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Abstract

This paper provides general and empirically implementable sufficient statistics formulas for opti-
mal nonlinear tax systems in the presence of across-income heterogeneity in preferences, inheritances,
income-shifting capabilities, and other sources. We study unrestricted tax systems on income and savings
(or other commodities), as well as simpler tax systems that impose common restrictions like separability
between earnings and savings taxes. We characterize the optimum using familiar elasticity concepts and
a sufficient statistic for general across-income heterogeneity: the difference between the cross-sectional
variation of savings with income, and the causal effect of income on savings. We provide tractable ex-
tensions of these results that include multidimensional heterogeneity, additional efficiency rationales for
taxing heterogeneous returns, and corrective motives to encourage more saving. Drawing on recent em-
pirical work, we apply our formulas to savings and wealth taxation in the U.S., and find that the optimal
savings tax is positive and progressive. JEL Codes: D61, H21, H24
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Taxes on capital income, estates, inheritances, and certain categories of consumption are a widespread
feature of modern tax systems. Yet there is considerable debate, both among economists and in policy
circles, about their optimal design. The celebrated theorem of Atkinson and Stiglitz (1976) is sometimes
interpreted to suggest that such taxes should be eliminated. The theorem states that if preferences are homo-
geneous and weakly separable in consumption and labor, then differential taxes on commodities—including
on future consumption in the form of savings—are suboptimal, and welfare is maximized when redistribu-
tion is carried out solely through an income tax. However, as was appreciated by contemporaneous work
(Mirrlees, 1976) and emphasized by the authors themselves (Stiglitz, 2018), the assumptions underpinning
the Atkinson-Stiglitz Theorem are strong, limiting its relevance for the design of tax policy.

It has been shown that non-zero commodity taxes may be optimal when there is heterogeneity in con-
sumption preferences, inheritances, or rates of return, or complementarities between labor and certain forms
of consumption.1 However, this collection of seemingly disparate—and typically qualitative—results does
not provide guidance for translating estimable empirical moments to practical, quantitative implications.2

This is in contrast to the optimal income taxation literature, where optimal income tax formulas utilizing
observable “sufficient statistics”—such as elasticities and income effects—have been immensely influential
(e.g., Diamond, 1998; Saez, 2001).3

In this paper, we derive sufficient statistics formulas for optimal linear and nonlinear commodity taxes
in a general setting where attributes other than ability—such as preferences, inheritances, or rates of re-
turn—vary across the income distribution, and where weak separability of the utility function may not hold.
These formulas utilize familiar elasticity concepts and a novel sufficient statistic that captures many differ-
ent sources of across-income heterogeneity with an estimable, one-dimensional index. The formulas also
provide a tight and transparent link to modern empirical work measuring parameters such as the elasticity
of capital income, marginal propensities to consume, heterogeneity in rates of return, and the distribution
of wealth and savings (e.g., Fagereng et al., 2020, 2021; Agersnap and Zidar, 2021; Jakobsen et al., 2020;
Smith et al., 2021; Golosov et al., 2021). We derive the results in a general version of standard models
where consumers with heterogeneous earning abilities and tastes choose labor supply and a consumption
and savings bundle that exhausts their after-tax income.4 Our formulas nest prior results in this setting, as
well as the Atkinson-Stiglitz Theorem itself, as special cases.

We organize the paper around the following key contributions. For concreteness in what follows, we
describe results in terms of taxes on savings, although they also apply to other commodities.

The first result enables the application of variational approaches (e.g., Saez, 2001) to characterize the
1Heterogeneity in consumption preferences: Saez (2002); Diamond and Spinnewijn (2011); Golosov et al. (2013); Gauthier

and Henriet (2018). Inheritances: Boadway et al. (2000); Cremer et al. (2003); Piketty and Saez (2013). Rates of return: Gahvari
and Micheletto (2016); Gerritsen et al. (2020); Schulz (2021). Complementarities between labor and consumption: Corlett and
Hague (1953); Jacobs and Boadway (2014).

2Saez (2002) addressed the qualitative question of what observable statistics imply that a “small” linear commodity (savings)
tax can increase welfare in the presence of preference heterogeneity, but did not derive the optimal tax or address other forms of
across-income heterogeneity.

3See also Rothschild and Scheuer (2013); Stantcheva (2017); Sachs, Tsyvinski, and Werquin (2020); Hendren (2020).
4See, e.g., Atkinson and Stiglitz (1976); Saez (2002); Farhi and Werning (2010); Diamond and Spinnewijn (2011); Golosov

et al. (2013); Piketty and Saez (2013); Scheuer and Wolitzky (2016); Saez and Stantcheva (2018); Allcott et al. (2019); Gaubert
et al. (2021); Hellwig and Werquin (2022).
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optimal unrestricted tax system by showing that the optimal allocation be implemented by a smooth (i.e.,
differentiable) tax on earnings and savings. Unlike an optimal mechanism, a smooth tax system cannot
disallow double deviations, where individuals can jointly alter their earnings and savings to reach bundles
not chosen by any other type. The broader forms of across-income heterogeneity we consider can lead to
such double deviations, unlike in the more restricted settings of Mirrlees (1971) or Atkinson and Stiglitz
(1976). Nonetheless, we provide conditions under which there is a smooth tax system that implements the
optimal mechanism.

We then present new elasticity-based formulas for the optimal nonlinear tax on savings and earnings.
We show that these formulas can be written entirely in terms of welfare weights and empirically-measurable
statistics, including a key sufficient statistic for across-income heterogeneity justifying taxes on savings s:
the difference between the cross-sectional variation of savings s with earnings z, denoted s

0(z), and the
causal effect of income changes on savings, which we denote s

0
inc(z). The residual, s0het(z) := s

0(z) �
s
0
inc(z), is a sufficient statistic for (local) across-income heterogeneity.5 Intuitively, the total derivative of
s with respect to z in the cross-section is the sum of two partial derivatives: (i) the causal income effect
s
0
inc, holding all else constant and (ii) across-income heterogeneity in the degree to which higher-ability

types prefer, or are able to obtain, more s, holding earnings constant. As a result, the second component,
denoted s

0
het, can be estimated from existing data on the correlational and causal associations with earnings,

avoiding the need to explicitly measure or model the relationship between earnings ability and unobserved
factors such as time preferences.

Prior work on mechanism design with across-income heterogeneity has emphasized a tagging logic for
taxing s: when higher types prefer more s, consumption of s reveals information about earnings ability
that can be exploited with taxes on s. Our more empirically-grounded approach provides an arguably more
transparent justification for taxing s: we show that the degree by which a tax on s distorts earnings is pro-
portional to the causal income effect s0inc, and thus higher values of s0het imply that taxing s can be less
distortionary than an income tax reform that replicates the across-income incidence of the tax on s. Impor-
tantly, we show that the optimal tax implications are robust to a variety of structural primitives determining
s
0
het(z), including heterogeneous endowments or inheritances, differential rates of return on investments,

human capital investments that enhance productivity, deviations from weak separability, and the ability to
engage in income shifting.

The formula for optimal savings tax rates is a product of s0het(z) and a term that resembles the optimal
income tax formula in Saez (2001), with the elasticity of earnings replaced by the elasticity of savings with
respect to the savings tax rate. This result provides an immediate generalization of both the Atkinson-
Stiglitz Theorem and qualitative results about when the Theorem does not hold: the optimal savings tax rate
is everywhere zero if and only if s0het(z) = 0 for all earnings z. Consequently, the formula can be viewed
both as a synthesis of prior work and a practical, empirically-oriented guide for optimal tax design.

Our second contribution is a characterization of what we call “simple tax systems.” Across a large
number of countries, the tax system consists of a nonlinear tax on income, accompanied by taxes on savings

5To our knowledge, this statistic was first employed in Allcott et al. (2019), in a setting restricted to a separable linear com-
modity tax, which of course cannot implement the optimal mechanism.
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vehicles that can be classified as one of three types: (i) a separable linear (SL) savings tax; (ii) a separable
nonlinear (SN) savings tax; or (iii) a system with a linear earnings-dependent (LED) savings tax, which
allows, for example, lower-income people to have their savings taxed at a lower linear rate, as is the case
for long-term capital gains in the U.S. We show that the optimal tax policy within each of these classes
of simple systems can be expressed using the same sufficient statistics that appear in our formulas for
the optimal smooth unrestricted tax system. We also provide sufficient conditions for the SN and LED
systems to implement the optimal mechanism. Importantly, when focusing on simple tax systems, we
extend our results to multidimensional heterogeneity and to a potentially suboptimal income tax. In these
cases, the causal effect of income on savings, together with the joint distribution of savings and income,
remain sufficient statistics for characterizing the optimal savings tax.

We generalize our results to several other key applications. First, we consider many dimensions of
consumption and savings. For example, different categories of savings might be taxed differently. In this
case, the additional necessary sufficient statistics are cross-price elasticities, which allow us to compute tax

diversion ratios—the fiscal spillovers to taxes collected on goods j 6= i relative to the reduction in taxes
collected on good i, when the price of good i is increased. The optimal tax rate on good si is the sum of the
formula in our baseline result and a function of the tax diversion ratios.

Second, we consider situations where the government wants to alter or correct individual behavior. Our
model generalizes the setup of Farhi and Werning (2010), in which the government puts more weight on
future generations than the parents, to allow for heterogeneous preferences. Our results also cover the case
where individuals under-save due to behavioral biases such as myopia or lack of self control, as in Moser
and Olea de Souza e Silva (2019).

Third, we study settings in which there is an additional efficiency rationale for taxing savings, because
the government can collect savings taxes either before or after returns are earned, and therefore can arbitrage
heterogeneous private rates of return by shifting tax collections onto post-returns savings for high earners.
This extension relates to independent work by Gerritsen et al. (2020), who study the special case where
all across-income heterogeneity is from differences in rates of return, characterizing and quantifying the
optimal separable nonlinear savings tax in terms of model primitives.

In the final part of the paper we use our sufficient statistics formulas to study the optimal tax treatment
of savings in the U.S. in a simple two-period model where savings accumulated during the working-life are
consumed in retirement (Saez, 2002; Golosov et al., 2013). We calibrate the distribution of savings across
the income distribution using the Distributional National Accounts micro-files of Piketty et al. (2018). This
evidence suggests that savings are approximately constant at low incomes but increase convexly at higher
incomes, so that the cross-sectional slope, s0(z), is increasing with income. To calibrate the causal income
effect on savings at the individual level, s0inc(z), we draw on two sources. The first is Fagereng et al. (2021),
which estimates the medium-run marginal propensity to save out of windfall income using lottery prizes.
The second is a new probability-based survey representing the U.S. adult population, conducted on the
AmeriSpeak panel, which asked respondents about their savings behavior in response to a possible raise. The
two sources are consistent in suggesting similar magnitudes for s0inc(z), with little variation across incomes.
Together, these findings yield a positive and increasing value of the key sufficient statistic, s0het(z) = s

0(z)�
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s
0
inc(z), across most of the income distribution. Incorporated into our formulas, this implies a (mostly)

positive and progressive optimal tax on savings. Our baseline estimates of optimal savings tax rates are
somewhat higher than those currently in place in the U.S. across much of the income distribution, although
as in other work, these results are sensitive to the elasticity of savings with respect to tax rates, about which
there is still substantial uncertainty.

Our paper contributes to a number of literatures. The first is the literature studying optimal commodity
and savings taxation in extensions of the Atkinson and Stiglitz (1976) framework. Focusing on preference
heterogeneity, Saez (2002) considers a separable linear commodity tax and derives conditions under which
its optimal value is non-zero, but does not provide an optimal tax formula. Golosov et al. (2013) derive
conditions characterizing the optimal mechanism in a similar model, but formulate their results in terms of
first-order conditions on structural primitives rather than empirically estimable sufficient statistics.6 Saez
and Stantcheva (2018) study nonlinear capital taxation in a setting without income effects, which corre-
sponds to the special case of our model where s

0
inc(z) = 0 and s

0
het(z) = s

0(z). Allcott et al. (2019) derive
a sufficient statistics formula for the optimal separable linear commodity tax.7 Hellwig and Werquin (2022)
characterize optimal asymptotic savings and income tax rates at the top, in terms of elasticities and Pareto
parameters of the tails of the income, wealth, and consumption distributions. Looking at other sources of
across-income heterogeneity, Gahvari and Micheletto (2016), Gerritsen et al. (2020), and Schulz (2021)
study heterogeneous rates of return, Boadway et al. (2000) and Cremer et al. (2003) study heterogeneous
endowments, Christiansen and Tuomala (2008) study income shifting, and Bovenberg and Jacobs (2005)
and Bovenberg and Jacobs (2011) study human capital investments.8 Our results extend these insights by
developing methods to characterize optimal taxes entirely in terms of estimable sufficient statistics that hold
for any of the deviations from the Atkinson-Stiglitz Theorem analyzed in prior work.

Second, we connect to important empirical literatures measuring marginal propensity to consume, het-
erogeneous rates or return, and elasticities of wealth, savings, and capital income (e.g., Fagereng et al.,
2020, 2021; Agersnap and Zidar, 2021; Jakobsen et al., 2020; Smith et al., 2021). Our formulas provide a
direct link from these empirical statistics to novel tax implications. Our formulas also clarify the importance
of providing precise estimates of across-income heterogeneity in these empirical statistics.

Third, this paper complements the literature on dynamic taxation (see overviews by Golosov and Tsyvin-
ski, 2006; Stantcheva, 2020), which typically assumes homogeneous preferences, but derives a theoretically
robust role for capital taxation via the inverse Euler equation (e.g., Golosov et al., 2003; Farhi and Wern-
ing, 2013). Our work is complementary in relaxing the assumption of homogeneous and weakly separable

6The empirical estimates in Golosov et al. (2013) suggest substantially less across-income heterogeneity than ours do, probably
in part because they study heterogeneity in time discounting only, rather than the broader set of forces that can contribute to s

0
het(z).

This could also be driven by attenuation bias since they measure preference heterogeneity by regressing a structural estimate of
time preferences on a plausibly noisy proxy of earnings ability (performance on the Armed Forces Qualification Test).

7The application of separable linear savings taxes in the presence of multidimensional heterogeneity is also considered in
Piketty and Saez (2013), Diamond and Spinnewijn (2011), and Gauthier and Henriet (2018). Piketty and Saez (2013) derive
sufficient statistics formulas but make the additional restriction of a linear income tax. Diamond and Spinnewijn (2011) and
Gauthier and Henriet (2018) allow for a nonlinear income tax but assume a finite number of possible earnings levels, and derive
results in terms of model primitives. Jacquet and Lehmann (2021a) provide a generalization to a separable sum of many one-
dimensional nonlinear tax schedules.

8See Scheuer and Slemrod (2021) for a review of these motives for taxing wealth.
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preferences, but using a two-period framework. Quantitatively, the dynamic taxation literature tends to
find optimal savings “wedges” of only several percentage points (see, e.g., Golosov and Tsyvinski, 2015;
Golosov et al., 2016; Farhi and Werning, 2013)—substantially lower than those suggested by our baseline
calibrations at the same assumed values of elasticities. This suggests that across-income heterogeneity may
play a quantitatively larger role in determining optimal savings tax policy than do the social insurance mo-
tives analyzed in the dynamic taxation literature, and it motivates future research incorporating our method
of measuring and incorporating across-income heterogeneity into fully dynamic models.

The rest of this paper proceeds as follows. Section 1 presents our model and assumptions. Section 2
shows that smooth tax systems can implement the optimal mechanism, and provides a sufficient statistics
characterization of optimal smooth tax systems. Section 3 shows how these sufficient statistics formulas
span many different sources of across-income heterogeneity. Section 4 studies simple tax systems. Section
5 presents extensions. Section 6 applies our formulas to quantify optimal savings tax rates in the United
States. Section 7 concludes. All proofs are gathered in the Appendix.

1 Baseline Model and Assumptions

For concreteness, we begin by discussing preference heterogeneity, and then generalize the analysis to
broader forms of across-income heterogeneity in Section 3.

Setting. There is a population of heterogeneous individuals indexed by their type ✓ 2 ⇥, where ⇥ is
compact. They differ in their disutility from generating earnings z and in their preferences for a consumption
bundle (c, s) embodied in their utility function U (c, s, z; ✓). We begin with the common assumption that
heterogeneity is unidimensional, ⇥ ⇢ R, in which case we interpret type ✓ as reflecting earnings ability;
Section 4.2 considers multidimensional heterogeneity. We assume that ✓ has a continuously differentiable
cumulative distribution function F (✓).

One application is where c is period-1 consumption and s is the realized savings in period 2, as in Saez
(2002), Golosov et al. (2013), and many others. A second application is where c is period-1 consumption
by the parents, while s is the wealth bequeathed to their children and consumed in period 2, as in Farhi and
Werning (2010). A third application is where c is numeraire consumption and s is another dimension of
commodity consumption that could be taxed nonlinearly, such as energy or housing (Gaubert et al., 2021).

Throughout the paper, we assume the following regularity conditions for the utility function:

Assumption 1. U (c, s, z; ✓) is twice continuously differentiable, increasing and weakly concave in c and s,

and decreasing and strictly concave in z. The first derivatives U
0
c and U

0
s are bounded.

We also assume a linear production technology with marginal rate of transformation p between s and c;
we later generalize this assumption. In the savings and inheritance interpretations of the model, p = 1/R,
where R is the gross rate of return in a linear savings technology between the two periods.

Preference heterogeneity. To introduce preference heterogeneity, consider the following example. In
applications where s represents savings, a frequently used functional form (e.g., Saez, 2002; Golosov et al.,

5



2013) involves additively separability and heterogeneity in individuals’ productivity w and discount factor
�:

U (c, s, z; ✓) = u (c) + �(✓)u (s)� k (z/w(✓)) , (1)

with u (.) the utility from consumption and k (z/w) the disutility from work. There is preference hetero-
geneity for s across income-earning ability when the discount factor �(✓) covaries with productivity w (✓).

More generally, we say that there is across-ability preference heterogeneity for consumption bundles
when the marginal rate of substitution between c and s varies with earnings ability. We denote this marginal
rate of substitution by S(c, s, z; ✓) := U 0

s(c,s,z;✓)
U 0
c(c,s,z;✓)

and similarly let Z(c, s, z; ✓) := U 0
z(c,s,z;✓)

U 0
c(c,s,z;✓)

be the marginal
rate of substitution between consumption c and earnings z. Using the shorthand S 0

✓(c, s, z; ✓0) :=
@
@✓S(c, s, z; ✓)|✓=✓0 ,

we formally define preference heterogeneity as follows:

Definition 1. There is across-ability preference heterogeneity for consumption bundles if some individuals

prefer different (c, s) bundles conditional on having the same earnings z; i.e.,

9✓0, 8 (c, s, z) , S 0
✓(c, s, z; ✓0) 6= 0. (2)

For instance, in example (1), S 0
✓(c, s, z; ✓) > 0 whenever �(✓) covaries positively with w(✓). Such

across-ability preference heterogeneity in consumption bundles is the focus of our baseline results, and for
the rest of the paper we will refer to it simply as “preference heterogeneity.”

Government. The government seeks to maximize a weighted sum of utilities:

max

Z

✓
↵(✓)U (c(✓), s(✓), z(✓); ✓) dF (✓), (3)

where ↵(✓) are pareto weights. Selecting a particular set of weights requires normative assumptions, which
we discuss when introducing social marginal welfare weights in Section 2.2.2.

Type ✓ is private information and cannot be observed by the government; only the distribution of types,
F (✓), is known. Therefore the government designs a tax and transfer function T that depends on the
observable variables c, s, and z, which can be written without loss of generality as a tax on s and z only.9

The government anticipates that individuals choose these variables to maximize their utility subject to their
individual budget constraints, c + ps  z � T (s, z). Thus, an optimal tax system maximizes (3) subject
to individual optimization, and subject to a resource constraint,

R
✓ T (s(✓), z(✓))dF (✓) � E, where E is an

exogenous revenue requirement.
If the tax system T (s, z) is unrestricted, this problem is equivalent to the problem of selecting an optimal

allocation A = {(c(✓), s(✓), z(✓))}✓ to maximize the objective in (3) subject to the resource constraint
Z

✓
[z (✓)� ps (✓)� c (✓)] dF (✓) � E, (4)

9Expressing the tax more generally as T (c, s, z) is redundant. Given such a tax function, any choice of s and z implies a
consumption value given by C(s, z) := max{c|c = z � s � T (c, s, z)}; thus, one can re-express the tax as a function of only
savings and earnings: T̃ (s, z) = T (C(s, z), s, z).
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and subject to incentive compatibility constraints

8
�
✓, ✓

0� 2 ⇥2
, U (c(✓), s (✓) , z (✓) ; ✓) � U(c(✓0), s(✓0), z(✓0); ✓). (5)

We refer to an allocation A = {(c(✓), s(✓), z(✓))}✓ that maximizes (3) subject to (4) and (5) as an optimal

incentive-compatible allocation.

2 Optimal Smooth Tax Systems

In this section, we provide two key results about smooth tax systems, by which we mean twice continuously
differentiable tax functions T (s, z). First, we show that an optimal incentive-compatible allocation can be
implemented by a smooth tax system. Second, we derive a sufficient statistics characterization of optimal
smooth tax systems.

2.1 Implementability with Smooth Tax Systems

Our implementation result relies on commonly-assumed regularity conditions.

Assumption 2. In the optimal incentive-compatible allocation A = {(c(✓), s(✓), z(✓))}✓, we assume that:

(i) c, s, and z are smooth functions of ✓, (ii) any type ✓ strictly prefers its allocation (c(✓), s(✓), z(✓)) to the

allocation (c(✓0), s(✓0), z(✓0)) of another type ✓
0 6= ✓, and (iii) z(✓) is strictly increasing.

Assumptions (i) and (ii) are standard assumptions required to apply optimal control methods to char-
acterize the optimal allocation. The main component of Assumption 2 is the monotonicity condition (iii).
In the absence of preference heterogeneity, S 0

✓(c, s, z; ✓) = 0, any incentive-compatible allocation must be
monotonic under the Spence-Mirrlees condition, Z 0

✓(c, s, z; ✓) > 0, which states that higher types are more
willing to trade labor for consumption of the numeraire c (Mirrlees, 1971). Lemma B.1 in the Appendix
presents the extended Spence-Mirrlees condition that guarantees monotonicity in this setting. This strict
monotonicity property allows to define the function #(z), which maps each earnings level z to the type to
which it is assigned in the optimal incentive-compatible allocation.

Definition 2. We say that an allocation A = {(c(✓), s(✓), z(✓))}✓ is implementable by a tax system T if

1. T satisfies individual feasibility: c(✓) + ps(✓) + T (s(✓), z(✓)) = z(✓) for all ✓ 2 ⇥, and

2. T satisfies individual optimization: (c(✓), s(✓), z(✓)) maximizes U(c, s, z; ✓) subject to the constraint

c+ ps+ T (s, z)  z, for all ✓ 2 ⇥.

Our first result shows that an optimal incentive-compatible allocation is implementable by some smooth
tax system.

Theorem 1. Under Assumptions 1 and 2, an optimal incentive-compatible allocation is implementable by a

smooth tax system. In this smooth tax system, individuals’ choices are interior (first-order conditions hold),

and their local optima are strict (strict second-order conditions).
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Although it is clear that the optimal incentive-compatible allocation {(c(✓), s(✓), z(✓))}✓ can always
be implemented by some two-dimensional tax system—for example, by defining T (s(✓), z(✓)) = z(✓) �
c(✓) � s(✓) for ✓ 2 ⇥ and letting T (s, z) ! 1 for (c, s, z) /2 {(c(✓), s(✓), z(✓))}✓—such a tax system
is not guaranteed to be smooth. A smooth tax system allows individuals to locally adjust s and z to points
not chosen by any other type in the optimal allocation, and thus the set of possible deviations is much larger
than when the optimal mechanism can simply disallow certain allocations.

Starting from any given allocation A = {(c(✓), s(✓), z(✓))}✓ , a smooth tax system can implement the
allocation only by satisfying each type’s ✓ first-order conditions:

T 0
s (s (✓) , z (✓)) = S (c(✓), s(✓), z(✓); ✓)� p (6)

T 0
z (s (✓) , z (✓)) = Z (c(✓), s(✓), z(✓); ✓) + 1. (7)

In the presence of preference heterogeneity, individuals’ temptation to deviate from their assigned allocation
(c(✓), s(✓), z(✓)) are stronger under a smooth tax system than under a direct mechanism. For example,
suppose that higher types ✓ have a stronger relative preference for s. If they deviate downward to some
other earnings level z(✓0) < z(✓), then under a direct mechanism they will be forced to choose s(✓0). Under
a smooth tax system, however, the deviating type ✓ will choose s

0
> s(✓0) at earnings level z(✓0), making

this double deviation more appealing.
Tax implementation results that involve multidimensional consumption bundles and multidimensional

tax systems typically avoid the difficulties associated with double deviations by ruling out the type of pref-
erence heterogeneity that we consider here.10 Thus, to our knowledge, our proof of Theorem 1 is different
from typical implementation proofs in the optimal tax literature. The proof, contained in Appendix C.2,
proceeds in three steps. The first step is to construct a sequence of tax systems Tk such that each element in
the sequence satisfies type-specific feasibility and the first-order conditions above. The sequence is ordered
such that successive elements are increasingly convex around the bundles (s(✓), z(✓)) offered in the optimal
mechanism.

In the second step of the proof, we show that for each type ✓ there exists a k sufficiently large such
that this type’s second-order conditions hold at (c(✓), s(✓), z(✓)). In other words, for each type there is a
sufficiently large k such that (c(✓), s(✓), z(✓)) is a local optimum under the tax system Tk. This step requires
Appendix Lemmas C.1 and C.2, which characterize individuals’ budget constraints and second derivatives
of indirect utility functions for any tax system T that preserves individuals’ first-order conditions.

In the third step, we show that there exists a sufficiently large k such that for all types ✓, (c(✓), s(✓), z(✓))
is a global optimum under Tk. We complete this step via a proof by contradiction. Under the assumption
that such a k does not exist, there exists an infinite sequence of values k and types ✓k such that type ✓k
prefers to deviate from (c(✓k), s(✓k), z(✓k)) under Tk. Because the type space is compact, the Bolzano-
Weierstrass Theorem allows us to extract a convergent subsequence of types ✓j who all prefer to deviate

10As pointed out by Kocherlakota (2005), Werning (2010), and others, smooth tax systems can also generate double deviations
in dynamic settings where there is a discrete set of types. Werning (2010) provides a general implementation proof for a dynamic
setting where productivity is smoothly distributed. The setting studied by Werning (2010), and the proof technique, is distinct from
ours because time preferences, and thus preferences for period-2 consumption, are assumed homogeneous.
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from the allocation assigned to them under the optimal mechanism. We show that this implies a contradiction
because the limit type of this sequence, ✓̂, must then prefer to deviate from (c(✓̂), s(✓̂), z(✓̂)) to some other
allocation (c(✓0), s(✓0), z(✓0)) offered in the optimal mechanism.

Theorem 1 is an existence result, and our proof of the theorem does not offer insight into the structure of
an optimal tax system. However, because individuals’ choices are shown to satisfy first-order and second-
order conditions in a smooth tax system, we can use variational methods to characterize optimal tax systems.
We now proceed by deriving optimal tax formulas expressed in terms of empirically estimable sufficient
statistics that transparently highlight the key economic forces governing the optimal tax system.

2.2 Sufficient Statistics for Smooth Tax Systems

2.2.1 Definitions

Assumptions. To define our sufficient statistics, it is helpful to write individuals’ optimization problem
under a tax system T (s, z) as

max
z

⇢
max
c,s

U(c, s, z; ✓) s.t. c  z � ps� T (s, z)

�
, (8)

where the inner problem represents the optimal choices of c (z; ✓) and s (z; ✓) for a given earnings level
z, and the outer problem represents the optimal choice of earnings z (✓) taking into account endogenous
choices of c and s.

When Assumptions 1 and 2 hold, our implementation result for smooth tax systems T (s, z) holds and
we do not need to impose any other requirements. In cases where these assumptions fail, or when we study
simpler tax systems for which this implementation result may not hold, our optimal tax formulas remain
valid under the following assumption:

Assumption 3. The tax systems under consideration are such that at the optimum: (i) these tax systems are

smooth, (ii) z(✓) is smooth and strictly increasing, c(z; ✓) and s(z; ✓) are smooth functions of z and ✓, and

(iii) individuals’ optima are unique and their first-order and second-order conditions strictly hold.

Elasticities for z-choices. Earnings responses to tax reforms are captured through ⇣
c
z , the compensated

elasticity of labor income with respect to the marginal labor income tax rate, and ⌘z , the income effect
parameter. Formally, for each level of earnings z(✓) chosen by a type ✓, we define

⇣
c
z (z(✓)) := �1� T 0

z (s(✓), z(✓))

z (✓)

@z (✓)

@T 0
z (s(✓), z(✓))

(9)

⌘z (z(✓)) := �(1� T 0
z (s(✓), z(✓)))

@z (✓)

@T (s(✓), z(✓))
(10)

where T (s(✓), z(✓)) is the tax liability and T 0
z (s(✓), z(✓)) is the marginal labor income tax rate. Since earn-

ings choices take into account endogenous choices of c and s, these elasticity concepts take into account the
full sequence of adjustments due to changes in choices of c and s, as well as those due to any nonlinearities
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in the tax system.11

Elasticities for s-choices. Changes in s in response to tax reforms are captured through ⇣cs|z , the compen-
sated elasticity of s with respect to the marginal tax rate on s, ⌘s|z , the income effect parameter, and s

0
inc,

the causal effect on consumption of s from a marginal change in gross pre-tax income z. These are formally
defined as follows:

⇣
c
s|z (z(✓)) := �1 + T 0

s (s (z; ✓) , z)

s (z; ✓)

@s (z; ✓)

@T 0
s (s (z; ✓) , z)

���
z=z(✓)

(11)

⌘s|z (z(✓)) := �
�
1 + T 0

s (s (z; ✓) , z)
� @s (z; ✓)

@T (s (z; ✓) , z)

���
z=z(✓)

(12)

s
0
inc(z(✓)) :=

@s (z; ✓)

@z

���
z=z(✓)

(13)

where T 0
s (s (z; ✓) , z) is the marginal tax rate on s of a type ✓ who earns labor income z. Elasticity concepts

⇣
c
s|z and ⌘s|z are conditional on z. They measure responses to tax reforms accounting for nonlinearities in

the tax system, holding labor income fixed at z(✓).
Note that we define the elasticity of s with respect to 1 + T 0

s , rather than with respect to p + T 0
s . This

choice is irrelevant when p ⌘ 1—a normalization that can be adopted without loss of generality, as shown
in our discussion of generalized budget constraints in section 3.1 below. However, defining the elasticity
with respect to p+ T 0

s may be more natural in applications where s is a commodity sold at an after-tax price
of q = p + T 0

s .12 For all elasticity concepts, we use the “bar” notation, as in ⇣cs|z , to denote a population
elasticity.

Preference heterogeneity. To quantify preference heterogeneity, we use the function #(z), which maps
each earnings level z to the corresponding type ✓ with that level of earnings, to decompose the cross-
sectional profile of s(z) := s(z;#(z)). Intuitively, s0(z), the cross-sectional change in s with respect to z,
comprises both the causal income effect and the degree to which preferences vary across earnings z. We
thus define our measure of local across-income preference heterogeneity, s0het(z), as the difference between
the cross-sectional change in s along the earnings distribution and the causal income effect s0inc(z):

s
0
het(z(✓)) := s

0(z(✓))� s
0
inc(z(✓)) (14)

Formally, s0(z) is a total derivative equal to the sum of two partial derivatives:

ds(z,#(z))

dz| {z }
s0(z)

=
@s(z0;#(z))

@z0

���
z0=z| {z }

s0inc(z)

+
@s(z;#(z0))

@z0

���
z0=z| {z }

s0het(z)

(15)

11This corresponds to the type of circular adjustments described in, e.g., Jacquet and Lehmann (2021b).
12It is straightforward to convert our results between these elasticity definitions: in this case, the appropriate formulas can be

obtained from Theorem 2 and Proposition 3 by multiplying ⇣cs|z by (p+ T 0
s )/(1 + T 0

s ). The only change in Theorem 2 is that the

left-hand-side in equation (19) becomes T 0
s (s(z),z)

p+T 0
s (s(z),z)

, and analogously for Proposition 3.
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The first term on the right-hand side measures how a change in z affects s consumption, holding the type ✓
constant. The second term, s0het(z), measures how a change in type affects s consumption, holding earnings
z constant. For instance, in example (1) above, s0het(z) would be directly proportional to the local change in
the discount factor �(#(z)).

Violations of weak separability. The sufficient statistic s
0
het also captures failures of weak separability

between labor and consumption as in, e.g., Corlett and Hague (1953). For example, suppose that higher
types get a higher hourly wage rate, and that consumption of s and leisure are complements. Then, because
higher types ✓ obtain more leisure at a fixed level of earnings z, higher types will have a stronger preference
for s holding z constant. In our setup, this amounts to s

0
het > 0.

2.2.2 Social Marginal Welfare Weights

To encode the policymaker’s redistributive tastes, we follow the literature in defining social marginal welfare
weights as the marginal social welfare derived from an increase in consumption for an individual of type ✓
at points s(✓) and z(✓), normalized by the marginal value of public funds �:

g(s(✓), z(✓)) :=
↵ (✓)

�
U

0
c

�
z(✓)� T (s(✓), z(✓))� ps(✓), s(✓), z(✓) ; ✓

�
. (16)

We define ĝ(s, z) as the social marginal welfare weights augmented with the fiscal impact of income effects.
This represents the full social value of marginally increasing the disposable income of individuals at points
s and z. Formally,

ĝ(s, z) := g(s, z) + T 0
z (s, z)

⌘z (z)

1� T 0
z (s, z)

+ T 0
s (s, z)

✓
⌘s|z(z)

1 + T 0
s (s, z)

+ s
0
inc(z)

⌘z(z)

1� T 0
z (s, z)

◆
, (17)

where the last term comes from the fact that income effects on earnings, proportional to ⌘z(z), induce
changes in s consumption proportional to s

0
inc(z), affecting tax revenues.

Social marginal welfare weights embed judgments about interpersonal utility comparisons. These are
usually treated as normative assumptions, although some research has utilized survey data to estimate these
weights (see Appendix C of Saez and Stantcheva, 2016) or estimated them from existing policies via an
“inverse optimum” procedure (e.g., Bourguignon and Spadaro 2012; Lockwood and Weinzierl 2016). Such
normative assumptions are particularly strong when there is preference heterogeneity, because individuals
prefer different bundles—and face different tax burdens—even when they have identical budget sets. For
example, a savings tax might be viewed as an unfair tax on those with relatively high discount factors.
Lockwood and Weinzierl (2015) show that this difficulty arises even in the standard Mirrlees (1971) model
because there is no formal distinction between heterogeneous earnings ability and heterogeneous preferences
for exerting labor effort.

We write our theoretical results in terms of flexible welfare weights that span the degree of hetero-
geneity in individuals’ types, so that optimal policy can be computed using whatever welfare weights the
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policymaker prefers.13 For results in the case of unidimensional heterogeneity, welfare weights are written
as a function only of earnings, g(z(✓)), without loss of generality. For results involving multidimensional
heterogeneity, in which savings are heterogeneous conditional on income, we write social marginal welfare
weights as a function of both s and z, g(s(✓), z(✓)).

2.3 Characterization of Optimal Smooth Tax Systems

A key result used to derive our sufficient statistics formula is an equivalence result for tax reforms affecting
marginal tax rates on s versus z. This result is a generalization of Lemma 1 in Saez (2002) to nonlinear
smooth tax systems.

Lemma 1. A small increase d⌧ in the marginal tax rate on s faced by an individual earning z induces the

same earnings change as a small increase s
0
inc (z) d⌧ in the marginal tax rate on z.

Lemma 1 relates the labor supply distortions induced by increasing taxes on s to the labor supply distor-
tions induced by increasing taxes on earnings z. Intuitively, if the marginal tax rate on earnings z increases
by d⌧z , an individual realizes they must now pay an additional d⌧z on each marginal dollar of earnings, so
they earn less in response. Alternatively, if the marginal tax rate on commodity s increases by d⌧s, and the
individual adjusts s by s

0
inc for every dollar adjustment in earnings, then the individual realizes they must

now effectively pay an additional s0incd⌧s more for each marginal dollar of earnings, accounting for the way
in which they will also adjust s. If d⌧z = s

0
incd⌧s, then the induced earnings changes will be the same for

both reforms.
We are now in a position to write formulas characterizing necessary conditions for the optimal smooth

tax system in terms of sufficient statistics. In the results that follow, we use H(s, z) and h(s, z) to denote
the cumulative and density functions over (s, z), with hs and hz denoting the marginal density over s and z,
respectively.

Theorem 2. Under the assumptions of Theorem 1 or under Assumption 3, at each bundle (c, s, z) chosen

by a type ✓, an optimal smooth tax system satisfies the following conditions on marginal tax rates on z and

s, respectively:

T 0
z (s, z)

1� T 0
z (s, z)

=
1

z ⇣cz(z)

1

hz(z)

Z

x�z
(1� ĝ(x)) dHz(x)� s

0
inc(z)

T 0
s (s, z)

1� T 0
z (s, z)

(18)

T 0
s (s, z)

1 + T 0
s (s, z)

= s
0
het(z)

1

s ⇣
c
s|z(z)

1

hz(z)

Z

x�z
(1� ĝ(x)) dHz(x). (19)

Any Pareto-efficient smooth tax system satisfies

T 0
s (s, z)

1 + T 0
s (s, z)

= s
0
het(z)

z ⇣
c
z(z)

s ⇣
c
s|z(z)

T 0
z (s, z) + s

0
inc(z)T 0

s (s, z)

1� T 0
z (s, z)

. (20)

13Our empirical application in Section 6 employs a version of the inverse optimum approach, estimating optimal savings taxes
consistent with the current U.S. taxes on labor income.
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Formula (18) constitutes a familiar “ABC” condition analogous to Saez (2001), with one modification:
When tax rates on s are non-zero, the formula also accounts for how changes in earnings affect consumption
of s, and therefore tax revenue. To see this, consider a small increase in the earnings marginal tax rate, d⌧z ,
in a small bandwidth of earnings, dz, around z. This reform triggers a lump-sum tax increase, d⌧zdz, for
all individuals with higher earnings that changes tax revenue and welfare by d⌧zdz

R
x�z(1� ĝ(x)) dHz(x).

Moreover, it induces the mass of individuals in the bandwidth, hz(z)dz, to reduce their earnings and thus tax
revenue by T 0

z (s, z)
z

1�T 0
z (s,z)

⇣
c
z(z)d⌧z . This earnings reduction also leads to a reduction in the consumption

of s by an amount proportional to s
0
inc, which reduces tax revenue by T 0

s (s, z) s
0
inc(z)

z
1�T 0

z (s,z)
⇣
c
z(z)d⌧z .

Summing these effects and characterizing the optimum as a situation where they cancel each other yields
(18).

Formula (19) is one of our key results: Optimal marginal tax rates on s satisfy a condition that is
remarkably similar to the standard “ABC” formula, and that provides a transparent generalization of the
Atkinson-Stiglitz Theorem. When the sufficient statistic s

0
het is equal to zero, the condition implies that the

optimal tax on s must equal zero as well. When s
0
het > 0, implying that higher earners have a stronger

relative preference for s, the condition implies that the optimal tax rate on s must be positive and that
its magnitude is decreasing in the elasticity of s with respect to the tax rate, increasing in the strength of
redistributive motives, and decreasing in the density of individuals at point s(z).

To obtain intuition for the result, combine the earnings tax increase discussed above with a small de-

crease in the marginal tax rate on s, d⌧s, in a small bandwidth ds around s(z). Set ds = s
0(z)dz such that

the two bandwidths coincide, hs(s(z))ds = hz(z)dz.14 By Lemma (1), the d⌧s decrease in the marginal tax
rate on s induces individuals in this bandwidth to increase their earnings by z

1�T 0
z (s,z)

⇣
c
z(z)s

0
incd⌧s. Hence,

setting d⌧z = s
0
inc(z)d⌧s implies that earnings changes induced by these two reforms cancel out, leaving the

earnings of individuals in the bandwidth unchanged. As a result, the joint reform (i) induces individuals in
the bandwidth to increase their consumption of s and thus tax revenue by T 0

s (s, z)
s(z)

1�T 0
s (s,z)

⇣
c
s|z(z)d⌧s and

(ii) generates a lump-sum tax decrease, dT = d⌧sds � d⌧zdz = (s0(z)� s
0
inc(z)) d⌧dz, for all individuals

with earnings higher than z, which induces a dT
R
x�z(1� ĝ(x)) dHz(x) change in tax revenue. Setting the

sum of these effects to zero yields (19).
We can combine conditions (18) and (19) to derive the Pareto-efficiency condition in (20).15 Because the

condition in (20) does not feature social marginal welfare weights, it is an efficiency condition that must hold
for any tax system that is not Pareto dominated. Intuitively, it quantifies the efficient balance between taxing
s and taxing z, given the measure s0het of how relative tastes for s covary with earnings ability. The stronger
the association between relative preferences for s and earnings ability, the more efficient it is to tax s instead
of z. An important implication of this Pareto-efficiency condition is that any Pareto-efficient tax system
must feature non-zero tax rates on s in the presence of across-income heterogeneity due to preferences or,
as we now proceed to show, due to other factors.

14Here we use the fact that hs(s(z)) =
hz(z)
s0(z) , which highlights that this heuristic proof strategy relies on the mapping s(z) being

strictly monotonic. Our formal appendix proof follows a more sophisticated proof strategy that does not require strict monotonicity
of s(z).

15This corresponds to combining tax reforms with d⌧z = s
0(z)d⌧s to cancel out lump-sum tax changes above earnings z. This

result builds on Konishi (1995), Laroque (2005), and Kaplow (2006), who derive Pareto-optimality conditions under the more
restrictive assumptions of the Atkinson-Stiglitz theorem.
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3 Across-Income Heterogeneity and its Determinants

This section shows that our sufficient statistic formulas encompass many different forms of across-income
heterogeneity besides preferences.

3.1 Budget Heterogeneity and Auxiliary Choices

So far, we have considered economies with type-specific preferences U(c, s, z; ✓) but type-independent
budget constraints c  B(s, z)�T (s, z), with budget domain B(s, z) := z�ps. In this environment, across-
income heterogeneity captured by the sufficient statistic s

0
het(z) originates from preference heterogeneity

only.
However, this approach readily extends to other sources of across-income heterogeneity. For example,

across-income heterogeneity in prices of s (Gahvari and Micheletto, 2016; Gerritsen et al., 2020), in income
shifting (Slemrod, 1995; Christiansen and Tuomala, 2008), and in endowments (Boadway et al., 2000;
Cremer et al., 2003) may all contribute to differences between the cross-sectional profile s0(z) and the causal
income effect s0inc(z). A key feature of our sufficient statistics approach is that the model can be reinterpreted
so that s0het(z) represents these alternative sources of heterogeneity—or a combination of them—and the
characterization of optimal tax schedules remains intact.

To formalize this idea, consider the following modifications to our baseline model. First, assume that
individuals might face type-dependent budget constraints given by c  B(s, z,�; ✓) � T (s, z), where �
represents a vector of auxiliary choices made by individuals that may affect their budget domain. Second,
assume that individuals may manipulate their taxable earnings z and taxable savings s, or alter their ability
to produce taxable earnings z by making productivity-enhancing investments, resulting in general type-
dependent preferences U(c,�s(z, s,�; ✓),�z(z, s,�; ✓),�; ✓) affected by auxiliary choices �.

We establish the following equivalence result between economies:

Lemma 2. For any given tax system T (s, z), individuals make identical choices in (1) an economy in which

they have type-dependent preferences U(c,�s(z, s,�; ✓),�z(z, s,�; ✓),�; ✓) and type-dependent budget do-

mains B(s, z,�; ✓) that are potentially affected by auxiliary choices �, and in (2) an economy in which

individuals have type-independent budget domains B(s, z), no auxiliary choices, and type-dependent pref-

erences

Ũ(c, s, z; ✓) := max
�

U(c+B(s, z,�; ✓)�B(s, z),�s(z, s,�; ✓),�z(z, s,�; ✓),�; ✓). (21)

Lemma 2 shows that an economy that features preference heterogeneity and budget heterogeneity as
well as auxiliary choices is equivalent to an economy with preference heterogeneity only, provided that
preferences are suitably defined. The intuition is that under a given tax system T (s, z), individuals’ utility
maximization problems are equivalent in both economies. This means that all individuals make identical
choices and attain the same level of utility, and the government collects the same tax revenue.16 Since this

16This holds because the tax T (s, z) is measured in dollars and paid out of earnings. If instead the tax had a two-part structure
where individuals pay T1 in units of c (e.g., dollars) and T2 in units of s (e.g., liters of soda), then budget heterogeneity would affect
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equivalence holds for any tax system T (s, z), it immediately follows that these equivalent economies share
the same optimal tax system, leading to the following proposition:

Proposition 1. In an economy with preference heterogeneity, budget heterogeneity, and auxiliary choices,

an optimal smooth tax system remains characterized by Theorem 2, as long as the equivalent economy with

preference heterogeneity only satisfies the assumptions of the Theorem.

This result highlights the generality of our sufficient statistics characterization of optimal taxes, where
the key sufficient statistic s

0
het captures all relevant dimensions of across-income heterogeneity that justify

taxing s. While these different sources of across-income heterogeneity have previously been studied in
isolation to qualitatively assess the robustness of the Atkinson-Stiglitz Theorem, our sufficient statistics
techniques can be applied to account for them in a quantitative and general manner. To emphasize this
point, we provide in Appendix B.3 a structural characterization of s0inc and s

0
het in economies with preference

heterogeneity, budget heterogeneity, and auxiliary choices.
The intuition for this generality stems from the logic of Feldstein (1999), which shows that the elasticity

of taxable income is a sufficient statistic for efficiency losses irrespective of whether it is due to real labor
supply responses or costly avoidance behavior.17 We now discuss some examples of budget heterogeneity
and auxiliary choices, focusing on those that are relevant in the context of savings taxation.

Heterogeneous Prices. One widespread form of budget heterogeneity is price heterogeneity. Suppose
that individuals face prices p(s, z,�; ✓) for s that depend on their level of s, earnings z, effort � to seek
out lower prices, or types ✓, such that their budget domain is B(s, z,�; ✓) = z � p(s, z,�; ✓)s and their
preferences are U(c, s, z,�; ✓), allowing for monetary or psychic costs of effort �. For instance, in the
context of savings taxation, higher savings might allow individuals to lock in better interest rates, higher
income might generate beneficial network effects that expose individuals to better opportunities (both are
examples of “scale dependence”), and higher ability types may be better at finding lower prices or higher
returns on investments (an example of “type dependence”).

Lemma 2 shows that this economy is equivalent to an economy with budget domain B(s, z) := z � s,
with the price normalized to p ⌘ 1, where individuals’ utility function is Ũ(c, s, z; ✓) := max� U (c+ (1� p(s, z,�; ✓))s, s, z,�; ✓).
This also demonstrates that in our baseline model, the price p can be normalized to 1 without loss of gener-
ality—a feature we employ in some appendix proofs. Intuitively, with a price of p = p

0 instead of p = 1,
individuals enjoy (1� p

0)s more consumption of c at a given choice s.
An insight from this reinterpretation is that some sources of across-income price heterogeneity justify

taxing s, while others do not, and the decomposition of the cross-sectional profile s
0(z) into s

0
inc(z) and

s
0
het(z) correctly distinguishes between them. In particular, type-dependent heterogeneity in prices will gen-

erally lead to s
0
het(z) 6= 0 and thus to deviations from the Atkinson-Stiglitz result, whereas scale-dependent

tax revenue. Such a system is relatively common for savings, where taxes are often paid in units of “period 2” dollars, after returns
have been realized. This creates an additional arbitrage motive to tax individuals with higher returns more heavily in units of s. We
explore such arbitrage motives in Section 5.3.

17Chetty (2009) suggests limitations to Feldstein’s (1999) results due to some avoidance behaviors generating new types of
fiscal externalities, or due to behavioral biases. Variations of these considerations are relevant in our setting as well, as explored in
Sections 5.2 and 5.3, respectively.
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heterogeneity in prices would contribute to s
0
inc(z) and would thus preserve the Atkinson-Stiglitz result.

Heterogeneous Endowments. Another widespread form of budget heterogeneity is heterogeneity in ini-
tial endowments. Suppose that individuals have endowments y0(✓), from inheritance or other sources, such
that their budget domain is B(s, z,�; ✓) = z + y0(✓) � s. In the presence of income effects, endowments
would influence individuals’ decisions, and type-dependent endowments would therefore enter s0het. For
instance, this could represent a situation in which higher productivity individuals have higher savings in part
because they have larger inheritances, resulting in s

0
het > 0 and justifying taxes on s.

Income Shifting. Suppose that some auxiliary actions allow individuals to shift some of their labor income
to capital income. Let z̃ and s̃ be the individuals’ true labor income and savings, which are unobserved by
the tax authority. Let � denote the amount of labor income z̃ that individuals shift to be realized as tax-
able savings (including capital income), and let m(s, z,�; ✓) denote any financial costs involved in income
shifting. Individuals’ taxable labor income is thus z = z̃ � � and their taxable savings are s = s̃ + �.
This describes an economy with budget domain B(s, z,�; ✓) = z � s+ 2��m(s, z,�; ✓) and preferences
U(c, s � �, z + �,�; ✓), where � might directly influence utility because of effort or psychic costs. In this
example, �s(s,�) = s� � and �z(z,�) = z + �. If individuals with higher earnings ability are better able
to engage in income shifting, this type dependence will effectively translate in s

0
het > 0. In contrast, any

scale dependence in income shifting would affect s0inc, but not s0het.

Human Capital Investments. Our framework can also be related to models studying human capital in-
vestments. Suppose that s represents human capital investments such as education, which affects productiv-
ity during working life (Bovenberg and Jacobs, 2005; Stantcheva, 2017). Following the static framework in
Bovenberg and Jacobs (2005), the productivity-enhancing effect of human capital may be directly captured
in preferences through, e.g., �z(z, s; ✓). Using Lemma 2, this economy is equivalent to one with preferences
Ũ(c, s, z; ✓) := U(c, s,�z(z, s; ✓); ✓). The functional form assumptions in Bovenberg and Jacobs (2005)
imply a complementarity between human capital investments and labor, which leads to s

0
het(z) < 0 and

the optimality of human capital investment subsidies. Bovenberg and Jacobs (2011) consider more general
settings in which these assumptions are relaxed.

3.2 Measuring s0het

Because the key sufficient statistic s
0
het(z) is equal to the difference s

0(z) � s
0
inc(z), it can be measured as

a residual using familiar estimation strategies. The term s
0 (z) represents the cross-sectional variation of s

across the income distribution, which can be directly measured using standard data sources. The statistic
s
0
inc(z) can be measured using a variety of strategies. Here we present three different methods of measuring
s
0
inc(z), which rely on different types of quasi-experimental variation.

Proposition 2. Define ⇠
s
w (z) as the elasticity of s with respect to the wage rate w, ⇠

h
w (z) as the elasticity of

hours with respect to the wage rate, and �
c
s (z) as the elasticity of s with respect to the marginal net of tax

rate on labor income. The sufficient statistic s
0
inc (z) can be measured as follows:
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M1. If preferences are weakly separable and the tax system is separable, s
0
inc (z) =

1�T 0
z(z)

1+T 0
s(s(z))

⌘s|z (z).

M2. If wage rates w and hours h are observable, s
0
inc (z) = s (z) ⇠sw(z)

w(z)+h(z)⇠hw(z)
.

M3. If responses to tax reforms are measurable, s
0
inc (z) =

s(z)
z

�c
s(z)

⇣cz(z)
.

If individuals’ preferences are weakly separable as in example (1) above, and if the tax system is separa-
ble in s and z, then s

0
inc (z) is proportional to the income effect parameter for s. If individuals’ preferences

are not weakly separable but wage rates w and hours h are observable, s0inc (z) can be related to the elasticity
of s with respect to the wage rate and to the elasticity of hours with respect to the wage rate. If the elasticities
of both s and z with respect to the marginal tax rate on z are observable, s0inc (z) can be recovered from
these elasticities.

A key question for empirical implementation is the time horizon over which the statistics must be mea-
sured. Interpreting our static model to represent a steady-state economy, s0inc(z) corresponds to the causal
effect of a change in steady-state labor income on steady-state consumption of s.18 Under the weak sepa-
rability assumption, it is therefore necessary to measure the long-run marginal propensity to consume s. In
the case of savings, this is the long-run marginal propensity to save, as estimated by Fagereng et al. (2021)
for example, in response to a change in unearned income.19

4 Simple Tax Systems and Multidimensional Heterogeneity

In practice, tax systems must be defined by policymakers and implemented by institutions, which may
impose constraints on the degree of complexity in the tax function. In this section, we apply our sufficient
statistics methods to characterize the optimal policy for a few classes of tax systems with restrictions such as
separability or linearity. Focusing on more restricted systems also allows us to characterize optimal policy
with multiple dimensions of heterogeneity. As is well-known, in settings with multidimensional hetero-
geneity, optimal fully flexible mechanisms tend to feature bunching, randomization, and other irregularities,
which are sensitive to model assumptions. A common approach is thus to characterize the optimal policy
within a restricted class of tax systems using conventional perturbation methods.20 This section extends this
literature by considering a more varied set of simple tax systems, and by expressing all results in terms of
the sufficient statistics discussed in the previous section.

18A natural question is whether the effect of income received earlier in life—e.g., family income in childhood—should be used
to measure the long-run income effect s0inc(z). It should not. As shown by Lemma 1 above, the role of s0inc(z) is to quantify the
distortion in work-life income induced by a change in the steady-state tax on s, and this distortion depends on the causal effect
of earnings during work life on s. To the extent that income earlier in life affects s consumption differently from income during
work-life, the former behaves like a component of preference heterogeneity.

19Fagereng et al. (2021) use lottery winnings as a source of exogenous variation in unearned income. However, if individuals
respond differently to a one-time change in unearned income than to a persistent change of equal present value, then s

0
inc(z) should

be measured based on the latter. We discuss this issue, and an alternative measure of s0inc(z) based on survey data, in Section 6.
There is some evidence that mental accounting and other behavioral frictions affect people’s propensity to consume and save out

of windfalls. For example, Thakral and To (2021) show that people save more out of long-anticipated windfalls. Since steady-state
changes in earnings correspond to anticipated changes in earnings, unanticipated windfalls could lead to an under-estimate of s0inc

when s corresponds to savings, and an over-estimate when s corresponds to immediate consumption.
20See Piketty and Saez (2013), Diamond and Spinnewijn (2011), and Gauthier and Henriet (2018) for examples restricting to a

linear tax on s, and Saez and Stantcheva (2018) for a nonlinear separable tax on s and z.
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4.1 A Taxonomy of Common Simple Savings Tax Systems

Many governments tax both labor income and savings (or capital interest income). While these tax systems
take a variety of forms, the details of which depend on specifics such as timing, many of these tax policies
can be interpreted as a function of earnings and savings, analogous to our function T (s, z). Table I presents
three classes of simple tax systems: separable linear (SL), separable nonlinear (SN), and linear earnings-
dependent (LED).

Table I: Types of simple tax systems

Type of simple tax system T (s, z) T 0
s (s, z) T 0

z (s, z)
SL: separable linear ⌧s s+ Tz (z) ⌧s T

0
z (z)

SN: separable nonlinear Ts (s) + Tz (z) T
0
s (s) T

0
z (z)

LED: linear earnings-dependent ⌧s (z) s+ Tz (z) ⌧s (z) T
0
z (z) + ⌧

0
s (z) s

Appendix Table A1 categorizes the tax policies on each of five classes of savings-related tax bases—wealth,
capital gains, property taxes, pensions, and inheritances—for 21 countries, showing that most of these taxes
can be understood as fitting into one of the three simple tax system classes from Table I. In cases where
there is ambiguity, we provide supplementary information.21

In the United States, for example, most property taxes, levied at the state and local level, take the form of
a separable linear tax, with a flat tax rate, independent of one’s labor earnings, applied to the assessed value
of the total property. The estate tax takes the form of a separable nonlinear tax: Tax rates rise progressively
with the value of the estate, but they do not vary with labor income of the donor or the recipient. Taxes on
long-term capital gains and qualified dividends take the form of linear earnings-dependent taxes.22 In 2020,
for example, an individual with $50,000 in labor earnings faced a tax rate of 15% on long-term capital gains,
whereas an individual earning $500,000 faced a tax rate of 20%. Finally, although we focus on savings tax
policies, these classes of simple tax systems are also relevant for other classes of commodities. Separable
linear commodity taxes are ubiquitous (e.g., on lodging, airfare, and sales taxes that apply to specific classes
of consumption); while separable nonlinear and linear income-dependent tax structures are often used for
subsidies on goods like energy and education.23

21We impose several simplifications for our interpretation of the tax codes. First, we treat ordinary income as consisting
primarily of labor income (earnings), written as z in our notation. Second, we separately consider taxes on five broad categories
of savings vehicles: wealth, capital gains, real property, private pensions, and inheritances. These categories may overlap—real
property is a component of wealth, for example—but we use these groups to reflect the tax instruments that many governments use
in practice.

22This is a slight approximation since the linear capital gains tax rate in the U.S. is a function of total income (including capital
gains) rather than solely labor income.

23One practical distinction between taxes on savings and on other commodities involves the measurement of the tax base. In
our baseline model, the argument of the tax function s represents the amount of the commodity s consumed. This is natural for
many commodities, but in the setting of savings, it is common for the tax system to be written as a function of gross savings before
taxes, e.g., a tax T1(z) in period 1, and a tax T2(sg, z) on gross pre-tax savings sg = (1 + r)(z � T1(z) � c) in period 2, so that
period-2 consumption is given by s = sg �Ts(sg, z), where r is the compounded rate of return. In this formulation, a SL structure
is one where T2(sg, z) = ⌧ssg , a SN structure is one where T2(sg, z) is a function of sg only, and a LED structure is one where
T2(sg, z) = ⌧s(z)sg . Fortunately, there is an equivalence between these formulations of two-period tax systems and the type of
“static” tax function T considered in our baseline model, allowing us to translate results between them. Appendix B.7 shows the
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4.2 Optimal Simple Tax Systems

We now present optimality conditions for SL, SN and LED tax systems. We focus on marginal tax rates
on s in the body of the paper, and present conditions for marginal tax rates on z in Appendix B.5. The
preference heterogeneity statistic s

0
het remains the key sufficient statistic for the marginal tax rate on s.

For SL systems, it is convenient to introduce the term shet(z) :=
R z
x=zmin

s
0
het(x)dx, which integrates local

preference heterogeneity across incomes to obtain a measure of total preference heterogeneity up to earnings
level z.

Proposition 3. Suppose that the optimal SL, SN, and LED systems satisfy Assumption 3, and that in the SN

system s is strictly monotonic (increasing or decreasing) in z. Then, at each bundle (c, s, z) chosen by a

type ✓, these systems satisfy the following optimality conditions:

SL :
⌧s

1 + ⌧s
=

1

s⇣
c
s|z

Z

z
s
0
het(z)

Z

x�z
(1� ĝ(x))dHz(x)

�
dz (22)

= � 1

s⇣
c
s|z

Cov[shet(z), ĝ(z)] (23)

SN :
T
0
s (s)

1 + T 0
s (s)

=
1

s ⇣
c
s|z(z)

1

hz(z)
s
0
het(z)

Z

x�z
(1� ĝ(x)) dHz(x) (24)

LED :
⌧s (z)

1 + ⌧s (z)
=

1

s ⇣
c
s|z(z)

1

hz(z)
s
0
het(z)

Z

x�z
(1� ĝ(x)) dHz(x) (25)

Moreover, if a SL/SN/LED tax system is not Pareto dominated by another SL/SN/LED system, then it must

satisfy the following conditions:

SL :
⌧s

1 + ⌧s
=

1

s⇣
c
s|z

Z

z
s
0
het (z) z⇣

c
z (z)

T
0
z(z) + s

0
inc(z)⌧s

1� T 0
z (z)

dHz (z) (26)

SN :
T
0
s (s)

1 + T 0
s (s)

= s
0
het (z)

z⇣
c
z(z)

s⇣
c
s|z(z)

T
0
z (z) + s

0
inc(z)T

0
s (s)

1� T 0
z (z)

(27)

LED :
⌧s (z)

1 + ⌧s (z)
= s

0
het (z)

z⇣
c
z(z)

s⇣
c
s|z(z)

T
0
z (z) + ⌧

0
s (z) s+ s

0
inc(z)⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

(28)

The optimal tax formulas and the Pareto-efficiency conditions for SN and LED systems are analogous to
the conditions for T 0

s in the fully flexible smooth tax systems derived in Theorem 2. Appendix B.2 derives
sufficiency conditions under which SN and LED systems can implement the optimal allocation. In the case
of SN systems, these conditions are relatively weak, although they do require that s is weakly increasing
with z in the optimal allocation. In contrast, the sufficiency conditions for LED systems are more restrictive,
loosely requiring that the local preference for s must not increase “too quickly” across incomes, or else the

nature of this equivalence in two steps. First, the set of allocations implementable by these systems is identical, as there is a simple
and natural translation between the “static” tax function T we consider and the two-period function. Second, if T1(z) + T2(sg, z)
implements the same allocation as T (s, z), then T1(z) + T2(sg, z) will be SL/SN/LED if and only if T (s, z) is SL/SN/LED.
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second-order condition for earnings may be violated. Yet LED systems do not require a non-decreasing
schedule of s(z) in the optimal allocation. Thus these results illustrate that SN and LED systems have
distinct advantages in different settings.

The SL system is the most restrictive and generically cannot implement the same allocation as the
optimal smooth tax system. This is because the optimal smooth tax system does not generally feature
constant marginal tax rates on s. Correspondingly, the optimal tax formula for the SL systems takes a
different form. As shown in expression (22), the constant marginal tax rate ⌧s for SL systems is in a certain
sense an average of the z-earner specific marginal tax rates in expressions (24) and (25). Intuitively, the
constant marginal tax rate is a population aggregate of the tax rates that would be optimal for individuals
with different earnings levels. This is mirrored in the Pareto-efficiency condition (26). Expression (23)
expresses this optimality condition in an alternative way, which was first derived by Allcott et al. (2019).
This formulation has a familiar form resembling the Diamond (1975) “many-person Ramsey tax rule.” The
expression is identical to the Diamond (1975) formula when shet(z) = s(z); i.e., when there are no income
effects and thus all consumption differences are driven by preference heterogeneity.24 In contrast, when
all consumption differences are driven by heterogeneity in income such that shet(z) ⌘ 0, it reduces to the
original statement of the Atkinson-Stiglitz Theorem. More generally, even for arbitrarily nonlinear taxes
on s, the optimal tax rate is always inversely proportional to the elasticity ⇣cs|z(z), consistent with standard
Ramsey principles, as long as s0het(z) 6= 0.

4.3 Multidimensional Heterogeneity, Suboptimal Earnings Taxes

Our next result generalizes Proposition 3 in two key ways. First, it allows for multidimensional heterogene-
ity, where types ✓ belong to a subset of Rn for n � 2, so that the support of the distribution of (s, z) can
be two-dimensional. Second, it characterizes optimal taxes on s even when the earnings tax Tz(z) is not
necessarily optimal.25 Proposition B.6 in the Appendix characterizes optimal earnings tax schedules. The
combination of Proposition B.6 and the result below provides a complete characterization of optimal simple
tax schedules with multidimensional heterogeneity.

In settings with multidimensional heterogeneity, the relevant sufficient statistics may vary across the
joint distribution of s and z. We use ⇣cz(s, z) and s

0
inc(s, z) to denote the compensated elasticity of s and the

causal income effect on s for an individual choosing the bundle (s, z). The formulas below also allow social
marginal welfare weights g to be functions of both s and z.

Proposition 4. Consider smooth simple tax systems with (potentially suboptimal) earnings tax schedules

Tz(z) and optimally set marginal tax rates on s. Assume that individuals’ first- and second-order conditions

hold in these tax systems, and that there is no bunching. Then, at each bundle (c0, s0, z0) chosen by some

type ✓
0
, the marginal tax rates on s in SL/SN/LED systems must satisfy the following optimality conditions:

24In this special case of no income effects, the SN optimal tax formula (24) also nests a previous result: The optimal nonlinear
tax formula of Saez and Stantcheva (2018), in which wealth choices originate entirely from preferences for wealth. Use hs(s(z)) =
hz(z)
s0(z) to recover the equivalence with formula (11) in Saez and Stantcheva (2018).

25For reference, we provide a characterization of optimal taxes on s assuming unidimensional heterogeneity and a given (po-
tentially suboptimal) earnings tax Tz(z), in Appendix B.4.
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SL :
⌧s

1 + ⌧s

Z

z

⇢
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h
s⇣
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s|z(s, z)

���z
i�

dHz (z) =

Z

z

⇢
E
h
(1� ĝ (s, z)) s

���z
i

� E

T

0
z (z) + s

0
inc (s, z) ⌧s

1� T 0
z (z)

z⇣
c
z(s, z) s

0
inc (s, z)

���z
��

dHz (z) (29)

SN :
T

0
s

�
s
0
�

1 + T 0
s (s0)

Z

z

�
s
0
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s|z(s

0
, z)

 
h
�
s
0
, z
�
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Z

z
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E
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0
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T

0
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0
inc

�
s
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0
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0
�

1� T 0
z (z)

z⇣
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z(s

0
, z)s0inc

�
s
0
, z
�
)
h
�
s
0
, z
�
dz (30)

LED : E

T

0
z (z) + ⌧

0
s (z) s+ s

0
inc (s, z) ⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

z⇣
c
z(s, z)s

���z0
�
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E
h
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�
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z�z0
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

⌧s (z)
1 + ⌧s (z)

s⇣
c
s|z(s, z)

���z
�
+ E


T

0
z (z) + ⌧

0
s (z) s+ s

0
inc (s, z) ⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

z⇣
c
z(s, z)s

0
inc (s, z)

���z
��

dHz (z)

(31)

Because Lemma 1 still holds, the s
0
inc statistic, together with standard elasticity concepts, allow us to

characterize optimal taxes on s in terms of observables. If all terms inside the expectation operators E[·|z] in
Proposition 4 are independent of each other, then the expectation can be applied to each statistic separately,
and thus the unidimensional formulas are similar to the multidimensional formulas provided that all statistics
are interpreted as averages conditional on z. For example, the first term in the integral in expression (29) can
be written as

⇣
1� ĝ(z)

⌘
s(z), where the “bar” notation denotes income-conditional averages. The second

term in the integral can be written as

T
0
z (z) s

0
inc(z) + ⌧ss

0
inc(s, z)

2

1� T 0
z (z)

z⇣cz(z). (32)

The main new effect is the square of s0inc inside the integral. Because
R
(s0inc)

2
dH >

�R
s
0
incdH

�2 and
because the square enters into the optimal tax expression negatively, this implies that ignoring multidimen-
sional heterogeneity can lead to over-estimates of optimal marginal tax rates on s. Formulas (30) and (31)
also involve squares of s0inc, implying that multidimensional heterogeneity can similarly lower the optimal
tax rate on s through (s0inc)

2. We quantify the importance of this insight in our empirical application in
Section 6. More generally, positive covariances between pairs of statistics inside the expectation operator
will tend to lower the optimal tax rate on s, while negative covariances will tend to increase it.

5 Extensions

In this section we provide three key extensions. First, we generalize our results to more than two dimensions
of consumptions. This allows us to cover settings where, for example, individuals have access to multiple
saving vehicles that are taxed differentially. Second, we allow for the possibility that the government wants
people to save more than their perceived private optima, either because of a misalignment between private
and social inter-generational preferences or because of individuals’ behavioral biases. Third, we consider
the case where taxes can be collected both in units of c and in units of s, as is often the case for savings
taxes. These extensions highlight that s0het remains a key sufficient statistic for optimal taxes, and that our
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previous formulas readily extend to these settings.

5.1 Multiple Goods

Suppose individuals consume n + 1 goods, c and s = (s1, s2, ..., sn). For example, s might correspond to
different categories of saving, which the government might choose to tax in different ways. We consider a
tax system T (s, z) = T (s1, s2, ..., sn, z), where we retain the normalization that the numeraire c is untaxed.
We normalize s = (s1, s2, ..., sn) to measure consumption in units of the numeraire. An individual of type
✓ then maximizes U(c, s, z; ✓) subject to the budget constraint c+

Pn
i=1 si  z � T (s, z).

We denote own-price elasticities of goods by ⇣
c
si|z(z), and we define cross-substitution elasticities by

⇠
c
sj,i|z (z) := �T 0

si
(s(z;✓),z)

sj(z;✓)
@sj(z;✓)

@T 0
si
(s(z;✓),z)

��
✓=#(z)

, where sj (z; ✓) denotes type ✓ consumption of good j when

earning labor income z. We denote causal income effects on good sj by s
0
j,inc(z) := @sj(z;✓)

@z

��
✓=#(z)

. We
continue using ĝ(z) to denote the social marginal welfare effect of increasing a z-earner’s consumption of c
by one unit.26

Proposition 5. Under Assumption 3, for each taxed good i = 1, . . . , n and at each bundle (c, s, z) chosen

by a type ✓, an optimal smooth tax system satisfies

T 0
si(s, z)

1 + T 0
si(s, z)

= s
0
i,het(z)

1

si⇣
c
si|z(z)

1

hz(z)

Z

x�z

h
1� ĝ(x)

i
dHz(x) +

X

j 6=i

T 0
sj (s, z)

T 0
si(s, z)

sj⇠
c
sj,i|z(z)

si⇣
c
si|z(z)

| {z }
Tax diversion ratio

. (33)

Any Pareto-efficient smooth tax system satisfies

T 0
si(s, z)

1 + T 0
si(s, z)

= s
0
i,het(z)

z⇣
c
z(z)

si⇣
c
si|z(z)

T 0
z (s, z) +

Pn
j=1 s

0
j,inc(z)T 0

sj (s, z)

1� T 0
z (s, z)

+
X

j 6=i

T 0
sj (s, z)

T 0
si(s, z)

sj⇠
c
sj,i|z(z)

si⇣
c
si|z(z)

| {z }
Tax diversion ratio

. (34)

Proposition 5 features all of the familiar terms of Theorem 2, and includes a novel term that captures
the tax implications of substitution effects between the different goods. Intuitively, substituting from si

to higher-taxed goods generates positive fiscal externalities that motivate higher marginal tax rates on si,
while substitution to lower-taxed goods generates negative fiscal externalities that motivate lower marginal
tax rates on si. These effects are summarized by what we call the tax diversion ratio—the impact on taxes
collected on goods j 6= i relative to the impact on taxes collected on good i, when the price of good i

is increased. The higher the diversion ratio, the more favorable are the fiscal externalities associated with
substitution away from good i, and thus the higher is the optimal tax rate on good i.

5.2 Optimal Taxation with Corrective Motives

Our framework can be interpreted as a bequest model in which parents work and consume in the first period,
and leave a bequest to their heirs in the second period. Under this interpretation, our baseline model makes

26The formula for ĝ(z) in this more general setting is in Appendix C.10.
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the implicit assumption that the government values bequests in the same way as parents. Farhi and Werning
(2010) consider a model where the weight that parents attach to the well-being of future generations is too
low from a normative perspective. This misalignment introduces a motive to encourage bequests, which we
consider in this extension.

Following Farhi and Werning (2010), we assume additively separable preferences given by

U
�
c, s, z; ✓

�
= u (c; ✓)� k (z; ✓) + �v (s; ✓) , (35)

where u (c; ✓) is the utility parents derive from consumption c, k (z; ✓) is the disutility parents incur to
obtain earnings z, v (s; ✓) is the utility heirs derive from a bequest s, and � is the weight parents attach to
the well-being of their heirs. As in Farhi and Werning (2010), the government maximizes

Z

✓

⇥
U (c (✓) , s (✓) , z (✓) ; ✓) + ⌫v (s (✓) ; ✓)

⇤
dF (✓) , (36)

where ⌫ parametrizes the degree of misalignment. Farhi and Werning (2010) microfound ⌫ as the La-
grange multiplier associated with a constraint that the future generation attains a required level of well-being
R
✓ v (s (✓) ; ✓) dF (✓) � V .

The formal model above can be interpreted more generally beyond the bequest application and can
be used to analyze behavioral biases as a motivation for encouraging savings. In particular, suppose that
v(s; ✓) = �(✓)u(s; ✓), where � is the “exponential discount factor” and � is “present focus,” as in Laibson
(1997). If the government utilizes the “long-run criterion” for welfare, then the degree of misalignment is
given by ⌫ = (1 � �).27 More generally, � may be heterogeneous, so that misalignment is type-dependent
and given by ⌫(✓) = (1 � �(✓)). For example, Lockwood (2020) summarizes evidence suggesting that
individuals with higher earnings ability have lower degrees of present focus.

Below, we characterize optimal taxation with heterogeneous misalignment, where �(z) and ⌫(z) denote
the parameters corresponding to a z-earner. This generalizes the result in Farhi and Werning (2010) by (i)
allowing heterogeneity in preferences for s, and by (ii) allowing heterogeneity in the misalignment parameter
⌫.

Proposition 6. Under Assumption 3, at each bundle (c, s, z) chosen by a type ✓, an optimal smooth tax

system satisfies the following marginal tax rate condition
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Any Pareto-efficient smooth tax system satisfies
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This is an intuitive generalization of Theorem 2, where the key new term is a form of Pigovian correction,
27See Bernheim and Taubinsky (2018) for a detailed discussion of such a criterion, as well as alternative normative approaches

to studying the implications of present focus.
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given by ⌫(z)
�(z)g(z). As equation (37) shows, the presence of misalignment motivates the government to

lower the tax rate on s. The degree by which the government lowers the tax rate depends on the degree of
misalignment (relative to the discount factor �), and on the social marginal welfare weight. Because social
marginal welfare weights decline with z, equation (37) gives the “progressive estate taxation” result of Farhi
and Werning (2010)—i.e., savings subsidies that decline with income—under the special assumptions that
(i) s0het ⌘ 0 and (ii) �(z) ⌘ � 2 R, ⌫(z) ⌘ ⌫ 2 R. This core result of Farhi and Werning (2010) extends
the standard Pigovian taxation logic to optimal screening of distortions with a nonlinear tax.

More generally, Proposition 6 provides a simple formula for balancing the “corrective motives” studied
by Farhi and Werning (2010) with the additional motives to tax s in the presence of preference heterogeneity
studied in this paper. This extends the Allcott et al. (2019) results for linear commodity taxes with biased
consumers to study optimal screening of biases with a nonlinear tax. If s0het(z) > 0 and ⌫(z)/�(z) and
g(z) are decreasing with z, Proposition 6 suggests a progressive tax on s that can feature subsidies at low
incomes and taxes at high incomes.

5.3 Tax Arbitrage with Heterogeneous Prices

Thus far we have considered tax functions where the tax is always paid in units of the numeraire commodity
c. In some applications it is also natural to consider tax systems with multidimensional range, which include
taxes collected in units of c and also in units of s. This is natural, for example, if c and s correspond to period
1 and period 2 consumption, respectively, and taxes must be paid in both periods. The additional richness in
the range does not alter the optimal tax implications when the rates of transformation p are homogeneous; in
equilibrium, the government’s rate of transformation is the same as the homogenous rate for individuals, and
it does not matter what portion of the total tax bill is collected in units of s. However, we show that when
prices are heterogeneous, there is an additional efficiency rationale for differentially taxing s. Heterogeneity
in prices motivates a form of “tax arbitrage,” where the government collects relatively more taxes in units
of s from individuals who can obtain s at a low price or, in the case of savings, it imposes relatively higher
savings taxes (and lower earnings taxes) on individuals with high rates of returns. This extension provides
a generalization both of our baseline results and the independent work of Gerritsen et al. (2020), which also
studies the role of such efficiency effects.

Formally, suppose that the government uses a two-part tax structure, where individuals pay a tax T1(z)

in units of c and a tax T2(s, z) in units of s. For instance, in a two-period model where s is savings, T1

represents the earnings tax levied in period 1 and paid in period-1 dollars, while T2 represents the savings
tax levied in period 2 and paid in period-2 dollars, and p = 1/(1 + r) is a function of the rate of return r.
For concreteness, we refer to T1 as period-1 taxes and to T2 as period-2 taxes, though we emphasize that the
presence of efficiency effects is not about dynamics per se, but rather that T2 is collected in units of s.

Following Gahvari and Micheletto (2016), we consider heterogeneous prices p(z, ✓) that are a function
of gross earnings and type. For example, wealthier individuals may have access to better rates of return
on savings or prices of commodities. Alternatively, higher earnings ability may be associated with a better
ability to obtain high rates of return or to find better prices.

Individuals maximize utility U (c, s, z; ✓) subject to the budget constraint c + p(z, ✓)s  z � T1(z) �
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p(z, ✓)T2(s, z). Denoting by #(z) the type ✓ of individuals who choose earnings z, we slightly abuse
notation to define p(z) := p(z,#(z)). The government, as before, maximizes a weighted average of utilities,

Z

z

⇢
↵(z)U

⇣
z � T1(z)� p(z)

�
s(z) + T2(s(z), z)

�
, s(z), z;#(z)

⌘�
dHz(z), (39)

subject to the constraints
Z

z
T1(z)dHz(z) � E1 and

Z

z
T2(s(z), z)dHz(z) � E2, (40)

which generate marginal values of public funds �1 and �2 . We continue using ĝ(z) to denote the social
marginal welfare effect of increasing a z-earner’s consumption of c by one unit, normalized by the marginal
value of public funds �1.28

Heterogeneity in p generates efficiency effects through two channels, which are represented in Propo-
sition 7 below. First, for individuals with relatively low p(z), it is efficient for the government to decrease
T1 and increase T2. This efficiency effect is present irrespective of the mechanism for the cross-sectional
variation of p with z and leads to a deviation from the Atkinson-Stiglitz Theorem.

Second, lump-sum changes in T2 trigger novel substitution effects. This is because a lump-sum increase
dT in T2 has the same effect on an individual’s utility as a p(z)dT increase in T1, and thus changes behavior
as much as a marginal tax rate change of @p

@zdT in T1. We denote by

'(z) := �
✓
T
0
1(z) +

�2

�1

@T2

@z
+ s

0
inc(z)

�2

�1

@T2
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z(z)

1� T
0
1(z)

@p

@z

the fiscal impacts of this substitution effect at earnings z. The impact of a uniform lump-sum change in T2

is then ĝp� ', where the “bar” notation is used to denote a population average across all earnings levels.
Thus, �2/�1 = ĝp� ', as we formally show in Appendix C.12.3.

Proposition 7. Under Assumption 3 and under the assumption that for SN systems s is strictly monotonic

(increasing or decreasing) in z, at each bundle (c, s, z) chosen by a type ✓, an optimal SN two-part tax

system {T1(z), T2(s)} satisfies

�2/�1T
0
2(s)

1 + p(z)T 0
2(s)

=
1
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1� ĝ(x)

i
dHz(x) +

s
0(z)

p(z)

⇣
 (z) +

Z

x�z

h
'(x)� '

i
dHz(x)

⌘�

(41)
where

 (z) :=
⇣
1�Hz(z)

⌘Z

xz
ĝ(x)

⇣
p(x)� p(z)

⌘
dHz(x) +Hz(z)

Z

x�z
ĝ(x)

⇣
p(z)� p(x)

⌘
dHz(x). (42)

28The formula for ĝ(z) in this more general setting is in Appendix C.12.3.
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An optimal LED two-part tax system {T1(z), ⌧s(z)s} satisfies

�2/�1⌧s(z)

1 + p(z)⌧s(z)
=

1

s(z)⇣cs|z(z)

1
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n
ĝp� ĝp(z) + '(z)� '

o
. (43)

Proposition 7 shows that the sufficient statistic s
0
het(z) continues to play a central role.29 On the left-

hand side of (41) and (43), the presence of p(z) in the denominator is because an individual’s marginal tax
rate on s, translated to units of c, is p(z)@T2

@s . The presence of �2/�1 in the numerator of the left-hand side
is because fiscal externalities generated by substitution away from s must be weighted by the “period-2”
marginal value of public funds.

Proposition 7 also introduces novel efficiency terms that to lead to taxes on s, even when s
0
het ⌘ 0. In the

SN formula, there are two additional efficiency effects. These terms are both positive and thus push toward
taxing s when higher earners (i) face lower prices p (e.g., higher rates of returns on savings) and choose
higher levels of s, and (ii) exhibit larger substitution effects '. The first term, proportional to (z), captures
the efficiency effects of increasing period-2 taxes. This term is unambiguously positive when p decreases
cross-sectionally with z and captures the intuition that with a SN system, increasing marginal tax rates on
s at any point z > zmin increases period-2 taxes on individuals with below-average p. The second term,
proportional to

R
x�z

h
'(x)� '

i
dHz(x), captures the fact that increasing marginal tax rates on s motivates

individuals to increase labor supply in order to get lower prices p when @p
@z < 0. The SN formula generalizes

the result in Gerritsen et al. (2020) to incorporate other forms of across-income heterogeneity and makes
transparent the sign of these terms in a formula employing measurable sufficient statistics.

The implications for LED tax systems are somewhat different. Assume again that p declines cross-
sectionally with z (i.e., p0(z) < 0). The first novel term in equation (43), proportional to p

0(z)/p(z),
reflects the fact that higher earners are less responsive to marginal changes in T2 when p(z) declines with
income, since period-2 consumption is “cheaper” for them than period-1 consumption. The second term,
proportional to ĝp� ĝp(z) + '(z)� ', is also negative for sufficiently low values of z, as in this case both
ĝp� ĝp(z) and '(z)�' are negative. However, this term is positive for sufficiently high values of z. Thus,
when s

0
het(z) ⌘ 0, the optimal LED system features subsidies on s for lower-income individuals and taxes

on s for higher-income individuals.
The contrast in implications for SN versus LED tax systems—everywhere-positive tax rates in the for-

mer, subsidies followed by taxes in the latter—highlights that the new efficiency considerations from het-
erogeneous rates of return depend on the types of restrictions imposed on the tax system. The reason for
this dependence is because positive tax rates on s are a consequence of a missing instrument problem. In
a fully flexible tax system, the efficiency gains of taxing a person in period 2 instead of period 1 could be
obtained by shifting each individual’s total tax burden onto their lowest-cost tax base up to the point that
heterogeneous prices are arbitraged away, without the distortion of increasing marginal tax rates on s. But
less flexible tax systems can only generate this shifting of the tax burden by altering marginal tax rates on s,

29A characterization of the optimal earnings tax schedule T1(z) is in Appendix C.12.4.
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and the optimal means of doing this depend on the nature of the restricted tax system.

6 Empirical Application

We apply our formulas to the question of savings taxes in the United States. We first calibrate the relevant
sufficient statistics from micro data and empirical studies. In section 6.2, we devote particular attention to
the calibration of the sufficient statistic s

0
het(z). We then use the Pareto-efficiency conditions derived in

Proposition 3 to compute the SL, SN and LED savings tax schedules that would be consistent with the status
quo income tax schedule. This allows us to study the welfare-improving reforms that could be made to the
existing tax system, taking as given the distributional preferences already embedded in the existing income
tax. As is typical for calculations based on sufficient statistics formulas, these results are approximations,
as they do not account for changes in the underlying distributions and sufficient statistics that might arise if
the savings tax were reformed. These results suggest that across-income heterogeneity leads to a (mostly)
positive and progressive schedule of savings tax rates, which range from approximately 0% at the bottom of
the income distribution up to between 15% and 20% at higher incomes in our baseline calibration.

6.1 Calibration

We calibrate a model of the U.S. economy that can be interpreted through the lens of our model with a joint
savings and income tax function T (s, z), expressed in terms of the three simple tax systems described in
Table I. Appendix D discusses details of this calibration; here, we summarize the key steps. We calibrate a
two-period model economy with a fine grid of incomes, where the first period corresponds to work life and
the second to retirement. We assume a constant (and, in our baseline, homogeneous) annual rate of return of
3.8% before taxes, drawing from Fagereng et al. (2020). We calibrate a version of the economy with unidi-
mensional heterogeneity (i.e., a single level of savings at each income) and a version with multidimensional
heterogeneity, reporting results for each below.

Because our model builds on standard models of commodity taxation, it implicitly assumes that z and
T (s, z) are measured in the same units as consumption, which in a dynamic setting corresponds to “period-
1” dollars. In practice, savings taxes are typically levied after returns, and they are thus measured in “period-
2” dollars. We accordingly translate all tax rates into units of period-2 dollars when reporting results, so that
a marginal savings tax rate of 10% indicates that if an individual’s total wealth at retirement increases by
$1, then they must pay an additional $0.10 in taxes when they retire. Appendix D.1 discusses details of our
calibration and this conversion.

To calibrate the earnings and savings distributions—and thus the across-income savings profile s(z)—we
use the Distributional National Accounts micro-files of Piketty et al. (2018). We use 2019 measures of pre-
tax labor income (plinc) and net personal wealth (hweal) at the individual level, as well as the age category
(20 to 44 years old, 45 to 64, and above 65). Discretizing the income distribution into percentiles by age
group, our measure of annualized earnings during the working life z at the nth percentile is constructed by
averaging earnings at the nth percentile across those aged 20 to 44 and those aged 45 to 64. Our measure
of s is the average value of net personal wealth, hweal, projected forward to age 65 based on the value
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observed at each income percentile in the 45-64 age bucket. This measure of wealth includes housing as-
sets, business assets, and financial assets, net of liabilities, as well as defined-contribution pension and life
insurance assets.30 This provides us with a population of representative individuals at each percentile of the
income distribution, for whom period 1 represents their working life, with a representative age of 45, and
period 2 represents retirement, which occurs 20 years later at age 65. We normalize both labor earnings and
retirement savings by the number of years worked.

Figure A1 plots our estimate of gross (i.e., after-returns and before-tax) discretionary savings per year
worked, across the income distribution. This does not include Social Security, which we model as lump-
sum forced savings that are received during retirement. The figure shows that the stock of savings upon
retirement are approximately zero at low incomes, but increase substantially with income. We convert this
to net-of-tax savings using a calibration of savings tax rates across the earnings distribution in the U.S.,
derived by computing the weighted average of savings tax rates using the asset composition of savings
portfolios reported in Bricker et al. (2019); see Appendix D.1.2 for details. The convex shape of the savings
profile, which persists after accounting for taxes, indicates that the cross-sectional slope s

0(z) rises with
income, as shown by the solid blue line in Figure I.

We assume a constant compensated earnings elasticity of ⇣̄cz = 0.33, drawn from the meta-analysis of
Chetty (2012). The value of the savings elasticity ⇣

c
s|z is related to the elasticity of taxable wealth (e.g.,

Jakobsen et al., 2020) and to the elasticity of capital gains realizations with respect to the capital gains tax
(e.g., Agersnap and Zidar, 2021). However, studies that measure elasticities from responses to tax reforms
are likely inflated by cross-base responses, as taxpayers re-optimize their savings portfolio towards savings
vehicles that are relatively less taxed after the reform.31 We report results for a broad range of values
spanning ⇣cs|z = 0.7 to ⇣cs|z = 3, with a baseline of ⇣cs|z = 1, which approximately aligns with the baseline
calibration considered in Golosov et al. (2013), in which the intertemporal elasticity of substitution is set to
1. Appendix D.1.4 discusses this conversion.

6.2 Estimation of s0het

To estimate our measure of local preference heterogeneity s
0
het(z) = s

0(z) � s
0
inc(z), we employ two

complementary strategies.
The first estimation strategy is motivated by the Proposition 2 result that when preferences are separable

in s and z, the causal income effect of windfall income on s consumption identifies s0inc(z). To the extent that
separability is plausible, we can exploit exogenous shocks to unearned income in order to estimate s

0
inc(z).

To implement this strategy, we draw from Fagereng et al. (2021), who estimate the marginal propensity to
consume (MPC) out of windfall income across the earnings distribution using information on lottery prizes
linked with administrative data in Norway.32 Lottery consumption is widespread in Norway—over 70% of

30The ongoing methodological discussion regarding the different ways to measure wealth (See e.g. Saez and Zucman, 2020;
Smith et al., 2021) has important implications for estimates of wealth in the top 1% but has little impact on the wealth distribution
of the rest of the population that we are using here.

31Our extension to many goods (Section 5.1) shows how the inclusion of cross-base responses affect optimal savings tax for-
mulas. It could be used to compute the optimal savings tax on different savings vehicles, if there was a larger body of empirical
evidence on savings elasticities and cross-base responses.

32Two other recent studies point to the promise of estimating such causal marginal propensities in a variety of settings. Golosov
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adults from all income groups participated in 2012—and administrative records of asset and wealth holdings
allow for direct measures of savings and consumption responses to lottery winnings. Fagereng et al. (2021)
find that individuals’ consumption peaks during the winning year and then gradually reverts to the the pre-
win baseline. Over a 5-year horizon, they estimate that winners consume close to 90% of the prize (see their
Figure 2, “aggregate consumption response”) which translates into a long-run MPC of 0.9, and a marginal
propensity to save of 0.1. They do not find significant heterogeneity across incomes in this MPC. We convert
this homogeneous MPC into a response of net retirement savings to changes in pre-tax labor income using
our calibrated schedules of income and savings tax rates—which introduces a small amount of heterogeneity
across incomes—in order to arrive at s0inc(z). The resulting profile is plotted as the dashed red line in Figure
I. The difference between this estimated schedule of s0inc(z) and the cross-sectional profile s0(z), also plotted
in Figure I, is s0het(z).

Our second strategy for estimating s
0
het(z) utilizes a new probability-based survey representing the U.S.

adult population, conducted on the AmeriSpeak panel in the spring of 2021. We asked respondents to
report how much more they would save each year if they received a hypothetical raise that increased their
household’s annual income by $1000 in the coming years. This strategy has the advantage of being based
on the U.S. population, and of asking directly about a modest, persistent change in pre-tax earned income,
rather than a large one-time windfall, so that it does not require a weak separability assumption. The survey
results suggest a short-run marginal propensity to save of 0.60, close to that reported in Fagereng et al.
(2021), with little variation across incomes. We translate this into a long-run MPC using the response profile
of Fagereng et al. (2021), which we in turn convert to the across-income schedule of s0inc(z) displayed as
the solid red line in Figure I. See Appendix D.1.3 for additional details about the survey results.

The two estimation strategies provide remarkably consistent estimates of s0inc(z), as shown in Figure I.
There is a substantial difference between the cross-income profile s0(z) and the causal income effect s0inc(z),
suggesting that s0het(z) is positive across most of the income distribution and rises with income.33We use
the survey-based estimate as the baseline for our numerical results.

By way of comparison, Golosov et al. (2013) estimate preference heterogeneity by estimating differ-
ences in discount factors across ability levels. They infer discount factors from a simple parametric model
of savings choice applied to survey data on individuals’ household income paths and net worth, and they use
survey respondents’ results to the Armed Forces Qualification Test (AFQT) as a proxy for ability. In contrast
to our findings, their estimation strategy finds very little measured preference heterogeneity, amounting to
less than 1% of the cross-sectional variation in savings (see Appendix D.1.3). This discrepancy could be
driven by attenuation bias due to measurement error in their proxy for ability—an issue we avoid by comput-
ing preference heterogeneity directly as a difference of two statistics rather than from regression analysis.
It could also be driven by their use of a narrower measure of across-income heterogeneity based only on

et al. (2021) study the response to lottery prize winnings in the U.S., although the absence of third-party administrative reporting of
wealth in the U.S. complicates the measurement of marginal propensities to save. Straub (2018) estimates the propensity to save out
of permanent income, although the absence of quasi-experimental variation in earnings makes it difficult to separate causal income
effects from across-income heterogeneity.

33Our measure of s0het(z) appears to be slightly negative at low incomes, which in our simulations gives rise to slight savings
subsidies at low incomes. However, we note that this could be driven by limitations in our ability to measure s0inc(z) at low incomes.
This emphasizes the value of additional empirical research on this statistic.
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time preferences, as opposed to all of the possible forms of across-income heterogeneity that our statistic
comprises.

6.3 Results

Figure II reports the schedule of marginal tax rates for SL, SN and LED tax systems that satisfy the Pareto
efficiency formulas in Proposition 3, taking the existing U.S. income tax schedule and income distribution as
given. In each case, we translate the tax into a marginal tax rate on gross savings at retirement, measured in
period-2 dollars. Each panel reports results for a different value of the savings elasticity. For SL tax systems,
the linear savings tax rate ⌧s is by definition constant across earnings levels. For LED tax systems, the linear
savings tax rate ⌧s (z) is earnings dependent and we thus report the linear savings tax rate at each earnings
level. For SN tax systems, the nonlinear savings tax schedule Ts (s) depends on the value of savings s, and
not on earnings z. But to make the SN system visually comparable to the other systems, we plot the marginal
savings tax rate faced at the margin by each earner, given their level of saving (represented on Figure A1).

In each panel, marginal savings tax rates are mostly positive, and the nonlinear tax schedules are pro-
gressive, with marginal rates increasing with income. The magnitudes depend on the value of the savings
elasticity parameter. In the baseline case of ⇣cs|z = 1, savings tax rates in SN and LED tax systems average
approximately 0% for annual incomes below $50, 000, then steadily increase up to nearly 20% for annual
incomes around $200, 000, remaining stable thereafter. The savings tax rate in a SL tax system is approxi-
mately 6%. Changing the savings elasticity parameter scales the efficient savings tax rates without affecting
the overall pattern: across-income heterogeneity calls for (mostly) positive and progressive savings tax rates.
At the lower elasticity values, our estimates of optimal tax rates are substantially higher than the prevailing
savings tax rates in the U.S., which are also shown in Figure II.

Figure III considers two key extensions to these results: multidimensional heterogeneity, as in Section
4.3, and heterogeneous rates of return with “tax arbitrage” efficiency effects, as in Section 5.3. For compara-
bility with our baseline results, all other parameters, including elasticity parameters and income-dependent
welfare weights, are held fixed at the values from our baseline calibration. These results are computed using
our baseline savings elasticity of ⇣cs|z = 1. We plot both types of nonlinear tax schedules, LED and SN,
omitting the separable linear plots for legibility.

In the case of multidimensional heterogeneity, we use the same measure of gross savings, but rather than
compute average savings at each income, we partition the population into four levels of savings at each level
of income, representing quartiles of the income-conditional savings distribution.

In the case of heterogeneous rates of return, we follow Gerritsen et al. (2020) who, relying on empirical
work by Fagereng et al. (2020), assume that rates of return rise by 1.4 percentage points from the bottom to
the top of the income distribution. We linearly interpolate this difference across income percentiles, centered
on our 3.8% baseline rate of return.

Consistent with the intuition described in Section 4.3, the top two panels of Figure III show that incor-
porating multidimensional heterogeneity reduces the magnitude of optimal tax rates in LED systems (top
left panel) and in SN systems (top right panel). The effect is particularly pronounced for SN systems, where
savings tax rates are plotted as a function of total savings at the time of retirement, since individuals with
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the same income save different amounts and thus face different savings tax rates. In this extension, marginal
savings tax rates are still progressive, and are above status quo savings tax rates across high incomes in our
baseline specification.

The bottom two panels show that the presence of heterogeneous rates of returns tends to significantly
raise optimal savings tax rates, reflecting the efficiency effects of tax arbitrage highlighted in Proposition 7.34

The bottom right panel shows that tax rates in the SN system are higher at all levels of income, consistent
with our discussion of the formula for SN systems in Proposition 7. On the other hand, recall that the
formula for LED systems implied lower savings tax rates at low incomes and higher tax rates at higher
incomes. Consistent with this, the bottom left panel shows that relative to the baseline, the optimal savings
tax rates with heterogeneous rates of return are even more progressive. For example, substantial savings
subsidies are optimal for incomes below about $40, 000, whereas savings taxes are substantially higher at
higher incomes.

Taken together, our empirical results show a robust role for progressive savings taxes, stemming from
across-income heterogeneity captured by the s

0
het statistic. This highlights the importance of this statistic

and motivates additional empirical work estimating the long-run marginal propensity to save out of earned
income, as well as across-income consumption profiles and causal income effects in other applications.

7 Conclusion

This paper characterizes optimal tax systems on earnings and savings (or other dimensions of consumption)
in the presence of general across-income heterogeneity. We first prove that with unidimensional heterogene-
ity, the optimal allocation can be implemented by a smooth tax on earnings and savings. We then derive
formulas that characterize the optimal smooth tax system through familiar empirical statistics, as well as
a key sufficient statistic for across-income heterogeneity, s0het(z). This statistic is empirically estimable
and captures heterogeneity in preferences, heterogeneous rates of return, endowments, or income-shifting
abilities. We then use the same sufficient statistics to characterize a set of “simple” separable tax systems
that are widely used in practice, considering both unidimensional and multidimensional heterogeneity. We
also provide tractable extensions to multiple goods, corrective motives, and heterogeneous prices with “tax
arbitrage” efficiency effects. Finally, we apply our theoretical formulas to the setting of savings taxes in
the U.S. Results suggest that the savings tax rates that would be consistent with the existing income tax
are progressive and (mostly) positive. Together, these results provide a practical and general method for
quantifying optimal tax systems for savings, inheritances, and other commodities in the presence of general
across-income heterogeneity.

34Consistent with the tax arbitrage interpretation, these efficiency effects are (almost) unaffected by whether return heterogeneity
is driven by income (scale dependence) or by ability (type dependence).
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Figure I: Decomposition of Cross-Sectional Savings Profile
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Notes: This figure reports the slope of the cross-sectional profile of savings s0(z) (blue), as well as our calibrations of
s
0
inc(z) based on causal income effects, derived from Fagereng et al. (2021) and from a new nationally representative

survey. See Section 6 and Appendix D.1 for details.
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Figure II: Savings Tax Rates Implied by Pareto-Efficiency Formulas
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Notes: This figure presents the marginal savings tax rates values that satisfy the Pareto-efficiency formulas in Propo-
sition 3, plotted against the earnings level to which they apply. We plot these schedules for four different values of the
savings elasticity ⇣s|z , with ⇣s|z = 1 representing our baseline case.
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Figure III: Effects of Multidimensional Heterogeneity and Heterogeneous Returns
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Notes: This figure plots the marginal savings tax rate schedules which are optimal, according to the first-order con-
dition formulas presented in the text, for two extensions discussed in Section 5: multidimensional heterogeneity
(top row), and heterogeneous returns (bottom row). All plots also reproduce the Pareto-efficient savings schedules
from Figure II for comparison, as well as the status quo U.S. savings taxes. These plots use the same set of social
welfare weights, calibrated to rationalize the status quo income tax in the unidimensional model. The Linear Earnings-
Dependent (LED) schedules, in the left column, are plotted across earnings during work life. The Separable Nonlinear
(SN) schedules, in the right column, cannot be plotted this way, because individuals with a given income have different
levels of savings and are thus subject to different savings taxes. We therefore plot them over total savings at the time
of retirement. See Section 6 and Appendices D.2 and D.3 for details.
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A Supplementary Tables & Figures

Table A1: Tax systems applied to different savings vehicles, by country.

Country Wealth Capital Gains Property Pensions Inheritance
Australia – Other SL, SN SL –
Austria – Other SL, SN SN –
Canada – Other SL SN –
Denmark – SN SL, SN SL, SN SN
France – Other Other SL, SN SN
Germany – Other SL SN SN
Ireland – SN SL, SN SN SN
Israel – Other Other SN –
Italy SL, SN SL SL SL SL, SN
Japan – SL, SN SN SN SN
Netherlands SN SL SL, SN SN SN
New Zealand – Other SN SL, LED –
Norway SN SL SL SN –
Portugal – SL Other SN SL
Singapore – Other SN SN –
South Korea – SN SN SN SN
Spain SN SN SL, SN SN SN
Switzerland SN SN SL, SN SN SN
Taiwan – SL, SN SL, SN SN SN
United Kingdom – Other SN SN SN
United States – LED SL SN SN

Notes: This table classifies tax systems applied to different savings vehicles across countries in 2020 according to the
types of simple tax systems we consider.
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Figure A1: Savings Across Incomes in the United States
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Notes: The earnings and savings distribution in the U.S. is calibrated based on the Distributional National Accounts
micro-files of Piketty et al. (2018). We use 2019 measures of pretax income (plinc) and net personal wealth (hweal) at
the individual level, as well as the age category (20 to 44 years old, 45 to 64, and above 65), to impute gross savings
at the time of retirement, which we normalize by the number of work years. See Appendix D.1 for further details.

B Supplementary Theoretical Results
B.1 Monotonicity with Preference Heterogeneity
We can replace part (iii) of Assumption 2 – which states that z(✓) is strictly increasing – by the extended Spence-
Mirrlees condition (44) using the following Lemma:

Lemma B.1. If the set of types for which z
0(✓) = 0 is of measure zero, and when z

0(✓) 6= 0, the following extended

Spence-Mirrlees condition holds for any type ✓̃,

S 0
✓

⇣
c(✓), s(✓), z(✓); ✓̃

⌘
s
0(✓)

z0(✓)
+ Z 0

✓

⇣
c(✓), s(✓), z(✓); ✓̃

⌘
> 0. (44)

then earnings z(✓) are strictly increasing with type ✓ in the optimal incentive-compatible allocation A.

B.2 Implementation Results for Simple Tax Systems
We proceed in three steps to provide sufficient conditions under which some SN and LED tax systems decentralize the
optimal incentive-compatible allocation A = {(c⇤ (✓) , s⇤ (✓) , z⇤ (✓))}✓.

First, we define candidate SN and LED tax systems that satisfy type-specific feasibility and individuals’ first-order
conditions at the optimal allocation. Second, in Proposition B.1, we present sufficient conditions under which these
SN and LED tax systems also satisfy individuals’ second-order conditions at the optimal allocation, implying local
optimality. Third, in Proposition B.2, we present sufficient conditions under which local optima are ensured to be
global optima, implying that the candidate SN and LED systems are indeed implementing the optimal allocation.

There are interesting differences between SN and LED tax systems in their ability to implement the optimal
allocation. Under our baseline assumptions, we have shown that z⇤ (✓) is strictly increasing with type (Lemma B.1).
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However, s⇤ (✓) may not be monotonic. When the optimal incentive-compatible allocation A features a monotonic
s
⇤ (✓), we show that implementation by a SN tax system requires relatively weaker conditions than implementation by

a LED tax system. However, when the optimal incentive-compatible allocation A features non-monotonicity in s
⇤ (✓),

we show that a LED tax system may be able to implement the optimal allocation, whereas a SN tax system cannot –
the candidate SN tax system is not even well defined. Hence, all implementation results for SN tax systems are made
under the following assumption:

Assumption 4. When the SN system is studied, s
⇤ (✓) is assumed strictly monotonic (increasing or decreasing) in type

✓.

Step 1: Defining candidate tax systems. We first define a candidate SN tax system T (s, z) = Ts(s) + Tz(z),
with the nonlinear functions Ts and Tz defined across all savings and earnings bundles of the optimal allocation
A = (c⇤ (✓) , s⇤ (✓) , z⇤ (✓))✓ as follows:

Ts(s
⇤(✓)) :=

Z ✓

#=✓min

(U 0
s(#)/U

0
c(#)� 1) s⇤0(#)d#, (45)

Tz(z
⇤(✓)) :=z

⇤(✓min)� s
⇤(✓min)� c

⇤(✓min) +

Z ✓

#=✓min

(U 0
z(#)/U

0
c(#) + 1) s⇤0(#)d#. (46)

where ✓min denotes the lowest earning type of the compact type space⇥, and the derivatives are evaluated at the bundle
assigned in the optimal allocation (e.g., U 0

s(#) = U
0
s(c

⇤(#), s⇤(#), z⇤(#);#)). Under this tax system, the optimal
allocation satisfies by definition each type’s first-order conditions for individual optimization given in Equations (6)
and (7). By Lemma C.1, this tax system thus satisfies type-specific feasibility.

We similarly define a candidate LED tax system T (s, z) = ⌧s(z) · s+ Tz(z) as follows:

⌧s(z
⇤(✓)) :=U

0
s(✓)/U

0
c(✓)� 1, (47)

Tz(z
⇤(✓)) :=z

⇤(✓min)� s
⇤(✓min)� c

⇤(✓min)

+

Z ✓

#=✓min

(U 0
z(#)/U

0
c(#) + 1) s⇤0(#)d#� s

⇤(z) · (⌧s(z)� ⌧s(z
⇤(✓min))) . (48)

This tax system also satisfies local first-order conditions for individual optimization and type-specific feasibility.

Step 2: Local maxima. We can now derive sufficient conditions under which the above candidate SN and LED tax
systems satisfy the second-order conditions for individual optimization, implying that under these conditions assigned
bundles are local optima. These conditions can be simply stated in terms of the marginal rates of substitution between
consumption and, respectively, savings S(c, s, z; ✓) and earnings Z(c, s, z; ✓). These marginal rates of substitutions
are smooth functions of c, s, z, and ✓ by the smoothness of the allocation and the utility function, and sufficient
conditions for local second-order conditions are given by the following proposition.

Proposition B.1. Suppose that an allocation satisfies the conditions in Theorem 1. Under the SN tax system defined by

Equations (45) and (46), each individual’s assigned choice of savings and earnings is a local optimum if the following

conditions hold at each point in the allocation:

S 0
c � 0, S 0

z � 0, S 0
✓ � 0 (49)

and

Z 0
c  0, Z 0

s � 0, Z 0
✓ � 0. (50)

Under the LED tax system defined by Equations (47) and (48), each individual’s assigned choice of savings and

earnings is a local optimum if the utility function is additively separable in consumption, savings, and earnings (U
00
cs =

0, U
00
cz = 0, and U

00
sz = 0), and additionally the following conditions hold at each point in the allocation:

S 0
✓ � 0, S 0

✓  z
⇤0(✓)

s⇤0(✓)
Z 0

✓, S 0
✓  s

⇤0(✓) (S · S 0
c � S 0

s) . (51)
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The sufficiency conditions (49) and (50) are quite weak; they are satisfied under many common utility functions
used in calibrations of savings and income taxation models, including the simple example function in equation (1).
Conditions S 0

✓ � 0 and Z 0
✓ � 0 are single crossing conditions for savings and earnings, while other conditions

intuitively relate to the concavity of preferences.
The sufficiency conditions for LED systems are more restrictive. Beyond the single-crossing conditions S 0

✓ � 0
and Z 0

✓ � 0, they place a constraint on the extent of local preference heterogeneity for savings, as compared with
preference heterogeneity in earnings. In words, the preference for savings must not increase “too quickly” across
types, or else the second-order condition for earnings may be violated. The intuition for this result can be seen from
the definition of the potentially optimal LED system. If the marginal rate of substitution for saving, S , increases very
quickly with income at some point in the allocation, then the savings tax rate ⌧s(z) must rise very quickly with z at
that point, by equation (47). Since the savings tax rate ⌧s(z) applies to total savings (including inframarginal savings),
this increase in ⌧s(z) must be offset by a sharp decrease in Tz(z) at the same point in the distribution, by equation
(48). Yet a sufficiently steep decrease in Tz(z) will cause the second-order condition for earnings choice—holding
fixed savings choice—to be violated.

Step 3: Global maxima. Having presented conditions under which the bundle (c⇤ (✓) , s⇤ (✓) , z⇤ (✓)) assigned to
type ✓ is a local optimum under the candidate SN and LED tax systems, we now present a set of regularity conditions
ensuring that these local optima are also global optima.

Proposition B.2. Assume single-crossing conditions for earnings and savings (Z 0
✓ � 0 and S 0

✓ � 0), that preferences

are weakly separable (U
00
cz = 0 and U

00
sz = 0), and that commodities c and s are weak complements (U

00
cs � 0). If

A = {(c⇤(✓), s⇤(✓), z⇤(✓))}✓ constitutes a set of local optima for types ✓ under a smooth tax system T , local optima

correspond to global optima when:

1. T is a SN system, and we have that for all s > s
⇤(✓) and ✓,

�U 00
ss(c(s,✓),s,z

⇤(✓);✓)
U 0

s(c(s,✓),s,z
⇤(✓);✓) >

�T 00
ss(s)

1+T 0
s(s)

.

2. T is a LED system, and we have that

(a) for all s < s
⇤(✓) and ✓,

�U 00
cc(c(s,✓),s,z

⇤(✓);✓)
U 0

c(c(s,✓),s,z
⇤(✓);✓) >

1
1+⌧s(z⇤(✓))

⌧ 0
s(z

⇤(✓))
1�⌧ 0

s(z
⇤(✓))s�T 0

z(z
⇤(✓)) ,

(b) for all s > s
⇤(✓) and ✓,

�U 00
ss(c(s,✓),s,z

⇤(✓);✓)
U 0

s(c(s,✓),s,z
⇤(✓);✓) >

⌧ 0
s(z

⇤(✓))
1�⌧ 0

s(z
⇤(✓))s�T 0

z(z
⇤(✓)) ,

where c(s, ✓) := z
⇤(✓)� s� T (s, z⇤(✓))

In essence, global optimality is ensured under the following assumptions. First, higher types ✓ derive higher gains
from working and allocating those gains to consumption or savings — generalized single-crossing conditions. Second,
additive separability of consumption and savings from labor. Third, the utility function U is sufficiently concave in
consumption and savings.

For the case of SN tax systems, condition 1 imposes a particular concavity requirement with respect to savings.
For the case of LED tax systems, condition 2 imposes particular concavity requirements with respect to both consump-
tion and savings. Notably, these concavity conditions need only be checked when earnings are fixed at each type’s
assigned earnings level z⇤(✓).

We can naturally apply this result to the candidate SN tax system defined in equations (45) and (46), and to the
candidate LED tax system defined in equations (47) and (48). Because these candidate tax systems are defined in
terms of individuals’ preferences and optimal allocations, we can then express conditions 1 and 2 fully in terms of
individuals’ preferences and optimal allocations.

B.3 Structural characterization of s0inc and s0het
In economies with preference heterogeneity, budget heterogeneity, and auxiliary choices, individuals solve

max
c,s,z,�

U(c,�s(s, z,�; ✓),�z(s, z,�; ✓),�; ✓) s.t. c  B(s, z,�; ✓)� T (s, z)

() max
z

⇢
max

s


max
�

U(B(s, z,�; ✓)� T (s, z),�s(s, z,�; ✓),�z(s, z,�; ✓),�; ✓)

��
. (52)
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We denote �(s, z; ✓) the solution to the inner problem, s(z; ✓) the solution to the intermediate problem, and z(✓) the
solution to the outer problem. We assume that �(s, z; ✓) and s(z; ✓) are interior solutions that satisfy the first-order
conditions of these problems, and we maintain the assumption that z(✓) is strictly increasing to denote #(z) the type
that chooses earnings z.

In this setting, we decompose across-income heterogeneity in s(z) := s(z;#(z)) between s
0
inc(z) :=

@s(z;#(z0))
@z |z0=z

and s
0
het(z) :=

@s(z0;#(z))
@z |z0=z as follows:

Proposition B.3. In economies with preference heterogeneity, budget heterogeneity, and auxiliary choices, sufficient

statistics s
0
inc(z) and s

0
het(z) are given by

s
0
inc(z) = �N 1

inc(z) +N 2
inc(z)

D1(z) +D2(z)
(53)

s
0
het(z) = �N 1

het(z) +N 2
het(z)

D1(z) +D2(z)
(54)

where terms in the numerators and denominators are

N 1
inc := Kc

h
B

0
z +B

0
�
@�

@z
� T 0

z

i
+Ks

h
@�s

@z
+
@�s

@�

@�

@z

i
+Kz

h
@�z

@z
+
@�z

@�

@�

@z

i
+K�

@�

@z
(55)

N 2
inc := U

0
c

h
B

00
sz +B

00
s�
@�

@z
� T 00

sz

i
+ U

0
s

h
@
2
�s

@s@z
+

@
2
�s

@s@�

@�

@z

i
+ U

0
z

h
@
2
�z

@s@z
+
@
2
�z

@s@�

@�

@z

i
(56)

N 1
het := KcB

0
�
@�

@✓
+Ks

h
@�s

@�

@�

@✓
+
@�s

@✓

i
+Kz

h
@�z

@�

@�

@✓
+
@�z

@✓

i
+K�

@�

@✓
+K✓ (57)

N 2
het := U

0
cB

00
s�
@�

@✓
+ U

0
s

h
@
2
�s

@s@�

@�

@✓
+
@
2
�s

@s@✓

i
+ U

0
z

h
@
2
�z

@s@�

@�

@✓
+
@
2
�z

@s@✓

i
(58)

D1 := Kc

h
B

0
s +B

0
�
@�

@s
� T 0

s

i
+Ks

h
@�s

@s
+
@�s

@�

@�

@s

i
+Kz

h
@�z

@s
+
@�z

@�

@�

@s

i
+K�

@�

@s
(59)

D2 := U
0
c

h
B

00
ss +B

00
s�
@�

@s
� T 00

ss

i
+ U

0
s

h
@
2
�s

(@s)2
+

@
2
�s

@s@�

@�

@s

i
+ U

0
z

h
@
2
�z

(@s)2
+
@
2
�z

@s@�

@�

@s

i
(60)

with all quantities being evaluated at z, s(z), #(z), �(z) := �(s(z)), z;#(z)), as well as c(z) := B(s(z), z,�(z);#(z))�
T (s(z), z), and where

Kc := U
00
cc (B

0
s � T 0

s ) + U
00
cs
@�s

@s
+ U

00
cz
@�z

@s
(61)

Ks := U
00
cs (B

0
s � T 0

s ) + U
00
ss
@�s

@s
+ U

00
sz
@�z

@s
(62)

Kz := U
00
cz (B

0
s � T 0

s ) + U
00
sz
@�s

@s
+ U

00
zz
@�z

@s
(63)

K� := U
00
c� (B0

s � T 0
s ) + U

00
s�
@�s

@s
+ U

00
z�
@�z

@s
(64)

K✓ := U
00
c✓ (B

0
s � T 0

s ) + U
00
s✓
@�s

@s
+ U

00
z✓
@�z

@s
. (65)

Numerators of s0inc(z) and s
0
het(z) are different as they capture direct changes in s, coming from either a change

in z or a change in #(z). Denominators are the same because they capture processes of circular adjustments induced
by direct changes in s.

In a simple setting like example (1) with additively separable utility, a separable tax system and preference hetero-
geneity for s only, the only non-zero term in the numerator of s0inc would be proportional to Kc capturing changes in
the marginal utility of c from changes in z, and the only non-zero term in the numerator of s0inc would be proportional
to K✓ capturing changes in marginal utility of s from changes in ✓.

6
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B.4 Optimal Taxes on s in Simple Tax Systems
We present optimal savings tax formulas for simple tax systems, which characterize the optimal savings tax schedule
for any given earnings tax schedule—including a potentially suboptimal one. These formulas are derived assuming
unidimensional heterogeneity and are similar to those presented in Proposition 4, where heterogeneity is allowed to be
multidimensional.

Proposition B.4. Consider a given (and potentially suboptimal) earnings tax schedule Tz(z), suppose that SL, SN and

LED systems verify Assumption 3, and suppose that in the SN system s is strictly monotonic (increasing or decreasing)

in z. At each bundle (c, s, z) chosen by a type ✓, these systems satisfy the following optimality conditions for taxes on

s:

SL :
⌧s

1 + ⌧s

Z zmax

x=zmin

s(x)⇣cs|z(x)dHz(x) =

Z zmax

x=zmin

⇢
s (x) (1� ĝ(x))� T

0
z(x) + s

0
inc(x) ⌧s

1� T 0
z (x)

x⇣
c
z(x) s

0
inc(x)

�
dHz(x)

(66)

SN :
T

0
s(s)

1 + T 0
s(s)

s⇣
c
s|z(z)hz(z) = s

0 (z)

Z

x�z
(1� ĝ(x)) dHz(x)�

T
0
z(z) + s

0
inc(z)T

0
s(s)

1� T 0
z(z)

z⇣
c
z(z)s

0
inc(z)hz(z)

(67)

LED :
T

0
z (z) + ⌧

0
s (z) s+ s

0
inc(z)⌧s(z)

1� T 0
z (z)� ⌧ 0s (z) s

z⇣
c
z(z) s hz(z) +

Z

x�z

⌧s(x)

1 + ⌧s(x)
s(x)⇣cs|z(x) dHz(x) (68)

=

Z

x�z

⇢
(1� ĝ(x)) s (x)� T

0
z (x) + ⌧

0
s (x) s (x) + s

0
inc(x)⌧s(x)

1� T 0
z (x)� ⌧ 0s (x) s (x)

x⇣
c
z(x)s

0
inc(x)

�
dHz(x).

These optimal savings tax formulas are all different, reflecting differences between the savings tax instruments
that we consider, yet they share common elements. First, the preference heterogeneity term s

0
het (z) no longer appears

in the formulas. The intuition is that outside of the full optimum, it may still be desirable to tax savings in the
absence of preference heterogeneity, implying that optimality may clash with Pareto efficiency when the earnings tax
is suboptimal. Second, s0inc (z) is a key sufficient statistic for optimal savings tax schedules. Indeed, by Lemma 1, a
larger s0inc (z) means that savings tax reforms impose higher distortions on earnings and thus generally calls for lower
savings tax rate.

B.5 Optimal Taxes on z in Simple Tax Systems
We now present optimal earnings tax formulas for simple tax systems.

Proposition B.5. Consider a given (and potentially suboptimal) earnings tax schedule Tz(z) and suppose that SL,

SN and LED systems verify Assumption 3, and suppose that in the SN system s is strictly monotonic (increasing or

decreasing) in z. At each bundle (c, s, z) chosen by a type ✓, these systems satisfy the following optimality conditions

for taxes on z:

SL :
T

0
z (z)

1� T 0
z (z)

=
1

z⇣cz(z)

1

hz(z)

Z

x�z
(1� ĝ(x)) dHz(x)� s

0
inc(z)

⌧s

1� T 0
z (z)

(69)

SN :
T

0
z (z)

1� T 0
z (z)

=
1

z⇣cz(z)

1

hz(z)

Z

x�z
(1� ĝ(x)) dHz(x)� s

0
inc(z)

T
0
s (s)

1� T 0
z (z)

(70)

LED :
T

0
z (z) + ⌧

0
s (z) s

1� T 0
z (z)� ⌧ 0s (z) s

=
1

z⇣cz(z)

1

hz(z)

Z

x�z
(1� ĝ(x)) dHz(x)� s

0
inc(z)

⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

. (71)

These conditions pinning down the optimal schedule of marginal earnings tax rates are a direct application of
equation (18) presented in Theorem 2 for smooth tax systems. While formulas for SL and SN tax systems look almost
identical to the general condition, the formula for LED tax system looks a bit different. This difference only reflects the
fact that, for a LED tax system, the marginal earnings tax rate is given by T 0

z (s, z) = T
0
z (z)+ ⌧

0
s (z) s (z), accounting

for the earnings-dependent nature of savings taxes.

7
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B.6 Optimal Taxes on z with Multidimensional Heterogeneity
Proposition B.6. Consider given (and potentially suboptimal) SL, SN, and LED savings tax schedule, and assume that

under each simple tax system individuals first-order and second-order conditions strictly hold. Then, at each bundle

(c0, s0, z0) chosen by a type ✓
0
, marginal tax rates on z in SL/SN/LED systems must satisfy the following optimality

conditions:

SL :
T

0
z

�
z
0
�

1� T 0
z (z

0)
E
h
⇣
c
z(s, z)

���z0
i
=

1

z0hz(z0)

Z

z�z0

n
E [1� ĝ (s, z) |z]

o
dHz(z) (72)

� E

s
0
inc(s, z)

⌧s

1� T 0
z (z)

⇣
c
z(s, z)

���z0
�

SN :
T

0
z

�
z
0
�

1� T 0
z (z

0)
E
h
⇣
c
z(s, z)

���z0
i
=

1

z0hz(z0)

Z

z�z0

n
E [1� ĝ (s, z) |z]

o
dHz(z) (73)

� E

s
0
inc(s, z)

T
0
s (s)

1� T 0
z (z)

⇣
c
z(s, z)

���z0
�

LED : E


T
0
z (z) + ⌧

0
s (z) s

1� T 0
z (z)� ⌧ 0s (z) s

⇣
c
z(s, z)

���z0
�
=

1

z0hz (z0)

Z

z�z0

n
E [1� ĝ (s, z) |z]

o
dHz(z) (74)

� E

s
0
inc(s, z)

⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

⇣
c
z(s, z)

���z0
�

These conditions are similar to those presented above for optimal marginal earnings tax rates under unidimensional
heterogeneity (Proposition B.5). Indeed, Lemma 1 still applies such that the previous derivations carry over when
adding an expectation with respect to savings. Proofs are thus omitted.

B.7 Equivalences with Tax Systems Involving Gross Period-2 Savings
Suppose that there are two periods, and set 1 + r = 1/p. In period 1 the individual earns z, consumes c, and pays
income taxes T1(z). In period 2 the individual realizes gross pre-tax savings sg = (z � c � T1(z))(1 + r) and pays
income taxes T2(sg, z). The realized savings s are given by sg � T2(sg, z). The total tax paid in “period-1 dollars” is
given by T1(z) + T2(sg, z)/(1 + r). The individual maximizes U(c, s, z) subject to the constraint

s  (z � c� T1(z))(1 + r)� T2(sg, z)

, c+
s

1 + r
 z � T1(z)�

T2((z � c� T1(z))(1 + r), z)

1 + r
.

In our baseline formulation with period-1 tax function T (s, z), individuals choose s and z to maximize U(z � s �
T (s, z), s, z; ✓). To convert from the formulation with period-2 taxes to our baseline formulation, define a function
s̃g(s, z) implicitly to satisfy the equation

s̃g � T2(s̃g, z) = s

Note that s̃g is generally uniquely defined if we have a system with monotonic realized savings s. Then, the equivalence
in tax schedules is given by

T 0
s (s, z) =

1

1 + r

@

@sg
T2(sg, z)|sg=s̃g

@

@s
s̃g (75)

and T 0
z = T

0
z . equation (75) simply computes how a marginal change in s changes the tax burden in terms of period-1

units of money, and the division by 1 + r is to convert to period-1 units. Now differentiating the definition of s̃g gives

@

@s
s̃g �

@

@sg
T2(sg, z)

@

@s
s̃g = 1

and thus
@

@s
s̃g =

1

1� @
@sg

T2(sg, z)

8
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from which it follows that

T 0
s (s, z) =

1

1 + r

@
@sg

T2(sg, z)|sg=s̃g

1� @
@sg

T2(sg, z)|sg=s̃g

. (76)

We can also start with a schedule T and converts it to the two-period tax schedule. Now if s is the realized savings,
we can define gross savings in period 2 as sg = s+ T (z, s)(1 + r)� T (z, 0), and we define the function s̃(sg, z) to
satisfy

sg = s̃+ (1 + r) (T (s̃, z)� T (0, z)) .

Then,

@

@sg
T2(sg, z) = (1 + r)T 0

s (s̃, z)
@

@sg
s̃

=
(1 + r)T 0

s (s̃, z)

1 + (1 + r)T 0
s (s̃, z)

(77)

B.7.1 Separable tax systems (SN).

Now if T2 is a function of sg only (a separable tax system), then sg will be a function of s only, and thus T 0
s will only

depend on s. Conversely, note that if T is a separable system, so that T 0
s does not depend on z, then (77) implies that

@
@sg

T2(sg, z) does not depend on z either. Thus, separability is a property preserved under these transformations.
Now if we start with a separable T , then T2 is given by

T
0
2(sg) = (1 + r)

@
@sT

0
s (s))|s=s̃

1 + @
@sT 0

s (s))|s=s̃

where s̃ is the value that solves sg = s̃+ T (s̃).

B.7.2 Linear tax systems (LED and SL).

If T2 = sg ⌧(z), a linear earnings-dependent system, then s = sg(1 � ⌧(z)) and sg = s
1�⌧(z) . Moreover, @

@ssg =
1

1�⌧(z) , and thus we have that

T 0
s =

1

1 + r

⌧(z)

1� ⌧(z)

which again implies that we have a linear earnings-dependent system with rate ⌧̃(z) = 1
1+r

⌧(z)
1�⌧(z) .

Conversely, if we start with a LED system T with T 0
s = ⌧(z), then

@

@sg
T2(sg, z) = (1 + r)

⌧(z)

1 + ⌧(z)
.

When the tax rates ⌧ are not functions of z, the calculations above show that the conversions preserve not just
linearity, but also independence of z.

C Proofs
C.1 Proof of Lemma B.1 (Monotonicity with Preference Heterogeneity)
We show by contradiction that the extended Spence-Mirrlees condition (44) implies that type ✓2 > ✓1 chooses earnings
z(✓2) > z(✓1). Note that, by Assumption 2, c(✓), s(✓), and z(✓) are smooth functions of ✓ in the optimal incentive-
compatible allocation, and that by Assumption 1 utility U is twice continuously differentiable.

9
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Assume (without loss of generality) that there is an open set (✓1, ✓2) 2 ⇥ where z(✓) is decreasing with ✓ such
that z(✓2) < z(✓1).35Then,

U (c(✓2), s(✓2), z(✓2); ✓2)� U (c(✓1), s(✓1), z(✓1); ✓2)

=

Z ✓2

✓=✓1


dU (c(✓), s(✓), z(✓); ✓2)

d✓

�
d✓ (78)

=

Z ✓2

✓=✓1

U
0
c (c(✓), s(✓), z(✓); ✓2)

h
c
0(✓) + S (c(✓), s(✓), z(✓); ✓2) s

0(✓) + Z (c(✓), s(✓), z(✓); ✓2) z
0(✓)

i
d✓

Now, for each ✓ 2 (✓1, ✓2) the first-order condition implied by incentive compatibility implies that, at point (c(✓), s(✓), z(✓)),

U
0
c (c(✓), s(✓), z(✓); ✓) c

0(✓) + U
0
s (c(✓), s(✓), z(✓); ✓) s

0(✓) + U
0
z (c(✓), s(✓), z(✓); ✓) z

0(✓) = 0

() c
0(✓) + S (c(✓), s(✓), z(✓); ✓) s0(✓) + Z (c(✓), s(✓), z(✓); ✓) z0(✓) = 0. (79)

When z
0(✓) 6= 0, the extended Spence-Mirrlees condition states that for any ✓0,

S 0
✓ (c(✓), s(✓), z(✓); ✓

0)
s
0(✓)

z0(✓)
+ Z 0

✓ (c(✓), s(✓), z(✓); ✓
0) > 0

() S 0
✓ (c(✓), s(✓), z(✓); ✓

0) s0(✓) + Z 0
✓ (c(✓), s(✓), z(✓); ✓

0) z0(✓) < 0 (80)

where the last inequality is reversed because z(✓) is decreasing in ✓ 2 (✓1, ✓2), meaning z
0(✓) < 0. This implies that

with ✓2 > ✓

c
0(✓) + S (c(✓), s(✓), z(✓); ✓2) s

0(✓) + Z (c(✓), s(✓), z(✓); ✓2) z
0(✓) < 0. (81)

Since U
0
c > 0, and since we assume that types ✓ for which z

0(✓) = 0 are of measure zero, this means that the integral
above is negative, and thus that

U (c(✓2), s(✓2), z(✓2); ✓2) < U (c(✓1), s(✓1), z(✓1); ✓2) . (82)

This is a contradiction with the fact that type ✓2 (strictly) prefers its allocation (c(✓2), s(✓2), z(✓2)) in the optimal
incentive-compatible allocation, which concludes the proof.

C.2 Proof of Theorem 1 (Implementation with a Smooth Tax System)
In the appendix, we adopt the notation that individual’s allocations in the optimal mechanism are labeled with a “star”;
i.e., (c⇤ (✓) , s⇤ (✓) , z⇤ (✓)). We construct a smooth tax system that implements the optimal incentive-compatible
allocation (c⇤ (✓) , s⇤ (✓) , z⇤ (✓)) by introducing penalties for deviations away from these allocations. This proof
relies on Lemma C.1 and Lemma C.2, which we derive at the end of this subsection. Throughout, we adopt p ⌘ 1 to
economize on notations.

With unidimensional heterogeneity, type ✓ belongs to the compact space ⇥ = [✓min, ✓max]. Moreover, there
is always a mapping s

⇤ (z) that denotes the savings level associated with earnings level z = z
⇤ (✓) at the optimal

incentive-compatible allocation. We consider without loss of generality the case in which s(z) is strictly increasing;
the proof can be adapted to cases with non-monotonic s(z).

Let zmax := z
⇤ (✓max) and zmin := z

⇤ (✓min) denote the maximal and minimal, respectively, earnings levels in
the allocation. Let smax := max

z
s
⇤ (z) and smin := min

z
s
⇤ (z) denote the maximal and minimal savings levels.

Step 1: Defining the smooth tax system. We start from a separable and smooth tax system Ts(s) + Tz(z) that
satisfies type-specific feasibility and individuals’ first-order conditions at the optimal incentive-compatible allocation.
We then add quadratic penalty terms parametrized by k for deviations from this allocation. For a given deviation,
this allows to make the penalty arbitrarily large and enables us to make the individuals’ optimization problems locally
concave around the optimal incentive-compatible allocation. The other terms that we add are there to guarantee the
smoothness of the penalized tax system T (s, z; k) at the boundaries of the set of optimal allocations.

35Since we assume that types ✓ for which z
0(✓) = 0 are of measure zero, this inequality has to be strict with ✓2 > ✓1.
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Formally, Tk = T (s, z; k) is defined by:

1. Ts(smin) = 0 and Tz(zmin) = z
⇤(✓min)� c

⇤(✓min)� s
⇤(✓min)

2. 8z 2 [ zmin ; zmax ] , T 0
z(z) = Z(c⇤(✓z), s⇤(✓z), z⇤(✓z); ✓z) + 1 with ✓z such that z = z

⇤ (✓z)

3. 8s 2 [ smin ; smax ] , T 0
s(s) = S(c⇤(✓s), s⇤(✓s), z⇤(✓s); ✓s)� 1 with ✓s such that s = s

⇤ (✓s)

4. T (s, z; k) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Ts(s) + Tz(z) + k(s� s
⇤(z))2 if zminz  zmax,

smin  s  smax

Ts(smin) + Tz(z) + k(s� s
⇤(z))2 + T

0
s(smin)(s� smin) if zminz  zmax, s < smin

Ts(smax) + Tz(z) + k(s� s
⇤(z))2 + T

0
s(smax)(s� smax) if zminz  zmax, s > smax

Ts(s) + Tz(zmin) + k(s� smin)2 + k(z � zmin)2 if z < zmin, smin  s  smax

+T
0
z(zmin)(z � zmin)

Ts(smin) + Tz(zmin) + k(s� smin)2 + k(z � zmin)2 if z < zmin, s < smin

+T
0
z(zmin)(z � zmin) + T

0
s(smin)(s� smin)

Ts(smax) + Tz(zmin) + k(s� smin)2 + k(z � zmin)2 if z < zmin, s > smax

+T
0
z(zmin)(z � zmin) + T

0
s(smax)(s� smax)

Ts(s) + Tz(zmax) + k(s� smax)2 + k(z � zmax)2 if z > zmax, smin  s  smax

+T
0
z(zmax)(z � zmax)

Ts(smax) + Tz(zmax) + k(s� smax)2 + k(z � zmax)2 if z > zmax, s > smax

+T
0
z(zmax)(z � zmax) + T

0
s(smax)(s� smax)

Ts(smin) + Tz(zmax) + k(s� smax)2 + k(z � zmax)2 if z > zmax, s < smin

+T
0
z(zmax)(z � zmax) + T

0
s(smin)(s� smin)

Assumptions 1 and 2 guarantee that the separable tax system Ts(s) + Tz(z) is smooth, i.e., a twice continuously
differentiable function. Our construction of the penalized tax system Tk = T (s, z; k) guarantees that it inherits this
smoothness property.

Step 2: Local maxima for sufficiently large k. For a given type ✓, we show that the bundle (c⇤ (✓) , s⇤ (✓) , z⇤ (✓))
is a local optimum under the tax system Tk = T (s, z; k) for sufficiently large k. To do so, we first establish that type-
specific feasibility is satisfied together with the first-order conditions of type ✓’s maximization problem. We then show
that for sufficiently large k, second-order conditions are also satisfied implying that the intended bundle is a local
maximum.

The previous definition of the tax system implies

T 0
z (s

⇤(✓), z⇤(✓); k) = T
0
z (z

⇤(✓)) = Z(c⇤(✓), s⇤(✓), z⇤(✓); ✓) + 1

T 0
s (s

⇤(✓), z⇤(✓); k) = T
0
s (s

⇤(✓)) = S(c⇤(✓), s⇤(✓), z⇤(✓); ✓)� 1

meaning type-specific feasibility is satisfied by Lemma C.1 (see below).
Now, defining

V (s, z; ✓, k) := U(z � s� T (s, z; k), s, z; ✓), (83)

the first-order conditions for type ✓’s choice of savings s and earnings z are

V
0
s (s, z; ✓, k) = �(1 + T 0

s (s, z; k))U
0
c(z � s� T (s, z; k), s, z; ✓) + U

0
s(z � s� T (s, z; k), s, z; ✓) = 0

V
0
z (s, z; ✓, k) = (1� T 0

z (s, z; k))U
0
c(z � s� T (s, z; k), s, z; ✓) + U

0
z(z � s� T (s, z; k), s, z; ✓) = 0

and they are by construction satisfied at (s⇤(✓), z⇤(✓)) for each type ✓.

11
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Using Lemma C.2 (see below), second-order conditions at (s⇤ (✓) , z⇤ (✓)) are

V
00
ss =

U
0
z

s⇤0(z⇤)
S 0
c �

U
0
c

s⇤0(z⇤)
S 0
z �

U
0
c

s⇤0(✓)
S 0
✓ +

U
0
c

s⇤0(z⇤)
T 00
sz  0 (84)

V
00
zz = U

0
ss

⇤0(z⇤)Z 0
c � U

0
cs

⇤0(z⇤)Z 0
s �

U
0
c

z⇤0(✓)
Z 0

✓ + U
0
cs

⇤0(z⇤)T 00
sz  0 (85)

(V 00
sz)

2 � V
00
ssV

00
zz =

U
0
c

s⇤0(✓)


(U 0

zS 0
c � U

0
cS 0

z)Z 0
✓ +

✓
U

0
sZ 0

c � U
0
cZ 0

s � U
0
c

Z 0
✓

s⇤0(✓)

◆
s
⇤0(z⇤)S 0

✓

+ (Z 0
✓ + s

⇤0(z⇤)S 0
✓)U

0
cT 00

sz

�
 0 (86)

where we denote s
⇤0(z⇤) := s⇤0(✓)

z⇤0(✓) .
Here, U , S , and Z are smooth functions, implying that their derivatives are continuous functions over compact

spaces and are thus bounded. Now, by definition of Tk = T (s, z; k), we have T 00
sz = �2ks⇤0(z) which is negative for

any k � 0 and increasing in magnitude with k.
Noting U

0
c > 0 and s

⇤0(z) > 0, this implies that V 00
ss and V

00
zz must be negative for sufficiently large k, thanks to

the last term, since the other terms are bounded and do not depend on k. By the same reasoning, under the extended
Spence-Mirrlees single-crossing assumption that Z 0

✓ + s
⇤0(z⇤)S 0

✓ > 0, we also have that (V 00
sz)

2 � V
00
ssV

00
zz must be

negative for sufficiently large k.
This shows that for a given type ✓, there exists a k0 such that for all k � k0 the allocation (c⇤ (✓) , s⇤ (✓) , z⇤ (✓))

is a local optimum to type ✓’s maximization problem under the smooth penalized tax system Tk = T (s, z; k).

Step 3: Global maxima for sufficiently large k. Let sTk(✓) and zTk(✓) denote the level of savings and earnings,
respectively, that a type ✓ chooses given a smooth penalized tax system Tk. To prove implementability of optimal
incentive-compatible allocations, we show that there exists a sufficiently large k such that for all ✓, sTk(✓) = s

⇤ (✓)
and zTk(✓) = z

⇤ (✓).
Let’s proceed by contradiction, and suppose that it is not the case. Then, there exists an infinite sequence of types

✓k, choosing savings sTk(✓k) 6= s
⇤ (✓k) and earnings zTk(✓k) 6= z

⇤ (✓k) under tax system Tk, and enjoying utility
gains from this “deviation” to allocation (sTk(✓k), zTk(✓k)).

First, the fact that we impose quadratic penalties for earnings choices outside of [ zmin ; zmax ] guarantees that
for any " > 0, there exists k1, such that for all k � k1 and for all types ✓, individuals’ earnings choices belong to
the compact set [ zmin � " ; zmax + " ]. Indeed, starting from a given earnings level z > zmax + ", the utility change
associated with an earnings change is [(1� T 0

z )U
0
c + U

0
z] dz. By construction, the marginal earnings tax rate in this

region is T 0
z = 2k(z � zmax) + T

0
z(zmax). Noting that U 0

c > 0, U 0
z < 0, and that the type space is compact, we can

make for all individuals the utility change from a decrease in earnings arbitrarily positive for sufficiently large k. This
shows that all individuals choose earnings z  zmax + " for sufficiently large k. Symmetrically, we can show that all
individuals choose earnings z � zmin � " for sufficiently large k.

Second, since earnings shape individuals’ disposable incomes, the fact that earnings belong to a compact set
for sufficiently large k implies that individuals’ allocation choices also belong to a compact set. Indeed, for suf-
ficiently large k, individuals’ allocation choices must belong to the set of (c, s, z) such that c � 0, s � 0, z 2
[ zmin � " ; zmax + " ], and c + s  z � T (s, z; k) where the tax function is smooth and finite. These constraints
make the space of allocations compact.

As a result, the infinite sequence (✓k, sTk(✓k), zTk(✓k)) belongs to a compact space of allocations and types,
it is thus bounded. By the Bolzano-Weierstrass theorem, this means that there exists a convergent subsequence�
✓j , sTj (✓j), zTj (✓j)

�
! (✓̂, ŝ, ẑ). Since all types ✓j belong to [ ✓min ; ✓max ], we know that the limit type ✓̂ must

belong to [ ✓min ; ✓max ]. Now, from the previous paragraph, individuals’ earnings choices have to be arbitrarily close
to [ zmin ; zmax ] as the penalty grows. This implies that the limit ẑ must belong to [ zmin ; zmax ].

Next, we establish that the limit ŝ must be such that ŝ = s
⇤ (ẑ). First fix an earnings level z 2 [ zmin ; zmax ].

Then, starting from a savings level s 6= s
⇤ (z), the utility change associated with a savings change is [� (1 + T 0

s )U
0
c + U

0
s] ds.

Assuming without loss of generality that s belongs to [ smin ; smax ], the marginal savings tax rate in this region is
T 0
s = T

0
s(s)+2k(s�s

⇤(z)). Noting that U 0
c > 0, and that U 0

s is bounded, we can make the utility gains from a savings
change towards s⇤(z) arbitrarily large for sufficiently large k. As a result, for any " > 0, there exists k2 such that for

12
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all k � k2, type ✓̂ chooses savings s 2 [ s⇤ (z)� " ; s⇤ (z) + " ] for a fixed z.36 Since type ✓̂’s savings choice can be
made arbitrarily close to s

⇤ (z) for sufficiently large k, we must have at the limit s = s
⇤ (z). Now, because earnings z

converge to ẑ and the function s
⇤ (z) is by assumption continuous, we must have at the limit ŝ = s

⇤ (ẑ).
We have thus established that the limit (✓̂, ŝ, ẑ) is such that ✓̂ 2 [ ✓min ; ✓max ], ẑ 2 [ zmin ; zmax ], and ŝ = s

⇤ (ẑ).
This means that the limit allocation (ĉ, ŝ, ẑ) belongs to the set of optimal incentive-compatible allocations. Given our
continuity and monotonicity assumptions, this implies that it is the optimal allocation of some type ✓ and it has to be
by definition that of type ✓̂. Hence, (ĉ, ŝ, ẑ) = (c⇤(✓̂), s⇤(✓̂), z⇤(✓̂)).

To complete the proof and find a contradiction, fix a value k† that is large enough such that second-order conditions
hold for type ✓̂ at allocation (s⇤(✓̂), z⇤(✓̂)) under tax system Tk† – this k

† exists by step 2. This implies that there
exists an open set N containing (s⇤(✓̂), z⇤(✓̂)) such that V (s, z; ✓̂, k†) is strictly concave over (s, z) 2 N .

Now, consider types ✓j with j � k
†. Since these individuals belong to the previously defined subsequence, they

prefer allocation
�
sTj (✓j), zTj (✓j)

�
to allocation (s⇤(✓j), z⇤(✓j)) under tax system Tj . Because penalties are increas-

ingly large and j � k
†, this implies that types ✓j also prefer allocation

�
sTj (✓j), zTj (✓j)

�
to allocation (s⇤(✓j), z⇤(✓j))

under tax system Tk† .
Yet, by continuity, the function V

�
s, z; ✓j , k†

�
gets arbitrarily close to the function V (s, z; ✓̂, k†) for suffi-

ciently large j since ✓j ! ✓̂. For the same reason, (s⇤(✓j), z⇤(✓j)) ! (s⇤(✓̂), z⇤(✓̂)). Moreover, by defini-
tion

�
sTj (✓j), zTj (✓j)

�
! (ŝ, ẑ). As a result, for any open set N 0 ( N containing (s⇤(✓̂), z⇤(✓̂)), there exists a

j
† � k

† such that V (s, z; ✓j† , k
†) is strictly concave over (s, z) 2 N

0 and such that both
�
s
⇤(✓j†), z

⇤(✓j†)
�

and⇣
sTj†

(✓j†), zTj†
(✓j†)

⌘
belong to the set N 0.

Since V (s, z; ✓j† , k
†) is strictly concave over (s, z) 2 N

0, it has a unique optimum on N
0. By definition of Tk† ,

type ✓j† ’s first-order conditions are satisfied at
�
s
⇤(✓j†), z

⇤(✓j†)
�
. Hence,

�
s
⇤(✓j†), z

⇤(✓j†)
�

is type ✓j† ’s maximum

under the tax system Tk† . This contradicts the fact established above that type ✓j† prefers
⇣
sTj†

(✓j†), zTj†
(✓j†)

⌘
to

allocation
�
s
⇤(✓j†), z

⇤(✓j†)
�

under tax system Tk† , which completes the proof.

Lemma for type-specific feasibility.

Lemma C.1. A smooth tax system T satisfies type-specific feasibility over the compact type space [ ✓min ; ✓max ] if it

satisfies the following conditions:

1. T (s⇤(✓min), z⇤(✓min)) = z
⇤(✓min)� c

⇤(✓min)� s
⇤(✓min)

2. T 0
z (s

⇤(✓), z⇤(✓)) = Z(c⇤(✓), s⇤(✓), z⇤(✓); ✓) + 1

3. T 0
s (s

⇤(✓), z⇤(✓)) = S(c⇤(✓), s⇤(✓), z⇤(✓); ✓)� 1

Proof. Consider the type-specific feasible tax system T
⇤
✓ (✓) = z

⇤(✓)�s
⇤(✓)�c

⇤(✓), and note that the lemma amounts
to showing that T ⇤

✓ (✓) = T (s⇤(✓), z⇤(✓)) for all ✓. To that end, note that the first-order condition for truthful reporting
of ✓ under the optimal mechanism implies

U
0
c · (z0(✓)� s

0(✓)� T
⇤0
✓ (✓)) + U

0
s · s0(✓) + U

0
z · z0(✓) = 0,

with derivatives evaluated at the optimal allocation. This can be rearranged as

T
⇤0
✓ (✓) =

✓
U

0
s

U 0
c

� 1

◆
s
0(✓) +

✓
U

0
z

U 0
c

+ 1

◆
z
0(✓)

= T 0
s (s

⇤(✓))s⇤0(✓) + T 0
z (z

⇤(✓))z⇤0(✓).

36A way to see this is that the marginal rate of substitution between consumption and savings S is continuous on a compact
space and thus bounded, whereas the marginal tax rate parametrized by k can be made arbitrarily large. As a result, individuals’
first-order conditions can never hold for sufficiently large k, while we can similarly exclude corner solutions for sufficiently large
k.

13
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It thus follows that

T (s⇤(✓), z⇤(✓))� T (s⇤(✓min), z
⇤(✓min)) =

Z #=✓

#=✓min

(T 0
s (s

⇤(#))s⇤0(#) + T 0
z (z

⇤(#))z⇤0(#)) d#

= T
⇤
✓ (✓)� T

⇤
✓ (✓min).

Since T (s⇤(✓min), z⇤(✓min)) = T
⇤
✓ (✓min), this implies that T (s⇤(✓), z⇤(✓)) = T

⇤
✓ (✓) for all ✓. The smooth tax

system T therefore satisfies type-specific feasibility.

Lemma on second-order conditions.

Lemma C.2. Consider a smooth tax system T satisfying the conditions in Lemma C.1 and define

V (s, z; ✓) := U(z � s� T (s, z), s, z; ✓). (87)

When evaluated at allocation (c⇤ (✓) , s⇤ (✓) , z⇤ (✓)), we show that

V
00
ss =

U
0
z

s⇤0(z⇤)
S 0
c �

U
0
c

s⇤0(z⇤)
S 0
z �

U
0
c

s⇤0(✓)
S 0
✓ +

U
0
c

s⇤0(z⇤)
T 00
sz (88)

V
00
zz = U

0
ss

⇤0(z⇤)Z 0
c � U

0
cs

⇤0(z⇤)Z 0
s �

U
0
c

z⇤0(✓)
Z 0

✓ + U
0
cs

⇤0(z⇤)T 00
sz (89)

(V 00
sz)

2 � V
00
ssV

00
zz =

U
0
c

s⇤0(✓)


(U 0

zS 0
c � U

0
cS 0

z)Z 0
✓ +

✓
U

0
sZ 0

c � U
0
cZ 0

s � U
0
c

Z 0
✓

s⇤0(✓)

◆
s
⇤0(z⇤)S 0

✓ (90)

+ (Z 0
✓ + s

⇤0(z⇤)S 0
✓)U

0
cT 00

sz

�

where we denote s
⇤0(z⇤) := s⇤0(✓)

z⇤0(✓) .

Proof. The first-order derivatives are

V
0
s (s, z; ✓) = �(1 + T 0

s (s, z))U
0
c(z � s� T (s, z), s, z; ✓) + U

0
s(z � s� T (s, z), s, z; ✓)

V
0
z (s, z; ✓) = (1� T 0

z (s, z))U
0
c(z � s� T (s, z), s, z; ✓) + U

0
z(z � s� T (s, z), s, z; ✓).

The second-order derivatives are

V
00
ss(s, z; ✓) = �T 00

ssU
0
c � (1 + T 0

s ) (�(1 + T 0
s )U

00
cc + U

00
cs)� (1 + T 0

s )U
00
cs + U

00
ss (91)

V
00
zz(s, z; ✓) = �T 00

zzU
0
c + (1� T 0

z ) ((1� T 0
z )U

00
cc + U

00
cz) + (1� T 0

z )U
00
cz + U

00
zz. (92)

To obtain the first result of the Lemma, we compute T 00
ss by differentiating both sides of T 0

s (s
⇤(✓), z⇤(✓)) =

S(c⇤(✓), s⇤(✓), z⇤(✓); ✓)� 1 with respect to ✓:

T 00
sss

⇤0(✓) + T 00
szz

⇤0(✓) =
d

d✓
S(c⇤(✓), s⇤(✓), z⇤(✓); ✓)

= S 0
cc

⇤0(✓) + S 0
ss

⇤0(✓) + S 0
zz

⇤0(✓) + S 0
✓,

plugging in c
⇤0(✓) = (1� T 0

z ) z
⇤0(✓)� (1 + T 0

s ) s
⇤0(✓) and denoting s

⇤0(z⇤) := s
⇤0(✓)/z⇤0(✓). The previous expres-

sion can be rearranged as

T 00
ss = S 0

c
1� T 0

z

s⇤0(z⇤)
� S 0

c(1 + T 0
s ) + S 0

s +
S 0
z

s⇤0(z⇤)
+

S 0
✓

s⇤0(✓)
� T 00

sz

s⇤0(z⇤)
. (93)
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Moreover, we differentiate the definition S := U 0
s

U 0
c

to express the derivative of S with respect to c as

S 0
c(c

⇤(✓), s⇤(✓), z⇤(✓); ✓) =
U

0
cU

00
sc � U

0
sU

00
cc

(U 0
c)

2

=
1

U 0
c

✓
�U

0
s

U 0
c

U
00
cc + U

00
sc

◆

=
1

U 0
c

(�(1 + T 0
s )U

00
cc + U

00
sc) (94)

and the derivative of S with respect to s as

S 0
s(c

⇤(✓), s⇤(✓), z⇤(✓); ✓) =
U

0
cU

00
ss � U

0
sU

00
cs

(U 0
c)

2

=
1

U 0
c

✓
�U

0
s

U 0
c

U
00
cs + U

00
ss

◆

=
1

U 0
c

(�(1 + T 0
s )U

00
cs + U

00
ss) . (95)

Substituting equations (93), (94) and (95) into (91), we have

V
00
ss (s

⇤ (✓) , z⇤ (✓) ; ✓) = �U
0
c ·
✓
S 0
c
1� T 0

z

s⇤0(z)
� S 0

c(1 + T 0
s ) + S 0

s +
S 0
z

s⇤0(z)
+

S 0
✓

s⇤0(✓)
� T 00

sz

s⇤0(z)

◆
� (1 + T 0

s )U
0
sS 0

c + U
0
cS 0

s

= �U
0
c ·
✓
1� T

0
z

s⇤0(z)
S 0
c +

1

s⇤0(z)
S 0
z +

1

s⇤0(✓)
S 0
✓ �

T 00
sz

s⇤0(z)

◆

=
U

0
z

s⇤0(z)
S 0
c �

U
0
c

s⇤0(z⇤)
S 0
z �

U
0
c

s⇤0(✓)
S 0
✓ +

U
0
c

s⇤0(z⇤)
T 00
sz (96)

where we have used U
0
z = �U

0
c (1� T 0

z ) in the last line.
Similarly, we can obtain the second result of the Lemma by writing T 00

zz as

T 00
zz = Z 0

c (1� T 0
z )� Z 0

c (1 + T 0
s ) s

⇤0(z⇤) + Z 0
ss

⇤0(z⇤) + Z 0
z +

Z 0
✓

z⇤0(✓)
� T 00

szs
⇤0(z⇤). (97)

Using

Z 0
c =

1

U 0
c

(U 00
cz + (1� T 0

z )U
00
cc)

as well as
Z 0

z =
1

U 0
c

(U 00
zz + (1� T 0

z )U
00
cz)

we get

V
00
zz (s

⇤ (✓) , z⇤ (✓) ; ✓) = U
0
ss

⇤0(z⇤)Z 0
c � U

0
cs

⇤0(z⇤)Z 0
s � U

0
c

Z 0
✓

z⇤0(✓)
+ U

0
cT 00

szs
⇤0(z⇤). (98)

Finally, to obtain the third result of the Lemma, we must compute (V 00
sz)

2 � V
00
ssV

00
zz . Note that the first-order

condition V
0
s (s

⇤(✓), z⇤(✓); ✓) = 0 holds at every ✓ by construction. Differentiating with respect to ✓ we get

d

d✓
V

0
s (s

⇤(✓), z⇤(✓); ✓) = V
00
sss

⇤0(✓) + V
00
szz

⇤0(✓) + V
00
s✓ = 0 (99)

which we can rearrange as

�V
00
sz = V

00
sss

⇤0(z⇤) +
V

00
s✓

z⇤0(✓)
. (100)
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Similarly, by totally differentiating the first-order condition V
0
z (s

⇤(✓), z⇤(✓); ✓) = 0 and rearranging we find

�V
00
sz =

V
00
zz

s⇤0(z⇤)
+

V
00
z✓

s⇤0(✓)
. (101)

Writing (V 00
sz)

2 as the product of the right-hand sides of equations (100) and (101) yields

(V 00
sz)

2
=

✓
V

00
sss

⇤0(z) +
V

00
s✓

z⇤0(✓)

◆✓
V

00
zz

s⇤0(z)
+

V
00
z✓

s⇤0(✓)

◆

=V
00
ssV

00
zz +

1

z⇤0(✓)
V

00
ssV

00
z✓ +

1

s⇤0(✓)
V

00
zzV

00
s✓ +

1

s⇤0(✓)z⇤0(✓)
V

00
s✓V

00
z✓. (102)

Now from the definition V (s, z; ✓) := U(z � s� T (s, z), s, z; ✓), we can compute

V
00
s✓(s, z; ✓) = � (1 + T 0

s (s, z))U
00
c✓ + U

00
s✓

V
00
z✓(s, z; ✓) = (1� T 0

z (s, z))U
00
c✓ + U

00
z✓

and use the fact that at allocation (c⇤ (✓) , s⇤ (✓) , z⇤ (✓)) we have

S 0
✓ =

1

U 0
c

(U 00
s✓ � (1 + T 0

s )U
00
c✓)

Z 0
✓ =

1

U 0
c

(U 00
z✓ + (1� T 0

z )U
00
c✓)

to obtain

V
00
s✓ (s

⇤ (✓) , z⇤ (✓) ; ✓) = U
0
cS 0

✓ (103)
V

00
z✓ (s

⇤ (✓) , z⇤ (✓) ; ✓) = U
0
cZ 0

✓. (104)

Substituting these into equation (102) and rearranging, we have

(V 00
sz)

2 � V
00
ssV

00
zz =

1

z⇤0(✓)
V

00
ssU

0
cZ 0

✓ +
1

s⇤0(✓)
V

00
zzU

0
cS 0

✓ +
1

s⇤0(✓)z⇤0(✓)
(U 0

c)
2 S 0

✓Z 0
✓. (105)

Expanding V
00
ss from equation (96), and V

00
zz from equation (98) yields after simplification

(V 00
sz)

2 � V
00
ssV

00
zz =

U
0
c

s⇤0(✓)


(U 0

zS 0
c � U

0
cS 0

z)Z 0
✓ +

✓
U

0
sZ 0

c � U
0
cZ 0

s � U
0
c

Z 0
✓

s⇤0(✓)

◆
s
⇤0(z⇤)S 0

✓

+ (Z 0
✓ + s

⇤0(z⇤)S 0
✓)U

0
cT 00

sz

�
,

which gives the third result of the Lemma above.

C.3 Proof of Proposition B.1 & B.2 (Implementation with Simple Tax Systems)
C.3.1 Proof of Proposition B.1

SN tax system. The sufficient conditions for local optimality under the candidate SN tax system follow directly
from Lemma C.2 which computes individuals’ second-order conditions (SOCs) at the optimal incentive-compatible
allocation under a general tax system T (s, z). Indeed, individuals’ SOCs are satisfied if equations (88), (89), and
(90) are negative under the SN tax system. Since the cross-partial derivative T 00

sz is zero for a SN tax system, it is
easy to verify that conditions (49) and (50) on the derivatives of S and Z , combined with monotonicity (s⇤0(✓) > 0,
s
⇤0(z) > 0) and Assumption 1 on the derivatives of U , jointly imply that each of these three equations is the sum of

negative terms. This implies that individuals’ SOCs are satisfied at the optimal incentive-compatible allocation under
the candidate SN tax system.
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LED tax system. To derive sufficient conditions for local optimality under the candidate LED tax system, we begin
from results obtained in the derivations of Lemma C.2 which computes individuals’ SOCs at the optimal incentive-
compatible allocation. We consider the requirements V 00

ss < 0, V 00
zz < 0, and V

00
ssV

00
zz > (V 00

sz)
2 in turn.

First, to show that V 00
ss is negative, note that under a LED tax system, T 00

ss = 0. Therefore, using the fact that
under the candidate LED tax system we have 1 + T 0

s = U 0
s

U 0
c

at the optimal incentive-compatible allocation, the general
expression for V 00

ss given in equation (91) reduces to

V
00
ss(s

⇤(✓), z⇤(✓); ✓) =

✓
U

0
s

U 0
c

◆2

U
00
cc � 2

U
0
s

U 0
c

U
00
cs + U

00
ss.

Therefore when utility is additively separable in c and s (implying U
00
cs = 0), the concavity of preferences (U 00

cc  0
and U

00
ss  0) guarantees that this expression is negative.

Second, to show that V 00
zz is negative, note that under the candidate LED tax system defined in equations (47) and

(48) we have

T 00
sz(s, z) = ⌧

0
s(z).

We can thus find an expression for ⌧ 0s(z) at any point in the allocation in question by totally differentiating equation
(47) with respect to ✓:

⌧
0
s (z

⇤(✓)) z⇤0(✓) =
d

d✓

h
S (c⇤(✓), s⇤(✓), z⇤(✓); ✓)

i

=
d

d✓

h
S (z⇤(✓)� s

⇤(✓)� T (s⇤(✓), z⇤(✓)) , s⇤(✓), z⇤(✓); ✓)
i

= S 0
c · [(1� T 0

z )z
⇤0(✓)� (1 + T 0

s ) s
⇤0(✓)] + S 0

ss
⇤0(✓) + S 0

zz
⇤0(✓) + S 0

✓,

which yields

⌧
0
s (z

⇤(✓)) = S 0
c · (1� T 0

z )� S 0
c · (1 + T 0

s ) s
⇤0(z⇤) + S 0

s · s⇤0(z⇤) + S 0
z +

S 0
✓

z⇤0(✓)
.

Substituting this into the expression for V 00
zz in (98), we have

V
00
zz (s

⇤ (✓) , z⇤ (✓) ; ✓) = U
0
ss

⇤0(z⇤)Z 0
c � U

0
cs

⇤0(z⇤)Z 0
s � U

0
c

Z 0
✓

z⇤0(✓)

+ U
0
cs

⇤0(z⇤)


S 0
c · (1� T 0

z )� S 0
c · (1 + T 0

s ) s
⇤0(z⇤) + S 0

s · s⇤0(z⇤) + S 0
z +

S 0
✓

z⇤0(✓)

�
. (106)

Now employing the assumption that utility is separable in c, s, and z, (implying both U
00
cz = 0 and U

00
cs = 0) we have

U
0
sZ 0

c + U
0
cS 0

c(1� T 0
z ) = U

0
sZ 0

c � U
0
zS 0

c

= U
0
s
U

0
cU

00
cz � U

0
zU

00
cc

(U 0
c)

2 � U
0
z
U

0
cU

00
cs � U

0
sU

00
cc

(U 0
c)

2

= 0.

Substituting this result into equation (106), and noting that Z 0
s = S 0

z = 0 by separability, yields

V
00
zz(s

⇤(✓), z⇤(✓); ✓) = (s⇤0(z⇤))
2
[U 0

cS 0
s � U

0
sS 0

c·]�
U

0
c

z⇤0(✓)
[Z 0

✓ � s
⇤0(z⇤)S 0

✓] . (107)

Again employing separability, we have

U
0
cS 0

s � U
0
sS 0

c = U
0
c
U

0
cU

00
ss � U

0
sU

00
cs

(U 0
c)

2 � U
0
s
U

0
cU

00
cs � U

0
sU

00
cc

(U 0
c)

2 = U
00
ss +

✓
U

0
s

U 0
c

◆2

U
00
cc  0,

implying that the first term on the right-hand side of equation (107) is negative. The condition Z 0
✓ � s

⇤0(z⇤)S 0
✓ � 0
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from (51) in the Proposition then implies equation (107) (and thus V 00
zz) is negative.

Third, to show V
00
ssV

00
zz > (V 00

sz)
2, we proceed from equation (90) in Lemma C.2:

(V 00
sz)

2 � V
00
ssV

00
zz

=
U

0
c

s⇤0(✓)


(U 0

zS 0
c � U

0
cS 0

z)Z 0
✓ +

✓
U

0
sZ 0

c � U
0
cZ 0

s � U
0
c

Z 0
✓

s⇤0(✓)

◆
s
⇤0(z⇤)S 0

✓ + (Z 0
✓ + s

⇤0(z⇤)S 0
✓)U

0
cT 00

sz

�

= (U 0
zS 0

c � U
0
cS 0

z)
U

0
c

s⇤0(✓)
Z 0

✓

+
U

0
c

s⇤0(✓)
Z 0

✓U
0
cT 00

sz +
U

0
c

s⇤0(✓)
S 0
✓

✓
U

0
ss

⇤0(z⇤)Z 0
c � U

0
cs

⇤0(z⇤)Z 0
s � U

0
c

Z 0
✓

z⇤0(✓)
+ U

0
cs

⇤0(z⇤)T 00
sz

◆
.

Recognizing that the last bracket term is exactly the expression for V 00
zz given in Lemma C.2, this gives

(V 00
sz)

2 � V
00
ssV

00
zz = (U 0

zS 0
c � U

0
cS 0

z)
U

0
c

s⇤0(✓)
Z 0

✓ +
U

0
c

s⇤0(✓)
Z 0

✓U
0
cT 00

sz +
U

0
c

s⇤0(✓)
S 0
✓V

00
zz.

Using the previous expression derived for T 00
sz = ⌧

0
s, and the fact that separability ensures S 0

z = 0, we obtain after
simplification

(V 00
sz)

2 � V
00
ssV

00
zz = � (U 0

c)
2

s⇤0(✓)z⇤0(✓)
Z 0

✓ [s
⇤0(✓) (S · S 0

c � S 0
s)� S 0

✓] +
U

0
c

s⇤0(✓)
S 0
✓V

00
zz.

We have already shown that V 00
zz is negative. Thus the conditions S 0

✓ � 0 and S 0
✓  s

⇤0(✓) (S · S 0
c � S 0

s) from (51) in
the Proposition imply that both terms on the right-hand side are negative, implying that all second-order conditions
hold.

C.3.2 Proof of Proposition B.2

We begin with a more general statement, and then derive Proposition B.2 as a corollary. For a fixed type ✓, let c(z, ✓)
and s(z, ✓) be its preferred consumption and savings choices at earnings z, given the budget constraint induced by
T (s, z).

Lemma C.3. Suppose that A = {(c⇤(✓), s⇤(✓), z⇤(✓))}✓ constitutes a set of local optima for types ✓ under a smooth

tax system T , where z
⇤ (✓) is increasing. Individuals’ local optima correspond to their global optima when

1. Z = U 0
z(c,s,z;✓)

U 0
c(c,s,z;✓)

and S = U 0
s(c,s,z;✓)

U 0
c(c,s,z;✓)

are strictly increasing in ✓ for all (c, s, z).

2. For any two types ✓ and ✓
0
, we cannot have both

U
0
c

⇣
c
⇤(✓), s⇤(✓), z⇤(✓); ✓

⌘
�c

⇣
s
⇤(✓), z⇤(✓)

⌘
+ U

0
z

⇣
c
⇤(✓), s⇤(✓), z; ✓

⌘

< U
0
c

⇣
c (z⇤(✓), ✓0) , s (z⇤(✓), ✓0) , z⇤(✓); ✓

⌘
�c

⇣
s (z⇤(✓), ✓0) , z⇤(✓)

⌘
(108)

+ U
0
z

⇣
c (z⇤(✓), ✓0) , s (z⇤(✓), ✓0) , z⇤(✓); ✓

⌘

and

U
0
s

⇣
c
⇤(✓), s⇤(✓), z⇤(✓); ✓

⌘
�c

⇣
s
⇤(✓), z⇤(✓)

⌘
+ U

0
z

⇣
c
⇤(✓), s⇤(✓), z; ✓

⌘⌘

< U
0
s

⇣
c (z⇤(✓), ✓0) , s (z⇤(✓), ✓0) , z⇤(✓); ✓

⌘
�s

⇣
s (z⇤(✓), ✓0) , z⇤(✓)

⌘
(109)

+ U
0
z

⇣
c (z⇤(✓), ✓0) , s (z⇤(✓), ✓0) , z⇤(✓); ✓

where �c (s, z) := 1� T 0
z (s, z) and �s (s, z) :=

1�T 0
z (s,z)

1+T 0
s (s,z)

.
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Condition 1 corresponds to single-crossing assumptions for earnings and savings. Condition 2 is a requirement
that if type ✓ preserves its assigned earnings level z⇤(✓), but chooses some other consumption level s (corresponding
to a level that some other type ✓0 would choose if forced to choose earnings level z⇤(✓)), then at this alternative
consumption bundle, type ✓ cannot have both higher marginal utility from increasing its savings through one more
unit of work and increasing its consumption through one more unit of work. Generally, this condition will hold as
long as U is sufficiently concave in consumption and savings when type ✓ chooses earnings level z⇤(✓).

Proof. To prove that individuals’ local optima are global optima, we want to show that for any given type ✓⇤, utility
decreases when moving from allocation (c⇤(✓⇤), s⇤(✓⇤), z⇤(✓⇤)) to allocation (c(z, ✓⇤), s(z, ✓⇤), z).

The first step is to compute type ✓⇤’s utility change. The envelope theorem applied to savings choices s(z, ✓⇤)
implies

d

dz
U (c(z, ✓⇤), s(z, ✓⇤), z; ✓⇤)

= U
0
c (c(z, ✓

⇤), s(z, ✓⇤), z; ✓⇤)�c (s(z, ✓
⇤), z) + U

0
z (c(z, ✓

⇤), s(z, ✓⇤), z; ✓⇤)

where �c (s, z) = 1� T 0
z (s, z). Note that, as established by Milgrom and Segal (2002), these equalities hold as long

as U is differentiable in z (holding s and c fixed)—differentiability of c(z, ✓⇤) or s(z, ✓⇤) is actually not required.
Similarly, the envelope theorem applied to consumption choices c(z, ✓⇤) implies

d

dz
U (c(z, ✓⇤), s(z, ✓⇤), z; ✓⇤) (110)

= U
0
s (c(z, ✓

⇤), s(z, ✓⇤), z; ✓⇤)�s (s(z, ✓
⇤), z) + U

0
z (c(z, ✓

⇤), s(z, ✓⇤), z; ✓⇤)

where �s (s, z) =
1�T 0

z (s,z)
1+T 0

s (s,z)
.

Therefore, type ✓⇤’s utility change when moving from allocation (c⇤(✓⇤), s⇤(✓⇤), z⇤(✓⇤)) to allocation (c(z, ✓⇤), s(z, ✓⇤), z)
is

U (c(z, ✓⇤), s(z, ✓⇤), z; ✓⇤)� U (c(z⇤(✓⇤), ✓⇤), s(z⇤(✓⇤), ✓⇤), z⇤(✓⇤); ✓⇤)

=

Z x=z

x=z⇤(✓⇤)


min {U 0

c (c(x, ✓
⇤), s(x, ✓⇤), x; ✓⇤)�c (s(x, ✓

⇤), x) , U 0
s (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)�s (s(x, ✓
⇤), x)}

+ U
0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)

�
dx (111)

where the min operator is introduced without loss of generality given that both terms are equal.
The second step is to show that under our assumptions, type ✓⇤’s utility change in equation (111) is negative.

To do so, let ✓x be the type that chooses earnings x. Then, by definition, type ✓x’s utility is maximal at earnings x,
implying both

U
0
c (c

⇤(✓x), s
⇤(✓x), x; ✓x)�c (s

⇤(✓x), x) + U
0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x) = 0

U
0
s (c

⇤(✓x), s
⇤(✓x), x; ✓x)�s (s

⇤(✓x), x) + U
0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x) = 0

such that

max {U 0
c (c

⇤(✓x), s
⇤(✓x), x; ✓x)�c (s

⇤(✓x), x) , U
0
s (c

⇤(✓x), s
⇤(✓x), x; ✓x)�s (s

⇤(✓x), x)}
+ U

0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x) = 0. (112)

Now, by condition 2, we either have37

U
0
c (c

⇤(✓x), s
⇤(✓x), x; ✓x)�c (s

⇤(✓x), x) + U
0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x)

� U
0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)�c (s(x, ✓
⇤), x) + U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)

37Not having {a < c and b < c} means having {a � c or b � d}, which implies max (a, b) � min (c, d) .
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or

U
0
s (c

⇤(✓x), s
⇤(✓x), x; ✓x)�s (s

⇤(✓x), x) + U
0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x)

� U
0
s (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)�s (s(x, ✓
⇤), x) + U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)

implying that

max {U 0
c (c

⇤(✓x), s
⇤(✓x), x; ✓x)�c (s

⇤(✓x), x) , U
0
s (c

⇤(✓x), s
⇤(✓x), x; ✓x)�s (s

⇤(✓x), x)}
+ U

0
z (c

⇤(✓x), s
⇤(✓x), x; ✓x) (113)

� min {U 0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)�c (s(x, ✓
⇤), x) , U 0

s (c(x, ✓
⇤), s(x, ✓⇤), x; ✓x)�s (s(x, ✓

⇤), x)}
+ U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x) .

But since the maximum is zero, this minimum has to be negative. Hence, we have either

U
0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)�c (s(x, ✓
⇤), x) + U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)  0

() U
0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)

U 0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)
 ��c (s(x, ✓⇤), x)

or

U
0
s (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)�s (s(x, ✓
⇤), x) + U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)  0

() U
0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)

U 0
s (c(x, ✓

⇤), s(x, ✓⇤), x; ✓x)
 ��c (s(x, ✓⇤), x) .

Suppose that z > z
⇤(✓⇤) such that x > z

⇤(✓⇤) ; the case z < z
⇤(✓⇤) follows identically. For any x > z

⇤(✓⇤), the
monotonicity of the earnings function means that ✓x > ✓

⇤. Then, by the single-crossing conditions for Z = U 0
z

U 0
c

and

S = U 0
s

U 0
c

, this means that we have either38

U
0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)

U 0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)
 ��c (s(x, ✓⇤), x)

or
U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)

U 0
s (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)
 ��c (s(x, ✓⇤), x)

implying that for any x > z
⇤(✓⇤),

min {U 0
c (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)�c (s(x, ✓
⇤), x) , U 0

s (c(x, ✓
⇤), s(x, ✓⇤), x; ✓⇤)�s (s(x, ✓

⇤), x)}
+ U

0
z (c(x, ✓

⇤), s(x, ✓⇤), x; ✓⇤)  0. (114)

As a result, the right hand-side of equation (111) is an integral of negative terms, which shows that

U (c(z, ✓⇤), s(z, ✓⇤), z; ✓⇤)� U (c⇤(✓⇤), s⇤(✓⇤), z⇤(✓⇤); ✓⇤)  0. (115)

The case with z < z
⇤(✓⇤) follows identically, proving Lemma C.3.

Proof of Proposition B.2

We now derive Proposition B.2 as a consequence of Lemma C.3 by deriving assumptions under which condition 2 is
met for SN and LED tax systems.

38Note that having both Z and S increasing in ✓ also implies that Z
S =

U0
z

U0
s

is increasing in ✓.
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SN systems. First, suppose that s < s
⇤(✓), then c > c

⇤(✓). Noting that �c = 1� T
0
z (z

⇤ (✓)) is not a function of s,
we can use U

00
cc  0 and U

00
cs � 0 to obtain

U
0
c (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓)) � U

0
c (c, s, z

⇤(✓); ✓)�c (s, z
⇤(✓)) .

Further relying on the fact that U 00
cz = 0 and U

00
sz = 0, we obtain

U
0
c (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓)) + U

0
z (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)

� U
0
c (c, s, z

⇤(✓); ✓)�c (s, z
⇤(✓)) + U

0
z (c, s, z

⇤(✓); ✓) .

Conversely, suppose that s > s
⇤(✓), then c < c

⇤(✓). We have

d

ds


U

0
s(z � Tz (z)� s� Ts (s) , s, z⇤(✓); ✓)

1 + T 0
s(s)

�

= �U
00
cs +

1

(1 + T 0
s(s))


U

00
ss � U

0
s

T
00
ss(s)

1 + T 0
s(s)

�
.

The condition that U 00
ss(c(s,✓),s,z

⇤(✓);✓)
U 0

s(c(s,✓),s,z
⇤(✓);✓) <

T 00
ss(s)

1+T 0
s(s)

, together with U
00
cs > 0, implies that U 0

s(c(s,✓),s,z
⇤(✓);✓)

1+T 0
s(s)

is decreasing
in s and thus that

U
0
s(c

⇤(✓), s⇤(✓), z⇤(✓); ✓)

1 + T 0
s(s

⇤(✓))
� U

0
s(c, s, z

⇤(✓); ✓)

1 + T 0
s(s)

.

Further relying on the fact that U 00
cz = 0 and U

00
sz = 0, and that T 0

s = T
0
z (z) is independent of s, we obtain

U
0
s (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�s (s
⇤(✓), z⇤(✓)) + U

0
z (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)

� U
0
s (c, s, z

⇤(✓); ✓)�s (s, z
⇤(✓)) + U

0
z (c, s, z

⇤(✓); ✓) .

LED systems. First, consider a type ✓0 choosing earnings z = z
⇤(✓) > z

⇤(✓0). We have

d

ds


U

0
c (z � s� ⌧s (z

⇤(✓)) s� Tz (z
⇤(✓)) , s, z⇤(✓); ✓) (1� T

0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s)

�

= U
00
cs (1� T

0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s)� U
00
cc (1 + ⌧s(z

⇤(✓))) (1� T
0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s)� U
0
c⌧

0
s (z

⇤(✓)) .

The first term is negative because U 00
cs � 0 and 1�T 0

z = �Z � 0. Now, the condition that S = U
0
s/U

0
c is increasing

in ✓ ensures that a type ✓0 choosing earnings z⇤(✓) > z
⇤(✓0) has a desired savings level s(z⇤(✓), ✓0) < s

⇤(✓). In this
case, condition (2a) of the proposition implies that the remaining terms are negative such that

U
0
c (z � s� ⌧s(z

⇤(✓))s� T (z⇤(✓)), s, z⇤(✓); ✓)�c (s, z
⇤(✓))

is increasing in s for s < s
⇤(✓), where �c (s, z⇤(✓)) = 1� T

0
z(z)� ⌧

0
s(z)s. As a result,

U
0
c (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓))

� U
0
c (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓)�c (s(z
⇤(✓), ✓0), z⇤(✓))

and thus relying on the fact that U 00
cz = 0 and U

00
sz = 0, we have

U
0
c (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓)) + U

0
z (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)

� U
0
c (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓)�c (s(z
⇤(✓), ✓0), z⇤(✓)) + U

0
z (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓) .
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Second, consider a type ✓0 choosing z = z
⇤(✓) < z

⇤(✓0). We have

d

ds


U

0
s (z � s� ⌧s(z

⇤(✓))s� T (z⇤(✓)), s, z⇤(✓); ✓)
1� T

0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s

1 + ⌧s(z)

�

= �U
00
cs (1� T

0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s) + U
00
ss
1� T

0
z (z

⇤(✓))� ⌧
0
s (z

⇤(✓)) s

1 + ⌧s(z)
+ U

0
s
⌧
0
s (z

⇤(✓))

1 + ⌧s(z)
.

The first term is negative because U
00
cs � 0 and 1� T 0

z = �Z � 0. Now, the condition that S = U
0
s/U

0
c is increasing

in ✓ ensures that a type ✓0 choosing earnings z = z
⇤(✓) < z

⇤(✓0) has a desired savings level s(z⇤(✓), ✓0) > s
⇤(✓).

Hence, condition (2b) of the proposition implies that the remaining terms are negative such that

U
0
s (z � s� ⌧s(z

⇤(✓))s� T (z⇤(✓)), s, z⇤(✓); ✓)�s (s, z
⇤(✓))

is decreasing in s for s > s
⇤(z), where �s (s, z⇤(✓)) =

1�T 0
z(z)�⌧ 0

s(z)s
1+⌧s(z)

. This ensures that

U
0
s (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓))

� U
0
s (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓)�c (s(z
⇤(✓), ✓0), z⇤(✓))

and thus, relying on the fact that U 00
cz = 0 and U

00
sz = 0, we have

U
0
s (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)�c (s
⇤(✓), z⇤(✓)) + U

0
z (c

⇤(✓), s⇤(✓), z⇤(✓); ✓)

� U
0
s (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓)�c (s(z
⇤(✓), ✓0), z⇤(✓)) + U

0
z (c(z

⇤(✓), ✓0), s(z⇤(✓), ✓0), z⇤(✓); ✓) .

C.4 Proof of Proposition 2 (Measurement of Causal Income Effects)
Here, we derive that the different expressions of the sufficient statistic s

0
inc (z) can be measured empirically.

Case 1. If individuals’ preferences are weakly separable between the utility of consumption u (.) and the disutility
to work k (.), type ✓’s problem is written as

max
c,s,z

u (c, s; ✓)� k (z/w(✓)) s.t. c  z � ps� T (s, z) ,

meaning that conditional on earnings z, savings s (z; ✓) is defined as the solution to

� (p+ T 0
s (s, z))u

0
c (z � ps� T (s, z) , s; ✓) + u

0
s (z � ps� T (s, z) , s; ✓) = 0.

Differentiating this equation with respect to savings s and earnings z yields

@s

@z
= � [�T 00

szu
0
c � (p+ T 0

s ) (1� T 0
z )u

00
cc + (1� T 0

z )u
00
cs]h

�T 00
ssu

0
c + (p+ T 0

s )
2
u00
cc � 2 (p+ T 0

s (s, z))u
00
cs + u00

ss

i .

Differentiating this equation with respect to savings s and disposable income y yields

@s

@y
= � [� (p+ T 0

s )u
00
cc + u

00
cs]h

�T 00
ssu

0
c + (p+ T 0

s )
2
u00
cc � 2 (p+ T 0

s (s, z))u
00
cs + u00

ss

i .

Hence, if T 00
sz = 0, we get

s
0
inc (z) :=

@s (z; ✓)

@z
= (1� T 0

z )
@s

@y
= (1� T 0

z )
⌘s|z (z(✓))

1 + T 0
s

,

where the last equality follows from the definition of ⌘s|z (z(✓)). The intuition behind this result is that with separable
preferences, savings s depend on earnings z only through disposable income y = z � ps� T (s, z).
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Case 2. If individuals’ wage rates w and hours h are observable, and earnings z are given by z = w ·h, we can infer
s
0
inc from changes in wages through

@s

@w
=
@s (w · h; ✓)

@w
=
@s (z; ✓)

@z

✓
1 +

@h

@w

◆

() @s (z; ✓)

@z
=

@s
@w

1 + @h
@w

= s

w
s

@s
@w

w + h
w
h

@h
@w

() s
0
inc (z) = s (z)

⇠
s
w (z)

w (z) + h (z) ⇠hw (z)

where ⇠sw (z) ⌘ w(z)
s(z)

@s(z)
@w(z) is individuals’ elasticity of savings with respect to their wage rate, and ⇠hw (z) ⌘ w(z)

h(z)
@h(z)
@w(z)

is individuals’ elasticity of hours with respect to their wage rate.

Case 3. Otherwise, if we can measure the elasticity of savings s and earnings z upon a compensated change in the
marginal earnings tax rate T 0

z , respectively denoted �c
s := � 1�T 0

z
s

@s
@T 0

z
and ⇣cz := � 1�T 0

z
z

@z
@T 0

z
, we then have

@s

@T 0
z

=
@s (z; ✓)

@z

@z

T 0
z

()
✓
� s

1� T 0
z

�
c
s

◆
= s

0
inc (z)

✓
� z

1� T 0
z

⇣
c
z

◆

() s
0
inc (z) =

s (z)

z

�
c
s (z)

⇣cz (z)
.

C.5 Proof of Lemma 1 (Earnings Responses to Taxes on s)
Throughout the paper, we characterize earnings responses to (different) savings tax reforms using generalizations of
Lemma 1 in Saez (2002). The robust insight in all cases is that a �⌧ increase in the marginal tax rate on s induces
the same earnings changes (through substitution effects) as a s

0
inc(z)�⌧ increase in earnings tax rate. This is what

appears in the body of the text as Lemma 1.
In our proofs we use a version that pertains to reforms that have an LED, SL, or SN structure. For example,

a reform with LED structure adds a linear tax rate �⌧s�z on s for all individuals with earnings z above z
0, and

phased-in over the earnings bandwidth
⇥
z
0
, z

0 +�z
⇤
. Note that the reform itself has an LED structure, but it can

applied to any nonlinear tax system, not just one with an LED structure. The results below allow for multidimensional
heterogeneity.

Let
V (T (., z), z; ✓) = max

s
U (z � ps� T (s, z), s, z; ✓)

be type ✓’s indirect utility function at earnings z.

LED reform. Consider a tax reform �Ts that consists in adding a linear tax rate �⌧s�z on s for all individuals
with earnings z above z

0, and phased-in over the earnings bandwidth
⇥
z
0
, z

0 +�z
⇤
, that is:39

�Ts(s, z) =

8
><

>:

0 if z  z
0

�⌧s (z � z
0) s if z 2 [z0, z0 +�z]

�⌧s�z s if z � z
0 +�z

39This reform, which is natural to consider for LED tax systems, allows us to derive a sufficient statistics characterization of
the optimal smooth tax system (Theorem 2) without the requirement that s(z) is monotonic. In contrast, if we were to rely on an
increase in the marginal savings tax rates over a certain bandwidth of savings, which is natural to consider for SN tax systems, we
would need further assumptions.
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We now construct for each type ✓ a tax reform �T ✓
z that affects marginal earnings tax rates, and induces the same

earnings response as the initial perturbation �Ts. We define this perturbation for each type ✓ such that at all earnings
z,

V (T (., z) +�Ts(., z), z; ✓) = V (T (., z) +�T ✓
z (., z), z; ✓).

Then, by construction, the perturbation �T ✓
z induces the same earnings response dz as the initial perturbation �Ts.

Moreover, both tax reforms must induce the same utility change for type ✓. To compute these utility changes, we make
use of the envelope theorem.

For types ✓ with earnings z(✓) 2 [z0, z0 +�z], this implies

U
0
c�⌧s

�
z � z

0
�
s (z; ✓) = U

0
c�T ✓

z (z)

() �T ✓
z (z) = �⌧s

�
z � z

0
�
s (z; ✓) .

Differentiating both sides with respect to z and letting�z ! 0, this implies that in the phase-in region, the reform
induces the same earnings change as a small increase s

0
inc (z)�⌧s in the marginal earnings tax rate.

For types ✓ with earnings z(✓) � z
0 +�z, this implies

U
0
c�⌧s�z s (z; ✓) = U

0
c�T ✓

z (z)

() �T ✓
z (z) = �⌧s�z s (z; ✓) .

That is, above the phase-in region, the reform induces the same earnings changes as a �⌧s�z s (z) increase in tax
liability combined with a �⌧s�z s

0
inc (z) increase in the marginal earnings tax rate.

SL reform. Consider a tax reform�Ts that consists in adding a linear tax rate�⌧s on s for all individuals. This is
a special case of a LED reform. As a result, we directly obtain that this reform induces the same earnings changes as
a �⌧s s (z) increase in tax liability combined with a�⌧s s0inc (z) increase in the marginal earnings tax rate.

SN reform. Consider a tax reform �Ts that consists in a small increase �⌧s in the marginal tax rate on s in a
bandwidth

⇥
s
0
, s

0 +�s
⇤
, with �⌧s much smaller than �s:

�Ts(s, z) =

8
><

>:

0 if s  s
0

�⌧s(s� s
0) if s 2 [s0, s0 +�s]

�⌧s�s if s � s
0 +�s

We now construct for each type ✓ a perturbation of the earnings tax �T ✓
z that induces the same earnings response as

the initial perturbation�Ts. Suppose we define this perturbation for each type ✓ such that at all earnings z,

V (T (., z) +�Ts(., z), z; ✓) = V (T (., z) +�T ✓
z (., z), z; ✓).

Then, by construction, the perturbation �T ✓
z induces the same earnings response dz as the initial perturbation �Ts.

Moreover, both tax reforms must induce the same utility change for type ✓. To compute these utility changes, we make
use of the envelope theorem.

For types ✓ with s(z; ✓) 2 [s0, s0 +�s], this implies

U
0
c�⌧s

�
s (z; ✓)� s

0
�
= U

0
c�T ✓

z (z)

() �T ✓
z (z) =

�
s (z; ✓)� s

0
�
�⌧s.

Differentiating both sides with respect to z and letting �s ! 0, this implies that a small increase �⌧s in the
marginal tax rate on s induces the same earnings change as a small increase s

0
inc (z)�⌧s in the marginal earnings tax

rate.
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For types ✓ with s(z; ✓) � s
0 +�s, this implies

U
0
c�⌧s�s = U

0
c�T ✓

z (z)

() �T ✓
z (z) = �⌧s�s.

Thus, a�⌧s�s lump-sum (savings) tax increase induces the same earnings change as a�⌧s�s lump-sum (earnings)
tax increase.

C.6 Proof of Theorem 2 (Optimal Smooth Tax Systems)
When z (✓) is a strictly increasing function, we can define its inverse by # (z). This allows us to define consumption
of good c as c(z) := c(z;# (z)), consumption of good s as s (z) := s (z;# (z)), and the planner’s weights as ↵(z) :=
↵(# (z)).

In this notation, the problem of the government is to maximize the Lagrangian

L =

Z

z

h
↵(z)U

⇣
c(z), s(z), z;#(z)

⌘
+ �

⇣
T (s(z), z)� E

⌘i
dHz(z), (116)

where � is the social marginal value of public funds, and the tax function implicitly enters individuals’ utility through
c(z) = z � s(z)� T (s(z), z).

C.6.1 Optimality Condition for Marginal Tax Rates on z

Reform. We consider a small reform at earnings level z0 that consists in a small increase �⌧z of the marginal tax
rate on earnings in a small bandwidth �z. Formally,

�T (s, z) =

8
><

>:

0 if z  z
0

�⌧z(z � z
0) if z 2 [z0, z0 +�z]

�⌧z�z if z � z
0 +�z

We characterize the impact of this reform on the government’s objective function L as �z ! 0. Normalizing all
effects by 1/�, the reform induces

• mechanical effects: Z

z�z0

⇣
1� ↵(z)

�
U

0
c (c(z), s(z), z;#(z))

⌘
�⌧z�z dHz(z)

• behavioral effects from changes in z:
40

� T 0
z

�
s
�
z
0
�
, z

0
� z

0

1� T 0
z (s (z

0) , z0)
⇣
c
z(z

0)�⌧z�zhz(z
0)

�
Z

z�z0

T 0
z (s (z) , z)

⌘z(z)

1� T 0
z (s (z) , z)

�⌧z�z dHz(z)

40Note that by definition elasticity concepts include all circularities and adjustments induced by tax reforms such that changes
in z and s are given by (

dz = � z
1�T 0

z
⇣
c
z(z)�T 0

z (s, z)� ⌘z(z)
1�T 0

z
�T (s, z)

ds = � ⌘s|z(z)

1+T 0
s
�T (s, z) + s

0
inc(z)dz
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• behavioral effects from changes in s:

� T 0
s

�
s(z0), z0

�
s
0
inc(z

0)


z
0

1� T 0
z (s (z

0) , z0)
⇣
c
z(z

0)�⌧z

�
�zhz(z

0)

�
Z

z�z0

T 0
s (s(z), z)


⌘s|z(z)

1 + T 0
s (s(z), z)

+ s
0
inc(z)

⌘z(z)

1� T 0
z (s (z) , z)

�
�⌧z�z dHz(z)

Summing over these different effects yields the total impact of the reform

1

�

dL
�z

=

Z

z�z0

(1� ĝ(z)) �⌧zdHz(z)

�
✓
T 0
z

�
s
�
z
0
�
, z

0
�
+ s

0
inc(z

0)T 0
s

�
s(z0), z0

�◆ z
0

1� T 0
z (s (z

0) , z0)
⇣
c
z(z

0)�⌧z hz(z
0) (117)

where ĝ(z) is the social marginal welfare weight augmented with income effects, given by

ĝ(z) =
↵(z)

�
U

0
c (c(z), s(z), z;#(z))�

T 0
z (s (z) , z) + s

0
inc(z)T 0

s (s(z), z)

1� T 0
z (s (z) , z)

⌘z(z)�
T 0
s (s(z), z)

1 + T 0
s (s(z), z)

⌘s|z(z).

Optimality. A direct implication is a sufficient statistics characterization of the optimal schedule of marginal tax
rates on z. Indeed, at the optimum, the reform should have a zero impact on the government objective, dL = 0,
meaning that at each earnings z0 the optimal marginal earnings tax rate satisfies

T 0
z

�
s
�
z
0
�
, z

0
�

1� T 0
z (s (z

0) , z0)
=

1

⇣cz(z
0)

1

z0hz(z0)

Z

z�z0

(1� ĝ(z)) dHz(z)� s
0
inc(z

0)
T 0
s

�
s(z0), z0

�

1� T 0
z (s (z

0) , z0)
(118)

which is the optimality condition in equation (18) presented in Theorem 2.

C.6.2 Optimality Condition for Marginal Tax Rates on s

Reform. We consider a small reform �Ts that consists in adding a linear tax rate �⌧s�z on s for all individuals
with earnings z above z

0, and phased-in over the earnings bandwidth
⇥
z
0
, z

0 +�z
⇤
, that is:41

�Ts(s, z) =

8
><

>:

0 if z  z
0

�⌧s (z � z
0) s if z 2 [z0, z0 +�z]

�⌧s�z s if z � z
0 +�z

Let s0 = s(z0). We characterize the impact of this reform on the government objective function L as �z ! 0.
Normalizing all effects by 1/�, the reform induces

• mechanical effects:

Z

z�z0

✓
1� ↵(z)

�
U

0
c (c(z), s(z), z; ✓(z))

◆
�⌧s�z s (z) dHz(z) (119)

41We use this reform to derive a sufficient statistics characterization of the optimal smooth tax system, without the requirement
that s(z) is monotonic. If we instead consider an increase in the marginal savings tax rates over a certain bandwidth of savings,
which is natural to consider for SN tax systems, we need this extra assumption.
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• behavioral effects from changes in z:42

� T 0
z

�
s
0
, z

0
�  z

0
⇣
c
z(z

0)

1� T 0
z (s

0, z0)
�⌧ss

0

�
hz(z

0)�z

�
Z

z�z0

T 0
z (s (z) , z)


z⇣

c
z(z)s

0
inc(z)

1� T 0
z (s (z) , z)

+
⌘z(z)s(z)

1� T 0
z (s (z) , z)

�
�⌧s�z dHz(z) (120)

• behavioral effects from changes in s:

� T 0
s

�
s
0
, z

0
�
s
0
inc(z

0)


z
0
⇣
c
z(z

0)

1� T 0
z (s

0, z0)
�⌧s s

0

�
hz(z

0)�z

�
Z

z�z0

T 0
s (s(z), z)

"
⇣
c
s|z(z) + ⌘s|z(z)

1 + T 0
s (s(z), z)

s(z) + s
0
inc(z)


z⇣

c
z(z)s

0
inc(z)

1� T 0
z (s(z), z)

+
⌘z(z)s(z)

1� T 0
z (s(z), z)

�#
�⌧s�z dHz(z)

(121)

Summing over these different effects yields the total impact of the reform

1

�

dL
�⌧s�z

= �
T 0
z

�
s
0
, z

0
�
+ s

0
inc(z

0)T 0
s

�
s
0
, z

0
�

1� T 0
z (s

0, z0)
z
0
⇣
c
z(z

0) s0 hz(z
0) (122)

+

Z

z�z0

⇢
(1� ĝ(z)) s (z)� T 0

z (s (z) , z) + s
0
inc(z)T 0

s (s(z), z)

1� T 0
z (s (z) , z)

z⇣
c
z(z)s

0
inc(z)�

T 0
s (s(z), z)

1 + T 0
s (s(z), z)

s(z)⇣cs|z(z)

�
dHz(z)

where ĝ(z) is the social marginal welfare weight augmented with income effects, given by
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Optimality. A direct implication of this result is a sufficient statistics characterization of the optimal marginal tax
rates on s. Indeed, at the optimum, the reform should have a zero impact on the government objective, dL = 0, which
implies that at each s

0 = s
�
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and earnings z0, the optimal marginal tax rate on s satisfies
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Using the formula for the optimal schedule of marginal earnings tax rates in equation (118) to replace the term on
the left-hand side, this formula can be rearranged as
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Differentiating both sides with respect to z
0 yields
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where both s
0(1�ĝ(z0))hz(z0) terms cancel out. Using equation (118) again, the last term is equal to s
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which is the optimality condition in equation (19) presented in Theorem 2.

C.6.3 Pareto Efficiency Condition

We can combine formulas for optimal marginal tax rates on z and on s to obtain a characterization of Pareto efficiency.
Indeed, leveraging the above optimal formula for marginal tax rates on s written in terms of s0het(z

0), and replacing
the integral term by its value from the optimal formula for marginal earnings tax rates in equation (118) yields
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which is the Pareto-efficiency condition in equation (20) presented in Theorem (2).

C.7 Proof of Proposition B.3 (Structural characterization of s0inc and s0het)
In economies with preference heterogeneity, budget heterogeneity, and auxiliary choices, s(z; ✓) solves
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where �(s, z; ✓) denotes utility-maximizing auxiliary choices. As a result, applying the envelope theorem to changes
in �, s(z; ✓) is defined by the following first-order condition
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Now, to compute s0inc =
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Rearranging terms yields
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Similarly, to compute s
0
het =

@s(z;✓)
@✓ , we differentiate the first-order condition for s(z; ✓) with respect to ✓ while
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holding z fixed:
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Rearranging terms yields
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C.8 Proof of Propositions 3, B.4, and B.5 (Optimal Simple Tax Systems)
The derivation of optimal earnings tax formulas for simple tax systems parallels that of general smooth tax systems and
the optimal formula for marginal earnings tax rates formula, equation (18), continues to hold. This proves Proposition
B.5.

Moreover, the particular linear reforms considered in the sufficient statistics characterization of optimal marginal
tax rates on s for general smooth tax systems T (s, z) are also available for LED tax systems. As a result, the derivation
of optimal marginal tax rates on s in LED tax systems is identical to the derivation for general smooth tax systems, and
the optimality formula in equation (19) continues to hold. This, in turn, implies that the Pareto-efficiency condition in
equation (20) also holds, thereby proving all sufficient statistics characterizations for LED tax systems.

In contrast, LED reforms of tax rates on s are not available under SL and SN tax systems, and we derive below
sufficient statistics characterizations of optimal tax rates on s and Pareto-efficiency conditions in SL and SN tax
systems.

C.8.1 SL tax system

SL tax reform. When the government uses a linear tax on s such that T (s, z) = ⌧s s+Tz (z), we consider a small
reform of the linear tax rate ⌧s that consists in a small increase �⌧s. For an individual with earnings z, this reform

30



Online Appendix Ferey, Lockwood, and Taubinsky

increases tax liability by�⌧s s(z) and increases the marginal tax rate on s by �⌧s.
We characterize the impact of this reform on the government objective function. Normalizing all effects by 1/�,

the reform induces
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• behavioral effects from changes in z:43
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• behavioral effects from changes in s:
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Summing over these different effects yields the total impact of the reform
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with social marginal welfare weights augmented with the fiscal impact of income effects given by
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Optimal linear tax rate on s. A direct implication of this result is a sufficient statistics characterization of the
optimal linear tax rate ⌧s. Indeed, at the optimum, the reform should have a zero impact on the government objective,
meaning that the optimal ⌧s satisfies
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This is equation (69) in Proposition B.4, and it holds for any (potentially suboptimal) nonlinear earnings tax schedule
Tz (z).

Now, assume that the earnings tax schedule is optimal. Equation (118) applied to SL tax systems then implies that
at each earnings z,

T
0
z(z) + s

0
inc(z)⌧s

1� T 0
z(z)

=
1

⇣cz(z)

1

zhz(z)

Z

x�z
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such that plugging in this expression to replace the last term, we obtain
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43Applying Lemma 1, changes in z and s are here given by
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Defining sinc(z) ⌘
R z
x=0 s
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inc (x) dx, we can integrate by parts the last term to re-express it as44
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to obtain
⌧s

1 + ⌧s

Z

z
s(z)⇣cs|z(z)dHz(z) =

Z

z

⇢
[s (z)� sinc(z)] (1� ĝ(z))
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This is equation (22) in Proposition 3. Integrating by part the right-hand side, this formula is also equivalent to
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Pareto efficiency for SL tax systems. To characterize Pareto efficiency, we combine tax reforms in a way that
neutralizes all lump-sum changes in tax liability, thereby offsetting all utility changes.

We start with a small reform of the linear tax rate ⌧s that consists in small increase �⌧s. At the bottom of the
earnings distribution (z = zmin), the mechanical effect of the reform is an increase in tax liability by s (zmin)�⌧s.
We thus adjust the earnings tax liability through a downward lump-sum shift by s (zmin)�⌧s at all earnings levels.
This joint reform has the following impact on the government objective
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(143)
meaning that the lump-sum change in tax liability is nil at earnings z = zmin, but not at earnings z � zmin.

To cancel out lump-sum changes in tax liability at all earnings levels, we construct a sequence of earnings tax
reforms. We discretize the range of earnings [zmin, zmax] into N bins and consider reforms in the small earnings
bandwidths �z = zmax�zmin

N . We proceed by induction to derive a general formula:

• First, consider a decrease in the marginal earnings tax rate by �⌧z = s
0 (zmin)�⌧s over the bandwidth

[zmin, zmin+�z]. In this bandwidth, this additional reform (i) cancels out lump-sum changes in tax liability to
a first-order approximation since [s (zmin +�z)� s (zmin)]�⌧s ⇡ s

0 (zmin)�z�⌧s, and (ii) induces earn-
ings responses through the change in marginal tax rates. Moreover, it also decreases the lump-sum tax liability
on all individuals with earnings z � zmin + �z by s

0 (zmin)�z�⌧s. The total impact of this sequence of
reforms is then
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44Define � (z) =
R z

x=0
s
0
inc (x) dx such that �0 (z) = s

0
inc (z) and  (z) =
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x=z
(1 � ĝ(x))hz(x)dx such that  0 (z) =
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⇤
dx.
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• Second, consider a decrease in the marginal earnings tax rate by�⌧z = s
0 (zmin +�z)�⌧s over the bandwidth

[zmin + �z, zmin + 2�z]. This again cancels out lump-sum changes in this bandwidth up to a first-order
approximation since [s (zmin + 2�z)� s (zmin)� s

0 (zmin)�z] ⇡ s
0 (zmin +�z)�z.
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The total impact of this sequence of reforms is then
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• Iterating over to step k, in which we consider a decrease in the marginal earnings tax rate by�⌧z = s
0 �
zmin + (k � 1) �z

N

�
�⌧s

over the bandwidth [zmin + (k � 1) �z
N , zmin + k

�z
N ]. The total impact of this sequence of reforms is then
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• Pushing the iteration forward until k = N , the first integral disappears (integration over an empty set) such that
the total impact of this sequence of reforms is given by
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Let’s now compute the last term at the limit N ! 1. Denoting z
p := zmin + p

�z
N , we have

N�1X

p=0

Z zp+�z
N

z=zp

T
0
z(z) + s

0
inc(z)⌧s

1� T 0
z (z)

z⇣
c
z(z)s

0 (zp)�⌧s dHz(z)

⇡
N�1X

p=0

T
0
z(z

p) + s
0
inc(z

p)⌧s
1� T 0

z (z
p)

(zp) ⇣cz (z
p) s0 (zp)�⌧shz (z

p)
�z

N

�!
N!1

Z zmax

z=zmin

T
0
z(z) + s

0
inc(z)⌧s

1� T 0
z (z)

z⇣
c
z (z) s

0 (z)�⌧s hz (z) dz (148)

where the last line follows from the (Riemann) definition of the integral in terms of Riemann sums. Hence, the total
impact of this sequence of reforms is at the limit given by
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By construction, the sequence of reforms we have constructed does not affect individuals’ utility, and only affects tax
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revenue through the expression above. When the impact of this reform is non-zero, the type of sequence of reforms we
consider delivers a Pareto improvement over the existing tax system. Characterizing a Pareto-efficient SL tax system
as one that cannot be reformed in a Pareto-improving way yields the following Pareto-efficiency formula

⌧s

1 + ⌧s

Z

z
s(z)⇣cs|z(z)hz(z)dz =

Z

z
[s0(z)� s

0
inc(z)]| {z }
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T
0
z(z) + s

0
inc(z)⌧s

1� T 0
z (z)

z⇣
c
z (z)hz (z) dz, (150)

which is equation (26) in Proposition 3.

C.8.2 SN tax systems

SN tax reform. When the government uses a SN tax system such that T (s, z) = Ts(s) + Tz(z), we consider a
small reform of the tax on s at s0 = s(✓0) that consists in a small increase�⌧s of the marginal tax rate on s in a small
bandwidth �s. Formally,

�T (s, z) =

8
><

>:

0 if s  s
0

�⌧s(s� s
0) if s 2 [s0, s0 +�s]

�⌧s�s if s � s
0 +�s

Assuming there exists a strictly increasing mapping between z and s, we denote z
0 the earnings level such that

s
0 = s(z0).45 We characterize the impact of this reform on the government objective function L as �s ! 0.

Normalizing all effects by 1/�, the reform induces
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45Our sufficient statistic characterization of optimal SN tax systems fundamentally relies on monotonicity of the function s(z).
Hence, it is also valid if we assume a strictly decreasing mapping s(z). Moreover, it can be extended to weakly monotonic s(z)
(i.e., non-decreasing or non-increasing) with slight modifications.

46Applying Lemma 1, changes in z and s are here given by
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(151)

where T ✓
z is a s0inc(z)�⌧s increase in the marginal earnings tax rate when s 2 [s0, s0 +�s], and a �⌧s�s increase in tax liability

when s � s
0 +�s. Moreover, the mass of individuals in the bandwidth is �s hs(s(z

0)) = �s
hz(z

0)
s0(z0) .
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Summing over these different effects yields the total impact of the reform
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Optimal nonlinear tax rate on s. A direct implication of this result is a sufficient statistics characterization of
the optimal marginal tax rates on s. Indeed, at the optimum, the reform should have a zero impact on the government
objective, dL = 0, which implies that at each s

0 = s
�
z
0
�

the optimal marginal tax rate on s satisfies
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which is equation (67) in Proposition B.4, recognizing that T 0
z (s, z) = T

0
z(z) and T 0

s (s, z) = T
0
s(s). This characteri-

zation holds for any (potentially suboptimal) nonlinear earnings tax schedule Tz(z).
Now, further assume that the earnings tax schedule is optimal. Equation (118) applied to SN tax systems then

implies that at each earnings z0,
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Using this expression to substitute the last term in the formula for optimal marginal tax rates on s yields
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which is equation (24) in Proposition 3.

Pareto efficiency for SN tax systems. We can combine formulas for optimal marginal tax rates on s and z to
obtain a characterization of Pareto efficiency. Indeed, leveraging the previous optimal formula for marginal tax rates
on s written in terms of s0het(z

0), and replacing the integral term by its value given from the optimal formula for
marginal earnings tax rates yields
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which is the Pareto-efficiency condition (27) presented in Proposition 3, recognizing that T 0
z (s, z) = T

0
z(z) and

T 0
s (s, z) = T

0
s(s).

C.9 Proof of Proposition 4 (Multidimensional Heterogeneity)
We characterize in Proposition 4 optimal tax rates on s for each type of simple tax system in the presence of multidi-
mensional heterogeneity. These formulas take the actual earnings tax schedule as given, be they optimally set or not,
and extend the results derived in the unidimensional case. Crucially, we are able to provide similar characterizations
because Lemma 1 still holds in the presence of multidimensional heterogeneity.

C.9.1 Separable linear (SL) tax system

Consider a reform that consists in a �⌧s increase in the linear tax rate ⌧s. For all individuals, this triggers an increase
in tax liability by s�⌧s and an increase in the marginal tax rate on s by �⌧s, which by Lemma 1 produces earnings

36



Online Appendix Ferey, Lockwood, and Taubinsky

responses equivalent to an increase in the marginal earnings tax rate by s
0
inc�⌧s.

We characterize the impact of this reform on the government objective function. Normalizing all effects by 1/�,
the reform induces

• mechanical effects
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• behavioral effects from changes in z
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• behavioral effects from changes in s
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such that the total impact of the reform on the government objective is
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Redefining augmented social marginal welfare weights as
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47Applying Lemma 1, changes in z and s are here given by
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we finally get
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Characterizing the optimal linear tax rate ⌧s through dL = 0, it satisfies
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which is equation (29) in Proposition 4.

C.9.2 Separable nonlinear (SN) tax system

Consider a reform that consists in a small �⌧s increase in the marginal tax rate on s across the bandwidth
⇥
s
0
, s

0 +�s
⇤
.

For all individuals with savings above s
0, this triggers a �s�⌧s increase in tax liability. For individuals at s0, this

triggers a�⌧s increase in the marginal tax rate on s – which by Lemma 1 produces earnings responses equivalent to a
s
0
inc�⌧s increase in the marginal earnings tax rate.

We characterize the impact of this reform on the government objective function L as �s ! 0. Normalizing all
effects by 1/�, the reform induces

• mechanical effects
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• behavioral effects from changes in z
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48Applying Lemma 1, changes in z and s are here given by
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where the reform �T
✓
z is a s

0
inc(s, z)�⌧s increase in the marginal earnings tax rate when s 2 [s0, s0 + ds], and a �⌧s�s increase in

tax liability when s � s
0 + �s.
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• behavioral effects from changes in s
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such that the total impact of the reform on the government objective is
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Redefining augmented social marginal welfare weights as
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we finally get
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Characterizing the optimal marginal tax rate on s, through dL
�s�⌧s

= 0, it satisfies at each savings s0,
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1� ĝ (s, z) |z, s � s

0
⇤o

dHz (z)�
Z

z

⇢
T

0
z (z) + s

0
inc

�
s
0
, z
�
T

0
s

�
s
0
�

1� T 0
z (z)

z⇣
c
z

�
s
0
, z
�
s
0
inc

�
s
0
, z
��

dHz (z)

which is equation (73) in Proposition B.5.

C.9.3 Linear earnings-dependent (LED) tax system

Consider a reform that consists in a �⌧s�z increase in ⌧s(z), the linear earnings-dependent tax rate on s, phased-in
across the earnings bandwidth

⇥
z
0
, z

0 +�z
⇤
.49

For all individuals with earnings above z0+�z, this triggers an increase in the linear tax rate by�⌧s�z meaning

49To avoid any ambiguity, we here use d for integration and � for attributes of the reform we consider.
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that the marginal tax rate on s increases by the same magnitude, which—by Lemma 1—triggers earnings responses
equivalent to those induced by a s0inc�⌧s�z increase in the marginal earnings tax rate, and so individuals’ tax liability
increases by s�⌧s�z.

For individuals in the earnings bandwidth
⇥
z
0
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⇤
, the only direct effect of the reform is to induce earnings

responses which by Lemma 1 are equivalent to an increase in the marginal earnings tax rate given by s�⌧s.
We characterize the impact of this reform on the government objective function L as �z ! 0. Normalizing all

effects by 1/�, the reform induces
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Redefining augmented social marginal welfare weights as
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we finally get
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Characterizing the optimal linear earnings-dependent tax rate ⌧s(.) through dL = 0, it satisfies at each earnings z0
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which is equation (74) in Proposition B.5.

C.10 Proof of Proposition 5 (Multiple Goods)
C.10.1 Setting and definitions

The problem of the government is to maximize the following Lagrangian
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where we use the fact that z (✓) is a bijective mapping to denote # (z) its inverse, and to define Pareto weights
↵(z) := ↵(#(z)) and the vector of n consumption goods as s (z) := s (z;# (z)).
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In this setting, we express optimal tax formulas in terms of the following elasticity concepts that measure con-
sumption responses of si and sj to changes in T 0
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C.10.2 Optimal marginal tax rates on earnings z

We consider a small reform at earnings level z0 that consists in a small increase�⌧z of the marginal earnings tax rate
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z in a small bandwidth �z. The impact of this reform on the Lagrangian as�z ! 0 is
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We characterize optimal taxes through dL = 0. Plugging in social marginal welfare weights augmented with the fiscal
impacts of income effects ĝ(z), we obtain
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C.10.3 Optimal marginal tax rates on good i

We consider a small reform at earnings level z0 that consists in adding a linear tax rate�⌧s�z on si for all individuals
with earnings z above z0, phased-in over the earnings bandwidth
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reform induces labor supply distortions on earnings z. At earnings z � z
0 +�z, this reform induces (a) substitution

effects away from si, (b) labor supply distortions on earnings z, and, new to this setting, (c) cross-effects on the
consumption of goods s�i.51
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(
dz = @z(.)

@T 0
z
�⌧s si(z

0)

dsj = s
0
j,inc(z

0)dz
and

8
<

:
dz = @z(.)

@T 0
z
�⌧s�z s

0
i,inc(z) +

@z(.)
@T �⌧s�z si (z)

dsj =
@sj(.)

@T 0
si

�⌧s�z +
@sj(.)

@T �⌧s�z si (z) + s
0
j,inc(z)dz

42



Online Appendix Ferey, Lockwood, and Taubinsky

The impact of this reform on the Lagrangian as �z ! 0 is
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capture cross-effects for all j 6= i.
We characterize optimal taxes through dL = 0. Plugging in social marginal welfare weights augmented with the

fiscal impacts of income effects ĝ(x), we obtain

�

T 0
z

�
s(z0), z0

�
+

nX

j=1

T 0
sj

�
s(z0), z0

�
s
0
j,inc(z

0)

�
@z(.)

@T 0
z

���
z=z0

si(z
0)hz(z

0) =

Z zmax

x=z0

⇣
1� ĝ(x)
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C.10.4 Deriving Proposition 5

For any good i, we combine the optimality condition for marginal tax rates on earnings z with the one for marginal
tax rates on good i to obtain
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
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���
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3
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such that differentiating with respect to earnings z0 gives after simplification
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���
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3

5hz(z
0).

Making use of the optimality condition for marginal earnings tax rates, we can substitute the first term on the right-hand
side to obtain

�
nX
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T 0
sj

�
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� @sj(.)
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si

���
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dHz(x). (191)
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Isolating the term relative to T 0
si

�
s(z0), z0

�
on the left-hand side yields the following optimal tax formula in terms of

s
0
i,het

� T 0
si

�
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���
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z
0
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si

���
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(192)

where @sj(.)
@T 0

si

capture cross-effects for all j 6= i.
We can rewrite this optimality condition in terms of the compensated elasticity ⇣csi|z and the cross elasticity ⇠csj,i|z

to finally obtain

T 0
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+
X
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T 0
sj
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�

T 0
si (s(z

0), z0)

sj(z0)⇠csj,i|z(z
0)

si(z0)⇣csi|z(z
0)

which is the first condition stated in Proposition 5.
To derive the second condition stated in Proposition 5, we substitute the first term on the right-hand side using the

optimality condition for marginal tax rates on earnings z to directly obtain
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z
0
⇣
c
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(194)

+
X

j 6=i

T 0
sj

�
s(z0), z0

�

T 0
si (s(z

0), z0)

sj(z0)⇠csj,i|z(z
0)

si(z0)⇣csi|z(z
0)

.

This completes the proof of Proposition 5.

C.11 Proof of Proposition 6 (Bequest Taxation and Behavioral Biases)
C.11.1 Setting

We here provide a sufficient statistics characterization of a smooth tax system T (s, z) under the following additively
separable representation of individuals’ preferences

U
�
c, s, z; ✓

�
= u (c; ✓)� k (z; ✓) + � (✓) v (s; ✓) ,

and for a utilitarian government that maximizes
Z

✓

⇥
U (c (✓) , s (✓) , z (✓) ; ✓) + ⌫ (✓) v (s (✓) ; ✓)

⇤
dF (✓) , (195)

where ⌫ (✓) parametrizes the degree of misalignment on the valuation of s.
Using the mapping between types ✓ and earnings z, the Lagrangian of the problem is written as

L =

Z

z

h
U (c (z) , s (z) , z;# (z)) + ⌫ (z) v (s (z) ;# (z)) + � (T (s, z)� E)

i
dHz (z) . (196)

As before, we derive optimal tax formulas by considering reforms of marginal tax rates on z and s. Thanks to the
additively separable representation of preferences, there are no income effects on labor supply choices. As a result,
the only substantial change is that savings changes now lead to changes in social welfare proportional to the degree of
misalignment.
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C.11.2 Optimal marginal tax rates on z.

A small reform at earnings z
0 that consists in a small increase �⌧z of the marginal earnings tax rate in a small

bandwidth �z has the following effect as �z ! 0,

1
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In this context, social marginal welfare weights augmented with income effects ĝ(z) are equal to

ĝ(z) =
u
0 (c (z))
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v
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and we can use individuals’ first-order condition for s, (1 + T 0
s )u

0 (c) = �v
0 (s), to express the misalignment wedge

in terms of the social marginal welfare weights g (z) := u0(c(z))
� as

⌫ (z)
v
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�
=
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The optimal schedule of marginal earnings tax rates is thus characterized by
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C.11.3 Optimal marginal tax rates on s.

A small reform at earnings level z0 that consists in adding a linear tax rate�⌧s�z on s for all individuals with earnings
z above z

0, phased-in over the earnings bandwidth
⇥
z
0
, z

0 +�z
⇤
, has the following effect as�s ! 0,
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We characterize optimal taxes through dL = 0. Replacing the misalignment wedge by its expression in terms of social
marginal welfare weights g (z), we obtain that the optimal schedule of marginal tax rates on s is characterized by

"
T 0
z

�
s
0
, z

0
�
+ s

0
inc(z

0)
⇣
T 0
s

�
s
0
, z

0
�
+
⌫
�
z
0
�

� (z0)
g(z)

�
1 + T 0

s

�
s
0
, z

0
��⌘

#
z
0

1� T 0
z (s

0, z0)
⇣
c
z(z

0) s0 hz(z
0)

=

Z

z�z0

(
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C.11.4 Deriving Proposition 6

Combining optimality conditions for marginal tax rates on z and s yields
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Differentiating with respect to z
0, we obtain after simplification
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Substituting the first term on the right-hand side by its expression from the optimality condition for marginal tax rates
on z, and rearranging we obtain
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which is the first optimality condition in Proposition 6.
Conversely, substituting the term on the left-hand side by its expression from the optimality condition for marginal

tax rates on z, and rearranging we obtain
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which is the second optimality condition in Proposition 6.

C.12 Proof of Proposition 7 (Multidimensional Range with Heterogeneous Prices)
C.12.1 Setting

We consider heterogeneous marginal rates of transformation or “prices” p(z, ✓) between c and s, and a two-part tax
structure, where a person must pay a tax T1(z) in units of c and a tax T2(s, z) in units of s. In particular, we consider
simple tax systems of the SN type, where the tax on s is nonlinear but independent of earnings z such that T2(s, z) =
T2(s), and of the LED type, where the tax on s is linear but earnings-dependent such that T2(s, z) = ⌧s(z) s.

In this setting, we can write type ✓’s problem as

max
c,s,z

U(c, s, z; ✓) s.t. c+ p(z, ✓)s  z � T1(z)� p(z, ✓)T2(s, z) (201)

() max
z

n
max

s
U

⇣
z � T1(z)� p(z, ✓) (s+ T2(s, z)) , s, z; ✓

⌘o
(202)
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where the inner problem leads to consumption choices c (z; ✓) and s (z; ✓), and the outer problem leads to an earnings
choice z (✓). Assuming z (✓) continues to be a bijective mapping, we again denote # (z) its inverse. This allows us
to define s (z) := s (z;# (z)), p(z) := p(z(#(z));#(z)) and to formulate the problem in terms of observable earnings
z.52

Let �1 and �2 be the marginal values of public funds associated with the resource constraints
Z

z
T1(z)dHz(z) � E1 (203)

Z

z
T2(s(z), z)dHz(z) � E2. (204)

The problem of the government is to maximize the Lagrangian
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⇢
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⇣
z � T1(z)� p(z)

�
s(z) + T2(s(z), z)

�
, s(z), z;#(z)

⌘

+ �1T1(z) + �2T2(s(z), z)� E1 � E2

�
dHz(z). (205)

C.12.2 Adapting Lemma 1

Lemma C.4. For an type ✓ = #(z), we have that:

(1a) a small increase �⌧z in the marginal tax rate
@T2
@z generates the same earnings change as a small increase

p(z)�⌧z in the marginal tax rate
@T1
@z .

(1b) a small increase �⌧s in the marginal tax rate
@T2
@s generates the same earnings change as a small increase

p(z)s0inc(z)�⌧s in the marginal tax rate
@T1
@z .

(2) a small increase �T in the T2 tax liability faced by type ✓ = #(z) generates the same earnings change as a small

increase p(z)�T in the T1 tax liability.

Proof. We first derive an abstract characterization that we then apply to different tax reforms.
Let type ✓ indirect utility function at earnings z be

V (T1(z), T2(., z), z; ✓) := max
s

U

⇣
z � T1(z)� p(z, ✓) (s+ T2(s, z)) , s, z; ✓

⌘
. (206)

Consider a small reform �T2(s, z) of T2, and construct for each type ✓ a perturbation �T
✓
1 (z) of T1 that induces the

same earnings response as the initial perturbation. Suppose we define this perturbation for each type ✓ such that at all
earnings z,

V (T1(z) +�T
✓
1 (z) , T2(., z), z; ✓) = V (T1(z), T2(., z) +�T2(., z), z; ✓). (207)

Then, by construction, the perturbation �T
✓
1 (z) induces the same earnings response dz as the initial perturbation

�T2(., z). Moreover, both tax reforms must induce the same utility change for type ✓. Applying the envelope theorem
yields

� U
0
c (z; ✓) ·�T

✓
1 (z) = �U

0
c (z; ✓) p(z, ✓) ·�T2 (s (z; ✓) , z) (208)

such that finally, the perturbation �T
✓
1 (z) is

�T
✓
1 (z) = p(z, ✓) ·�T2 (s (z; ✓) , z) . (209)

and we can now apply this abstract characterization to different tax reforms.
(1a) Consider a small increase�⌧z in the marginal tax rate @T2

@z over a small bandwidth of income
⇥
z
0
, z

0 +�z
⇤
.

Then, for any type ✓ such that z(✓) 2
⇥
z
0
, z

0 +�z
⇤
, we have�T2 (s (z; ✓) , z) = �⌧z

�
z � z

0
�

such that�T
✓
1 (z) =

52When taking derivatives, the presence of these two arguments is implicit. For instance, a total derivative corresponds to
dp
dz := @p

@z + @p
@✓

@✓
@z , whereas a partial derivative @p

@z represents variation in only the first argument.
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and differentiating with respect to z we get
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At the limit�z ! 0 such that z ! z
0, a small increase�⌧z in the marginal tax rate @T2

@z generates the same earnings
change as a small increase p(z)�⌧z in the marginal tax rate T

0
1(z).

(1b) Consider a small increase�⌧s in the marginal tax rate @T2
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At the limit �s ! 0 such that s ! s
0, a small increase �⌧s in the marginal tax rate @T2

@s generates the same earnings
change as a small increase p(z)s0inc(z)�⌧z in the marginal tax rate T

0
1(z).

(2) Consider a small lump-sum increase �T in the T2 tax liability for a type ✓ who earns z, we then have
�T

✓
1 (z) = p(z, ✓)�T such that the equivalent reform is no longer a lump-sum increase. Hence, a small increase

�T in the T2 tax liability faced by a type #(z) generates the same earnings change as a small increase p(z)�T in the
T1 tax liability.

C.12.3 Marginal values of public funds

An important prerequisite to derive optimality conditions is to pin down the marginal values of public funds �1 and �2.
At the optimum, �1 and �2 are pinned down by optimally setting the tax level T1 and T2. Characterizing the impact
of lump-sum changes in tax liabilities yields the following two equations that can be solved for �1 and �2:
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where z(.) and s(.) denote, with a slight abuse of notation, the earnings and savings choices, and all partial derivatives
are evaluated at earnings x.

Renormalizing these equations by �1, we can use the fact that by Lemma C.4, @z(.)
@T2
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p(z) to obtain

Z zmax

x=zmin

⇢
1�


↵(x)

U
0
c(x)

�1
�
✓
T

0
1 (x) +

�2

�1

@T2

@z
+ s

0
inc(x)

�2

�1

@T2

@s

◆
@z(.)

@T1
� �2

�1

@T2

@s

@s(.)

@T1

��
dHz(z) = 0

(214)
Z zmax

x=zmin

⇢
�2

�1
� p(x)


↵(x)

U
0
c(x)

�1
�
✓
T

0
1 (x) +

�2

�1

@T2

@z
+ s

0
inc(x)

�2

�1

@T2

@s

◆
@z(.)

@T1
� �2

�1

@T2

@s

@s(.)

@T1

�
(215)

+

✓
T

0
1 (z) +

�2

�1

@T2

@z
+ s

0
inc(x)

�2

�1

@T2

@s

◆
@z(.)

@T
0
1

@p

@z

�
dHz(x) = 0.

At any given earnings x, defining social marginal welfare weights augmented with the fiscal impact of income effects
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ĝ(x) and the fiscal impacts of the novel substitution effects '(x) as respectively

ĝ(x) := ↵(x)
U

0
c(x)

�1
�
✓
T

0
1(x) +

�2

�1

@T2

@z
+ s

0
inc(x)

�2

�1

@T2

@s

◆
@z(.)

@T1
� �2

�1

@T2

@s

@s(.)

@T1
(216)
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where all partial derivatives are evaluated at x, we finally obtain
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C.12.4 Optimal tax rates on z

We consider a small reform at earnings level z0 that consists in a small increase�⌧z of the marginal earnings tax rate
T

0
1(z) in a small bandwidth �z. The impact on the Lagrangian is as�z ! 0,
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We characterize optimal taxes through dL = 0. Renormalizing everything by �1, plugging in social marginal welfare
weights augmented with income effects ĝ(x), we obtain the following optimality condition for marginal earnings tax
rates at each earnings z0
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C.12.5 Optimal tax rates on s

SN tax system. We consider a small reform at s0 = s(z0) that consists in a small increase�⌧s of @T2
@s , the marginal

tax rate on s, in a small bandwidth �s. Using Lemma 2, we characterize the impact of the reform on the Lagrangian
as �s ! 0
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We characterize optimal taxes through dL = 0. Renormalizing by �1 and using @s(.)
@T2

= @s(.)
@T1

p(x), we can plug in
ĝ(x) and '(x) to obtain the following optimality condition for marginal tax rates on s at each savings s0 = s(z0):
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LED tax system. We consider a small reform at s0 = s(z0) that consists in a small increase �⌧s of the linear
savings tax rate ⌧s(z) phased in over the earnings bandwidth [z0, z0 + �z]. Using Lemma (2), we characterize the
impact of the reform on the Lagrangian as�z ! 0
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since the reform triggers for individuals at z0 changes in earnings z equivalent to those induced by a p(z)�⌧s s(z)
increase in T

0
1(z

0), and for individuals above z
0 an increase in tax liability equivalent to a p(z)�⌧s�z s(z) increase

in T1 and a change in marginal earnings tax rates equivalent to a
⇣
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@z s(z) + p(z) s0inc(z)

⌘
�⌧s�z increase in T

0
1(z),

in addition to the �⌧s�z increase in the linear tax rate on s.
We characterize optimal taxes through dL = 0. Renormalizing by �1, we can plug in ĝ(x) and '(x) to obtain the
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following optimality condition for linear earnings-dependent tax rates on s at each earnings z0
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C.12.6 Deriving Proposition 7

SN tax system. A two-part SN tax system {T1(z), T2(s)} thus satisfies two optimality conditions: the optimality
condition in equation (221) for T 0

1(z) and the optimality condition in equation (223) for T 0
2(s). Combining these two

conditions, we get that at each earnings z0, the optimal SN tax system satisfies
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1� ĝ(x)

i
dHz(x).

Defining ⇣cs|z(z) = �
1+p

@T2
@s

���
z0

s
@s(.)

p @

 
@T2
@s

���
z0

! such that @s(.)

@

 
@T2
@s

���
z0

! = � p s

1+p
@T2
@s

���
z0

⇣
c
s|z(z), we get53
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53With homogeneous p, a SN savings tax levied in period-1 dollars Ts(s) is simply equal to Ts(s) = pT2(s). As a result, this
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where we use ĝp� ' = �2
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and ĝ(x) = 1 to obtain the additional terms
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which proves the optimal formula for SN tax systems in Proposition 7.

LED tax system. A two-part LED tax system {T1(z), ⌧s(z)s} thus satisfies two optimality conditions: the op-
timality condition in equation (221) for T 0

1(z) and the optimality condition in equation (225) for ⌧s(z). Combining
these two conditions, we get that at each earnings z0 the optimal LED tax system satisfies
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Using the optimality condition in equation (221) for T 0
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which proves the optimal formula for LED tax systems in Proposition 7.

D Details on the Empirical Application
This appendix describes the details underlying the numerical results presented in Section 6. In Section D.1, we describe
how we calibrate a baseline two-period, unidimensional model of the U.S. economy, which we use to compute the
simple savings tax schedules that are consistent with the prevailing income tax, i.e., that satisfy the Pareto-efficiency
formulas in Proposition 3. These are reported in Figure II. In Section D.2, we describe how we extend this exercise to
calibrate the optimal simple savings tax systems in the presence of multidimensional heterogeneity as in Proposition
4, assuming that redistributive preferences and other sufficient statistics are the same as in the baseline calibration.
In Section D.3, we describe how we instead extend the baseline exercise to allow for heterogeneous rates of return,
with an efficiency-based rationale for taxing those with access to high returns, as in Proposition 7. Results for these
extensions are reported in Figure III.Throughout this exercise, we make two assumptions for tractability: We assume
that preferences are weakly separable as described in Proposition 2, so that the income effect on savings, ⌘s|z(z) can
be identified from s

0
inc(z), and we assume that income effects on labor supply (⌘z(z)) are negligible.

For comparability with the literature on wealth taxation, we express all savings tax rates in terms of “period-
2” taxes on gross savings, so that a marginal savings tax rate of 0.1 indicates that if an individual’s total wealth at
retirement increases by $1, then they must pay an additional $0.10 in taxes when they retire.54

The LATEX source code underlying this document—which can be viewed in the accompanying replication files—uses
equation labels that match those in the Matlab simulation code.

D.1 Baseline Calibration with Unidimensional Heterogeneity
We first calibrate a simplified version of the U.S. economy with unidimensional heterogeneity. This calibration has
two periods, with the first period corresponding to working life and the second to retirement. We assume these periods

54Notationally, we write this translation as in Appendix B.7, with s1 and sg denoting gross savings before taxes, measured in
period-1 and period-2 dollars, respectively, and T2(sg, z) denoting the savings tax function in period 2. Appendix B.7 demon-
strates that the simplicity structure of a tax system (SL, SN, and LED) is preserved when translating between T (s, z) and
{T1(z), T2(sg, z)}. In the accompanying code replication files, all savings taxes are computed in terms of T (s, z), but marginal
tax rates are converted into @T2(sg ,z)

@sg
when plotted in figures.
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are separated by 20 years, with a risk-free annual rate of return of 3.8% per year between period 1 and period 2 (see
Fagereng et al. (2020), Table 3).

D.1.1 Joint Distribution of Earnings and Savings, and the Status Quo Income Tax

We calibrate the joint distribution of earnings and savings using the Distributional National Accounts micro-files of
Piketty et al. (2018), henceforth PSZ. We use individual measures of pretax labor income (plinc) and net personal
wealth (hweal) as well as the age category (20 to 44 years old, 45 to 64, and above 65) and household information. We
discretize the income distribution into percentiles by age group, and we partition the top percentile into the top 0.01%,
the top 0.1% (excluding the top 0.01%), and the rest of the top percentile. Our measure of annualized earnings during
work life z at the n-th percentile is constructed by averaging plinc at the n-th percentile across those aged 20 to 44
and those aged 45 to 64. For married households, we use the average earnings of the couple and assign both members
of the couple to the same percentile of income. For households with one member above 65 years old, we keep only
the younger spouse in the sample. We drop the bottom 2% of observations with non-positive labor income; these
individuals have positive average income from other sources, suggesting they are not representative of the zero-ability
types which would correspond to z = 0 in our model.

Our measure of gross retirement savings per year worked, which we denote sg in the notation of Appendix B.7, at
each labor income quantile is constructed by projecting forward to age 65 the average wealth we observe in the 45 to 65
age category. We project forward by assuming that individuals within each percentile save the same share of post-tax
income while young and middle-aged.55 For married households, we take household wealth to be the average wealth
of its members. We then normalize the total wealth at retirement by the number of working years (65 � 25 = 40) so
that z and sg are in comparable units measured per working year. This yields a monotonic profile of savings across
earnings z, and pins down the cross-sectional variation in gross savings s0g(z).

We convert this discrete distribution of labor income and savings into a smooth distribution with 1000 gridpoints
with equal log-spacing, to ensure a smooth marginal tax function that converges to a fixed point when we iterate using
the first-order conditions from our propositions. This conversion is performed using the smoothing spline fit in Matlab,
with a smoothing parameter of 0.9 and the scale normalization setting set to “on.” Measures of savings are noisy at
low incomes, which also have outlier values of ln(z) after the logarithmic transformation used for our savings fit. To
avoid having those percentiles generate a strong pull on the fit, we fit the log of savings to ln(z + k), where a larger k
reduces the extent to which the low incomes are outliers. Our baseline uses k = $20, 000.

We construct the status quo income tax function by comparing gross income to the PSZ measure diinc (“extended
disposable income”) of post-tax income z � T1(z). We use the median value within each pre-tax income percentile,
constructing a smoothed profile of disposable income y by fitting log diinc to log plinc, with the same setting described
above. In the DINA files, total disposable income diinc exceeds total labor income plinc, reflecting non-labor factors
of production in the economy and the taxes on them. For internal consistency, we apply a lump-sum adjustment so that
total y and z are equal, although our results are not sensitive to this adjustment. We then calibrate the smooth marginal
income tax rate schedule as 1� dy

dz . We treat Social Security as a fixed amount of forced savings, which are added to
net-of-tax disposable savings to arrive at our total measure of net savings s. 56

D.1.2 Status Quo Savings Tax Rates in the United States

We are interested in comparing our results to the profile of status quo effective tax rates on savings in the U.S. Con-
structing such a schedule presents several difficulties, however. There are many different types of taxes which apply to
savings in the U.S., including capital gains taxes (which differ depending on the length of asset ownership), ordinary

55Specifically, we construct a representative working agent for each income percentile in each age category: a “young” agent of
age 35 (in the 20 to 44 age category, where we assume work begins at age 25), and a “middle-aged” agent of age 55 (in the 45 to
64 age category). We assume wealth at middle age is the result of the sum of 20 years’ worth of savings while young, with returns
compounded for an average of 55 � 35 = 20 years, and 10 years of saving during middle age, compounded for an average of 5
years, with a constant share of post-tax income saved in the age range.

56The amount is computed as follows, using the SSA Fact Sheet: Retired workers receive on average $1,514 per month from
social security, which is 12 ⇥ 1, 514 = $18, 168 annually. Through the lens of our two-period model, these benefits are received
over an average retirement length of 20 years, and stem from contributions paid over 40 working years. We therefore approximate
this as forced savings at the time of retirement of $9000 per working year.
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income taxes, and property taxes. Moreover, effective tax rates depend on assumptions about incidence, about which
there is substantial disagreement.

We use a simple approach to construct an approximation of the U.S. savings tax based on the composition of
savings portfolios across the income distribution. Bricker et al. (2019) use the Survey of Consumer Finances to
construct a decomposition of saving types by asset ownership percentile; we summarize the analogous decomposition
by income percentile in Figure A2 below. We then construct a savings tax rate at each income level based on the
asset-weighted average of the tax rates that apply to each asset class.

For comparison to our results, the savings tax rate of interest is the distortion between work-life consumption
and savings. Therefore savings which are subject to labor income taxes but no further taxes, such as a Roth IRA,
should be understood as being subject to zero savings tax. We similarly classify traditional IRAs and pension plans as
being subject to zero taxes, since they are also subject only to ordinary income taxes. We therefore treat assets in the
“Financial (retirement)” category as subject to zero savings tax. We assume “Financial (transaction)” assets, which
include checking and savings accounts, represent liquidity needs and similarly do not count toward taxed savings. We
view property taxes on “Nonfinancial (residences)” savings as a tax that is incident on renters, and thus a component
of imputed rent, which is paid regardless of whether the asset is owned by the user, so we also assume the tax rate on
these savings is 0%. Therefore we view only the dotted-outline asset classes “Financial (market)” and “Nonfinancial
(business)” as subject to savings taxes, in the form of capital gains. We do not know what share of these holdings
represent gains, as opposed to the original contributions. To be conservative, we treat the entire asset classes as though
they were subject to capital gains taxes at the time of retirement.

We treat this savings tax rate profile as a schedule of average tax rates on one’s savings portfolio at each point in
the income distribution. We smooth this schedule of average rates using the spline fit procedure described above, and
apply that average tax rate to the calibrated level of gross savings at each point in the income distribution to reach a
calibrated schedule of total savings taxes paid. We then compute the schedule of marginal rates that would give rise to
that nonlinear profile of average tax rates; this schedule is plotted as the “U.S. Status quo” savings tax, e.g., in Figure
II.
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Figure A2: Calibration of Savings Tax Rates Across Incomes in the U.S.

(a) Decomposition of Savings Types: Bricker et al. (2019)
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(b) Calibrated Savings Tax Rates in the United States, by Income Per-
centile
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Notes: This figure illustrates the calibration of savings tax rates in the U.S. across the income distribution. Panel (a)
plots the composition of asset types in individuals’ portfolios across the income distribution, reported by Bricker et al.
(2019). Panel (b) plots the implied weighted average savings tax rate in each bin. See Appendix D.1.2 for details.

D.1.3 Measures of s0inc
A key input for our sufficient statistics is the marginal propensity to save out of earned income, s0inc (z) :=

@s(z)
@z

��
✓=✓(z)

,
which relates changes in the amount of net-of-tax savings at the time of retirement to changes in the amount of pre-tax
earnings z. We draw from two sources of empirical data to calibrate our marginal propensities to consume (or save),
translated into measures of s0inc (z). These results are plotted in Figure I.

Norwegian estimates from Fagereng et al. (2021). Fagereng et al. (2021) estimate marginal propensities to
consume (MPC) across the earnings distribution using information on lottery prizes linked with administrative data in
Norway. They find that individuals’ consumption peaks during the year in which the prize is won, before gradually
reverting to their previous consumption level. Over a 5-year horizon, they estimate winners consume close to 90%
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of the tax-exempt lottery prize; see the “consumption” panels in Fagereng et al. (2021) Figure 2. This translates into
an MPC of 0.9, and thus a marginal propensity to save of 0.1. Under the assumption that preferences are weakly
separable with respect to the disutility of labor supply, this is also the marginal propensity to save out of net earned
income from labor supply. (See Proposition 2.)

They find little evidence of variation in MPCs across income levels which implies

@c (z)

@ (z � T1 (z))
= 0.9

and recognizing that individuals’ budget constraint is s1(z) = z � T1 (z)� c(z), we get

@s1 (z)

@ (z � T1 (z))
= 1� @c (z)

@ (z � T1 (z))
= 0.1.

The identity s = (s1 � Ts(s))(1 + r) implies that @s
@s1

= 1
1

1+r+T 0
s(s)

, and thus that the local causal effect of pre-tax

income z on net savings s satisfies

s
0
inc(z) =

@s1 (z)

@ (z � T1 (z))
· @s
@s1

· @(z � T1(z))

@z

= 0.1 · 1� T
0
1 (z)

1
1+r + T 0

s(s(z))
. (233)

We can then use our calibrated U.S. tax schedule to obtain a profile of s0inc (z), under the key assumption that U.S.
households have similar MPCs as Norwegian households. This profile is plotted in Figure I.

U.S. estimates from a new AmeriSpeak survey. We conducted a probability-based survey of the American
population in the spring of 2021, which asked the following question:

Answers to this question provide information about individuals’ reported marginal propensity to consume (MPC) and
marginal propensity to save (MPS) out of a small and persistent change in earned income – in contrast to empirical
estimates based on lottery winnings which measure MPC and MPS out of a one-time windfall income gain. Our
survey sample consisted of 1,703 respondents who reported an average marginal propensity to save of 0.60 in the
year of the raise.57 We also requested information on household income in the survey, so we can observe marginal
propensity to save across earnings levels, plotted in Figure A3. Marginal propensities to save appear quite stable
across income levels, a finding that is consistent with the results of Fagereng et al. (2021).

57This average is computed using the sample weights provided AmeriSpeak; the unweighted average is 0.59.
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Figure A3: Marginal propensity to save across household income (own survey)
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Notes: Marginal propensities to save are computed from the answers to our survey question. They are
computed as the ratio between the amount respondents report they would save and the amount of the raise.

Since our survey question asks about consumption and spending within each year, we interpret these estimates as
short-run responses. Fagereng et al. (2021) show that positive income shocks are followed by consumption responses
that can last up to 5 years. We use their impulse-response profile to convert these 1-year MPS into a 5-year MPS,
which we interpret as a total effect on savings before returns. To do so, we use the fact that they report a 1-year MPC
of 0.52 and a 5-year MPC of 0.90; we therefore compute our long run marginal propensity to save as

MPS5y = MPS1y ·
1� 0.90

1� 0.52
= 0.60 · 0.208 = 0.125.

Because our survey question asked about a change in pre-tax income, we do not need to multiply by 1 � T
0
1(z) as in

equation (233); we just divide by 1
1+r+T

0
s(s(z)) to reach our measure of s0inc(z). This results in an estimate somewhat

higher than that obtained by Fagereng et al. (2021) for Norway, plotted in Figure I. We use this as the baseline measure
of s0inc(z) for our simulations, and the difference between the cross-sectional slope s

0(z) and s
0
inc(z) provides our

estimate of the key statistic for preference heterogeneity, s0het(z), which is also plotted in Figure I.

Comparison to Golosov et al. (2013). Golosov et al. (2013) also study preference heterogeneity, providing a
useful point of comparison. In their baseline calibration, they assume individuals’ preferences are Constant-Relative-
Risk-Aversion

U(c, s, l) =
↵ (w)

1 + ↵ (w)
ln c+

1

1 + ↵ (w)
ln s� 1

�
(l)� ,

where l is the labor supply of an individual with hourly wage w such that earnings are given by z = wl. The risk-
aversion parameter is set to � = 1, the isoelastic disulity from labor effort is such that � = 3, and the taste parameter
is given by

↵ (w) = 1.0526 (w)�0.0036
.

In other words, the taste parameter varies from 1.0433 for individuals in the bottom quintile of the earnings distribution
(mean hourly wage of $12.35, in 1992 dollars) to 1.0406 for individuals in the top quintile of the earnings distribution
(mean hourly wage of $25.39, in 1992 dollars). This means that this taste parameter is almost constant with income
around an average of ↵ = 1.042.

To illustrate how little preference heterogeneity this implies, we compute the s
0
inc and s

0
het implied by their
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calibration. Individuals’ savings choices follow from maximizing U(c, s, z
w ) subject to the budget constraint c 

z � 1
Rs� T (s, z). This implies

s =
z � T (s, z)

1/R+ ↵ (1/R+ T 0
s )

such that, neglecting the (potential) curvature of the tax function T 00 ⇡ 0, we can decompose the variation of savings
s across earnings z as

ds

dz|{z}
s0(z)

=
1� T 0

z

1/R+ ↵ (1/R+ T 0
s ) + T 0

s| {z }
s0inc(z)

+
� (1/R+ T 0

s )

1/R+ ↵ (1/R+ T 0
s ) + T 0

s

d↵

dz
s

| {z }
s0het(z)

.

To obtain an approximation of s
0
het(z) in their setting, we use the fact that Golosov et al. (2013) report in

their simulation results that individuals with an annual income z = $100, 000 have an hourly wage w = $40
while those with an annual income z = $150, 000 have an hourly wage w = $62.5. We can thus approximate
d↵
dz = ↵(62.5)�↵(40)

150,000�100,000 = 1.0370�1.0387
50,000 = �34 ⇤ 10�9. For T 0

z , we assume a linear income tax rate ⌧z = 0.3, for
R = 2.1 we use our real interest rate of 3.8% compounded over 20 years), and for T 0

s we assume a linear income tax
rate ⌧s = 0.01 which we show below (see equation (235)) to be consistent with a linear tax of 4% on capital gains (the
approximate average in Figure A2b).

This gives a constant s0inc = 1�0.3
1/2.1+1.042⇤(1/2.1+0.01) = 0.71, which is much higher than our estimate. Lever-

aging the fact that s0inc is constant, we can also infer that at an annual income of $125, 000, the annual amount of
savings available for consumption in period 2 (including compounded interest) is approximately equal to s = s

0
inc ⇤

$125, 000 = 0.71⇤125, 000 = $88, 750. Thus, s0het =
1/2.1+0.02

1/2.1+1.042⇤(1/2.1+0.02)+0.02 ⇤(34⇤10
�9)⇤88, 750 = 0.0015.58

These values for s0inc and s
0
het imply that in the calibration of Golosov et al. (2013), preference heterogeneity is

substantially smaller than our estimate of across-income heterogeneity, as it only explains s0het
s0het+s0inc

= 0.0015
0.71+0.0015 =

0.2% of the variation in savings between individuals earning $100, 000 annually and those earning $150, 000.

D.1.4 Savings elasticity

For purposes of calibration, we assume that the income-conditional compensated elasticity of savings is constant across
earnings, ⇣cs|z(z) = ⇣̄

c
s|z . We follow Golosov et al. (2013) in drawing on the literature estimating the intertemporal

elasticity of substitution (IES), and reporting results for a range of values. To motivate these values, we describe here
how we can translate from the IES to a compensated elasticity ⇣cs|z in the case of a representative agent.

The IES is defined as the elasticity of the growth rate of consumption with respect to the net price of consumption.
We assume consumption is smoothed during retirement, so that retirement consumption is proportional to the net stock
of savings s, and thus the elasticity of the growth rate of consumption (with respect to a tax change) is the same as the
elasticity of the ratio of s to work-life consumption c. We consider a change in the price of retirement consumption
induced by a small reform to a SL system like the one described in Table I with a constant linear tax rate ⌧s, in which
case the net-of-tax price of retirement savings is R

1+R⌧s
. (This can be found using the relationship (s1 � ⌧ss)R = s

58More specifically, we postulate s
0
het ⌧ s

0
inc to infer s(z) = s

0
inc · z and then compute s

0
het. Since we obtain a value that

verifies s
0
het ⌧ s

0
inc, this reasoning is consistent and proves that s0het ⌧ s

0
inc. Put differently, even if we assume s

0
het ⇡ s

0
inc

which implies that s(z) = 2s0inc · z, we still obtain s
0
het ⌧ s

0
inc.
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and solving for ds
ds1

= �ds
dc .) We can therefore write

IES =
d ln(s/c)

d ln( R
1+R⌧s

)

= � d ln(s/c)

d ln(1 +R⌧s)

= � d ln s

d ln(1 +R⌧s)
+

d ln c

d ln(1 +R⌧s)

= � d ln s

d ln(1 +R⌧s)
+

dc

d ln(1 +R⌧s)

1

c

= � d ln s

d ln(1 +R⌧s)
+

ds

d ln(1 +R⌧s)

dc

ds

1

c
.

Substituting for dc
ds = 1+R⌧s

R , we then obtain

IES = � d ln s

d ln(1 +R⌧s)
� d ln s

d ln(1 +R⌧s)

1 +R⌧s

R

s

c

= �
✓
1 +

✓
1 +R⌧s

R

◆
s

c

◆
d ln s

d ln(1 +R⌧s)

= �
✓
1 +

✓
1 +R⌧s

R

◆
s

c

◆
d ln(1 + ⌧s)

d ln(1 +R⌧s)

d ln s

d ln(1 + ⌧s)

= �
✓
1 +

✓
1 +R⌧s

R

◆
s

c

◆✓
d(1 +R⌧s)

d⌧s

◆�1 1 +R⌧s

1 + ⌧s

d ln s

d ln(1 + ⌧s)

= �
✓
1 +

✓
1 +R⌧s

R

◆
s

c

◆
1 +R⌧s

R(1 + ⌧s)

d ln s

d ln(1 + ⌧s)

=) d ln s

d ln(1 + ⌧s)
= � IES�

1 +
�
1+R⌧s

R

�
s
c

�
1+R⌧s
R(1+⌧s)

. (234)

Using a value of s/c = 0.67 (the population average in our calibrated two-period economy), and using the values
R = 2.1 (from our real interest rate of 3.8% compounded over 20 years) and ⌧s = 0.01 (corresponding to a linear tax
of 4% on capital gains, the approximate average in Figure A2b), we find59

d ln s

d ln(1 + ⌧s)
= �IES

0.64
.

Treating this as the population estimate of d ln s̄
d ln(1+⌧s)

, we can then compute the value of the elasticity ⇣̄cs|z that is
consistent with this estimate. From the proof of the optimal SL tax system (see Appendix C.8.1, equation (134)), the
response of aggregate savings s̄ to a change in the separable linear tax rate ⌧s (measured in period-1 dollars, as distinct

59A linear tax rate ⌧ cg on capital gains (R� 1) s1 leads to net savings s = s1(1 + (R� 1) (1 � ⌧
cg)). Similarly, a period-1

linear tax ⌧s on net savings s leads to net savings s = (s1 � ⌧ss)R () s = s1R
1+⌧sR

. As a result,

s1(1 + (R� 1) (1� ⌧
cg)) =

s1R

1 + ⌧sR

() 1 + ⌧sR =
R

1 + (R� 1) (1� ⌧ cg)

() ⌧s =
1

1 + (R� 1) (1� ⌧ cg)
� 1

R
. (235)
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from ⌧s,2) is:

ds̄

d⌧s
= �

Z

z

⇢
1

1 + ⌧s

⇣
s(z)⇣̄cs|z + ⌘s|z(z)s(z)

⌘
+

s
0
inc (z)

1� T 0
z (z)

(z ⇣cz(z)s
0
inc (z) + ⌘z(z)s(z))

�
dHz (z)

ds̄

d⌧s

1 + ⌧s

1
= �⇣̄cs|z s̄�

Z

z

⇢
⌘s|z(z)s(z) + s

0
inc (z)

1 + ⌧s

1� T 0
z (z)

(z ⇣cz(z)s
0
inc (z) + ⌘z(z)s(z))

�
dHz (z)

ds̄

d⌧s

1 + ⌧s

s̄| {z }
d ln s̄

d ln(1+⌧s)

= �⇣̄cs|z �
Z

z

⇢
⌘s|z(z)

s(z)

s̄
+

s
0
inc (z)

s̄

1 + ⌧s

1� T 0
z (z)

(z ⇣cz(z)s
0
inc (z) + s(z) ⌘z(z))

�
dHz (z)

⇣̄
c
s|z = � d ln s̄

d ln(1 + ⌧s)
� E


⌘s|z(z)

s(z)

s̄
+

s
0
inc (z)

s̄

1 + ⌧s

1� T 0
z (z)

(z ⇣cz(z)s
0
inc (z) + ⌘z(z)s(z))

�

This could be computed directly if we had an independent estimate of the income-conditional income effect ⌘s|z . We
instead invoke our assumptions of weak separability and a separable tax system, implying ⌘s|z (z) = s

0
inc (z)

1+T 0
s(s(z))

1�T 0
z(z)

(see Proposition 2), and negligible income effects on earnings, to write

⇣̄
c
s|z = � d ln s̄

d ln(1 + ⌧s)
� E


1 + T

0
s (z)

1� T 0
z (z)

s
0
inc (z)

s̄

�
s(z) + z⇣̄

c
zs

0
inc (z)

��

= � d ln s̄

d ln(1 + ⌧s)
� 1

s̄
· E


1 + T

0
s (z)

1� T 0
z (z)

s
0
inc (z)

�
s(z) + z⇣̄

c
zs

0
inc (z)

��
. (236)

In our calibration, the value of the second term is 0.38, suggesting a translation of ⇣̄cs|z ⇡ IES/0.64 � 0.38. Thus
a value of IES = 1, the baseline in Golosov et al. (2013), suggests an elasticity of ⇣̄cs|z = 1.2. We use a baseline
value of ⇣̄cs|z = 1. IES values of 0.5 and 2 (the “low” and “high” values considered in Golosov et al. (2013)) suggest
savings elasticities of ⇣̄cs|z = 0.4 and ⇣̄cs|z = 2.7. This is a wide range; values of savings elasticities below ⇣̄

c
s|z = 0.6

in particular suggest that consistency with the status quo income tax requires a savings tax that is extreme or non-
convergent.60 We report results for alternative values of ⇣̄cs|z = 0.7, ⇣̄cs|z = 2, and ⇣̄cs|z = 3.

D.2 Simulations of Optimal Savings Taxes with Multidimensional Heterogeneity
We now extend the above calibration to accommodate multidimensional heterogeneity, which we use to apply the for-
mulas derived in Proposition 4. In the multidimensional setting, we do not have Pareto-efficiency formulas like those
for unidimensional setting, because in the presence of income-conditional savings heterogeneity, Pareto-improving
reforms are not generally available. Therefore, we use the formulas in Proposition 4 to compute the optimal schedule
of savings tax rates for each type of simple tax system. In order to isolate and illustrate the effects of multidimen-
sional heterogeneity, we hold fixed the sufficient statistics used in the unidimensional setting. We also hold fixed the
distributional preferences of the policy maker. The Pareto-efficiency computations above are equivalent to computing
the optimal tax under “inverse optimum” welfare weights that would rationalize the status quo income tax. We com-
pute these welfare weights explicitly, as described below, assuming that they vary with earnings, but not with savings
conditional on earnings. We then use those inverse optimum weights for the optimal tax calculations.

D.2.1 Inverse Optimum Approach

We assume that income effects on labor supply are negligible, so that ⌘z ⇡ 0, which simplifies the computation of
ĝ(z) from equation (17) to

ĝ(z) = g(z) +

✓
T 0
s

1 + T 0
s

◆
⌘s|z(z). (237)

60Intuitively, as the savings elasticity becomes low, one’s level of savings becomes a reliable signal of underlying ability, and
more of the total redistribution in the tax system should be carried out through the savings tax, rather than the income tax. Thus for
sufficiently low ⇣̄

c
s|z , the status quo income tax cannot be Pareto efficient.
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We also assume that preferences are weakly separable so that, as shown in Proposition 2, we have

⌘s|z (z) = s
0
inc (z)

1 + T
0
s (s(z))

1� T 0
z (z)

. (238)

Because equations (237) and (238) depend on the marginal savings tax rates T 0
s , we must impose an assumption about

how they adjust when we recompute the savings tax. We assume that the welfare weights g(z) remain proportional
to those calibrated using the inverse optimum procedure described above but we rescale to preserve the normalizationR
z ĝ(z)dHz(z) = 1.61 In equation (238), after computing ⌘s|z(z) from the baseline calibration of s0inc(z), we assume

that ⌘s|z(z) remains stable when savings taxes are recomputed.
The inverse optimum computes the social marginal welfare weights (SMWW) consistent with existing tax policy

(Bourguignon and Spadaro, 2012; Lockwood and Weinzierl, 2016). This exercise is typically performed using labor
income taxes. Our setting presents a complication, as we have both a status quo income tax and savings tax, which
need not produce a consistent set of weights. We compute weights assuming that the status quo schedule of earnings
tax rates is optimal, for consistency with the Pareto-efficiency formulas above. Since the status quo savings tax
rates also appear in this calculation, we must choose whether to use the status quo rates, or the rates that would
counterfactually be optimal. In practice, results are insensitive to this latter issue; for consistency with the “inverse
optimum” motivation, we use the Pareto-efficient set of SN tax rates.

Under these assumptions, we can compute the inverse optimum social marginal welfare weights at each earnings
z by inverting the optimal tax rate condition,

T
0
z (z)

1� T 0
z (z)

=
1

⇣cz(z) z

1

hz(z)

Z zmax

x=z
(1� ĝ(x)) dHz(x)� s

0
inc(z)

T
0
s (s (z))

1� T 0
z (z)

(240)

()
Z zmax

x=z
(1� ĝ(x)) dHz(x) = ⇣

c
z(z) z hz(z)

T
0
z (z) + s

0
inc(z)T

0
s (s (z))

1� T 0
z (z)

, (241)

where the right-hand side term can be identified from the data. Differentiating with respect to z yields the expression
we use to implement this computation numerically,

ĝ(z) = 1 +
1

hz(z)
· d

dz


⇣
c
z(z) z hz(z)

T
0
z (z) + s

0
inc(z)T

0
s (s (z))

1� T 0
z (z)

�
. (242)

Using the fact that augmented social marginal welfare weights are defined as

ĝ(z) := g(z) + T
0
z (z)

⌘z(z)

1� T 0
z (z)

+ T
0
s (s(z))

✓
⌘s|z(z)

1 + T 0
s (s(z))

+ s
0
inc(z)

⌘z(z)

1� T 0
z (z)

◆
, (243)

and assuming preferences are weakly separable, such that by Proposition 2 we have s
0
inc (z) = 1�T 0

z(z)
1+T 0

s(s(z))
⌘s|z (z),

inverse optimum weights g(z) are obtained from ĝ(z) as follows:
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0
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◆
. (244)

Figure A4 plots our estimated profile of inverse optimum weights.

61Specifically, letting g
0(z) denote our baseline welfare weights, we set g(z) = g

0(z), where
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Figure A4: Schedule of Inverse Optimum Social Welfare Weights in the U.S.
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Notes: This figure plots the schedule of inverse optimum welfare weights that would rationalize the U.S. income tax
schedule. These weights are computed under the assumption that the savings tax is the Pareto-efficient SN schedule
reported in Figure II.

D.2.2 Calibration Details

To extend our calibrated two-period model economy to a multidimensional setting, we retain the same discretized grid
of incomes as in the unidimensional case, using the calibration described in Appendix D.1. At each income, we now
allow for heterogeneous levels of savings. Specifically, using the same measure of gross savings described in Appendix
D.1, we now use a calibration with four different levels of savings at each level of income, each representing a quartile
of the income-conditional savings distribution. Across the income distribution, we assume savings within each quartile
are a constant ratio of the income-conditional average level of saving. These ratios are 15%, 40%, 70% and 280% of
the income-conditional average savings level; they are calibrated to reflect the average ratios across percentiles 50 to
100 in the PSZ data. We calibrate these ratios excluding the bottom portion of the distribution because the average
level of saving is very low in the bottom half, resulting in noisily measured ratios.

To calibrate the savings income effect ⌘s|z(s, z), we assume that the income elasticity of savings is constant within
earnings and equal to its unidimensional counterpart, implying that ⌘s|z (s, z) = s

s(z)
⌘s|z (z), where s (z) := E

⇥
s
��z
⇤

denotes the average savings level at earnings z, and that similarly, s0inc (s, z) =
s

s(z)
s
0
inc (z). Using these expressions,

we can adapt equation (239)—the scaling factor necessary to ensure that ĝ(s, z) integrates to one when recomputing
savings taxes—to this setting:

 =
1�

R
z

R
s

⇣
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⌘
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.
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Letting T 0
s = ⌧ in the SL case and T 0

s = ⌧s(z) in the LED case, we have
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R
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and with T 0
s = T

0
s(s) in the SN case such that
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. (246)

D.2.3 Separable linear (SL) tax system

The optimal savings tax formula with multidimensional heterogeneity (Proposition 4) is
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Under the aforementioned assumptions, expanding ĝ (s, z), replacing s
0
inc (s, z) and ⌘s|z (s, z) by their values, and

assuming ⌘z is negligible gives
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which after rearranging yields
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which we can finally rewrite as
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The first two lines correspond to the optimal savings tax formula under unidimensional heterogeneity (Proposition
B.4) and the last line captures the effect of multidimensional heterogeneity through V (s|z). Multidimensional het-
erogeneity adds a corrective term which is unambiguously negative and thus prescribes a lower linear savings tax
rate.

D.2.4 Separable nonlinear (SN) tax system

At any given savings level s0, the optimal savings tax formula with multidimensional heterogeneity (Proposition 4) is
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1� ĝ (s, z)

���z, s � s
0
io

hz (z) dz (252)

�
Z

z

(
T

0
z (z) + s

0
inc

�
s
0
, z
�
T

0
s

�
s
0
�

1� T 0
z (z)

z⇣
c
z(s

0
, z)s0inc

�
s
0
, z
�
)
h
�
s
0
, z
�
dz.

Under the aforementioned assumptions, expanding ĝ (s, z) and assuming ⌘z is negligible gives
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or equivalently, expressing this as a function of the savings density hs (s) =
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where the expectations operator denotes integration with respect to earnings conditional on savings.
For implementation, we assume that at each point in the income continuum, there are M different equal-sized

saver bins (e.g., bottom-, middle-, and top-third of savers), indexed by m = 1, . . . ,M . Thus we can write sm(z)
as the savings map for saver bin m at each income, with s

0
m(z) the cross-sectional savings profile within each

saver-bin. Then the income density in each saver-bin is hz,m(z) = h(z)/M , since the bins are equally sized con-
ditional on income. The savings density among saver-bin m is therefore hs,m(s) = hz,m(z)/s0m(z), and we have
H(s) =

PM
m=1

R1
s=0 hs,m(s)ds, and hs(s) =

PM
m=1 hs,m(s). And the savings-conditional average of some x(s, z)

is E[x(s, z)|s] =
PM

m=1 x(sm,z)hs,m(s)
hs(s)

.
To better picture the link with the unidimensional formula in equation (67), let us also rewrite the latter as a

function of the savings density hs (s)—implicitly defining z (s) as the earnings level of individuals with savings
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s—this yields
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While it is clear that the multidimensional formula extends the unidimensional formula, determining the impact of
multidimensional heterogeneity on tax rates is more analytically difficult and we thus rely on numerical simulations.

D.2.5 Linear earnings dependent (LED) tax system

At earnings z0, the optimal LED savings tax formula in the presence of multidimensional heterogeneity (Proposition
4) is
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which proves particularly cumbersome to use in numerical simulations, even under the aforementioned assumptions.
To obtain an expression that is more easily implementable numerically, we further assume that the earnings tax is
optimal (see Proposition B.6) such that

E

T

0
z (z) + ⌧

0
s (z) s+ s

0
inc(s, z)⌧s (z)

1� T 0
z (z)� ⌧ 0s (z) s

z⇣
c
z(s, z)

���z0
�
hz

�
z
0
�
=

Z

z�z0

n
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Now, observing that s = s (z0) + s� s (z0), we can rewrite the first term of the optimal savings tax formula as
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Plugging this back into the optimal savings tax formula and using the optimal earnings tax formula, this implies that
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Differentiating with respect to z
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Rearranging gives
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Since the marginal tax rate on earnings T 0
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0
s (z) s features savings s, it is hard to further simplify this formula

while retaining an exact characterization. To further simplify this expression, we disregard this dependence by setting
s = s (z0) in marginal earnings tax rates. We believe that these formulas are informative in that they converge to
exact expressions as the linear earnings dependent savings tax rate tends to a simple linear savings tax rate—that is
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As an element of comparison, a similar derivation under unidimensional heterogeneity combining the optimal LED
savings tax formula (Proposition B.4) and the optimal earnings tax formula (Proposition B.5) yields the following
unidimensional analogue
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Multidimensional heterogeneity thus adds new terms related to V
�
s|z0

�
that naturally wash out under unidimensional

heterogeneity. The two terms on the third line of equation (264) are clearly negative and push for lower savings tax
rates in the presence of multidimensional heterogeneity. The term on the fourth line cannot be signed unambiguously.
In our calibration, it appears to be negative at low earnings but positive at high earnings. However, its order magnitude
is so small (around 10�4) that it does not meaningfully affects the optimal LED savings tax rate and can thus be
neglected. As a result, we also get in this case that taking multidimensional heterogeneity into account calls for lower
tax rates.

D.3 Simulations of Optimal Savings Taxes with Heterogeneous Returns
For the extension to the case with efficiency arbitrage effects, considered in Section 5.3, we now compute the optimal
savings tax rates using the formulas derived in Proposition 7, again using the same set of inverse optimum welfare
weights derived above.

These results are reported in the bottom two panels of Figure III, which display schedules of LED and SN savings
tax rates computed under the assumption that (i) individuals with different income levels differ in their private rates of
return, and that (ii) the savings tax is levied in period-2 dollars. We compute the tax schedules that satisfy the equations
for the optimal tax conditions in Proposition 7. As in the case of multidimensional heterogeneity, we hold fixed the
schedule of marginal social welfare weights g(z) proportional to those which rationalize the status quo income tax in
our baseline inverse optimum calculation. Building on the findings of Fagereng et al. (2020), we follow Gerritsen et al.
(2020) in assuming that rates of return rise by 1.4% from the bottom to the top of the income distribution. We linearly
interpolate this difference across income percentiles, centered on our 3.8% baseline rate of return.

Maintaining our assumptions of negligible labor supply income effects and weakly separable preferences, equation
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for an SN system. To ensure that ĝ(z) still integrates to one, the rescaling factor in equation (239) now becomes
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Similarly, equation (217) simplifies to
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For an LED system we can replace T
0
2(s) with ⌧s(z) in the previous formulas.

E Details of Tax Systems by Country
We consider five categories of savings subject to various taxation regimes in different countries: (i) wealth, (ii) capital
gains, (iii) property, (iv) pensions, and (v) inheritance, which are typically defined in tax codes as follows. First,
wealth, which is free from taxation in most advanced economies, is defined as the aggregate value of certain classes
of assets, such as real estate, stocks, and bank deposits. Next, capital gains consist of realized gains from financial and
real estate investments, and include interest and dividend payments. Third, property consists of real estate holdings,
such as land, private residences, and commercial properties. Fourth, for our purposes, pensions are defined as private
retirement savings in dedicated accounts, excluding government transfers to retired individuals, such as Social Security
in the United States. Lastly, inheritances—also known as estates—are the collections of assets bequeathed by deceased
individuals to living individuals, often relatives.

For each country, we label the tax system applied to each category of savings with the types of simple tax systems
we consider (SL, SN, or LED) or “Other,” which encompasses all other tax systems. An additional common simple tax
structure is a “composite” tax, in which savings and labor income are not distinguished for the purposes of taxation.
Composite taxes are often applied to classes of income for which it is unclear whether the income should be considered
capital income or labor income. For example, in a majority of the countries in Table 2, rental income—which requires
some active participation from the recipient of the income—is subject to composite taxation.

In the subsections below, we have included additional details about the tax system in each country in Table 2.
Note that we characterize tax systems that feature a flat tax on savings above an exempt amount as having a separable
nonlinear tax system. In addition, when benefits are withdrawn from pension accounts, they are often subject to the
same progressive tax rates as labor income. We characterize these tax systems as separable nonlinear rather than
composite since benefits are generally received after retirement from the labor force when the taxpayer’s income is
primarily composed of savings.

Australia
• Wealth: No wealth tax.

• Capital gains: Generally a composite tax applies. Gains from certain assets are exempt or discounted.

• Property: At the state level, land tax rates are progressive; primary residence land is typically exempt. At the
local level, generally flat taxes are assessed on property but the taxes can be nonlinear as well, depending on
the locality.

• Pensions: A flat tax is assessed on capital gains made within the pension account. A component of pension
benefits may be subject to taxation when withdrawn, in which case the lesser of a flax tax or the same progressive
tax rates as apply to labor income is assessed.

• Inheritance: No inheritance tax.
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Austria
• Wealth: No wealth tax.

• Capital gains: Generally a flat tax is assessed, with the rate depending on the type of asse; taxpayers with
lower labor income can opt to apply their labor income tax rate instead. Gains from certain classes of assets are
exempt.

• Property: Either flat or progressive tax rates are assessed on property, depending on its intended use. Rates
vary by municipality.

• Pensions: Generally no tax on capital gains made within the pension account. Pension benefits are gener-
ally subject to the same progressive tax rates as labor income, with discounts applicable to certain types of
withdrawals.

• Inheritance: No inheritance tax.

Canada
• Wealth: No wealth tax.

• Capital gains: For most capital gains, a discount is first applied to the gain and then the discounted gain
is added to labor income and taxed progressively. For certain gains, such as interest income, no discount is
applied. Lifetime exemptions up to a limit apply to gains from certain classes of assets.

• Property: Generally a flat tax is assessed on property, with rates varying by province and locality.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject to
the same progressive tax rates as labor income, with exemptions applicable to certain types of withdrawals.

• Inheritance: No separate inheritance tax. A final year tax return is prepared for the deceased, including income
for that year, that treats all assets as if they have just been sold and applies the relevant taxes (e.g., labor income
and capital gains taxes) accordingly.

Denmark
• Wealth: No wealth tax.

• Capital gains: Progressive taxation with two tax brackets. Gains from certain classes of assets are exempt.

• Property: At the national level, property is subject to progressive taxation with two tax brackets. Pensioners
under an income threshold can receive tax relief. Land taxes—assessed at the local level—are flat taxes, with
rates varying by municipality.

• Pensions: A flat tax is assessed on capital gains made within the pension account. Pension benefits are generally
subject to the same progressive tax rates as labor income (excluding a labor market surtax), a flat tax, or are
exempt from taxation, depending on the type of pension.

• Inheritance: Generally a flat tax is assessed on the inheritance above an exemption, with a higher tax rate for
more distant relatives. Transfers to spouses and charities are exempt. Inheritances above a certain value are
subject to additional taxes.

France
• Wealth: No wealth tax.

• Capital gains: Different rates—progressive and flat—apply to gains from different classes of assets. Certain
low-income individuals are either exempt from taxes or can opt to apply their labor income tax rate, depending
on the type of asset. High-income individuals are subject to a surtax. Gains from certain assets are exempt or
discounted.
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• Property: Residence taxes are assessed on property users, while property taxes on developed and undeveloped
properties are assessed on owners. Rates are set at the local level and apply to the estimated rental value of
the property. Exemptions, reductions, and surcharges may apply depending on the taxpayer’s reference income
and household composition, certain events, and property characteristics. Surcharges may also apply to higher-
value properties. An additional property wealth tax applies at the national level; rates are progressive above an
exemption.

• Pensions: Generally no tax on capital gains made within the pension account. Pension benefits beyond an
exemption are generally subject to the same progressive tax rates as labor income. A flat tax is assessed on
certain types of withdrawals, and special rules apply to certain types of accounts.

• Inheritance: Either a flat tax or progressive tax rates are assessed on the inheritance above an exemption,
with rates and exemptions depending on the relation of the recipient to the deceased and their disability status.
Transfers to spouses/civil partners are exempt. Certain shares are required to pass to the deceased’s children.

Germany
• Wealth: No wealth tax.

• Capital gains: Generally a flat tax is assessed on gains above an exemption, but taxpayers with lower labor
income can opt to apply their labor income tax rate instead. Gains from certain classes of assets are exempt or
subject to special rules.

• Property: A flat tax is assessed on property, with rates depending on the class of property and subject to a
multiplier, which varies by locality.

• Pensions: No tax on capital gains made within the pension account. A portion of pension benefits, which
depends on the type of account, is subject to the same progressive tax rates as labor income.

• Inheritance: Progressive tax rates are assessed on the inheritance above an exemption, with tax rates and
exemptions both depending on the relation of the recipient to the deceased. Pension entitlements are exempt.

Ireland
• Wealth: No wealth tax.

• Capital gains: A flat tax is assessed on gains above an exemption, with the rate depending on the type of
asset. Certain classes of individuals, such as farmers and entrepreneurs, qualify for lower rates and additional
exemptions.

• Property: Progressive tax rates are assessed on residential properties, with local authorities able to vary the
rates to a certain extent. A flat tax is assessed on commercial properties, with rates varying by locality.

• Pensions: No tax on capital gains made within the pension account. Depending on the type of withdrawal,
pension benefits are either subject to the same progressive tax rates as labor income or different progressive tax
rates beyond an exemption. A surtax is assessed on high-value accounts.

• Inheritance: A flat tax is assessed on inheritances above an exemption. Exemptions are associated with the
recipient and apply to the sum of all inheritances bequeathed to the recipient from certain classes of relatives.

Israel
• Wealth: No wealth tax.

• Capital gains: Generally a flat tax is assessed on real gains (i.e., the inflationary component of gains is exempt).
High-income individuals are subject to a surtax.

• Property: Generally the tax increases in the area of the property, with amounts depending on property charac-
teristics and varying by municipality. Tax relief may apply to certain taxpayers, such as new immigrants and
low-income individuals, depending on the municipality.
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• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject to
the same progressive tax rates as labor income; certain taxpayers qualify for exemptions.

• Inheritance: No inheritance tax.

Italy
• Wealth: A flat tax is assessed on bank deposits and financial investments held abroad, with exemptions on bank

deposits if the average annual account balance is below a certain threshold.

• Capital gains: Generally a flat tax is assessed on financial capital gains. For certain real estate capital gains,
individuals can choose between separable or composite taxation, either applying a flat tax or their labor income
tax rate.

• Property: Generally a flat tax is assessed on property, with rates depending on property characteristics and
varying by municipality.

• Pensions: A flat tax is assessed on capital gains made within the pension account, with the rate depending
on the type of asset. Pension benefits are also subject to flat taxes, with rates varying with the duration of the
contribution period.

• Inheritance: A flat tax is assessed on inheritances, with higher rates for more distant relatives. Different
amounts of the inheritance are exempt from taxation for certain close relatives.

Japan
• Wealth: No wealth tax.

• Capital gains: A flat tax is assessed on gains from certain classes of assets, such as securities and real es-
tate, with the rate depending on the type of asset. Progressive tax rates, composite taxation, exemptions, and
discounts apply to gains from different classes of assets.

• Property: A flat tax is assessed on property above an exemption, with a lower rate or reduction applicable to
certain types of property.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject to
progressive tax rates, with the rates depending on the type of withdrawal.

• Inheritance: Progressive tax rates are assessed on the inheritance above a general exemption and an exemption
that depends on the relation of the recipient to the deceased and their disability status. A surtax applies to more
distant relatives. Certain shares are required to pass to certain relatives.

Netherlands
• Wealth: A progressive, fictitious estimated return from net assets not intended for daily use is taxed at a flat

rate depending on the amount above the exemption.

• Capital gains: Gains from a company in which an individual has a substantial stake are subject to a flat tax.
Most other capital gains are not subject to taxation.

• Property: At the municipal level, a flat tax is assessed on property, with rates depending on property charac-
teristics and varying by municipality. At the national level, progressive tax rates are assessed on the fictitious
estimated rental values of primary residences, with substantial deductions applicable to the portion of the tax
exceeding the mortgage interest deduction.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject to
the same progressive tax rates as labor income, though certain accounts with taxed contributions allow tax-free
withdrawals.

• Inheritance: Progressive tax rates are assessed on the inheritance above an exemption, with tax rates and
exemptions depending on the relation of the recipient to the deceased and their disability status. Additional
exemptions apply to certain classes of assets.
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New Zealand
• Wealth: No wealth tax.

• Capital gains: Capital gains from financial assets are generally either subject to composite taxation or are
exempt from taxation, depending on the type of gain. Special rules apply to certain classes of assets. Capital
gains from real estate are generally subject to composite taxation. Depending on transaction characteristics,
gains from the sale of commercial property may be subject to an additional tax, while gains from the sale of
residential property may be exempt from taxation.

• Property: Generally a fixed fee plus a flat tax is assessed on property, with rates set at the municipal level.
Low-income individuals qualify for rebates for owner-occupied residential property.

• Pensions: A flat tax is assessed on capital gains made within the pension account, with the rate depending on
the type of account; for certain accounts, the rate depends on the taxpayer’s labor income in prior years. Pension
benefits are generally exempt from taxation.

• Inheritance: No inheritance tax.

Norway
• Wealth: A flat tax is assessed on wealth above an exemption, with the value of certain classes of assets, such

as primary and secondary residences, discounted.

• Capital gains: A flat tax is assessed on gains from financial assets above the “risk-free” return (i.e., the coun-
terfactual return on treasury bills of the same value). Gains from certain financial assets, such as dividends, are
multiplied by a factor before the tax is assessed. A flat tax is assessed on real estate gains, with exemptions for
certain types of property.

• Property: A flat tax is assessed on discounted property values, with rates varying by municipality and discounts
varying by property type.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject to a
lower tax rate than labor income, and taxpayers with smaller benefits qualify for larger tax deductions.

• Inheritance: No inheritance tax.

Portugal
• Wealth: No wealth tax.

• Capital gains: Generally a flat tax is assessed on gains from financial assets, but for certain types of gains,
such as interest, low-income individuals can opt to apply their labor income tax rate. For real estate capital
gains, a discount is first applied to the gain and then the discounted gain is added to labor income and taxed
progressively. Certain classes of real estate are exempt.

• Property: Progressive tax rates are assessed on property, with exemptions for certain taxpayers. Rates and
exemptions vary based on property characteristics, and an additional exemption applies to low-income individ-
uals.

• Pensions: No tax on capital gains made within the pension account, except for dividends, which are generally
subject to a flat tax. For different types of withdrawals above an exemption, capital gains are either subject to
a flat tax or the same progressive tax rates as labor income when withdrawn. Depending on how contributions
were initially taxed and the type of withdrawal, the non-capital gains component of benefits is exempt from
taxation, or subject to a flat tax or the same progressive tax rates as labor income on the amount above an
exemption.

• Inheritance: A flat tax is assessed on the inheritance, with a higher rate for real estate transfers. Transfers
to spouses/civil partners, ascendants, and descendants are exempt (except for real estate transfers, which are
subject to a low flat tax).
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Singapore
• Wealth: No wealth tax.

• Capital gains: Most capital gains are not subject to taxation. Depending on transaction characteristics, com-
posite taxation may apply.

• Property: Progressive tax rates are assessed on the estimated rental value of the property, with rates varying
by property type and occupancy status.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are generally subject
to the same progressive tax rates as labor income; benefits from contributions made before a certain year are
exempt from taxation.

• Inheritance: No inheritance tax.

South Korea
• Wealth: No wealth tax.

• Capital gains: Various flat and progressive tax rates are assessed on gains above an exemption; rates and
exemptions depend on the type of asset. Gains from certain classes of assets are entirely exempt. Dividends
and interest are subject to flat taxation below a certain limit and composite taxation above that limit.

• Property: Progressive tax rates are assessed on property, with rates varying by property type.

• Pensions: No tax on capital gains made within the pension account. Pension benefits beyond a progressive
exemption (i.e., greater portions are exempt at smaller benefit levels) are generally subject to the same progres-
sive tax rates as labor income; the exempt amount may also depend on the type of withdrawal and taxpayer
characteristics.

• Inheritance: Progressive tax rates are assessed on the inheritance above either a lump-sum or itemized de-
duction, which depends on the composition of the inheritance and relation of the recipient to the deceased.
Transfers to spouses are exempt. The top tax rate increases for controlling shares in a company.

Spain
• Wealth: Progressive tax rates are assessed on net assets above an exemption, with an additional exemption for

residences.

• Capital gains: Progressive tax rates are generally assessed on gains, with exemptions for elderly individuals
under certain conditions and for certain real estate gains.

• Property: Generally a flat tax is assessed on property, with rates depending on the property type and varying
by locality. Exemptions or discounts may apply depending on taxpayer and property characteristics, including
taxpayer income.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are subject to the same
progressive tax rates as labor income.

• Inheritance: Progressive tax rates are assessed on the inheritance above an exemption, with tax rates and
exemptions depending on the relation of the recipient to the deceased and their disability status. Certain classes
of assets, such as family businesses and art collections, are eligible for additional exemptions.

Switzerland
• Wealth: A flat tax is assessed on the net value of certain classes of assets and liabilities, with tax rates and

exemptions varying by canton.

• Capital gains: Progressive tax rates are assessed on gains from real estate, with rates varying by canton. Most
capital gains from financial assets are not subject to taxation. Dividends and interest are subject to composite
taxation.
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• Property: Generally a flat tax is imposed on property, with rates varying by canton; a minimum amount per
property may apply. For owner-occupied properties not rented out, an estimated rental value is subject to
composite taxation.

• Pensions: No tax on capital gains made within the pension account. Pension benefits are subject to either the
same progressive tax rates as labor income or lower progressive tax rates, depending on the type of withdrawal.

• Inheritance: In most cantons, progressive tax rates are assessed on the inheritance and depend on the relation
of the recipient to the deceased. Transfers to spouses and children are exempt in most cantons.

Taiwan
• Wealth: No wealth tax.

• Capital gains: Most capital gains from financial assets are subject to composite taxation; taxpayers can opt for
a flat tax to be assessed on dividends, and certain gains are exempt from taxation. A flat tax is assessed on gains
from real estate, with the rate depending on the type of asset, and an exemption for primary residences.

• Property: Flat or progressive tax rates are assessed on land, depending on its intended use. A flat tax is gen-
erally assessed on buildings, with rates depending on their intended use. Certain classes of land and buildings
are exempt or subject to reduced rates.

• Pensions: No tax on capital gains made within the pension account. Pension benefits beyond an exemp-
tion—which depends on the duration of the contribution period—are subject to the same progressive tax rates
as labor income.

• Inheritance: Progressive tax rates are assessed on the inheritance above an exemption, which depends on the
relation of the recipient to the deceased, their disability status, and their age.

United Kingdom
• Wealth: No wealth tax.

• Capital gains: Either flat or progressive tax rates are assessed on gains, with rates depending on the taxpayer’s
labor income tax bracket; higher rates generally apply to taxpayers in higher labor income tax brackets. Ex-
emptions for part or all of the gain apply to certain types of assets, such as dividends and primary residences.

• Property: Progressive tax rates are assessed on property, with rates varying by locality. Exemptions or dis-
counts may apply to certain taxpayers depending on characteristics, such as age.

• Pensions: No tax on capital gains made within the pension account. Pension benefits beyond an exemption are
subject to the same progressive tax rates as labor income. An additional flat tax may be imposed on accounts
with a value exceeding a lifetime limit, with the tax rate depending on the type of withdrawal.

• Inheritance: A flat tax is assessed on the inheritance above an exemption, with larger exemptions for transfers
to children. Transfers to spouses/civil partners, charities, and amateur sports clubs are exempt. The tax rate is
reduced if a certain share is transferred to charity.

United States
• Wealth: No wealth tax.

• Capital gains: Gains from “short-term” assets (held for less than a year) are subject to composite taxation.
Gains from “long-term” assets are subject to a flat tax, with higher rates for higher-income individuals. Divi-
dends are also subject to either composite taxation or flat taxes that increase with labor income, depending on
their source.

• Property: Generally a flat tax is assessed on property, with rates varying by state, county, and municipality.

• Pensions: No tax on capital gains made within the pension account. Depending on the type of account, benefits
are generally either exempt from taxation or subject to the same progressive tax rates as labor income.
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• Inheritance: Progressive tax rates are assessed on the inheritance above an exemption. Transfers to spouses
are generally exempt.
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