op(ηn),
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where ηn = max
(
kn/(τkn

n)1/2, k
−β
n

)
+max

(
m−α/dx

n , mn√
n
,
√

mn‖T(Ekn
g − g)‖X

)
. Therefore,

sup
x∈X
In,2(x) = sup

x∈X
In,1(x)

∣∣∣∣∣∣∣∣∣

√
V1n(x)

√
V̂1n(x)

− 1

∣∣∣∣∣∣∣∣∣
+ sup

x∈X
|X̂n(x)|

∣∣∣∣∣∣∣∣∣

√
V1n(x)

√
V̂1n(x)

− 1

∣∣∣∣∣∣∣∣∣

= Op(ηn)

(
Op(mn

√
log(mn)/n) + sup

x∈X
|X̂n(x) −Xn(x)| + sup

x∈X
|Xn(x)|

)

= Op(ηn)

(
Op(mn

√
log(mn)/n) + op(rn) + sup

x∈X
|Xn(x)|

)

= Op(ηn)
(
op(rn) +Op(cn)

)
. (C.2)

where the third equality is due to step 2 below and the last equality is because of the

condition m3/2
n /(r3

n

√
n) = o(1) and by Chen and Christensen [2015a, LemmaD.7], which is

valid under Assumptions 4 (i), 7 (i) and 8 (i) - (ii) and which implies supx∈X |Xn(x)| = Op(cn).

Finally, let us analyze the three terms inIn,3(x) separately. By denoting T̂Y
n =

∑n
i=1 fmn(Xi)Yiekn

(Yi)
t/n

we have

sup
x∈X

√
n |IIn|√
V1n(x)

= sup
x∈X

√
n
∣∣∣∣ fm(x)t(Q̂−1

n − Imn)T̂Y
n (β̂kn

− E[g(Y)ekn
(Y)])

∣∣∣∣
√
V1n(x)

+ sup
x∈X

√
n
∣∣∣∣ fm(x)t(T̂Y

n − TY
n )(β̂kn

− E[g(Y)ekn
(Y)])

∣∣∣∣
√
V1n(x)

+ sup
x∈X

√
n
∣∣∣∣ fm(x)tTY

n (β̂kn
− βkn

)
∣∣∣∣

√
V1n(x)

+sup
x∈X

√
n
∣∣∣∣ fm(x)tTY

n (Tt
nTn)−1Tt

n E[ fmn(X)∆(g(Y) − Ekn
g(Y))]

∣∣∣∣
√
V1n(x)

= A1+A2+A3+A4 (say).

(C.3)

TermsAi, i = 1, 2, 4 are easily controlled by using the Cauchy Schwartz-inequality so that:

A1 = Op(
√

mn log(mn)/n(
√

mn log(kn)/n max{ √mn, ξn}/τkn
+

√
mn/τkn

+

√
kn/(mnτkn

)
√

n‖T(g − Ekn
g)‖X),

A2 = Op(
√

mnkn/n(
√

mn log(kn)/n max{ √mn, ξn}/τkn
+

√
mn/τkn

+
√

n/τkn
‖T(g − Ekn

g)‖X)),

A4 = Op(
√

kn/(mnτkn
)
√

n‖T(g − Ekn
g)‖X)

where, to get A4, we have used the same argument as in (A.4) and the assumption

supx∈X ‖ fmn(x)tTY
n ‖/‖

√
V1n(x)‖ 6 C

√
kn/mn. TermA3 can be decomposed as

A3 = sup
x∈X

∣∣∣∣ fm(x)tTY
n [(T̂t

nQ̂−1
n T̂n)−1T̂t

nQ̂−1
n − (Tt

nTn)−1Tt
n]

∑
i fmn(Xi)/

√
n
∣∣∣∣

√
V1n(x)

+ sup
x∈X

∣∣∣∣ fm(x)tTY
n (Tt

nTn)−1Tt
n

∑
i( fmn(Xi) − E[ fmn(X)])/

√
n
∣∣∣∣

√
V1n(x)

= A3,1 +A3,2
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where A3,1 = Op(
√

kn/mn max{ √mn, ξn}τ−1
kn

√
mn log kn/n). To control term A3,2, let s(x)t =

fmn(x)tTY
n

(
Tt

nTn

)−1
Tt

n/‖ fmn(x)tTY
n

(
Tt

nTn

)−1
Tt

n‖ then

E sup
x∈X

∣∣∣∣n−1/2
∑

i

fmn(x)tTY
n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)∣∣∣∣
2

= sup
x∈X
‖ fmn(x)tTY

n

(
Tt

nTn

)−1
Tt

n‖2 E
∣∣∣∣n−1/2

∑

i

s(x)t
(

fmn(Xi) − E[ fmn(X)]
)∣∣∣∣

2

6 sup
x∈X
‖ fmn(x)tTY

n ‖2
∥∥∥
(
Tt

nTn

)−1∥∥∥ E max
‖a‖=1

∣∣∣at fmn(X)
∣∣∣2

6 Cτ−1
kn

kn∑

l=1

sup
x∈X

∣∣∣∣
mn∑

j=1

f j(x) E
[
Yel(Y) f j(X)

]∣∣∣∣
2

6 Cknτ
−1
kn

max
16l6kn

sup
x∈X

∣∣∣∣(Fmnνl)(x)
∣∣∣∣
2

where νl(x) = E[Yel(Y)|X = x]. Thus, A3,2 = Op

(√
kn/(τkn

infxV1n(x))
)
= Op(

√
kn/(τkn

mn))

where the second equality holds under the assumption supx∈X ‖ fmn(x)tTY
n ‖/‖

√
V1n(x)‖ =

Op(
√

kn/mn).
Finally, under Assumption 6 (i) we get

sup
x∈X

√
n |IIIn|√
V1n(x)

= Op

(√
mnk

−β
n +

√
n‖T(Ekn

g − g)‖X
)
= Op

(
(
√

mn +
√

nτkn
)k
−β
n

)

and

sup
x∈X

√
n |IVn|√
V1n(x)

= Op

(√
nmn‖ϕ − Fmnϕ‖X +

√
n

∥∥∥∥∥∥
ϕ − Fmnϕ√
V1n

∥∥∥∥∥∥∞

)
.

By using the assumptions kn = o(τkmn), m2
n/n = o(1), kn 6 mn and by eliminating the

negligible rates, we can simplify the rate as

sup
x∈X

∣∣∣∣∣∣

√
n/V̂1n(x)

(
ϕ̂n(x) − ϕ(x)

)
− X̂n(x)

∣∣∣∣∣∣ = Op

( mn√
n

√
max{log(mn), kn}

τkn

+ ηncn

+

√
kn

τkn
mn
+ (
√

mn +
√

nτkn
)k
−β
n + b1,n + b2,n

)
= op(c−1

n ) (C.4)

by using:
√

nmn‖ϕ − Fmnϕ‖X = O(b2,n) and Assumption 8 (iii)-(iv) in the final line.
Step 2. Let Σn = E[ fmn(X) fmn(X)t(Yg(Y)−ϕ(X))2]. Because, under Assumptions 4 (ii) and 7
(i),

∑

i

E

∥∥∥∥∥∥
1√
n

fmn(Xi)(Yig(Yi) − ϕ(Xi))

∥∥∥∥∥∥
3

6
1√
n

m3/2
n C

then, by Pollard [2001, Theorem 10], if
m2

n
√

mn

r3
n

√
n
= o(1) for some sequence rn = o(1), there

exists a sequence ofN(0,Σn) random vectors Xn such that
∥∥∥∥∥∥∥

1√
n

∑

i

fmn(Xi)(Yig(Yi) − ϕ(Xi)) − Xn

∥∥∥∥∥∥∥
= op(rn). (C.5)
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Define the process Xn(x) = fmn(x)tXn/
√
V1n(x), which is a centered Gaussian process

with covariance function E[Xn(x1)Xn(x2)] = fmn(x1)tΣn fmn(x2)/
√
V1n(x1)V1n(x2). Hence,

by (C.5):

sup
x∈X

∣∣∣∣X̂n(x) −Xn(x)
∣∣∣∣ = op(rn). (C.6)

Step 3. In this step we approximate the bootstrap process by a Gaussian process. Let

Ui = Yig(Yi) − ϕ(Xi) and Ûi = Yi ĝ(Yi) − ϕ̂(Xi). Under the bootstrap distribution P∗ each

term fmn(Xi)Ûiεi/
√

n has mean zero ∀i = 1, . . . ,n. Moreover, define the matrix Σ̂n as

∑

i

E∗
[

1

n
fmn(Xi)Û2

i ε
2
i fmn(Xi)

t

∣∣∣∣∣ Dn

]
=

1

n

∑

i

fmn(Xi) fmn(Xi)
tÛ2

i = Σ̂n

where E∗[·|Dn] denotes the expectation under P∗. Since E∗[εi|Dn] < ∞ uniformly in i, we
have, under Assumptions 4 (ii) and 7 (i), for some generic constant C

∑

i

E∗



∥∥∥∥∥∥
1√
n

fmn(Xi)Ûiεi

∥∥∥∥∥∥
3
∣∣∣∣∣∣∣
Dn


 6 C

mn
√

mn√
n


‖ĝ − g‖3∞

1

n

∑

i

|Yi|3 + C + ‖ϕ̂ − ϕ‖3∞


 = O

(
mn
√

mn√
n

)

under the assumptions of the theorem. Then, an application of Pollard [2001, Theorem

10], conditional on the data, yields that, if
√

mnm2
n

r3
n

√
n
= o(1) with rn = o(1), then there exists a

sequence ofN(0, Σ̂n) random vectors X∗n such that
∥∥∥∥∥∥∥

1√
n

∑

i

fmn(Xi)Ûi − X∗n

∥∥∥∥∥∥∥
= op∗(rn) (C.7)

with probability approaching 1. Therefore,

sup
x∈X

∣∣∣∣∣∣∣∣∣
X
∗
n(x) −

fmn(x)tQ̂−1
n√

V̂1n(x)

X∗n

∣∣∣∣∣∣∣∣∣
= op∗(rn)

with probability approaching 1. Define a centered Gaussian process X̃n(·) under P∗ as

X̃n(x) =
fmn(x)t

√
V1n(x)

Σ
1/2
n Σ̂

−1/2
n X∗n

which has the same covariance function as Xn(x) (since Σ̂n is invertible with probability
one). By Lemma C.1 below we have:

sup
x∈X

∣∣∣∣∣∣∣∣∣

fmn(x)tQ̂−1
n√

V̂1n(x)

X∗n − X̃n(x)

∣∣∣∣∣∣∣∣∣
= op∗(c

−1
n )

with probability approaching one. This and the previous convergence imply that

sup
x∈X

∣∣∣X∗n(x) − X̃n(x)
∣∣∣ = op∗(rn) + op∗(c

−1
n ). (C.8)

Step 4. Given the results (C.4), (C.6) and (C.8), this last step proceeds exactly as Part 4 in
the proof of Theorem B.1 in Chen and Christensen [2015a] and thus we omit it. �
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Lemma C.1. Let Assumptions 1 – 5 and 7-8 be satisfied. Moreover, assume that Y is bounded.
Then,

sup
x∈X

∣∣∣∣∣∣∣∣∣

fmn(x)tQ̂−1
n√

V̂1n(x)

X∗n − X̃n(x)

∣∣∣∣∣∣∣∣∣
= op∗(c

−1
n )

with probability approaching one, where X∗n and X̃n(x) are as defined in the proof of Theorem 3.4.

Proof. The proof of this lemma follows the proof of Chen and Christensen [2015a, Lemma

D.8] and so we provide only the main parts where the two proofs differ. Let Σn and Σ̂ be
as defined in steps 2 and 3 of the proof of Theorem 3.4. We make the decomposition

sup
x∈X

∣∣∣∣∣∣∣∣∣

fmn(x)tQ̂−1
n√

V̂1n(x)

X∗n − X̃n(x)

∣∣∣∣∣∣∣∣∣
6 sup

x∈X

∣∣∣∣∣∣∣∣

fmn(x)t
(
Q̂−1

n − Σ1/2
n Σ̂

−1/2
n

)

√
V1n(x)

X∗n

∣∣∣∣∣∣∣∣
sup
x∈X

√
V1n(x)

√
V̂1n(x)

+ sup
x∈X

∣∣∣∣∣∣∣∣∣

√
V1n(x)

√
V̂1n(x)

− 1

∣∣∣∣∣∣∣∣∣
sup
x∈X

∣∣∣∣∣∣∣
fmn(x)t

√
V1n(x)

Σ
1/2
n Σ̂

−1/2
n X∗n

∣∣∣∣∣∣∣
= B1 +B2 (say). (C.9)

We start with the analysis of term B1. DenoteDn(x1, x2) the standard deviation semimetric

on X associated with the Gaussian process (under P∗)
fmn (x)t

(
Q̂−1

n −Σ1/2
n Σ̂

−1/2
n

)
√
V1n(x)

X∗n and defined as

Dn(x1, x2)2 = E∗[






fmn(x1)t

√
V1n(x1)

−
fmn(x2)t

√
V1n(x2)


 (Q̂−1

n − Σ1/2
n Σ̂

−1/2
n )X∗n




2

].

Therefore, Dn(x1, x2) 6 dn(x1, x2)‖(Q̂−1
n − Σ1/2

n Σ̂
−1/2
n )‖ and

‖(Q̂−1
n − Σ1/2

n Σ̂
−1/2
n )‖ 6 ‖Q̂−1

n − Imn‖ + ‖Σ̂1/2
n − Σ1/2

n ‖ ‖Σ̂−1/2
n ‖

6 ‖Q̂−1
n ‖ ‖Q̂n − Imn‖ + (λ1/2

min
(Σn) + λ1/2

min
(Σ̂n))−1‖Σ̂n − Σn‖

= Op(
√

mn log(mn)/n + ηn) (C.10)

where ηn is as defined in the proof of Theorem 3.4, to get the inequality in the second line we
have used Lemma E.3 in Chen and Christensen [2015a] and to get the rates in the last line

we have used: ‖Q̂n − Imn‖ = Op(
√

mn log(mn)/n) and ‖Σ̂n − Σn‖ = Op(
√

mn log(mn)/n + ηn),
obtained by using twice Theorem 1.6 in Tropp [2012]. By using similar arguments as
in the proof of Lemma D.8 in Chen and Christensen [2015a, page 37] we obtain that
B1 = Op∗(ηncn) = op∗(c

−1
n ) under Assumption 8 (iii) - (iv).

Next, let us consider term B2 which is the supremum of a Gaussian process with the
same distribution (under P∗) as Xn(x) (under the data distribution). Therefore, by ap-
plying Lemma A.1 and Chen and Christensen [2015a, LemmaD.7], which is valid under
Assumptions 4 (i), 7 (i) and 8 (i) - (ii), we obtain that B2 = Op(ηn)Op∗(cn). �

Proof of Theorem 4.3. The proof is made of four steps and we use all along the proof the

inequalityWn(x) > c ‖
(
Kt

nKn

)−1/2
pkn

(z)‖2 which is valid under Assumption 11 (i). As in the
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proof of Theorem 4.2, denote Ân =
(
Zt

kn
Xmn(Xt

mn
Xmn)−1 Xt

mn
Zkn
/n

)−1
Zt

kn
Xmn(Xt

mn
Xmn)−1 and

An = (Kt
nKn)−1Kt

n where Kn = E[ fmn(X)pkn
(Z)t]. Moreover, letDn = {(∆1,Y1,X1,Z1), . . . , (∆n,Yn,Xn,Zn)}.

Step 1. We start by showing that

√
n/Ŵn(z)

(
ψ̂n(z)−ψ(z)

)
can be uniformly approximated

by the process

Ẑn(z) =
pkn

(z)tAn
√
Wn(z)

1√
n

∑

i

fmn(Xi)(Yig(Yi) − ψ(Zi)).

Let In, IIn, IIIn, IVn be as defined in (A.9), then from the decomposition (A.9) we can write

∣∣∣∣∣∣

√
n/Ŵn(z)

(
ψ̂n(z) − ψ(z)

)
− Ẑn(z)

∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣

√
nIn√
Wn(z)

− Ẑn(z)

∣∣∣∣∣∣∣
+

∣∣∣√nIn

∣∣∣
√
Wn(z)

∣∣∣∣∣∣∣∣∣

√
Wn(z)

√
Ŵn(z)

− 1

∣∣∣∣∣∣∣∣∣

+
√

n
|IIn + IIIn + IVn|√

Ŵn(z)

= Tn,1(z) + Tn,2(z) + Tn,3(z) (say). (C.11)

Let us consider term Tn,1(z) and denote ηn,3 = mn

√
log kn/(nκkn

),

sup
z∈Z
Tn,1(z) 6 sup

z∈Z

‖pkn
(z)t(Ân − An)Q1/2

n ‖
√
Wn(z)

∥∥∥∥∥∥∥
Q−1/2

n√
n

n∑

i=1

fmn(Xi)(Yig(Yi) − ψ(Zi))

∥∥∥∥∥∥∥

= Op


κ
−1/2
kn

max
(√

mn,
√

kn

) √
mn log kn

n


 = Op

(
ηn,3

)
. (C.12)

Next, we consider term Tn,2(z). Lemma A.2 implies that supz∈Z

∣∣∣∣∣
√
Wn(z)√
Ŵn(z)

− 1

∣∣∣∣∣ = Op(η̃n),

where

η̃n = ηn,3 +
kn√

n min(τkn
, κ2

kn
)
+ k
−β
n + k

−γ/dz
n +

√
kn‖T(Ekn

g − g)‖X√
κkn

.

Therefore,

sup
z∈Z
Tn,2(z) = sup

z∈Z
Tn,1(z)

∣∣∣∣∣∣∣∣∣

√
Wn(z)

√
Ŵn(z)

− 1

∣∣∣∣∣∣∣∣∣
+ sup

z∈Z
|Ẑn(z)|

∣∣∣∣∣∣∣∣∣

√
Wn(z)

√
Ŵn(z)

− 1

∣∣∣∣∣∣∣∣∣

= Op(η̃n)


Op(ηn,3) + op(rn) + sup

z∈Z
|Zn(z)|




= Op(η̃n)
(
Op(ηn,3) + op(rn) +Op(cn)

)
. (C.13)

where the second line is due to step 2 below and the last line is due to Chen and Christensen
[2015a, LemmaD.7], which is valid under Assumptions 9 (i), 11 (i) and 12 (i) – (ii), and that
implies supz∈Z |Zn(z)| = Op(cn).

Let us analyze termTn,3(z). Denote T̂Y
n =

∑n
i=1 fmn(Xi)Yiekn

(Yi)
t/n andβkn

= (Tt
nTn)−1Tn E[ fmn(X)].
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First, we use the decomposition

sup
z∈Z

√
n |IIn|√
Wn(z)

= sup
z∈Z

√
n
∣∣∣∣pkn

(z)t(Ân − An)T̂Y
n (β̂kn

− E[g(Y)ekn
(Y)])

∣∣∣∣
√
Wn(z)

+ sup
z∈Z

√
n
∣∣∣∣pkn

(z)tAn(T̂Y
n − TY

n )(β̂kn
− E[g(Y)ekn

(Y)])
∣∣∣∣

√
Wn(z)

+ sup
z∈Z

√
n
∣∣∣∣pkn

(z)tAnTY
n (β̂kn

− βkn
)
∣∣∣∣

√
Wn(z)

+sup
z∈Z

√
n
∣∣∣∣pkn

(z)tAnTY
n (Tt

nTn)−1Tt
n E[ fmn(X)∆(g(Y) − Ekn

g(Y))]
∣∣∣∣

√
Wn(z)

= A1+A2+A3+A4 (say).

(C.14)

TermsAi, i = 1, 2, 4 are easily controlled by using the Cauchy Schwartz-inequality so that:

A1 = Op(
√

mn

√
log kn

κkn
n




√
mn log(kn)

n

max{ √mn, ξn}
τkn

+

√
mn

τkn

+

√
knn

mnτkn

‖T(g − Ekn
g)‖X


),

A2 = Op(
√

mnkn/n(
√

mn log(kn)/n max{ √mn, ξn}/τkn
+

√
mn/τkn

+
√

n/τkn
‖T(g − Ekn

g)‖X)),

A4 = Op(
√

n‖T(g − Ekn
g)‖X)

where, to getA4, we have used the Cauchy Schwartz inequality and the fact that the largest
eigenvalue of TY

n (Tt
nTn)−1Tt

n is bounded. TermA3 can be decomposed as

A3 = sup
z∈Z

∣∣∣∣pkn
(z)tAnTY

n [(T̂t
nQ̂−1

n T̂n)−1T̂t
nQ̂−1

n − (Tt
nTn)−1Tt

n]
∑

i fmn(Xi)/
√

n
∣∣∣∣

√
Wn(z)

+ sup
z∈Z

∣∣∣∣pkn
(z)tAnTY

n (Tt
nTn)−1Tt

n

∑
i( fmn(Xi) − E[ fmn(X)])/

√
n
∣∣∣∣

√
Wn(z)

= A3,1 +A3,2

where

A3,1 6 sup
z∈Z

∥∥∥∥pkn
(z)tAn

∥∥∥∥
√
Wn(z)

‖TY
n (Tt

nTn)−1Tt
n‖

∥∥∥∥∥∥∥
Tn[(T̂t

nQ̂−1
n T̂n)−1T̂t

nQ̂−1
n − (Tt

nTn)−1Tt
n]

∑

i

fmn(Xi)/
√

n

∥∥∥∥∥∥∥

= Op


max{ √mn, ξn}

√
mn log kn

nτkn


 .
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To control termA3,2, let s(z)t = pkn
(z)tAnTY

n

(
Tt

nTn

)−1
Tt

n/‖pkn
(z)tAnTY

n

(
Tt

nTn

)−1
Tt

n‖ then

E sup
z∈Z

∣∣∣∣n−1/2
∑

i

pkn
(z)tAnTY

n

(
Tt

nTn

)−1
Tt

n

(
fmn(Xi) − E[ fmn(X)]

)∣∣∣∣
2

= sup
z∈Z
‖pkn

(z)tAnTY
n

(
Tt

nTn

)−1
Tt

n‖2 E
∣∣∣∣n−1/2

∑

i

s(z)t
(

fmn(Xi) − E[ fmn(X)]
)∣∣∣∣

2

6 Cκ−1
kn

sup
z∈Z
‖pkn

(z)t‖2 E max
‖a‖=1

∣∣∣at fmn(X)
∣∣∣2

= O(knκ
−1
kn

)

where we have used the fact that the largest eigenvalue of TY
n (Tt

nTn)−1Tt
n is bounded and

‖An‖2 6 cκ−1
kn

. Thus,A3,2 = O
(√

kn/(κkn
infzWn(z))

)
.

Finally,

sup
z∈Z

√
n |IIIn|√
Wn(z)

= Op


(

√
mn log kn

nκkn

+ 1)(
√

mnk
−β
n +

√
n‖T(Ekn

g − g)‖X)




= Op


(

√
mn log kn

nκkn

+ 1)(
√

mn +
√

nτkn
)k
−β
n




and (by using the fact that ÂnXt
mn

Zkn
/n = Ikn

)

sup
z∈Z

√
n
|IVn|√
Wn(z)

= sup
z∈Z

|pk(z)tÂn

(∑n
i=1 fm(Xi)ψ(Zi)/

√
n −
√

nXt
mn

Zkn
/n E[pk(Z)ψ(Z)]

)
−
√

n(ψ(Z) − (Πkn
ψ)(Z))|

√
Wn(z)

6 sup
z∈Z

‖pk(z)tÂn‖
∥∥∥∑n

i=1 fm(Xi)[ψ(Zi) − (Πkn
ψ)(Zi)]/

√
n
∥∥∥

√
Wn(z)

+ sup
z∈Z

√
n
|(ψ(z) − (Πkn

ψ)(z))|
√
Wn(z)

= Op


(

√
mn log kn

nκkn

+ 1)
√

n‖ψ −Πkn
ψ‖Z


 + sup

z∈Z

√
n

∣∣∣∣∣∣∣
(ψ(z) − (Πkn

ψ)(z))
√
Wn(z)

∣∣∣∣∣∣∣
.

By using the assumptions mn

√
log kn = o(

√
nκkn

), kn max(mn, ξ
2
n) = o(nτkn

) and by eliminat-
ing the negligible rates, we can simplify the rate as

∣∣∣∣∣∣

√
n/Ŵn(z)

(
ψ̂n(z) − ψ(z)

)
− Ẑn(z)

∣∣∣∣∣∣ = Op

(
mn

√
log kn

nκkn
τkn

+ η̃ncn +
kn

κkn
infzWn(z)

+ b̃1,n

+ (
√

mn +

√
n

τkn

)k
−β
n + b̃2,n

)
= op(̃c−1

n ) (C.15)

by using
√

nmn‖ψ −Πkn
ψ‖Z = O(̃b2,n) and Assumption 12 (iii) – (iv) in the final line.

Step 2. Let Σ
ψ
n = E[ fmn(X) fmn(X)t(Yg(Y) − ψ(Z))2]. Because, under Assumptions 4 (ii) and

52



11 (i),
∑

i

E

∥∥∥∥∥∥
1√
n

fmn(Xi)(Yig(Yi) − ψ(Zi))

∥∥∥∥∥∥
3

6
1√
n

m3/2
n C

then, by Pollard [2001, Theorem 10], if
m2

n
√

mn

r3
n

√
n
= o(1) for some sequence rn = o(1), there

exists a sequence ofN(0,Σ
ψ
n ) random vectors Zn such that

∥∥∥∥∥∥∥
1√
n

∑

i

fmn(Xi)(Yig(Yi) − ψ(Zi)) − Zn

∥∥∥∥∥∥∥
= op(rn). (C.16)

Define the processZn(z) = pkn
(z)tAnZn/

√
Wn(z), which is a centered Gaussian process with

covariance function E[Zn(z1)Zn(z2)] = pkn
(z1)tAnΣnAt

npkn
(z2)/

√
Wn(z1)Wn(z2). Hence, by

(C.16):

sup
z∈Z

∣∣∣∣Ẑn(z) −Zn(z)
∣∣∣∣ = op(rn). (C.17)

Step 3. In this step we approximate the bootstrap process by a Gaussian process. Let

Ui = Yig(Yi) − ψ(Zi) and Ûi = Yi ĝ(Yi) − ψ̂(Zi). Under the bootstrap distribution P∗ each

term fmn(Xi)Ûiεi/
√

n has mean zero ∀i = 1, . . . ,n. Moreover, define the matrix Σ̂
ψ
n as

∑

i

E∗
[

1

n
fmn(Xi)Û2

i ε
2
i fmn(Xi)

t

∣∣∣∣∣Dn

]
=

1

n

∑

i

fmn(Xi) fmn(Xi)
tÛ2

i = Σ̂
ψ
n

where E∗[·|Dn] denotes the expectation taken with respect to P∗. Since E∗[εi|Dn] < ∞
uniformly in i, we have, under Assumptions 4 (ii) and 11 (i), for some generic constant C

∑

i

E∗



∥∥∥∥∥∥
1√
n

fmn(Xi)Ûiεi

∥∥∥∥∥∥
3
∣∣∣∣∣∣∣
Dn


 6 C

mn
√

mn√
n


‖ĝ − g‖3∞

1

n

∑

i

|Yi|3 + C + ‖ψ̂ − ψ‖3∞


 = O

(
mn
√

mn√
n

)

under the assumptions of the theorem. Then, an application of Pollard [2001, Theorem

10], conditional on the data, yields that, if
√

mnm2
n

r3
n

√
n
= o(1) with rn = o(1), then there exists a

sequence ofN(0, Σ̂
ψ
n ) random vectors Z∗n such that

∥∥∥∥∥∥∥
1√
n

∑

i

fmn(Xi)Ûi − Z∗n

∥∥∥∥∥∥∥
= op∗(rn) (C.18)

with probability approaching 1. Therefore,

sup
z∈Z

∣∣∣∣∣∣∣∣∣
Z
∗
n(z) −

pkn
(z)tÂn

√
Ŵn(z)

Z∗n

∣∣∣∣∣∣∣∣∣
= op∗(rn)

with probability approaching 1. Define a centered Gaussian process Z̃n under P∗ as

Z̃n(z) =
pkn

(z)tAn
√
Wn(z)

(Σ
ψ
n )1/2(Σ̂

ψ
n )−1/2Z∗n
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which has the same covariance function as Zn(z) (since Σ̂
ψ
n is invertible with probability

one). By Lemma C.2 below we have:

sup
z∈Z

∣∣∣∣∣∣∣∣∣

pkn
(z)tÂn

√
Ŵn(z)

Z∗n − Z̃n(z)

∣∣∣∣∣∣∣∣∣
= op∗ (̃c

−1
n )

with probability approaching one. This and the previous convergence imply that

sup
z∈Z

∣∣∣Z∗n(z) − Z̃n(z)
∣∣∣ = op∗(rn) + op∗ (̃c

−1
n ). (C.19)

Step 4. Given the results (C.15), (C.17) and (C.19), this last step proceeds exactly as Part 4
in the proof of Theorem B.1 in Chen and Christensen [2015a] and thus we omit it. �

Lemma C.2. Let the assumptions of Theorem 4.2 and Assumption 12 hold. If mn

√
log kn =

o(
√

nκkn
), kn max(mn, ξ

2
n) = o(nτkn

). Then,

sup
z∈Z

∣∣∣∣∣∣∣∣∣

pkn
(z)tÂn

√
Ŵn(z)

Z∗n − Z̃n(z)

∣∣∣∣∣∣∣∣∣
= op∗(c

−1
n )

with probability approaching one, where Z∗n and Z̃n(z) are as defined in the proof of Theorem 4.3.

Proof. The proof of this lemma follows the proof of Chen and Christensen [2015a, Lemma

D.8] and so we provide only the main parts where the two proofs differ. Let Σ
ψ
n and Σ̂

ψ
n be

as defined in steps 2 and 3 of the proof of Theorem 4.3. We make the decomposition

sup
z∈Z

∣∣∣∣∣∣∣∣∣

pkn
(z)tÂn

√
Ŵn(z)

Z∗n − Z̃n(z)

∣∣∣∣∣∣∣∣∣
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z∈Z
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(
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ψ
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∣∣∣∣∣∣∣

√
Wn(z)

Ŵn(z)
− 1
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sup
z∈Z
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Wn(z)

(Σ
ψ
n )1/2(Σ̂

ψ
n )−1/2Z∗n

∣∣∣∣∣∣∣
= B1 +B2. (C.20)

We start with the analysis of term B1. Denote D̃n(z1, z2) the standard deviation norm onZ

associated with the Gaussian process (under P∗)
pkn (z)t

(
Ân−An(Σ

ψ
n )1/2(Σ̂

ψ
n )−1/2

)
√
Wn(z)

Z∗n and defined as

D̃n(z1, z2)2 = E∗[




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−
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
 Kn(Ân − An(Σ

ψ
n )1/2(Σ̂

ψ
n )−1/2)Z∗n




2

].

Therefore, D̃n(z1, z2) 6 d̃n(z1, z2)‖Kn(Ân − An(Σ
ψ
n )1/2(Σ̂

ψ
n )−1/2)‖ and

‖Kn(Ân − An(Σ
ψ
n )1/2(Σ̂

ψ
n )−1/2)‖ 6 ‖Kn(Ân − An)‖ + ‖KnAn‖‖(Σ̂ψn )1/2 − (Σ

ψ
n )1/2‖ ‖(Σ̂ψn )−1/2‖

6 Op




√
mn log kn

nκkn


 + (λ1/2

min
(Σ

ψ
n ) + λ1/2

min
(Σ̂n)ψ)−1‖Σ̂ψn − Σ

ψ
n ‖

= Op




√
mn log kn

nκkn


 + Op(η1/2

n,4
+ η1/2

n,5
) (C.21)
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where, ηn,4 = max
(
k2

n/(nτkn
), k
−2β
n

)
and ηn,5 = max

(
k
−2γ/dz
n ,

k2
n

nκkn
, knκ

−1
kn
‖T(Ekn

g − g)‖2
X

)
, to get

the second inequality, we have used Lemma E.3 in Chen and Christensen [2015a] and to

get the rate of ‖Σ̂ψn − Σ
ψ
n ‖ we have used the same argument as in the proof of Lemma A.2.

By using similar arguments as in the proof of Lemma D.8 in Chen and Christensen [2015a,
page 37] we obtain that B1 = Op(η̃nc̃n) = op∗ (̃c

−1
n ) under Assumption 12 (iii) – (iv).

Next, let us consider term B2 which is the supremum of a Gaussian process with the
same distribution (under P∗) as Zn(z) (under the data distribution). Therefore, by ap-
plying Lemma A.2 and Chen and Christensen [2015a, LemmaD.7], which is valid under
Assumptions 5 (i), 7 (i) and 12 (i) – (ii), we obtain that B2 = Op(η̃n)Op∗ (̃cn). �
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