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Abstract

We analyze novel portfolio liquidation games with self-exciting order flow. Both the N -player
game and the mean-field game are considered. We assume that players’ trading activities have an
impact on the dynamics of future market order arrivals thereby generating an additional transient
price impact. Given the strategies of her competitors each player solves a mean-field control problem.
We characterize open-loop Nash equilibria in both games in terms of a novel mean-field FBSDE
system with unknown terminal condition. Under a weak interaction condition we prove that the
FBSDE systems have unique solutions. Using a novel su�cient maximum principle that does not
require convexity of the cost function we finally prove that the solution of the FBSDE systems do
indeed provide open-loop Nash equilibria.

AMS Subject Classification: 93E20, 91B70, 60H30.

Keywords: stochastic games, mean-field games, portfolio liquidation, Hawkes process, singular terminal
value

1 Introduction

Models of optimal portfolio liquidation under market impact have received substantial consideration in
the financial mathematics and the stochastic control literature in recent years. Starting with the work of
Almgren and Chriss (2001) existence and uniqueness of optimal liquidation strategies under various forms
of market impact, trading restrictions and model uncertainty have been established by many authors
including Ankirchner et al. (2014), Bank and Voß (2018), Fruth et al. (2014), Gatheral and Schied (2011),
Graewe et al. (2015), Graewe et al. (2018), Horst et al. (2020), Kratz (2014), Kruse and Popier (2016)
and Popier and Zhou (2019).

One of the main characteristics of portfolio liquidation models is the terminal state constraint on the
portfolio process. The constraint translates into a singular terminal condition on the associated HJB
equation or an unknown terminal condition on the associated adjoint equation when applying stochastic
maximum principles. In deterministic settings the state constraint is typically no challenge. In stochastic
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settings, however, it causes significant di�culties when proving the existence of solutions to the HJB or
adjoint equation and hence in proving the existence and uniqueness of optimal trading strategies.

The majority of the optimal trade execution literature allows for either instantaneous or transient impact.
The first approach, initiated by Bertsimas and Lo (1998) and Almgren and Chriss (2001), describes the
price impact as a purely temporary e↵ect that depends only on the present trading rate and does not
influence future prices. A second approach, initiated by Obizhaeva and Wang (2013), assumes that
the price impact is transient with the impact of past trades on current prices decaying over time. For
single player models Graewe and Horst (2017) and Horst and Xia (2019) combined instantaneous and
transient impacts into a single model. Assuming that the transient price impact follows an ordinary
di↵erential equation with random coe�cients driven by the large investor’s trading rate they showed that
the optimal execution strategies could be characterized in terms of the solutions to multi-dimensional
backward stochastic di↵erential equations with singular terminal condition.

This paper studies a game theoretic extension of the liquidation model analyzed in Graewe and Horst
(2017) and Horst and Xia (2019). Our key conceptual contribution is to allow for an additional feedback
of the large investors’ trading activities on future market dynamics. There are many reasons why
large selling orders may have an impact on future price dynamics. Extensive selling (or buying) may,
for instance diminish the pool of counterparties and/or generate herding e↵ects where other market
participants start selling (or buying) in anticipation of further price decreases (or increases). Extensive
selling may also attract predatory traders that employ front-running strategies. We refer Brunnermeier
and Pedersen (2005) and Carlin et al. (2007) for an in-depth analysis of predatory trading.

Specifically, we assume that the market buy and sell order dynamics follow Hawkes processes whose base
intensities depend on the large investors’ trading activities. Hawkes processes have recently received
considerable attention in the financial mathematics literature as a powerful tool to model self-exciting
order flow and its impact on stock price volatility; see Bacry et al. (2013, 2015); El Euch et al. (2018);
Jaisson and Rosenbaum (2015); Horst and Xu (2019) and references therein. In the context of liquidation
models, they have been employed in Alfonsi and Blanc (2016); Amaral and Papanicolaou (2019); Cartea
et al. (2018) albeit in very di↵erent settings. Alfonsi and Blanc (2016) considered a variant of model in
Obizhaeva and Wang (2013), in which the continuous martingale driving the benchmark price was re-
placed by a given point process involving mutually exciting Hawkes processes. Amaral and Papanicolaou
(2019) modeled the benchmark price by the di↵erence of two mutually exciting processes. Cartea et al.
(2018) considered a liquidation model in which the investor placed limit orders whose fill rates depended
on a mutually exciting “influential” market order flow. In all three models the intensities of the Hawkes
processes were exogenous; in our model they are endogenously controlled by the large investors. Cayé
and Muhle-Karbe (2016) allowed for some form of endogenous feedback of past trades on future trans-
action costs but did not model this using Hawkes processes. All the aforementioned papers considered
single-player models while our focus is on liquidation games.

We use Hawkes processes to introduce an additional transient price impact, which leads to a mean field
control problem for each player. Finite player games with deterministic model parameters and transient
impact were studied by Luo and Schied (2019); Schied et al. (2017); Schied and Zhang (2019) and
Strehle (2017). We allow all impact parameters and cost coe�cients to be stochastic. Liquidation games
with instantaneous and permanent impact and with and without strict liquidation constraint have been
studied in Carlin et al. (2007); Drapeau et al. (2021); Evangelista and Thamsten (2020); Fu and Horst
(2020); Voß (2019). Although our mathematical framework would clearly be flexible enough to allow for
an additional permanent impact we deliberately choose not to include a permanent impact as it does
not alter the mathematical analysis. Instead, we choose to clarify the e↵ects of self-exciting order flow
on equilibrium liquidation strategies in a setting with only transient and instantaneous impact.

We consider both the finite player and the corresponding mean-field liquidation game. Mean-field games
(MFGs) of optimal liquidation without strict liquidation constraint have been studied by many authors
before. Cardaliaguet and Lehalle (2018) considered an MFG where each player has a di↵erent risk
aversion. Casgrain and Jaimungal (2018, 2020) considered games with partial information and di↵erent
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beliefs, respectively. Huang et al. (2019) considered a game between a major agent who is liquidating
a large number of shares and many minor agents that trade against the major player. To the best of
our knowledge mean-field (type) games with liquidation constraint have only been analyzed by Fu et al.
(2021) and Fu and Horst (2020) as well as in the recent work by Evangelista and Thamsten (2020).

Our model is very di↵erent from the one studied in the said papers. First, with our choice of feedback
e↵ect, in the N -player game each player’s best response function is given by the solution to a mean-
field rather than a standard control problem. Second, in the N -player game, an individual player’s
optimization problem is not convex. Third, our model shows a much richer equilibrium dynamics.
Anticipating their impact on future order arrivals, the players typically trade more aggressively initially
and may take short positions in equilibrium. Moreover we prove that in a two player game where one
player starts with a strictly positive and the second starts with zero initial position, the second player
always shorts the asset in equilibrium, that is, there exists a beneficial round-trip for the second player.
While a similar e↵ect has been observed before in, e.g. Fu et al. (2021) and Fu and Horst (2020) in our
model the players benefit from their impact on future order flow rather than a pure liquidity provision
e↵ect. Finally, numerical simulations suggest that cyclically oscillating trading strategies may occur in
the single player benchmark model if the impact of the player’s trading rate on market dynamics is very
strong. Cyclic oscillations have been observed in single-player models before by Gatheral et al. (2012)
and in multi-player models by e.g. Schied et al. (2017) and Schied and Zhang (2019). It has been argued
by e.g. Alfonsi et al. (2012) and Gatheral et al. (2012) that cyclic fluctuations should be viewed as model
irregularities and should hence be avoided, at least in single player models. In our model oscillating
strategies can indeed be viewed as “model irregularities” as that they seem to occur only if market
impact is too strong for our verification (“no statistical arbitrage”) argument to hold. Interestingly, we
did not find numerical evidence for cyclically oscillating strategies in the N -player game or the MFG.

We apply a stochastic method to solve the liquidation games. The stochastic maximum principle suggests
that the equilibrium trading strategies in both the N -player game and the MFG can be characterized
in terms of the solutions to coupled mean-field FBSDE systems. The forward components describe the
players’ optimal portfolio processes and the expected child order flow; hence their initial and in the case
of the portfolio processes also terminal conditions are known. The backward components are the adjoint
processes; they describe the respective equilibrium trading rates. Due to the liquidation constraint some
of the terminal values are unknown.

We analyze both FBSDE systems within a common mathematical framework. Making a standard a�ne
ansatz the system with unknown terminal condition can be replaced by an FBSDE with known initial and
terminal condition, yet singular driver. Proving the existence of a small time solution to this FBSDE
is not hard. The challenge is to prove the existence of a global solution on the whole time interval.
Extending the continuation method for singular FBSDEs established in Fu et al. (2021) to our higher-
dimensional system we prove that the FBSDE system does indeed have a unique solution in a certain
space under a weak interaction condition that limits the impact of an individual player on the payo↵
of other players. Weak interaction conditions have been extensively used in the game theory literature
before; see, e.g. Horst (2005) and references therein.

Subsequently, we establish a novel verification argument for the N -player game1 from which we deduce
that the solution to the FBSDE system does indeed give the desired Nash equilibrium. Our maximum
principle does not require convexity of the cost function as it is usually the case; see e.g. (Pham, 2009,
Theorem 6.4.6). In fact, unlike in Evangelista and Thamsten (2020), Fu et al. (2021), and Fu and Horst
(2020), in our model the players’ optimization problems are not convex and hence standard verification
arguments do not apply. Instead, we establish a novel maximum principle that strongly relies on the
liquidation constraint. Our idea is to decompose trading costs into a sum of equilibrium plus round-trip
costs and then to show that deviations from the equilibrium strategy (which are round-trips) are costly.
The decomposition result provides a su�cient condition for our impact model to be viable. Viability
of impact models is not trivial. Huberman and Stanzl (2004) were among the first to point out that

1
The MFG is convex; hence general verification arguments apply.
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market impact may lead to statistical arbitrage and price manipulation. They showed that when the price
impact of trades is permanent and time independent, only linear impact functions support viable markets.
When impact is transient, the issue of viability is considerably more challenging and the literature is
rather sparse. Alfonsi et al. (2012), Gatheral (2011) and Gatheral et al. (2012) discussed viability in
deterministic single-player models for a variety of impact kernels. To the best of our knowledge our
verification result is the first that applies to non-convex multi-player models in stochastic environments.2

Finally, we prove that under an additional homogeneity assumption on the players’ cost function the
sequence of Nash equilibria in the N -player game converges in a suitable sense to the unique equilibrium
in the MFG as the number of players tends to infinity. This complements the analysis in Fu et al. (2021)
where no such convergence result was established.

The benchmark model where all model parameters are deterministic, except the initial portfolios, is
much easier to analyze. In this case, the FBSDE system reduces to an ODE system. The systems for the
MFG, the single player model and the two-player model can be solved explicitly. The explicit solution
is used to illustrate the possible impact of anticipating one’s own impact on future order flow by three
specific examples.

The remainder of this paper is organized as follows. The liquidation game is introduced in Section
2. Existence and uniqueness of equilibria in both the N -player game and the corresponding MFG is
established in Section 3. Convergence of the N -player equilibria to the unique MFG equilibrium is
shown in Section 4. Numerical simulations are provided in Section 5.

Notation. We use the following notation and notational conventions. We denote by h·, ·i the inner

product of two vectors. For a matrix y 2 Rn⇥m, denote by |y| :=
⇣P

1in,1jm |yij |2
⌘1/2

the 2-norm

of y. For a R-valued essentially bounded stochastic process y, denote by ymin and by kyk its lower bound
and upper bound, respectively. For a Rn⇥m-valued essentially bounded stochastic process y, without
confusion, we still denote by kyk its upper bound in terms of 2-norm, i.e., kyk := (

P
i,j kyijk

2)1/2.

For a filtration F we denote by L2
F the space of all F progressively measurable processes such that

kykL2 :=
⇣
E
hR T

0 |yt|2 dt
i⌘ 1

2
< 1. We let S2F be the space of all F progressively measurable processes

with continuous trajectories such that kykS2 :=
�
E
⇥
sup0tT |yt|2

⇤� 1
2 < 1 and denote by Ha,F the

subspace of S2F such that kyka :=

✓
E

sup0tT

⇣
|yt|

(T�t)a

⌘2�◆ 1
2

< 1. Finally, L2,�
F denotes the space of

all F progressively measurable processes such that for each ✏ > 0 it holds that E
hR T�✏

0 |yt|2 dt
i
< 1,

and S2,�F denotes the space of all F progressively measurable processes with continuous trajectories such

that kykS2,� :=
�
sup✏�0 E

⇥
sup0tT�✏ |yt|

2
⇤� 1

2 < 1.

Throughout, C denotes a generic constant that may vary from line to line.

2 The liquidation game

In this paper we introduce a novel portfolio liquidation game with self-exciting order flow. Both the
N -player game and the corresponding MFG will be considered. Our starting point is the portfolio
liquidation model with instantaneous and persistent price impact analyzed in Graewe and Horst (2017).
We briefly review this model in the next subsection before extending it by adding an additional feedback
term of mean-field type into the dynamics of the benchmark price process. We assume throughout that

2
We require traders to be risk averse. The benchmark case of a deterministic risk-neutral single player liquidation model

can be solved in closed form as shown in Chen et al. (2021). Even in this case, the impact kernel is di↵erent from the ones

considered in the above mentioned papers.
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randomness is described by a multi-dimensional Brownian motion W , unless otherwise stated, defined
on a filtered probability space (⌦,F , (Ft),P) that satisfies the usual conditions.

2.1 The single player benchmark model

In Graewe and Horst (2017) the authors analyzed a liquidation model in which the investor needs to
unwind an initial portfolio of X shares over a finite time horizon [0, T ] using absolutely continuous trading
strategies. Assuming a linear-quadratic cost function, the large investor’s stochastic control problem is
given by

ess inf
⇠2L2

F (0,T ;R)
E
"Z T

0
{⌘⇠2s + ⇠sYs + �sX

2
s} ds

#
(2.1)

subject to the state dynamics

8
>>>>><

>>>>>:

Xt = X �

Z t

0
⇠s ds, t 2 [0, T ],

XT = 0,

Yt =

Z t

0
{�⇢sYs + �⇠s} ds, t 2 [0, T ].

(2.2)

Here, ⌘ and � are positive constants while ⇢ and � are progressively measurable, non-negative and
essentially bounded stochastic processes. The quantity Xt denotes the number of shares the investor
needs to sell at time t 2 [0, T ], while ⇠t denotes the rate at which the stock is traded at that time. The
process Y describes the persistent price impact. It can be viewed as a shift in the mid quote price caused
by past trades where the impact is measured by impact factor �. Alternatively, it can be viewed as an
additional spread caused by the large investor in a block-shaped limit order book market with constant
order book depth 1/� > 0 as in Horst and Naujokat (2014); Obizhaeva and Wang (2013). This results
in an execution price process of the form

S̃t = St � ⌘⇠t � Yt (2.3)

where S is a Brownian martingale that describes the dynamics of the una↵ected mid-price process. The
essentially bounded process ⇢ describes the rates at which the order book recovers from past trades. The
constant ⌘ > 0 describes an additional instantaneous impact as in Almgren and Chriss (2001), Ankirchner
et al. (2014), Graewe et al. (2015) or Graewe et al. (2018) among many others. The first two terms of
the running cost term in (2.1) capture the expected liquidity cost resulting from the instantaneous and
the persistent impact, respectively. The third term can be interpreted as a measure of the market risk
associated with an open position. It penalizes slow liquidation.

We are now going to introduce an additional feedback e↵ect into the above model that accounts for the
possibility of an additional order flow (“child orders”) triggered by the large investor’s trading activity.
To this end, we assume that the market order dynamics follows a Hawkes process with exponential kernel.

Specifically, we assume that market sell and buy orders arrive according to independent Hawkes processes
N± with respective intensities

⇣±t := µ±
t + ↵

Z t

0
e��(t�s)dN±

s

where µ± are the base intensities and ↵,� are deterministic coe�cients that capture the impact of past
orders on future order flow. In the absence of the large trader we set µ±

⌘ µ. In this case the base
intensities are equal, and the same number of sell and buy orders arrive on average. In particular, the
order flow imbalance N+

�N� is a martingale.

In the presence of the large trader the base intensities change to µ±
t = µ + ⇠±t where ⇠± denotes the

positive/negative part of the large investor’s liquidation strategy; if ⇠t > 0 the investor is selling, else the
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investor is buying. In this case, the expected intensities satisfy

E[⇣±t ] = µ+ E[⇠±t ] + ↵

Z t

0
e��(t�s)E[⇣±s ]ds.

Thus, if we let N̄±
t denote the expected number of sell/buy market orders that arrived over the period

[0, t], then the expected net sell order flow imbalance N̄t := N̄+
t � N̄�

t is given by

N̄t =

Z t

0

�
E[⇣+s ]� E[⇣�s ]

�
ds =

Z t

0
E[⇠s]ds+ ↵

Z t

0
e��(t�s)N̄sds. (2.4)

As a result, the expected order flow imbalance generated by the large trader can be decomposed into the
trader’s own expected accumulated order flow plus the expected number of (net) sell child orders

Ct = ↵

Z t

0
e��(t�s)N̄sds. (2.5)

In order to account for the possible feedback e↵ect of the large trader’s activity on future order flow and
hence price dynamics we suggest to add the average child order flow rate dCt to the dynamics of the
transient impact process, assuming that the child order flow contributes to the price impact in exactly
the same way as the large trader’s order flow.3

Di↵erentiating equation (2.5) we see that

dCt = (�(� � ↵)Ct + ↵(EX � EXt)) dt, C0 = 0. (2.6)

The child order flow rate increases linearly in the investor’s expected traded volume EX � EX. The
child order flow is mean-reverting if ↵

� < 1. It is well known that the Hawkes process with constant base
intensity is stable in the long term and that each order triggers at most one child order on average if
↵
� < 1; see Hawkes and Oakes (1974) for details.

Starting from (2.2) but accounting for the additional child order flow in the dynamics of the market
impact process Y results in the following mean-field type control problem for our large investor:

ess inf
⇠2L2

F (0,T ;R)
E
"Z T

0

�
⌘s⇠

2
s + ⇠sYs + �sX

2
s

 
ds

#
(2.7)

subject to the state dynamics
8
>>>>>>>>>><

>>>>>>>>>>:

dXt = �⇠t dt, t 2 [0, T ],

X0 = X , XT = 0,

dYt =
⇣
� ⇢tYt + �t

�
⇠t � (� � ↵)Ct + ↵(EX � EXt)

�⌘
dt, t 2 [0, T ],

Y0 = 0,

dCt = (�(� � ↵)Ct + ↵(EX � EXt)) dt, t 2 [0, T ],

C0 = 0.

(2.8)

Remark 2.1. i) It would clearly be desirable to consider the conditional child order flow, given the
large trader’s submission rates instead of the unconditional expectation. The unconditional expec-
tation is considered for mathematical convenience as we are unaware of any tractable representation
of the conditional child order flow.

ii) At first sight it might also be desirable to consider the child order process directly rather than
the rate dC. This, however, would be inconsistent with the way we model the large trader who
is supposed to trade in rates, which, of course, should be viewed as a mathematically tractable
approximation of discrete trading.

3
This assumption can be justified by assuming that the market does not or cannot di↵erentiate di↵erent origins of order

flow.

6



2.2 Many player models

Let us now consider a game theoretic extension of the above liquidation model with N strategically
interacting investors. The trading rate, initial portfolio and portfolio process of player i 2 {1, ..., N} are
denoted by ⇠i, X i and Xi, respectively. The corresponding averages over the set of players are denoted
by ⇠̄, X̄ and X̄, respectively. We assume that the initial portfolios are (not necessarily independent)
square-integrable random variables.

Assuming that both the child order flow and the impact process are driven by the average trading rate
results in the following mean-field type optimization problem for player i given the liquidation strategies
⇠j (j 6= i) of all the other players:

ess inf
⇠i2L2

F (0,T ;R)
E
"Z T

0
⌘it(⇠

i
s)

2 + ⇠isY
i
s + �is(X

i
s)

2 ds

#
(2.9)

subject to

8
>>>>>>>>>>><

>>>>>>>>>>>:

dXi
t = �⇠it ds, t 2 [0, T ],

Xi
0 = X

i, Xi
T = 0,

dY i
t =

✓
� ⇢itY

i
t + �it

⇣
⇠̄t � (�i

t � ↵i
t)C

i
t + ↵i

t(E[X̄ ]� E[X̄t])
⌘◆

dt, t 2 [0, T ]

Y i
0 = 0

dCi
t =

�
�(�i

t � ↵i
t)C

i
t + ↵i

t(E[X̄ ]� E[X̄t])
�
dt, t 2 [0, T ]

Ci
0 = 0.

(2.10)

Under the assumption that all the cost coe�cients and model parameters are essentially bounded, F-
progressively measurable stochastic processes and that the instantaneous impact term and the risk aver-
sion parameters are uniformly bounded away from zero we prove that the N -player liquidation game
admits a Nash equilibrium under a weak interaction condition that limits the impact of an individual
player on the trading costs of other players. Since each player a↵ects the state dynamics of other players
mainly through the impact parameters �i our existence of equilibrium result requires these parameters
to be small enough and/or the una↵ected processes ⌘i and �i to be large enough. Moreover, we require

the stability condition ↵i

�i < 1 so that child order dynamics is mean-reverting.

Remark 2.2. Assuming that all players trade the same stock in the same venue it is natural to assume
that the model parameters and cost coe�cients are the same across the players’ cost functions, except
to the initial portfolios and the risk aversion parameters. We are allowing for additional heterogeneity
in the players’ cost functions and state dynamics as this does not alter the mathematical analysis.

Under the additional assumption that the player’s cost functions are homogeneous in sense that

⌘it = ⌘
�
t,X i, (W i

s)0st

�
, �it = �

�
t,X i, (W i

s)0st

�
, ⇢it = ⇢

�
t,X i, (W i

s)0st

�
,

↵i
t = ↵

�
t,X i, (W i

s)0st

�
, �i

t = �
�
t,X i, (W i

s)0st

�
, �it = �

�
t,X i, (W i

s)0st

�
,

(2.11)

for independent Brownian motions W 1,W 2, .... and measurable functions ⌘,�, ⇢,↵,�, � and

X
1,X 2, ... are i.i.d. square integrable and independent of W 1,W 2, ... (2.12)

we also prove that the equilibrium converges (in a sense to be defined) to the unique equilibrium of a
corresponding MFG as the number of players tends to infinity.

The MFG is obtained by first replacing the average quantities ⇠̄ and X̄ by deterministic processes µ
and ⌫, respectively and then by solving a representative player’s optimization problem subject to an
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additional fixed point condition. In the MFG randomness is described by a Brownian motion W defined
on some filtered probability space (⌦,F , (F t),P) and all processes are (F t)-progressively measurable.
The corresponding MFG is then given by

ess inf
⇠2L2

F
(0,T ;R)

E
"Z T

0
{⌘t(⇠t)

2 + ⇠tYt + �t(Xt)
2
} dt

#
(2.13)

subject to the state dynamics
8
>>>>>>>>>>><

>>>>>>>>>>>:

dXt = �⇠t ds, t 2 [0, T ],

X0 = X , XT = 0,

dYt =

✓
� ⇢tYt + �t

⇣
µt � (�t � ↵t)Ct + ↵t(E[X ]� ⌫t)

⌘◆
dt, t 2 [0, T ]

Y0 = 0

dCt = (�(�t � ↵t)Ct + ↵t(E[X ]� ⌫t)) dt, t 2 [0, T ]

C0 = 0.

(2.14)

and the equilibrium condition (
E[⇠⇤t (µ, ⌫)] = µt, t 2 [0, T ],

E[X⇤
t (µ, ⌫)] = ⌫t, t 2 [0, T ].

(2.15)

Here ⇠⇤(µ, ⌫) denotes the unique solution to (2.13) given (µ, ⌫), and X⇤(µ, ⌫) is the corresponding
portfolio process.

We prove that the MFG admits a unique solution under a weak interaction condition. Under an additional
homogeneity assumption we then prove that the sequence of equilibria in the finite player games converges
to the mean-field equilibrium if the number of players tends to infinity.

3 Existence of Equilibria

In this section we provide an existence of equilibrium result for both the N -player and the mean-field
liquidation games introduced in the previous section. We first characterize the equilibria of both games
in terms of solutions to certain mean-field FBSDE systems with singular terminal conditions. Subse-
quently, we establish the existence of a unique solution to these systems within a common mathematical
framework. Finally, we prove a verification argument from which we deduce the solutions to the FBSDEs
do indeed provide the desired Nash equilibria.

3.1 Characterization of open-loop equilibria

We start by characterizing Nash equilibria in the N -player liquidation game. The Hamiltonian associated
with the mean-field control problem (2.9) and (2.10) is given by

Hi = �

NX

j=1

⇠jP i,j +
NX

j=1

Qi,j
{�⇢jY j + �j(⇠̄ � (�j

� ↵j)Cj) + ↵j�j(E[X̄ ]� E[X̄t])}

+
NX

j=1

Ri,j
{�(�j

� ↵j)Cj + ↵j(E[X̄ ]� E[X̄t])}+ ⇠iY i + ⌘i(⇠i)2 + �i(Xi)2.

Using the same arguments as in Fu et al. (2021); Fu and Horst (2020) the stochastic maximum principle
suggests that the best response function of player i given her competitors’ actions is given by

⇠⇤,i =
P i,i

� Y i
�

�i

N Qi,i

2⌘i
, (3.1)

8



where the adjoint processes (P i,j , Qi,j , Ri,j) (j = 1, ..., N) satisfy the stochastic system

8
>>>>>>>>>><

>>>>>>>>>>:

�dP i,j
t =

✓
2�itX

i
t�ij �

1

N
E
h
↵j
t�

j
tQ

i,j
t

i
�

1

N
E
h
↵j
tR

i,j
t

i◆
dt� ZP i,j

t dWt,

�dQi,j
t =

 
P i,i
t � Y i

t �
�i
t

N Qi,i
t

2⌘it
�ij � ⇢jtQ

i,j
t

!
dt� ZQi,j

t dWt,

�dRi,j =
⇣
��jt (�

j
t � ↵j

t )Q
i,j
t � (�j

t � ↵j
t )R

i,j
t

⌘
dt� ZRi,j

t dWt

Qi,j
T = Ri,j

T = 0,

(3.2)

with a-priori unknown terminal conditions on the processes P i,j . We recall that W denotes a Wiener
process of arbitrary dimension. It can be seen from the above system that the processes P i,j for j 6= i
are not relevant for the equilibrium dynamics and that Qi,j = Ri,j = 0 for j 6= i by standard BSDE
theory. Putting P i := P i,i, Qi := Qi,i, Ri := Ri,i and M i := P i

� Y i we arrive at the following coupled
mean-field forward-backward system4: for i = 1, ..., N ,
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dXi
t = �

M i
t �

�i
t

N Qi
t

2⌘it
dt,

dY i
t =

8
<

:�⇢itY
i
t + �it

0

@ 1

N

NX

j=1

M j
t �

�i
t

N Qj
t

2⌘jt
� (�i

t � ↵i
t)C

i
t + ↵i

t(E[X̄ ]� E[X̄t])

1

A

9
=

; dt,

dCi
t =

�
�(�i

t � ↵i
t)C

i
t + ↵i

t(E[X̄ ]� E[X̄t])
 
dt

�dM i
t =

(✓
2�itX

i
t �

1

N
E
⇥
↵i
t�

i
tQ

i
t

⇤
�

1

N
E
⇥
↵i
tR

i
t

⇤◆

� ⇢itY
i
t + �it

0

@ 1

N

NX

j=1

M j
t �

�j

N Qj
t

2⌘jt
� (�i

t � ↵i
t)C

i
t + ↵i

t(E[X̄ ]� E[X̄t])

1

A
)
dt� ZMi

t dWt,

�dQi
t =

 
M i

t �
�i
t

N Qi
t

2⌘it
� ⇢itQ

i
t

!
dt� ZQi

t dWt,

�dRi
t =

�
��it(�

i
t � ↵i

t)Q
i
t � (�i

t � ↵i
t)R

i
t

�
dt� ZRi

t dWt

Xi
0 = X

i, Y i
0 = Ci

0 = 0, Qi
T = Ri

T = Xi
T = 0.

(3.3)

In terms of

S
i =

✓
Y i

Ci

◆
, Ai =

✓
⇢i �i(�i

� ↵i)
0 �i

� ↵i

◆
, Bi = (Bi,(1), Bi,(2)) =

✓
�i �↵i�i

0 �↵i

◆
,

and

R
i =

 
↵i�i

N

PN
j=1 E[X j ]

↵i

N

PN
j=1 E[X j ]

!
, P

i =

✓
Qi

Ri

◆
, ⇥ =

✓
1
0

◆
, � =

1

N

NX

j=1

✓
⇠⇤,j

E[Xj ]

◆
,

4
We prove below that the adjoint processes are determined uniquely by the solution to this mean-field FBSDE system.
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the above system can be compactly rewritten as
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

dXi
t = �

M i
t �

1
N

D
Bi,(1)

t ,Pi
t

E

2⌘it
dt,

dSi
t =

⇣
�Ai

tS
i
t +Bi

t�t
+R

i
t

⌘
dt

�dM i
t =

✓
2�itX

i
t +

D
⇥,�Ai

tS
i
t +Bi

t�t
+R

i
t

E
+

1

N
E
hD

Bi,(2)
t ,Pi

t

Ei◆
dt� ZMi

t dWt,

�dPi
t =

 
�(Ai

t)
>
P

i
t +⇥

M i
t �

1
N

⌦
Bi,(1),Pi

t

↵

2⌘it

!
dt� ZPi

t dWt

Xi
0 = X

i, Xi
T = 0, S

i
0 = (0, 0)>, P

i
T = (0, 0)>.

(3.4)

The Hamiltonian associated with the representative player’s optimization problem in the MFG reads

H = ⌘⇠2 + ⇠Y + �X2
� ⇠P +Q{�⇢Y + �(µ� (� � ↵)C) + ↵�(E[X ]� ⌫)}

+R{�(� � ↵)C + ↵(E[X ]� ⌫)},
(3.5)

where (P,Q,R) is the adjoint processes to (X,Y,C). Again, the stochastic maximum principle suggests
that the optimal strategy is given by

⇠ =
P � Y

2⌘
.

Putting M := P � Y the candidate equilibrium strategy can be obtained in terms of a solution to the
FBSDE system
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

dXt = �
Mt

2⌘t
dt

dYt =

✓
�⇢tYt + �t

✓
E

Mt

2⌘t

�
� (�t � ↵t)Ct

◆
+ ↵t�t(E[X ]� E[Xt])

◆
dt

dCt = (�(�t � ↵t)Ct + ↵t(E[X ]� E[Xt])) dt

�dMt =

✓
2�tXt � ⇢tYt + �t

✓
E

Mt

2⌘t

�
� (�t � ↵t)Ct

◆
+ ↵t�t(E[X ]� E[Xt])

◆
dt� ZM

t dW t

�dQt =

✓
Mt

2⌘t
� ⇢tQt

◆
dt� ZQ

t dW t

�dRt = (��t(�t � ↵t)Qt � (�t � ↵t)Rt) dt� ZR
t dW t

X0 = X , Y0 = C0 = 0, QT = RT = XT = 0.

(3.6)

In terms of

S =

✓
Y
C

◆
, A =

✓
⇢ �(� � ↵)
0 � � ↵

◆
, B = (B(1), B(2)) =

✓
� �↵�
0 �↵

◆
,

R =

✓
↵�E[X ]
↵E[X ]

◆
, P =

✓
Q
R

◆
, � =

✓
E[M2⌘ ]
E[X]

◆
,

this system can be compactly rewritten as

8
>>>>>>>>>><

>>>>>>>>>>:

dXt = �
Mt

2⌘t
dt

dSt =
�
�AtSt +Bt�t +Rt

�
dt

�dMt =
�
2�tXt +

⌦
⇥,�AtSt +Bt�t +Rt

↵�
dt� ZM

t dW t

�dPt =

✓
�A>

t Pt +⇥
Mt

2⌘t

◆
dt� ZP

t dW t

X0 = X , XT = 0, S0 = (0, 0)>, PT = (0, 0)>.

(3.7)
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3.2 The mean field FBSDE

This section provides a unified approach for solving a class of linear mean-field FBSDE systems that
contains the systems (3.4) and (3.7) as special cases. Specifically, we consider the FBSDE system

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

dXi
t = �

M i
t �

1
N

D
bBi,(1)
t ,Pi

t

E

2⌘it
dt,

dSi
t =

�
�Ai

tS
i
t +Ki

t�t +R
i
t

�
dt,

�dM i
t =

✓
2�itX

i
t +

1

N
E
hD
bBi,(2)
t ,Pi

t

Ei
+
⌦
⇥,�Ai

tS
i
t +Ki

t�t +R
i
t

↵◆
dt� ZMi

t dWt,

�dPi
t =

0

@�(Ai
t)

>
P

i
t +⇥

M i
t �

1
N

D
bBi,(1)
t ,Pi

t

E

2⌘it

1

A dt� ZPi

t dWt,

Xi
0 = X

i, Xi
T = 0, S

i
0 = (0, 0)>, P

i
T = (0, 0)>,

(3.8)

for i = 1, ..., N where Ki = (Ki,(1),Ki,(2),Ki,(3)) is an R2⇥3-valued stochastic process,

⇠j =
M j

�
1
N

D
bBj,(1),Pj

E

2⌘j
,

and

� = (⇠,E[X],E[⇠])> =

0

@ 1

N

NX

j=1

⇠j ,E

2

4 1

N

NX

j=1

Xj

3

5 ,
1

N

NX

j=1

E[⇠j ]

1

A
>

.

Remark 3.1. Let 02⇥1 be the 2⇥ 1 zero matrix. If Ki = (Bi,(1), Bi,(2), 02⇥1), bBi,(1) = Bi,(1), bBi,(2) =
Bi,(2) and R

i = R
i, then the system (3.8) reduces to (3.4). If N = 1, bB1,(1) = bB1,(2) = 0, K1 =

(02⇥1, B(2), B(1)) and R
1 = R, then it reduces to (3.7).

In order to solve the above system we make the following assumptions.

Assumption 3.2. (i) The processes Ai, bBi,Ki are progressively measurable w.r.t. the natural filtration
generated by W and uniformly bounded:

kAk := sup
i

kAi
k < 1,

k bB(1)
k := sup

i
k bBi,(1)

k < 1, k bB(2)
k := sup

i
k bBi,(2)

k < 1,

kK(1)
k := sup

i
kKi,(1)

k < 1, kK(2)
k := sup

i
kKi,(2)

k < 1, kK(3)
k := sup

i
kKi,(3)

k < 1.

(ii) There exists constants b⇢ > 0 and e⇢ > 0 such that for any R2-valued process y and i = 1, · · · , N,

E
⇥
y>t A

i
tyt
⇤
� b⇢E

⇥
y>t yt

⇤
, E

"
y>t (A

i
t)

>yt + y>t
⇥h bBi,(1)

t , yti

2N⌘it

#
� e⇢E

⇥
y>t yt

⇤
. (3.9)

(iii) The processes �i and ⌘i are progressively measurable, essentially bounded and there exist constants
✓0, ✓1, ✓2, ✓3 > 0 such that �min := inf

i
�imin and ⌘min := inf

i
⌘imin satisfy

8
>>>><

>>>>:

2�min �
✓0 + ✓1 + ✓2

2
�

✓
1 +

1

✓3

◆
kK(2)

k
2

✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆
> 0,

2⌘min �
k bB(1)

k

N e⇢ �
k bB(2)

k
2

2N2e⇢2✓0
�

 
1 +

k bB(1)
k

2N⌘mine⇢

!2

(1 + ✓3)(kK
(1)

k+ kK(3)
k)2
✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆
> 0.

(3.10)
(iv) The random variables X i are square integrable for each i = 1, · · · , N , which are independent of the
Brownian motions.
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The first assumption is standard. The second assumption essentially means that Ai+(Ai)> is uniformly
positive definite. The third condition is similar to conditions made in Fu et al. (2021) and Fu and Horst
(2020). It states that the impact of other players on an individual player’s best response function is
weak enough. Specifically, it requires either the cost functions to be dominated by the terms ⌘it(⇠

i
t)

2 and
�it(X

i
t)

2 that are una↵ected by the choices of other players (large �min and large ⌘min), or the impact of
other players on an individual player’s cost function and state dynamics to be weak enough.

Remark 3.3. If the number of players is large enough and the processes ↵i,�i, �i, ⇢i are identical across
players and constant (cf. Remark 2.2), then condition (3.9) reduces to 4⇢ > �2(��↵),� > ↵ and we can

define b⇢ and e⇢ by the minimum eigenvalue of the matrix A+A>

2 , i.e.

b⇢ = e⇢ :=
⇢+ � � ↵�

p
(⇢+ � � ↵)2 � 4⇢(� � ↵) + �2(� � ↵)2

2
.

Moreover, for any choice of ✓0, ✓1, ✓2 and ✓3 we can choose �i and ⌘i large enough for (3.10) to be satisfied.
We emphasize that both risk aversion and resilience are required to satisfy (3.10). It should be clear
that (3.9) and (3.10) are very strong and by no means necessary conditions.

We are now ready to state and prove our main result of this section. It states that our general FBSDE
system (3.8) admits a unique solution in a suitable space if Assumption 3.2 is satisfied. The proof is
based on an extension of the continuation method introduced in Fu et al. (2021).

Theorem 3.4. Under Assumption 3.2, there exists a unique solution

(Xi,Si,M i,Pi, ZMi

, ZPi

) 2 Ha,F ⇥ S2F ⇥ L2
F ⇥H◆,F ⇥ L2,�

F ⇥ L2
F

to the FBSDE system (3.8) for some positive constants a < 1, ◆ < 1/2.

Proof. Let p 2 [0, 1], f j
2 L2

F , gj 2 Ha,F for each j = 1, · · · , N , where a is to be determined later. We
apply the method of continuation to the following FBSDE indexed by (p, f j , gj)j=1,··· ,N :

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

d eXi
t = �

fM i
t �

1
N

D
bBi,(1)
t , ePi

t

E

2⌘it
dt,

d eSi
t =

⇣
�Ai

t
eSi
t +Ki

t e�t +R
i
t

⌘
dt,

�dfM i
t =

✓
2�it eXi

t +
1

N
E
hD
bBi,(2)
t , ePi

t

Ei
+
D
⇥,�Ai

t
eSi
t +Ki

t e�t +R
i
t

E◆
dt� Z

fMi

t dWt,

�d ePi
t =

0

@�(Ai
t)

> ePi
t +⇥

pfM i
t �

1
N

D
bBi,(1)
t , ePi

t

E

2⌘it
+⇥f i

t

1

A dt� Z
ePi

t dWt,

eXi
0 = xi, eXi

T = 0, eSi
0 = (0, 0)>, ePi

T = (0, 0)>,

(3.11)

where for j = 1, · · · , N , 8
>>>>><

>>>>>:

e⇠j :=
pfM j

�
1
N

D
bBj,(1), ePj

E

2⌘j
+ f j

e� :=
1

N

NX

j=1

⇣
e⇠j ,E[p eXj + gj ],E[e⇠j ]

⌘>
.

We now make the ansatz
fM i = A i eXi + Bi.

Integration by parts suggests that
8
><

>:

�dA i
t =

✓
2�it �

(A i
t )

2

2⌘it

◆
dt� ZA i

t dWt,

lim
t%T

A i
t = +1

(3.12)
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and that Bi satisfies the BSDE

�dBi
t =

✓
�

A i
t Bi

t

2⌘it
+

A i
t

2N⌘it

D
bBi,(1)
t , ePi

t

E
+

1

N
E
hD
bBi,(2)
t , ePi

t

Ei
+
D
⇥,�Ai

t
eSi
t +Ki

t e�t +R
i
t

E◆
dt

� ZBi

t dWt

(3.13)

on [0, T ). It has been shown in Ankirchner et al. (2014) and Graewe et al. (2018) that (3.12) admits a
unique solution (A i, ZA i

) 2 H�1,F ⇥ L2
F and that

exp

✓
�

Z s

r

A i
u

2⌘iu
du

◆


✓
T � s

T � r

◆b

, where b := min
i

⌘imin

k⌘ik
2 (0, 1]. (3.14)

The existence of a unique solution to (3.13) will be shown in Step 1 below.

We now proceed in two steps. In Step 1 we prove that (3.11) admits a unique solution when p = 0. In
Step 2 we show that once (3.11) admits a unique solution for some p � 0 and for any (f j , gj)j=1,··· ,N ,
then the same holds if p is replaced by p + � for every �  �0 where �0 is a strictly positive constant
that is independent of p. By iterating p we can then solve (3.11) for p = 1. It reduces to (3.8) by letting
f j = gj = 0 for all j = 1, · · · , N .

Step 1. In this step, we prove that the system (3.11) is uniquely solvable in Ha,F ⇥ S2F ⇥ L2
F ⇥H◆,F ⇥

L2,�
F ⇥ L2

F for some positive constants a < b, ◆ < 1/2 when p = 0.

To this end, we first consider the mean-field BSDE for ( ePi, Z
ePi

). This BSDE has a Lipschitz continuous
driver and so it has a unique solution in the space S2F ⇥ L2

F ; see e.g. (Buckdahn et al., 2009, Theorem
3.1). Taking conditional expectations on both sides yields

ePi
t = E

2

4
Z T

t
�(Ai

s)
> ePi

s �⇥

D
bBi,(1)
s , ePi

s

E

2N⌘is
+⇥f i

s ds

������
Ft

3

5 ,

which implies that

| ePi
t |

(T � t)◆


 
kAk+

k bB(1)
k

2N⌘min

!
1

(T � t)◆
E
"Z T

t
| ePi

s| ds

�����Ft

#
+

1

(T � t)◆
E
"Z T

t
|f i

s| ds

�����Ft

#
.

Next, we take E[sup0tT (·)
2] on both sides of the above inequality. By Hölder’s inequality, Doob’s

maximal inequality and ◆ < 1/2

E

2

4 sup
0tT

 
1

(T � t)◆
E
"Z T

t
|f i

s| ds

�����Ft

#!2
3

5

 E

2

4 sup
0tT

 
E
"Z T

0
|f i

s|
1

1�◆ ds

�����Ft

#!2(1�◆)
3

5 

✓
2� 2◆

1� 2◆

◆2(1�◆)

T 1�2◆E
"Z T

0
|f i

s|
2 ds

#
.

Similarly, we have that

E

2

4 sup
0tT

 
1

(T � t)◆
E
"Z T

t
| ePi

s| ds

�����Ft

#!2
3

5 

✓
2� 2◆

1� 2◆

◆2(1�◆)

T 1�2◆E
"Z T

0
| ePi

s|
2 ds

#
.

Therefore, we conclude that

E

2

4 sup
0tT

 
| ePi

t |

(T � t)◆

!2
3

5  C
⇣
k ePi

k
2
S2 + kf i

k
2
L2

⌘
,
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which implies that ePi
2 H◆,F . Next, we consider the process eSi. Since it solves a linear ODE we get

that

E


sup
0tT

| eSi
t |
2

�
 C

 
kR

i
k
2
L2 +

NX

i=1

kf i
k
2
L2 +

NX

i=1

kgik2a

!
.

As a result, eSi
2 S2F . Next, we set, for t 2 [0, T )

Bi
t :=E

"Z T

t
e
�

R s
t

A i
r

2⌘i
r
dr
✓

A i
s

2N⌘is

D
bBi,(1)
s , ePi

s

E
+

1

N
E
hD
bBi,(2)
s , ePi

s

Ei

+
D
⇥,�Ai

s
eSi
s +Ki

se�t +R
i
s

E◆
ds

����Ft

�
.

The estimate (3.14) along with Doob’s maximal inequality yields a constant C > 0 s.t. for any ✏ > 0,

E


sup
0tT�✏

��Bi
t

��2
�
 C

0

@ 1

N

NX

j=1

k ePj
k
2
◆ + k eSi

k
2
S2 + kR

i
k
2
L2 +

NX

i=1

kf i
k
2
L2 +

NX

i=1

kgik2a

1

A . (3.15)

Thus, Bi belongs to S2,�F and so the martingale representation theorem yields a unique process ZBi

2

L2,�
F such that the pair (Bi, ZBi

) satisfies the BSDE (3.13).

We now analyze the process eXi. Taking the ansatz fM i = A i eXi + Bi into the SDE of eXi yields

eXi
t = X

ie
�

R t
0

A i
r

2⌘i
r
dr

�

Z t

0
e
�

R t
s

A i
r

2⌘i
r
dr

Bi
s �

1
N

D
bBi,(1)
s , ePi

s

E

2⌘is
ds.

Since a < b  1, it follows from (3.14) that

E

2

4 sup
0tT

�����
eXi
t

(T � t)a

�����

2
3

5  C

0

@kX
i
kL2 + E

"Z T

0

����
Bi

s

(T � s)a

����
2

ds

#
+ E

2

4 sup
0tT

�����
ePi
t

(T � t)◆

�����

2
3

5

1

A

= C

 
kX

i
kL2 + lim

✏!0
E
"Z T�✏

0

����
Bi

s

(T � s)a

����
2

ds

#
+ k ePi

k
2
◆

!

 C

✓
kX

i
kL2 + lim

✏!0
E


sup
0tT�✏

��Bi
t

��2
�
+ k ePi

k
2
◆

◆
.

In view of the estimate (3.15) this shows that eXi
2 Ha,F .

It remains to analyze the process fM i. Using the equality fM i = A i eXi + Bi and (3.15) again, we see
that for each 0  ⌧ < T

E

sup

0t⌧

���fM i
t

���
2
�


C

(T � ⌧)2(1�a)
k eXi

k
2
a + E


sup

0t⌧

��Bi
t

��2
�
. (3.16)

Moreover, for any ✏ > 0, integration by parts implies that

eXi
T�✏

fM i
T�✏ �

eXi
0
fM i

0

=

Z T�✏

0

eXi
tdfM i

t +

Z T�✏

0

fM i
td eXi

t

=�

Z T�✏

0

eXi
t

✓
2�itX

i
t +

1

N
E
hD
bBi,(2)
t , ePi

t

Ei
+
D
⇥,�Ai

t
eSi
t +Ki

t e�t +R
i
t

E◆
dt

�

Z T�✏

0

fM i
t

fM i
t �

1
N

D
bBi,(1)
t , ePi

t

E

2⌘it
dt+martingale part.

(3.17)
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Since
eXi
T�✏

fM i
T�✏ = A i

T�✏( eXi
T�✏)

2 + eXi
T�✏B

i
T�✏ �

eXi
T�✏B

i
T�✏,

by taking expectations on both sides and using (3.16) we obtain that

E
"Z T�✏

0
2�it( eXi

t)
2 +

(fM i
t )

2

2⌘it
dt

#

 ✏0E
"Z T�✏

0
(fM i

t )
2 dt

#
+ C(✏0)

 
k eXi

k
2
a + kBi

k
2
S2,� + k eSi

k
2
S2 + k ePi

k
2
◆ + kR

i
k
2
L2 +

NX

i=1

kf i
k
2
L2 +

NX

i=1

kgik2a

!
.

Letting ✏0 < 1
2k⌘k and then taking ✏ ! 0, we conclude that fM i

2 L2
F . The martingale representation

theorem yields a unique Z
fMi

2 L2,�
F .

Step 2. We now prove that if (3.11) with parameter p admits a solution in Ha,F ⇥ S2F ⇥ L2
F ⇥H◆,F ⇥

L2,�
F ⇥L2

F for any f i
2 L2

F , g
i
2 Ha,F , then there exists a strictly positive constant �0 that is independent

of p and f i, gi such that the same result holds for p+ � whenever � 2 [0,�0].

For any (Xi,M i) 2 Ha,F ⇥ L2
F , it holds that

f i(M) := �
M i

2⌘i
+ f i

2 L2
F , gi(X) := �Xi + gi 2 Ha,F .

Hence by assumption there exists a unique solution ( eXi, eSi,fM i, ePi, Z
fMi

, Z
ePi

) in Ha,F ⇥ S2F ⇥ L2
F ⇥

H◆,F ⇥ L2,�
F ⇥ L2

F to the FBSDE system (3.11) with f i = f i(M) and gi = gi(X). It is now su�cient to
show that the mapping

� :
�
(Xj)j=1,··· ,N , (M j)j=1,··· ,N

�
7!

⇣
( eXj)j=1,··· ,N , (fM j)j=1,··· ,N

⌘
.

is a contraction under Assumption 3.2. To this end, we denote for any two stochastic processes H and
H 0 their di↵erence by �H := H �H 0 and use again the representation fM i = A i eXi + Bi.

Integration by parts implies for any ✏ > 0 that (3.17) holds with eXi replaced by � eXi and without
non-homogenous term. Using the fact that � eXi

T�✏�fM i
T�✏ � � eXi

T�✏�B
i
T�✏, we have that

Z T�✏

0
2�it(� eXi

t)
2 +

(�fM i
t )

2

2⌘it
dt

� � eXi
T�✏�B

i
T�✏ +

Z T�✏

0
�fM i

t

D
bBi,(1)
t , � ePi

t

E

2N⌘it
dt+martingale part

�

Z T�✏

0
� eXi

t

✓
1

N
E
hD
bBi,(2)
t , � ePi

t

Ei
+
D
⇥,�Ai

t� eSi
t +Ki

t�e�t

E◆
dt.

Taking expectations on both sides and then letting ✏! 0, we obtain that

E
"Z T

0
2�it(� eXi

t)
2 +

(�fM i
t )

2

2⌘it
dt

#

� E
"Z T

0
� eXi

t

✓
1

N
E
hD
bBi,(2)
t , � ePi

t

Ei
+
D
⇥,�Ai

t� eSi
t +Ki

t�e�t

E◆
dt

#
+ E

2

4
Z T

0
�fM i

t

D
bBi,(1)
t , � ePi

t

E

2N⌘it
dt

3

5 .
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Young’s inequality and the inequality |hx, yi|  |x||y| for any two vectors x, y imply that

E
"Z T

0
2�it(� eXi

t)
2 +

(�fM i
t )

2

2⌘it
dt

#


✓0
2
E
"Z T

0
(� eXi

t)
2 dt

#
+

k bB(2)
k
2

2N2✓0
E
"Z T

0
|� ePi

t |
2 dt

#

+
✓1
2
E
"Z T

0
(� eXi

t)
2 dt

#
+

kAk
2

2✓1
E
"Z T

0
|� eSi

t |
2 dt

#

+
✓2
2
E
"Z T

0
(� eXi

t)
2 dt

#
+

1

2✓2
E
"Z T

0

��Ki
t�e�t

��2 dt

#

+
✓

2
E

2

4
Z T

0

 
�fM i

t

2⌘it

!2

dt

3

5+
k bB(1)

k
2

2N2✓
E
"Z T

0
|� ePi

t |
2 dt

#
.

(3.18)

Applying Itô’s formula for |� eP i
t |

2, we have that

�|� ePi
t |
2 =� 2

Z T

t
(� ePi

s)
>

0

@�(Ai
t)

>� ePi
t +⇥

p�fM i
t + ��M i

t �
1
N

D
bBi,(1)
t , � ePi

t

E

2⌘it

1

A ds

+

Z T

t
|�Z

ePi

s |
2 ds+ 2

Z T

t
(� ePi

s)
>�Z

ePi

s dWs.

Recalling the condition (3.9) and using Young’s inequality hx, yi  e⇢
2 |x|

2 + 1
2e⇢ |y|

2, we obtain that

E
"Z T

0
|� ePi

t |
2 dt

#


1

e⇢2E

2

4
Z T

0

 
p�fM i

t + ��M i
t

2⌘it

!2

dt

3

5 . (3.19)

Using similar arguments on |� eSi
t |
2, we get that

|� eSi
t |
2 = 2

Z t

0
(� eSi

s)
>
⇣
�Ai

t� eSi
t +Ki

t�e�t

⌘
ds,

and

E
"Z T

0
|� eSi

t |
2 dt

#


1

b⇢2E
"Z T

0

��Ki
t�e�t

��2 dt

#
. (3.20)

Recalling the definition of e� and e⇠j , Remark 3.1, and using Young’s inequality again, we have that

E
"Z T

0

��Ki
t�e�t

��2 dt

#

(1 + ✓3)(kK
(1)

k+ kK(3)
k)2

1

N

NX

j=1

E
"Z T

0
(�e⇠jt )2 dt

#
+

✓
1 +

1

✓3

◆
kK(2)

k
2 1

N

NX

j=1

E
"Z T

0
(p� eXj

t + ��Xj
t )

2 dt

#

(1 + ✓3)(kK
(1)

k+ kK(3)
k)2

1

N

NX

j=1

E

2

64
Z T

0
(1 + ")

 
p�fM j

t + ��M j
t

2⌘jt

!2

+

✓
1 +

1

"

◆0

@
1
N

D
bBj,(1)
t , � ePj

t

E

2⌘jt

1

A

2

dt

3

75

+

✓
1 +

1

✓3

◆
kK(2)

k
2 1

N

NX

j=1

E
"Z T

0

⇣
p� eXj

t + ��Xj
t

⌘2
dt

#
.
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Letting " := k bB(1)k
2N⌘mine⇢ , from the above estimate and (3.19) we have that

E
"Z T

0

��Ki
t�e�t

��2 dt

#

(1 + ✓3)(kK
(1)

k+ kK(3)
k)2

1

N

NX

j=1

E

2

4
Z T

0

 
1 + "+

✓
1 +

1

"

◆
k bB(1)

k
2

4N2⌘2mine⇢2

! 
p�fM j

t + ��M j
t

2⌘jt

!2

dt

3

5

+

✓
1 +

1

✓3

◆
kK(2)

k
2 1

N

NX

j=1

E
"Z T

0

⇣
p� eXj

t + ��Xj
t

⌘2
dt

#

=(1 + ✓3)(kK
(1)

k+ kK(3)
k)2

1

N

NX

j=1

E

2

4
Z T

0

 
1 +

k bB(1)
k

2N⌘mine⇢

!2 
p�fM j

t + ��M j
t

2⌘jt

!2

dt

3

5

+

✓
1 +

1

✓3

◆
kK(2)

k
2 1

N

NX

j=1

E
"Z T

0

⇣
p� eXj

t + ��Xj
t

⌘2
dt

#
.

(3.21)

Recalling the inequality (3.18), collecting the estimates (3.19)-(3.21) and taking sum from 1 to N on
both sides we get

✓
2�min �

✓0 + ✓1 + ✓2
2

◆ NX

i=1

E
"Z T

0
(� eXi

t)
2 dt

#
+

✓
2⌘min �

✓

2

◆ NX

i=1

E

2

4
Z T

0

 
�fM i

t

2⌘it

!2

dt

3

5



"
1

N2e⇢2

 
k bB(2)

k
2

2✓0
+

k bB(1)
k
2

2✓

!

+(1 + ✓3)(kK
(1)

k+ kK(3)
k)2
✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆ 
1 +

k bB(1)
k

2N⌘mine⇢

!2
3

5
NX

i=1

E

2

4
Z T

0

 
p�fM i

t + ��M i
t

2⌘it

!2

dt

3

5

+

✓
1 +

1

✓3

◆
kK(2)

k
2

✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆ NX

i=1

E
"Z T

0

⇣
p� eXi

t + ��Xi
t

⌘2
dt

#

(1 + ")

"
1

N2e⇢2

 
k bB(2)

k
2

2✓0
+

k bB(1)
k
2

2✓

!

+(1 + ✓3)(kK
(1)

k+ kK(3)
k)2
✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆ 
1 +

k bB(1)
k

2N⌘mine⇢

!2
3

5
NX

i=1

E

2

4
Z T

0

 
�fM i

t

2⌘it

!2

dt

3

5

+ (1 + ")

✓
1 +

1

✓3

◆
kK(2)

k
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✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆ NX

i=1

E
"Z T

0

⇣
� eXi

t

⌘2
dt

#

+ C

✓
1 +

1

"

◆
�

 
NX

i=1

E
"Z T

0

�
�M i

t

�2
dt

#
+

NX

i=1

E
"Z T

0

�
�Xi

t

�2
dt

#!
.

Thus, choosing ✓ = k bB(1)k
Ne⇢ and choosing " small enough, the assumption (3.10) yields

NX

i=1

E
"Z T

0

⇣
�fM i

t

⌘2
dt

#
+

NX

i=1

E
"Z T

0

⇣
� eXi
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dt

#

 C�

 
NX
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E
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�
�M i

t

�2
dt

#
+

NX
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E
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�
�Xi
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�2
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Furthermore, going back to the dynamics of eXi and using fM i = A i eXi + Bi, we have that

NX

i=1

E

2

4 sup
0tT

�����
� eXi

(T � t)a

�����

2
3

5  C�

 
NX

i=1

E
"Z T

0

�
�M i

t

�2
dt

#
+

NX

i=1

E
"Z T

0

�
�Xi

t

�2
dt

#!
.

Hence, when � is small enough, the mapping � is a contraction. Iterating p finitely many times until
p = 1 and letting f i = gi = 0, we obtain the desired result.

3.3 Verification

Having established the existence of a unique solution to the respective FBSDEs, the candidate optimal
strategies are well defined. In this section we provide a verification result that shows that the candidate
strategy (3.1) does indeed define a Nash equilibrium of the N -player game (2.9)-(2.10). Our analysis
is based on a novel su�cient stochastic maximum principle that does not require convexity of the cost
function as it is usually the case; see e.g. (Pham, 2009, Theorem 6.4.6). Instead, our argument strongly
relies on the liquidation constraint Xi

T = 0. The following is the main result of this section.

Theorem 3.5. Let (Xi,Si,M i,Pi, ZMi

, ZPi

) 2 Ha,F ⇥ S2
F ⇥ L2

F ⇥H◆,F ⇥ L2,�
F ⇥ L2

F (i = 1, · · · , N)
be the unique solution to the FBSDE system (3.4). Under Assumption 3.2 with the inequalities in (iii)

replaced by the following slightly di↵erent condition

8
>>><

>>>:

�min �
✓1 + ✓2

2
�

kB(2)
k
2

N2

✓
1 +

1

✓3

◆✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆
> 0,

⌘min � (1 + ✓3)
kB(1)

k
2

N2

✓
kAk

2

2✓1b⇢2
+

1

2✓2

◆
> 0,

(3.22)

the processes ⇠⇤ = (⇠⇤,1, · · · , ⇠⇤,N ) forms an open-loop Nash equilibrium of the N -player game (2.9)-
(2.10), where

⇠⇤,i =
M i

�
1
N

⌦
Bi,(1),Pi

↵

2⌘i
.

Remark 3.6. (1) If Assumption 3.2 (iii) holds, then the condition (3.22) holds for all N � 2.

(2) The impact process Y is exogenous in the optimization problem of the MFG. Thus, the convex-
ity requirement for the standard su�cient maximum principle holds. We omit the proof of the
verification result, which is standard.

In what follows we denote by (Xi,Si) the states corresponding to the strategy profile (⇠i, (⇠⇤,j)j 6=i) and
by (X⇤,i,S⇤,i) the states corresponding to the strategy profile (⇠⇤,i, (⇠⇤,j)j 6=i). Moreover, we put

� :=
1

N
(⇠i,E[Xi])> +

1

N

X

j 6=i

(⇠⇤,j ,E[X⇤,j ])> and �⇤ :=
1

N

NX

j=1

(⇠⇤,j ,E[X⇤,j ])>.

Then it holds that
8
<

:

dXi
t = � ⇠it dt

dSi
t =

⇣
�Ai

tS
i
t +Bi

t�t
+R

i
t

⌘
dt

and

8
<

:

dX⇤,i
t = � ⇠⇤,it dt

dS⇤,i
t =

⇣
�Ai

tS
⇤,i
t +Bi

t�
⇤
t
+R

i
t

⌘
dt.

The admissibility of the candidate ⇠⇤ has already been established; in particular, X⇤,i
T = 0 for each

i = 1, . . . , N because X⇤,i
2 Ha,F . It remains to prove that

J i(⇠⇤,i, ⇠⇤,�i)  J i(⇠i, ⇠⇤,�i)

18



for each 1  i  N and any admissible control ⇠i. To this end, we prove that the cost J i(⇠i, ⇠⇤,�i) can
be decomposed into the equilibrium cost plus the cost of a round-trip strategy as

J i(⇠i, ⇠⇤,�i) = J i(⇠⇤,i, ⇠⇤,�i) + E
"Z T

0
⌘it

⇣
⇠it � ⇠⇤,it

⌘2
+ �it

⇣
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t �X⇤,i
t

⌘2

+
⇣
Xi

t �X⇤,i
t

⌘D
⇥,�Ai

t(S
i
t � S

⇤,i
t ) +Bi

t(�t
� �⇤

t
)
E
dt
i (3.23)

and that the additional cost is non-negative under Assumption (3.22). In order to prove the decomposi-
tion (3.23) we proceed in various steps. In a first step, we establish an alternative representation of the
cost function.

Lemma 3.7. The cost associated with the strategy (⇠i, ⇠⇤,�i) can be rewritten as

J i(⇠i, ⇠⇤,�i) =E
"Z T

0
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D
⇥,�Ai

tS
i
t +Bi

t�t
+R

i
t

E
+ ⌘it(⇠

i
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2 + �it(X
i
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2 dt

#
.

Proof. Using integration by parts and Xi
T = 0, S

i
0 = 0, we have that
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⇥,Si
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. (3.24)

As a result,

J i(⇠i, ⇠⇤,�i) =E
"Z T
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⇠it
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2 dt

#
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In view of Lemma 3.7, it holds

J i(⇠i, ⇠⇤,�i)� J i(⇠⇤,i, ⇠⇤,�i)
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(3.25)

It remains to bring the term on the right-hand side in equation (3.25) into the form (3.23). For this, let

II :=E
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2⌘it⇠
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D
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t ,Pi
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⇤,i
t +Bi
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i
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(3.26)

Heuristically, this term equals E
hR T

0

⇣
(Xi

t �X⇤,i
t )dM i

t �M i
t (dX

i
t � dX⇤,i

t )
⌘i

. In view of the liquidation

constraint, using an integration by parts argument, we expect that II = 0 in which case it remains to
bring the di↵erence I� II into the form (3.23).

Lemma 3.8. The representation (3.23) holds true.
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Proof. We proceed in two steps. In a first step, we prove that II = 0. Indeed, integration by parts on
[0, T � ✏] yields that
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Letting ✏! 0, a similar argument as in the proof of (Fu et al., 2021, Proposition 2.14) yields that
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Putting the preceding equation into (3.26) implies that
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where in the fourth equality we use the liquidation constraint X⇤,i
T = 0. Using that E[E[x]y] = E[x]E[y] =

E[xE[y]] for any random variables x and y, the second term in the above sum can be rewritten as
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Thus,
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Note that
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Plugging (3.27) into (3.28), we get the desired representation.

We are now ready to finish the proof of the verification result.

Proof of Theorem 3.5. Using the constants appearing in (3.18), we have
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Due to the decomposition (3.23) and Assumption (3.22), we have
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⇤

Our verification Theorem 3.5 excludes the existence of beneficial round trips for the single player model.

Corollary 3.9. Under assumptions of Theorem 3.5, there is no beneficial round trip when N = 1.

Proof. Let the initial position x = 0 and ⇠⇤ ⌘ 0, which implies

X⇤ = S
⇤ = �⇤ = R = J(⇠⇤) ⌘ 0. (3.29)

Moreover, let ⇠ be a round trip, that is,
R T
0 ⇠t dt = 0. In view of Lemma 3.7 and (3.29), the decomposition

(3.23) holds with N = 1 and the proof of Theorem 3.5 yields J(⇠) > 0 = J(⇠⇤). Thus, ⇠ is not
beneficial.

Remark 3.10. Note that the exclusion of beneficial round trips cannot be obtained from the FBSDE
representation of the optimal strategy; this is because our optimization is non-convex and thus unique-
ness result cannot be guaranteed. For the two-player game, the next corollary shows that our FBSDE
characterization provides the existence of a beneficial round trip.

Corollary 3.11. If X
1 > 0 and X

2 = 0, then X⇤,2
6= 0. That is, X⇤,2

or ⇠⇤,2 is a beneficial round trip.

Proof. We prove the corollary by contradiction. If X⇤,2
⌘ 0, which is equivalent to ⇠⇤,2 ⌘ 0, then

J2(⇠⇤,2, ⇠⇤,1) = 0. In view of the representation (3.23) and Lemma 3.7,
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Since C⇤,2 can be expressed in terms of the function E
⇥
X

1
�X⇤,1⇤ and the constants ↵2 and �2 we

conclude that (3.30) is an equation for X 1
�X⇤,1 that only depends on the constants ↵2 and �2. This

contradicts the FBSDE characterization (3.4) that states that X⇤,1 and hence X
1
�X⇤,1 only depends

on the coe�cients indexed by 1 if X 2 = X⇤,2 = ⇠⇤,2 = 0.

3.4 Approximation by penalization

It has been shown in various settings that the optimal trading strategies in models in which open positions
are increasingly penalized converge to optimal trading strategies in models where full liquidation is
required; see, e.g. Evangelista and Thamsten (2020); Fu et al. (2021); Horst and Xia (2019) for details.
If the strict liquidation constraint is replaced by a penalization n(Xi

T )
2 of open positions at the terminal

time, the FBSDE system (3.8) changes to
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where Si,(1) is the first component of Si. The same arguments as in the proof of (Fu et al., 2021, Lemma
4.5) show that
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From this, we immediately obtain that the model with liquidation constraint can be approximated by a
sequence of models with increasing penalization. Specifically, using the same arguments as in the proof
of (Fu et al., 2021, Theorem 4) it is not di�cult to prove the following approximation result.

Proposition 3.12. Let (Xi,Si,M i,Pi, ZMi

, ZPi

) and (Xi,n,Si,n,M i,n,Pi,n, ZMi,n
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4 From many player games to mean-field games

In this section we prove the convergence of the Nash equilibria in the N -player game to the Nash
equilibrium of the corresponding MFG under the homogeneity conditions (2.11) and (2.12). This is
achieved by establishing the convergence of the solutions to the FBSDE system (3.4) to the solution to
the corresponding mean-field FBSDE (3.7) as N ! 1. More precisely, let
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Moreover, it follows that
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By considering the dynamics of X
i
, the convergence (4.3) follows.
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where ei denotes the ith unit vector in RN . The FBSDE

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

d�Xi
t = �

�M i
t �

1
N

D
Bi,(1)

t ,Pi
t

E

2⌘it
dt,

d�Si
t =

�
�Ai

t�S
i
t +Bi

t��t + �Ri
t

�
dt,

�d�M i
t =

✓
2�it�X

i
t +

1

N
E
hD

Bi,(2)
t ,Pi

t

Ei
+
⌦
⇥,�Ai

t�S
i
t +Bi

t��t + �Ri
t

↵◆
dt� �ZMi

t dWt,

�d�Pi
t =

0

@�(Ai
t)

>�Pi
t +⇥

�M i
t �

1
N

D
Bi,(1)

t ,Pi
t

E

2⌘it

1

A dt� �ZPi

t dWt,

�Xi
0 = 0, �Xi

T = 0, �Si
0 = (0, 0)>, �Pi

T = (0, 0)>,

(4.5)

where

�� =

0

@ 1

N

NX

j=1

M j
�

1
N

⌦
Bj,(1),Pj

↵

2⌘j
� E

"
M

i

2⌘i

#
,
1

N

NX

j=1

E[Xj ]� E[Xi
]

1

A
>

and

�Ri =

0

@↵
i�i

N

NX

j=1

E[X j ]� ↵i�iE[X i],
↵i

N

NX

j=1

E[X j ]� ↵iE[X i]

1

A
>

⌘ (0, 0)>

has a unique solution. This allows us to establish the convergence of the Nash equilibria of the N -player
game to the mean field solution as N ! 1.

Theorem 4.2. Let (3.9) and (3.10) hold for all N large enough. The following convergence holds
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As a result, the optimal strategy of player i in the N -player game converges to the one in MFG, i.e.,
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In view of (3.19) and (3.20), we have that
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Taking (4.6) into (4.5), following the proof of Theorem 3.4 and using (4.7) and (4.8), we obtain
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Letting ✓ = kB(1)k
Ne⇢ , ✏ be small enough, N be large enough, taking average and upper limit on both sides,

we obtain by (3.10)
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5 Deterministic benchmark models

In this section we consider three deterministic benchmark examples. In Section 5.1 we consider a MFG
where all model parameters except the initial portfolios are deterministic. In Section 5.2 and Section
5.3 we consider a single player model and a two player model, respectively, where all model parameters
including initial portfolios are deterministic. In all deterministic models, our FBSDE systems reduce
to ODE systems. Existence and uniqueness of solutions to these systems can easily be established; in
particular, Assumption 3.2 is not required. For simplicity we also replace the strict liquidation constraint
by a penalization n(Xi

T )
2 of open positions at the terminal time. This considerably simplifies our

numerical analysis; see Section 3.4. We display the solutions to the corresponding ODE system for
various choices of model parameters.

5.1 The mean-field game

If all model parameters except the initial positions are deterministic constants, then the stochastic
integral terms drop out of the FBSDE system (3.6). Taking expectations on both sides in (3.6) and
putting

F := (E[X],E[Y ],E[C])> and B := (E[P ],E[Q],E[R])>,

we obtain that 8
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Making the ansatz B = DF+D0 yields the following ODE system for D and D0:
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Let �(T, t) = eP(T�t) be the fundamental solution to (5.1), where
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From (5.1) one has
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where I3⇥3, O3⇥3 and O3⇥1 are the 3⇥ 3 identity matrix and 3⇥ 3, 3⇥ 1 zero matrices, respectively. If

(DT ,�I3⇥3)�(T, t)

✓
O3⇥3

I3⇥3

◆
is invertible, which will be the case in our simulations, a direct calculation
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Having derived an explicit solution for the expected equilibrium portfolio process allows us to derive an
explicit solution for the equilibrium portfolio process itself. It is not di�cult to see that
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and hence the optimal position approximately equals

Xt ⇡ E[Xt] + (X � E[X ])
sinh
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�
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�
⌘T
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Figure 1: Dependence of equilibrium portfolio process on the market impact parameter ↵, � = 0.1(left)
and � = 1(right). Other parameters are chosen as ⌘ = 0.1, ⇢ = 0.2, � = 0.3, � = 1.1, x = 1.5, E[X ] = 1
and T = 5.

The MFG is convex; hence no additional verification arguments are required. Figure 1 displays the
equilibrium portfolio processes in an MFG for varying degrees of child order flow and transient market
impact. We can see from both pictures that short positions do not occur in equilibrium if the impact
as measured by the quantities ↵ and � is small. For near critical values of ↵ it is optimal for the
representative player to unwind his position before the terminal time, and then to take a negative
position that he closes at the end of the trading period. This e↵ect increases significantly in the impact
parameter �. The result is intuitive; the larger ↵ and �, the stronger the representative player benefits
from the inertia in market order flow when closing a short position.

5.2 Single player model

When N = 1 and all model parameters are deterministic constants, then our mean-field FBSDE reduces
to a forward-backward ODE system, and can be rewritten as
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F = (X,Y,C) and B = (P,Q,R),
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Making again a linear ansatz B = DF+ D0, yields
8
>>><

>>>:

D 0 = � D 01D � D 00 +  11D +  10, DT =

0

@
2n 0 0
0 0 0
0 0 0

1

A ,

(D0)0 = ( 11 � D 01)D
0
� DF 0, D0

T = (0, 0, 0)>,

(5.6)

and the same argument as in the previous section shows that the unique solution to the above ODE
system is given by
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In particular, the ODE system can be solved explicitly. The solution to the ODE system yields candidate
optimal portfolios; portfolios for various choices of model parameters are shown in Figure 2. The left
figure shows the portfolio process for various degrees of child order flow when � = 1, � = 1.1 and � = 0.3.
We see that the initial trading rate increases in ↵ and that it is optimal to oversell for near-critical values
of ↵. The right picture shows the portfolio process for di↵erent degrees of transient market impact. For
very large values of � cyclic fluctuations in the optimal portfolio process emerge. Oscillating strategies
arise when a trader expects his impact on future order flow to be very strong. Aggressively selling
generates additional sell flow at later points in time from which the trader may benefit when switching
from selling to buying.

Cyclic oscillations can be viewed as a form of transaction-triggered price manipulation. As already
argued by Alfonsi et al. (2012) they are economically undesirable and should, as Gatheral et al. (2012)
write (p.456), “be regarded as an additional model irregularity that should be excluded.” Our numerical
simulations suggest that cyclic oscillations occur only for unreasonably large values of � that violate the
assumptions of our verification theorem. Although the assumptions of our verification theorem are far
from being necessary, it seems natural that some bound on the impact of traders’ on market dynamics is
necessary to exclude arbitrage and/or price manipulation. Interestingly, we found no numerical evidence
that cyclic oscillations may occur in game-theoretic settings. This suggests that within our modelling
framework strategic interactions may stabilize markets. We leave a more detailed analysis of this question
for future research.

5.3 Two player model

If N = 2 and all model parameters are deterministic constants, then our mean-field FBSDE reduces to
a forward-backward ODE system, and can be rewritten as
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Figure 2: Dependence of optimal portfolio process on the market impact parameters ↵ and �, � = 1(left)
and ↵ = 1(right). Parameters are chosen as ⌘ = 0.1, ⇢ = 0.2, � = 0.3, � = 1.1, x = 1 and T = 1.
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the same arguments as in the mean-field case yield the unique solution

Dt = �


(DT ,�I6⇥6)�(T, t)

✓
O6⇥6

I6⇥6

◆��1

(DT ,�I6⇥6)�(T, t)

✓
I6⇥6

O6⇥6

◆

and

D
0
t = �


(DT ,�I6⇥6)�(T, t)

✓
O6⇥6

I6⇥6

◆��1

(DT ,�I6⇥6)

Z T

t
�(T, s) ds

✓
F 0

O6⇥1

◆
,

where �(T, t) = eG(T�t) and

G =

✓
�00 �01
�10 �11

◆
.

There is no explicit expression for the integral since det(G) ⌘ 0. Figure 3 shows equilibrium positions in
a two player model with di↵erent degrees of transient market impact. In both cases, Player 2 benefits
from the presence of Player 1; there is a beneficial round-trip for this player in equilibrium. As expected
the round-trip is stronger (more convex) for larger degrees of transient impact.

As pointed out above, we did not find numerical evidence for the occurrence of cyclic oscillations in the
2-Player game. As illustrated by Figure 4 some form of oscillation may occur for large values of � but
the oscillations are not as regular as in the single player case and are not cyclic, even if both players are
completely identical.

Figure 3: Portfolio process in the two player game under di↵erent parameters �, � = 1(left) and � =
0.1(right). Other parameters are chosen as ⌘1 = ⌘2 = 0.1, ⇢1 = ⇢2 = 0.2, �1 = �2 = 0.3, ↵1 = ↵2 = 1,
�1 = �2 = 1.1, x1 = 1, x2 = 0, and T = 1.
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Figure 4: Portfolio process in the two player game for � = 10 and di↵erent (left) respectively same (right)
initial portfolios.
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