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Abstract

Overbidding in auctions has been attributed to e.g. risk aversion, loser regret, level-

k, and cursedness, relying on varying identifying assumptions. I argue that “type

projection” organizes these findings and largely captures observed behavior. Type

projection formally models that people tend to believe others have object values sim-

ilar to their own—a robust psychological phenomenon that naturally applies to auc-

tions. First, I show that type projection generates the main behavioral phenomena

observed in auctions, including increased sense of competition (“loser regret”) and

broken Bayesian updating (“cursedness”). Second, re-analyzing data from seven ex-

periments, I show that type projection explains the stylized facts of behavior across

private and common value auctions. Third, in a structural analysis relaxing the iden-

tifying assumptions made in earlier studies, type projection consistently captures

behavior best, in-sample and out-of-sample. The results reconcile bidding patterns

across conditions and have implications for behavioral and empirical analyses as

well as policy.
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1 Introduction

The false consensus bias is the tendency to assume that one’s own opinions, preferences

and values are typical and shared by others. Following Ross et al. (1977), such “projec-

tion” has been confirmed in many experiments (Mullen et al., 1985) and shown to per-

sist even if subjects are provided with factually contradicting information (Krueger and

Clement, 1994). Thus, projection is of intuitive relevance in all choices under incomplete

information—not just in the non-strategic environments on which the psychological liter-

ature traditionally focuses, but also in strategic interactions. Existing studies of projection

in “games” focus on games with one-sided incomplete information. Loewenstein et al.

(2003) study projection of utility onto future selves, finding that it explains anomalies in

purchases of durable goods, and Madarász (2012) studies projection of information from

an informed player to an uninformed one, which explains the hindsight bias in agency

problems. The present paper provides a comprehensive analysis of projection in a class

of games with two-sided incomplete information, auctions.

Auctions are widely analyzed games with two-sided incomplete information about

individual object values. I introduce a model of type projection where players may over-

estimate the probability that their opponents share their type—i.e. their signal about the

object value—ranging from zero projection (the original Bayesian case) to full projection

(disregarding all prior information).1 The degree of projection is denoted by ρ ∈ [0,1]. In

equilibrium, players anticipate their opponent types’ actual strategies, but overestimating

the probability that opponents share their type, they perceive competition to be fiercer

than it is and they wrongly update their estimate of the object value conditional on win-

ning. This generates the behavioral phenomena observed in bidding across conditions,

and based on my theoretical and econometric analysis, I argue that type projection, as

predicted by a host of psychological evidence, captures bidding fairly comprehensively

and substantially better than existing models.

The basic idea is simple. Type-projecting bidders project their signals about the ob-

ject value. This builds on psychological evidence showing that object values indeed are

projected, e.g. in bargaining (Bottom and Paese, 1999; Galinsky and Mussweiler, 2001)

and in consumption decisions (Frederick, 2012; Kurt and Inman, 2013). As for auctions,

consider bidding to buy a house. Projecting bidders neglect competitors whose values are

vastly inferior, against whom they surely win, and competitors whose values are vastly

superior, against whom they surely lose. They focus on competitors with similar values,

trying to ensure winning against them. This focus increases the sense of competition

and obscures the perceived value distribution. The former induces overbidding in any

first-price auction, essentially to avoid “loser regret”, and the latter weakens Bayesian

updating in any common value auction (the Winner’s Curse).

That is, the robust psychological finding of (type) projection already implies the main

behavioral phenomena in auctions, and in addition, it correctly predicts a number of more

subtle findings that are incompatible with existing models. For example, in private value

auctions, projecting bidders overbid as they overestimate the share of opponents with

similar values. They outbid them to increase the probability of winning. In contrast, risk

1Full projection is regularly considered in analyses of social preferences. The present paper consid-

ers the more intricate case of imperfect projection. Allowing for imperfect projection is critical, as full

projection is neither observed in psychology nor fits bidding in auctions.
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aversion emphasizes a trade-off between increasing winning probability and increasing

conditional profit. Following Engelbrecht-Wiggans (1989), the former relates to loser

regret (regret of losers if they could have won profitably) and the latter relates to winner

regret (regret of winners if they could have won with lower bids). Filiz-Ozbay and Ozbay

(2007) find that subjects do not trade off these regrets but focus on loser regret. This

focus contradicts risk aversion and is implied by type projection. At the individual level,

I find that subjects randomize consistently and use left-skewed mixed strategies, which

also contradicts risk aversion and is predicted by type projection equilibrium.

Analyzing common value auctions, I similarly find that subjects randomize consis-

tently and that they overbid more with common values than with private values. Again,

both observations are implied by type projection and not implied by existing models such

as risk aversion or cursed equilibrium (Eyster and Rabin, 2005).2 This range of obser-

vations uniquely predicted by type projection, and considering that projection is a robust

phenomenon known to affect behavior under incomplete information, raises the question

to which degree projection can be considered a robust, potentially comprehensive expla-

nation of bidding in auctions.3 To answer this question, I conduct a structural analysis of

data from seven experiments. The data set forms the union of the data sets analyzed in

seminal structural analyses of bidding, which limits data selection effects in favor of type

projection. In addition, merging multiple data sets allows me to assess whether models

are precise (in-sample) and reliable (out-of-sample).

Both features are desirable in behavioral and empirical analysis, but reliability will

be of particular relevance here. To clarify, let me briefly review existing results. Goeree

et al. (2002b) and Bajari and Hortacsu (2005) show that risk aversion captures bidding

in private value auctions, Filiz-Ozbay and Ozbay (2007) and Engelbrecht-Wiggans and

Katok (2007) observe loser regret, Eyster and Rabin (2005) observe cursedness in com-

mon value auctions, and Crawford and Iriberri (2007) observe limited depth of reasoning

in either condition. That is, the results vary enormously between studies. The main rea-

son appears to relate to the identifying assumptions on strategic beliefs, which range from

naive beliefs (level-1) over Nash beliefs (equilibrium without anticipating errors) to ratio-

nal expectations. To reconcile these results, such specific assumptions on belief formation

should therefore be avoided. I introduce a concept based on quantal response equilibrium

(McKelvey and Palfrey, 1995) that nests the three belief models above and endogenizes

the assumption on belief formation. While this solves one problem, Haile et al. (2008)

suspect that generalized forms of QRE may overfit and lack robustness themselves. The

data used here allow me to directly address this issue by evaluating robustness, i.e. the

2Cursed bidders believe their opponents get random signals with probability χ and the true signals with

1−χ. Type projecting bidders believe their opponents have signals similar to their own with probability ρ
and the true signals with probability 1−ρ. In both cases, bidders underestimate the informativeness of their

opponents’ bids about the object value and experience the Winner’s Curse, which captures the intuition

usually expressed by economists (e.g. Milgrom, 1989), but between the two approaches, only the belief

perturbation underlying type projection is supported by independent psychological evidence. This evidence

(on false consensus) draws from interactions with symmetric type sets, and in turn, cursed equilibrium

appears more appropriate to model games with asymmetric type sets (e.g. buyer-seller interactions).
3There is evidence that preferences due to e.g. spite influence behavior in second-price private-value

auctions (Cooper and Fang, 2008), as discussed below. In this sense, projection cannot be fully compre-

hensive, naturally. In my analysis, I focus on projection in relation to concepts used in structural analyses

of bidding, namely risk aversion, cursedness and limited depth of reasoning.

3



accuracy of predictions across experiments.4 In addition, this analysis verifies whether

the models are applicable across data sets, e.g. in (future) analyses of different data.

The results corroborate the compatibility with psychological intuition and stylized

facts. Type projection indeed captures behavior well, both descriptively (in-sample) and

in particular predictively (out-of-sample). Further, inexperienced subjects tend to under-

estimate the rationality of others, though not in the way predicted by level-k. As subjects

gain experience, their beliefs approach rational expectations, the precision in maximizing

utility increases, subject heterogeneity becomes significant, and yet, the degree of projec-

tion remains largely constant (around 0.5). Thus, type projection appears to be a robust

facet of behavior, and in the analyzed auctions, it is comprehensive in the sense that nei-

ther risk aversion nor cursedness capture facets of behavior incompatible with projection.

The results have policy implications, as the projection bias is reduced when subjects are

educated explicitly (Engelmann and Strobel, 2012), which enables efficiency gains, and

they have implications for behavioral and empirical work. For, type projection intuitively

factors in all symmetric Bayesian games, and thus needs to be controlled for in analyses

of social preferences under anonymity (for related evidence, see Blanco et al., 2014), and

as it fits robustly across private and common values, it promises to capture field auctions

which tend to be hybrid (Haile, 2001; Goeree and Offerman, 2002).

Section 2 introduces the model of type projection and analyzes type projection in auc-

tions. Section 3 introduces the data sets and evaluates type projection’s basic predictions.

Section 4 contains the structural analysis of bidding. Section 5 concludes. The appendix

contains technical material, the supplementary material provides robustness checks.

2 Type projection in auctions

2.1 Definition

There are n symmetric bidders, denoted as i ∈ N = {1,2, . . . ,n}, and each bidder gets a

signal x ∈ [x,x]. Signals may be correlated. A bidder’s expectation of the object value

conditional on signal x is v(x), the expectation conditional on both the own signal x and

the highest opponent signal y is v(x,y). The density of the highest opponent signal y

conditional on the own signal x is fY (y|x). A pure strategy b⋆ is a function mapping

signals x to bids b ∈R. The expected payoff of bidding b ∈R, conditional on own signal

x and in response to the opponents’ bidding function b⋆, is

Π0(b|b⋆,x) = E
[

(Vi −b) Ib⋆(Y )<b|Xi = x
]

=
∫ b−1

⋆ (b)

x

(

v(x,y)−b
)

fY (y|x)dy. (1)

The symmetric, pure BNE satisfies b⋆(x) ∈ argmaxb Π0(b|b⋆,x) for all signals x. Note

that I refer to the expected payoff in this case of zero projection as Π0.

4Another issue with using the generalization of QRE is that the underlying QRE needs to be com-

puted explicitly—the fixed point computation cannot be avoided using the insight of Bajari and Hortacsu

(2005), by exploiting rational expectations, as relaxing rational expectations is exactly the point. The ex-

plicit computation of QREs is computationally demanding in standard auctions, due to the complexity of

randomized bidding functions, but a novel observation allows me to reduce the strategy complexity by an

order of magnitude and thus enables computation of QREs using massive parallelization (on GPUs).
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Type-projecting bidders partially replace the objective information about the type dis-

tribution, weight 1−ρ with ρ ∈ [0,1], by their projection that all bidders’ types are equal

to the own type, weight ρ. The parameter ρ is called degree of projection. First consider

the case of full projection ρ = 1. In this case, the expected payoff of bidding b is

Π1(b|b⋆,x) = s(b,b⋆,x) ·
∫ x

x

(

v(x,y)−b
)

fY (y|x)dy, (2)

where s(b,b⋆,x) denotes the fully projecting bidder’s share of the prize contingent on

bidding b: s = 0 if b < b⋆(x), s = 1/n if b = b⋆(x), and s = 1 if b > b⋆(x). Now, given the

assumption that the projection has weight ρ, the expected payoff is simply the weighted

mean of “objective” payoff Π0(b|b⋆,x) and “projected” payoff Π1(b|b⋆,x), i.e.

Πρ(b|b⋆,x) = (1−ρ)Π0(b|b⋆,x)+ρΠ1(b|b⋆,x). (3)

The symmetric, pure ρ–Type Projection Equilibrium (ρ-TPE), with ρ ∈ [0,1], satisfies

b⋆(x) ∈ argmaxb Πρ(b|b⋆,x) for all signals x.

This model provides a simple and tractable formulation of type projection in auctions.

To clarify this, let me briefly describe how the model could be generalized or adapted.

The tractability follows from two assumptions. On the one hand, bidders project their

types onto all their opponents simultaneously. Alternatively, one might assume that bid-

ders project their types independently onto their various opponents. The resulting model

of projection appears to be qualitatively rather similar to the above model. Besides im-

proving tractability, correlated projection captures the observation that individuals tend

to believe their opponents make correlated choices.5 On the other hand, bidders project

their exact type. In Bayesian games with ordered type sets, bidders might instead believe

that the opponents are of “similar” rather than “equal” types. Such a model of “fuzzy

projection” may be more descriptive in specific circumstances, but the simpler model of

exact projection applies to both ordered and unordered type sets, and it avoids the free

parameters in defining distance functions. Its parsimony seems particularly desirable in

the present analysis of the basic implications of type projection.

2.2 Related literature

Psychology Much evidence suggests that individuals assume the own opinions, pref-

erences and values are shared by others. This phenomenon is labeled projection bias or

false consensus. Ross et al. (1977) showed that subjects’ beliefs about others’ choices

correlate with their own choices, and that their beliefs about others’ characteristics corre-

late with their own. Projection biases behavior in relation to the rational benchmark, but

it actually seems helpful in predicting characteristics of other individuals. Hoch (1987)

finds that the majority of individuals tend not to use available information and would

actually improve their predictions if they weighted their own positions even stronger.

A large number of studies subsequently showed that individuals project object values

and preferences (both labeled “types” in Bayesian games) onto others, suggesting that

5See Camerer et al. (2004), Costa-Gomes et al. (2009), and Breitmoser (2012). Let me refer to the

literature on “clustering illusion” in psychology for further discussion.
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type projection likely matters in auctions and thus affects bidding. Individuals project

values such as their willingness to pay (Frederick, 2012; Kurt and Inman, 2013) and their

reservation prices (Bottom and Paese, 1999; Galinsky and Mussweiler, 2001). Individ-

uals also project preferences and strategies onto opponents in strategic games such as

the one-shot Prisoner’s Dilemma (Messé and Sivacek, 1979), public goods games (Offer-

man et al., 1996), and distribution games including dictator, public goods, and ultimatum

games (Blanco et al., 2011, 2014). Further, Iedema and Poppe (1995) and e.g. Aksoy and

Weesie (2012) show that individuals project their social value orientation, and Bellemare

et al. (2011) find preference projection with respect to guilt aversion.6

More generally, projection is strongest in relation to people similar to oneself (Clement

and Krueger, 2002), and in auctions, bidders arguably consider each other similar, as they

are interested in buying the same object. Mullen et al. (1985) show that projection occurs

robustly, persisting even if subjects are provided with information factually contradicting

their projection (“truly false consensus”, Krueger and Clement, 1994). Engelmann and

Strobel (2000, 2012) show that in order for the projection bias to disappear, the objec-

tive information must be handed to subjects on a “silver platter” and it must be usable

at very low cognitive costs. Hence, the background information provided to subjects in

laboratory auctions, about the abstract type distributions, is likely not obstructive to their

projection of values and preferences.7 In field auctions, no objective information about

the opponents’ values is provided at all, suggesting projection is likely even stronger,

and in this sense, analyzing laboratory auctions, we will observe a lower bound for the

relevance of projection in auctions in general.

Related models Type projection distinctly differs from existing models of projection.

Let me start with Loewenstein et al. (2003), who consider a decision maker predicting his

own utility in future states of the world. Given consumption c and current state s, the de-

cision maker predicts the utility to be (1−α)u(c,s′)+αu(c,s), α ∈ [0,1], in alternative

state s′. The main difference between type projection and such “utility projection” ma-

terializes in strategic games (such as auctions). Since each type plays a distinct strategy,

a type-projecting player associates each list of opponents’ types t−i with mixed strate-

gies—with probability 1−ρ the true types t−i play and with probability ρ the projected

types play. In turn, utility projection implies that players believe their opponents’ types

have “averaged” utilities and thus play pure strategies each.8

6Additional evidence shows projection of preferences and beliefs onto future selves. Gilbert et al.

(1998) show that individuals overestimate the duration of affective reactions to negative events, Read and

Van Leeuwen (1998) show that individuals project their current state of appetite when ordering meals in

advance, Conlin et al. (2007) show that individuals project their current preferences analyzing catalog

orders, Simonsohn (2010) observe preference projection in college enrollment decisions, via the cloud

cover observed on visiting day, Grable et al. (2004), Grable et al. (2006), and Kliger and Levy (2008) show

that projection in reaction to stock market price changes explain investment decisions.
7Engelmann and Strobel (2012) suggest the information about the opponents’ signals contained in

winning the auction is implicit and therefore likely neglected by bidders, not being handed on a silver

platter. They argue that this may help explain imperfect Bayesian updating and thus the Winner’s curse

in CV auctions. My model of projection indeed implies (and in this sense explains) such negligence and

imperfect updating in CV auctions, and additionally it explains overbidding (loser regret) in private value

auctions which does not relate to negligence of the information contained in winning.
8Also note the difference to the notion of “strategy” projection: A type projecting player believes

opponents share his type but keep their individual incentives. Both utility projecting and strategy projecting
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An information projecting player (Madarász, 2012) believes his opponents know all

he knows, in addition to their existing knowledge. In auctions, information projection im-

plies I believe the opponents know my values, in addition to knowing their own values.

Type projection assumes instead that the opponents share i’s value. Information projec-

tion is appealing in cases of one-sided “missing” information, and it provides an intrigu-

ing explanation of the hindsight bias, but it appears less appealing in auctions—where

there is no objectively “missing” information, but simply differences in types (values).9

Cursed equilibrium (Eyster and Rabin, 2005) is related in that it also assumes players

correctly anticipate their opponent types’ strategies but misperceive the type distribu-

tion. Type projection explicitly implements the projection bias as defined in psychology,

that people project their own traits or opinions, which captures evidence from interac-

tions with ex-ante symmetric type sets (such as auctions). In turn, cursed equilibrium

appears more appropriate to capture beliefs if type sets are clearly asymmetric, as re-

sult of which projection of the own type appears less intuitive. Market interactions with

one-sided incomplete information as analyzed in Eyster and Rabin (2005) appear to be a

prototypical example of a Bayesian game that is more intuitively captured by cursed equi-

librium. A concept inverting the idea of cursed equilibrium is the level-k model as ap-

plied to auctions by Crawford and Iriberri (2007). Contrary to cursed equilibrium, where

strategies are correct but perceived types are random, level-k assumes types are correct

but perceived strategies are random. The predictions are rather similar (see Crawford

and Iriberri, 2007). Finally, analogy-based expectation equilibrium (Jehiel and Koessler,

2008) also captures the idea that the perceived type distribution is wrong, in that types

are bundled into analogy classes and thus perceived to be coarser than they actually are.

This biases Bayesian updating in common value auctions, without affecting behavior in

(typical) private value auctions, similarly to level-k and cursed equilibrium.

2.3 Theoretical framework

Type projection induces a form of loser regret in first-price auctions and conservatism in

belief revision about common values. The former induces overbidding in relation to the

Bayesian benchmark, while the latter may induce over- or underbidding, depending on

signal structure.10 In order to provide a unified treatment of both private and common

value auctions, i.e. to clarify the main predictions most transparently, I will focus on cases

where these two forces point into the same direction. Alternative cases can be analyzed

similarly, as illustrated in the supplementary material.

Both loser regret and conservatism induce overbidding if winning constitutes “bad

news” and the environment exhibits strategic complementarity. “Bad news” are implied

if the object value conditional on just winning is smaller than the unconditional object

players implicitly assume the opponents neglect their original incentives and adopt his utilities or strategies.
9Madarász (2015) generalizes the concept by including “ignorance projection” and applies it to games

with two-sided incomplete information. The differences still appear major, as information projection ap-

pears to predict pure equilibria in auctions (since payoffs are continuous), but precise comparisons are

impossible, as the shape of equilibrium strategies under information projection in auctions (which are not

the main application) is not characterized (see Example 2.1.2 in Madarász, 2015).
10An example for underbidding in CV auctions is the “wallet game” (Avery and Kagel, 1997) where

the object value is the sum of the bidders’ signals. Conservatively updating bidders underbid the Bayesian

Nash equilibrium if they have got high signals. An analysis of such auctions is provided in the supplement.
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value. Strategic complementarity obtains if the more aggressive my opponents bid, the

more aggressive I should bid, which in common value auctions depends on how “bad”

the bad news are. For, the more aggressive the opponents bid, the worse are their signals

in the case I am winning, and the lower is the object value conditional on winning. As a

result of this “information effect”, the best response declines in the opponents’ bids. This

information effect may dominate the general incentive to match the aggressiveness of the

opponents’ bids, and then strategic complementarity is violated (Klemperer, 1998).

For the purpose of a unified analysis, I analyze an environment exhibiting a weak

form of strategic complementarity: one’s best response is not declining in the opponents’

bids. Relaxing this assumption would leave most statements made below unchanged, but

the lower bound of equilibrium bids cannot be characterized tightly, as overbidding is not

generally predicted (the wallet game is the pathological example where over- and under-

bidding may result, depending on one’s signal). Weak strategic complementarity obtains

in the canonical auctions with either affiliated private values (APV) or common values

(CV) analyzed in experiments (Kagel and Levin, 1986; Kagel et al., 1987). I analyze a

generalized information structure containing these two auctions as special cases.

Definition 1 (Hybrid first-price auctions). X0 is uniform on [X0,X0], and for all bidders

i, the private signals Xi conditional on X0 are uniform on [X0 − ε,X0 + ε] with ε > 0. The

bidder’s object values are vi = δ Xi+(1−δ) X0, with δ∈ [0,1], and δ= 1 in APV auctions

and δ = 0 in CV auctions. The winners pay their bids.

The pure common value case (δ = 1) is the borderline case where one’s best response

is independent of the opponents’ strategy, i.e. the two effects exactly cancel out. The case

of independent private values (IPV) is qualitatively similar to APV in many ways, but the

notation of mixed strategies needs to be modified, obfuscating a joint discussion.

We will find that all ρ-TPEs are mixed in these auctions, which is relevant, as mixed

equilibria must be analyzed under a curse of dimensionality. In contrast to pure strategy

equilibria, it is not sufficient to focus on the opponent with the highest signal anymore.

Bidders with lower signals may also place the winning bid and thus must be considered

explicitly in the analysis. Accounting for this is in principle straightforward, but tedious

without offering any obvious additional insights. For ease of exposition, I therefore focus

on auctions with two bidders, which suffices to the clarify the main insights.

Without projection, the approximate BNE bids are b⋆ ≈ x− ε in CV auctions (δ = 0)

and b⋆ ≈ x− ε · 2/n in APV auctions (δ = 1). There are small distortions if x is close

to the bounds of the signal space, but as in most structural analysis of auctions, I will

abstract from these distortions.11 Theoretically, this is adequate only if the difference

between the bidders’ signals D = X −Y is independent of one’s signal X .

Assumption 1. Consider a two bidder auction with the signals x and y of the bidders.

The distribution of D = X −Y is independent of X , has density fD and support [d,d].

Example 1. In the hybrid first-price auctions, D = X −Y is triangular on [d,d] =
[−2ε,2ε] and independent of X if X ∈ [X0 + ε,X0 − ε].

11For example, in CV auctions, the exact BNE strategy is b(xi) = xi − ε+Y with Y = 2ε
n+1

× exp
{

−
n(xi − x− ε)/2ε

}

, but Y ≈ 0 if the signal xi is not very close to the bounds of the signal space.

8



For example, in the common value auction of Kagel and Levin (1986) where the

common value X0 is uniform on [50,500] and individual signals Xi are independently

uniform on [X0−10,X0+10], independence obtains in the eyes of i if 60 ≤ Xi ≤ 490, i.e.

with a probability near 1. Independence is thus valid in the interior of the signal space and

abstracts from distortions induced by the signal space bounds—which in turn allows us to

focus on the strategic aspects in bidding.12 Specifically, Assumption 1 allows us to focus

on “normalized” bids without loss of generality, i.e. on bids normalized in relation to

the signal. Given signal x, the own normalized bid is r = b(x)− x, and correspondingly,

the opponent’s normalized bid is r⋆ = b⋆(y)− y. Normalized bids express the “degree

of bid shading”, i.e. the amount by which the bidders undercut their signals x and y,

respectively. Similarly, the normalized expected object value is ṽ(d) := v(x,x+d)−x and

the normalized unconditional object value is Ṽ =
∫ d

d ṽ(d) fD(d)dd, both with d = y− x

and fD as defined in Assumption 1. The normalized values express the difference between

expected object value and signal. Given these normalizations, the normalized expected

payoff of bidding r in response to the pure strategy r⋆ is (without projection)

Π̃0(r |r⋆) =
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd. (4)

The auction is fully characterized by the duple 〈ṽ, fD〉, and thus, if Assumption 1 is satis-

fied and the opponent’s normalized bid r⋆ is independent of x, then one’s best response is

also independent of x. Hence, any equilibrium in normalized bids that are independent of

x must correspond with an equilibrium of the original auction, and using uniqueness of

BNE, this implies that we can focus on normalized bids that are independent of x without

loss of generality. This theoretical prediction, that normalized strategies are independent

of x, will also be tested (and confirmed) econometrically below.

Example 2. In the hybrid first-price auctions, ṽ(d) = δ ·0+(1−δ) ·d/2 for all δ ∈ [0,1]
and all d ∈ [−2ε,2ε], the unconditional value is Ṽ = 0, and the normalized BNE without

projection is r⋆ =−ε (independently of δ) in two-bidder auctions.

As illustration, recall that the BNE bids are b⋆ = x− ε and b⋆ = x− ε · 2/n in case

of δ = 1 and δ = 0, respectively, implying that the normalized BNE bids are r⋆ = −ε
and b⋆ =−ε ·2/n, respectively. In equilibrium, the normalized bid r⋆ is negative and the

expected normalized payoff is positive. Also note that the unconditional object value is

normalized to zero and BNE strategy normalized to r⋆ =−ε for all instances of the hybrid

value structure in the two-bidder case. This facilitates the unified analysis of APV and

CV auctions. Finally, the normalization reduces the dimensionality of the strategy space,

from analyzing equilibria in bidding functions to analyzing equilibria in scalar degrees of

bid shading. This enables econometric analyses of mixed strategies as discussed below.

2.4 Analysis of projection in auctions

Let R ⊂ R denote the set of normalized strategies r. A mixed strategy σ ∈ ∆R is the

density of a distribution on R. The expected (normalized) payoff of bidding r in response

12“Independence” in this sense is violated for independent private values, which prevents a joint analysis.
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to the mixed strategy σ is (without projection)

Π̃0(r |σ) =
∫

R
σ(r⋆)Π̃0(r|r⋆)dr⋆ =

∫
R

σ(r⋆)
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd dr⋆. (5)

Under full projection, bidders assume that their opponent’s signal equates with theirs,

implying they do not learn anything new when winning the auction. Hence, the object

value conditional on winning equates with the unconditional object value, Ṽ , and the

probability of winning in response to σ equates with σ’s cumulative density Fσ(r) =∫
r⋆<r σ(r⋆)dr⋆.

Π̃1(r |σ) =
∫ d

d

(

ṽ(d)− r
)

fD(d) ·Fσ(r)dd = (Ṽ − r) ·Fσ(r) (6)

Under ρ-projection, the expected payoff is again the weighted average of zero projection

payoffs Π̃0 and full projection payoffs Π̃1.

Π̃ρ(r|σ) = (1−ρ)Π̃0(r|σ)+ρ(Ṽ − r)Fσ(r) (7)

A mixed ρ-TPE σ satisfies r ∈ argmaxr′ Π̃ρ(r
′|σ) if and only if σ(r) > 0, for almost all

r ∈ R. To characterize these equilibria, let Sσ = {r ∈ R|σ(r) > 0} denote the support of

strategy σ, with bounds r = infSσ and r = supSσ. The following proposition establishes

mixedness, overbidding, and skewness in all hybrid first-price auctions, assuming ρ ∈
(0,1). In the limiting cases ρ = 0 and ρ = 1, pure equilibria obtain.

Proposition 1. Consider a two-bidder hybrid first-price auction. For any ρ ∈ (0,1), any

symmetric ρ-TPE strategy is mixed, its support satisfies rBNE ≤ r < r ≤ Ṽ (overbidding),

and the density is monotonically increasing on its support (left-skewness).

The proof is relegated to the appendix. In the following, I focus on the underlying

intuition.13 Figure 1 plots the predictions of type projection in APV and CV auctions,

alongside those of risk aversion in APV auctions and cursedness in CV auctions.14 The

predictions are plotted for logit equilibria as analyzed in the econometric analysis be-

low, which illustrates that the predicted bounds and shape of the equilibrium strategies

are robust to (small) logit errors. Both risk aversion and cursedness predict symmetric

distributions, while type projection predicts left-skewed strategies.

Overbidding to avoid loser regret Let w0(r|r⋆) denote the probability of winning

without projection, and wρ(r|r⋆) denote the respective probability with ρ-projection. If

the projecting bidder bids less than opponents with the same signal, r < r⋆, he underesti-

mates the probability of winning, as wρ(r|r⋆)= (1−ρ)w0(r|r⋆)+ρ ·0 is then less than the

objective probability w0(r|r⋆). If he bids more than opponents with the same signal, he

overestimates the probability of winning, as wρ(r|r⋆) = (1−ρ)w0(r|r⋆)+ρ ·1>w0(r|r⋆)
13Throughout, I abstract from discussing existence, as existence can be established straightforwardly

for finite games, and symmetric auctions seem to be representable as the limit of finite games similarly to

symmetric Bertrand competition (as opposed to asymmetric Bertrand competition).
14Risk aversion does not affect equilibrium predictions in common value auctions and cursedness does

not affect predictions in private value auctions. Hence, the corresponding plots are skipped.
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Figure 1: Projection predicts skewed overbidding in both APV and CV auctions. Risk

aversion and cursedness predict symmetric overbidding in APV and CV, respectively

(a) APV: Projection ρ
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(b) APV: Risk aversion α
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(c) CV: Projection ρ
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(d) CV: Curse χ
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results then. This induces an incentive to outbid opponents with the same signal, in all

information conditions. These incentives resemble loser regret (Filiz-Ozbay and Ozbay,

2007), i.e. to feel regret if a higher bid would have won the auction profitably. Projecting

bidders act as if they felt “conditional loser regret”, i.e. regret if a higher bid would have

won the auction against opponents with the same valuation. The differences are minor,

as loser regret materializes only if the opponents’ values are similar. Thus, I will say that

projection induces loser regret as observed by Filiz-Ozbay and Ozbay (2007).15

Cursed value perception If one outbids opponents with the same signal, i.e. if r > r⋆,

the expected object value under projection is equal to the expectation under cursedness

(assuming ρ = χ), a weighted average of conditional and unconditional value. Alterna-

tively, if r < r⋆, the projected expectation equates with the Bayesian expectation. That is,

the projected expectation is biased only if one outbids opponents with the same value. In

standard common value auctions, the bias is an upward bias, i.e. the object value is over-

estimated, and the projected expectation exhibits an upward jump at b = b⋆(x). Besides

inducing cursed object valuations, this increment of the expectation adds to the loser re-

gret. Thus, the incentives of projecting bidders to outbid opponents with the same signal

are particularly strong in common value auctions. On a qualitative basis, type projection

therefore predicts that if we hold the degree of projection constant, overbidding occurs in

both information conditions, but the normalized degree of overbidding (suitably defined)

is larger in common value auctions than in private value auctions.

Equilibrium strategies are mixed Overtaking the opponents, by bidding some r =
r⋆+ε, induces upward jumps in both perceived winning probability and perceived object

value, at infinitesimally small costs. If the expected payoff after bid increment is posi-

tive, the projecting bidder therefore prefers outbidding the opponents to matching their

bids. In turn, a symmetric, pure strategy profile can be an equilibrium only if it induces

zero expected payoffs. Then, however, projecting bidders can realize positive profits by

deviating to bids r < r⋆. They lose against bidders with similar valuations (probability

15Note that the projected probability of winning is discontinuous in r if the opponents play a pure strat-

egy. It jumps at r = r⋆ where one “overtakes” opponents with the same signal. The discontinuity will

disappear once we allow for mixed strategies, but the incentive to slightly outbid opponents with similar

values is robust to allowing for mixed strategies.
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ρ < 1), but they win profitably against bidders with lower valuations. This yields positive

profits with positive probability, and in turn, pure symmetric equilibria do not exist. As a

result, the type projection equilibria must be mixed if 0 < ρ < 1.

Support and skewness The lower bound of the support exceeds the BNE bid due to

loser regret and cursed value perception, given the weak strategic complementarity, and

the upper bound does not exceed the unconditional value as expected payoffs there are

negative (even for projecting bidders). Now, taking the derivative of the payoff with

respect to r (in response to σ) and solving for σ(r), we obtain for interior r ∈ (r,r)

σ(r) =
1

Ṽ − r
·
(

Fσ(r)−
1−ρ

ρ
· Π̃′

0(r|σ)
)

,

which implies that σ(r) is increasing in r, since Fσ(r) is increasing and Π̃′
0(r|σ) is de-

creasing (in the relevant range). The equilibrium strategy is thus left-skewed, i.e. the

mean is left to the median. The upper bound r of the support converges to rBNE as ρ → 0

and the lower bound converges to the unconditional value Ṽ as ρ → 1.

Second-price auctions Finally, let us briefly look at second-price auctions. Due to the

second-price payment rule, the loser-regret component of projection vanishes, but the

cursed value perception continues to affect behavior. The projected expectation exhibits

a jump discontinuity at r = r⋆, where one overtakes the opponent, if the object value has a

common component (δ > 0). In such cases, bidders again perceive to benefit from over-

taking opponents, which rules out optimality of bidding one’s value and the existence

of pure equilibria. The resulting mixed equilibria are similar to their first-price counter-

parts, as illustrated in the supplementary material. In second-price private-value auctions

(δ = 0), projection equilibria are pure and bidders bid their values, as predicted by all

belief-based concepts. Since overbidding is a systematic phenomenon also in second-

price private-value auctions, even if related to the bidders’ beliefs about their opponents’

values (Cooper and Fang, 2008), this suggests that preferences relating to spite, inequity

aversion, or joy of winning are likely also behaviorally relevant in auctions.

3 Testing the qualitative predictions

I re-analyze seven experiments. Pooling data from multiple experiments reduces the risk

of misinterpreting model adequacy due to data selection and the fallacy to overfitting by

assessing predictive adequacy across experiments. Evaluating predictive adequacy ad-

ditionally clarifies to which degree the results obtained here may be helpful in (future)

analyses of different data sets. Finally, pooling auctions under varying information con-

ditions (IPV, APV and CV) allows me to examine robustness to real-world conditions

which tend to be hybrid (Haile, 2001; Goeree and Offerman, 2002).

The data sources are listed in Table 1. These data sets form exactly the union of

the data sets analyzed in the most influential studies of bidding behavior, Goeree et al.

(2002b), Bajari and Hortacsu (2005), Eyster and Rabin (2005), and Crawford and Iriberri

12



(2007).16 The repetitive re-analysis of these data sets indicates consensus on their ade-

quacy to study bidding behavior, and re-analyzing these very data sets implies that if data

selection influences the results, it would be in favor of existing theories.

As all of these data sets are well known and frequently analyzed, I skip an overly

detailed discussion. The purpose of this section is to provide an overview of behav-

ior in relation to the novel predictions derived above, based on estimates of the bidding

functions and of the first three moments of the normalized bids. Specifically, I test the

predicted independence of normalized strategies of signals x and the predictions of type

projection about overbidding, mixedness and skewness. Throughout, I distinguish ex-

perienced subjects and inexperienced subjects. This comparison complements existing

studies, which analyze either inexperienced subjects (Crawford and Iriberri, 2007) or ex-

perienced ones (most other studies). In particular, depth of reasoning and rationality of

expectations are argued to vary with experience (e.g. Crawford and Iriberri, 2007): initial

behavior (inexperienced subjects) is intuitively closer to level-k and converged behavior

(experienced subjects) is intuitively closer to rational expectations and equilibrium. Fol-

lowing Crawford and Iriberri (2007), a subject is called “inexperienced” during the first

five auctions, and by inversion, “experienced” during the last five auctions (of some 20

auctions in a session).17

The APV and CV auctions are exactly as defined above, and the IPV auctions are

based on private values v = Xi distributed as Xi ∼ U [0,30] or Xi ∼ U [0,28.3]. In the

APV and CV auctions analyzed, the BNE bids are b(xi) ≈ xi − ε and b(xi) ≈ xi − 2ε/n,

i.e. bidders are predicted to shade bids by absolute amounts in relation to signals (as

discussed above). To evaluate this prediction, I estimate bidding functions b=α ·ε+β ·x,

testing the nulls α < 0 and β = 1. The “signal bandwidth” ε is constant within treatments,

i.e. its inclusion is econometrically irrelevant, but controlling for ε facilitates comparisons

across treatments. In the IPV auctions, both BNE and cursed equilibrium predict bids

b(x) = (n−1)/n · x and CRRA predicts b(x) = (n−1)/(n−1+α) · x for α ∈ (0,1], see

Cox et al. (1985). That is, equilibrium bids are fixed fractions of signals, to which I refer

as relative bid shading. Here, I estimate b = α+β · x to test the predictions that α = 0

and β < 1. In all cases, I include subject-level random effects, bootstrap p-values,18 and

report significance at two levels: 0.05 and 0.005. The former is standard, and the latter

implements the Bonferroni correction assuming 10 simultaneous tests across treatments

and models, which is about adequate per level of experience.

Table 2, column “Bidding function”, provides the estimated bidding functions. In

16Two of data sets analyzed in some of these studies, namely Goeree et al. (2002b) and Avery and Kagel

(1997), are examined in the supplementary material, as they are “non-standard” (exhibiting either discrete

signals or signals conditional on object value are not independent) and hence they cannot be discussed in a

unified manner alongside the other auction experiments listed in Table 1.
17In common value auctions, in particular, behavior has not converged after five auctions, which pre-

cludes me from using all observations from the sixth auction on in the analysis of experienced subjects.

In turn, behavior is independent of time during the first five auctions and during the last five auctions,

respectively (as shown in the supplementary material), indicating that these partitions of the data set meet

the time invariance assumed in the analysis.
18The bootstrap accounts for the panel structure of the data. Specifically, the data set is resampled

R = 10.000 times at the subject level (reflecting the panel structure of the data). To define the p-value

of the null hypothesis that some statistic s is zero, let sb denote its value in sample b and let s0 denote its

original value. The p-value of the two-sided test is 1
2R

#
{

b : |sb−s|> |s0|
}

+ 1
2R

#
{

b : |sb−s| ≥ |s0|
}

, where

s is the mean of (sb) and R the number of samples. Other p-values are defined analogously.
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Table 1: Data sources

Inexperienced Experienced

Format Source Values Signals #Subj #Obs #Subj #Obs

First price, Kagel and Levin (2002) v = X0 Xi|X0 ∼U [s± ε] 51 255

common value Kagel and Levin (1986) v = X0 Xi|X0 ∼U [s± ε] 49 237

Second price, Garvin and Kagel (1994) v = X0 Xi|X0 ∼U [s± ε] 28 140

common value

First price,

affiliated private

Kagel et al. (1987) v = Xi Xi|X0 ∼U [x0 ± ε] 42 210 42 210

First price, Dyer et al. (1989) v = Xi Xi ∼U [0,30] 18 180 18 180

Independ. private Kagel and Levin (1993) v = Xi Xi ∼U [0,28.3] 10 50 10 100

Experiments on non-standard auctions (see supplementary material)

First price,

Independ. private

Goeree et al. (2002b) v = Xi Xi discrete 80 400 80 400

Second price,

Common value

Avery and Kagel (1997) v = X1 +X2 Xi ∼U [1,4] 23 115 23 115

Note: The data for inexperienced subjects are mostly from Crawford and Iriberri (2007). In most rounds

of Dyer et al. (1989) and Kagel and Levin (1993), the subjects played two auction markets simultaneously.

Focusing on the first and last five rounds they played, we mostly have ten observations per subject. Due to

bankruptcies in CV auctions, there are not always five observations per subject.

APV and CV auctions, the coefficient of signal x differs significantly from 1 in only one

of the twelve treatments (at α = .05), which is well within the limits of chance. In IPV

auctions, intercept α is insignificantly different from zero in all cases, suggesting that

subjects indeed make relative reductions. The estimated parameters are also economi-

cally insignificant, i.e. small in relation to the range of signals.

Result 1 (Independence of x). In APV and CV auctions normalized bids r := (b− x)/ε
are independent of x, and in IPV auctions normalized bids r := b/x are independent of x.

From now on, I focus on analyzing these normalized bids, i.e. r = (b− x)/ε in APV

and CV auctions and r = b/x in IPV auctions. As above, r represents the inverted degree

of bid shading.19 Values close to 0 in APV and CV auctions, or close to 1 in IPV auctions,

indicate zero bid shading. Figure 2 illustrates the distributions across conditions.

Next I test if the normalized bid distributions are unimodal. The level-k theory pre-

dicts multiple modes, which would require finite mixture modeling in the econometric

analysis, as opposed to random effects models here and mixed logit models below. The

kernel density estimates in Figure 2 suggest unimodality, and as econometric test I esti-

mate finite mixture models with up to three components. Each component is character-

ized by a mean normalized strategy, a between-subject variance regarding the subjects

making up the component, and a within-subject variance to capture individual random-

ization. The details are relegated to the supplementary material, as the impression given

by the histograms is confirmed: the bid distributions are unimodal, in the sense that sec-

ondary components (modes) are significant in only 2 of 18 treatments.

19The lower the normalized bid, the higher the degree of bid shading. For example, in APV and CV

auctions, with r = −0.4, subjects bid 0.4 · ε less than their signal, r = 0 indicates bidding one’s signal,

r =−2/n is the BNE strategy in APV auctions, and r =−1 is the BNE strategy in CV auctions.
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Table 2: Bidding functions and moments of normalized bids in first-price auctions (with bootstrapped standard errors in parentheses)

Inexperienced subjects Experienced subjects

Degree of Standard Deviation Degree of Standard Deviation

Condition Bidding function Overbidding within Ss between Ss Skewness Bidding function Overbidding within Ss between Ss Skewness

Independent private values, First price (DKL89, KL93)

N = 3 b =−0.031
(0.234)

+0.803⋆⋆
(0.018)

· x 0.104⋆⋆
(0.017)

0.161
(0.031)

0.025 −3.17⋆⋆ b = 0.028
(0.149)

+0.822⋆⋆
(0.01)

· x 0.143⋆⋆
(0.014)

0.126
(0.018)

0.054 −3.26⋆⋆

N = 6 b =−0.039
(0.196)

+0.849⋆⋆
(0.013)

· x −0.021
(0.02)

0.162
(0.034)

0.053 −3.35⋆⋆ b = 0.037
(0.182)

+0.875⋆⋆
(0.009)

· x 0.034⋆⋆
(0.012)

0.108
(0.018)

0.044 −4.49⋆⋆

N = 5 b = 0.195
(0.241)

+0.886⋆⋆
(0.01)

· x 0.08⋆⋆
(0.021)

0.145
(0.053)

0.028 −4.34⋆⋆ b =−0.873
(0.496)

+0.896⋆⋆
(0.017)

· x −0.021
(0.042)

0.264
(0.036)

0.129 −1.65⋆

Affiliated private values, First price (KHL87)

N = 6,ε = 6 b = 0.986⋆
(0.006)

· x−0.284⋆⋆

(0.079)
·ε −0.127⋆⋆

(0.038)
0.366
(0.085)

0.148 −3.83⋆⋆

N = 6,ε = 12 b = 0.992
(0.006)

· x−0.172⋆⋆

(0.048)
·ε 0.104⋆⋆

(0.026)
0.052
(0.006)

0.15 0.1 b = 1
(0.005)

· x−0.247⋆⋆

(0.037)
·ε 0.088⋆⋆

(0.021)
0.168
(0.044)

0.129 −1.52⋆

N = 6,w = 24 b = 1
(0.006)

· x−0.168⋆⋆

(0.02)
·ε 0.164⋆⋆

(0.022)
0.09
(0.015)

0.135 −0.24

Common value auctions, First price (KL86)

N ≤ 4,ε = 6 b = 0.996
(0.003)

· x−0.22
(0.139)

·ε 0.657⋆⋆
(0.066)

0.341
(0.033)

0.28 0.57⋆⋆

N ≤ 4,ε ≤ 18 b = 1.014
(0.013)

· x−0.676⋆⋆

(0.172)
·ε 0.551⋆⋆

(0.099)
0.43
(0.163)

0.095 0.54⋆ b = 1.002
(0.016)

· x−0.905⋆⋆

(0.576)
·ε 0.106⋆

(0.038)
0.276
(0.087)

0.011 −1.77

N ≤ 4,ε ≥ 24 b = 1
(0.021)

· x−0.63⋆⋆

(0.091)
·ε 0.373⋆⋆

(0.05)
0.31
(0.058)

0.178 0.7⋆

N = 7,ε = 6 b = 0.999
(0.002)

· x−0.322⋆⋆

(0.088)
·ε 0.629⋆⋆

(0.067)
0.333
(0.036)

0.313 0.54⋆

N ≥ 5,ε = 12 b = 0.99
(0.007)

· x−0.575⋆⋆

(0.084)
·ε 0.338⋆⋆

(0.051)
0.151
(0.025)

0.225 1.02⋆

N ≥ 5,ε = 18 b = 1
(0.008)

· x−0.654⋆⋆

(0.082)
·ε 0.348⋆⋆

(0.045)
0.296
(0.025)

0.206 1.09⋆⋆

N ≥ 5,ε ≥ 24 b = 0.999
(0.012)

· x−0.714⋆⋆

(0.085)
·ε 0.279⋆⋆

(0.046)
0.231
(0.025)

0.201 1.33⋆

Notation: b is the bid, x is the signal, ε is the signal bandwidth in APV and CV auctions

Normalized bids: The normalized bids are r = (b− x)/ε in APV and CV auction and r = b/x in IPV auctions

Degree of overbidding is the difference between the mean normalized bid and the normalized equilibrium bid (BNE without risk aversion), it is estimated controlling for subject-level random

effects (“between-subject standard deviation”). The within- and between-subject standard deviations refer to the distribution of normalized bids

Skewness: Skewness of the normalized bids after controlling for subject-level random effects (i.e. skewness of the errors in the regressions of normalized bids on intercept).

Experience: Subjects are “inexperienced” in their first five auctions and “experienced” in their last five auctions.

Asterisks indicate the bootstrapped p-values (see Footnote 18) of the null hypotheses that the respective parameters are either 1 (in case of the coefficients of x in APV and CV auctions, which are

predicted to be 1) or 0 (in all other cases). “⋆⋆” indicates p-values less than .005, and “⋆” indicates p-values between .005 and .05. The lower threshold .005 implements the Bonferroni correction

for multiple testing across treatments (for around 10 treatments per level of experience).



Figure 2: Distribution of normalized bids across information conditions (experienced

bidders; distributions for inexperienced bidders are similar and provided in the appendix)
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Result 2 (Unimodality). Across information conditions and experience levels, bid distri-

butions are unimodal (falsifying level-k). Secondary components are either insignificant

(16 of 18 treatments) or contain less than 10 percent of the subjects (2 of 18 treatments).

In the first-price auctions, normalized BNE bids are r =−1 in CV auctions, r =−2/n

in APV auctions, and r = (n−1)/n in IPV auctions. In Table 2, the difference between

normalized observed bid and normalized BNE bid is called “degree of overbidding”. The

degree of overbidding is significantly positive in 15 out of 18 cases (at α= .005), i.e. sub-

jects overbid consistently. Projection also predicts that subjects overbid more in CV auc-

tions than in APV auctions. This can be studied by comparing KL86’s CV auctions and

KHL87’s APV auctions, as they implement common values and affiliated private values

in otherwise equivalent conditions: signal bandwidths ε are similar, numbers of bidders n

are similar, and even experimental instructions and logistics are similar. The econometric

approach is to regress the degree of overbidding on the information condition (APV or

CV), controlling for subject-level random effects and bootstrapping p-values. Table 2

already shows that the degrees of overbidding are always below 0.2 in APV auctions and

mostly above 0.3 in CV auctions, i.e. substantially higher. The regression results strongly

confirm this impression (see Table 9 in the appendix): Across conditions and experience

levels, the degree of overbidding is higher in CV auctions (5 of 6 times at α = .005).

Result 3 (Overbidding). Subjects overbid and more so in CV auctions than in APV auc-

tions, confirming the predictions of ρ-TPE.

Regarding the second moments of bids, projection predicts mixed equilibria, i.e. posi-

tive within-subject variances. I test this by verifying if within-subject variance is constant

as subjects gain experience, using regression models with different within-subject vari-

ances for the two levels of experience. I test the null that variance is constant in multiple

ways, either holding the conditions such as number of bidders N or signal bandwidth w

constant, or pooling the data and then controlling for N or w, but the impression of Table 2

(column “Standard deviation within Ss”) is very robust: the within-subject variance does

not change as subjects gain experience. This holds true both in treatment-wise compar-

isons when they are possible, noting that treatment parameters in some experiments are

changed as subjects gain experience, and after pooling treatments. Between the 13 tests I
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Table 3: Stylized facts in relation to the models’ predictions

Empirical Theoretical prediction

Observation Exp payoff Risk aversion Cursed Eq Level-k Type projection

Distribution Unimodal × × × ×
Overbidding PV Yes × ×
Overbidding CV Yes × (×) ×
Rel. Overbidding CV>PV × (×) ×
Randomization Yes ×
Skewness PV Left ×
Skewness CV Right

Note: The predictions refer to level-k for expected payoffs or to the BNE assuming either expected payoffs,

risk aversion (CRRA), cursedness, or type projection. Level-k predictions reflect the standard assumption

that level-0 bidders randomize uniformly given their actual knowledge (Stahl and Wilson, 1995; Nagel,

1995). Crawford and Iriberri (2007) analyze a model where level-0 bidders randomize uniformly around

their opponents’ values. This model predicts overbidding in CV auctions, as I indicate using parentheses.

made (Table 10 in appendix), there is exactly one significant relation for either direction

at the .05 level, and none at the .005 level suggested by the Bonferroni correction.

Result 4 (Randomization). The within-subject variance is highly robust to experience,

suggesting subjects randomize strategically and corroborating the prediction of ρ-TPE.

Regarding the third moments of bids, the histograms in Figure 2 suggest that the

overall distributions are left-skewed in private value auctions (both IPV and APV), while

skewness may be inverted in CV auctions. To test the hypothesized skewness of (in-

dividual) bidding functions, I estimate the skewness of the errors when regressing the

normalized bids on the intercept controlling for subject-level random effects. These es-

timates, reported in Table 2 in column “Skewness”, confirm the impression of Figure 2:

Skewness is mostly significant, at least at p = .05, and if it is significant, then toward

left-skewness in PV auctions and toward right-skewness in CV auctions.

Result 5 (Skewness). Bids are left-skewed in private value auctions (confirming the pre-

diction of ρ-TPE) and right-skewed in common-value auctions (contradicting all models).

Table 3 summarizes the relation of the predictions of the best-known models of bid-

ding to the (empirical) Results 2–5. The predictions of the existing concepts are well-

known and therefore not explicitly derived.20 Type projection explains all observations

that existing concepts explain, and in addition it explains observations that existing con-

cepts do not explain. Specifically, type projections explains overbidding as well as the

existing concepts in conjunction, and it uniquely explains most observations on the higher

moments (randomization and skewness).

20BNE for expected payoffs by definition does not predict overbidding, risk aversion (CRRA) predicts

overbidding in private value auctions, and cursed equilibrium predicts overbidding in common value auc-

tions. All these concepts predict pure equilibria, which explains neither randomization nor skewness. For

detailed discussion on the existing concepts and on level-k, let me refer to Crawford and Iriberri (2007).
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4 Structural analysis

As shown in the previous section, type projection equilibrium captures bidding in auc-

tions substantially better than existing models. This yields the joint hypothesis that (i)

type projection captures biases in computation of expected payoffs and (ii) equilibrium

captures the beliefs of subjects. I will refer to (i) as a statement about the payoff structure

and to (ii) as a statement about the belief structure. A structural analysis allows me to

disentangle these statements and thus to clarify whether the apparent adequacy of type

projection simply follows from an actually inadequate assumption of equilibrium beliefs.

In this analysis, I allow for all of the standard payoff structures (expected payoff, CRRA,

cursedness, projection) and all standard belief structures.

Obviously, it is possible to combine any belief structure with any payoff structure.

Indeed, previous analyses examined a fairly large variety of combinations, but unfortu-

nately with little overlap between studies,21 showing mainly that the identified payoff

structure depends on the assumed belief structure and vice versa. This relates to analyses

of choice under risk, where identification of utility functions and probability weighting

depends on the assumed model of stochastic choice, see e.g. Hey (2005), Blavatskyy and

Pogrebna (2010), and Wilcox (2011). Thus, to reliably analyze the payoff structure, we

have to relax the assumptions on belief formation as far as possible—to let the data speak

for itself. Next, I describe how I achieve this generalization, using a novel belief model,

and how I address potential concerns associated with using a general belief model.

4.1 Econometric specification

All concepts but type projection equilibrium predict pure strategies and thus fit the obser-

vations only if we allow for stochastic choice (i.e. “errors”). To not rule out these models

right away, I allow for errors due to “logistic” perturbations of utilities. Given strategic

beliefs σ̃−i and payoff structure Π̃, i.e. some function mapping actions r ∈ R and beliefs

σ̃−i to expected payoffs, subjects choose the logit response with precision λ if

Logiti(σ̃−i|Π̃,λ) =
{

σl(r)
}

r∈R
with σl(r) =

exp{λ Π̃
(

r|σ̃−i

)

}
∑r′∈R exp{λ Π̃

(

r|σ̃−i

)

} . (8)

Logit implies that the higher the expected payoff of an action, the higher its probability,

with precision ranging from λ = 0 (uniform randomization) to infinity (best response).

As for belief structures σ̃−i, the existing literature distinguishes mainly between “equi-

librium beliefs” (rational expectations), “level-k beliefs” (Crawford and Iriberri, 2007),

and “Nash beliefs”. By Nash belief, I refer to the belief that opponents play the BNE

strategies for the respective payoff structure, as usually assumed in structural analyses of

21Goeree et al. (2002b) examine equilibrium beliefs in conjunction with risk aversion (and logit errors).

Eyster and Rabin (2005) examine cursed equilibrium, i.e. Nash beliefs in conjunction with cursed payoffs

(and behavioral errors). Crawford and Iriberri (2007) show that level-k beliefs fit better than Nash beliefs

in private and common value auctions, assuming either expected or cursed payoffs and logit errors. Bajari

and Hortacsu (2005) show that Nash beliefs with behavioral errors fit about as well as equilibrium beliefs

with logit errors (in the sense that the differences are insignificant). That is, the only model considered by

two studies is equilibrium beliefs with logit errors (Goeree et al., 2002b; Bajari and Hortacsu, 2005).
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empirical auctions. Note the subtle difference between “equilibrium beliefs” and “Nash

beliefs”: bidders with so-called equilibrium beliefs have rational expectations and antic-

ipate errors of opponents, while bidders with Nash beliefs do not anticipate errors.

A model containing these belief structures as special cases obtains if we allow bidders

to believe their opponents play a quantal response equilibrium (McKelvey and Palfrey,

1995, QRE)22 and to logit respond with their own, presumably higher precision. That is,

bidders κ-logit respond to a λ-QRE. I refer to this model as asymmetric QRE (AQRE).

Note the minor but important difference to asymmetric logit equilibrium (Weizsäcker,

2003), where all precisions are common knowledge, while AQRE players believe their

opponents simply play the QRE with precision λ and do not acknowledge that κ 6= λ.

Definition 2. Given a payoff structure Π̃, a strategy profile σ is a

• λ-QRE if all bidders i ∈ N choose σi = Logiti(σ−i|Π̃,λ)

• (κ,λ)-AQRE if there exists a λ-QRE σ′ such that σi = Logiti(σ
′
−i|Π̃,κ)

AQRE nests rational expectations for κ= λ, Level-1 for λ= 0, Nash beliefs for λ=∞,

and allows for a continuum in-between these extremes. Thus, AQRE is flexible enough to

let the data speak for itself, and in addition, it is parsimonious, nesting the three models

by adding just one parameter. There are two difficulties associated with using AQRE.

One is that the underlying QRE needs to be computed explicitly. The insight of Bajari

and Hortacsu (2005) allowing to avoid the fixed point computation underlying QRE—

by exploiting rational expectations and using observed behavior as beliefs—is infeasible

as observed behavior forms an AQRE and subjects do not have rational expectations.

Hence, the QRE needs to be computed explicitly, but computing a QRE of an auction is

not straightforward, as mixed bidding functions are rather complex. Thanks to the above

result that subjects’ strategies are one-dimensional, AQRE is computationally feasible

using current technology, however.23 That is, Result 1 allows us to compute QRE and

AQRE, which in turn endogenizes the belief assumptions made in the literature.

The probably more prominent difficulty with using (A)QRE relates to the concern

that a sufficiently generalized QRE can fit everything (see e.g. Haile et al., 2008). I ad-

dress this concern in two ways. On the one hand, I will report on robustness checks using

the best known alternative belief models, namely level-k (Stahl and Wilson, 1995; Nagel,

1995), cognitive hierarchy (Camerer et al., 2004) and noisy introspection (Goeree and

Holt, 2004). Secondly, I will explicitly verify the fallacy to overfitting by examining pre-

dictive adequacy. To be safe, I evaluate descriptive, predictive and inferential adequacy

of models. Descriptive adequacy quantifies goodness-of-fit in-sample and is measured

by Bayes information criterion (Schwarz, 1978) using the number of subjects as num-

ber of observations. Predictive adequacy (Hey et al., 2010) measures the reliability of

22QRE is the standard model in behavioral game theory, and successfully captures behavior in e.g. the

centipede game (Fey et al., 1996), the traveler’s dilemma (Capra et al., 1999), public goods games (Goeree

et al., 2002a), monotone contribution games (Choi et al., 2008), and beauty contests (Breitmoser, 2012).
23For illustration, consider a grid with 100 different normalized bids over which the bidders randomize.

In an auction with 5 bidders and say 100 possible signals, evaluating the payoff function is possible by

simulation using quasi-random numbers, which in turn can be implemented in a massively parallel manner

on a GPU (which is reasonably standard, see e.g. Breitmoser, 2012). On top of it, finding the fixed point for

the distribution over 100 normalized bids is possible, but finding the fixed point for 100×100 probabilities

(allowing for logistic errors) is not yet possible using “regular” computers.
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predictions across experiments, by fitting the parameters to one information condition,

using the estimate to predict the remaining data, evaluating the likelihood, and rotating

such that all data sets are used as training data.24 Structural analysts of empirical auc-

tions are concerned mainly about inferential adequacy, i.e. the accuracy of the object

values inferred from bids (Bajari and Hortacsu, 2005). I use an out-of-sample version

where, given parameters estimated using one data set, the out-of-sample predictions for

the other treatments are computed and then, for each bid in these treatments, the posterior

expectation of the underlying signal is evaluated. This conditional expectation is called

inferred signal. The inferential adequacy is the mean absolute deviation (MAD) to the

actual signals. The appendix contains formal definitions, and the supplementary material

reports on robustness checks using the mean squared deviation (MSD).25

The remaining details of the specification are standard and relegated to Appendix A.

Significance is reported exactly at the levels used above, 0.05 for “weak” significance

and 0.005 to reflect the Bonferroni correction, based on bootstrapped likelihood ratio test

statistics and using nested or non-nested Vuong tests, as appropriate. I control for subject

heterogeneity by allowing that all parameters are distributed randomly across subjects

(“mixed logit”), which adequately captures the unimodality of bids. The appendix spec-

ifies the (standard) likelihood function and the numerical approach to its maximization.

4.2 Which payoff structure is most adequate?

The analysis proceeds in four steps. First, I analyze which payoff structure captures

behavior most adequately under the general belief model AQRE, i.e. nesting the three

standard models: rational expectations, naive beliefs, and Nash beliefs.

Question 1. Allowing for all of the standard belief structures, which payoff structure

captures bidding: expected payoffs, risk aversion, cursedness, or projection?

The results, presented in Table 4, are rather clear-cut: Type projection generally is

most adequate, corroborating the compatibility with the stylized facts, and in most cases

the differences to the other payoff structures are highly significant. The descriptive ade-

quacy of projection shows that a fairly constant degree of projection fits behavior across

conditions. its predictive adequacy shows that the fit is robust, i.e. the estimated degree

of projection is robust, indicating that type projection may be a behavioral primitive.

Predictive adequacy also clarifies the striking differences to the other concepts. Both

risk aversion and cursedness significantly improve on expected payoffs descriptively (i.e.

in-sample) but fail to consistently improve on it predictively (out-of-sample). Their be-

havioral content in relation to expected payoffs is not robust. In turn, type projection

24The tendency to distinguish descriptive and predictive adequacy is a rather recent development in

analyses of decision-theoretic models (Wilcox, 2008; Hey et al., 2010), learning models (Erev and Roth,

1998; Camerer and Ho, 1999; Tang, 2003; Ho et al., 2008), and simple games (Blanco et al., 2011; Shapiro

et al., 2014). I am not aware of existing analyses in Bayesian games in general or auctions in particular.
25Briefly, both descriptive and predictive adequacy are likelihood based, with the BIC representing a

correction for the amount of overfitting induced by using free parameters (Schwarz, 1978). Predictive

adequacy by definition avoids free parameters in the evaluation stage. These likelihood-based measures

are attractive due to their well-known limiting properties (consistency and efficiency). The usage of MAD

and MSD in inferential adequacy complements these measures and follows Bajari and Hortacsu (2005).
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Table 4: Analysis of the payoff structure (for all measures of adequacy: less is better)

(a) Inexperienced subjects (first five auctions), aggregated across conditions (IPV, APV, CV)

Adequacy Exp Payoff Risk Aversion Projection Cursedness

Descriptive 4108 ≫ 3911 ≫ 3742 ≪ 3967

Predictive 4261 ≈ 4203 ≫ 4034 ≪ 4449

Inferential 2226 ≪ 2636 ≫ 1759 ≪ 2110

Average (λ,κ,α) 45,0.12 0.39,15,0.34 11,3.1,0.44 20,1.3,0.73

(b) Experienced subjects (last five auctions), aggregated across conditions (IPV, APV, CV)

Adequacy Exp Payoff Risk Aversion Projection Cursedness

Descriptive 4005 ≫ 3573 ≫ 3377 ≪ 3805

Predictive 4069 ≫ 3799 > 3686 ≪ 4200

Inferential 4460 > 4004 ≈ 3498 ≈ 3650

Average (λ,κ,α) 47,0.05 0.34,14,0.24 18,3.3,0.48 130,0.21,0.78

Note: The row “Average (λ,κ,α)” lists the average estimates of precision λ, belief parameter κ (of AQRE),

and degree α of risk aversion/cursedness/projection (depending on model). Significance at 0.05 is indicated

by <,>, and significance at 0.005 is indicated by ≪,≫ (which implements the Bonferroni correction).

does not only yield higher predictive adequacy than expected payoffs for both inexperi-

enced and experienced subjects—it fits better out-of-sample than expected payoffs does

in-sample. Thus, type projection is of robust relevance in bidding. The results on infer-

ential adequacy are similar, though not quite significant in all cases.

Result 6. Allowing for the general belief structure, type projection is the dominant model

of the payoff structure. It is most adequate by all measures, for both experienced and

inexperienced subjects, and it uniquely improves on expected payoffs out-of-sample.

4.3 How are beliefs formed?

Based on these results, let us use type projection as payoff structure and identify the

belief structure. Besides equilibrium (QRE) and asymmetric QRE, I will consider noisy

introspection (NI, Goeree and Holt, 2004), cognitive hierarchy (CHM, Camerer et al.,

2004), and level-k (Nagel, 1995; Stahl and Wilson, 1995), see Appendix A.

Question 2. Given the identified model of the payoff structure (type projection), which

belief structure captures bidding?

First, to provide context, let me briefly review existing results. In small normal-form

games with dominated strategies, subjects exhibit low depth of reasoning: They do not

choose dominated strategies but fail to take into account that opponents reason similarly

(Costa-Gomes et al., 2001; Weizsäcker, 2003; Costa-Gomes and Weizsäcker, 2008). In

games without dominated strategies, in particular in games with unique mixed equilibria,

equilibrium beliefs are most adequate (Goeree et al., 2003; Brunner et al., 2011). In

large normal form games, beliefs tend to be in-between these extremes: subjects may

underestimate the precision of others, but not as extremely as level-1 (Goeree et al.,

2002a; Costa-Gomes and Crawford, 2006; Breitmoser, 2012). This can be captured by
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Table 5: Analysis of the belief structures (for all measures of adequacy: less is better)

(a) Inexperienced subjects (first five auctions), aggregated across conditions (IPV, APV, CV)

Adequacy Level-k CHM QRE AQRE NI

Descriptive 3760 ≈ 3762 ≈ 3771 > 3742 ≈ 3751

Predictive 4091 > 4014 ≪ 4082 > 4034 ≈ 4035

Inferential 1962 ≪ 2210 ≫ 2110 ≫ 1759 ≪ 2116

Average (λ,κ,ρ) 43,4.8,0.44 47,7.1,0.44 45,0.4 11,3.1,0.44 16,0.54,0.5

(b) Experienced subjects (last five auctions), aggregated across conditions (IPV, APV, CV)

Adequacy Level-k CHM QRE AQRE NI

Descriptive 3404 ≪ 3435 ≈ 3406 > 3377 ≪ 3454

Predictive 3644 ≪ 3697 ≫ 3599 ≪ 3686 ≫ 3609

Inferential 3370 ≪ 3565 ≈ 3508 ≈ 3498 > 3251

Average (λ,κ,ρ) 29,11,0.42 29,8,0.42 52,0.45 18,3.3,0.48 16,0.62,0.52

Note: The row “Average (λ,κ,ρ)” lists the average estimates of precision λ, belief parameter κ (depending

on model), and degree ρ of projection (depending on model). Significance at 0.05 is indicated by <,>,

and significance at 0.005 is indicated by ≪,≫.

e.g. AQRE with κ> λ> 0 and NI with 1> κ> 0. Auctions are similarly large games, and

following Goeree et al. (2002b) equilibrium beliefs are adequate (i.e. QRE). Bajari and

Hortacsu (2005) show that equilibrium beliefs are about as adequate as Nash beliefs.26

The results of the current analysis, provided in Table 5, largely corroborate these

observations. To organize the results, let us take the unique one-parametric model (QRE)

as benchmark and ask which of the two-parametric models improve on it consistently.

As for inexperienced subjects, the only model that improves on QRE consistently (by all

three measures) is AQRE, but in two of the three cases, the significance of the differences

is not robust to the Bonferroni correction. Thus, I say that AQRE weakly improves on

QRE for inexperienced subjects. As for experienced subjects, no model consistently

improves on QRE, which has the highest predictive adequacy and thus fits most robustly.

Result 7. Inexperienced subjects underestimate the precision of others, which is captured

best by AQRE. Beliefs approach rational expectations (QRE) as subjects gain experience.

Thus, in line with the literature, inexperienced bidders exhibit comparably noisy be-

liefs (relating to Crawford and Iriberri, 2007), though level-k is not the most adequate

model, which confirms the observations that bid distributions are unimodal (Result 2).

Experienced bidders are well described holding equilibrium beliefs (relating to Goeree

et al., 2002b, and Bajari and Hortacsu, 2005). To illustrate the goodness-of-fit, Figure 3

plots the predicted densities of QRE with projection over the histograms of normalized

bids. These plots refer to inexperienced subjects; the respective plots for experienced

subjects are similar and provided as supplementary material.

26In turn, Crawford and Iriberri (2007) show that for a specific assumption of level-0 behavior and

assuming expected payoffs, level-k models may fit better than equilibrium beliefs.
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Figure 3: The predictions of QRE with projection (solid lines) in relation to the data
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Note: The histograms plot the normalized bids for each information condition in standard auctions (see

Table 1), always aggregated across treatments, focusing on inexperienced subjects. On top, the solid line

depicts the predicted choice probabilities of QRE with projection, equally averaged across treatments.

4.4 Are subjects additionally risk averse?

Subjects may be projecting or cursed in addition to being risk averse. Potentially, the

focus on determining the “single best” explanation, which shapes the existing literature

and to some extent also the present analysis up to this point (we do allow for generalized

belief structures), is inadequate and misrepresents behavior. This possibility is examined

in this third analytical step.

Question 3. Is a generalized payoff structure allowing for risk aversion besides type

projection or cursedness more adequate than plain type projection?

On a qualitative basis, type projection explains overbidding in private value auctions

as well as risk aversion, and in addition it explains randomization and skewness. This

captures behavior more comprehensively both in-sample and out-of-sample, suggesting

that risk aversion may be behaviorally insignificant once we consider type projection

behaviorally relevant. However, since risk aversion explains overbidding in private value

auctions and cursedness explains overbidding in common value auctions, the notion that

subjects are both, risk averse and cursed, may adequately capture behavior.

The analytical approach is as before. Based on the above results, I focus on equi-

librium beliefs; robustness checks are provided as supplementary material. The results,

reported in Table 6, are clear and can be summarized succinctly. The in-sample differ-

ences are small and insignificant, i.e. type projection describes behavior comprehensively

and does not miss out on any aspect captured by the other models despite its relative par-

simony. This corroborates its compatibility with the stylized facts compiled above, see

Table 3. The predictive adequacy significantly improves with type projection on its own,

indicating that its parsimony indeed improves robustness. Augmenting type projection

by risk aversion improves the inferential adequacy when subjects are experienced, which

may be of relevance in empirical work.27

27One caveat is that large and diverse data sets are required to reliably estimate both degree of projection

and degree of risk aversion (risk aversion on its own lacks inferential adequacy). This seems to be the
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Table 6: Evaluation of models with multiple motives

(a) Inexperienced subjects (first five auctions), aggregated across conditions (IPV, APV,

CV)

Adequacy Proj + RA Projection Curse + RA

Descriptive 3772 ≈ 3771 ≈ 3790

Predictive 4160 ≫ 4082 ≪ 4235

Inferential 2127 ≈ 2110 ≪ 2312

Average pars 46,0.37,0.88 45,0.4 20,0.73,0.64

(b) Experienced subjects (last five auctions), aggregated across conditions (IPV, APV, CV)

Adequacy Proj + RA Projection Curse + RA

Descriptive 3378 ≈ 3406 ≈ 3424

Predictive 3732 ≫ 3599 ≪ 3762

Inferential 2916 ≪ 3508 ≈ 3209

Average pars 67,0.31,0.71 52,0.45 68,0.72,0.46

Note: The tables report results for QRE with projection. The order of average parameters is (λ,ρ,α) for

“Proj + RA”, (λ,ρ) for “Projection”, and (λ,χ,α) for “Curse + RA”, where λ is the QRE-precision, and

α,ρ,χ are the degrees of risk aversion, projection, and cursedness, respectively. Significance at 0.05 is

indicated by <,>, and significance at 0.005 is indicated by ≪,≫.

Table 7: Average precision and degrees of projection as a function of experience

CV 1st price CV 2nd price APV IPV Pooled

λ ρ λ ρ λ ρ λ ρ λ ρ

Inexperienced 1.7 1 30 0.58 18 0.3 26 0.42 45 0.4

Experienced 8.2 0.28 45 0.65 41 0.46 52 0.45

Note: Given the estimates for QRE with projection, the tables lists mean precision λ and mean degree of

projection ρ. The underlying distributions are log-normal and truncated normal, respectively.

Result 8. Complementing type projection by risk aversion does not improve model ade-

quacy in-sample (descriptively) or out-of-sample (predictively), but it improves inferen-

tial adequacy for experienced subjects.

4.5 Is the projection bias robust to experience?

Finally, let us look at the differences between inexperienced and experienced subjects.

The main purpose is to evaluate whether the projection bias possibly disappears as sub-

jects gain experience, which would limit its relevance for applied work.

Question 4. Are projection bias, precision, and heterogeneity robust to experience?

Table 7 presents the means of precision and degree of projection for each informa-

tion condition, separately for inexperienced and experienced subjects. In all information

case in the present analysis but is unlikely to be satisfied in field work. Another caveat is that the models

considered here are estimated by maximum likelihood, and thus inferential adequacy is a side effect. If

inferential adequacy is the main objective, a different estimator may be appropriate.
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Table 8: Analysis of significance of subject heterogeneity

(a) Inexperienced subjects (first five auctions)

Adequacy Homog. Heterog.

Descriptive 3893 ≫ 3771

Predictive 4075 ≈ 4082

Inferential 2108 ≈ 2110

Average pars 17,0.43 45,0.4

(b) Experienced subjects (last five auctions)

Adequacy Homog. Heterog.

Descriptive 3570 ≫ 3406

Predictive 4030 ≫ 3599

Inferential 4613 ≫ 3508

Average pars 11,0.61 52,0.45

Note: The tables report results for QRE with projection, assuming either homogeneous or heterogeneous

subjects (the latter as in the model used so far and as described in Appendix A). Significance at 0.05 is

indicated by <,>, and significance at 0.005 is indicated by ≪,≫.

conditions, the mean precision increases as subjects gain experience, to the extent that

behavior almost converged to projection equilibrium without errors in private value auc-

tions. The degree of projection is on average constant, slightly increasing for private value

auctions and substantially decreasing for common value auctions. In the latter case, the

degree of projection is initially very high (ρ = 1) but declines to one of the lowest values

across conditions as subjects gain experience. The high initial value indicates that inex-

perienced subjects struggle comprehending common values, and the subjects struggling

the most actually go bankrupt in CV auctions. Bankrupt subjects are removed from the

experiment and therefore not present in the pool of experienced subjects, which slightly

biases the average degree of projection in CV auctions in relation to the other auctions.

Aside from that, the mean degree of projection is near 0.5, which indicates that type

projection is indeed a constant factor in bidding.

Next, I investigate how the extent of subject heterogeneity varies with experience.

Contrary to the heterogeneous model considered so far, I now consider the homogeneous

model where subjects are collectively described by a representative agent with “average”

precision λ and “average” degree of projection ρ. The procedure is otherwise equal to

above. The results are presented in Table 8. As for inexperienced subjects, allowing for

heterogeneity improves the goodness-of-fit descriptively (in-sample), but neither predic-

tively nor inferentially. In this case, allowing for heterogeneity induces overfitting. As

for experienced subjects, allowing for heterogeneity highly significantly improves on the

representative-agent model according to all three measures. This complements the earlier

finding that experienced subjects exhibit higher precision and rational expectations, sug-

gesting that experienced subjects understand the auctions and their opponents, enabling

them to bid according to their preferences and individual differences become visible.

Result 9. As subjects gain experience, their average precision increases, the average

degree of projection remains largely constant, and subjects exhibit heterogeneity.

5 Conclusion

This paper introduces type projection equilibrium as a model of bidding in auctions. Type

projection was an ex-ante plausible candidate to be behaviorally relevant, as it is robustly

observed in psychological research and intuitively applies to all (symmetric) Bayesian

games, such as auctions. Yet, despite the large amounts of studies dedicated to either,
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auctions in economics and projection in psychology, the only published paper suggesting

a potential link between bidding and projection appears to be Engelmann and Strobel

(2012). After deriving theoretical predictions on overbidding, mixedness and skewness, I

show that these mostly novel predictions are borne out in the data and that type projection

substantially improves on existing models such as CRRA, cursedness, and level-k, both

in-sample and out-of-sample. The previous drawback of structural auction analyses, that

results depend on the identifying assumption about strategic beliefs, is resolved using a

novel model of strategic beliefs (asymmetric QRE) nesting all models typically used.

The degree of projection, being around 0.5, is largely constant across information

conditions and robust to experience—while subjects’ beliefs approach rational expecta-

tions and their precision in maximizing utility increases with experience. Finally, type

projection provides a comprehensive explanation in the sense that complementing it by

say risk aversion or level-k does not improve model adequacy. This is compatible with the

observations that bidders exhibit loser regret rather than risk aversion (Filiz-Ozbay and

Ozbay, 2007) and that the gender differences in bidding (Casari et al., 2007; Ham and

Kagel, 2006; Chen et al., 2013; Pearson and Schipper, 2013) do not relate to differences

in risk aversion (Schipper, 2015).28 Overall, the results are consistent and clear, strongly

suggesting that type projection is a factor of behavior in auctions, and by extension in

type-symmetric Bayesian games, which suggests ample opportunity for further research.

In this regard, three points may be worth noting. First, projection likely affects be-

havior not only in auctions, but similarly in other Bayesian games with symmetric type

sets, including games where social preferences matter. In general, though, experimental

work in economics tends to attribute deviations from Nash equilibrium either to prefer-

ences, such as risk aversion or inequity aversion, or to belief asymmetry, such as level-k.

Intuitively, each of these influences affects behavior in general, but projection should not

be neglected simply because the literature focused on other concepts so far: Judging by

the psychological evidence, the relevance of projection appears to be rather universal.

Second, analysts of empirical auctions may consider projection at least alongside risk

aversion in econometric analyses of bidding. This has both a downside and an upside.

On the downside, projection equilibria are mixed and their computation may require in-

formation that analysts do not immediately have, e.g. the upper bound of values in private

value auctions. Less information is required, and some tractability is gained (see Bajari

and Hortacsu, 2005), if one is willing to neglect projection and assume “Nash beliefs”

(bidders’ beliefs are equilibrium strategies without errors). These assumptions are highly

debatable, though. My results challenge the neglect of projection, and most analyses, in-

cluding Crawford and Iriberri (2007) and above, show that subjects tend to underestimate

the precision of others, i.e. the opposite of Nash beliefs. Further on the upside, projec-

tion equilibria fit much more robustly than received models across private and common

values, which suggests that they are less prone to misspecification of the information

conditions. This is promising as many empirical auctions take place in hybrid conditions

(Haile, 2001; Goeree and Offerman, 2002). These advantages may well outweigh the

additional computational burden, but more work clearly is required.

28Indeed, as an anonymous referee pointed out, the gender differences relate to progesterone which in-

creases “social closeness” as its only other documented behavioral implication (Brown et al., 2009; Schip-

per, 2015), and social closeness seems to increase the affinity to projection (Clement and Krueger, 2002).
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Finally, Engelmann and Strobel (2012) have shown that subjects are less likely to

project if they are provided with the objective information in the best possible way. This

suggests that the fallacy to projection may be subject to policy intervention, and future

work may determine the best way of providing objective information. Further, to the de-

gree that overbidding is due to risk aversion, educating subjects does not help efficiency.

To the degree that overbidding is due to projection, educating subjects increases the ef-

ficiency in at least two ways: Subjects stop randomizing in equilibrium, which ensures

that the bidder with the highest value wins, and in cases where not just the winners pay

their bids (e.g. contests), a reduction of overbidding increases efficiency. Thus, the above

findings also have novel policy implications.
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A Appendix

A.1 Alternative behavioral concepts

Cursed equilibrium The relation to cursed equilibrium (Eyster and Rabin, 2005) has

been discussed in the Introduction: Both concepts assume that players have a mistaken

understanding of the type distribution. Given the degree of cursedness χ ∈ [0,1], cursed

players assign weight 1−χ to the Bayesian case and χ to the event that their opponents’

types are random and uninformative given the own signal. In the latter case, the oppo-

nents play the average strategy σi(a−i|ti) = ∑ t−i∈T−i
Pr(t−i|ti)∏ j 6=i σ j(a j|t j), and overall,

cursed players expect payoffs

πCurse
i

(

ai|ti,σ−i

)

= (1−χ) ∑
t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi

[

(ai,a−i),(ti, t−i)
]

∏
j 6=i

σ j(a j|t j)

+χ ∑
t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi

[

(ai,a−i),(ti, t−i)
]

σi(a−i|ti). (9)

A strategy profile σ = (σ1, . . . ,σn) is a χ-cursed equilibrium if σi(·|ti) ∈ BRti(σ−i|πCurse
i )

for all i and ti. I am not aware of independent evidence supporting “random projection” as

in cursed equilibrium (as opposed to projection of the own type), but cursed equilibrium

appears well-suited to capture beliefs if type sets are asymmetric. Market interactions

with one-sided incomplete information as analyzed in Eyster and Rabin (2005) are a

prototypical example. In such asymmetric games, type projection appears less intuitive.

Risk aversion Cox et al. (1985, 1988) argue that a potential factor in bidding is constant

relative risk aversion (CRRA), u(p) = pα/α with α 6= 0, with expected utilities

πCRRA
i

(

ai|ti,σ−i

)

= ∑
t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) u
(

pi

[

(ai,a−i),(ti, t−i)
])

∏
j 6=i

σ j(a j|t j). (10)

CRRA utilities u(·) can equally be used to complement projection and cursedness. As it

stands, risk aversion is the leading explanation of overbidding in private value auctions,

but the more recent observations on loser regret, e.g. Filiz-Ozbay and Ozbay (2007) and

Engelbrecht-Wiggans and Katok (2007), challenge this perspective (as discussed above).

Limited depth of reasoning The concepts discussed so far have in common that they

are defined in terms of the payoff structure π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }. The players’

beliefs about their opponents’ strategies are taken as given. The complementary approach

is to vary the belief structure, allowing that players deviate from BNE by violating ratio-

nal expectations.29 The seminal model in this strand literature, level-k, follows Stahl and

Wilson (1995) and Nagel (1995); other belief structures are discussed below. Assum-

ing level-0 randomizes uniformly, σ0(·|ti) = 1/|Ai| for i, ti, and given a payoff structure

29Note that both cursedness and projection can equally be defined as concepts relaxing the belief struc-

ture. Above, they have been defined in terms of the payoff structure, as both Eyster and Rabin (2005) and

the above definitions emphasize that an equilibrium assumption is maintained even under cursedness and

projection (a BNE of an augmented game), while standard models of alternative belief structures (such as

level-k) emphasize the non-equilibrium character of the predicted strategy profiles.
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π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, player i has level-k depth of reasoning, k ≥ 1, if he plays

σk(·|ti)∈ BRti(σ
k−1
−i |π̃i) for all ti. In a similar manner, level-k has been applied to auctions

by Crawford and Iriberri (2007).

A.2 Belief models

As described above, I endow all models with logistic errors. Noisy introspection (Goeree

and Holt, 2004) is a model inspired by relaxing rationalizability through allowing for

logistic errors. Each type plays a λ-logit response to the belief that his opponents play a

λ ·κ-logit response to the belief their opponents play a λ ·κ2-logit response to their belief,

and so on, using κ ∈ [0,1]. The model contains quantal response equilibrium and level-1

as special cases, for κ = 1 and κ = 0, respectively.

Definition 3 (Noisy introspection, NI). Given π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a strategy

profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-noisy introspection if all types ti ∈ Ti of

all players i ∈ N choose σi(·|ti) = Logitti(σ
1
−i|π̃i,λ) with

σk
i (·|ti) = Logitti(σ

k+1
−i |π̃i,λ ·κk) (11)

The cognitive hierarchy model (Camerer et al., 2004) adapts the level-k model by as-

suming that level-k players do not play a logit response to the belief that all opponents

are level k−1, but a logit response to the belief that the opponents are at any level k′ < k

(including level-0). Players are assumed to have rational expectations about the relative

frequencies of these levels, and overall levels are assumed to have Poisson distribution

in the population. Given the Poisson distribution, let f (k) = Pr(level = k) denote the

relative frequency of level k overall (given distribution parameter κ), and define the con-

ditional probability g(k′|k) = Pr(level = k′ | level < k). The level-0 strategy is uniform

randomization, σ0(·|ti) = 1/|Ai|.

Definition 4 (Cognitive hierarchy model, CHM). Given π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a

strategy profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-cognitive hierarchy if all types

ti ∈ Ti of all players i ∈ N choose σ(·|ti) = ∑k≥0 f (k) ·σk(·|ti) with

σk(·|ti) = Logitti(τ
k−1
−i |π̃i,λ) and τk−1(·|ti) =

k−1

∑
k′=0

g(k′|k) ·σk′(·|ti). (12)

I use the parsimonious approach of Camerer et al. (2004) to capture the distribution

of levels via Poisson also to complete the level-k model. Again, f (k) = Pr(level = k)
denotes the relative frequency of level k in the population (given distribution parameter

κ), and the level-0 strategy is uniform randomization, σ0(·|ti) = 1/|Ai|.

Definition 5 (Level-k). Given a payoff structure π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a strategy

profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-level-k if all types ti ∈ Ti of all players

i ∈ N choose σ(·|ti) = ∑k≥0 f (k) ·σk(·|ti) with

σk(·|ti) = Logitti(σ
k−1
−i |π̃i,λ). (13)
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A.3 Descriptive, predictive, and inferential adequacy

To be clear, let me introduce some notation. De denotes the data set associated with

experiment e, D = ∪eDe denotes the pooled data, and define D−e = D\De (the data sets

used here are listed in Table 1). Given a model, p denotes a generic parameter vector

and p⋆(D′) denotes the maximum likelihood estimate given data set D′. Finally, |p|
denotes the the dimensionality of p, |D′| denotes the number of subjects in data set D′,
and ll(p|D′) denotes the log-likelihood of the model with parameters p given data D′.

First, I measure descriptive adequacy by Bayes information criterion (Schwarz, 1978),

using the number of subjects as number of observations.

Definition 6 (Descriptive adequacy). BIC =−ll
(

p⋆(D) |D
)

+ |p⋆(D)|/2 · log |D|

Second, I measure predictive adequacy by fitting the parameters to one information

condition, using the estimate to predict the remaining data, and rotating such that all data

sets are used as training data. The predictive adequacy contains no penalty term as in BIC,

as by definition no parameter is adjusted to the data set used in the validation stage, i.e.

no degree of freedom is used. To be aligned with the other measures, I report the absolute

values of the log-likelihoods, which implies that “less is better” for all measures.

Definition 7 (Predictive adequacy). LLpred = −∑e ll
(

p⋆(De) |D−e

)

/(m− 1) using m as

number of experiments analyzed

Finally, the inferential adequacy also is evaluated out-of-sample, but now, we infer

signals from bids rather than predicting bids from signals (following Bajari and Hortacsu,

2005). Given an observation and a set of parameters (estimated using training data),

the theoretical bidding function for the respective out-of-sample treatment is determined

and the expectation of the signal conditional on the observed bid is computed. This

conditional expectation is called inferred signal. The inferential adequacy is the mean

absolute deviation (MAD) to the actual signals. The supplementary material additionally

lists the results for the mean squared deviation (MSD), which are very similar. Formally,

let m(p|D′) denote the mean absolute deviation of inferred signals to actual signals if

inference is made using parameter vector p on data set D′.

Definition 8 (Inferential adequacy). MAD = ∑e m
(

p⋆(De) |D−e

)

A.4 Subject heterogeneity, likelihood function and maximization

The precision parameters λ and κ are bounded at zero and have independent gamma

distributions, whereas the degrees of risk aversion, projection and cursedness are bounded

at both 0 and 1 and have independent beta distributions. Thus, each subject is described

by a parameter vector p ∈ P with joint density f (). Using os = (os,t) to describe the

observations of subject s ∈ S at time t ∈ T , and σ(os,t | f ) as the probability of observation

os,t under density f , the individual likelihood given the observations os of subject s is

ls( f |os) =
∫

P
∏
t∈T

σ(os,t |p) · f (p)dp. (14)
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The predictions σ(os,t | f ) implicitly depend also on the underlying belief model, e.g. QRE

or AQRE. The integral is evaluated by simulation, using quasi random numbers, see Train

(2003) and e.g. the supplement to Bellemare et al. (2008). Aggregating across subjects,

the log-likelihood of the respective model with parameter density f is

ll( f ) = ∑
s∈S

log ls( f |os). (15)

QREs are computed using a homotopy method leaning on Turocy (2005). Parameters

are estimated by maximizing the log-likelihood, sequentially applying two maximization

algorithms. Initially, I use the robust, gradient-free NEWUOA algorithm (Powell, 2006)

and I verify convergence using a Newton-Raphson algorithm. The estimates are tested by

extensive cross-analysis to ensure that global maxima are found. All parameter estimates

are provided as supplementary material.

A.5 Proof of Proposition 1

Step 1 (Best responses) If r− r⋆ ∈ (d,d), then bidding r wins the auction with non-

degenerate probability and

d

dr
Π̃0(r|r⋆) =

d

dr

∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd

=
(

ṽ(r− r⋆)− r
)

· fD(r− r⋆)−FD(r− r⋆)

∝
(

ṽ(r− r⋆)− r
)

− FD(r− r⋆)

fD(r− r⋆)
.

Since we know

ṽ(d) = (1−δ) · d

2

fD(d) =
2ε−|d|

4ε2

FD(d) =

{

(2ε+d) · fD(d)/2, if d < 0

1− (2ε−d) · fD(d)/2, if d ≥ 0,

it follows that Ṽ =
∫ d

d ṽ(d) fD(d)dd = 0 and the BNE (for ρ = 0), the zero of Π̃′
0(r|r⋆) in

case r = r⋆, is

ṽ(0)− rBNE =
FD(0)

fD(0)
⇔ 0− rBNE =

1/2

1/2ε
⇔ rBNE =−ε.

Thus, the best response to r⋆, which solves Π̃′
0(r|r⋆) = 0, can be characterized as

BR(r⋆) =

{

δr⋆−2ε
2+δ

, if r ≥ rBNE

δ+4ε+1−
√

δ2+(−4r⋆+8ε+2)δ+4r⋆2−4r⋆+32ε2+8ε+1

2
, if r < rBNE .
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This implies that BR(r⋆) is weakly increasing in r⋆ (strategic complementarity) and that

(i) BR(r⋆)> r⋆ if r⋆ < rBNE and (ii) BR(r⋆)< r⋆ if r⋆ > rBNE .

Step 2 (Concavity) The second derivative with respect to r⋆ satisfies

d2

dr2
Π̃0(r|r⋆) = (ṽ′(r− r⋆)−1) · fD(r− r⋆)+

(

ṽ(r− r⋆)− r
)

· f ′D(r− r⋆)− fD(r− r⋆)< 0

=

(

1−δ

2
−1

)

· 2ε−|d|
4ε2

−
(

(1−δ)d

2
− r

)

· 1

4ε2
− 2ε−|d|

4ε2

=
1−δ

2
· 2ε−|d|

4ε2
−
(

(1−δ)d

2
− r

)

· 1

4ε2
− 2ε−|d|

2ε2

≤ 1−δ

2
· 2ε

4ε2
+

r

4ε2
− 2ε−|d|

2ε2

∝ (1−δ) · ε+ r−2 · (2ε−|d|)≤ r+2 · |d|−3ε

which is negative if r+2 · |d| ≤ 3ε.

Thus, if r − r⋆ ∈ (d,d) and r + 2 · |d| ≤ 3ε, then dΠ̃0(r|r⋆)/dr is decreasing in r.

Critically, concavity therefore obtains if r,r⋆ ≤ Ṽ = 0. Note that this statement also holds

true for r− r⋆ = d, i.e. for the maximal r winning the auction with zero probability, if we

consider the directional derivative dr > 0.

Step 3 (Upper bound r ≤ Ṽ ) By r− r⋆ ∈ (d,d) and ṽ being non-decreasing, we know

that if r > Ṽ ,

Π̃0(r |r⋆) =
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd ≤
∫ d

d

(

ṽ(d)− r
)

fD(d)dd = Ṽ − r < 0,

where the (first) weak inequality follows from the assumption that ṽ is non-decreasing.

Thus, if r > Ṽ , then Π̃0(r|r⋆) < 0 in response to any r⋆ with r − r⋆ ∈ (d,d). By

corollary, the statement holds true equally in response to any mixed strategy σ. As a

result, in response to any σ, if r > Ṽ , then

Π̃ρ(r|σ) = (1−ρ)Π̃0(r|σ)+ρ(Ṽ − r)Fσ(r)< 0.

Negativity directly follows from Ṽ −r < 0 and Π̃0(r|σ)< 0 (Step 3). In turn, zero payoffs

are generally feasible by making a bid that loses with certainty, i.e. any r ≤ inf{r′|σ(r′)>
0}+ d − d, and bidding r > Ṽ is therefore not optimal in response to any σ. That is,

r := supBR(σ) for all σ.

Step 4 (Any symmetric ρ-TPE is mixed) For the purpose of contradiction, fix any ρ ∈
(0,1) and assume that a pure strategy equilibrium r⋆ exists. That is, given the expected

payoffs of bidding r in response to r⋆,

Π̃ρ(r |r⋆) = (1−ρ) ·
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd +ρ · s(b,b⋆,x) (Ṽ − r)
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we assume r⋆ ∈ argmaxr Π̃ρ(r |r⋆). Now, I distinguish two cases.

Case 1: r⋆ < Ṽ . In this case, the bidder profits from the unilateral defection to r⋆+ε
for some ε > 0. For,

lim
ε→0

Π̃ρ(r⋆+ ε |r⋆)− Π̃ρ(r⋆ |r⋆) = ρ ·
[

s(b⋆+ ε,b⋆,x)− s(b⋆,b⋆,x)
]

(Ṽ − r⋆)

= ρ · [1−1/n] (Ṽ − r⋆)> 0,

which is positive since ρ > 0, n = 2, and r⋆ < Ṽ , the contradiction.

Case 2: r⋆ ≥ Ṽ . By Step 3, we can rule out r⋆ > Ṽ , implying that r⋆ = Ṽ obtains

and thus Π̃0(r⋆|r⋆) = 0 as well as Π̃ρ(r⋆|r⋆) = 0 for any ρ. Now consider the “infimal”

winning bid rinf which is the infimum of all bids that win the auction with positive prob-

ability in response to r⋆, namely rinf = r⋆+d −d. The expected payoff of bidding rinf is

zero, by d < d we obtain rinf < r⋆, and by concavity of Π̃0 for all r,r⋆ ≤ Ṽ it follows that

the bidder can profitably deviate to any r : rinf < r < r⋆, i.e. bidding r⋆ ≥ Ṽ is not optimal

in response to any r⋆ ≥ Ṽ (the contradiction).

Step 5 (Lower bound r ≥ rBNE) At the lower bound, the directional derivative with

respect to dr < 0 is

Π̃′
ρ(r|σ)

∣

∣

r=r,dr<0
= (1−ρ)Π̃′

0(r|σ),

which must be non-negative in equilibrium. Otherwise, one gains from deviating unilat-

erally toward putting probability mass on bids r < r. Thus, Π̃′
0(r|σ) ≥ 0 if ρ ∈ (0,1).

Second, the directional derivative with respect to dr > 0 is, noting Fσ(r) = 0,

Π̃′
ρ(r|σ)

∣

∣

r=r,dr>0
= ρ(Ṽ − r)σ(r)+(1−ρ)Π̃′

0(r|σ).

This directional derivative must be zero, since σ is mixed. By Step 3, Ṽ − r ≥ 0, by Step

4 (mixedness) we know r < r, and thus Ṽ − r > 0. Given σ(r) ≥ 0 and ρ ∈ (0,1), this

implies Π̃′
0(r|σ) = 0 (besides σ(r) = 0). Next, I show that Π̃′

0(r|σ) = 0 implies r ≥ rBNE .

For contradiction, assume r < rBNE . By Step 1, we know BR(r) > r for all r ≥ r in this

case, implying dΠ̃0(r|r)/dr > 0 for all r > r. Hence, Π̃′
0(r|σ)> 0, the contradiction.

Step 6 (Left-skewness) Finally, I show that the density of any symmetric ρ-TPE strat-

egy is increasing on its support. Taking the derivative of Π̃ρ with respect r in response to

σ, we obtain for any r in the interior of σ’s support

Π̃′
ρ(r|σ)

∣

∣

r∈(r,r) = (1−ρ)Π̃′
0(r|σ)+ρ(Ṽ − r)σ(r)−ρFσ(r).

Along the support of the mixed equilibrium, Π̃′
ρ(r|σ) = 0 is satisfied, implying for all

interior r ∈ (r,r),

σ(r) =
1

Ṽ − r
·
(

Fσ(r)−
1−ρ

ρ
· Π̃′

0(r|σ)
)

.
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Here, Fσ(r) is (weakly) increasing in r by virtue of being a cumulative distribution func-

tion, Ṽ − r is decreasing in r since Ṽ is constant, and Π̃′
0(r|σ) is decreasing in r by

concavity of Π0 (given r,r ≤ Ṽ ). Hence, σ(r) is increasing in r on σ’s support.
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Figure 4: First-price auctions, affiliated private values (KHL87). Inexperienced subjects

(a–b) vs. experienced subjects (c–d). Plots are histograms of r = (Bid−Signal)/ε

(a) Inexp: N = 6,ε = 6
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(c) Exp: N = 6,ε = 12
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(d) Exp: N = 6,ε = 24
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Figure 5: First-price auctions with common values (KL86), inexperienced subjects (a–d)

vs. experienced subjects(e–h). Plots are histograms of r = (Bid−Signal)/ε

(a) N = 4,ε = 6

−1.5 −1.0 −0.5 0.0 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) N = 7,ε = 6
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(d) N = 7,ε = 12
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(e) N = 3−4,ε = 12,18
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(f) N = 5−7,ε = 12,18
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(g) N = 3−4,ε = 24,30
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(h) N = 5−7,ε = 24,30
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Figure 6: First-price auctions with independent private values (DKL89). Inexperienced

subjects (a–c) and experienced subjects (d–f). Histograms of Bid/Signal

(a) Inexp: DKL89, N = 3

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

(b) Inexp: DKL89, N = 6

0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

(c) Exp: DKL89, N = 3
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(d) Exp: DKL89, N = 6
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Table 9: Statistical tests of differences in the degree of overbidding and within-subject

variance between auctions with affiliated private values and common values

Degree of Overbidding Within-Subject Variance Between-Subj

Data APV CV APV CV Variance

Inexperienced, ε = 6 −0.128 ≪ 0.641 0.359 ≈ 0.341 0.246

Inexperienced, ε = 12 0.104 ≪ 0.523 0.052 ≪ 0.4 0.147

Inexperienced, all w −0.058 ≪ 0.621 0.326 ≈ 0.361 0.21

Experienced, w ≤ 18 0.062 ≪ 0.403 0.159 < 0.336 0.248

Experienced, w ≥ 24 0.179 < 0.329 0.113 ≪ 0.32 0.13

Experienced, all w 0.142 ≪ 0.357 0.15 ≪ 0.343 0.162

Description: The sole difference to Table 10 is that the comparison is between APV and CV auctions, instead of

inexperienced and experienced subjects.

Table 10: Statistical tests of the degree of overbidding and within-subject variance (with

respect to the degree of overbidding) as a function of experience

Degree of Overbidding Within-Subject Variance Between-Subj

Data Inexperienced Experienced Inexperienced Experienced Variance

Independent private values auctions (DKL89, KL93)

N = 3 0.104 ≈ 0.148 0.16 ≈ 0.123 0.033

N = 5 0.08 > −0.144 0.142 < 0.36 0.077

N = 6 −0.021 < 0.036 0.164 ≈ 0.11 0.039

all N 0.05 ≈ 0.04 0.156 ≈ 0.178 0.119

all, contr. for N 0.05 ≈ 0.041 0.155 ≈ 0.179 0.103

Affiliated private values auctions (KHL87)

ε = 12 0.104 ≈ 0.062 0.051 ≈ 0.172 0.17

All data −0.058 ≪ 0.142 0.331 > 0.15 0.134

All, contr. for w 0.058 ≈ 0.04 0.192 ≈ 0.209 0.117

Common value auctions (KL86)

N ≤ 4, w ∈ {12,18} 0.538 > 0.228 0.415 ≈ 0.343 0.208

N ≤ 4, all w 0.63 ≫ 0.316 0.37 ≈ 0.363 0.233

N ≥ 5, all w 0.613 ≫ 0.389 0.344 ≈ 0.309 0.254

all N, w ∈ {12,18} 0.517 ≈ 0.404 0.397 ≈ 0.332 0.263

all N, all w 0.621 ≫ 0.359 0.357 ≈ 0.332 0.242

all N, all w, contr. for w 0.573 ≈ 0.411 0.349 ≈ 0.337 0.247

Description: The table reports the results of one set of statistical tests per row. Given the subset of data specified in column

1, two null hypotheses are simultaneously tested: (i) H0 : the degree of overbidding does not differ between inexperienced

and experienced subjects, and (ii) H0 : the residual (i.e. within-subject) variances do not differ between them. These

nulls are tested in regression models with the degree of overbidding as independent variable and the level of experience

as independent variable (without intercept). ≫,≪ indicate rejection of H0 at the .005 level and >,< indicate rejection

at .05, where the p-values are bootstrapped as described above. Considering the Bonferroni correction for the multiple

testing problem inherent in this analysis, results should be significant roughly at the .005 level. Terms such as the degree

of overbidding are used as defined above (e.g. Table 2).
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