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Abstract

This paper analyzes the interactions between redistribution and unemployment in-

surance policies and their implications for the optimal design of tax-benefit systems.

In a setting where individuals with different earnings abilities are exposed to unem-

ployment risk on the labor market, I characterize the optimal income tax schedule and

the optimal unemployment benefit schedule in terms of empirically estimable sufficient

statistics. I provide a Pareto-efficiency condition for tax-benefit systems that implies

a tight link between optimal redistribution and optimal unemployment insurance: the

steeper the profile of income taxes is, the flatter the profile of unemployment benefits

should be, and vice versa. Optimal replacement rates are therefore monotonically de-

creasing with earnings, from 1 at the bottom of the earnings distribution to 0 at the

top, and redistribution through unemployment benefits is efficient. Empirical applica-

tions show that these interactions between redistribution and unemployment insurance

have important quantitative implications.
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Introduction

The provision of redistribution and social insurance has become a defining feature of modern

welfare states, and the design of such programs a focal point in public and political discourse.

Policymakers and academics alike tend to consider the design of these programs as separate

policy questions, echoing the separation between the entities in charge of operating and

managing them. This paper questions this separation. Analyzing the interactions between

redistribution and social insurance policies in the context of unemployment insurance, it

shows that they have important implications for the optimal design of tax-benefit systems.

There are three major sources of interactions between redistribution and social insurance

in this context. First, social insurance policies like unemployment insurance affect income

tax revenue through their effect on, e.g., unemployment. In other words, the moral hazard

costs of social insurance impact the financing of the entire tax-benefit system. Second, the

moral hazard costs of social insurance are in turn affected by income taxes, because income

taxes directly affect, e.g., the incentives to search for jobs when unemployed. Third, social

insurance has a well-targeted redistributive value when benefits depend on (past) earnings.

To analyze these interactions and their policy implications, this paper develops a concep-

tual framework bridging canonical models of optimal income taxation (Mirrlees, 1971; Saez,

2001, 2002) and optimal unemployment insurance (Baily, 1978; Chetty, 2006a, 2008). I con-

sider a population of individuals with heterogeneous earnings abilities making endogenous

labor supply decisions, which generates a motive to provide redistribution at the cost of dis-

incentivizing work. These individuals are exposed to unemployment risk on the labor market

and must search for jobs when unemployed, which gives a motive to provide unemployment

insurance at the cost of disincentivizing search.

A key conceptual difficulty is that the canonical optimal income tax model is static, while

there is a fundamental dynamic element to unemployment insurance: the unemployment

benefits received when unemployed depend on past earnings when employed. This has led

previous optimal income tax papers featuring involuntary unemployment to assume that all

unemployed individuals receive the same amount of benefits, independent of their earnings

on the job.1 In contrast, this paper introduces unemployment benefits that depend on

earnings on the job by analyzing the steady-state representation of a dynamic model, where

unemployment insurance is well defined.

This steady-state representation yields a simple and tractable framework, where individ-

uals who decide to participate in the labor market spend a fraction of their time employed

1This includes Boone and Bovenberg (2004), Hungerbühler, Lehmann, Parmentier, and Van der Linden
(2006), Lehmann, Parmentier, and Van der Linden (2011), Sleet and Yazici (2017), Kroft, Kucko, Lehmann,
and Schmieder (2020), Hummel (2021).
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and the remaining fraction of their time unemployed, while individuals who decide not to

participate remain inactive and receive social assistance. In this setting, I characterize the

optimal nonlinear tax-transfer schedule when employed and the optimal nonlinear benefit

schedule when unemployed in terms of empirically estimable sufficient statistics.

Optimal income taxation trades off equity and efficiency. The optimal tax-transfer sched-

ule thus depends on redistributive concerns and labor supply elasticities as in canonical

results. It also depends on unemployment rates, search elasticities, and unemployment ben-

efits through two additional channels. First, higher unemployment rates reduce the size of

the income tax base. Second, higher income taxes reduce the job search incentives of the

unemployed, which prolong unemployment and generate fiscal externalities.

These two channels are particularly important for the optimal design of taxes and trans-

fers at the bottom of the earnings distribution, where the unemployment rate is high. An

Earned Income Tax Credit (a larger transfer to the working poor than to the inactive; here-

after EITC) is more desirable than a Negative Income Tax (a larger transfer to the inactive

than to the working poor; hereafter NIT) when search elasticities are large, because an EITC

boosts job search among the unemployed.2

I show the existence of a Pareto-efficiency condition for tax-benefit systems, which follows

from the efficient allocation of consumption between employment and unemployment. This

Pareto-efficiency condition transparently extends the Baily-Chetty formula (Baily, 1978;

Chetty, 2006a, 2008) and shows that optimal unemployment insurance trades off the in-

surance and redistributive value of unemployment benefits against their moral hazard costs.

These moral hazard costs depend on search elasticities and on net contributions to the entire

tax-benefit system (taxes when employed net of benefits when unemployed).

This Pareto-efficiency condition provides a tight link between redistribution and unem-

ployment insurance policies: the steeper the tax-transfer profile is, the flatter the optimal

profile of benefits should be, and vice-versa. Optimal net replacement rates (net benefits

when unemployed as a fraction of net income when employed) are therefore monotonically de-

creasing with earnings, starting from 1 at the bottom of the earnings distribution. Moreover,

a more redistributive tax-benefit system features higher replacement rates at the bottom and

lower replacement rates at the top. Last but not least, efficiency can be reached through

Pareto-improving reforms: if the replacement rate is, say, too high at a given earnings level,

there exists a joint reduction in taxes when employed and in benefits when unemployed that

raises resources for the government, while keeping individuals’ utility constant.

2An advantage of this framework to study the optimality of an EITC versus a NIT is that the optimal
tax-transfer schedule is here continuous at the origin, whereas it features an initial discontinuity in static
optimal tax frameworks with participation decisions (see Jacquet, Lehmann, & Van der Linden, 2013). As
a result, negative participation taxes go here hand-in-hand with negative marginal tax rates.
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The above characterization of optimal tax-benefit schedules is derived in a baseline model

that makes a number of simplifying assumptions. First, I abstract from savings in the

baseline and assume that individuals are hand-to-mouth. Second, I abstract from eligibility

requirements to unemployment insurance and assume that unemployment benefits are not

limited in time. Third, I abstract from earnings decisions and assume that labor supply

decisions are concentrated along the participation margin. Next, I generalize the previous

results in extensions that relax these assumptions.

In a first extension, I introduce liquid savings and illiquid assets and provide a general

characterization of optimal policies nesting different savings and assets models. Since liquid

savings provide private insurance against unemployment, they reduce the insurance value of

unemployment benefits. Assuming that low earners have very little savings (if any) and that

top earners have enough savings to fully self-insure against unemployment, savings reinforce

the decreasing pattern of optimal replacement rates, from 1 at the bottom of the earnings

distribution to 0 at the top, while pushing for marginally lower taxes.

In a second extension, I introduce earnings decisions and derive a sufficient statistics

formula for optimal marginal tax rates that extends canonical results in optimal income tax-

ation (Diamond, 1998; Saez, 2001). It shows that negative marginal tax rates (an EITC) may

be optimal if there is a large positive correlation between search elasticities and employment

taxes (taxes when employed plus benefits when unemployed) across earnings. The Pareto-

efficiency condition is almost unaffected, implying that earnings decisions mostly impact

optimal replacement rates through their effects on the optimal income tax schedule.

Last, I complement these sufficient statistics results with mechanism design results.

First, eligibility requirements to unemployment insurance are key to maintain incentive-

compatibility in the presence of earnings decisions. Indeed, conditioning the receipt of un-

employment benefits to spending a minimal fraction of time employed allows to eliminate

upward (non-local) deviations that consists in low ability individuals spending one day em-

ployed at a high-paying job and the rest of their time unemployed with high unemployment

benefits. The previous sufficient statistics results thus implicitly assume the existence of such

eligibility requirements.3 Second, redistribution through unemployment benefits is efficient

because it relaxes (local) downward-binding incentive-compatibility constraints. The reason

is that individuals with higher earnings ability find it optimal to search more and spend

more time employed.

An empirical application to the U.S. reveals that actual net replacement rates decrease

3These eligibility requirements rule out off-equilibrium deviations and are thus not binding in equilibrium,
by assumption. One can extend these results to settings where some of the unemployed do reach benefit
exhaustion (although this typically leads to bunching at the threshold).
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with earnings, from 1 at the bottom of the earnings distribution to 0 at the top. At the

bottom, this is because individuals with extremely low income receive similar transfers from

social assistance programs, regardless of their labor market status.4 At the top, this comes

from the fact that unemployment benefits are linearly increasing with earnings up to a cap,

above which replacement rates steadily decrease with earnings. While actual replacement

rates decrease with earnings, results show that the structure of linearly increasing benefits

up to a cap is not Pareto-efficient, providing a scope for Pareto-improving reforms.

To simulate counterfactual policies, I adapt common parametric specifications used in

prior work and calibrate the model to match key sufficient statistics as well as observed dis-

tributions of unemployment, participation, and earnings, under the existing U.S. tax-benefit

system. Analyzing Pareto-efficient tax-benefit systems with varying degrees of redistribu-

tion, simulation results suggest that the tight link between redistribution and unemployment

insurance has a stabilizing effect on unemployment: unemployment rates are barely affected

by changes in redistribution along the Pareto-frontier.

Related literature. This paper contributes to the analysis of optimal redistribution and

optimal social insurance policies. A first key contribution is to provide a simple and tractable

framework bridging canonical models of optimal income taxation (Mirrlees, 1971; Saez, 2001,

2002) and optimal unemployment insurance (Baily, 1978; Chetty, 2006a, 2008). Nesting

canonical results in both literatures allows to transparently analyze how these two problems

interact and how these interactions affect optimal policies.

A second key contribution is to show that these interactions have crucial policy impli-

cations, starting with their impact on optimal unemployment insurance.5 While the Baily-

Chetty formula is often used to characterize the optimal replacement rate, I find that optimal

replacement rates monotonically decrease with earnings, in a way that is shaped by redis-

tribution. This speaks to the issue of “optimal differentation” of unemployment insurance

identified by Spinnewijn (2020) as a key avenue for future research. It also helps connect-

ing unemployment insurance theory to actual policy since replacement rates decrease with

earnings in practice. This paper further relates to prior work studying the impact of redis-

tributive concerns on the optimal replacement rate in calibrated macro or life-cycle models

(Uren, 2018; Haan & Prowse, 2019; Setty & Yedid-Levi, 2021). Last, the rationale for eligi-

bility requirements to unemployment insurance provided in the mechanism design analysis

4Since the unemployed who receive low unemployment benefits (if any) also receive means-tested transfers,
these transfers provide unemployment insurance. This is an important fourth source of interactions between
redistribution and unemployment policies in practice.

5Recent work on optimal unemployment insurance includes Michelacci and Ruffo (2015), Kroft and No-
towidigdo (2016), Lawson (2017), Kolsrud, Landais, Nilsson, and Spinnewijn (2018), Landais, Michaillat,
and Saez (2018b), Landais and Spinnewijn (2021), Barnichon and Zylberberg (2022).
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echoes the one provided by Hopenhayn and Nicolini (2009), which is that the government

cannot distinguish opportunistic job quits from involuntary separations.

This paper is closely related to prior work in optimal income taxation featuring involun-

tary unemployment. This strand of the literature focuses on the optimal tax implications of

labor market frictions, leading to equilibrium unemployment, assuming that all the unem-

ployed receive a constant lump-sum transfer (Boone & Bovenberg, 2004; Hungerbühler et al.,

2006; Lehmann et al., 2011; Sleet & Yazici, 2017; Kroft et al., 2020; Hummel, 2021).6 This

paper adopts a complementary focus by introducing unemployment benefits that depend on

earnings when employed, assuming away general equilibrium effects. It contributes to this

literature by analyzing the interactions with unemployment insurance and showing that it

is efficient to redistribute through unemployment benefits. It also extends the conditions,

analyzed in settings without involuntary unemployment (e.g. Saez, 2002; Lockwood, 2020;

Hansen, 2021) and with involuntary unemployment but constant unemployment benefits

(e.g. Kroft et al., 2020; Hummel, 2021), under which an EITC or a NIT is optimal.

Last, this paper relates to a broader literature studying redistribution and social insur-

ance.7 The new dynamic public finance literature analyzes the redistribution and insurance

value of taxes in dynamic economies with stochastic shocks, but does not generally consider

social insurance programs.8 Exceptions include Golosov and Tsyvinski (2006) who study

optimal disability insurance, but abstract from interactions with redistribution, as well as

Michau (2014) and Ndiaye (2020) who study the optimal design of pensions, but focus on the

optimal age profile of taxes and benefits.9 A key distinction is that both disability and retire-

ment are (modelled as) absorbing states which is a crucial element of these dynamic models,

whereas unemployment insurance precisely seeks to avoid that unemployment becomes an

absorbing state. This paper contributes to this literature by providing a Pareto-efficiency

condition for tax-benefit systems that transparently links optimal redistribution and optimal

unemployment insurance in a sufficient statistics approach. This could be fruitfully applied

to other social insurance policies (e.g. pensions) and extended to dynamic environments.

6An alternative explored in Boone and Bovenberg (2006), Boadway and Cuff (2018) is to assume that
earnings abilities are observable and introduce ability-specific unemployment benefits. In a second-best
setting, da Costa, Maestri, and Santos (2022) show that ability-specific unemployment benefits can be
incentive-compatible but are never optimal in the environment that they consider.

7A classic result is that social insurance can be an efficient redistributive tool when risk is negatively
correlated with earnings and individuals are pooled within the same insurance contract (Rochet, 1991;
Cremer & Pestieau, 1996; Boadway, Leite-Monteiro, Marchand, & Pestieau, 2006; Netzer & Scheuer, 2007).
Analyzing earnings-specific unemployment benefits, this paper leaves little scope for this pooling logic.

8See Golosov, Kocherlakota, and Tsyvinski (2003), Golosov, Tsyvinski, Werning, Diamond, and Judd
(2006), Kocherlakota (2010), Weinzierl (2011), Farhi and Werning (2013), Golosov, Troshkin, and Tsyvinski
(2016), Findeisen and Sachs (2017), Chang and Park (2021) and the recent review by Stantcheva (2020).

9See also Diamond and Mirrlees (1978), Cremer, Lozachmeur, and Pestieau (2004), Golosov, Shourideh,
Troshkin, and Tsyvinski (2013), Choné and Laroque (2018), Moser and Olea de Souza e Silva (2019).
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Outline. Section 1 introduces the setting. Section 2 characterizes optimal policies under

baseline assumptions. Section 3 generalizes these results in extensions. Section 4 presents

empirical applications.

1 Setting

This section describes the setting of the model, making a number of simplifying assumptions

that are later relaxed in the extensions. First, it presents the steady-state representation

used to bridge optimal income tax and optimal unemployment insurance models. Second, it

introduces individuals’ and the government’s problems.

Steady-state representation. Consider a population of individuals with heterogeneous

earnings abilities, translating in heterogeneous earnings when employed, z. At any point in

time, t, an individual who is active on the labor market can be either employed or unem-

ployed. The government levies a tax-transfer schedule on the employed, Te(z), and provides

unemployment benefits to the unemployed, Bu(z), which depend on earnings in the previous

employment spell.10

An individual who is employed with earnings z values with utility function ue(.) its

consumption ce(z), incurs a cost of working k(z), and faces a probability q(z) of becoming

unemployed next period. When unemployed, this individual values with utility function

uu(.) its consumption cu(z), and incurs a cost of searching for jobs ψ̃(p, z), which increases

with the probability p of becoming employed next period. Job search decisions then lead to

a probability p(z) of becoming employed next period.

By assumption, this dynamic model is stationary (time-invariant), implying that it con-

verges to a steady state.11 In the steady state, normalizing the discount factor to one, the

utility of an individual with earnings when employed, z, is

p(z)

q(z) + p(z)︸ ︷︷ ︸
:=e(z)

[
ue (ce(z))− k(z)︸ ︷︷ ︸

employed

]
+

q(z)

q(z) + p(z)︸ ︷︷ ︸
:=1−e(z)

[
uu (cu(z))− ψ̃(p(z), z)︸ ︷︷ ︸

unemployed

]
(1)

where the steady-state probability of employment, e(z), which can be interpreted as the

fraction of time spent employed on the labor market, is influenced by search efforts. This

steady state representation is used throughout the analysis.

10To avoid problems of initialization which have generally little impact on the steady state, one can assume
that individuals who are active on the labor market start initially employed at t = 1.

11The assumption of stationarity is made to simplify the exposition. Extensions to non-stationary dynamic
models are straightforward, provided that they converge to a steady state.
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Baseline assumptions. A number of simplifying assumptions are made in the baseline.

First, I assume that there is no savings and that individuals are hand-to-mouth consumers,

implying that their consumption when employed is ce(z) = z−Te(z). Second, I abstract from

problems of eligibility to unemployment insurance and assume that unemployment benefits

are not limited in time, implying that consumption when unemployed is cu(z) = Bu(z).

Third, I assume that individuals only make two decisions: they decide on their search efforts

when unemployed and on whether to participate in the labor market (extensive margin of

labor supply), but earnings when employed which reflect underlying earnings abilities are

exogenously given. These assumptions are later relaxed in extensions (see Section 3).

Individuals. Upon participation to the labor market, individuals’ search efforts determine

the fraction of time spent employed, e(z), and thus indirect utility, V (z), through

V (z) := max
e

e
[
ue (z − Te(z))− k(z)︸ ︷︷ ︸

employed

]
+ (1− e)

[
uu (Bu(z))− ψ (e, z)︸ ︷︷ ︸

unemployed

]
, (2)

where the utility functions ue(.) and uu(.) are increasing, twice differentiable and concave,

and the search cost function ψ (e, z) is increasing, twice differentiable and convex with e.12

Individuals thus trade off the gains from being more often employed against the costs of

searching more when unemployed.

Participation in the labor market requires paying a fixed cost, χ, which is not observed

by the government. An individual who remains inactive derives utility, u0(.), from social

assistance which takes the form of a lump-sum transfer, R0. As a result, an individual with

earnings when employed, z, participates in the labor market if and only if

V (z)− χ︸ ︷︷ ︸
participating

≥ u0 (R0)︸ ︷︷ ︸
not participating

, (3)

meaning that individuals participate whenever their fixed cost of participation, χ, is lower

than the cutoff, χ̃(z) := V (z)− u0(R0).

The population size is normalized to unity, and the distribution of earnings abilities and

participation costs in the population is described by the cumulative and probability distri-

bution functions Fχ,z(χ, z) and fχ,z(χ, z), which are known to the government. The potential

density of individuals with earnings z when employed is then fz(z) :=
∫
χ
fχ,z(χ, z)dχ. Taking

participation decisions into account, the actual density of individuals who participate in the

labor market with earnings z when employed is hz(z) :=
∫
χ≤χ̃(z)

fχ,z(χ, z)dχ.

12Since earnings z are exogenous in the baseline, dependence of k(z) and ψ(e, z) on earnings z are theo-
retically irrelevant, they are only used in the empirical application to match key empirical moments.
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Government. The policymaker uses the tax-benefit system {Te(z), Bu(z), R0} for redis-

tribution and unemployment insurance. It seeks to maximize a welfarist objective given by

the sum of utilities up to a transformation, G (.),∫
z

[∫
χ≤χ̃(z)

G
(
V (z)− χ

)
︸ ︷︷ ︸

participating

+

∫
χ≥χ̃(z)

G
(
u (R0)

)
︸ ︷︷ ︸

not participating

]
dFχ,z(χ, z). (4)

Redistribution involves the comparison of utilities across individuals, it is thus driven both

by the concavity of the transformation G (.) and by the concavity of individuals’ utility from

consumption. In contrast, insurance is only driven by the latter as it solely relates to the

maximization of expected utility V (z) at each earnings z.

The government’s resource constraint is∫
z

[∫
χ≤χ̃(z)

(
e (z)Te (z)− (1− e (z))Bu (z)

)
︸ ︷︷ ︸

participating

−
∫
χ≥χ̃(z)

R0︸ ︷︷ ︸
not participating

]
dFχ,z(χ, z) ≥ Exp, (5)

stating that the taxes levied on the employed must finance benefits to the unemployed,

transfers to the inactive, and an exogenous expenditure requirement, Exp.13

2 Optimal policies

This section presents sufficient statistics characterizations of optimal tax and optimal benefit

schedules in the baseline model. They are the key results of the paper, highlighting the tight

link between redistribution and unemployment insurance. Policy implications are discussed

in an application where optimal policies take a particularly simple form.

2.1 Sufficient statistics

To compute the fiscal and welfare impacts of tax-benefit reforms, one needs three types of

sufficient statistics. The first two measure job search and participation responses, while the

third measures the social value of individual utility changes.

Job search semi-elasticities measure the percentage increase in the time spent unem-

ployed, 1 − e(z), of individuals who are active on the labor market with earnings when

13Introducing a separate contribution used to finance unemployment benefits does not affect the results as
long as all tax-benefit instruments are designed by the government – this is no longer true if unemployment
insurance is managed by a separate entity with a different objective.
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employed, z, upon a unit increase in taxes when employed or in benefits when unemployed,14

µe(z) :=
1

1− e(z)

∂(1− e(z))

∂Te(z)
, µu(z) :=

1

1− e(z)

∂(1− e(z))

∂Bu(z)
. (6)

Participation semi-elasticities measure the (absolute) percentage change in the density of

agents, hz(z), who are active on the labor market with earnings when employed, z, upon a

unit increase in taxes when employed or in benefits when unemployed,

πe(z) :=
1

hz(z)

∂hz(z)

∂(z − Te(z))
, πu(z) :=

1

hz(z)

∂hz(z)

∂Bu(z)
. (7)

Social marginal welfare weights measure the social value of individual utility changes

upon a unit increase in consumption when employed or when unemployed,

ge(z) :=
G′(V (z)− χ)

λ
u′(ce(z)), gu(z) :=

G′(V (z)− χ)

λ
u′(cu(z)), (8)

where G′(V (z)− χ) := 1
hz(z)

∫
χ≤χ̃(z)

G′(V (z) − χ)dFχ,z(χ, z) is the average social marginal

value of private utility changes for participants with earnings z and λ is the social marginal

value of public funds. Any motive to redistribute translates into social marginal welfare

weights that decrease with incomes, and the stronger this motive for redistribution is, the

stronger the decreasing pattern of welfare weights.

2.2 Optimal tax and benefit schedules

Using a perturbation approach and characterizing optimal tax and benefit schedules as those

that cannot be improved through tax-benefit reforms yields the following result:15

Proposition 1. At the optimum, the tax-transfer schedule when employed, Te(z), satisfies

at each earnings, z,

(
Te (z) +R0

)︸ ︷︷ ︸
participation tax

πe (z)− (1− e (z))
(
Te (z) +Bu (z)

)︸ ︷︷ ︸
employment tax

(
πe (z)− µe (z)

)
= e (z)

(
1− ge (z)

)︸ ︷︷ ︸
mechanical effect

, (9)

14These semi-elasticities are not independent, but linked through the structure of the model. In the

baseline model, assuming interior solutions to individuals’ problem, we have µe(z)
u′(z−Te(z))

= µu(z)
u′(Bu(z))

.
15At each earnings, z, there are three optimality conditions: (i) an optimal tax formula for Te(z), (ii) an

optimal benefit formula for Bu(z), (iii) a Pareto-efficiency formula for {Te(z), Bu(z)}. Since two of these
conditions imply the third, I characterize the optimum with (i) and (iii), relegating (ii) to the Appendix.
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and a Pareto-efficient tax-benefit system, {Te(z), Bu(z)}, satisfies at each earnings, z,

u′u(cu(z))

u′e(ce(z))
− 1︸ ︷︷ ︸

mechanical effect

=
µu(z)Bu(z)

e(z)2

[
1 +

1

Bu(z)

(
e(z)Te(z)− (1− e(z))Bu(z)

)
︸ ︷︷ ︸
net contribution to tax-benefit system

]
. (10)

Optimal tax formula (9) generalizes that of, e.g., Saez (2002). Absent unemployment, a

unit increase in taxes, Te(z), generates a unit increase in tax revenue but reduces the utility

of each individual at that earnings level, translating into a mechanical effect, 1− ge(z). This

reform also decreases participation by a factor πe(z), which in turn decreases revenue by the

participation tax, Te (z) +R0, measuring foregone taxes and additional transfers provided to

the newly inactive. Balancing these two effects yields the optimal tax formula,

(
Te (z) +R0

)
πe(e) =

(
1− ge (z)

)
, (11)

which formalizes a trade-off between equity, encapsulated in welfare weights, and efficiency,

related to the impact of participation on the size of the tax base (e.g. Saez, 2002).

Introducing unemployment and unemployment insurance affects both equity and effi-

ciency. First, unemployment dampens the mechanical effect because individuals are only

employed a fraction of the time, e(z). This pushes for lower taxes. Second, unemployment

reduces the revenue losses from participation responses by a factor (1−e(z))(Te(z)+Bu(z)),

because individuals do not pay taxes and receive benefits when unemployed. This pushes

for higher taxes. Third, a tax increase has a negative effect on job search and increases

unemployment by (1 − e(z))µe(z). This in turn decreases revenue by the employment tax,

Te(z)+Bu(z), measuring foregone taxes and additional benefits provided to the unemployed.

This pushes for lower taxes. Overall, the impact on optimal taxes is thus ambiguous, and

depends on the relative importance of participation and search responses, on the unemploy-

ment rate, and on the schedule of unemployment benefits.

Pareto-efficiency condition (10) generalizes the Baily-Chetty formula for optimal unem-

ployment insurance. Consider a unit increase in benefits, Bu(z), combined with an increase

in taxes, Te(z), that leaves expected utility, V (z), constant. By construction, this joint re-

form mechanically raises revenue in proportion to u′u(cu(z))
u′e(ce(z))

− 1 and does not affect welfare

nor participation (left-hand side).16 It however affects search negatively and increases un-

employment in proportion to µe(z)
e(z)

, which in turn decreases revenue by the employment tax,

Te(z) + Bu(z). Rewriting this fiscal externality leads to Pareto-efficiency condition (10),

16By the envelope theorem, dV (z) = e(z)u′e(ce(z))dTe(z)− (1− e(z))u′u(cu(z))dBu(z), and the mechanical

effect on revenue is e(z)dTe(z)− (1− e(z))dBu(z). Setting dTe(z) =
(1−e(z))u′

u(cu(z))
e(z)u′

e(ce(z))
dBu(z) gives the result.
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featuring the net contribution to the tax-benefit system (right-hand side).17

The standard Baily-Chetty formula corresponds to the case with a representative earn-

ings level, where taxes (or contributions) exactly finance benefits implying that this net

contribution is zero. This yields

u′u(cu)

u′e(ce)
− 1 =

µelastu

e2
, (12)

where µelastu := µuBu is the elasticity of unemployment duration with respect to the amount of

unemployment benefit, holding taxes constant.18 This formula characterizes optimal unem-

ployment insurance through the optimal replacement rate, cu
ce

. It trades-off the consumption

smoothing value of insurance, measured by marginal utility of consumption across states,

against the moral hazard cost of insurance measured by the search elasticity, µelastu , and the

(un)employment rate.

Introducing heterogeneous earnings and redistribution affects both sides of the trade-

off. First, consumption smoothing benefits become earnings-specific, because individuals

with higher earnings have higher consumption. This not only reflects the insurance value

of unemployment benefits, but also their redistributive value, implying that the total value

of providing unemployment insurance decreases with earnings. Second, efficiency costs also

become earnings-specific, because redistribution implies that the net contribution to the tax-

benefit system increases with earnings. The total cost of providing unemployment insurance

thus increases with earnings. Overall, this implies that optimal replacement rates decrease

with earnings, in a way that depends on redistribution.

2.3 Policy implications

To analyze the policy implications of these results, let assume a log utility from consumption,

ue(c) = uu(c) = log(c). Introducing the participation elasticity, πelaste (z) := (z − Te(z))πe(z),

17Indeed, the total change in unemployment is d(1−e(z)) = (1−e(z))µe(z)dTe(z)+(1−e(z))µu(z)dBu(z)

where µe(z)
u′(ce(z))

= µu(z)
u′(cu(z))

, while Te(z) +Bu(z) = Bu(z)
e(z)

[
1 + 1

Bu(z)
(e(z)Te(z)− (1− e(z))Bu(z))

]
.

18This is formula (14) in Chetty and Finkelstein (2013), with the slight modification that they use a total

elasticity, ε =
µelast
u

e , incorporating changes in both the benefit level and the contribution used to finance it.
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the optimal tax-benefit system then satisfies,

Te(z)=
e(z)

e(z)+πelaste (z)

[
z−G

′(V (z)−χ)

λ
+(1−e(z))

πelaste (z)−µelastu (z)

e(z)+µelastu (z)
z

]
− πelaste (z)

e(z)+πelaste (z)
R0,

(13)

Bu(z)=
e(z)

e(z)+µelastu (z)
z−Te(z). (14)

EITC vs NIT. Equation (13) characterizes the optimal tax-transfer schedule Te(z) in a

Pareto-efficient tax-benefit system. It shows that unemployment interacts with the standard

redistribution-participation trade-off and adds in particular a novel efficiency term weighting

participation and search elasticities. This has interesting implications for the shape of the

tax-transfer schedule at the bottom of the earnings distribution where an important policy

question is whether transfers should increase with earnings (EITC) or decrease with earnings

(NIT) at the optimum (Saez, 2002; Jacquet et al., 2013; Kroft et al., 2020; Hansen, 2021;

Hummel, 2021).19

At the origin of the earnings distribution, (13) implies that the tax-transfer is continuous,

Te(0)=−R0, whenever individuals find it optimal to always remain unemployed, e(0)=0.20

Since disposable incomes when employed and unemployed converge at the origin, individuals

do find it optimal such that the optimal tax-transfer schedule is continuous. This contrasts

with pure extensive margin models which feature a discontinuity at the origin (Jacquet et al.,

2013). Intuitively, individuals with extremely low earnings who decide to participate in the

labor market are always employed in a pure extensive margin model, whereas they are here

mostly unemployed which smoothes out this discontinuity. This continuity property makes

this framework particularly attractive to study the optimality of an EITC versus a NIT and

implies that a negative participation tax can only arise through negative marginal tax rates.

Whether transfers at the origin increase (EITC) or decrease (NIT) with earnings in the

optimum depends here on many elements. As identified by Hansen (2021) it depends first on

the evolution of participation elasticities and redistribution concerns across earnings. But it

also crucially depends on the evolution of the (un)employment rate and of search elasticities

across earnings. A necessary condition for an EITC, Te(z) ≤ −R0, to be optimal is that the

first square bracket term in (13) be negative. The larger search elasticities are, the more

likely this condition is met and the more likely an EITC is optimal. If the second term

19Note that policy implications for the optimal tax-transfer schedule when employed are here conditional
on the existence of a Pareto-efficient benefit schedule when unemployed that adjusts in the background.

20 lim
z→0

Te(z) = − e(0)
e(0)+πelast

e (0)
G′(V (0)−χ)

λ − πelast
e (0)

e(0)+πelast
e (0)

R0, which is equal to R0 if and only if e(0) = 0,

under the assumption that πelaste (0) is finite.
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was always equal to −R0, this condition would be both necessary and sufficient. However,

as earnings increase, the second term diverges from −R0 at a rate that depends on the

evolution of unemployment rates and participation elasticities across earnings. Empirically,

there exists a number of estimates of participation elasticities at low incomes, but estimates

of search elasticities across earnings seem to be lacking. Actual policy implications thus

remain an open empirical question.

Unemployment benefits & replacement rates. The equation characterizing Bu(z)

follows from Pareto-efficiency condition (10) and highlights the tight link between redistri-

bution and unemployment insurance. To see this link most transparently, let further assume

that the tax-transfer system is linear, Te(z)=τz−R0, to obtain

Bu(z)=

(
e(z)

e(z)+µelastu (z)
− τ
)
z +R0. (15)

First, this condition shows that unemployment benefits converge to the demogrant R0 at

the origin, where earnings z go to zero. Second, it shows that the higher the redistribution

through the demogrant R0, the higher unemployment benefits should be (and vice-versa).

In other words, it is efficient to redistribute both when individuals are employed and un-

employed, and thus through unemployment benefits. Third, this condition implies that the

higher the tax rate τ is, the steeper the tax-transfer schedule is, and the flatter the benefits

schedule should be (and vice-versa). With a high enough tax rate, it can even be optimal

to replace unemployment insurance with a flat benefits system that provides a lump-sum

transfer equal to the demogrant R0. For instance, assuming a constant search elasticity

µelastu = 0.5 (Schmieder & Von Wachter, 2016) and a constant 5% unemployment rate, it is

optimal to do so when the tax rate is τ = 65%. These properties are illustrated on the left

panel of Figure 1, which represents Pareto-efficient benefit profiles for different tax rates τ

and demogrants R0.

The tight link between redistribution and unemployment insurance implies that any

Pareto-efficient tax-benefit system features net replacement rates, Bu(z)
z−Te(z) , that decrease

with earnings in a way that is shaped by redistribution.21 At the bottom, the optimal

replacement rate converges to 1, because both Te(z) and Bu(z) converge to R0. Intuitively,

individuals with no earnings when employed find it optimal to stay always unemployed, they

are thus observationally equivalent to individuals who stay inactive, and Pareto-efficiency

implies treating both in the same way. At the top, the optimal replacement rate converges to
1

1−τ

(
e

e+µelastu
− τ
)

, which is strictly lower than 1 and decreasing with the tax rate τ . Overall,

21In contrast, the Baily-Chetty formula implies a constant replacement rate, Bu(z)
z−Te(z)

= e2

e2+µelast
u

.
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Figure 1: Pareto-efficient benefit profiles (left) and replacement rates (right)

Note: Both Pareto-efficient benefit profiles, cu(z) = Bu(z), represented on the left panel and Pareto-efficient

net replacement rates, Bu(z)
z−Te(z)

, represented on the right panel follow from condition (15), derived assuming

a log consumption utility and a linear tax-transfer schedule Te(z) = τz − R0. For illustration purposes,

different tax rate τ and demogrant R0 are considered, while holding µelastu = 0.5 and e = 95% constant.

this implies that in economies with more redistributive tax-transfer schedules, net replace-

ment rates should be higher at low earnings and lower at high earnings, as illustrated on the

right panel of Figure 1.

3 Extensions

This section extends previous results, relaxing baseline assumptions. First, I show that intro-

ducing savings has small downwards effects on optimal income taxes, and that it reinforces

the decreasing pattern of optimal replacement rates. Second, I consider endogenous earnings

decisions and derive an extended ABC formula for optimal marginal tax rates. It highlights

that when search responses are large, the optimal tax-transfer schedule may feature negative

marginal tax rates (e.g. an EITC). Endogenous earnings have otherwise little impact on

the previous Pareto-efficiency condition, and thus on the link between optimal redistribu-

tion and optimal unemployment insurance. Third, I analyze the problem in a mechanism

design approach and show that eligibility requirements to unemployment insurance are key

to maintain incentive compatibility with endogenous earnings.

3.1 Savings reinforce the decreasing pattern of replacement rates

In the baseline, unemployment insurance is the only mean of insurance against unemploy-

ment, by assumption. I now extend the analysis to account for savings as a private mean of
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insurance against unemployment.

Setting. Consider liquid savings (e.g. money on a bank account) that can be used to

smooth consumption when unemployed as well as illiquid assets (e.g. retirement plans) that

cannot be used when unemployed but provide other benefits. Let s(z) and a(z) denote

the liquid savings and illiquid assets accumulated by an individual with earnings z when

employed, such that consumption when employed is ce(z)=z−Te(z)−s(z)−a(z). Normalizing

interest rates to zero, if this individual spends a fraction of time e employed, consumption

when unemployed is then cu(z) = Bu(z)+ e
1−es(z) and the total amount of illiquid assets

accumulated is ea(z).22

Individuals’ expected utility when participating in the labor market becomes

V (z) := max
e

e
[
ue (ce(z))− k (z)

]
+ (1− e)

[
uu (cu(z))− ψ (e, z)

]
+ U (ea(z)) (16)

where U(ea(z)) is the utility derived from illiquid assets (e.g. utility in retirement) and

search decisions factor in their potential effects on savings and assets accumulation.

This setting nests many different savings and assets models, among which two benchmark

that are important in this context. A first benchmark is privately-optimal savings and assets,

i.e., savings and assets levels that exactly maximize expected utility. First-order conditions

for savings and assets choices imply that in this case the marginal utility of consumption is

equalized across states of the world:

u′e(ce(z)) = u′u(cu(z)), u′e(ce(z)) = U ′(e(z)a(z)). (17)

A second benchmark is one where savings and assets are exogenous to the tax-benefit

system, implying that they do not respond to tax-benefit reforms:

∂s(z)

∂Te(z)
=

∂s(z)

∂Bu(z)
= 0,

∂a(z)

∂Te(z)
=

∂a(z)

∂Bu(z)
= 0. (18)

Optimal policies. Savings and assets responses to tax-benefit reforms become new

relevant sufficient statistics that enter the characterization of optimal tax-benefit schedules:

Proposition 2. At the optimum, the tax-transfer schedule when employed, Te(z), satisfies

22Implicitly, this formulation of the problem defines liquid savings as funds used for consumption when
unemployed. This can be seen as a convention where unused residual savings are turned into illiquid assets.
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at each earnings, z,

(
Te (z)+R0

)
πe (z)− (1−e (z))

(
Te (z)+Bu (z)

)(
πe (z)−µe (z)

)
= e (z)

(
1−ge (z)

)
(19)

+ e(z)ge(z)

[(
u′u(cu(z))

u′e(ce(z))
−1

)
∂s(z)

∂Te(z)
+

(
U ′(ea(z))

u′e(ce(z))
−1

)
∂a(z)

∂Te(z)

]
,

and a Pareto-efficient tax-benefit system, {Te(z), Bu(z)}, satisfies at each earnings, z,

Kr(z)
u′u(cu(z))

u′e(ce(z))
−1=

[
1+Kµ(z)Kr(z)

1−e(z)

e(z)

]
µu(z)Bu(z)

e(z)

[
1+

e(z)Te(z)−(1−e(z))Bu(z)

Bu(z)

]
,

(20)

with Kr(z) and Kµ(z) defined such that a unit increase in benefits and a Kr(z)1−e(z)
e(z)

u′u(cu(z))
u′e(ce(z))

increase in taxes leave utility constant, and such that Kµ(z) µu(z)
u′u(cu(z))

= µe(z)
u′e(ce(z))

.

Optimal tax formula (19) shows that the introduction of savings and assets adds a cor-

rective term measuring the welfare impact of savings and assets responses to tax reforms

(second line). Since tax increases tend to decrease the amount of savings and assets accu-

mulated, thereby reducing expected utility, this corrective term generally pushes for lower

taxes. However, this term vanishes when savings and assets are at their privately optimal

level as it implies that changes in savings and assets do not affect expected utility, or when

savings and assets are exogenous to the tax-benefit system as it implies that they do not

respond to tax increases. In these two benchmarks, the optimal tax formula thus remains

unchanged (although the value of sufficient statistics might change). As a result, at earnings

z, savings and assets meaningfully impact the optimal amount of tax and transfer only when

they are sufficiently responsive to taxes and, yet, low enough to trigger important welfare

changes.23 This suggests that the presence of savings and assets may push for marginally

lower optimal levels of tax and transfer (all else equal).

Savings and assets enter Pareto-efficiency condition (20) in three distinct ways. First,

because changes in benefits and changes in taxes might trigger savings and assets responses

with first-oder welfare effects, there is a wedge Kr(z), defined such that a unit increase in

benefits combined with a Kr(z)1−e(z)
e(z)

u′u(cu(z))
u′e(ce(z))

increase in taxes leaves indirect utility V (z)

constant. In the two benchmarks where assets and savings are either utility-maximizing or

exogenous, this wedge disappears, Kr(z) = 1. Otherwise, it tends to be lower than 1 and

pushes for lower unemployment benefits, as it captures the negative welfare impact induced

by the crowing-out of private insurance by public insurance.

Second, by the same token, there is a wedge Kµ(z) in the structural relationship linking

23This is most likely to be the case for individuals with median earnings who do save but are nonetheless
constrained in their ability to do so. Very low earners are likely too financially constrained to exhibit strong
savings responses, while the savings responses of high earners are unlikely to imply large welfare changes.
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semi-elasticities µe(z) and µu(z), used to compare the unemployment responses induced by

changes in benefits and changes in taxes. This wedge is defined such that Kµ(z) µu(z)
u′u(cu(z))

=
µe(z)

u′e(ce(z))
and it only disappears when savings and assets are exogenous and, in addition, sav-

ings are equal to zero (baseline assumptions). Otherwise, this wedge tends to be lower than 1

and pushes for higher unemployment benefits, as savings tend to reduce total unemployment

responses to joint reforms by providing a private mean of insurance.

Third, and most importantly, savings and assets enter on the left-hand side of (20)

through cu(z) and ce(z). More savings to smooth consumption when unemployed imply a

smaller gap in marginal utilities between employment and unemployment, which pushes for

lower unemployment benefits. When the amount of savings is privately optimal, the gap

in marginal utilities disappears: individuals perfectly self-insure themselves and there is no

unemployment benefits at the optimum. This is often the case studied in the macro literature

concluding that the optimal replacement rate is approximately 0%. In contrast, the public

literature tends to assume that savings are exogenous (sometimes with the justification that

they are accumulated prior to the unemployment spell) and insufficient, thereby concluding

that the optimal replacement rate is much higher.

This framework allows to reconcile these two views by assuming that individuals with

low earnings when employed have insufficient savings (if any), confirming the optimality

of high replacement rates at the bottom, and that individuals with high earnings when

employed are able to perfectly self-insure themselves, providing a justification to provide no

unemployment benefits at the top. Hence, savings tend to reinforce the decreasing pattern

of optimal replacement rates, with optimal replacement rates converging to 0 at the top.

3.2 Endogenous earnings and negative marginal tax rates

In the baseline, labor supply decisions were restricted to participation (extensive margin)

and I now consider an extension to earnings decisions (intensive margin).

Setting. Following Mirrlees (1971), individuals in the population are endowed with het-

erogeneous earnings ability, ω. Assume that the cost, k(z;ω), associated with working at an

earnings level z is increasing and convex with earnings, and decreasing with ability. Further

assume that the search cost, ψ(e, z;ω), required to spend a fraction of time e employed at

earnings z is increasing and convex with the time spent employed, increasing with earnings,

and decreasing with ability.

Going back to the case without savings, consumption when employed is ce(z)=z−Te(z)

and consumption when unemployed is cu(z) = Bu(z). Individuals who participate in the
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labor market choose their earnings and their search efforts through

V (ω) := max
z

{
max
e

e
[
ue (ce(z))− k(z;ω)

]
+ (1− e)

[
ue (cu(z))− ψ(e, z;ω)

]}
, (21)

and the solution to this maximization problem defines earnings as function of ability, z(ω),

and time spent employed as a function of earnings and ability, e(z;ω).

Monotonicity. Assume that at all ability levels the solution to this problem is strictly

interior, meaning that first-order conditions for e and z hold and that second-order conditions

are satisfied with strict inequality, (SOC)e<0 and (SOC)z<0. Then, it can be shown that

dz(ω)

dω
=

1

(SOC)z

[
e
∂2k(z;ω)

∂z∂ω
+ (1−e)∂

2ψ(e, z;ω)

∂z∂ω
+ (SOC)e

∂e

∂z

∂e

∂ω

]∣∣∣
e=e(z;ω), z=z(ω)

(22)

meaning that earnings increase monotonically with ability when the term in the square

bracket is negative. In the absence of unemployment, e=1, this comes down to the Spence-

Mirrlees single-crossing condition for work, ∂2k(z;ω)
∂z∂ω

<0, stating that individuals with higher

ability need a lower compensation to marginally increase their earnings when employed.

In the presence of unemployment, this condition alone does not guarantee earnings mono-

tonicity. First, one needs to assume a Spence-Mirrlees single-crossing condition for search,
∂2ψ(e,z;ω)
∂z∂ω

<0, stating that individuals with higher ability need a lower compensation to search

for marginally higher paying jobs when unemployed. Second, in the “normal” case where

search decisions are such that the time spent employed decreases with earnings, ∂e(z;ω)
∂z
≤ 0,

and increases with ability, ∂e(z;ω)
∂ω
≥ 0, the laste term in (22) is positive. One thus needs to

assume that the sum of these three terms remains negative.

Assumption 1. At all ability levels, (i) first- and second-order conditions for z and e

hold strictly; (ii) preferences satisfy a Spence-Mirrlees single-crossing conditions for work,
∂2k(z;ω)
∂z∂ω

<0, and for search, ∂2ψ(e,z;ω)
∂z∂ω

<0; (iii) search decisions are such that at z = z(ω),

(SOC)e
∂e(z;ω)

∂z

∂e(z;ω)

∂ω
< −e(z;ω)

∂2k(z;ω)

∂z∂ω
− (1−e(z;ω))

∂2ψ(e(z;ω), z;ω)

∂z∂ω
. (23)

Under these assumptions, there exists a strictly monotonic mapping between earnings z

and ability ω. We exploit this monotonicity property to abuse notations and eliminate the

dependence on ability ω in the rest of the sufficient statistics analysis.

Sufficient statistics. Additional sufficient statistics are necessary to measure earnings

responses to tax-benefit reforms as well as search responses to changes in earnings.
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Compensated earnings semi-elasticities measure earnings responses to changes in marginal

net-of-tax rates when employed and marginal benefit rates when unemployed,

ζe(z) :=
1

z

∂z

∂(1− T ′e(z))
, ζu(z) :=

1

z

∂z

∂B′u(z)
. (24)

Income effects semi-parameters measure (absolute) earnings responses to changes in the

amount of tax-transfer when employed and of benefit when unemployed,

ηe(z) :=
∂z

∂Te(z)
, ηu(z) := − ∂z

∂Bu(z)
. (25)

The cross-effect parameter measures responses in the fraction of time spent unemployed,

1− e(z), to changes in earnings,

ξ1−e
z (z) :=

∂(1− e(z))

∂z
. (26)

Optimal policies. Equipped with these sufficient statistics, I provide the following

characterization of optimal tax-benefit schedules in the presence of endogenous earnings

decisions:

Proposition 3. At the optimum, the tax-transfer schedule when employed, Te(z), satisfies

at each earnings, z,[(
e(z)T ′e(z)− (1−e(z))B′u(z)

)
−
(
Te(z)+Bu(z)

)
ξ1−e
z (z)

]
ζe(z) z hz(z) (27)

=

∫
x≥z

{
e(x)(1−ge(x))−

(
Te(x)+R0

)
πe(x) + (1−e(x))

(
Te(x)+Bu(x)

)
(πe(x)−µe(x))

+
[(
e(x)T ′e(x)−(1−e(x))B′u(x)

)
−
(
Te(x)+Bu(x)

)
ξ1−e
z (x)

]
ηe(x)

}
hz(x)dx

and a Pareto-efficient tax-benefit system, {Te(z), Bu(z)}, satisfies at each earnings, z,

u′u(cu(z))

u′e(ce(z))
−1 =

µu(z)Bu(z)

e(z)2

[
1 +

1

Bu(z)

(
e(z)Te(z)−(1−e(z))Bu(z)

)]
(28)

+
ηu(z)

1−e(z)

[(
e(z)T ′e(z)−(1−e(z))B′u(z)

)
−
(
Te(z)+Bu(z)

)
ξ1−e
z (z)

]
×
[
1− 1−T ′e(z)

B′u(z)

u′(Bu(z))

u′(z−Te(z))

u′′(z−Te(z))

u′′(Bu(z))

]
.

Optimal tax formula (27) is an ABC-type formula for optimal marginal tax rates (Dia-

mond, 1998; Saez, 2001). Absent unemployment, e(z) = 1, this formula boils down to the
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formula derived in Jacquet et al. (2013),

T ′e(z)ζe(z)zhz(z) =

∫
x≥z

{
(1−ge(x))−

(
Te(x)+R0

)
πe(x) + T ′e(z)ηe(x)

}
hz(x)dx. (29)

The left-hand side translates the fact that an increase in the marginal tax rate around

earnings level z triggers substitution effects around this earnings level. This induces negative

earnings responses, ζe(z)zhz(z), that decreases government revenue in proportion to the

marginal tax rate T ′e(z). The right-hand side measures the impacts of the corresponding

increase in tax liability at all earnings above z. The first term measures mechanical effects,

the second term measures fiscal externalities from participation responses, and the third term

measures fiscal externalities from earnings responses due to income effects. In this setting,

negative marginal tax rates can be optimal at the bottom when social marginal welfare

weights, ge, are sufficiently above 1 and participation semi-elasticities are sufficiently small

(resp. large) at earnings levels with a positive (resp. negative) participation tax, Te(x)+R0.

Introducing unemployment and unemployment insurance implies that negative earnings

responses around earnings level z, ζe(z)zhz(z), decrease government revenue through fore-

gone tax revenues only when individuals are employed. Moreover, negative earnings re-

sponses paradoxically increase government revenue through the provision of lower benefits

when unemployed (when B′u(z) ≥ 0) and through an increase in the time spent employed

(when ξ1−e
z (z) ≥ 0). Looking at the impact of changes in tax liability at earnings above z

on the second line of (27), one can recognize the terms that appear in the baseline optimal

tax formula: unemployment dampens mechanical effects, calls for a correction of the fiscal

externalities induced by participation responses, and introduces novel fiscal externalities in-

duced by search responses. Last, fiscal externalities from earnings responses due to income

effects on the third line of (27) are also dampened.

Overall, these corrections have ambiguous effects on marginal tax rates and heavily influ-

ence the desirablity of negative marginal tax rates. At earnings with a negative employment

tax, Te(z)+Bu(z), participation responses larger than search responses, πe(z)≥µe(z), con-

tribute to the optimality of negative marginal tax rates. In contrast, at earnings where the

employment tax is positive, it is larger search responses that contribute to the optimality of

negative marginal tax rates.

Pareto-efficiency condition (28) retains the same structure as in the baseline. Earn-

ings responses only adding a corrective term stemming from income effects, proportional to

the income effect parameter ηu(z). Here, joint changes in tax-benefit levels are engineered

through joint two-bracket reforms and while earnings responses related to substitution ef-
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fects exactly cancel out each other, those related to income effects do not.24 These earnings

responses generate fiscal externalities proportional to the expected marginal tax-benefit rate,

e(z)T ′e(z)− (1−e(z))B′u(z), and to the employment tax scaled by adjustments in search de-

cisions,
(
Te(z)+Bu(z)

)
ξ1−e
z (z). The last term contrasts the positive income effects from the

increase in taxes with negative income effects from the increase in benefits.

Empirically, these corrections seem quantitatively small at low earnings. At high earnings

the presence of savings implies very low benefits of providing unemployment insurance,

regardless of the strength of these fiscal externalities. As a result, accounting for endogenous

earnings decisions does not seem crucial for optimal unemployment insurance. In particular,

the tight link betwen redistribution and unemployment insurance highlighted in previous

sections and its impact on optimal benefit profiles and the decreasing pattern of replacement

rates are unaffected.

3.3 Mechanism design: Eligibility and implementation

Previous sufficient statistics results characterize optimal policies under the assumption that

solutions to individuals’ maximization problems are interior (Assumption 1). Turning to

a mechanism design approach, I characterize optimal allocations subject to feasibility and

incentive-compatibility constraints. This allows to shed light on the conditions under which

the previous results are valid and to study the issue of implementation, that is the set of

policy instruments necessary to decentralize optimal allocations.

I show that eligibility thresholds to unemployment insurance are necessary to eliminate

upward deviations and maintain incentive-compatibility while providing insurance. This

implies that previous sufficient statistics results derived in the presence of earnings responses

implicitly assume the existence of large enough eligibility thresholds. Moreover, I show that

it is efficient to redistribute through progressive unemployment benefits because this relaxes

threats of downward deviations.

Planner’s problem. The economy is populated with individuals characterized by their

earnings ability and fixed participation costs (ω, χ). A direct mechanism asks individuals

to report their type and then assigns them, based on their report, a bundle that consists

in a participation status, together with a consumption level c0 for non-participants, and for

24F. Bierbrauer, Boyer, and Hansen (2020) use two-bracket reforms of a unique income tax schedule,
trading-off efficiency effects across earnings levels, to characterize Pareto-efficient income taxation. Ferey,
Lockwood, and Taubinsky (2021) use joint one-bracket reforms of income and savings taxes, trading-off
efficiency effects across tax bases, to derive Pareto-efficiency conditions for nonlinear tax systems. I use joint
two-bracket reforms of taxes when employed and benefits when unemployed, trading-off efficiency effects
across states, to derive Pareto-efficiency conditions for tax-benefit systems.
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participants an earnings level when employed z, a time spent employed e, a consumption

when employed ce, a consumption when unemployed cu. This mechanism induces truthful

reporting only if it satisfies incentive-compatibility constraints, that is, if individuals find

the bundle designed for their type preferable to any other bundle.

Incentive-compatibility has a few basic implications that simplify the exposition of the

planner’s problem. First, bundles (z, e, ce, cu) must be independent of participation costs χ,

otherwise participating individuals would report the most advantageous χ at their ability

level.25 Second, consumption c0 must be independent of types, otherwise non-participating

individuals would report the type with the highest c0. Third, participation must follow a

cutoff rule: if an individual finds it optimal to participate given participation costs χ, then all

individuals with the same ability level ω and lower participation costs must find it optimal

too. Denoting this participation cut-off, χ̃(ω), these properties imply that we can write

without loss of generality an allocation as a set {(z(ω), e(ω), ce(ω), cu(ω), χ̃(ω))ω, c0}.
The planner’s problem is to maximize its objective,∫

ω

[∫
χ≤χ̃(ω)

G
(
Vm(ω;ω)− χ

)
+

∫
χ≥χ̃(ω)

G
(
u0(c0)

)]
dFω,χ(ω, χ), (30)

subject to the resource constraint,∫
ω

[∫
χ≤χ̃(ω)

(
e(ω)(z(ω)− ce(ω))− (1− e(ω))cu(ω)

)
−
∫
χ≥χ̃(ω)

c0

]
dFω,χ(ω, χ) ≥ Exp, (31)

and subject to incentive-compatiblity constraints upon participation in the labor market,

∀ω,∀ω′, Vm(ω;ω) ≥ Vm(ω′;ω), (32)

where Vm(ω′;ω) is the utility of an individual with ability ω reporting ability ω′,

Vm(ω′;ω) := e(ω′) [ue(ce(ω
′))− k(z(ω′);ω)] + (1− e(ω′)) [uu(cu(ω

′))− ψ(e(ω′), z;ω)] , (33)

and where (individual-rationality implies that) the participation cutoff is defined by,

χ̃(ω) := Vm(ω;ω)− u0(c0). (34)

Unrestricted mechanism. When the mechanism is unrestricted, the planner chooses

the allocation {(z(ω), e(ω), ce(ω), cu(ω), χ̃(ω))ω, c0}, meaning that it can choose time spent

25This relies on the assumption that fixed participation costs are additively separable and do not affect
utility when employed or unemployed.
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employed, e(ω), independently of consumption levels when employed and unemployed. The

planner can thus eliminate moral hazard and provide full insurance against unemployment:26

Lemma 1. In the second-best (unrestricted mechanism), an optimal allocation features first-

best insurance against unemployment, u′u(cu(ω)) = u′e(ce(ω)), at each earnings ability ω.

Intuitively, the steady-state representation of the problem induces a deterministic link

between search efforts and time spent employed e, which enables the planner to eliminate

moral hazard by imposing a particular e. This result thus follows from the combination of a

steady-state representation and an unrestricted mechanism.

Threshold mechanism. In practice, governments do not mandate individuals to spend a

particular amount of time employed, but rather mandate them to spend a sufficient amount

of time employed in order to receive unemployment benefits when unemployed. Given the

incentives implied by this threshold mechanism, individuals privately decide on their search

efforts leading to time spent employed, e, which restores moral hazard.

Consider the threshold e(ω′)>0, defined such that an individual with ability ω, employed

a fraction of time e, and reporting ability ω′ obtains utility,

Vt(e, ω
′;ω) :=



e [ue(ce(ω
′))−k(z(ω′);ω)] + (1−e) [uu(cu(ω

′))−ψ(e, z(ω′);ω)] if e≥e(ω′),

e
e(ω′)
{e(ω′) [ue(ce(ω

′))−k(z(ω′);ω)] + (1−e(ω′))uu(cu(ω′))}

+(1− e
e(ω′)

)uu(c0)− (1−e)ψ(e, z(ω′);ω)
if e≤e(ω′).

(35)

If individuals spend a time e≥e(ω′) employed, they are always eligible to receive cu(ω
′) when

unemployed. Otherwise, they receive c0 in the subperiod of unemployment in which they

are not eligible to cu(ω
′). Utility Vt(e, ω

′;ω) is thus continuous (but kinked) at e = e(ω′) and

smoothly goes to uu(c0) as the time spent employed converges to zero. Denoting et(ω
′;ω)

the time spent employed that maximizes utility Vt(e, ω
′;ω), an individual with ability ω

reporting ability ω′ obtains utility Vt(ω
′;ω) :=Vt(et(ω

′;ω), ω′;ω) in a threshold mechanism.

Now, if this threshold is infinitesimal, e(ω′) ≈ 0, unemployed individuals are always

eligible to receive cu(ω
′), provided that they are employed at some point in time. Assuming

job search costs ψ(e, z(ω′);ω) go to zero as e goes to zero, anyone can then obtain cu(ω
′) by

reporting ability ω′, spending an infinitesimal time (e.g. a day) employed at earnings z(ω′),

26Interestingly, da Costa et al. (2022) come to the opposite conclusion in the framework that they study.
In a second-best setting, they show that while type-dependent benefits can be incentive-compatible, benefits
are independent of types in the optimum, implying very limited insurance against unemployment.
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and staying unemployed the rest of the time. The provision of unemployment insurance is

thus bounded by the utility level of the individual who is the worst-off on the labor market:

Lemma 2. In a threshold mechanism, if e(ω′)≈0, then uu(cu(ω
′))≤min

ω
Vt(ω;ω).

In the absence of meaningful eligibility requirements, unemployment insurance provision

is thus limited by upward deviations, where low ability types ω find it optimal to report high

ability ω′ > ω and exactly spend a fraction of time e(ω′) employed. Sufficiently high eligibility

thresholds are thus necessary for the provision of type-specific unemployment insurance. At

the same time, if eligibility thresholds are too high, then individuals are not always eligible

to receive cu(ω
′) when unemployed and thresholds affect both decisions and welfare.27 The

analysis abstracts from this possibility relying on the following assumption:

Assumption 2. Eligibility thresholds are exogenously given and are both (i) sufficiently large

such that only local incentive-compatibility constraints are binding, (ii) sufficiently low such

that they do not affect individuals’ job search decisions at the allocation designed for them.

Part (i) implies that incentive-compatibility can be replaced by a first-order condition for

ω′ (and a monotonicity condition). Part (ii) guarantees that optimal search efforts are defined

by first-order conditions for e, leading to et(ω;ω)> e(ω), and that eligibility thresholds do

not directly affect decisions nor welfare. Overall, Assumption 2 ensures smoothness and

allows to solve the mechanism design problem using a first-order approach.28

Lemma 3. In the third-best (threshold mechanism), an optimal allocation satisfy at each

earnings ability ω the following first-order conditions for ce(ω) and cu(ω) respectively,

λ

[
et(ω;ω)− ∂et(ω;ω)

∂ce(ω)
(z(ω)−ce(ω)+cu(ω))

] ∫
χ≤χ̃(ω)

dFω,χ(ω, χ) (36)

= η(ω)et(ω;ω)u′e(ce(ω))− µ(ω)
∂et(ω;ω)

∂ce(ω)

∂FOCet
∂ω

∣∣∣
ω′=ω

,

λ

[
(1−et(ω;ω))− ∂et(ω;ω)

∂cu(ω)
(z(ω)−ce(ω)+cu(ω))

] ∫
χ≤χ̃(ω)

dFω,χ(ω, χ) (37)

= η(ω)(1−et(ω;ω))u′u(cu(ω))− µ(ω)
∂et(ω;ω)

∂cu(ω)

∂FOCet
∂ω

∣∣∣
ω′=ω

,

27This may also lead to bunching at the threshold. Recent optimal tax papers have been able to provide
general results in environments with bunching and these techniques could be applied in this context (see e.g.
Jacquet & Lehmann, 2017; F. J. Bierbrauer, Boyer, & Peichl, 2021).

28After having characterized the solution, one can check numerically that there exists a set of eligibility
thresholds satisfying Assumption 2, it is thus a testable assumption.
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with λ the multiplier on the resource constraint (31), µ(ω) the multiplier on the first-order

condition replacing incentive-compatibility constraints (32), η(ω) the multiplier on the defi-

nition of indirect utility Vt(ω
′;ω), and FOCet the first-order condition defining et(ω

′;ω).

The first line of (36) and (37) measures the fiscal costs of raising ce(ω) or cu(ω), which

depend on the shadow value of public funds λ, the time spent employed or unemployed,

the induced changes in search efforts, the employment tax, and the mass of participating

individuals at ability ω. On the second line, the first term measures the welfare benefits of

doing so, which depend on the shadow value of indirect utility η (ω), the time spent employed

or unemployed, and the marginal utility of consumption.

The last term of (36) and (37) measures the incentive value of raising ce(ω) or cu(ω).

It depends on the shadow value of locally relaxing incentive-compatibility µ (ω), interacted

with the changes in search efforts at a given ability ω, and the changes in search efforts across

ability ω. Since individuals with higher ability find it optimal to spend more time employed

at a given bundle, we have
∂FOCet
∂ω

∣∣
ω′=ω ≥ 0. As ∂et(ω;ω)

∂ce(ω)
≥ 0 and ∂et(ω;ω)

∂cu(ω)
≤ 0, this implies

that the more binding is incentive-compatibility, the lower should ce(ω) be and the higher

should cu(ω) be. This shows that redistributing through unemployment benefits is efficient

because it relaxes incentive-compatibility.

Policy implementation. Besides its intuitive structure giving the nature of the mech-

anism design problem, the appeal of a threshold mechanism is that it is equivalent to the

tax-benefit system studied in the sufficient statistics analysis. When earnings z are mono-

tonically increasing with ability (Assumption 1), we can define Te(z(ω)) := z(ω) − ce(ω),

Bu(z(ω)) := cu(ω), e(z(ω)) := e(ω), and R0 := c0. When eligibility thresholds do not af-

fect choices other than by ensuring that the solutions to individuals’ problems are interior

(Assumption 2), the time spent employed, earnings, and participation decisions made by

individuals under this tax-benefit system exactly correspond to those made in a threshold

mechanism. The implied allocation is thus exactly the same:

Lemma 4. When Assumptions 1 and 2 hold, the tax-benefit system {(Te(z), Bu(z), e(z))z, R0}
decentralizes the optimal allocation of the corresponding threshold mechanism.

This shows that the previous sufficient statistics analysis with endogenous earnings de-

cisions relies on the existence of eligibility requirements enabling the provision of earnings-

specific unemployment benefits. Without such eligibility requirements, the solution to indi-

viduals maximization problems would not be interior, violating Assumption 1. Beyond the

importance of eligibility requirements to unemployment insurance, this result underlines the

complementarity of sufficient statistics and mechanism design approaches.
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4 Empirical application to the U.S.

The empirical application to the U.S. economy is divided in two parts. First, I test whether

the current U.S. tax-benefit system is Pareto-efficient based on existing empirical estimates

of key sufficient statistics. While replacement rates steadily decrease with earnings, results

suggest that there is scope for Pareto-improving reforms. Second, adapting parametric spec-

ifications commonly used in the literature, I calibrate the model to match key sufficient

statistics estimates as well as earnings, unemployment and participation distributions, and

carry out numerical simulations of counterfactual policies. Preliminary results suggest non-

trivial welfare gains from reforming unemployment benefits and show that the tight link

between redistribution and unemployment insurance implied by Pareto-efficiency seems to

stabilize unemployment rates upon increases in the degree of redistribution.

4.1 Pareto-efficiency and the structure of unemployment benefits

Assuming a log utility for consumption, ue(c) = uu(c) = log c, one can rewrite the Pareto-

efficiency condition derived in the baseline, (10), as29

Bu (z)

z − Te (z)
=

[
1 +

µelastu (z)

e(z)2

[
1 +

1

Bu(z)

(
e(z)Te(z)− (1− e(z))Bu(z)

)]]−1

. (38)

This provides a simple formula to test whether, under U.S. tax-benefit system, the actual

net replacement rate (left-hand side) is equal to the net replacement rate implied by Pareto-

efficiency (right-hand side). Next, I detail the different inputs that enter the formula.

U.S. tax-benefit system. To simulate actual tax-benefit schedules in the U.S. I use

the OECD Tax-Benefit model, TaxBEN. It allows to simulate income taxes, social security

contributions and the major cash benefits programs, but it excludes wealth and capital

income taxes, taxes on consumption and in-kind transfers. A particularity of the U.S. is

that taxes and benefits, in particular unemployment benefits, vary widely across states. The

solution adopted in TaxBEN, and thus in this paper, is to simulate the tax-benefit system

applicable in the state of Michigan.30

In the legislation, amounts of taxes and transfers are sometimes computed at the indi-

29A log utility for consumption implies a coefficient of relative risk aversion of 1. This value is consistent
with income effects estimated in the labor supply literature (Chetty, 2006b), and in the range of values often
used for optimal unemployment insurance (e.g. Chetty, 2006a, 2008; Landais, Michaillat, & Saez, 2018a).

30TaxBEN includes personal income taxes, social contributions, earned income tax credits (EITC), family
benefits and tax credits (TANF, CTC, CCDF, CDCC), social assistance programs (SNAP) and unemploy-
ment benefits, at both federal and state levels.
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vidual level (e.g. social security contributions) and sometimes at the household level (e.g.

social assistance programs), in which case household composition (e.g. number of children)

matters. Since the theoretical model does not incorporate interrelated labor supply decisions

within households, I carry out simulations for singles, focusing on childless singles.

Another simplifying assumption relates to the reference period used to compute taxes

and benefits. While income tax payments are based on annual income, transfer programs

usually operate on an infra-annual basis. Following TaxBEN methodology, taxes and benefits

are computed for a particular month and then multiplied by 12 to be reported on an annual

basis. Moreover, I assume that individuals receive unemployment benefits during their entire

unemployment spell, thereby abstracting from issues related to eligibility, take-up and long-

term unemployment.

Last, TaxBEN simulations include employee social contributions, exclude employer social

contributions and do not differentiate social contributions by types. This may be problematic

since employee social contributions typically fund old age, survivors, and disability insurance

whereas employer social contributions fund pensions and unemployment insurance. Results

are however quantitatively robust to including social contributions funding unemployment

insurance because they are small – a federal tax of 0.6% on the first $7, 000 of earnings and

a state tax of 3.2% on the first $9, 000 of earnings.

The tax-transfer schedule, Te (z), corresponds to the total amount of taxes net of transfers

when employed at earnings z. Simulations show that it is extremely close (R2 = 99%) to an

affine schedule with intercept RUS
0 = −$4, 283 and linear tax rate τUS = 33.20%.

The benefit schedule, Bu (z), corresponds to the amount of benefits received when unem-

ployed, after taxes and transfers, for individuals who were previously employed at earnings

z. I simulate it using the following two-step procedure. First, I simulate unemployment

benefits following the legislation. Second, I apply to this amount of unemployment bene-

fits a restricted tax-transfer schedule that only includes the personal income tax and social

assistance, since unemployment benefits are legally part of the personal income tax base

and individuals with low unemployment benefits may also receive social assistance (SNAP).

Results from this two-step procedure show that the benefits schedule is approximately affine

at low earnings up to a cap above which benefits are constant, as shown in Figure 2.31

Unemployment rates. The distribution of unemployment rates across earnings relies

on annual measures of unemployment rates by educational attainments from 1992 to 2019,

compiled by the Bureau of Labor and Statistics (BLS) using the Current Population Survey

31To check the validity of this two-step procedure used to simulate the benefit schedule Bu (z), I compare
the implied distribution of net replacement rates across earnings with the values of net replacement rates
reported by the OECD at particular earnings levels, which are all consistent.
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Figure 2: Unemployment benefits and net benefits when unemployed in the U.S.

Note: Unemployment benefits and net benefits received when unemployed (after income tax payment and

the receipt of social assistance) are computed using the OECD TaxBen simulation tool for 2019.

(CPS). Using the same data source, educational attainments are then mapped to earnings

when employed, using median usual weekly earnings by educational attainment in 2019 (see

the calibration of the earnings distribution below).

The data shows a significant gradient in unemployment rates across earnings. To obtain

a smooth distribution of unemployment rates across earnings, I fit an exponential function

to the data: u (z) = au exp (−buz). As can be seen on Figure 3, this functional form provides

a relatively good fit. It also ensures that the unemployment rate is always positive and

asymptotically goes to zero at top incomes.

Combining the fitted distribution of unemployment rates with a calibrated distribution

of earnings yields a micro estimate of the average unemployment rate equal to 5.04%, which

is close to the 5.81% average unemployment rate estimated from macro data over the same

period.32 I then adjust the intercept au to match the latter and obtain a distribution that is

consistent with macro data, while preserving the gradient in unemployment rates measured

at the micro level.

32These numbers diverge when performing the estimation using all 8 education levels. To remain conserva-
tive in the gradient of unemployment rates, I exclude the lowest education level and perform the estimation
using 7 education levels only. Estimated parameters are then equal to au = 13.14 and bu = 2.235× 10−5.
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Figure 3: Unemployment rates across earnings in the U.S.

Note: Using compiled BLS statistics relying on CPS data, unemployment rates across earnings levels are

obtained by combining unemployment rates across education levels for the period 1992-2019 with median

usual weekly earnings by education levels in 2019. Exponential fits rely on nonlinear least-square estimation.

Search elasticities. For the calibration of search elasticities, I rely on estimates of the

elasticity of unemployment duration D – measured as the duration of unemployment benefits

receipt – with respect to the amount of unemployment benefits B, that is εDB ≡ B
D
∂D
∂B

.

Following Landais et al. (2018a, footnote 5), there exists a simple relationship between this

empirical elasticity concept and the one used in the theoretical analysis. Abstracting from

general equilibrium effects and writing the unemployment rate as 1 − e ≈ sD, where s is

the separation rate assumed exogenous and D is the average duration of unemployment, we

simply have εDB = µelastu .

Schmieder and Von Wachter (2016, Table 2) provide a survey of the empirical literature

and report existing quasi-experimental results. All estimates lie in a range between 0 and

1, and there are two modes at 0.3 and 0.7. Using data from Missouri covering 2003 to

2013, Card, Johnston, Leung, Mas, and Pei (2015) estimate in a regression kink design an

elasticity of 0.35 pre-recession and an elasticity of 0.78 in the midst and aftermath of the

Great Recession. These two modes may thus reflect differences in labor market conditions,

among other factors. I use 0.5 as a baseline average and assume that this search elasticity
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is constant across earnings given the relative scarcity of reliable estimates across different

earnings levels.

Results. Figure 4 shows that actual replacement rates decrease with earnings, from 1 at

the bottom of the earnings distribution to low values at the top. At the bottom, this is

because individuals with extremely low income receive similar transfers from social assis-

tance, regardless of their labor market status. At the top, this comes from the fact that

unemployment benefits are linearly increasing with earnings up to a cap, above which re-

placement rates steadily decrease with earnings. This cap is located around an annualized

level of earnings of $40,000 which causes the kink in actual replacement rates.

Figure 4: Testing the Pareto-efficiency of the U.S. tax-benefit system

Note: Actual net replacement rates (black solid line) follow from actual tax-benefit schedules. Net replace-

ment rates implied by Pareto-efficiency (green long dash line) follow from (38). The net replacement rate

implied by the Baily-Chetty formula (gray short dash line) follows from (38) with the employment rate set

to its average, e(z)=1−5.81%, and assuming insurance is actuarially fair, e(z)Te(z)=(1−e(z))Bu(z).

Replacement rates implied by Pareto-efficiency are also decreasing with earnings, but
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they are slightly lower than actual replacement rates at low earnings levels and slightly

higher than actual replacement rates at high earnings levels. At low earnings levels, this

result is somewhat sensitive to the curvature of the utility function and one might get higher

Pareto-efficient replacement rates assuming a coefficient of relative risk aversion larger than

1, the value implied by log utility. At high earnings, this result would be greatly affected by

the introduction of savings that would imply much lower Pareto-efficient replacement rates.

Regardless of the sensitivity of Pareto-efficient replacement rates to the assumptions and

exact calibration, this test highlights that the structure of linearly increasing benefits up to a

cap is unlikely to be Pareto-efficient.33 This suggests a scope for (ex-ante) Pareto-improving

reforms, despite the decreasing pattern of actual replacement rates.

A broader take-away is that interactions between redistribution and unemployment insur-

ance seem important to connect optimal unemployment insurance theory with actual policy:

the pattern of decreasing replacement rates aligns more closely with actual policy than the

standard policy prescription obtained from the Baily-Chetty formula.

4.2 Simulating counterfactual policies

A well-known issue with the simulation of counterfactual policies is that tax-benefit reforms

trigger behavioral changes proportional to labor supply and search elasticities, but poten-

tially also trigger changes in elasticities themselves, implying the need to specify a structural

model (Chetty, 2009; Kleven, 2021). Adapting common parametric specifications used in

prior work, I calibrate the model to match key sufficient statistics as well as observed dis-

tributions of unemployment, participation, and earnings, under the existing US tax-benefit

policy. Analyzing Pareto-efficient tax-benefit systems with varying degrees of redistribution,

preliminary simulation results suggest that the tight link between redistribution and un-

employment insurance has a stabilizing effect on unemployment: unemployment rates are

barely affected by changes in redistribution along the Pareto-frontier.

Parametrization and calibration. I use the following parametric specification and cal-

ibration procedure. First, the utility from consumption is u (c) = c1−γ

1−γ where γ directly

corresponds to the coefficient of relative risk aversion and is set to 1 in the central calibra-

tion (log utility).

Second, the disutility to work is k (z;ω) = k0
1+ε

(
z
ω

)1+ε
where ε is set to match the earnings

elasticity ζelaste (z) and ability ω is obtained by inverting the first-order condition for earnings

33Noting that the cap kicks in at median earnings, this structure could be rationalized in a political
economy model since it maximizes, in relative terms, benefits for the median voter. See F. J. Bierbrauer
et al. (2021) for a median voter theorem in a setting with nonlinear policy instruments.
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z under the existing US tax-benefit policy.34 The distribution of ability is then calibrated to

match the distribution of earnings hz (z).

Third, the disutility to search is ψ (e, z;ω) = ψ0

κ
zψz

ωψω
1

(1−e)κ+1 where κ is set to match

the search elasticity µelastu and parameters (ψ0, ψz, ψω) are calibrated to match the observed

distribution of unemployment rates 1− e (z).

The last step is to calibrate the distribution of fixed costs χ. Following Jacquet et al.

(2013), I assume an ability-specific distribution of fixed-cost fχ|ω (χ|ω) given by∫
x≤χ

fχ|ω (x|ω) dx =
exp (−φ1 (ω) + φ2 (ω)χ)

1 + exp (−φ1 (ω) + φ2 (ω)χ)
(39)

where φ1 (ω) and φ2 (ω) are set to match the participation rate and participation elasticity

at the earnings level z (ω) associated with ability level ω.

Earnings distribution. In the optimal income tax literature, the earnings distribution is

usually calibrated using annual taxable income. However, annual taxable income measures

both earned income when employed and unemployment benefits received when unemployed.

As a result, annual taxable income mixes earnings ability and the realization of unemploy-

ment risk in ways that may lead to important composition effects.

To circumvent this issue, I construct an earnings distribution using the variable usual

weekly earnings available in Current Population Survey (CPS) data for all individuals who

participate in the labor force.35 This variable measures earnings during weeks worked, it

thus provides a proxy for earnings ability that is somewhat independent from the realization

of unemployment risk. I multiply this variable by 52 to obtain an annualized measure of the

earnings individuals would have earned if employed during the whole year.

Appending all monthly CPS files of 2019, I calibrate a log-normal distribution of an-

nualized earnings when employed (Figure A1 in Appendix). The log-normal distribution

broadly matches the shape of the earnings distribution and guarantees smoothness, thereby

eliminating any convergence issues that may arise with less smooth distributions (e.g. kernel

density). Since the top of the earnings distribution is best represented by a Pareto distri-

bution (e.g. Atkinson, Piketty, & Saez, 2011), I append to this log-normal distribution a

Pareto-tail with parameter α = 2 for earnings above $200, 000 following Saez (2001).

34In the presence of unemployment, this “iso-elastic” specification does not give rise to a constant earnings
elasticity ζelaste (z). I thus calibrate ε such that the intensive margin elasticity at the average earnings level
is equal to the targetted value.

35A technical note from the BLS states: “The term "usual" is determined by each respondent’s own
understanding of the term. If the respondent asks for a definition of "usual", interviewers are instructed to
define the term as more than half the weeks worked during the past 4 or 5 months.”
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Participation rates. To calibrate the distribution of participation rates, I repeat the

procedure used to calibrate the distribution of unemployment rates (with the caveat that

participation rates compiled by the BLS are only available for 2016). I use participation

rates by educational attainments that are then mapped to earnings when employed, using

median usual weekly earnings by educational attainment. The data shows a significant

upward gradient in participation rates across earnings (Figure A2 in Appendix) and I fit an

exponential function to the data to obtain a smooth distribution, p (z) = 100−ap exp (−bpz).

Estimating these parameters with nonlinear least-square results in au = 13.14 and bu =

2.235× 10−5.

Combining the fitted distribution of participation rates with the calibrated distribution

of earnings yields an average participation rate of 67.35%. This largely reflects the fact that

the data on participation rates covers all individuals aged 25 and older – including those

aged 65 and older whose participation rate is around 20%. To avoid capturing interactions

between participation and retirement decisions of this older segment of the population, I

adjust the intercept ap to match the participation rate among individuals aged between 25

and 64, equal to 77.04% (OECD). This preserves the gradient in participation rates measured

at the micro level while providing a distribution that is consistent with macro data.

Labor supply elasticities. Chetty, Guren, Manoli, and Weber (2013) provide a meta-

analysis of participation elasticities focusing on reduced-form estimates. They conclude that

0.2 is a reasonable value for participation elasticities, although they tend to be somewhat

larger for certain subgroups of the population like the young, the old, and single mothers. For

instance, Eissa, Kleven, and Kreiner (2008) suggest that the participation elasticity of single

mothers is likely close to 0.7, while Kroft et al. (2020) estimate a participation elasticity of

0.57 for single women. Moreover, structural estimates tend to show that extensive margin

responses of both single men and single women tend to be larger at lower earnings levels

(e.g. Bargain, Orsini, and Peichl, 2014). I thus assume participation elasticities decrease

with earnings in line with prior work in optimal income taxation (e.g. Saez, 2002; Jacquet

et al., 2013; Kroft et al., 2020). More specifically, I set the participation elasticity πelaste (z)

to 0.5 at the origin of the earnings distribution and assume it linearly decreases to 0 at an

earnings level of $100, 000 and above.36

At the intensive margin, quasi-experimental studies estimating the elasticity of earnings

36Because many empirical studies rely on variations in taxes (or wages) when employed, I assume that they
measure the participation elasticity in response to changes in taxes, πelaste (z). An interesting implication of
this model is that participation decisions also depend on the unemployment rate and the benefits received
when unemployed. To the best of my knowledge, the impact of these two factors on participation elasticities
has not been investigated in the empirical literature.

33



with respect to marginal net of tax rate often find small elasticities around 0.1 (Saez, Slemrod,

& Giertz, 2012). Chetty (2012) argues that many of these small estimates are likely driven

by adjustment frictions. Doing a meta-analysis of the literature and accounting for the size

of tax changes used to estimate elasticities, he concludes that a central value for intensive

margin elasticities is 0.33 and I use this value as a baseline for ζelaste (z).

Results. This calibrated structural model is used to simulate Pareto-efficient tax-benefit

systems that feature varying levels of redistribution. To have a simple one-dimensional

parametrization of redistribution, consider an affine tax-transfer schedule, Te(z) = τz −R0.

A more redistributive tax-benefit system then corresponds to one with a higher tax rate. For

each tax rate τ , I then numerically solve for the fixed-point where the demogrant R0 balances

the government budget, the tax-benefit system is Pareto-efficient, and individuals’ decisions

are optimal given the tax-benefit system in place. This yields a characterization of the Pareto-

frontier in the class of tax-benefit systems that feature affine tax-transfer schedules when

employed. Preliminary simulation results, which disregard savings and earnings decisions

thereby following the baseline model, are displayed in Figure 5.

The top left panel of Figure 5 shows that a higher tax rate allows the government to

finance a higher demogrant R0 , thereby increasing redistribution. The demogrant keeps on

increasing at high tax rates in part because of the absence of labor supply responses above an

earnings level of $100, 000 in this pure extensive margin model. The top right panel shows

the evolution of replacement rates across tax rates for different earnings levels. Optimal

replacement rates are quite similar at a low tax rate of 25% and diverge as the tax rate

increases: replacement rates increase at very low earnings levels through the increase in the

demogrant, but decrease at high earnings levels driven through the increase in the tax rate,

reflecting the logic highlighted when discussing the benefit formula (15) and Figure 1.

The bottom left panel of Figure 5 shows that increases in the degree of redistribution

induce strong participation responses that translate into stark reductions in participation

rates at all earnings levels. In contrast, the bottom right panel of Figure 5 shows that

unemployment rates remain strikingly stable at all earnings levels. This is all the more

striking in light of the divergence in replacement rates as the tax rate increases. This

suggests that the tight link between redistribution and unemployment insurance implied by

Pareto-efficiency has a stabilizing effect on unemployment rates when varying the degree of

redistribution, which then mostly affects participation.37

37It would be interesting to extend these results to include general equilibrium effects. Intuitively, the
reduction in labor force participation should push wages up and the unemployment rate down introducing
additional feedback effects from tax-benefit reforms.

34



Figure 5: Pareto-efficient tax-benefit systems across varying degrees of redistribution

Note: Assuming an affine tax-transfer schedule, Pareto-efficient tax-benefit systems are simulated for different

linear tax rates. The Figure represents for each tax rate, the demogrant (top left), replacement rates (top

right), participation rates (bottom left), unemployment rates (bottom right).

5 Conclusion

This paper analyzes the interactions between redistribution and unemployment insurance

policies in a simple and tractable framework bridging canonical models of optimal income

taxation and optimal unemployment insurance. Characterizing optimal policies in terms

of empirically estimable sufficient statistics, I show that these interactions have important

implications for the design tax-benefit systems.

First, they affect the optimal design of redistributive taxes and transfers, in particular

at the bottom of the earnings distribution where an EITC may be desirable to boost the

job search incentives of the unemployed. Second, they imply that redistribution through

progressive unemployment benefits is efficient, even in the presence of an optimal redis-

tributive tax-transfer schedule. Third, they imply that optimal unemployment insurance

features replacement rates that decrease with earnings, from 1 at the bottom of the earnings
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distribution to 0 at the top, in a way that is shaped by redistribution.
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Appendix

A Supplementary Tables & Figures

Figure A1: Distribution of earnings when employed in the U.S.

Note: Drawing on 2019 CPS data, the distribution of annualized earnings when employed is constructed

using the variable usual weekly earnings, multiplied by 52. The mass at the top of the histogram reflects the

topcoding of weekly earnings above $2, 884.61 (annual earnings above $150, 000).
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Figure A2: Participation rates across earnings in the U.S.

Note: Using compiled BLS statistics relying on CPS data, participation rates across earnings levels are

obtained by combining participation rates across education levels in 2016 (only year for which these statistics

are readily available) with median usual weekly earnings by education levels in 2019. Exponential fits rely

on nonlinear least-square estimation. Adjusted fit set to match the average participation rate of individuals

aged 25-64.
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B Proofs of Propositions

B.1 Optimal policies in baseline model (Proposition 1)

The Lagrangian of the government’s problem, with multiplier λ, is

L
λ

=

∫
z

∫
χ≤χ̃(z)

[
1

λ
G
(
V (z)− χ

)
+ e(z)Te(z)− (1− e(z))Bu(z)

]
fχ|z(χ)fz(z)dχdz

+

∫
z

∫
χ≥χ̃(z)

[
1

λ
G
(
u0(R0)

)
−R0

]
fχ|z(χ)fz(z)dχdz. (40)

Optimal tax. Consider a small change, dTe(z), in the tax-transfer when employed at

earnings z. The change in the Langrangian implied by this reform is

dL
λ

=

∫
χ≤χ̃(z)

[
1

λ
G′
(
V (z)− χ

)
dV (z) + e(z)dTe(z) + de(z)

(
Te(z) +Bu(z)

)]
fχ|z(χ)dχfz(z)

+
[
e(z)Te(z)− (1− e(z))Bu(z) +R0

]
dχ̃(z)fχ|z (χ̃(z)) fz(z), (41)

since utility-maximizing participation decisions imply that individuals who change their par-

ticipation decisions do not experience any first-order change in their utility.

Now, search decisions are also utility-maximizing, which implies by an envelope argument

that the impact on expected utility when participating is,

dV (z) = −e(z)u′e (z − Te(z)) dTe(z), (42)

and, by definition of µe(z) and πe(z), changes in search and participation decisions are

de(z) = − (1− e(z))µe(z)dTe(z), (43)

dh(z) = dχ̃(z)fχ|z(χ̃(z))fz(z) = −πe(z)hz(z)dTe(z), (44)

where the second equality follows from hz(z) =
(∫

χ≤χ̃(z)
fχ|z(χ)dχ

)
fz(z). As a result,

dL
λ

=

{
− e(z)u′e (z − Te(z))

1

λ
G′
(
V (z)− χ

)
+
[
e(z)− (1− e(z))µe(z)

(
Te(z) +Bu(z)

)]
−
[
e(z)Te(z)− (1− e(z))Bu(z) +R0

]
πe(z)

}
dTe(z)hz(z) (45)

where

G′
(
V (z)− χ

)
=

∫
χ≤χ̃(z)

G′
(
V (z)− χ

)
fχ|z(χ)dχ

hz(z)/fz(z)
. (46)
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Introducing social marginal welfare weights, ge(z), and characterizing optimal policy through

the first-order condition dL
dTe(z)

= 0, we obtain optimal tax formula (9) of Proposition 1:

e(z)(1−ge(z))− (1−e(z))(Te(z)+Bu(z))µe(z)− [e(z)Te(z)−(1−e(z))Bu(z)+R0] πe(z) = 0

⇐⇒ (Te(z)+R0)πe(z)− (1−e(z))(Te(z)+Bu(z))(πe(z)−µe(z)) = e(z)(1−ge(z)). (47)

Optimal benefit. Consider a small change, dBu(z), in the unemployment benefits of

individuals with earnings z when employed. The impact on the Langrangian is

dL
λ

=

∫
χ≤χ̃(z)

[
1

λ
G′
(
V (z)−χ

)
dV (z)− (1−e(z)) dBu(z) + de(z)

(
Te(z)+Bu(z)

)]
fχ|z(χ)dχfz(z)

+
[
e(z)Te(z)− (1−e(z))Bu(z) +R0

]
dχ̃(z)fχ|z (χ̃(z)) fz(z), (48)

since utility-maximizing participation decisions imply that individuals who change their par-

ticipation decisions do not experience any first-order change in their utility.

Now, search decisions are also utility-maximizing, which implies by an envelope argument

that the impact on expected utility when participating is,

dV (z) = (1− e(z))u′u (Bu(z)) dBu(z), (49)

and, by definition of µu(z) and πu(z), changes in search and participation decisions are

de(z) = − (1− e(z))µu(z)dBu(z), (50)

dh(z) = dχ̃(z)fχ|z(χ̃(z))fz(z) = πu(z)hz(z)dBu(z), (51)

where the second equality follows from hz(z) =
(∫

χ≤χ̃(z)
fχ|z(χ)dχ

)
fz(z). As a result,

dL
λ

=

{
(1− e(z))u′u (Bu(z))

1

λ
G′
(
V (z)− χ

)
− (1− e(z))− (1− e(z))µu(z)

(
Te(z) +Bu(z)

)
+
[
e(z)Te(z)− (1− e(z))Bu(z) +R0

]
πu(z)

}
hz(z)dBu(z). (52)

Introducing social marginal welfare weights, gu(z), and characterizing optimal policy through

the first-order condition dL
dBu(z)

= 0, we obtain the following optimal benefit formula:

(1−e(z))(gu(z)−1)− (1−e(z))µu(z)(Te(z)+Bu(z)) + [e(z)Te(z)−(1−e(z))Bu(z)+R0] πu(z) = 0

⇐⇒ (1−e(z))(πu(z)+µu(z))(Te(z)+Bu(z))− (Te(z)+R0)πu(z) = (1−e(z))(gu(z)−1).

(53)
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Pareto-efficiency. Consider a joint reform that consists in a small change in the ben-

efits when unemployed, dBu(z), accompanied by a small change in the tax-transfer when

employed, dTe(z) = 1−e(z)
e(z)

u′u(Bu(z))
u′e(z−Te(z))

dBu(z), for individuals with earnings z.

This reform does not affect the utility of individuals who do not participate in the labor

market. Moreover, the change in the expected utility of individuals who participate is, by

an envelope argument,

dV (z) = −e(z)u′e (z − Te(z)) dTe(z) + (1− e(z))u′u (Bu(z)) dBu(z) = 0, (54)

implying that this reform triggers no utility changes whatsoever, and therefore no changes

in participation decisions. The impact on the Lagragian is thus

dL
λ

=

∫
χ≤χ̃(z)

[
e(z)dTe(z)−(1− e(z)) dBu(z)+de(z) (Te(z) +Bu(z))

]
fχ|z (χ) fz (z) dχ. (55)

Now, changes in search decisions are given by

de(z) = − (1− e(z))µe(z)dTe(z)− (1− e(z))µu(z)dBu(z)

= −1− e(z)

e(z)
µu(z)dBu(z), (56)

where the second equality follows from µe(z)
u′e(z−Te(z))

= µu(z)
u′u(Bu(z))

(see proof below). As a result,

dL
λ

= (1− e(z))

{(
u′u (Bu(z))

u′e (z − Te(z))
− 1

)
− µu(z)

e(z)
(Te(z) +Bu(z))

}
hz(z)dBu(z), (57)

implying that there exists a joint reform of Bu(z) and Te(z) that is Pareto-improving when-

ever the curly bracket is non-zero. A Pareto-efficient tax-benefit system thus satisfies,

u′ (Bu(z))

u′ (z − Te(z))
− 1 =

µu(z)

e(z)
(Te(z) +Bu(z))

⇐⇒ u′ (Bu(z))

u′ (z − Te(z))
− 1 =

µu(z)

e(z)

Bu(z)

e(z)

[
1 +

1

Bu(z)

(
e(z)Te(z)− (1− e(z))Bu(z)

)]
(58)

which is Pareto-efficiency condition (10) of Proposition 1.

Relation between search semi-elasticities. Looking at individuals’ maximization prob-

lem (2), the first-order condition pinning down e(z) is

(FOC)e : [ue (z − Te(z))− k(z)]− [uu (Bu(z))− ψ(e; z)]− (1− e)∂ψ (e; z)

∂e
= 0 (59)
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and the second-order condition is

(SOC)e : 2
∂ψ (e; z)

∂e
− (1− e) ∂

2ψ (e; z)

∂e2
< 0 (60)

Differentiating the first-order condition yields

− u′e (z − Te(z)) dTe (z)− u′u (Bu(z)) dBu (z) + (SOC)e de = 0 (61)

Hence,

µe(z) = − 1

1− e (z)

∂ (1− e (z))

∂ (z − Te (z))
= − 1

1− e (z)

u′e (z − Te(z))

(SOC)e
, (62)

µu(z) =
1

1− e (z)

∂ (1− e (z))

∂Bu (z)
= − 1

1− e (z)

u′u (Bu (z))

(SOC)e
, (63)

such that finally

µe (z)

u′e (z − Te(z))
= − 1

1− e (z)

1

(SOC)e
=

µu (z)

u′u (Bu (z))
. (64)

Application with log utility. When ue(c) = uu(c) = log(c), introducing the elasticity

concept µelastu (z) = Bu(z)µu(z), the Pareto-efficiency condition becomes

z−Te(z)

Bu(z)
−1 =

µelastu (z)

Bu(z)

1

e(z)
(Te(z)+Bu(z)) ⇐⇒ z−Te(z)−Bu(z) =

µelastu (z)

e(z)
(Te(z)+Bu(z))

⇐⇒ Bu(z) =
e(z)

e(z) + µelastu (z)
z−Te(z). (65)

Introducing elasticity concepts πelaste (z) = (z − Te(z))πe(z), the optimal tax formula becomes

(Te(z)+R0)
πelaste (z)

z−Te(z)
− (1−e(z))(Te(z)+Bu(z))

[
πelaste (z)

z−Te(z)
− µ

elast
e (z)

z−Te(z)

]
= e(z)

[
1− 1

z−Te(z)

G′(V (z)−χ)

λ

]
(66)

Using Bu(z)= e(z)
e(z)+µelastu (z)

z−Te(z), multiplying both sides by z−Te(z), and rearranging yields

(πelaste (z)+e(z))Te(z) = e(z)

[
z−G

′(V (z)−χ)

λ
+(1−e(z))

πelaste (z)−µelaste (z)

e(z)+µelastu (z)
z

]
−πelaste (z)R0,

(67)
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which corresponds to the expression in the text, noting that with log utility,

µe(z)

u′e(z−Te(z))
=

µu(z)

u′u(Bu(z))
⇐⇒ µelaste (z) = µelastu (z). (68)

B.2 Optimal policies with savings and assets (Proposition 2)

Abstracting from savings and assets taxes, the Lagrangian associated with the government’s

problem is the same as before, with indirect utility defined this time by (16).

Optimal taxes. Consider a small change, dTe(z), in the tax-transfer when employed at

earnings z. The change in the Langrangian implied by this reform is, as before,

dL
λ

=

∫
χ≤χ̃(z)

[
1

λ
G′
(
V (z)− χ

)
dV (z) + e(z)dTe(z) + de(z)

(
Te(z) +Bu(z)

)]
fχ|z(χ)dχfz(z)

+
[
e(z)Te(z)− (1− e(z))Bu(z) +R0

]
dχ̃(z)fχ|z (χ̃(z)) fz(z), (69)

since utility-maximizing participation decisions imply that individuals who change their par-

ticipation decisions do not experience any first-order change in their utility.

Now, search decisions are utility-maximizing but the accumulation of savings and assets

may not be, implying that the impact on indirect utility when participating is,

dV (z) = e(z)

[
−u′e(.)

(
1 +

∂s(z)

∂Te(z)
+

∂a(z)

∂Te(z)

)
+ u′u(.)

∂s(z)

∂Te(z)
+ U ′(.)

∂a(z)

∂Te(z)

]
dTe(z) (70)

= e(z)

[
−u′e(ce(z))+(u′u(cu(z))−u′e(ce(z)))

∂s(z)

∂Te(z)
+(U ′(e(z)a(z))−u′e(ce(z)))

∂a(z)

∂Te(z)

]
dTe(z)

and changes in search and participation decisions are, as before,

de(z) = − (1− e(z))µe(z)dTe(z), (71)

dh(z) = dχ̃(z)fχ|z(χ̃(z))fz(z) = −πe(z)hz(z)dTe(z), (72)

except that semi-elasticities now include endogenous changes in savings and assets. As a

result,

dL
λ

=

{
e(z)+e(z)

1

λ
G′
(
V (z)−χ

)[
−u′e(.)+(u′u(.)−u′e(.))

∂s(z)

∂Te(z)
+(U ′(.)−u′e(.))

∂a(z)

∂Te(z)

]
(73)

− (1−e(z))(Te(z)+Bu(z))µe(z)−
[
e(z)Te(z)−(1−e(z))Bu(z)+R0

]
πe(z)

}
hz(z)dTe(z).
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Using social marginal welfare weights, ge(z), and characterizing optimal policy through the

first-order condition dL
dTe(z)

= 0 we finally obtain

e(z)(1−ge(z)) + e(z)ge(z)

[
u′u(cu(z))−u′e(ce(z))

u′e(ce(z))

∂s(z)

∂Te(z)
+
U ′(e(z)a(z))−u′e(ce(z))

u′e(ce(z))

∂a(z)

∂Te(z)

]
− (1−e(z))(Te(z)+Bu(z))µe(z)−

[
e(z)Te(z)−(1−e(z))Bu(z)+R0

]
πe(z) = 0, (74)

which, after rearranging terms, yields optimal tax formula (19) of Proposition 2.

Pareto-efficiency. The change in expected utility following a joint reform of taxes and

benefits is

dV (z) =−
[
e(z)u′e(.)−e(z)(u′u(.)−u′e(.))

∂s(z)

∂Te(z)
−e(z)(U ′(.)−u′e(.))

∂a(z)

∂Te(z)

]
dTe(z) (75)

+

[
(1−e(z))u′u(.)+e(z)(u′u(.)−u′e(.))

∂s(z)

∂Bu(z)
+e(z)(U ′(.)−u′e(.))

∂a(z)

∂Bu(z)

]
dBu(z).

A joint reform thus leaves utility constant when dTe(z) = Kr(z)1−e(z)
e(z)

u′u(cu(z))
u′e(ce(z))

dBu(z), with

Kr(z) :=
1 + e(z)

1−e(z)
u′u(.)−u′e(.)

u′u(.)
∂s(z)
∂Bu(z)

+ e(z)
1−e(z)

U ′(.)−u′e(.)
u′u(.)

∂a(z)
∂Bu(z)

1− u′u(.)−u′e(.)
u′e(.)

∂s(z)
∂Te(z)

− U ′(.)−u′e(.)
u′e(.)

∂a(z)
∂Te(z)

, (76)

implying that Kr(z)=1 with either utility-maximizing or exogenous savings and assets.

This joint reform triggers no utility changes whatsoever, and therefore no changes in

participation decisions. The impact of this reform on the Lagragian is thus

dL
λ

=

∫
χ≤χ̃(z)

[
e(z)dTe(z)− (1−e(z))dBu(z) + de(z)(Te(z)+Bu(z))

]
fχ|z(χ)fz(z)dχ. (77)

with changes in search behaviors given by

de(z) = −(1− e(z))µe(z)dTe(z)− (1− e(z))µu(z)dBu(z)

= −(1− e(z))

[
Kr(z)

1− e(z)

e(z)

u′u(cu(z))

u′e(ce(z))
µe(z) + µu(z)

]
dBu(z)

= −(1− e(z))

[
Kµ(z)Kr(z)

1− e(z)

e(z)
+ 1

]
µu(z)dBu(z) (78)
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where the last equality follows from µe(z)
u′e(ce(z))

= Kµ(z) µu(z)
u′u(cu(z))

(see below). As a result,

dL
λ

= (1−e(z))

{
Kr(z)

u′u(cu(z))

u′e(ce(z))
−1−

[
Kµ(z)Kr(z)

1−e(z)

e(z)
+1

]
µu(z)(Te(z)+Bu(z))

}
hz(z)dBu(z).

(79)

implying that there exists a joint reform of Bu(z) and Te(z) that is Pareto-improving when-

ever the curly bracket is non-zero. A Pareto-efficient tax-benefit system thus satisfies,

Kr(z)
u′u(cu(z))

u′e(ce(z))
−1=

[
1+Kµ(z)Kr(z)

1−e(z)

e(z)

]
µu(z)(Te(z)+Bu(z)) (80)

⇐⇒Kr(z)
u′u(cu(z))

u′e(ce(z))
−1=

[
1+Kµ(z)Kr(z)

1−e(z)

e(z)

]
µu(z)Bu(z)

e(z)

[
1+

e(z)Te(z)−(1−e(z))Bu(z)

Bu(z)

]
,

which is Pareto-efficiency condition (20) of Proposition 2.

Relation between search semi-elasticities. The first-order condition for e associated

with individuals’ maximization problem (16) is

(FOC)e :
[
ue

(
z − Te(z)− s(z)− a(z)

)
− k (z)

]
−
[
uu

(
Bu(z) +

e(z)

1− e(z)
s(z)

)
− ψ (e(z), z)

]
+

s(z)

1− e(z)
u′u

(
Bu(z) +

e(z)

1− e(z)
s(z)

)
+ a(z)U ′(e(z)a(z)) (81)

+ e(z) [u′u(.)− u′e(.)]
∂s(z)

∂e
+ e(z) [U ′(.)− u′e(.)]

∂a(z)

∂e
− (1− e(z))

∂ψ (e(z), z)

∂e
= 0,

and the second-order condition is

(SOC)e : 2
∂ψ (e(z), z)

∂e
− (1−e(z))

∂2ψ (e(z), z)

∂e∂e
+
[u′′u(.) (s(z))2

(1−e(z))3
+ (a(z))2U ′′(.)

]
+
[
(u′u(.)−u′e(.)) +

u′′u(.)s(z)e(z)

(1−e(z))2

]∂s(z)

∂e
+
[
(U ′(.)−u′e(.))+e(z)a(z)U ′′(.)

]∂a(z)

∂e

+ e(z)(u′u(.)−u′e(.))
∂2s(z)

∂e∂e
+ e(z)(U ′(.)−u′e(.))

∂2a(z)

∂e∂e
< 0 (82)
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Differentiating this FOC with respect to Te(z) and rearranging we get

(SOC)e
u′e(.)

∂e(z)

∂Te(z)
=

{
1−e(z)

u′′e(.)

u′e(.)

[
∂s(z)

∂e
+
∂a(z)

∂e

]
−e(z)

u′u(.)−u′e(.)
u′e(.)

∂2s(z)

∂Te∂e
−e(z)

U ′(.)−u′e(.)
u′e(.)

∂2a(z)

∂Te∂e

}
−
{
u′u(.)−u′e(.)

u′e(.)
+
u′′u(.)

u′e(.)

e(z)

1−e(z)

[
s(z)

1− e(z)
+
∂s(z)

∂e
e(z)

]
+
u′′e(.)

u′e(.)
e(z)

[
∂s(z)

∂e
+
∂a(z)

∂e

]
+e(z)

u′u(.)−u′e(.)
u′e(.)

∂2s(z)

∂s∂e
+e(z)

U ′(.)−u′e(.)
u′e(.)

∂2a(z)

∂s∂e

}
∂s(z)

∂Te(z)

−
{
U ′(.)−u′e(.)

u′e(.)
+
U ′′(.)

u′e(.)
e(z)

[
a(z)+e(z)

∂a(z)

∂e

]
+
u′′e(.)

u′e(.)
e(z)

[
∂s(z)

∂e
+
∂a(z)

∂e

]
+e(z)

u′u(.)−u′e(.)
u′e(.)

∂2s(z)

∂a∂e
+e(z)

U ′(.)−u′e(.)
u′e(.)

∂2a(z)

∂a∂e

}
∂a(z)

∂Te(z)
. (83)

Similarly, differentiating the FOC with respect to Bu(z) and rearranging we get

(SOC)e
u′u(.)

∂e(z)

∂Bu(z)
=

{
1−u

′′
u(.)

u′u(.)

[
s(z)

1− e(z)
+e(z)

∂s(z)

∂e

]
−e(z)

u′u(.)−u′e(.)
u′u(.)

∂2s(z)

∂Bu∂e
−e(z)

U ′(.)−u′e(.)
u′u(.)

∂2a(z)

∂Bu∂e

}
−
{
u′u(.)−u′e(.)

u′u(.)
+
u′′u(.)

u′u(.)

e(z)

1−e(z)

[
s(z)

1−e(z)
+
∂s(z)

∂e
e(z)

]
+
u′′e(.)

u′u(.)
e(z)

[
∂s(z)

∂e
+
∂a(z)

∂e

]
+e(z)

u′u(.)−u′e(.)
u′u(.)

∂2s(z)

∂s∂e
+e(z)

U ′(.)−u′e(.)
u′u(.)

∂2a(z)

∂s∂e

}
∂s(z)

∂Bu(z)

−
{
U ′(.)−u′e(.)

u′u(.)
+
U ′′(.)

u′u(.)
e(z)

[
a(z)+

∂a(z)

∂e
e(z)

]
+
u′′e(.)

u′u(.)
e(z)

[
∂s(z)

∂e
+
∂a(z)

∂e

]
+ e(z)

u′u(.)−u′e(.)
u′u(.)

∂2s(z)

∂a∂e
+e(z)

U ′(.)−u′e(.)
u′u(.)

∂2a(z)

∂a∂e

}
∂a(z)

∂Bu(z)
. (84)

Omitting arguments to economize on space, let

KT := 1− eu
′′
e

u′e

[
∂s

∂e
+
∂a

∂e

]
− e

[
u′u−u′e
u′e

∂2s

∂Te∂e
+
U ′−u′e
u′e

∂2a

∂Te∂e

]
(85)

KB := 1− u′′u
u′u

[
s

1− e
+e

∂s

∂e

]
− eu

′
e

u′u

[
u′u−u′e
u′e

∂2s

∂Bu∂e
+
U ′−u′e
u′e

∂2a

∂Bu∂e

]
(86)

Ks :=
u′′u
u′e

e

1− e

[
s

1− e
+e

∂s

∂e

]
+
u′′e
u′e
e

[
∂s

∂e
+
∂a

∂e

]
+
u′u−u′e
u′e

[
1+e

∂2s

∂s∂e

]
+e

U ′−u′e
u′e

∂2a

∂s∂e
(87)

Ka :=
U ′′

u′e
e

[
a+e

∂a

∂e

]
+
u′′e
u′e
e

[
∂s

∂e
+
∂a

∂e

]
+
u′u−u′e
u′e

e
∂2s

∂a∂e
+
U ′−u′e
u′e

[
1+e

∂2a

∂a∂e

]
(88)

and

Kµ(z) :=
KT (z) +Ks(z) ∂s(z)

∂Te(z)
+Ka(z) ∂a(z)

∂Te(z)

KB(z) + u′e(.)
u′u(.)

[
Ks(z) ∂s(z)

∂Bu(z)
+Ka(z) ∂a(z)

∂Bu(z)

] . (89)
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such that we finally obtain µe(z)
u′e(ce(z))

= Kµ(z) µu(z)
u′u(cu(z))

.

B.3 Optimal policies with earnings decisions (Proposition 3)

Monotonicity. Consider individuals’ maximization problem:

V (ω) := max
z

{
max
e

e
[
ue(z−Te(z))−k(z;ω)

]
+ (1−e)

[
uu(Bu(z))−ψ(e, z;ω)

]}
. (90)

The first-order condition for search efforts defines e(z;ω) as the solution to

(FOC)e :
[
ue(z−Te(z))−k(z;ω)

]
−
[
uu(Bu(z))−ψ (e, z;ω)

]
− (1−e)∂ψ(e, z;ω)

∂e
= 0, (91)

and the second-order condition is

(SOC)e : 2
∂ψ(e, z;ω)

∂e
− (1−e)∂

2ψ(e, z;ω)

∂e2
< 0. (92)

Differentiating (FOC)e with respect to z yields[
(1−T ′e(z))u′e(.)−

∂k(.)

∂z

]
−
[
B′u(z)u′u(.)−

∂ψ(.)

∂z

]
=−(SOC)e

∂e(z;ω)

∂z
+(1−e(z;ω))

∂2ψ(.)

∂e∂z
.

(93)

The first-order condition for earnings z defines z(ω) as the solution

(FOC)z : e(z;ω)

[
(1− T ′e(z))u′e(z − Te(z))− ∂k(z;ω)

∂z

]
+ (1− e(z;ω))

[
B′u(z)u′u(Bu(z))− ∂ψ(e(z;ω), z;ω)

∂z

]
= 0, (94)

and the second-order condition for earnings z is

(SOC)z :
∂e(z;ω)

∂z

{[
(1− T ′e(z))u′e(.)−

∂k(.)

∂z

]
−
[
B′u(z)u′u(.)−

∂ψ(.)

∂z

]
− (1− e(z;ω))

∂2ψ(.)

∂e∂z

}
+ e(z;ω)

[
−T ′′e (z)u′e(.) + (1− T ′e(z))

2
u′′e(.)−

∂2k(.)

∂z2

]
+ (1− e(z;ω))

[
B′′u(z)u′u(.) +B′u(z)u′′u(.)−

∂2ψ(.)

∂z2

]
< 0. (95)
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Now, differentiating (FOC)z with respect to ω, it follows that

dz(ω)

dω
(SOC)z +

∂e(z;ω)

∂ω

{[
(1− T ′e(z))u′e(.)−

∂k(.)

∂z

]
−
[
B′u(z)u′u(.)−

∂ψ(.)

∂z

]}
− e(z;ω)

∂2k(.)

∂z∂ω
− (1− e(z;ω))

[
∂2ψ(.)

∂e∂z

∂e(z;ω)

∂ω
+
∂2ψ(.)

∂z∂ω

]
= 0 (96)

Using (93), simplying ∂2ψ(e,z;ω)
∂e∂z

terms, and rearranging yields

dz(ω)

dω
=

1

(SOC)z

[
e(z;ω)

∂2k(.)

∂z∂ω
+ (1− e(z;ω))

∂2ψ(.)

∂z∂ω
+ (SOC)e

∂e(z;ω)

∂ω

∂e(z;ω)

∂z

]
, (97)

which is (22) in the text.

Optimal tax. Consider a marginal increase ∆τ in the marginal tax rate T ′e(z) that applies

to agents in a small bandwidth of income [z, z + ∆z] which translates in a lump-sum increase

in taxes ∆τ∆z on all agents employed at earnings levels z ≥ z + ∆z. This reform induces

four different effects:

(1) A mechanical effect ∆M capturing mechanical changes in the government budget and

in agents’ well-being from the lump-sum tax increase ∆τ∆z

lim
∆z→0

∆M = ∆τ∆z

∫
x≥z

e(x)(1− ge(x))hz(x)dx (98)

(2) A behavioral effect ∆Bz capturing earnings responses to the reform and that can be

decomposed into substitution effects in response to the ∆τ increase in the marginal tax rate,

and into income effects in response to the ∆τ∆z increase in the tax level

lim
∆z→0

∆Bz = −Q(z)zζe(z)∆τ hz(z)∆z +

∫
x≥z

Q(x)ηze(x) ∆τ∆z hz(x)dx (99)

where Q(z) := e(z)T ′e(z)− (1− e(z))B′u(z) is the marginal tax-benefit rate capturing the net

fiscal externality induced by a marginal change in earnings z.

(3) A behavioral effect ∆Be capturing job search responses to the reform and that can

be decomposed into direct effects in response to the ∆τ∆z increase in the tax level, and into

indirect effects induced by earnings changes

lim
∆z→0

∆Be = (Te(z) +Bu(z))ξ1−e
z (z) zζe(z)∆τ hz(z)∆z (100)

−
∫
x≥z

(Te(x) +Bu(x))
[
(1− e(x))µe(x) + ξ1−e

z (x)ηe(x)
]

∆τ∆z hz(x)dx
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where Te(z) + Bu(z) is the employment tax capturing the net fiscal externality induced by

changes in job search.

(4) A participation effect ∆P capturing negative participation responses to the reform

due to the δτδz increase in the tax level

lim
∆z→0

∆P = −
∫
x≥z

[
(Te(x) +R0)− (1− e(x))(Te(x) +Bu(x))

]
πe(x) ∆τ∆z hz(x)dx (101)

where (Te(z)+R0)− (1−e(z))(Te(z)+Bu(z)) is the participation tax net of the employment

tax when unemployed, capturing the fiscal externality induced by changes in participation

decisions.

Let ∆Le(z,∆z,∆τ) := ∆M + ∆Bz + ∆Be + ∆P be the total effect of this reform,

∆Le =

{
−
[
Q(z)− (Te(z)+Bu(z))ξ1−e

z (z)
]
zζe(z)hz(z) (102)

+

∫
x≥z

[
e(x)(1−ge(x))−(Te(x)+R0)πe(x)+(1−e(x))(Te(x)+Bu(x))(πe(x)−µe(x))

+ (Q(x)−(Te(x)+Bu(x))ξ1−e
z (x))ηe(x)

]
hz(x)dx

}
∆τ∆z

with Q(z) = e(z)T ′e(z) − (1 − e(z))B′u(z). Characterizing the optimal tax schedule as one

that cannot be improved upon, ∆Le = 0, yields optimal tax formula (27) of Proposition 3.

Optimal benefit. Consider a marginal increase ∆b in the marginal benefits rateB′u(z) that

applies to small bandwidth of earnings [z, z + ∆z] which translates in a lump-sum increase

in benefits ∆b∆z on all unemployed agents with reference earnings levels z ≥ z + ∆z. This

reform induces four different effects:

(1) A mechanical effect ∆M capturing mechanical changes in the government budget and

in agents’ well-being from the lump-sum ∆b∆z increase in the level of benefits above z

lim
∆z→0

∆M = ∆b∆z

∫
x≥z

(1− e(x))(gu(x)− 1)hz(x)dx (103)

(2) A behavioral effect ∆Bz capturing earnings responses to the reform and that can be

decomposed into substitution effects in response to the ∆b increase in the marginal benefits

rate, and into income effects in response to the ∆b∆z increase in the level of benefits above

z

lim
∆z→0

δBz = Q(z)zζu(z)∆bhz(z)∆z −
∫
x≥z

Q(x)ηu(x) ∆b∆z hz(x)dx (104)

where Q(z) = e(z)T ′e(z)− (1− e(z))B′u(z) is the marginal tax-benefits rate capturing the net
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fiscal externality induced by a marginal change in earnings z.

(3) A behavioral effect ∆Be capturing job search responses to the reform and that can

be decomposed into direct effects in response to the ∆b∆z increase in the benefit level, and

into indirect effects induced by earnings changes

lim
∆z→0

∆Be =− (Te(z) +Bu(z))zξ1−e
z (z)ζu(z) ∆b hz(z)∆z (105)

−
∫
x≥z

(Te(x) +Bu(x))
[
(1− e(x))µu(x)− ξ1−e

z (x)ηu(x)
]

∆b∆z hz(x)dx

where Te(z) + Bu(z) is the employment tax capturing the net fiscal externality induced by

changes in job search.

(4) A participation effect ∆P capturing positive participation responses to the reform

due to the ∆b∆z increase in the benefit level

lim
∆z→0

∆P =

∫
x≥z

[
(Te(x) +R0)− (1− e(x))(Te(x) +Bu(x))

]
πu(x) ∆b∆z hz(x)dx (106)

where (Te(z) + R0) − (1 − e(z))(Te(z) + Bu(z)) is the participation tax capturing the net

fiscal externality induced by changes in participation decisions.

Let ∆Lu(z,∆z,∆b) := ∆M + ∆Bz + ∆Be + ∆P be the total effect of this reform,

∆Lu =

{(
Q(z)− (Te(z) +Bu(z))ξ1−e

z (z)
)
zζu(z)hz(z) (107)

+

∫
x≥z

[
(1−e(x))(gu(x)−1)+(Te(x)+R0)πu(x)−(1−e(x))(Te(x)+Bu(x))(πu(x)+µu(x))

−
(
Q(x)−(Te(x)+Bu(x))ξ1−e

z (x)
)
ηu(x)

]
hz(x)dx

}
∆b∆z.

with Q(z) = e(z)T ′e(z)− (1− e(z))B′u(z). Characterizing the optimal benefit schedule as one

that cannot be improved upon, ∆Lu = 0, yields the following optimal benefit formula that

is not reported in the main text:

−
(
Q(z)− (Te(z) +Bu(z))ξ1−e

z (z)
)
zζu(z)hz(z) (108)

=

∫
x≥z

[
(1−e(x))(gu(x)−1)+(Te(x)+R0)πu(x)−(1−e(x))(Te(x)+Bu(x))(πu(x)+µu(x))

−
(
Q(x)−(Te(x)+Bu(x))ξ1−e

z (x)
)
ηu(x)

]
hz(x)dx.

Pareto-efficiency. In this setting, a joint increase in the level of taxes and benefits is

engineered through the use of the following two-bracket reforms (F. Bierbrauer et al., 2020).
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First, a two-bracket tax increase at earnings z that consists in a ∆τ increase in the

marginal tax rate in the bracket [z, z + ∆z] combined with a ∆τ decrease in the marginal

tax rate in the bracket [z + ε, z + ε+ ∆z], where ε > ∆z > 0.

Second, a two-bracket benefit increase at earnings z that consists in a ∆b increase in the

marginal benefit rate in the bracket [z, z + ∆z] combined with a ∆b decrease in the marginal

tax rate in the bracket [z + ε, z + ε+ ∆z].

In each bracket, simultaneous changes in marginal tax and benefit rates do not trigger

first-order changes in utilities, search or participation, but do trigger first-order changes in

earnings through substitution effects. Letting the width of each bracket ∆z go to zero, the

total earnings response in the bracket [z, z + ∆z] is

dz = [−zζe(z)∆τ + zζu(z)∆b]hz(z)∆z

=

[
− e(z)

(1− e(z))

u′(z − Te(z))

u′(Bu(z))
∆τ + ∆b

]
ζu(z)zhz(z)∆z (109)

where the second equality follows from ζe(z) = − e(z)
(1−e(z))

u′(z−Te(z))
u′(Bu(z))

ζu(z). A similar expression

gives the total earnings response in the second bracket.

Now, these two-bracket reforms generate for all individuals with earnings in the interval

[z, z + ε] a ∆τ∆z lump-sum increase in taxes and a ∆b∆z lump-sum increase in bene-

fits. Letting the width of this interval, ε, go to zero, the former decreases their utility by

∆τ∆ze(z)u′(z − Te(z)), while the latter increases their utility by ∆b∆z(1 − e(z))u′(Bu(z))

in application of the envelope theorem.

Setting ∆τ = 1−e(z)
e(z)

u′(Bu(z))
u′(z−Te(z))∆b ensures that the utility of individuals in the interval

[z, z + ε] is unaffected by the reform. This implies that participation decisions are unaffected,

but also that in each bracket the total earnings response is exactly zero. As a result, these

joint two-bracket reforms only trigger fiscal effects in the interval [z, z + ε] stemming from

mechanical impacts, changes in job search, and changes in earnings due income effects.

The total impact of these combined two-bracket reforms is thus:

∆L =
{
e(z)−(1−e(z))(Te(z)+Bu(z))µe(z)+

[
Q(z)−(Te(z)+Bu(z))ξ1−e

z (z)
]
ηe(z)

}
∆τ∆zhz(z)ε

+
{
−(1−e(z))−(1−e(z))(Te(z)+Bu(z))µu(z)−

(
Q(z)−(Te(z)+Bu(z))ξ1−e

z (z)
)
ηu(z)

}
∆b∆zhz(z)ε

(110)

Further using µe(z) = u′(z−Te(z))
u′(Bu(z))

µu(z) as well as ηe(z) = 1−T ′e(z)
B′u(z)

e(z)
1−e(z)

u′′(z−Te(z))
u′′(Bu(z))

ηu(z) and
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∆τ = 1−e(z)
e(z)

u′(Bu(z))
u′(z−Te(z))∆b, we get

∆L =

{
(1−e(z))

[
u′(Bu(z))

u′(z − Te(z))
−1−µu(z)

e(z)
(Te(z)+Bu(z))

]
(111)

+
(
Q(z)−(Te(z)+Bu(z))ξ1−e

z (z)
)
ηu(z)

[
1−T ′e(z)

B′u(z)

u′(Bu(z))

u′(z−Te(z))

u′′(z−Te(z))

u′′(Bu(z))
−1

]}
∆b∆zhz(z)ε.

Setting ∆L = 0 and rewriting the employment tax in terms of the net contribution to the

tax-benefit system, we obtain the Pareto-efficiency condition (28) of Proposition 3:

u′(Bu(z))

u′(z−Te(z))
− 1 =

µu(z)Bu(z)

e(z)2

[
1 +

1

Bu(z)

(
e(z)Te(z)−(1−e(z))Bu(z)

)]
(112)

+
(
Q(z)− (Te(z)+Bu(z))ξ1−e

z (z)
) ηu(z)

1−e(z)

[
1−T ′e(z)

B′u(z)

u′(Bu(z))

u′(z−Te(z))

u′′(z−Te(z))

u′′(Bu(z))
− 1

]
.

Going beyond the previous heuristic proof, we formally want to compute:

∆L = ∆Le(z,∆z,∆τ) + ∆Le(z + ε,∆z,−∆τ) + ∆Lu(z,∆z,∆b) + ∆Lu(z + ε,∆z,−∆b)

= [∆Le(z, 1, 1)−∆Le(z + ε, 1, 1)] ∆z∆τ + [∆Lu(z, 1, 1)−∆Lu(z + ε, 1, 1)] ∆z∆b

(113)

Letting ε go to zero, and noting that by definition ϕ(x+ε)−ϕ(x)
ε

→ ϕ′(x), we get

lim
ε→0

∆L = −
[
∂

∂z
(∆Le(z, 1, 1)) ∆τ +

∂

∂z
(∆Lu(z, 1, 1)) ∆b

]
ε∆z (114)

Now, assuming semi-elasticities ζe(z), ζu(z), and ξ1−e
z (z) are locally constant, we have

∂

∂z
(∆Le) =−

(
Q′(z)−(T ′e(z)+B′u(z))ξ1−e

z

)
zhz(z)ζe−

(
Q(z)−(Te(z)+Bu(z))ξ1−e

z

)
(hz(z)+zh′z(z))ζe

+
[
e(z)(1−ge(z))−(Te(z)+R0)πe(z)+(1−e(z))(Te(z)+Bu(z))(πe(z)−µe(z))

+ (Q(z)−(Te(z)+Bu(z))ξ1−e
z (z))ηe(z)

]
hz(z), (115)

as well as

∂

∂z
(∆Lu) =

(
Q′(z)−(T ′e(z)+B′u(z))ξ1−e

z

)
zhz(z)ζu+

(
Q(z)−(Te(z)+Bu(z))ξ1−e

z

)
(hz(z)+zh′z(z))ζu

+
[
(1− e(z))(gu(z)−1)+(Te(z)+R0)πu(z)−(1−e(z))(Te(z)+Bu(z))(πu(z)+µu(z))

+ (Q(z)−(Te(z)+Bu(z))ξ1−e
z (z))ηu(z)

]
hz(z). (116)
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Making use of

∆τ =
1− e(z)

e(z)

u′(Bu(z))

u′(z − Te(z))
∆b

ge(z) =
u′(z − Te(z))

u′(Bu(z))
gu(z)

µe(z) =
u′(z − Te(z))

u′(Bu(z))
µu(z)

πe(z) =
e(z)

1− e(z)

u′(z − Te(z))

u′(Bu(z))
πu(z)

ηe(z) =
1− T ′e(z)

B′u(z)

e(z)

(1− e(z))

u′′(z − Te(z))

u′′(Bu(z))
ηu(z)

ζe(z) =
e(z)

1− e(z)

u′(z − Te(z))

u′(Bu(z))
ζu(z)

we then recover the following expression which completes this formal proof:

lim
ε→0

∆L =

{
(1− e(z))

[
u′(Bu(z))

u′(z − Te(z))
− 1− µu(z)

e(z)
(Te(z) +Bu(z))

]
(117)

+
(
Q(z)−(Te(z)+Bu(z))ξ1−e

z (z)
)
ηu(z)

[
1−T ′e(z)

B′u(z)

u′(Bu(z))

u′(z−Te(z))

u′′(z−Te(z))

u′′(Bu(z))
−1

]}
∆b∆zhz(z)ε.

Relations between sufficient statistics. The link between social marginal welfare weights

ge(z) and gu(z) follows from the definition of these statistics. The link between search semi-

elasticities µe(z) and µu(z) is exactly the same as in the baseline.

For participation semi-elasticities, we have

hz(z) = fz(z)

∫
χ≤χ̃(z)

fχ|z(χ)dχ (118)

such that

dhz(z) = fz(z) d

(∫
χ≤χ̃(z)

fχ|z(χ)dχ

)
= fz(z) fχ|z(χ̃(z)) dχ̃(z) (119)

with changes in participation thresholds

dχ̃(z) = d
(
V (z)− u(R0)

)
= −e(z)u′e(z − Te(z))dTe(z) + (1− e(z))u′u(Bu(z))dBu(z) (120)
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Hence,

πe(z) =
1

hz(z)

∂hz(z)

∂(z − Te(z))
=

fχ|z(χ̃(z))∫
χ≤χ̃(z)

fχ|z(χ)dχ
e(z)u′e(z − Te(z)) (121)

πu(z) =
1

hz(z)

∂hz(z)

∂Bu(z)
=

fχ|z(χ̃(z))∫
χ≤χ̃(z)

fχ|z(χ)dχ
(1− e(z))u′u(Bu(z)) (122)

such that finally

πe(z)

e(z)u′e(z − Te(z))
=

fχ|z(χ̃(z))∫
χ≤χ̃(z)

fχ|z(χ)dχ
=

πu(z)

(1− e(z))u′u(Bu(z))
(123)

For earnings semi-elasticities, differentiating the first-order condition for earnings, (FOC)z,

with respect to changes in tax-benefit levels and rates yields

(SOC)zdz = e(z;ω) [u′e(.)dT
′
e(z) + (1− T ′e(z))u′′e(.)dTe(z)] (124)

− (1− e(z;ω)) [u′u(.)dB
′
u(z) +B′u(z)u′′u(.)dBu(z)] .

This gives

ζe(z) =
1

z

∂z

∂(1− T ′e(z))
= −1

z

e(z)u′e(.)

(SOC)z
(125)

ζu(z) =
1

z

∂z

∂B′u(z)
= −1

z

(1− e(z))u′u(.)

(SOC)z
(126)

such that
ζe(z)

e(z)u′e(z − Te(z))
= −1

z

1

(SOC)z
=

ζu(z)

(1− e(z))u′u(Bu(z))
. (127)

Similarly, we have

ηe(z) =
∂z

∂Te(z)
=
e(z)(1− T ′e(z))u′′e(.)

(SOC)z
(128)

ηu(z) = − ∂z

∂Bu(z)
=

(1− e(z))B′u(z)u′′u(.)

(SOC)z
(129)

such that

ηe(z)

e(z)(1− T ′e(z))u′′e(z − Te(z))
=

1

(SOC)z
=

ηu(z)

(1− e(z))B′u(z)u′′u(Bu(z))
. (130)
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