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Abstract

The common use of majority rule in group decision making is puzzling. In the-

ory, it inequitably favors the proposer, and paradoxically, it disadvantages voters fur-

ther if they are inequity averse. In practice, however, outcomes are equitable. The

present paper analyzes data from a novel experimental design to identify the under-

lying social preferences. Our experiment compares one-shot and indefinite horizon

versions of random-proposer majority bargaining (the Baron-Ferejohn game) which

allow us to disentangle behaviors compatible with altruism, inequity aversion, and

reference dependent altruism. Most subjects are classified as reference-dependent al-

truists, around 10% are inequity averse. Subjects are egoistic when their payoff is

below their reference point, they become efficiency concerned when satisfied, and

the reference point is either the ex ante expectation or the opponent’s payoff. Finally,

we successfully test RDA out-of-sample on a number of distribution and bargaining

games from three seminal social preference experiments.
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1 Introduction

Decisions in executive boards, committees, and parliaments are mostly reached by major-

ity rule (Shenoy, 1980). Following Baron and Ferejohn (1989), such collective decision

making processes are modeled as a random-proposer bargaining game with indefinite time

horizon. In each round, a player is randomly recognized as proposer who makes a pro-

posal which all players then vote on. The proposal is implemented if a majority votes in

favor, otherwise a new round begins. This model is canonically used to study majority

bargaining, with applications ranging from estimating proposer power in the US Congress

(Knight, 2005) to modeling labor relations (Okada, 2011). Expected payoffs increase with

power (Snyder Jr et al., 2005) and representation (Knight, 2008), but are traded off to

instrumentally buy votes for pushing proposals through, e.g. in congressional elections

(Levitt and Snyder Jr, 1997). Fréchette et al. (2005a) showed that experimental results

resemble those of the field.

The drawback of the majority rule is made particularly obvious by the Baron-Ferejohn

game. Ex ante, each of the n players expects a share of 1/n of the surplus. The coalition

formateur needs only n/2 votes to organize a majority, and thus needs to trade only half the

surplus to organize a majority—keeping the rest to himself. Strikingly, Montero (2007)

showed that inequity aversion (Fehr and Schmidt, 1999) further increases inequity. Given

that inequity is considered an undesirable outcome in many societies, it appears unclear

why groups continue to choose by majority rule. A possible explanation is that majority

voting does not actually generate as much inequity in practice. As experimental evidence

suggests, majority bargaining actually is reasonably equitable (Fréchette et al., 2005a,b,

2012; Montero et al., 2008; Drouvelis et al., 2010). This, however, is puzzling and raises

a simple but critical question: What motivates equity in majority bargaining?

We answer this question with a systematic analysis of motives in the majority bargain-

ing game, which is important to understand for welfare and policy analysis. For example,

Knight (2005) shows that proposal power in the US Congress translates to securing project

spending, and the preferences of the executive play a vital role in determining distributive

outcomes (McCarty, 2000). We offer an explanation of equitable behavior and outcomes in

the majority bargaining game. Ironically, the key to equity in this case seems to relate to ef-

ficiency concerns. More generally, our explanation extends the social preference theory of

reference dependent altruism (RDA). RDA is known to capture behavior in the seemingly

related yet strategically different demand bargaining game (Breitmoser and Tan, 2013),

and below, we also show that RDA allows to capture behavior in three-player dictator
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games (Engelmann and Strobel, 2004; Bolton and Ockenfels, 2006) and simple sequential

games (Charness and Rabin, 2002). Jointly, this evidence suggests that RDA may offer a

reliable approach for capturing behavior in multi-player bargaining, where seminal models

such as altruism and inequity aversion are known to struggle with capturing behavior.

RDA utilities solely depend on the players’ incomes, which are salient features in

majority bargaining. It is expressed via linear utility functions ui = xi +αx j of payoffs

(xi,x j) where the degree of altruism α depends on the relation of the payoff xi to the

reference point. The main idea is very simple: the degree of altruism is low if one’s

payoff is below the reference point and it is high otherwise. For example, one may be

egoistic if one’s payoff falls short of one’s reference point, and one may be efficiency

concerned otherwise. Like other reference dependence theories (e.g. Kőszegi and Rabin,

2007), Breitmoser and Tan (2013) assume that the ex ante expected payoff serves as a

reference point. In this paper, we also consider the co-player’s payoff as an alternative

reference point. This extension serves two purposes. First, many reference dependence

studies feature either type of reference point, ex ante expectation and co-player’s payoff.

We therefore describe the two motives with RDA and experimentally test their validity.

Second, the assumptions that the co-player’s payoff serves as a reference point and that

efficiency concerns operate “above” the reference point directly capture the interplay of

efficiency and equity concerns, as found for example by Engelmann and Strobel (2004) in

distribution choices under random role assignment in three-player dictator games.

RDA is a prima facie plausible explanation of majority bargaining, because it mod-

els the tradeoffs between efficiency and equity found in majority bargaining. In majority

bargaining, inequality can arise through the acceptance of inequitable proposals, and inef-

ficiencies can arise from delay (Compte and Jehiel, 2010). The efficiency-equity tradeoff

is an important topic in public policy (Okun, 1975; Ng, 2000). On the one hand, purely

efficiency concerned proposers are indifferent with respect to the resulting allocation but

seek mainly to avoid delay or breakdown. Hence, they make generous proposals, which

we observe in experiments. However, experiments also show that proposers do not make

inequitable proposals to their own disadvantage. This suggests the existence of equity

concerns. On the other hand, inequity aversion cannot serve as the sole explanation of be-

havior. This is because purely inequity averse responders mainly fear the possibility that

(upon rejection) they might get nothing, implying that they are willing to accept highly

inequitable allocations as long as they are not left out. Instead, responders with both ef-

ficiency and equity concerns still fear the possibility of being left out, but they see the

possibility of being in future winning coalitions much more positively, being efficiency
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concerned rather than feeling guilty in such coalitions. This raises their continuation util-

ities, and paradoxically again, such “conditionally efficiency” concerned responders are

more likely to reject inequitable proposals than purely inequity concerned ones, implying

that the proposer has to make equitable proposals.

The experimental outcomes we observe are indeed equitable. They are compatible

with RDA, but incompatible with self-interest and other forms of social preferences. Based

on our analysis, subjects behave egoistically below their reference points while they are,

indeed, efficiency concerned above the reference point. That is, subjects are concerned

with increasing their own payoff as long as the individual objective is not met, and are

instead concerned with increasing efficiency when the individual expectation is met. Pro-

posers make generous proposals whilst satisfying their reference point. Voters accept pro-

posals that disadvantage fellow voters in order to meet their reference points, or they reject

proposals that do not meet their reference point in hope of being proposer in the next round.

This yields a plausible description of behavior in parliaments and committees.

Depending on the reference point, RDA predicts equal splits either within the winning

coalition or within the grand coalition. This prediction explains our experimental obser-

vations very well. In a structural analysis that analyzes social preferences in conjunction

with bounded rationality (QRE, McKelvey and Palfrey, 1995), we find that the prefer-

ence parameters are approximately as hypothesized. In a book chapter discussing future

research for QRE, Goeree et al. (2016) suggested applying QRE with the incorporation

of social preference parameters to explaining the unanimous experimental observation of

under-realized bargaining power in the Baron-Ferejohn game (p. 286). Our paper shows

that this is indeed true. In addition, we confirm the underlying assumption of stationary

strategies (Baron and Kalai, 1993; Eraslan, 2002).

Finally, we show that RDA similarly helps explain behavior in a number of related

distribution and bargaining games. Specifically, we re-analyze the collection of mini dic-

tator, ultimatum and trust games in Charness and Rabin (2002), and the collections of

three-player dictator games in Engelmann and Strobel (2004) and Bolton and Ockenfels

(2006). We compare the accuracy of RDA’s predictions with those of the leading existing

models, inequity aversion (Fehr and Schmidt, 1999) and charitable reciprocity (Charness

and Rabin, 2002). We find that RDA is substantially better at explaining behavior in these

classes of interactions than those models—out-of-sample. This reinforces the idea that the

simple and intuitive notion of reference dependent altruism captures behavior in multi-

person interactions and thus may indeed be a behavioral force in majority bargaining.

Section 2 presents the experimental design and predictions for various assumptions
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on preferences. Section 3 reports the results. Section 4 performs an out-of-sample analysis

of these theories and compares their performance. Section 5 concludes.

2 The experiment

2.1 Majority bargaining

Our experiment implements the majority bargaining model of Baron and Ferejohn (1989)

in two complementary ways: with indefinite horizon and with finite horizon. In each

game, three players, N = {1,2,3}, have to divide e 24 by majority decision. The smallest

currency unit is .01 Euro. Using C = 24, the set of feasible allocations is

X =
{

x ∈ R
|N| | x ≥ 0, ∑i∈N xi ≤C, ∀i ∈ N : 100xi ∈ N0

}

. (1)

The first game that we test is the random-proposer game with a continuation probability

of .95 after each round without agreement.

Game 1 (PB95). In each round, one player is recognized as proposer by a uniform draw

from N. This player chooses x∈X, and the other players vote on x. If one of them accepts,

then the players’ payoffs are x. Otherwise, a new round begins with probability δ = 0.95

and the payoffs are 0 with probability 1−δ = 0.05.

PB95 is outcome equivalent to the random-proposer game with infinite time horizon

and discount factor δ = 0.95 if the players are risk neutral. This game has a plethora of

subgame-perfect equilibria (Baron and Ferejohn, 1989), akin to folk theorems in repeated

games, but analyses generally focus on equilibria in stationary strategies. Stationary strate-

gies are independent of proposals and votes in previous rounds, and as such they are the

least complex equilibrium strategies (Baron and Kalai, 1993) and imply uniqueness of ex

ante equilibrium payoffs (Eraslan, 2002).

Ex ante, prior to proposer recognition, every player expects a payoff of C/3 = 8 in

stationary subgame perfect equilibrium (SSPE). Thus, payoff-maximizing voters accept

any proposal that allocates them at least their “continuation payoff” δ8 = 7.60, which in

turn are the costs of buying a vote. Payoff-maximizing proposers buy one vote and allocate

the rest 16.40 = 24−7.60 to themselves. Along the equilibrium path, proposals thus have

the structure (16.4,7.6,0) and are accepted immediately.

The second game implemented in our experiment is a random-proposer game iden-
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tical to PB95 with the difference that it ends after one round, and if the first proposal is

not accepted then players are paid their continuation payoffs from PB95. Hence, “PB00”

is strategically equivalent to PB95 for payoff-maximizing players, but as shown below,

predictions differ if players have social preferences.

Game 2 (PB00). A player is recognized as proposer by a uniform draw from N. This

player chooses x ∈ X, and the other players vote on x. If one of them accepts, then the

players’ payoffs are x. Otherwise, the payoffs are 7.60 = δC/3 per player.

If players maximize expected payoffs, the set of SPEs of PB00 corresponds with the

set of SSPEs of PB95 in the sense that equal proposal and voting decisions are made.

The ex post payoff profile has the structure (16.4,7.6,0) in both games. PB00 relates

most closely to the three-player majority games by Diermeier and Gailmard (2006). They

experimentally analyze a one-round majority game with disagreement payoffs that were

asymmetric and either very low or very high. In particular, their disagreement payoffs are

of different magnitude than the continuation payoffs of PB95, whereas we equate these

payoffs. Their results complement ours in that they also find that inequity aversion does

not fit behavior. In relation to standard three-player ultimatum games, PB00 differs in that

the disagreement payoffs are positive and that acceptance of either player implements the

proposal for both players.

2.2 Social preferences

We consider the following models of social preferences: FS inequity aversion, CR reci-

procity, CES altruism, and reference dependent altruism (RDA).

UFS
i (x) = xi −∑

j 6=i

α(x j − xi) · Ixi<x j
+∑

j 6=i

β(x j − xi) · Ixi≥x j
(2)

UCR
i (x) = xi −∑

j 6=i

(α+θq j)(x j − xi) · Ixi<x j
+∑

j 6=i

(β−θq j)(x j − xi) · Ixi≥x j
(3)

UCES
i (x) =

(

(1−α) · (1+ xi)
β + α

n ∑ j 6=i(1+ x j)
β
)

/β (4)

URDA
i (x) = xi +∑

j 6=i

αx j · Ixi<x∗ +∑
j 6=i

βx j · Ixi≥x∗ (5)

FS inequity aversion captures behavior in games with fixed roles, e.g. ultimatum and

trust games (Fehr and Schmidt, 1999, 2010). Generally, it is assumed that envy (α) out-
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weighs guilt (β) and that guilt is bounded, i.e. 0 ≤ β < α and β < 1/(n− 1).1 Charness

and Rabin (2002) extend FS inequity aversion by introducing a reciprocal component with

weight θ. This component is switched on (q j = 1) if j previously “misbehaved” by making

a welfare-reducing decision, else q j = 0. CR reciprocity reduces to FS inequity aversion

for θ = 0. If θ > 0, CR-players tend to punish welfare-diminishing behavior of their oppo-

nents, as their altruism weights decrease after such “misbehavior”. CES utility functions

are used frequently in analyses of dictator and public goods games (Andreoni and Miller,

2002; Goeree et al., 2002; Cappelen et al., 2007). The functional form in Eq. (4) follows

Cox et al. (2007) and is adopted for its numerical stability. Here, α measures the degree

of altruism, and 1/(1−β) is the elasticity of substitution.

RDA describes how altruism is high (low) if the payoff is at or above (below) the ref-

erence point x∗. Following previous work, we distinguish two kinds of reference points.

RDA with the absolute reference point defined by the ex ante expected payoff (following

e.g. Kőszegi and Rabin, 2007) is abbreviated ARDA, and RDA with the relative reference

point defined by the opponent’s payoff (following e.g. Fehr and Schmidt, 1999) is abbre-

viated RRDA. Intuitively, α < β < 1 holds, i.e. players reaching their reference point are

“content” and thus more willing to share.2 Critically, α < β implies that utilities exhibit

a jump discontinuity at the reference point, which models that players substantially enjoy

reaching their reference points. This mimics equity concerns in the case of RRDA. Fur-

ther, it implies that RDA players are willing to take risks to reach their reference points,

i.e. they are more likely to reject sub-par proposals.

Predictions for PB95 and PB00 diverge in opposite directions if players have social

preferences other than RDA. Figure 1 illustrates by plotting the ranges of equilibrium

proposals compatible with the four families of social preferences. This shows how the

joint analysis of PB95 and PB00 disentangles these theories. To understand the divergence

of predictions, let us first consider FS inequity aversion. Utilities are denoted as U(x,y,z),

where x is the payoff of the player in question, and y,z are the interchangeable payoffs of

his opponents. If guilt is limited as usual, β < 1/2 = 1/(n−1), all proposers pay the value

y that is necessary to buy one vote and keep the rest to themselves. As a result, equilibrium

proposals have the structure (24− y,y,0), where y is the transfer necessary to buy a vote.

In equilibrium, the utility of the recipient of this transfer equates with his continuation

1Blanco et al. (2011) find that this assumption fits well on average, but in certain dictator games some

subjects appear to have β > 1. These subjects go beyond equalizing payoffs, in favor of the recipient, which

is not observed in our experiment on majority bargaining with 1:1 transfers.
2For ARDA-players, α < β implies that they are less altruistic toward all their opponents before their

payoffs meet their ex ante expectations. In contrast, α < β implies for RRDA-players that they are less

altruistic toward a specific opponent once their payoff falls below the payoff of that particular opponent.
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Figure 1: The ranges of proposals that are compatible with the preference theories

(Note that CR reciprocity is equivalent to FS inequity aversion here)
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Note: Displayed are the predicted proposals to the player whose vote is bought. We focus on α,β ≥ 0.1,

as all models degenerate to egoism for α,β ≈ 0. Specifically, CES altruism Eq. (4) for α ∈ [.1, .5] and

β ∈ [.1, .9], FS inequity aversion Eq. (2) or CR reciprocity Eq. (3) for α ∈ [.1,1] and β ∈ [.1, .33], absolute

reference dependence Eq. (5) for α ∈ [−.33, .33] and β ∈ [.16, .66], and relative reference dependence Eq.

(5) for α ∈ [.1, .33] and β ∈ [.44, .88]. Note that proposal range compatible with ARDA degenerates to a

point in stationary SPEs of PB95 for all β−α > 1/4.

utility, and assuming stationarity, and this yields the following equilibrium condition.3

PB95: U(y,C−y,0) =
δ

3

(

U(C−y,y,0)+U(y,C−y,0)+U(0,C−y,y)
)

+(1−δ)U(0,0,0)

In contrast, the equilibrium transfer in PB00 ensures that the player whose vote is bought

3A standard continuity argument implies that at least one voter accepts in case of indifference. Assume

there is an equilibrium where both voters reject in case of indifference. Then the proposer must offer y

such that U(y,C− y,0) > ũ, but there is no optimal y in this case, hence no equilibrium. In turn, it is clear

that there is an equilibrium where the voters accept in case of indifference, as unilateral deviations are not

profitable when one is indifferent.
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is indifferent between (y,C− y,0) and implementing the disagreement payoffs,

PB00: U(y,C− y,0) =U(δC/3,δC/3,δC/3).

These conditions have the same solution if players maximize payoffs, Ui(x) = xi. If

the utility is weakly concave (as in FS inequity aversion) or strictly concave (CES altru-

ism), then the continuation utility in PB95 is less than the disagreement utilities in PB00.

This simply obtains as ex post payoffs are inequitable in PB95 and equitable in PB00, with

the latter being the mean of the former. In conjunction with concave utilities, this yields

said relation,4 and since continuation utilities of all players are lower, the costs of vote

buying are smaller in PB95 than in PB00. Solving the above conditions for y yields the

following equilibrium transfers under FS inequity aversion.

y95 =C ·
3α+δ(1−2β−2α)

3+6α−3β−2δ · (α+β)
y00 =C ·

δ/3+α

1+2α−β
.

This implies y95 < 7.60 = δC/3 and y00 > 7.60 = δC/3 under the standard assumptions

(0 < β < α with β < 1/2 if n = 3). Inequity averse players make less equitable transfers

than payoff maximizers in PB95 and more equitable transfers than payoff maximizers in

PB00 (Montero, 2007, discusses the former in detail). This holds similarly for all util-

ity functions U that are weakly concave in the payoff profile, such as CES altruism, but

the predictions of FS inequity aversion and CES altruism differ quantitatively, as Figure

1 shows. Further, assuming proposers waste no part of the surplus, they do not “misbe-

have” as defined by Charness and Rabin (2002). Thus, negative reciprocity is irrelevant,

rendering the theories of FS inequity aversion and CR reciprocity behaviorally equivalent

in majority bargaining. That is, FS inequity aversion and CR reciprocity predict equiv-

alent behavior along the path of play, and in agreement with CES altruism, they predict

inequitable transfers in PB95.

In contrast, RRDA and ARDA predict equitable transfers in both PB95 and PB00.

RDA induces a utility jump at the reference point which in turn breaks the weak concavity.

Proposers have the bargaining power to make proposals that satisfy their reference points,

in which case they enjoy a utility jump, and can thus behave generously at the same time.

Conversely, voters reject proposals that do not meet their reference point, and would prefer

4To see this, consider a two-player game with (a) ex post payoffs (x1,x2) and (x2,x1) with 0.5 probability

each and (b) alternatively y = (x1+x2)/2 with certainty. For any concave utility function, expected utility in

the former case is less than the (expected) utility in the latter case. The above simply extends this observation

to three players.
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to gamble on the chance of being recognized as proposer in the next round. Thus, RDA

players require larger compensation from proposals than egoistic players. On the one

hand, under RRDA, the voters require a comparably large compensation as long as the

proposer gets more than them. Solving the above equilibrium conditions for y yields

y95 =
(δ(1+2α)−3α)C

(α−β) δ+3(1−α)
y00 =

(δ(1+2β)−3α)C

3 (1−α)
, (6)

assuming β < 1. Thus, both y00 and y95 are greater than δC/3 under RRDA, for all β > α.

This prediction differs qualitatively from the predictions of the weakly concave utilities

discussed above, and it is compatible with the equitable proposals observed by Fréchette

et al. (2005a,b). Further, as the emotional bonus β−α of reaching the reference point

increases, the vote buying costs y increase further, up to y = 12 in PB00.

On the other hand, under ARDA, players accept any proposal that allocates them at

least their ex ante expectation (for a very wide range of parameter constellations). If β−α

is not too small, they reject any other proposal and the equilibrium proposal is y = 8 in

PB95. The result is similar in PB00, where the equilibrium proposal can be shown to

satisfy 7.6 < y < 8 for a wide range of parameters, e.g. for all δ < 1 and α < 0. Thus,

ARDA predicts proposals close to y = 8 in both games, as shown in Figure 1.

In light of the conditional efficiency concerns observed by Charness and Rabin (2002)

and Engelmann and Strobel (2004), we hypothesize that RDA players are largely egoistic

below their reference point (α ≈ 0) and largely efficiency concerned above their reference

point (β ≈ 1). In these extreme cases, ARDA players are indifferent between all (24−

y,y,0) with y ∈ [8,16]; their average proposals are therefore (12+ε,12−ε,0) if β is close

to 1. This predicts roughly equal splits within the winning coalition. RRDA players

converge to (8,8,8) in the limit,5 i.e. equal splits within the grand coalition.

2.3 Experimental logistics

The experiment was conducted in the experimental economics laboratory at the Europa

Universität Viadrina, Frankfurt (Oder), Germany. The experiment was, apart from the

experimental instructions and control questionnaire, fully computerized (using z-Tree, see

Fischbacher, 2007). Subjects were students from various faculties of the university. An

announcement for this experiment was sent to recipients on an email database of potential

5To be precise, in the limit, RRDA players are indifferent between all allocations giving them at least

as much as each opponent. However, they maximize the probability of acceptance by donating equitably

(pleasing both opponents under RRDA) if there is infinitesimal noise (e.g. logistic voting).

10



subjects. Those who responded to the email were recruited accordingly.

We conducted a total of nine sessions: five sessions of PB95 and four sessions of

PB00. The between-subject design prevents carryover effects across these two types of

games. Each session had 12 subjects. A total of 108 subjects participated. Each subject

was allowed to participate only once. Each session was partitioned into two sub-sessions,

to each six subjects were randomly assigned. Subjects never interacted with those from

other sub-sessions. We partitioned the sessions to increase the number of independent

observations, and ran sub-sessions simultaneously to enhance the sense of anonymity.

The subjects’ tasks and information conform precisely to the definitions of the two

games provided above. Subjects were matched into groups of three and stayed in the same

groups during each game. Each PB95 game progressed in “rounds”, while each PB00

game had one round. Subjects were randomly assigned their roles (proposer or voter) at

the beginning of each round. During each round, voters were informed of the proposals

made. At the end of each round, subjects were informed of the outcomes of that round. At

the end of each game, subjects were informed of the outcomes of that game. This follows

the way the games are theoretically defined.

In the experiment, each subject played 10 games. Repetition allows for experience

and learning. To implement the one-shot context, we randomly rematched subjects after

each game to eliminate reputational and reciprocal effects across games. This method was

first proposed by Andreoni (1988), and has been adopted as standard practice in economics

experiments since. By running sub-sessions simultaneously, we reduced the perceived

probability of being rematched with the same co-players. With 12 subjects per session,

the perceived probability of being rematched with a given co-player in the next round was

p = 2/11 and that of being rematched in the same group was p < 0.04. Subjects could not

attribute others’ actions and outcomes from previous games to specific individuals as 1)

groups were randomly rematched for each game, 2) subjects’ identities were kept anony-

mous, and 3) roles were randomly reallocated. Direct reciprocity was thus impossible.

At the beginning of the experiment, subjects were randomly assigned computer ter-

minals. They started by reading the experimental instructions, provided on printed sheets,

followed by answering a short control questionnaire that allowed us to check their under-

standing. Neutral language was used throughout the experiment (e.g. “A-participant” and

“B-participant” instead of “proposer” and “voter”, and “stage” instead of “game”). The

instructions used in PB95 sessions are provided as supplementary material. Subjects in

doubt were verbally advised by the experimental assistants before being allowed to begin.

Each computer terminal was partitioned, so that subjects were unable to communicate via
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audio or visual signals, or to look at other computer screens. Decisions were thus made

in privacy. At the end of the experiment, subjects were informed of their payments, and

asked to privately choose a codename and password. This was used to anonymously col-

lect their payments from an independent third party not involved in running or planning

the experiment in the week after the experiment. This procedure enhanced subject privacy.

Each subject was given a e 4 participation fee and the earnings from one randomly chosen

game. The marginal incentives could therefore range from e 0 to e 24 per subject. The

average payout was above e 11 per subject for, on average, less than 1 hour per session.6

3 Results

3.1 Behavioral patterns

In this section, we analyze the qualitative compatibility of the experimental observations

with the predictions of the different theories. Proposals are denoted as (xp,xh,xl), where

xp is the proposer’s payoff, xh := max{x1,x2} is the higher of the voters’ payoffs, and

xl = min{x1,x2} is the lower of the voters’ payoffs. Table 1 shows that the average payoffs

of voters exceed the SSPE predictions for egoistic players, xh = 7.6 and xl = 0. The

average payoffs are (xp,xh,xl) = (10.62,8.60,4.15) for PB95 and (10.23,8.84,4.19) for

PB00. Mann-Whitney U tests taking the average of each sub-session as an independent

observation show that the proposal components xp, xh, and xl are not significantly different

between PB95 and PB00 (p = 0.633 for xp, p = 0.696 for xh, p = 0.965 for xl). This holds

robustly in both the first and the second half of the experiment. In this respect, the results

are compatible with RRDA and ARDA, which predict that outcomes are equitable and

similarly so in PB95 and PB00. In turn, they are not compatible with CES altruism, and

FS inequity aversion or CR reciprocity, which predict xh < 7.6 in PB95 and xh > 7.6 in

PB00.7

Figure 2 plots the distributions of proposals and voting behavior in PB95 and PB00.

Figure 2a plots the distributions of proposals made to each of the two voters. These dis-

tributions are plotted in relation to the empirical continuation payoffs, which are 7.36 in

PB95 and 7.60 in PB00. The plots include the proposals that were not accepted, which are

6The monetary incentives provided in our experiment are substantial by local standards. Our mean

payment of above e 11 per hour is, for example, 50% more than the mean wage of a research assistant.
7Regression analyses of player-specific payoffs controlling for game (for both treatments) and round (for

PB95) confirm the above, and also show that stationarity and truncation consistency are not violated. The

details are provided as supplementary material.
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Table 1: Means (and standard errors) of the proposals for first and second halves of the

experiment

Proposer payoff xp Higher payoff xh Lower payoff xl

G 1–5 G 6–10 G 1–5 G 6–10 G 1–5 G 6–10

PB95 10.266
(0.5465)

10.992
(0.6411)

8.365
(0.3369)

8.911
(0.3976)

4.676
(0.5542)

3.548
(0.5554)

PB00 9.57
(0.7255)

10.899
(0.531)

8.273
(0.5503)

9.403
(0.3458)

4.887
(0.6133)

3.484
(0.6421)

Note: The standard errors are computed using the sub-session means as independent observa-

tions. The values for “G 1–5” refer to the first five games per session, those for “G 6–10” refer

to the last five games per session.

Figure 2: The distribution of proposals and the voting decisions

(a) Proposals in relation to the (empirical) continuation payoffs in PB00 and PB95
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Note: The empirical estimate of expected payoff in PB00 is 7.88, and the estimated discounted payoff

(continuation payoff) in PB95 is 7.36. The points are slightly perturbed to visualize their clustering.

(b) Voting functions (relative acceptance frequencies)
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located mostly in the lower-left quadrant. The vast majority of proposals is in the other

three quadrants, where at least one voter’s continuation payoff is met. These proposals

had mostly been accepted; Figure 2b shows that offering at least one opponent a payoff

of 8 ensures acceptance with high probability. We can see in Figure 2a that the proposals

in both treatments are located roughly along a concave frontier stretching from around

(xh,xl) = (10,0) through (8,8) to (0,10). The distributions have three mass points. In

PB95, around 30 proposals are at (12,0) or (0,12), and another 30 proposals are at (8,8).

In PB00, the mass points at (12,0) and (0,12) are less populated. Figure 2a shows that

further observations are clustered near these mass points: there is a cluster of proposals

allocating 9–12 to one opponent and zero or negligible amounts to the other one and a

second area to the southwest of (8,8).

These cluster areas fit the predictions of RDA. On the one hand, ARDA predicts pro-

posals of the form (12+ε,12−ε,0) if β is close 1. ARDA is thus qualitatively compatible

with the observations around (xh,xl) = (10,0) in Figure 2a, if we allow β to be slightly be-

low 1. RRDA is compatible with the observations around (xh,xl) = (8,8), suggesting that

their β is indeed close to 1. Further, almost all observations near (8,8) in Figure 2a are to

its southwest, i.e. the proposer gets at least as much as the voters in all cases. This strong

relational effect uniquely fits RRDA, as it is the only model predicting that proposer utility

drops substantially if they get less than the voters. In either case, the voters theoretically

accept proposals if y ≈ 8, which is also empirically satisfied (Figure 2b). As discussed

above, and by Montero (2007), these observations are incompatible with weakly concave

utility functions.

3.2 Modeling motives

In this section, we econometrically verify the qualitative observations made above. We

estimate the utility functions using a structural model of behavior, quantal response equi-

librium (QRE, McKelvey and Palfrey, 1995), and evaluate their adequacy in relation to

the data. QRE relaxes the assumption of “best responses” toward “better responses”, i.e.

that players do not solely choose best responses. Still, the more profitable an option is, the

higher is its choice probability. Specifically, we model PB00-choices as agent logit equi-

libria (McKelvey and Palfrey, 1998) and PB95-choices as stationary logit equilibria (Bre-

itmoser et al., 2010), which we jointly abbreviate as SLE. Due to the large strategy sets,8

8Our analysis uses a smallest currency unit of e 0.2, and given the cake sizes of e 24, this implies that

the number of possible proposals is on the order of 106 in each round.
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we will also consider a generalization called stationary nested logit equilibrium (SNLE).

Nested logit (McFadden, 1978, 1984) allows for the possibility that subjects choose pro-

posals in multiple decision steps. The clustering displayed in Figure 2a suggests that this

is a possibility, and in particular it suggests that subjects first determine how many oppo-

nents and whom they pay their continuation payoffs (to buy the vote) before they choose

the actual allocation. In order to be on the save side, we control for this possibility, but

the qualitative results do not depend on the adopted choice model. The technical details of

nested logit in stationary equilibria are provided in the supplementary material.

The clustered observations discussed in the previous section suggest a subject pool

with two discrete components. We model subject heterogeneity of this discrete nature

using finite mixture models (McLachlan and Peel, 2000). This allows us to simultaneously

estimate number, weights, and utility as well as choice parameters of subject types. To

define the likelihood function, let K denote the set of components in the population with

weights νk and behavioral parameter tuple pk for all k ∈ K. Thus with P = (pk)k∈K as the

behavioral parameter profile, and with O = (os,t) as the set of observations for all subjects

s ∈ S and periods t ∈ T , the log-likelihood is

LL(P|O) = ∑
s∈S

ln ∑
k∈K

νk L(s,k) with L(s,k) = ∏
t∈T

σ
(

os,t |p
k
)

, (7)

using σ
(

os,t |p
k
)

as the probability of action os,t according to the QRE defined by the pa-

rameter profile pk. The log-likelihood is maximized jointly over all parameters to obtain

consistent and efficient estimates (see e.g. Amemiya, 1978, and Arcidiacono and Jones,

2003, for further discussion), and to allow us to extract standard errors from the infor-

mation matrix.9 We evaluate the significance of differences between models using stan-

dard likelihood-ratio tests (Vuong, 1989), nested or non-nested as required, applied to the

standard information criterion ICL-BIC for finite mixture models (Biernacki et al., 1999,

2000).10

9We use the derivative-free NEWUOA algorithm (Powell, 2008) for the initial approach toward the max-

imum (NEWUOA is a comparably efficient and robust algorithm, see Auger et al., 2009, and Moré and Wild,

2009), and subsequently, we use a Newton-Raphson algorithm to ensure local convergence. This procedure

has been repeated using a variety of starting values. The complete list of parameter estimates is provided as

supplementary material.
10 ICL-BIC is comparable to the well-known Bayes information criterion (BIC, Schwarz, 1978) but

additionally penalizes mixture models with superfluous components. This resolves the issue that BIC

overestimates the number of components (“subject types”) of finite mixture models. BIC is defined

as BIC = −LL + d/2 · log(O) with number of parameters d and number of observations O (Schwarz,

1978). The integrated classification likelihood-BIC to be used for mixture models is defined as ICL-BIC =
−LL+d/2 · lnO+En(τ̂) using the entropy En(τ̂) =−∑s∈S ∑k∈K τ̂sk ln τ̂sk of posterior component member-

ship, where τ̂sk =
νk L(s,k)

∑k′∈K νk′ L(s,k′) . For discussion, see Biernacki et al. (1999, 2000).
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Table 2: Robustness checks of the identified motives

(a) Goodness-of-fit (ICL-BIC) of logit (SLE) vs. nested logit (SNLE)

Number of components (“subject types”)

Utility function SLE × 1 SNLE × 1 SNLE × 2 SNLE × 3

CES Altr 4513.13 ≪ 3992.96 ≪ 3890.92 ≪ 3702.54

IneqAv 4570.67 ≪ 3835.85 ≪ 3700.56 ≪ 3666.14

RRDA 4131.97 ≪ 3668.32 ≪ 3469.22 = 3486.81

ARDA 4344.01 ≪ 3621.68 ≪ 3488.86 = 3512.42

Note: Goodness-of-fit if we allow for up to three types of subjects with either CES altruism Eq. (4), inequity

aversion Eq. (2), or reference dependent altruism Eq. (5). We distinguish stationary logit and nested logit

equilibria, SLE and SNLE, respectively, where the multiplier denotes the number of subject types being

distinguished. The parameter estimates are supplementary material.

(b) Goodness-of-fit (ICL-BIC) of mixture models with two differing motives

Second component

First component CES Altr IneqAv RRDA ARDA

CES Altr 3890.93 ≪ 3730.59 ≪ 3591.86 = 3607.17

IneqAv 3730.81 = 3701.2 ≪ 3534.5 = 3524.85

RRDA 3591.48 = 3534.87 ≪ 3469.22 < 3415.11

ARDA 3607.18 < 3524.8 ≪ 3415.11 > 3488.85

(c) Goodness-of-fit (ICL-BIC) of mixture models with three different components

Third component

First two components CES Altr IneqAv RRDA ARDA

CES + IneqAv 3744.59 = 3750.76 ≪ 3513.81 = 3533.84

CES + RRDA 3500.23 = 3513.52 = 3531.01 ≪ 3423.75

Ineq + ARDA 3533.81 = 3517.12 ≪ 3404.32 ≫ 3537

RRDA + ARDA 3423.74 = 3405.07 = 3422.73 = 3437.96

Note: Tables (b)–(d) display the ICL-BIC criteria of model fit, Fn. (10), and the results of nested/non-

nested Vuong tests on ICL-BIC for adjacent models (following the suggestion of (Vuong, 1989, Eq. 5.9), we

perform likelihood ratio tests including the BIC correction term and the model entropy En(τ̂)). The signs

“<,≪,≪” indicate significant improvements at α = .1, .01, .001, respectively (note that “less is better” if

goodness-of-fit is measured by information criteria such as ICL-BIC).

Tables 2a–2c summarize the results of the structural analysis. The underlying param-

eter estimates are provided as supplementary material. First, we verify whether choice

is captured by a one-step logit process or by the two-step nested logit process described

above. The results are given in columns “SLE × 1” and “SNLE × 1” of Table 2a, respec-

tively, and rather strongly show that for all utility functions, model adequacy improves

by about 500 points on the log-likelihood scale if we allow for the two-step “hierarchi-

cal” choice process where subjects first pick whom to pay the continuation payoff. That

is, choice violates IIA (independence of irrelevant alternatives) highly significantly, but

notably, the best-fitting utility functions are ARDA and RRDA in either case. Table 2a

also informs on the necessity to distinguish multiple components (or, subject types) as-
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suming all components are either CES, FS, ARDA, or RRDA. Regardless of the utility

function assumed, at least two components are to be distinguished in the population (com-

pare columns “SNLE × 1” and “SNLE × 2”), but again, ARDA and RRDA are most

adequate in either case.

Secondly, given that at least two components are to be distinguished, we determine

the most adequate two-component model by evaluating all possible combinations. Ta-

ble 2b reports the results. It shows that regardless how the first component is modeled,

comparing columns “CES Altr” and “IneqAv” across all rows, a second component with

FS inequity aversion fits better than CES. Next, RRDA fits significantly better than FS

inequity aversion across rows, comparing columns “IneqAv” and “RRDA”, and the dif-

ferences amount to more than 100 points on the log-likelihood scale (or, p < 0.01) in all

cases. Thus, at least one component is estimated to be RRDA or ARDA. Using either

of ARDA and RRDA as first component, we find that one complements the other best,

and the differences to the alternative combinations are highly substantial in terms of ICL-

BIC—again at least 100 points on the log-likelihood scale. This strongly confirms our

qualitative observations made above, that behavior aligns with ARDA and RRDA but not

with FS inequity aversion and CES altruism.

Thirdly, Table 2c determines the structure of a possible third component (however

small), i.e. the composition of a third subject type potentially differing from ARDA and

RRDA. To provide the general picture, we estimate 16 three-component models. All mix-

tures not including both RRDA and ARDA components have ICL-BIC values above 3500

points, and thus must be considered inadequate again. The best-fitting three-component

model, and indeed the only model that improves upon the pure RRDA + ARDA mixture

in terms of ICL-BIC, identifies a third component of subjects with FS inequity aversion.

The parameter estimates (Table 3) show that the previously identified RRDA component

is split up into two components, into one of RRDA and one of FS inequity aversion. The

share of FS subjects is significant in relation to its standard error and in Vuong likelihood-

ratio tests (p < .01), but overall it is small (7.2%).11

Table 3 provides the detailed parameter estimates and standard errors of the most ad-

equate models. If we distinguish the two components identified based on Table 2b, 55%

of the subjects have RRDA preferences and 45% of them have ARDA preferences. The

rather balanced distribution of RRDA and ARDA types corresponds with the previous

observations that the two cluster areas contain similar numbers of observations. As indi-

cated, the RRDA component can be further split down into a sub-component with RRDA

11Since the third component is already very small, estimation of a possible fourth component is skipped.
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Table 3: The estimation results

Component Weight λp ρ1 ρ2 λv α β ICL/LL/R2

RRDA 0.552
(−)

5.542
(0.093)

0.145
(0.004)

0.101
(0.001)

0.001
(0.002)

0.27
(0.002)

0.998
(0.007)

ARDA 0.448
(0.054)

3.332
(0.042)

0.119
(0)

0.088
(0)

0.317
(0.002)

0.334
(0)

0.795
(0.006)

3415.11

−3346.74

0.8914

RRDA 0.481
(−)

5.653
(0.027)

0.127
(0.001)

0.094
(0)

0
(0)

0.277
(0.002)

0.996
(0)

ARDA 0.447
(0.055)

4.604
(0.029)

0.148
(0)

0.024
(0.001)

0.328
(0.002)

0.36
(0)

0.732
(0.003)

IneqAv 0.072
(0.023)

0.894
(0.011)

0.157
(0.006)

0.011
(0.003)

0.498
(0.01)

0.004
(0)

0.056
(0.001)

3405.07

−3306.89

0.8958

Note: (α,β) are the parameters of the four utility functions, the remaining parameters are the choice pa-

rameters discussed in the supplementary material. The standard errors are provided in parentheses. The

Cox-Snell Pseudo-R2 is R2 = 1− (L(MBaseline)/L(MFull))
2/O, with the “baseline model” being the bench-

mark that players randomize uniformly in all cases and O being the number of observations.

preferences (48.1%) and a sub-component with FS inequity aversion containing 7.2% of

the subjects, but overall the share of FS inequity averse subjects is small. The estimated

RRDA and ARDA parameters also correspond with the observations made in the previous

section. The RRDA component has β ≈ 1, which means that RRDA players are approx-

imately welfare-concerned as long as they get at least as much as their opponents. This

explains the cluster around (xh,xl) = (8,8). The ARDA players have a large difference

β−α and β slightly below 1, which explains the cluster around (xh,xl) = (10,0).

4 Predicting behavior in other games

In this section, we evaluate the adequacy of RDA in relation to existing theories in out-

of-sample tests. We use data sets from seminal papers that relate closely to multi-player

bargaining: the “simple tests” of Charness and Rabin (2002, CR02), which comprise mini

dictator, ultimatum and trust games, the three-player dictator games analyzed by Engel-

mann and Strobel (2004, ES04) to illustrate the limits of inequity aversion as a general

behavioral principle, and the three-player voting games analyzed by Bolton and Ocken-

fels (2006, BO06) in response to illustrate the limits of efficiency concerns. Clearly, any

such test may only be indicative of RDA’s general adequacy, although out-of-sample, but

the above experiments have been designed to constitute tough tests of social preference

theory, they insightfully highlight behaviors which current models struggle to explain, and

all these experiments intuitively relate to multi-person bargaining problems. We there-

fore believe that these data sets constitute a test bed for RDA that is both challenging and
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informative, in particular considering that we strictly focus on out-of-sample tests.

The “simple distribution experiments” of Engelmann and Strobel (2004) consist of

11 three-person dictator games of three types: taxation games, envy games, and rich-

poor games. Taxation games were designed to compare the relevance of two theories of

inequity aversion, namely ERC (Bolton and Ockenfels, 2000) and FS, while allowing for

efficiency concerns and maximin preferences as modeled by Charness and Rabin (2002).

Dictators choose between three allocations, one which is predicted by ERC and another

by FS inequity aversion—in half of the games efficiency or maximin predicts the same as

ERC and in the other half efficiency or maximin predicts the same as FS inequity aversion.

“Envy games” further test the robustness of efficiency concerns by having dictators choose

between inequitable but efficient allocations versus equitable but inefficient allocations, as

do “rich-poor games” which additionally are neutral to maximin preferences.

In the three-person “voting games” of Bolton and Ockenfels (2006), allocations are

determined by majority vote. There are two treatments: in the “straight mode”, subjects

knew their roles prior to voting, and in the “equal opportunity mode”, one’s actual role

was unknown prior to voting and there was an equal chance of being allocated to each

role (but votes are conditional on one’s eventual allocation). Each player chooses between

an equitable allocation (13,13,13) versus an efficient allocation (19,13,13) in Game I,

(27,1,17) in Game II, or (27,9,9) in Game III. Relative to individual payoffs under the

equitable allocation, the efficient allocation entails personal losses to none, majority, and

minority of the players in Games I, II and III, respectively. Personal losses are larger in

Game II than in Game III. These voting games analyze the tradeoff between equity and

efficiency.

The “simple tests” of Charness and Rabin (2002) consist of 32 games: dictator games

with two or three persons, and sequential-move response games with two or three persons.

In response games, the first mover chooses whether to stop the game or to let the second

mover choose. The second mover’s payoffs are identical across choices in some games,

and in others the second mover’s sacrifice helps or hurts the first mover.12 In addition to

tests of distributional and welfare concerns, response games allow for tests of reciprocity.

For each model, we determine predictions for each of the games and each of the roles.

We refer to models allowing for heterogeneous subject pools as “heterogeneous models”

and to models assuming homogeneous subject pools as “homogeneous models”. Besides

RDA, which is a heterogeneous model, we also report predictions based on ARDA or

12There were two games where the dictator’s payoffs were unknown, and so are not analyzed here.

19



RRDA separately of each other, which thus are homogeneous models. Throughout, we

stick with the parameter estimates obtained above, see Table 3, and we use “RDA” to refer

to the 55-45 mixture of RRDA and ARDA estimated above.13

In addition to predictions based on egoism (“Ego”) and FS inequity aversion (“In-

eqAv”), we also test a heterogeneous model that considers both types of subjects. This

follows Fehr and Schmidt (2010), who postulate that the subject pool consists of 60%

egoists and 40% inequity averse types, which have α = 2/(n− 1) and β = 0.6/(n− 1)

in Eq. (2). We refer to this heterogeneous model as “FS-Full”. In Charness and Rabin

(2002, Table VI), one of the best-fitting models and its respective parameters estimated

is their full reciprocity model (“CR-Full”) with α = −.023,β = .424,θ = −.111 in Eq.

(3). Its predictions are partially in-sample and pose a rather tough challenge for RDA’s

out-of-sample predictions. We also test predictions for CR02’s reciprocal charity “Rec-

Char” model, which nullifies envy by setting α = 0. CR02’s estimates for RecChar are

α = 0,β = .425,θ =−.089, and its predictions are identical to CR-Full’s in many games.

For all models and all games, we derive the unique predictions without noise and eval-

uate their adequacy using the quadratic scoring rule (Selten, 1998; Gneiting and Raferty,

2007).14 With G as the set of games considered here, A(g) as the action set in game g ∈ G,

n(a,g) as the number of subjects that chose a in g, and p(a,g) as the predicted probability

of a in g, the prediction scores are

Quadratic Score: SQ =− ∑
g∈G

∑
a∈A(g)

∑
b∈A(g)

n(a,g) ·
(

Ia=b − p(b,g)
)2
. (8)

Table 4 contains the overall scores, the scores for subsets of games, and in parentheses

bootstrapped p-values of tests of differences to RDA (if p < .1, then the respective model

fits significantly worse than RDA). The appendix contains the predictions of all models

for all games. The main results are clear-cut and systematic across data sets. First, the

heterogeneous models (RDA and FS-Full) fit better than all homogeneous models, but

only RDA does so significantly. Second, RDA also fits better than the heterogeneous

13The predictions are invariant to the set of parameter estimates chosen from Table 3, which are esti-

mated either with or without an additional component of inequity aversion. Reference points for ARDA

are, consistent with the definition given after Eq. (5) and with the random role allocation feature of both

experimental designs, the ex ante expectations prior to random role allocation, i.e. the equilibrium payoff of

payoff-maximizing players averaged across roles.
14We evaluate the predictions without noise, as noise parameters such as those estimated above or by

Charness and Rabin are not transferable across experiments. In case a model’s prediction is indeterminate,

we refine it in the sense of the respective theories. The Ego prediction is refined toward inequity aversion in

cases of indeterminacy.
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Table 4: Out-of-sample fit of social preference models models (negative Quadratic scores,

i.e. more is better), with p-values of significance in relation to RDA

Utility models
Ego ARDA RRDA RecChar CR-Full IneqAv RDA FS-Full RDA-Ego

Dictator Games ES04 −440.02
(0)

−317.68
(0)

−321.76
(0)

−361.78
(0.041)

−361.78
(0.041)

−488.02
(0)

−286.3
(−)

−444.84
(0)

−306.36
(0.353)

Voting Games BO06 −192.48
(0.072)

−195.36
(0.079)

−228
(0.009)

−192.48
(0.066)

−158.88
(0.39)

−228
(0.006)

−153.91
(−1)

−183.65
(0.152)

−183.65
(0.158)

Dictator Games CR02 −206
(0)

−190.48
(0)

−185.76
(0)

−166
(0)

−166
(0)

−293.6
(0)

−157.19
(−)

−197.84
(0.008)

−187.34
(0)

Response Games CR02, Pl. 1 −518.24
(0.344)

−672.4
(0.002)

−541.28
(0.099)

−480.4
(0.506)

−544.4
(0.249)

−652.16
(0.006)

−483.96
(−)

−380.77
(0.909)

−354.66
(0.976)

Response Games CR02, Pl. 2 −464.3
(0.015)

−516.46
(0.008)

−428.46
(0.042)

−627.42
(0)

−627.42
(0)

−547.9
(0.004)

−343.32
(−)

−416.14
(0.117)

−434.6
(0.031)

Overall −1821.04
(0)

−1892.38
(0)

−1705.26
(0)

−1828.08
(0)

−1858.48
(0)

−2209.68
(0)

−1424.69
(−1)

−1623.23
(0.056)

−1466.62
(0.356)

Note: Data sets are abbreviated as above: CR02 is Charness and Rabin (2002), ES04 is Engelmann and Strobel (2004), BO06 is Bolton and Ockenfels
(2006). Below the Quadratic Scores, the p-values of tests of H0 : Score (Model) ≤ Score (RDA) (obtained by bootstrapping, with 50.000 resamples,
using the scores of the various games as independent observations). The model abbreviations are as above, see e.g. Eq. (8). “RDA-Ego” is a mixture
of 60% Egoists and 40% RRDA, as a benchmark for the respective FS mixture.

Fehr-Schmidt model FS-Full. It improves on FS-Full in four of the five classes of games,

which we discuss in more detail shortly. The best-fitting homogeneous model is RRDA,

and quite surprisingly, it is the only model that improves upon Ego in this out-of-sample

test. As a homogeneous model, ARDA does not fit as well, but it complements RRDA

well, as the RRDA-ARDA mixture fits significantly better than RRDA overall.

Across the three sets of dictator and voting games, ARDA, RRDA, and the two recip-

rocal charity models fit about similarly well. Inequity aversion does substantially worse

than these models in these dictator games. As for CR02’s response games, ARDA and

RRDA predict player 2’s behavior rather well, while their predictions for player 1 are

rather weak. The strength of RDA, and in particular of RRDA, is therefore to explain

both behavior in generalized dictator games and the choices of player 2 in CR02’s re-

sponse games. This set of decisions comprises distributional choices, with and without

“contexts” such as a previous choice of a co-player. For this reason, we conclude that the

“context dependence” of distributional choice appears to be captured comparably well by

reference dependence of altruism.

The strength of charitable reciprocity and inequity aversion, in turn, is to explain the

behavior of player 1 in CR02’s response games. These choices appear to be characterized

by strategic or instrumental reciprocity in the sense of Blanco et al. (2011) and Cabral et al.

(2014). Table 3 shows that egoism also does fairly well in predicting the choices of player

1, and the only homogeneous model improving upon egoism in predicting strategic reci-

procity is the reciprocal charity model of Charness and Rabin. Amongst the heterogeneous

models, FS-Full captures strategic reciprocity particularly well. It appears that this is to be

attributed to its inclusion of egoism. To verify this, we estimated an “RDA-Ego” mixture

of 60% Egoists and 40% RRDA, i.e. a mixture that substitutes FS inequity aversion (In-

eqAv) with RRDA. This model fits substantially better than FS-Full, with respect to player
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1 in response games, although the RRDA-ARDA mixture we estimated above does not.

These results suggest that distributional choice and strategic reciprocity are governed by

different preference systems for a substantial number of players, confirming Blanco et al.

(2011) and Cabral et al. (2014).

5 Conclusion

In this paper, we experimentally analyzed bargaining under majority voting. The theoreti-

cal prediction that majority voting strongly favors the coalition formateur holds under both

payoff maximization and weakly concave utilities such as FS inequity aversion and CES

altruism. This renders majority rule theoretically unsuitable for facilitating equitably out-

comes, but previous experimental results suggest the contrary. The observed equity also

resembles similar outcomes in the field (Fréchette et al., 2005a). To ascertain its suitability

and allow development for practical use, underlying preferences need be understood.

We theoretically demonstrated how reference dependent altruism (RDA) potentially

explains majority bargaining behavior as observed in earlier experiments and the field.

Players are largely payoff concerned when their payoff is below their reference point and

largely efficiency concerned when their payoff is at or above their reference point. RDA

also is simple in that players are primarily payoff concerned and goal oriented, choosing

to benefit other players only if their personal goal is reached.

We set up a laboratory experiment with two treatments that, when analyzed in con-

junction, sharply separate existing theories and RDA for two kinds of reference points.

Thus, we were able to explicitly test whether RDA correctly predicts behavior in major-

ity bargaining. The observed votes and cluster areas of proposals are captured by RDA

in a manner that appears to be both qualitatively accurate and quantitatively fitting, with

pseudo-R2 around 90%. Thus, RDA is capable of capturing behavior in majority bar-

gaining. More generally, RDA appears to be a promising theory of behavior in random-

proposer bargaining, i.e. interactions where subjects experience both roles (proposer and

responder), where existing models are known to struggle with capturing behavior. Besides

majority bargaining as analyzed here, RDA also explains behavior in demand bargaining

(Breitmoser and Tan, 2013), in the wide selection of simple distribution and bargaining

games of Charness and Rabin (2002), where subject also play in both roles, and in the

three-player dictator and voting games of Engelmann and Strobel (2004) and Bolton and

Ockenfels (2006), where the ultimate roles are not assigned when decisions are made.
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Clearly, there is much scope for further tests of RDA, but since existing theories of social

preferences are known to fail to explain experimental results across this range of inter-

actions, the reported results are rather encouraging. RDA seems to enable substantial

progress in jointly explaining bargaining behavior and distributional choice, and in partic-

ular in explaining the alleged context dependence of inequity aversion, efficiency concerns,

and egoism across in these interactions.

To conclude, this study shows that majority voting is a mechanism that facilitates

inequity under self-interest and a variety of social preferences. Nevertheless, equity is

observed when other parties in society have the opportunity to be recognized as formateur,

suggesting that both formateurs and voters are reference dependent altruistic.
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Table 5: Predictions for the Engelmann-Strobel, Bolton-Ockenfels and Charness-Rabin games

Observations Predictions (Probability of a1)

#Subj a1 a2 a3 Ego ARDA RRDA RecChar CR-Full IneqAv RDA FS-Full RDA-Ego

Predictions for Dictator Games in Engelmann and Strobel (2004)

Tax-F 68 0.84 0.1 0.06 1 1 1 1 1 1 1 1 1

Tax-E 68 0.4 0.24 0.37 0 1 0 0 0 0 0.45 0 0

Tax-Fx 30 0.87 0.07 0.07 1 1 1 1 1 1 1 1 1

Tax-Ex 30 0.4 0.17 0.43 0 1 1 0 0 0 1 0 0.4

Envy-N 30 0.7 0.27 0.03 0 1 1 1 1 0 1 0 0.4

Envy-Nx 30 0.83 0.13 0.03 1 1 1 1 1 0 1 0.6 1

Envy-Ny 30 0.77 0.13 0.1 0 1 1 0 0 0 1 0 0.4

Envy-Nyi 30 0.6 0.17 0.23 0 1 1 1 1 0 1 0 0.4

RPG-R 30 0.27 0.2 0.53 1 1 1 1 1 1 1 1 1

RPG-P 30 0.6 0.07 0.33 0 1 1 1 1 0 1 0 0.4

RPG-Ey 30 0.4 0.23 0.37 0 1 1 0 0 0 1 0 0.4

Predictions for Voting Games in Bolton and Ockenfels (2006)

Player 1

Straight Game I 24 0.25 0.75 0 0 0 0 0 0 0 0 0

Straight Game II 24 0.33 0.67 0 0 0 0 0 0 0 0 0

Straight Game III 24 0.21 0.79 0 0 0 0 0 0 0 0 0

Equal Game I 24 0.12 0.88 0 0 0 0 0 0 0 0 0

Equal Game II 24 0.25 0.75 0 0 0 0 0 0 0 0 0

Equal Game III 24 0.17 0.83 0 0 0 0 0 0 0 0 0

Player 2

Straight Game II 24 0.88 0.12 1 0 1 1 1 1 0.55 1 1

Equal Game II 24 0.92 0.08 1 1 1 1 1 1 1 1 1

Player 3

Straight Game II 24 0.38 0.62 0 0 1 0 0 1 0.55 0.4 0.4

Equal Game II 24 0.25 0.75 0 0 1 0 0 1 0.55 0.4 0.4

Players 2 and 3

Straight Game I 48 0.48 0.52 1 0 1 1 0 1 0.55 1 1

Straight Game III 48 0.88 0.12 1 1 1 1 1 1 1 1 1

Equal Game I 24 0.17 0.83 1 0 1 1 0 1 0.55 1 1

Equal Game III 24 0.85 0.15 1 1 1 1 1 1 1 1 1

Predictions for Dictator Games in Charness and Rabin (2002)

DG2-Berk29 26 0.31 0.69 1 0 1 0 0 1 0.55 1 1

DG2-Barc2 48 0.52 0.48 1 1 1 1 1 1 1 1 1

DG2-Berk17 32 0.5 0.5 1 1 1 1 1 1 1 1 1

DG2-Berk23 36 1 0 1 1 1 1 1 0 1 0.6 1

DG2-Barc8 36 0.67 0.33 1 0 1 1 1 1 0.55 1 1

DG2-Berk15 22 0.27 0.73 1 0 0 0 0 0 0 0.6 0.6

DG2-Berk26 32 0.78 0.22 1 1 1 1 1 0 1 0.6 1

DG3-Berk24 24 0.54 0.46 1 1 1 1 1 1 1 1 1

Note: The action labeled “a1” corresponds with A in ES04 and BO06, and with O,L in CR; “a2” corresponds with B in ES04 and BO06, and E,R in CR02; “a3” corresponds with “C” in ES04. The listed
predictions concern the probability of a1; the remaining probabilities follow immediately considering that no theory uniquely predicts B in ES04.
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Observations Predictions (Probability of a1)

#Subj a1 a2 a3 Ego ARDA RRDA RecChar CR-Full IneqAv RDA FS-Full RDA-Ego

Predictions for Player 1 of Response Games in Charness and Rabin (2002)

RG2-Barc7 36 0.47 0.53 0 0 0 0 0 0 0 0 0

RG2-Barc5 36 0.39 0.61 0 0 1 1 1 1 0.55 0.4 0.4

RG2-Berk28 32 0.5 0.5 0 1 1 0 0 0 1 0 0.4

RG2-Berk32 26 0.85 0.15 1 1 0 1 1 0 0.45 0.6 0.6

RG2s-Barc3 42 0.74 0.26 1 0 0 1 1 0 0 0.6 0.6

RG2s-Barc4 42 0.83 0.17 1 1 1 1 1 0 1 0.6 1

RG2s-Berk21 36 0.47 0.53 1 0 0 1 1 0 0 0.6 0.6

RG2s-Barc6 36 0.92 0.08 1 0 1 1 1 1 0.55 1 1

RG2s-Barc9 36 0.69 0.31 1 0 0 0 0 0 0 0.6 0.6

RG2s-Berk25 32 0.62 0.38 1 0 0 0 0 0 0 0.6 0.6

RG2s-Berk19 32 0.56 0.44 1 0 0 0 0 0 0 0.6 0.6

RG2s-Berk14 22 0.68 0.32 1 1 1 1 1 0 1 0.6 1

RG2s-Barc1 44 0.96 0.04 1 0 1 1 1 1 0.55 1 1

RG2s-Berk13 22 0.86 0.14 1 0 1 1 1 1 0.55 1 1

RG2s-Berk18 32 0 1 0 0 0 0 1 0 0 0 0

RG2h-Barc11 35 0.54 0.46 0 1 0 0 0 0 0.45 0 0

RG2h-Berk32 36 0.39 0.61 0 1 0 0 0 0 0.45 0 0

RG2h-Berk27 32 0.41 0.59 0 0 0 1 1 1 0 0.4 0

RG2h-Berk31 26 0.73 0.27 0 1 1 1 1 1 1 0.4 0.4

RG2h-Berk30 26 0.77 0.23 0 1 1 1 1 0 1 0 0.4

RG3-Berk16 15 0.93 0.07 0 1 1 1 1 1 1 0.4 0.4

RG3-Berk20 21 0.95 0.05 0 1 1 1 1 1 1 0.4 0.4

Predictions for Player 2 of Response Games in Charness and Rabin (2002)

RG2-Barc7 36 0.06 0.94 1 0 1 0.5 0.5 1 0.55 1 1

RG2-Barc5 36 0.33 0.67 1 0 1 0 0 1 0.55 1 1

RG2-Berk28 32 0.34 0.66 0 0 0 0 0 0 0 0 0

RG2-Berk32 26 0.35 0.65 0 0 0 0 0 0 0 0 0

RG2s-Barc3 42 0.62 0.38 1 0 1 1 1 1 0.55 1 1

RG2s-Barc4 42 0.62 0.38 1 1 1 1 1 1 1 1 1

RG2s-Berk21 36 0.61 0.39 1 0 1 1 1 1 0.55 1 1

RG2s-Barc6 36 0.75 0.25 1 0 1 0 0 1 0.55 1 1

RG2s-Barc9 36 0.94 0.06 1 1 1 0 0 1 1 1 1

RG2s-Berk25 32 0.81 0.19 1 1 1 0 0 1 1 1 1

RG2s-Berk19 32 0.22 0.78 1 0 0 0 0 0 0 0.6 0.6

RG2s-Berk14 22 0.45 0.55 1 1 1 1 1 0 1 0.6 1

RG2s-Barc1 44 0.93 0.07 1 0 1 0 0 1 0.55 1 1

RG2s-Berk13 22 0.82 0.18 1 0 1 0 0 1 0.55 1 1

RG2s-Berk18 32 0.44 0.56 1 1 1 1 1 0 1 0.6 1

RG2h-Barc11 35 0.89 0.11 1 1 1 1 1 1 1 1 1

RG2h-Berk32 36 0.97 0.03 1 1 1 1 1 1 1 1 1

RG2h-Berk27 32 0.91 0.09 1 1 1 1 1 0 1 0.6 1

RG2h-Berk31 26 0.88 0.12 1 1 1 1 1 0 1 0.6 1

RG2h-Berk30 26 0.88 0.12 1 1 1 1 1 0 1 0.6 1

RG3-Berk16 15 0.8 0.2 0 0 0 0 0 0 0 0 0

RG3-Berk20 21 0.86 0.14 1 1 1 0 0 1 1 1 1
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Overview

Section 2 contains the experimental instructions for the treatment PB95. Section

3 provides basic strategy estimates and shows that stationarity and truncation

consistency are not violated significantly. Section 4 describes the structural model

used in the analysis (stationary nested logit equilibrium). Sections 5 and 6 contain

the Tables with goodness-of-fit measures and parameter estimates for all models

reported in the paper and a few additional models that we estimated to verify the

robustness of the conclusions drawn in the paper. These tables are directly based

on the output of the scripts that we used to run the optimization, which avoids the

possibility of mistakes due to retyping the results.
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List of Tables

1 Goodness of fits of logit and nested logit models . . . . . . . . . . . . 10

2 Goodness of fits of mixed multi-type models . . . . . . . . . . . . . . 10

3 Goodness of fits of heterogenous models . . . . . . . . . . . . . . . . . 10

4 Parameter estimates for logit and nested logit models without mix-

ture of motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Two-type mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Three-type mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Four-type mixed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Heterogenous models (proposer and voters may have different

preferences). Does not improve goodness-of-fit . . . . . . . . . . . . . 16

9 Estimates for models with time-dependent parameters. All param-

eters x ∈ {λ,α,β} have an initial value and a time dependency

parameter κx ; the parameter value in game g is x + κx · g. The

goodness-of-fit does not improve significantly over the constant

models, suggesting that parameters do not change significantly. . . 18

1 Overview of tables

• Tables 1 and 4 contain the ICL-BIC measures for the goodness-of-fit and the

parameter estimates (respectively) of the models where all components are

based on the same social motive.

• Tables 2, 5, 6, and 7 contains the ICL-BIC measures and parameter estimates

of the models with up to four components and mixtures of social motives.

• Tables 3 and 8 contain the ICL-BIC measures for the goodness-of-fit and

the parameter estimates (respectively) of the heterogenous models where

proposers and voters may have different motives.

• Table 9 contains the estimates of models with time-dependent parameters.

The key used to distinguished these models is self-explanatory and equivalent

to the one used in the paper. The notation of the RDA utility functions is slightly

2



different than in the paper. Here, they are defined as follows.

UARDA
i (x) = x i+α

∑

j 6=i

x j · Ix i≥x∗
i
+β
∑

j 6=i

x j · Ix j<x∗
i

(1)

URRDA
i (x) = x i−α

∑

j 6=i

x j · Ix i<x j
−β
∑

j 6=i

x j · Ix i≥x j
, (2)
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2 Experimental instructions for PB95

The following is a literal translation of the experimental instructions for PB95. The

original instructions and control questionnaires (in German) for all treatments are

available from the authors.

Instructions

You are participating in an experiment on decision making. The experiment is

divided into 10 stages. In each stage you are assigned to one of four groups by

the computer, with 3 participants per group (including you). After each stage you

are assigned to a new group. You are paid based on a randomly chosen “payment

stage.” You are paid your payment from this stage in Euros. In addition, you get 4

Euros that are independent of your actions.

Your task In each stage, 24 Euros are to be allocated. First, one participant is

assigned the A role, and the other two group members are assigned the B role.

These assignments are random, and all group members have the same probability

of being assigned the A role. The A participant makes a proposal on how to allocate

the 24 Euros. Then, the B participants vote on the proposal, with either “yes” or

“no.” If at least one B participant agrees with the proposal (i.e. votes “yes”), then

the allocation is implemented and the stage ends. If no B participant votes “yes,”

then

• with 95% probability and new round starts, where again a player is assigned

the A role randomly, and

• with 5% probability the current stage ends. In this case, all participants

obtain 0 Euros.

General remarks In each stage the three members of a group are referred to

as Participant 1, Participant 2, and Participant 3. The numbering is random, and

it is made whenever a new group is formed (i.e. in the beginning of each stage).

Thus, it may happen that you are referred to as Participant 3 in one stage and as

Participant 1 in another. The numbering is held constant for the duration of a stage.

The assignment of A and B roles is independent of the numbering, i.e. in the first

round of a stage Participant 2 may be assigned the A role and in a possible second

round this may be Participant 3. It may also happen that one of the participants is

assigned the A role in two or more consecutive rounds (while multiple successive

assignments are relatively unlikely).
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As for the allocation proposed by the A participant, the following is to be

acknowledged. No participant may be allocated less than 0 Euros, no one may be

allocated more than 24 Euros, and in total no more than 24 Euros can be allocated.

It is not mandatory that the whole 24 Euros are allocated. It is possible to allocate

fractional numbers such as “0.80” (= 0 Euros and 80 cents). Fractions of a cent

may not be allocated.

3 Basic characteristics of subjects’ strategies

We estimate the strategies by considering regression models that include a range

of independent variables that may be relevant for the strategic task at hand, i.e. we

include the variables that should be strategically relevant by theory and others that

could have been relevant for the subjects. We control for the game number minus 1

within the session (=G), for the round number minus 1 within the game (=R), and

for the interdependence induced by the experimental design (by considering two

levels of random effects, “Session” and “Subjects within Session”). The proposals

are denoted as (xp, xh, x l) as in the paper; the components refer to the proposer

share, the higher offer to a voter, the lower offer to a voter (respectively). In case

of x l , we also control for an interaction with xh. Significance at the 5% level is

denoted by ∗ and significance at the 1% level by ∗∗. Due to the multiplicity of tests

made in this section, we require significance at the 1% level for significant results.1

xp = 11.121∗∗
(0.4708)

− 0.7479
(0.6367)

·G−1 − 0.6157
(0.3637)

·R (3)

xh= 9.1337∗∗

(0.3307)
− 1.7445∗∗

(0.4974)
·G−1+ 0.2521

(0.2844)
·R (4)

x l = 6.8040∗∗

(0.8687)
+ 0.8941
(0.6272)

·G−1 + 0.4254
(0.3506)

·R− 0.3535∗∗
(0.0816)

· xh (5)

The intercept represents the initial proposal, i.e. the average proposal in the first

round of the first game (aside from the interaction with xh). The initial value of xh

is about as predicted, but it increases significantly (albeit small in absolute terms)

as the subjects gain experience. In addition, there is a strong crowding-out effect

between security in vote buying (increasing xh) and non-strategic giving to the

third player (x l). The round index R in Eqs. (3)–(5) is insignificant, indicating that

stationarity is not significantly violated.

Result 1. There is no significant round effect in the proposal functions in PB95, which

indicates that stationarity is not violated.

1This corresponds approximately with both the Bonferroni correction and the Sidak correction

for 5-6 tests where the probability of a false positive is supposed to be at 0.05.
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In PB00, the estimated proposal functions differ only slightly (note that the

round number R is dropped, since there is just a single round in these games).

xp = 11.187∗∗

(0.5379)
− 3.2105∗∗
(0.7827)

·G−1 (6)

xh= 9.5751∗∗

(0.3891)
− 2.5177∗∗

(0.6731)
·G−1 (7)

x l = 4.4923∗∗

(1.1133)
+ 2.5508∗∗
(0.8666)

·G−1− 0.1147
(0.1003)

· xh (8)

Compared to PB95, there is no significant crowding out between xh and x l , and

the increase of xp and xh as the subjects gain experience is sharper, again at the

expense of the non-strategic donation x l toward the third player.2

To ascertain truncation consistency, we test whether the proposal functions

estimated above, Eqs. (3)–(5) and Eqs. (6)–(8), differ significantly. To this end, we

compare the model where the proposal function coefficients depend on treatment

(PB95 or PB00) with the simpler model where the coefficients do not depend on

treatment. In likelihood-ratio tests, the differences are insignificant at the .01

level in all three dimensions, but they are close to that threshold with respect to

x l (the p-values of the likelihood-ratio tests are p= .064 for xp, p= .24 for xh,

and p= .011 for x l). Also in view of the non-parametric tests supporting Result

3.1, we conclude that the proposal functions do not violate truncation consistency,

especially with respects to xp and xh.

Result 2. Proposal functions do not differ significantly between PB95 and PB00,

which indicates that truncation consistency is not violated.

We now turn to the voting functions. We model the voting decisions using

binomial logit regression with random effects as described above. We consider G,

R, the own payoff x i as proposed, the proposer’s payoff xp, an indicator IC P that is

1 iff x i ≥ 7.60 (which is the expected continuation payoff), and indicator Ih that

is 1 iff one has the high payoff under the proposal in the sense x i =max{x1, x2}.

Theoretically, only IC P should be significant. The estimated voting function in

PB95 is (where =̂ represents the logit link)

σv =̂ − 2.6013∗∗
(0.7440)

+ 1.7477∗∗

(0.5002)
·G−1+ 0.1747

(0.2797)
·R + 1.6930∗∗

(0.3812)
· IC P

+ 0.5899∗∗

(0.0919)
· x i − 0.2647∗∗

(0.0506)
· xp+ 1.0692∗∗

(0.3931)
· Ih (9)

2The fact that these effects do not add up to 0 numerically relates to the observation that the

subjects get better in hitting the ¤24 available overall as the sessions progress.
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and the voting function in PB00 is

σv =̂ − 4.6670∗∗

(1.3766)
+ 2.6185∗
(1.0606)

·G−1 + 3.1550∗∗
(0.8251)

· IC P

+ 0.4891∗∗

(0.1588)
· x i − 0.0582

(0.0962)
· xp − 0.9085

(0.8379)
· Ih. (10)

Result 3. There is no significant round effect in the voting functions in PB95, which

indicates that stationarity is not violated.

The acceptance probability in PB95 depends negatively on the proposer’s

payoff xp and on whether x i ≥ x j (i.e. that one has been offered the high payoff),

suggesting fairness-like concerns albeit not the type predicted by inequity aversion.

The hypothesis that the coefficients of these voting functions equate between the

treatments using likelihood-ratio tests cannot be rejected at the maintained .01

level (p= .026).

Result 4. Voting functions in PB95 and PB00 do not differ significantly, which

indicates that truncation consistency is not violated.

4 Stationary (nested) logit equilibrium

Given a utility function ui :RN →R for player i ∈ N and well-defined continuation

strategies, let vi(x) denote the expected utility of i as a proposer when proposing

x∈X. Player i chooses the proposal to maximize the random utility ṽi(x) = vi(x)+

εi,x, where εi,x has generalized extreme value (GEV) distribution (McFadden,

1978). This model yields the family of GEV proposal functions. If (εi,x) have

extreme value distribution, multinomial logit choices result, i.e.

σi(x) = exp{λ · vi(x)}/
∑

x̃∈X

exp{λ · vi(x̃)} ∀x∈X. (11)

To define the nesting structure in nested logit equilibrium, let ũ denote the

continuation utilities (which is symmetric between players). Two proposals x′,x′′ ∈

X are in the same subset Y∈ Y if and only if ui(x
′)≥ ũ⇔ ui(x

′′)≥ ũ for i = 1,2.

Given Y, two proposals x′,x′′ ∈ Y are in the same subset Z ∈ Z(Y) if and only if

⌊x ′
i
/2⌋= ⌊x ′′

i
/2⌋ for i = 1,2.

Now, we can define the nested logit choice probability (McFadden, 1984) of

proposal x= (xp, x1, x2). Let u1(x) and u2(x) denote the respective utilities of

voter 1 and 2. The probability of choosing x∈X is

σi(x) =Q (x | Z) ·Q (Z | Y) ·Q (Y) (12)
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for x∈ Z, Z∈ Z(Y), and Y∈ Y, with

Q (x | Z) = exp
�

λp · vi(x)
	

/pZ pZ=
∑

x̃∈Z

exp
�

λp · vi(x̃)
	

Q (Z | Y) = exp
�

ρ′ · ln pZ

	

/pY pY=
∑

Z̃∈Z(Y)

exp
�

ρ′ · ln pZ̃

	

Q (Y) = exp
�

ρ′′ · ln pY

	

/p p=
∑

Ỹ∈Y

exp
�

ρ′′ · ln pỸ

	

,

where (λp,ρ′,ρ′′) are precision and interdependence parameters.3 Multinomial

logit results if ρ′=ρ′′= 1, while violations of multinomiality result for ρ′,ρ′′ ∈

(0,1).

Following the majority bargaining literature, we focus on symmetric equilibria.

That is, all players have the same preferences and the same proposal and voting

functions. Symmetric (stationary) QREs of our random-proposer games are fully

characterized by a duple (σp,σv), where σp ∈∆(X) is the proposal function (of

each player), and σv : X→ [0,1] is the voting function. As above, U : X→ R

denotes the players’ utility function.4 Define ũ ∈ R as the disagreement utility

under (σp,σv), i.e. the expected utility in case the next proposal is not accepted,

and initially let us take it as given. The logit voting function σv solves5

σv(x
1|ũ) =

exp{λv ·U(x1)}

exp{λv ·U(x1)}+ exp{λv(σv(x
2|ũ)∗U(x1)+ (1−σv(x

2|ũ))∗ ũ)}
.

(13)

The corresponding probability that x will be accepted, conditional on ũ and σv, is

Pr(x) = 1−
�

1−σv

�

x1|ũ
�� �

1−σv

�

x2|ũ
��

. (14)

and thus the expected utility of the proposer from proposing x∈X is

vi(x) = Pr(x) ·ui(x)+ (1− Pr(x)) · ũ. (15)

Given vi, the proposal function σp is defined by Eq. (12). We allow for het-

erogenous precision parameters λp and λv for proposers and voters, respectively,

3McFadden (1984, p. 1422ff) provides the distribution of the random utility component that

gives rise to this three-level nested logit model.
4Also as above, the argument of U(x), i.e. x= (x1, x2, x3), is understood to have the payoff of

the respective player as x1, and the opponents’ payoffs as x2 and x3. We assume U(x1, x2, x3) =

U(x1, x3, x2).
5The following expression uses a notation of permutations of x∈X. In general, x is in the order

(xp, x1, x2), i.e. the first value refers to the proposer, the second value to the first voter, and the

third value to the second voter. We define x1 := (x1, xp, x2) and x2 := (x2, xp, x1).
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because their choice problems have different complexity (following e.g. Rogers

et al., 2009). Finally, let u ∈RN denote the expected payoff of all i ∈ N under

(σp,σv), and define

u=δ ·(u1+ u2+ u3)/3+ (1−δ) ·U(0,0,0). (16)

In any stationary QRE of PB95, ũ= u. We determine the equilibrium (σp,σv) by

function iteration using the starting value ũ=U(7,7,7). The stationary equilibrium

is unique if and only if the voting equilibria (13) are unique for all proposals x∈X,

but conditions for the latter do not seem available. In our computations, the

function iteration generally converged quickly to the fixed point (ũ= u), which

suggests that the equilibrium is stable and locally unique.6

The strategy profile (σp,σv) is the symmetric QRE of PB00 for ũ=U(7.6,7.6,7.6).
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5 Overview model fit (BIC)

The following tables complement those of the paper by providing the BIC measures

for goodness-of-fit.

Table 1: Goodness of fits of logit and nested logit models

Number of types

Logit Eq. One Two Three

CES 4513 3993 3869 3672

Ineq 4571 3836 3685 3640

RRDA 4132 3668 3454 3464

ARDA 4344 3622 3469 3481

Table 2: Goodness of fits of mixed multi-type models

Added type

CES IneqAv RRDA ARDA

CES + 3869 3719 3574 3593

IneqAv + 3719 3685 3520 3510

RRDA + 3574 3520 3454 3396

ARDA + 3593 3510 3396 3469

CES + IneqAv + 3711 3715 3488 3509

CES + RRDA + 3475 3487 3493 3396

IneqAv + ARDA + 3509 3496 3382 3501

RRDA + ARDA + 3396 3383 3387 3402

Table 3: Goodness of fits of heterogenous models

Voter type

Proposer CES IneqAv RRDA ARDA

CES + 3996 3936 4164 4099

IneqAv + 3741 3839 3709 3547

RRDA + 3748 3835 3650 3605

ARDA + 3756 3910 3784 3597

10



6 Parameter estimates

The notation of the RDA utility functions is slightly different than in the paper.

Here, they are defined as follows.

UARDA
i (x) = x i+α

∑

j 6=i

x j · Ix i≥x∗
i
+β
∑

j 6=i

x j · Ix j<x∗
i

(17)

URRDA
i (x) = x i−α

∑

j 6=i

x j · Ix i<x j
−β
∑

j 6=i

x j · Ix i≥x j
, (18)

Table 4: Parameter estimates for logit and nested logit models without mixture of

motives

Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

CES models

CES 1 1
(NaN)

19.811
(0.051)

6.618
(0.018)

0.66
(0.001)

0.957
(0.001)

4513.13

−4497.99

0.645

CES 1 1
(NaN)

26.479
(0.017)

0.224
(0)

0.635
(0.002)

0.982
(0.003)

0.628
(0)

0.778
(0)

3992.96

−3970.25

0.7937

CES +

CES

1 0.817
(NaN)

46.219
(0.372)

0.246
(0)

0.989
(0.001)

0.906
(0.007)

0.654
(0)

0.929
(0)

2 0.183
(0.04)

0.143
(0.004)

0.002
(0.003)

0.461
(0.008)

0.218
(0.004)

0.406
(0.001)

0.905
(0)

3890.92

−3820.25

0.8232

CES +

CES +

CES

1 0.454
(NaN)

46.717
(0.338)

0.271
(0)

0.907
(0.002)

13.22
(0.121)

0.659
(0)

0.939
(0)

2 0.336
(0.053)

2.128
(0.001)

0.192
(0.001)

0.007
(0.002)

0.026
(0.002)

0.288
(0)

1.163
(0)

3 0.21
(0.046)

3.592
(0.05)

0.147
(0.001)

0.033
(0.001)

0.269
(0.002)

0.032
(0.001)

1.327
(0.01)

3702.54

−3596.73

0.8595

IneqAv models

IneqAv 1 1
(NaN)

3.721
(0.051)

0.001
(0)

0
(0)

0.382
(0.002)

4570.67

−4555.53

0.6233

IneqAv 1 1
(NaN)

4.181
(0)

0.155
(0.002)

0.013
(0)

0.524
(0.006)

0.006
(0)

0.052
(0)

3835.85

−3813.13

0.8245

IneqAv +

IneqAv

1 0.608
(NaN)

6.188
(0.006)

0.137
(0.002)

0.013
(0.001)

0.57
(0.004)

0.001
(0)

0.071
(0.001)

2 0.392
(0.052)

3.712
(0.043)

0.258
(0.003)

0.714
(0.006)

0
(0)

0.504
(0)

0.532
(0)

3700.56

−3635.31

0.8538

IneqAv +

IneqAv +

IneqAv

1 0.46
(NaN)

7.068
(0.062)

0.148
(0.001)

0.038
(0)

0.458
(0.002)

0.055
(0.002)

0.049
(0)

2 0.391
(0.052)

7.756
(0.092)

0.244
(0.003)

0.756
(0.001)

0
(0)

0.599
(0.001)

0.444
(0)

3 0.149
(0.039)

2.352
(0.014)

0.158
(0.001)

0.049
(0.002)

1.376
(0.009)

0.021
(0)

0.18
(0.002)

3666.14

−3564.36

0.8641

RRDA models

continued on next page

11



Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

RRDA 1 1
(NaN)

5.173
(0.023)

0.308
(0.001)

−1.014
(0.002)

−1.106
(0.002)

4131.97

−4116.82

0.7601

RRDA 1 1
(NaN)

2.812
(0.015)

0.174
(0.001)

0.124
(0)

0.088
(0)

−0.357
(0)

−0.899
(0)

3668.32

−3645.6

0.8523

RRDA +

RRDA

1 0.718
(NaN)

3.745
(0.022)

0.17
(NaN)

0.113
(NaN)

0.013
(NaN)

−0.335
(NaN)

−1.118
(0)

2 0.282
(0.045)

3.483
(0.066)

0.18
(0.003)

0.203
(0)

1.922
(0)

−0.407
(0)

−0.416
(0)

3469.22

−3404.59

0.8847

RRDA +

RRDA +

RRDA

1 0.549
(NaN)

8.06
(0.097)

0.179
(0.001)

0.349
(0.003)

0
(NaN)

0.4
(NaN)

−0.975
(0.003)

2 0.184
(0.042)

0.813
(0.018)

0.135
(0.003)

0.153
(0.002)

0.008
(0.001)

0.353
(0.006)

0.079
(0.002)

3 0.267
(0.049)

5.163
(0.067)

0.145
(0.002)

0.007
(0.001)

1.008
(0.005)

−0.131
(0.001)

−0.147
(0)

3486.81

−3388.14

0.8867

ARDA models

ARDA 1 1
(NaN)

4.112
(0.012)

0.412
(0.006)

1.056
(0.006)

0.989
(0.002)

4344.01

−4328.86

0.7017

ARDA 1 1
(NaN)

3.734
(0.024)

0.11
(0)

0.184
(0.001)

0.181
(0.001)

0.962
(0.005)

0.375
(0)

3621.68

−3598.96

0.8592

ARDA +

ARDA

1 0.566
(NaN)

4.26
(0.039)

0.122
(0)

0.053
(0.002)

0.072
(0.002)

0.957
(0.029)

0.234
(0)

2 0.434
(0.054)

4.268
(0.028)

0.163
(0.001)

0.259
(0.011)

1.384
(0.029)

0.49
(NaN)

0.4
(NaN)

3488.86

−3419.37

0.883

ARDA +

ARDA +

ARDA

1 0.526
(NaN)

4.486
(0.029)

0.132
(0.001)

0.082
(0.001)

0.091
(0.001)

0.967
(0.007)

0.368
(0)

2 0.373
(0.055)

4.34
(0.072)

0.187
(0.001)

0.199
(0.001)

1.146
(0.002)

0.454
(0.002)

0.375
(0)

3 0.101
(0.035)

0.63
(0.069)

0.089
(0.005)

0.288
(0.015)

0.203
(0.012)

−0.015
(0.009)

−0.505
(0.001)

3512.42

−3405.69

0.8846

Table 5: Two-type mixed models

Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

CES + . . .

CES +

CES

1 0.817
(NaN)

46.219
(0.05)

0.246
(0.001)

0.989
(0.003)

0.906
(0.002)

0.654
(0)

0.929
(0)

2 0.183
(0.04)

0.143
(0.003)

0.002
(0.001)

0.461
(0.019)

0.218
(0.005)

0.406
(0)

0.905
(0)

3890.93

−3820.27

0.8232

CES + In-

eqAv

1 0.326
(NaN)

29.01
(0.06)

0.356
(0)

0.634
(0.001)

5.34
(0.037)

0.654
(0.001)

0.776
(0.001)

2 0.674
(0.049)

5.974
(0.019)

0.153
(0)

0.002
(0)

0.435
(0)

0.015
(0)

0.066
(0)

3730.59

−3669.38

0.8486

CES +

RRDA

1 0.318
(NaN)

28.578
(0.024)

0.291
(0.001)

0.675
(0.004)

8.953
(0.111)

0.655
(0)

0.86
(0)

2 0.682
(0.054)

4.189
(0.051)

0.168
(0.001)

0.118
(0.001)

0.065
(0.002)

−0.327
(NaN)

−0.679
(0.005)

3591.86

−3524.56

0.8696

CES +

ARDA

1 0.134
(NaN)

27.74
(0.174)

0.251
(0.001)

0.631
(0)

4.852
(0.013)

0.643
(0)

0.727
(0.002)

continued on next page
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Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

2 0.866
(0.034)

3.502
(0.021)

0.16
(0.001)

0.112
(0)

0.173
(0)

0.885
(0.004)

0.368
(0)

3607.17

−3543.43

0.867

IneqAv + . . .

IneqAv +

CES

1 0.675
(NaN)

6.124
(0.203)

0.149
(0.005)

0.003
(0.004)

0.433
(0.006)

0.015
(0)

0.065
(0)

2 0.325
(0.049)

32.592
(0.034)

0.357
(0.001)

0.633
(0.003)

4.495
(0.053)

0.654
(0)

0.779
(0)

3730.81

−3669.48

0.8486

IneqAv +

IneqAv

1 0.602
(NaN)

6.163
(0.007)

0.136
(0)

0.02
(0)

0.569
(0.002)

0.003
(0)

0.071
(0)

2 0.398
(0.052)

3.712
(0)

0.239
(0)

0.691
(0.01)

0
(0)

0.511
(0.007)

0.541
(0)

3701.2

−3635.59

0.8538

IneqAv +

RRDA

1 0.258
(NaN)

2.596
(0.086)

0.188
(0.004)

0.096
(NaN)

2.445
(0.034)

0.011
(NaN)

0.046
(NaN)

2 0.742
(0.047)

5.928
(0.072)

0.133
(0.004)

0.097
(0.001)

0
(0)

−0.438
(0.003)

−1.141
(0.011)

3534.5

−3470.35

0.8767

IneqAv +

ARDA

1 0.34
(NaN)

8.373
(0.019)

0.131
(0.001)

0.008
(0)

0.466
(0.003)

0.023
(0)

0.071
(0)

2 0.66
(0.05)

2.547
(0.012)

0.122
(0.001)

0.005
(0.001)

0.168
(0.001)

1.102
(0.009)

0.337
(0)

3524.85

−3460.97

0.8778

RRDA + . . .

RRDA +

CES

1 0.693
(NaN)

4.121
(0.02)

0.175
(NaN)

0.12
(0.001)

0.062
(NaN)

−0.325
(NaN)

−0.678
(0.003)

2 0.307
(0.052)

28.717
(0.298)

0.281
(0.001)

0.684
(0.001)

8.95
(0.072)

0.641
(0)

0.87
(0)

3591.48

−3524.66

0.8696

RRDA +

IneqAv

1 0.746
(NaN)

5.878
(0.014)

0.133
(0.001)

0.097
(0.001)

0
(0)

−0.422
(0.003)

−1.115
(0.001)

2 0.254
(0.047)

2.579
(0)

0.188
(0)

0.097
(0.001)

2.444
(0.071)

0.012
(0.001)

0.046
(0.001)

3534.87

−3470.54

0.8766

RRDA +

RRDA

1 0.718
(NaN)

3.745
(0.032)

0.17
(NaN)

0.113
(NaN)

0.013
(NaN)

−0.335
(NaN)

−1.118
(0)

2 0.282
(0.045)

3.483
(0.039)

0.18
(0.002)

0.203
(0)

1.922
(0)

−0.407
(0)

−0.416
(0)

3469.22

−3404.59

0.8847

RRDA +

ARDA

1 0.552
(NaN)

5.542
(0.093)

0.145
(0.004)

0.101
(0.001)

0.001
(0.002)

−0.27
(0.002)

−0.998
(0.007)

2 0.448
(0.054)

3.332
(0.042)

0.119
(0)

0.088
(0)

0.317
(0.002)

0.795
(0.006)

0.334
(0)

3415.11

−3346.74

0.8914

ARDA + . . .

ARDA +

CES

1 0.866
(NaN)

3.501
(0.003)

0.16
(0)

0.111
(0)

0.173
(0)

0.885
(0.001)

0.367
(0)

2 0.134
(0.034)

27.741
(0.089)

0.251
(0.001)

0.631
(0.003)

4.852
(0.053)

0.643
(0)

0.727
(0.001)

3607.18

−3543.45

0.867

ARDA +

IneqAv

1 0.66
(NaN)

2.546
(0.055)

0.122
(0.001)

0.011
(0.001)

0.168
(0.001)

1.101
(0.058)

0.334
(0)

2 0.34
(0.05)

8.34
(0.329)

0.133
(0.002)

0.007
(0.004)

0.466
(0.019)

0.026
(0.003)

0.069
(0.005)

3524.8

−3461.07

0.8778

ARDA +

RRDA

1 0.448
(NaN)

3.332
(0.042)

0.119
(0)

0.088
(0)

0.317
(0.002)

0.795
(0.006)

0.334
(0)

2 0.552
(0.054)

5.542
(0.093)

0.145
(0.004)

0.101
(0.001)

0.001
(0.002)

−0.27
(0.002)

−0.998
(0.007)

3415.11

−3346.74

0.8914

ARDA +

ARDA

1 0.566
(NaN)

4.26
(0.025)

0.122
(0.002)

0.053
(0.001)

0.072
(0)

0.957
(0.004)

0.234
(0)

2 0.434
(0.054)

4.268
(0.017)

0.163
(0.001)

0.259
(0.001)

1.384
(0.008)

0.49
(NaN)

0.4
(NaN)

3488.85

−3419.37

0.883

13



Table 6: Three-type mixed models

Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

CES + Inequity Aversion + . . .

CES +

IneqAv +

CES

1 0.124
(NaN)

29.019
(0.063)

0.353
(0.003)

0.638
(0.002)

7.398
(0.037)

0.657
(0)

0.916
(0)

2 0.678
(0.056)

5.922
(0.045)

0.156
(0.001)

0.003
(0.001)

0.431
(0.005)

0.014
(0.001)

0.064
(0)

3 0.198
(0.058)

20.875
(0.085)

0.318
(0.001)

0.644
(0.002)

0.958
(0.007)

0.628
(0)

0.735
(0)

3744.59

−3635.41

0.8538

CES +

IneqAv +

IneqAv

1 0.171
(NaN)

41.84
(0.105)

0.364
(0)

0.632
(0.001)

5.421
(0.059)

0.65
(0)

0.805
(0)

2 0.637
(0.055)

7.079
(0.082)

0.153
(0)

0.005
(0.001)

0.439
(0.005)

0.016
(0.001)

0.067
(0.001)

3 0.192
(0.053)

3.111
(0.098)

0.153
(0.003)

0.032
(0.003)

0.521
(0.013)

0
(0.002)

0.198
(0.007)

3750.76

−3639.68

0.8532

CES +

IneqAv +

RRDA

1 0.146
(NaN)

28.331
(0.068)

0.304
(0)

0.679
(0)

9.137
(0.004)

0.667
(0)

0.884
(0)

2 0.195
(0.04)

4.176
(0.003)

0.272
(0.002)

0.035
(0.001)

0.541
(0.001)

0.034
(0)

0.044
(0)

3 0.659
(0.05)

4.24
(0.068)

0.198
(0)

0.101
(0.001)

0.039
(0.001)

−0.322
(0.003)

−1.019
(0.001)

3513.83

−3411.81

0.8839

CES +

IneqAv +

ARDA

1 0.064
(NaN)

20.263
(0.006)

0.24
(0)

0.635
(0)

2.465
(0.001)

0.667
(0)

0.874
(0)

2 0.309
(0.048)

8.874
(0.026)

0.127
(0.001)

0.006
(0.001)

0.456
(0.002)

0.02
(0.001)

0.071
(0.001)

3 0.627
(0.051)

2.589
(0.002)

0.129
(0)

0.018
(0.001)

0.147
(0.001)

1.203
(0.005)

0.346
(0)

3533.83

−3432.93

0.8813

CES + RRDA + . . .

CES +

RRDA +

CES

1 0.269
(NaN)

31.285
(0.047)

0.299
(0)

0.669
(0.001)

12.829
(0.027)

0.66
(0)

1.003
(0.001)

2 0.664
(0.05)

4.373
(0.041)

0.167
(0.001)

0.07
(0)

0.004
(0.001)

−0.345
(0.002)

−1.092
(0)

3 0.066
(0.028)

21.068
(0.085)

0.309
(0.003)

0.61
(0.006)

0.949
(0.016)

0.593
(0.001)

0.6
(0.001)

3500.23

−3399.68

0.8853

CES +

RRDA +

IneqAv

1 0.146
(NaN)

28.331
(0.008)

0.304
(0)

0.679
(0)

9.137
(0.003)

0.667
(0)

0.884
(0)

2 0.659
(0.051)

4.24
(0.06)

0.198
(0.002)

0.101
(0.001)

0.039
(0)

−0.322
(0.002)

−1.019
(0.004)

3 0.195
(0.042)

4.176
(0.033)

0.272
(0.002)

0.035
(0.001)

0.541
(0.005)

0.033
(0)

0.044
(0)

3513.64

−3411.55

0.8839

CES +

RRDA +

RRDA

1 0.161
(NaN)

28.22
(0.216)

0.314
(0.001)

0.653
(0.001)

11.618
(0.087)

0.65
(0)

0.923
(0.001)

2 0.637
(0.057)

4.237
(0.061)

0.16
(0.002)

0.127
(0.001)

0.03
(0.001)

−0.317
(0.005)

−1.076
(0)

3 0.202
(0.054)

3.001
(0.002)

0.196
(0)

0.148
(0)

0.13
(0)

−0.252
(0)

−0.572
(0)

3531.01

−3417.68

0.8832

CES +

RRDA +

ARDA

1 0.062
(NaN)

30.315
(0.099)

0.201
(0.001)

0.78
(0.004)

0.956
(0.015)

0.639
(0)

0.751
(0.001)

2 0.484
(0.055)

5.213
(0.015)

0.138
(0.001)

0.097
(0.001)

0
(0)

−0.274
(0.001)

−1.001
(0.007)

3 0.454
(0.055)

3.361
(0.002)

0.133
(0.001)

0.08
(0)

0.351
(0.002)

0.805
(0)

0.334
(0)

3423.75

−3320.16

0.8943

Inequity Aversion + ARDA + . . .

IneqAv +

ARDA +

CES

1 0.309
(NaN)

8.874
(0.053)

0.127
(0.001)

0.006
(0)

0.456
(0.004)

0.02
(0)

0.071
(0)

2 0.627
(0.051)

2.589
(0.057)

0.129
(0.002)

0.018
(0.005)

0.147
(0)

1.203
(0.012)

0.346
(0)
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Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

3 0.064
(0.024)

20.263
(0.006)

0.24
(0)

0.635
(0.003)

2.465
(0.016)

0.667
(0)

0.874
(0)

3533.8

−3432.9

0.8813

IneqAv +

ARDA +

IneqAv

1 0.32
(NaN)

8.342
(0.005)

0.131
(0)

0.013
(0)

0.515
(0.001)

0.002
(0)

0.078
(0)

2 0.627
(0.052)

3.179
(0.018)

0.141
(0.001)

0.004
(0.001)

0.102
(0)

1.006
(0.005)

0.353
(0)

3 0.054
(0.022)

0.636
(0.002)

0.176
(0.001)

0.029
(0.002)

1.469
(0.042)

0.001
(0.001)

0.091
(0)

3517.12

−3420.48

0.8828

IneqAv +

ARDA +

RRDA

1 0.073
(NaN)

0.894
(0)

0.157
(0.003)

0.011
(0.001)

0.498
(0.011)

0.004
(0)

0.056
(0.001)

2 0.447
(0.055)

4.608
(0.078)

0.148
(0.001)

0.024
(0.002)

0.326
(0.005)

0.726
(0.011)

0.372
(0)

3 0.48
(0.055)

5.659
(0.034)

0.127
(0.001)

0.094
(0.001)

0
(0.001)

−0.277
(0.003)

−1
(0.006)

3404.32

−3306.36

0.8958

IneqAv +

ARDA +

ARDA

1 0.335
(NaN)

8.433
(0.037)

0.136
(0.001)

0.012
(0.002)

0.547
(0.006)

0.001
(0.002)

0.084
(NaN)

2 0.455
(0.058)

2.448
(0.027)

0.099
(0.002)

0.007
(0.001)

0.271
(0.003)

1.177
(0.023)

0.338
(0)

3 0.21
(0.046)

4.461
(0.06)

0.198
(0)

0.071
(0.002)

0.003
(0.001)

0.942
(0.01)

0.368
(0.001)

3537

−3425.01

0.8823

RRDA + ARDA + . . .

RRDA +

ARDA +

CES

1 0.484
(NaN)

5.213
(0.021)

0.138
(0.002)

0.097
(0.001)

0
(0.001)

−0.274
(0.003)

−1.001
(0.005)

2 0.454
(0.055)

3.361
(0.018)

0.133
(0.003)

0.08
(0.001)

0.351
(0.002)

0.805
(0)

0.334
(0)

3 0.062
(0.026)

30.315
(0.168)

0.201
(0.001)

0.78
(0.003)

0.956
(0.002)

0.639
(0)

0.751
(0.003)

3423.74

−3320.15

0.8943

RRDA +

ARDA +

IneqAv

1 0.481
(NaN)

5.653
(0.027)

0.127
(0.001)

0.094
(0)

0
(0)

−0.277
(0.002)

−0.996
(0)

2 0.447
(0.055)

4.604
(0.029)

0.148
(0)

0.024
(0.001)

0.328
(0.002)

0.732
(0.003)

0.36
(0)

3 0.072
(0.023)

0.894
(0.011)

0.157
(0.006)

0.011
(0.003)

0.498
(0.01)

0.004
(0)

0.056
(0.001)

3405.07

−3306.89

0.8958

RRDA +

ARDA +

RRDA

1 0.456
(NaN)

5.649
(0.08)

0.133
(0.002)

0.077
(0.003)

0
(0.001)

−0.275
(0.005)

−0.986
(0.008)

2 0.368
(0.052)

3.362
(0.033)

0.117
(0.007)

0.007
(0.011)

0.429
(0.002)

0.825
(0.006)

0.339
(0)

3 0.176
(0.047)

2.879
(0.002)

0.205
(0)

0.126
(0)

0.014
(0)

−0.269
(0)

−0.652
(0.001)

3422.73

−3310.86

0.8953

RRDA +

ARDA +

ARDA

1 0.483
(NaN)

5.297
(0.04)

0.129
(0.001)

0.085
(0.003)

0
(0)

−0.263
(0.003)

−0.99
(0.004)

2 0.316
(0.056)

3.312
(0.001)

0.114
(0)

0.164
(0)

0.66
(0.028)

0.79
(0.146)

0.337
(0)

3 0.201
(0.049)

2.677
(0.011)

0.168
(0)

0.034
(0.002)

0.084
(0.001)

0.927
(0.022)

0.353
(0)

3437.96

−3326.52

0.8936

Table 7: Four-type mixed model

Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

CES + IneqAv + RRDA + ARDA

CES +

IneqAv +

RRDA +

ARDA

1 0.061
(NaN)

17.001
(0.07)

0.353
(0.001)

0.646
(0.003)

5.419
(0.006)

0.676
(0)

0.791
(0.001)

2 0.136
(0.038)

8.371
(0.155)

0.156
(0.003)

0.002
(0.004)

0.439
(0.001)

0.014
(0.001)

0.058
(0.001)

3 0.419
(0.054)

5.151
(0.068)

0.131
(0.001)

0.094
(0.002)

0
(0.001)

−0.264
(0.002)

−1.002
(0.009)

continued on next page
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Type Share λp ρ1 ρ2 λv α β IC L/LL/R2

4 0.385
(0.057)

3.469
(0.076)

0.125
(0.001)

0.097
(0.001)

0.323
(0.004)

0.833
(0.008)

0.334
(0)

3420.76

−3286.09

0.898

Table 8: Heterogenous models (proposer and voters may have different prefer-

ences). Does not improve goodness-of-fit

λp ρ1 ρ2 λv αProp βProp αVot βVot IC L/LL/R2

Proposer CES + Voter . . .

CES 27.488
(0.073)

0.216
(0.001)

0.641
(0.002)

0.963
(0.009)

0.636
(0.001)

0.777
(0)

0.628
(0)

0.777
(0)

3995.85

−3965.56

0.7947

IneqAv 22.693
(0.041)

0.178
(0)

0.618
(0.002)

0.47
(0)

0.605
(0.002)

0.911
(0.002)

0.009
(0)

0.078
(0.001)

3935.75

−3905.46

0.807

RRDA 0.844
(0.01)

0.001
(0.001)

0.566
(0.008)

0.02
(0.001)

0.844
(0)

0.827
(0.002)

0.043
(0.001)

−0.198
(0)

4163.89

−4133.6

0.756

ARDA 0.853
(0.008)

0.001
(0.002)

0.583
(0.016)

0.22
(0.002)

0.833
(0.005)

0.804
(0.007)

1.105
(0.018)

0.299
(0)

4099.38

−4069.09

0.7716

Proposer IneqAv + Voter . . .

CES 2.983
(0.008)

0.195
(0.001)

0.021
(0)

0.822
(0)

0.17
(0.001)

0.166
(0)

0.501
(0.001)

0.732
(0)

3740.52

−3710.23

0.8421

IneqAv 4.042
(0)

0.16
(0)

0.013
(0)

0.527
(0)

0.085
(0)

0.052
(0)

0
(0)

0.052
(0)

3839.31

−3809.02

0.8252

RRDA 6.097
(0.016)

0.143
(0)

0.065
(0)

0.355
(0)

0.167
(0.001)

0.269
(0)

0.099
(0)

0.115
(0)

3708.69

−3678.4

0.8472

ARDA 6.874
(0.072)

0.162
(0.002)

0.133
(0.001)

0.258
(0.003)

0.02
(0.001)

0.336
(0)

0.868
(0)

0.131
(0)

3547.13

−3516.84

0.8706

Proposer RRDA + Voter . . .

CES 1.498
(0.017)

0.158
(0.001)

0.009
(0.005)

0
(NaN)

−0.252
(0.003)

−1.662
(0.007)

0.437
(0)

0.555
(0.003)

3748.12

−3718.2

0.8408

IneqAv 2.834
(0.002)

0.216
(0.001)

0.224
(0.001)

0.175
(0)

−0.204
(0.002)

−0.612
(0.002)

0.231
(0.001)

0
(0)

3835.47

−3805.17

0.8259

RRDA 3.039
(0)

0.187
(0.001)

0.159
(0.001)

0.135
(0.001)

−0.273
(0.003)

−0.678
(0.003)

−0.256
(0)

−0.504
(0)

3650.13

−3619.23

0.8562

ARDA 2.458
(0.001)

0.156
(0)

0.182
(0.002)

0.183
(0.001)

−0.164
(0.001)

−0.797
(0.005)

1.186
(0.008)

0.375
(0)

3605.1

−3574.81

0.8627
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λp ρ1 ρ2 λv αProp βProp αVot βVot IC L/LL/R2

Proposer ARDA + Voter . . .

CES 2.165
(0.022)

0.088
(0)

0.002
(0.002)

−0.001
(NaN)

1.46
(0.01)

0.009
(0.001)

0.433
(0.003)

0.79
(0.002)

3750.57

−3725.76

0.8396

IneqAv 3.535
(0.013)

0.092
(0)

0.384
(0.002)

0.019
(0.001)

0.983
(0.004)

0.327
(0)

0.03
(0)

0.107
(0)

3910.23

−3879.94

0.812

RRDA 2.763
(0.009)

0.112
(0.002)

0.311
(0.003)

0
(0)

1.218
(0.01)

0.331
(0.002)

0.797
(0.003)

0.108
(0.001)

3784.21

−3753.92

0.8349

ARDA 3.814
(0.086)

0.097
(0.002)

0.235
(0.006)

0.12
(0.005)

0.919
(0.03)

0.284
(0.003)

1.985
(0.033)

0.4
(0)

3597.39

−3567.1

0.8638
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Table 9: Estimates for models with time-dependent parameters. All parameters x ∈ {λ,α,β} have an initial value and a time

dependency parameter κx ; the parameter value in game g is x+κx · g. The goodness-of-fit does not improve significantly

over the constant models, suggesting that parameters do not change significantly.

Type Share λp κp ρ1 ρ2 λv κv α κα β κβ IC L/LL/R2

CES 1 1
(NaN)

8.614
(0.002)

−7.262
(0.064)

0.169
(0)

0.082
(0.001)

0.959
(0.004)

−0.373
(0.001)

0.248
(0.001)

0.339
(0.002)

0.91
(0)

0.028
(0)

3941.66

−3903.8

0.8074

IneqAv 1 1
(NaN)

4.235
(NaN)

−0.742
(NaN)

0.168
(NaN)

0.018
(NaN)

0.709
(NaN)

−0.467
(0.013)

0.001
(NaN)

−0.013
(NaN)

0.062
(NaN)

−0.014
(NaN)

3783.07

−3745.21

0.8364

RRDA 1 1
(NaN)

3.163
(0.003)

−0.483
(0)

0.194
(0)

0.118
(0)

0.057
(0)

0.053
(0)

−0.379
(0)

−0.087
(0)

−0.899
(0)

−0.068
(0)

3672.26

−3634.39

0.854

ARDA 1 1
(NaN)

4.045
(0.005)

−1.087
(0.005)

0.109
(0)

0.19
(0.001)

0.204
(0)

−0.058
(0)

0.948
(0.003)

0.041
(0)

0.37
(0)

0.01
(0)

3632.64

−3594.77

0.8598

CES +

IneqAv

1 0.314
(NaN)

32.426
(0.008)

0.025
(0.001)

0.354
(0)

0.617
(0)

13.038
(0.001)

−0.022
(0)

0.667
(0)

−0.004
(0.001)

0.874
(0)

0.11
(0)

2 0.686
(0.047)

6.091
(0.059)

0.027
(0.003)

0.148
(0.001)

0.002
(0.001)

0.414
(0.005)

0.015
(0.002)

0.014
(0.001)

−0.028
(0.002)

0.066
(0.001)

0.011
(0.001)

3685.83

−3590.88

0.8604
RRDA

+

ARDA

1 0.528
(NaN)

5.443
(0.022)

−0.002
(0.001)

0.133
(0)

0.103
(0.001)

0
(0.001)

−0.006
(0)

−0.268
(0.002)

0.002
(0.001)

−1.004
(0)

−0.001
(0.001)

2 0.472
(0.054)

3.235
(0.01)

0.031
(0.001)

0.12
(0.001)

0.049
(0.001)

0.307
(0.003)

0.301
(0.001)

0.789
(0.001)

−0.004
(0.001)

0.338
(0)

−0.004
(0)

3432.46

−3335.6

0.8926

1
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