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Abstract

We study an optimal liquidation problem under the ambiguity with respect to price impact
parameters. Our main results show that the value function and the optimal trading strategy can be
characterized by the solution to a semi-linear PDE with superlinear gradient, monotone generator
and singular terminal value. We also establish an asymptotic analysis of the robust model for
small amounts of uncertainty and analyze the e↵ect of robustness on optimal trading strategies and
liquidation costs. In particular, in our model ambiguity aversion is observationally equivalent to
increased risk aversion. This suggests that ambiguity aversion increases liquidation rates.
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1 Introduction

Starting with the work of Almgren and Chriss [1] optimal portfolio liquidation strategies under various
market regimes and price impact functions have been analyzed by many authors. Single player models
have been analyzed by [3, 7, 24–26, 30, 39] among many others; multi-player models were analyzed in,
e.g. [6,21,29]. From a mathematical perspective, the main characteristic of optimal liquidation models is
the singular terminal condition of the value function that is induced by the liquidation constraint. The
singularity becomes a major challenge when determining the value function and applying verification
arguments.

In this paper we study a class of Markovian single-player portfolio liquidation problems where the in-
vestor is uncertain about the factor dynamics driving trading costs. The liquidation problem leads to a
stochastic control problem of the form

inf
⇠

sup
Q2Q

⇣
EQ

"Z
T

0
⌘(Ys)|⇠s|

p + �(Ys)|Xs|
p ds

#
�⌥(Q)

⌘
(1.1)

subject to the state dynamics

dY
t
= b(Y

t
)dt+ �(Y

t
)dWt, Y0 = y

dXt = �⇠t dt, X0 = x
(1.2)
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and the terminal state constraint
XT = 0, (1.3)

where ⇠ denotes the trading rate, X denotes the portfolio process, Y denotes a factor process that drives
trading costs and Q is a set of probability measures that are absolutely continuous with respect to a
benchmark measure P. The functions ⌘ and � specify the instantaneous market impact from trading and
the market risk of a portfolio holding, respectively. Instead of restricting the set of probability measures
ex ante, we add a penalty term ⌥(Q) to the objective function. This approach was first introduced by
Hansen and Sargent [27] and has since become a popular approach in both the economics and financial
mathematics literature when analyzing optimal decision problems under model uncertainty.

The benchmark case where Q contains a single element has been analyzed in [26, 28]. In this case, the
value function can be described in terms of the unique nonnegative viscosity solution of polynomial growth
of a semi-linear PDE with singular terminal value. The proof is based on an asymptotic expansion of
the solution around the terminal time that shows that the value function converges to the instantaneous
impact factor at the terminal time when properly rescaled.

If Q contains more than one element, then the investor is uncertain about the dynamics of the factor
process. For instance, the process ⌘(Yt) may be viewed as describing the inverse market depth, whose
dynamics the investor may not be able to specify correctly. The market risk factor �(Yt), on the other
hand, can be linked to the volatility of the reference price process. If the price dynamics follows a
stochastic volatility model, then factor uncertainty amounts to uncertainty about the volatility of the
reference price.

Under factor uncertainty, additional regularity assumptions on the penalty function ⌥(Q) are required
to guarantee that the optimization problem is tractable analytically. In order to guarantee analytical
tractability we follow an approach that had first been introduced by Maenhout [35] when analyzing a
class of portfolio allocation models for Merton-type investors under model uncertainty.1 Specifically, we
consider penalty functions with state-dependent ambiguity aversion parameters that satisfy a scaling
property corresponding to homothetic preferences. The assumption of homothetic preferences does not
only facilitate the mathematical analysis but it also has a clear economic implication. Our model with
ambiguity aversion is observationally equivalent to a model without ambiguity aversion but increased
risk aversion. An approach that is similar in spirit to the ones in [35] and in this paper has been followed
by Björk et al. [9]. They studied an equilibrium model with mean-variance preferences and a (state-
dependent) dynamic risk aversion parameter that is inversely proportional to wealth. For their choice
of risk aversion the equilibrium monetary amount invested in the risky asset is proportional to current
wealth.

Under our scaling property on the penalty function, we prove that the value function to our control
problem can be characterized by the solution to a semi-linear PDE with superlinear gradient, monotone
generator and singular terminal value. Our first main result is to show that this PDE admits a unique
nonnegative viscosity solution of polynomial growth under standard assumptions on the factor process
and the cost coe�cients. Many authors including [4,5,13] studied the Lipschitz and Hölder regularity of
viscosity solutions. In our setting, Hölder continuity and even C0,1-regularity of the value function is not
su�cient to guarantee admissibility of our martingale measure control. A particular asymptotic behavior
of both the value function and its gradient at the terminal time is key to carry out the verification
argument. Our second main result guarantees that, under an additional assumption on the penalty
function and an additional boundedness condition on the market impact term, the viscosity solution to
the HJB equation is of class C0,1 and that both the solution and its derivative have the desired asymptotic
behavior at the terminal time. The proof is based on an asymptotic expansion of the solution near the
terminal time as in [26,28]. The di�culty is that now not only the value function but also its derivative
needs to converge to the market impact term, respectively its derivative when properly rescaled. The
precise asymptotic behavior of the solution allows us to obtain not only the optimal trading strategy
but also the least favorable martingale measure in feedback form. It also allows us to establish our
third main result, namely a first order approximation of both the value function and the optimal trading

1
The approach has been adapted by many authors, including [11, 17, 20, 36, 43], partly due to its analytical tractability

but also due to the “embedded” equivalence between ambiguity and risk aversion.
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strategy in terms of the solution to the benchmark model without uncertainty. The result shows that
we can approximate the optimal strategy in a model with small uncertainty parameter in terms of the
optimal strategy of the benchmark model and the first order approximation of the value function. As
a byproduct we show that our model with factor uncertainty is observationally equivalent to a model
without factor uncertainty but increased market risk. This suggests that factor uncertainty increases the
rate of liquidation.

To the best of our knowledge, only few papers have studied the optimal liquidation problem under model
uncertainty. Nyström et al. [37] and Cartea et al. [14, 15] considered problems of optimal liquidation
with limit orders for a CARA, restectively a risk-neutral investor. In [37] it is assumed that the investor
is uncertain about both the drift and the volatility of the underlying reference price process. They show
that uncertainty may increase the bid-ask spread and hence reduce liquidity. In [14, 15] the investor is
uncertain about the arrival rate of market orders, the fill probability of limit orders and the dynamics
of the asset price. They show that ambiguity aversion with respect to each model factor has a similar
e↵ect on the optimal strategy, but the magnitude of the e↵ect depends on time and inventory position in
di↵erent ways depending on the source of uncertainty. In both papers strict liquidation is not required;
instead open positions at the terminal time are penalized. This avoids the mathematical challenges
resulting from the singular terminal value.

Lorenz and Schied [33] studied the drift dependence of optimal trade execution strategies under transient
price impact with exponential resilience and strict liquidation constraint. They find an explicit solution
to the problem of minimizing the expected liquidation costs when the una↵ected price process is a
square-integrable semimartingale. Later, Schied [42] analysed the impact on optimal trading strategies
with respect to misspecification of the law of the una↵ected price process in a model which only allows
instantaneous price impact. Both papers studied the dependence of optimal liquidation strategies on
model dynamics but did not consider the resulting robust control problem. Bismuth et al. [8] considered
a portfolio liquidation model for a CARA investor that is uncertain about the drift of the reference price
process but did not require a strict liquidation constraint. They do not consider a robust optimization
problem either but dealt with the uncertainty by a general Bayesian prior for the drift, which allows them
to solve the problem by dynamic programming techniques. All three papers focussed on misspecification
of the reference price process and assumed that the market impact parameters are known. Our model is
di↵erent; we analyze the e↵ect of uncertainty about the model parameters, e.g. the market depth that
we consider the most important impact factor.

In a recent paper, Popier and Zhou [40] analysed the optimal liquidation problem under drift and
volatility uncertainty in a non-Markovian setting and characterized the value function by the solution of
a second-order BSDE with monotone generator and singular terminal condition. In contrast to [40], we
focus on the drift uncertainty about the factor model and add a penalty function in the spirit of convex
risk measure theory. We also obtain much stronger regularity properties of the value function which
allows us to study the e↵ect of uncertainty on optimal trading strategies and costs in greater detail.

The remainder of this paper is organized as follows. In Section 2, we describe the modelling set-up,
introduce the stochastic control problem and state our main results. The existence of viscosity solution
to the HJBI equation is established in Section 3; the regularity of the viscosity solution is proved in
Section 4. The verification argument is carried out in Section 5. Finally, Section 6 is devoted to an
asymptotic analysis of the value function for small amounts of uncertainty.

Notation and notational conventions. We put

hyi := (1 + |y|2)1/2.

Let I be a compact subset of R. We denote by Cb(Rd), Cb(I ⇥ Rd) the spaces of bounded continuous
functions on Rd, respectively, I ⇥Rd. For a given n � 0, we define Cn(Rd) (resp. Cn(I ⇥Rd)) to be the
set of functions � 2 C(Rd) (resp. C(I ⇥ Rd)) such that

 :=
�(y)

1 + |y|n
2 Cb(Rd)(resp.  :=

�(t, y)

1 + |y|n
2 Cb(I ⇥ Rd)).
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A function � belongs to USCn(I⇥Rd) (or LSCn(I⇥Rd)) if it has at most polynomial growth of order n
in the second variable uniformly with respect to t 2 I and is upper (lower) semi-continuous on I⇥Rd. We
denote by C1

b
(Rd) the set of all functions � : Rd

! R which are bounded, continuous and continuously
di↵erentiable with bounded first derivative. C0,1(I ⇥Rd) denotes the set of all functions � : I ⇥Rd

! R
which are continuous and continuously di↵erentiable with respect to the second variable on I ⇥ Rd.

We denote by L1
F (0, T ;Rd) the set of progressively measurable Rd-valued processes that are essentially

bounded. The spaces Lq

F (0, T ;Rd), Hq

F (0, T ;Rd) denote the sets of all the progressively measurable

Rd-valued processes (Zt)t2[0,T ] satisfying that E[
R
T

0 |Zt|
q dt)] < 1, E[(

R
T

0 |Zt|
2 dt)q/2]1/q < 1, respec-

tively; the subset of processes with continuous paths satisfying E[sup
t2[0,T ] |Zt|

q/2]1/q < 1 is denoted by

S
q

F (⌦;C([0, T ];Rd)). Whenever the notation T� appears in the definition of a function space we mean
the set of all functions whose restrictions satisfy the respective property when T� is replaced by any
s < T , e.g.,

Cn([0, T
�]⇥ Rd) = {u : [0, T )⇥ Rd

! R : u|[0,s]⇥Rd 2 Cn([0, s]⇥ Rd) for all s 2 [0, T )}.

Throughout, all equations and inequalities are to be understood in the a.s. sense. We adopt the convention
that C is a constant that may vary from line to line and the operator D denotes the gradient with respect
to the space variable.

2 Problem formulation and main results

Let T 2 (0,1) and let (⌦,F , (Ft)t2[0,T ],P) be a filtered probability space that satisfies the usual condi-

tions and carries an d̃-dimensional standard Brownian motion W and an independent one-dimensional
standard Brownian motion B.

In this paper we consider the problem of a large investor that needs to liquidate a given portfolio x 2 R
within the time horizon [0, T ]. Let t 2 [0, T ) be a given point in time and x 2 R be the portfolio position
of the trader at time t. We denote by ⇠s 2 R the rate at which the agent trades at time s 2 [t, T ). Given
a trading strategy ⇠, the portfolio position at time s 2 [t, T ) is given by

Xs = x�

Z
s

t

⇠r dr, s 2 [t, T ]

and the liquidation constraint is
XT = 0. (2.1)

In what follows we assume that all trading costs are driven by a factor process given by the d-dimensional
Itô di↵usion (

dY t,y

s
= b(Y t,y

s
)ds+ �(Y t,y

s
)dWs, s 2 [t, T ],

Y t,y

t
= y.

Our goal is to analyze the impact of uncertainty about the factor dynamics on optimal liquidation
strategies and trading costs.

2.1 The benchmark model

In this section we briefly recall the liquidation model without factor uncertainty analyzed by Graewe et
al. [26] against which our results shalll be benchmarked. Following [26], we assume that the investor’s
transaction price Ps 2 R at time s 2 [t, T ] can additively decomposed into a fundamental asset price P̃s

and an instantaneous price impact term f(⇠s) as

Ps = P̃s � f(⇠s)

where the fundamental asset price process P̃ is given by a one-dimensional square-integrable Brownian
martingale, which we assume to be of the form2

dP̃s = �̃(Y t,y

s
)dBs

2
See Example 2.3 below for a stochastic volatility model with uncertainty about the driver of the volatility process.
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for some function �̃. The investor aims at minimizing the di↵erence between the book value of the
portfolio and the expected proceeds from trading plus risk cost. We assume that the instantaneous
impact factor is given by f(⇠s) = ⌘(Y t,y

s
)|⇠s|p�1 sgn(⇠s) for some p > 1 and some bounded function ⌘

that describes the inverse market depth and that the risk is measured by the integral of the p-th power
of the value at risk of an open position over the trading period. The resulting cost functional is then
given by

J(t, y, x, ⇠) = book value� expected proceeds from trading + risk costs

= EP
h Z T

t

⌘(Y t,y

s
)|⇠s|

pds+

Z
T

t

XsdP̃s +

Z
T

t

�(Y t,y

s
)|Xs|

p ds
i

= EP
h Z T

t

�
⌘(Y t,y

s
)|⇠s|

p + �(Y t,y

s
)|Xs|

p
�
ds
i
,

(2.2)

where the last equality follows from the facts that X 2 S
2
F (⌦;C([t, T ];R)) and that P̃ is a square-

integrable martingale under P.

For each initial state (t, y, x) 2 [0, T ) ⇥ Rd
⇥ R the value function of the investor’s control problem is

defined by
V0(t, y, x) := inf

⇠2A(t,x)
J(t, y, x, ⇠) (2.3)

where the infimum is taken over the set A(t, x) of all admissible controls, that is, over all the controls ⇠
that belong to L2p

F (t, T ;R) and that satisfy the liquidation constraint (2.1). Under suitable assumptions
on the model parameters it was shown in [26, 28] that the value function is given by V0 = v0|x|p and

that the optimal trading strategy is given by ⇠⇤0(t, y, x) =
v0(t,y)

�

⌘(y)� x where � = 1
p�1 and where v0 is the

unique nonnegative viscosity solution of polynomial growth to the following PDE:
(
�@tv(t, y)� Lv(t, y)� F (y, v(t, y)) = 0, (t, y) 2 [0, T )⇥ Rd,

lim
t!T

v(t, y) = +1 locally uniformly on Rd
(2.4)

where

L :=
1

2
tr(��⇤D2) + hb,Di , F (y, v) := �(y)�

|v|�+1

�⌘(y)�
.

2.2 The liquidation model under uncertainty

In order to analyze the impact of factor uncertainty on optimal liquidation strategies we introduce the
class Q of all probability measures Q ⌧ P whose density with respect to the benchmark measure P is
given by

dQ

dP = E

✓Z

t

#sdWs

◆

T

, Q-a.s.

for some progressively measurable process # satisfying that
R
T

t
|#s|2ds < 1, Q-a.s.. Here, E(M)t =

exp(Mt �
hMit

2 ) denotes the Doléans-Dade exponential of a continuous semimartingale M .

Since our focus is on the impact of uncertainty about the factor dynamics on the optimal trading rules,
we assume that the Brownian motions B and W are independent. In this case the una↵ected price
process is still a square-integrable martingale under every probability Q 2 Q. In view of (2.2), we thus
obtain the same form for the cost function for every given probability Q in the set Q :

JQ(t, y, x, ⇠) = EQ

h Z T

t

�
⌘(Y t,y

s
)|⇠s|

p + �(Y t,y

s
)|Xs|

p
�
ds
i
.

Following a standard approach in optimal decision making under model uncertainty introduced by Hansen
and Sargent [27], we do not restrict the set of measures a priori but add a penalty term to the objective
function. Specifically, every probability measure Q 2 Q receives a penalty

⌥(Q) := EQ

"Z
T

t

1

✓̂s
|#s|

mds

#
.

5



The nonnegative process ✓̂ = (✓̂s) measures the degree of confidence in the reference model: the larger
the process, the less deviations from the reference model are penalized. The case ✓̂s ⌘ 0 corresponds
to the benchmark model without factor uncertainty. The case ✓̂s ⌘ ✓̂ and m = 2 corresponds to the
entropic penalty function, see, e.g. [2, 10].

To the best of our knowledge, Maenhout [35] was the first to propose a state-dependent parameter ✓̂
when considering the robust portfolio optimization problem of a power-utility investor. He considered
an uncertainty-tolerance parameter of the ✓̂s = ✓

W1�r
s

where ✓ is a positive constant, Ws denotes the

wealth of the investor at time s and r 2 (0, 1) denotes the exponent in the power utility function. This
choice of ✓̂ essentially corresponds to scaling the uncertainty-tolerance parameter by the value function.
In his model, this leads to a solution that is invariant to the scale of wealth and is amenable to a rigorous
mathematical analysis. Among other things, he found that for this choice of homothetic preferences the
optimal solution under model uncertainty is observationally equivalent to the optimal solution without
model uncertainty but increased risk aversion.

In our context, the approach of Maenhout [35] corresponds to the choice

✓̂s :=
✓

a|X⇠

s |
p

and thus to the penalty functional3

⌥(Q) := EQ

"Z
T

t

1

✓
a|#s|

m
|X⇠

s
|
pds

#
,

where m � 2. The constant a := (m�1)m�1

mm is chosen for analytical convenience; this will become more
clear in the following section. We thus model the costs associated with an admissible trading strategy ⇠
and probability measure Q 2 Q by

J̃(t, y, x; ⇠,#) := EQ

"Z
T

t

✓
⌘(Y t,y

s
)|⇠s|

p + �(Y t,y

s
)|X⇠

s
|
p
�

1

✓
a|#s|

m
|X⇠

s
|
p

◆
ds

#
.

We define the value function of the stochastic control problem for each initial state (t, y, x) 2 [0, T )⇥Rd
⇥R

as
V (t, y, x) := inf

⇠2A(t,x)
sup
Q2Q

J̃(t, y, x; ⇠,#). (2.5)

We assume throughout that p > 1,m � 2. Before presenting the main results, we first list our assumptions
on the factor process in terms of some positive constants c, C̄.

Assumption 2.1. (on the factor process)

(L.1) The drift function b : Rd
! Rd is Lipschitz continuous and of linear growth, i.e. for each y 2 Rd,

|b(x)� b(y)|  C̄|x� y|, |b(y)|  C̄(1 + |y|).

(L.2) The volatility function � : Rd
! Rd⇥d̃ is Lipschitz continuous and of linear growth, i.e. for each

y 2 Rd,
|�(x)� �(y)|  C̄|x� y|.

(L.3) The volatility function � is uniformly bounded by C̄.

(L.4) The drift and volatility functions b,� belong to C1 and ��⇤ is uniformly positive definite.

3
We may have ⌥(Q) = +1 since Q is not equivalent but merely absolutely continuous with respect to P.
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Next, we list conditions on the cost coe�cients. Conditions (F.1) and (F.2) are required to prove the
existence of a viscosity solution to the HJB equation; the stronger condition (F.3) is required to establish
di↵erentiability of the viscosity solution and the verification result.

Assumption 2.2. (on the cost coe�cients)

(F.1) The coe�cients ⌘,�, 1/⌘ : Rd
! [0,1) are continuous. Moreover, there exists a constant k0 2 (0, 1]

such that for y 2 Rd,
�(y)  C̄hyi(1�k0)m

and
c hyi(1�pk0)m  ⌘(y)  C̄hyi(1�k0)m.

Let m̃ := (1� k0)m.

(F.2) The function ⌘ is twice continuously di↵erentiable, and k
L⌘

⌘
k  C̄,

��� |D⌘|↵+1

⌘

���  C̄ where ↵ := 1
m�1 .

(F.3) The function � belongs to C1
b
(Rd) and 0 < c  ⌘  C̄.

The assumptions on the di↵usion coe�cients are standard. Assumption (F.1) states that � is of polyno-
mial growth and that ⌘ can be bounded from below and above by polynomial growth functions, whose
order may be negative. Under this assumption, we have that hyim̃(�+1)/⌘� is of polynomial growth of
order m. Conditions similar to (F.2) and (F.3) have also been made in [28] and [26], respectively.

Example 2.3. The assumptions on the di↵usion coe�cients are satisfied for the two-dimensional di↵usion
process Y = (Y 1, Y 2) given by

dY 1
t
= �Y 1

t
dt+ dW 1

t
and dY 2

t
= µdt+ �dW 2

t
.

The Ornstein-Uhlenbeck process Y 1 drives the market impact term while the arithmetic Brownian motion
Y 2 drives the market risk. Specifically, if we choose ⌘ = tanh(�Y 1)+ 2, then this process can be viewed
as describing a stochastic liquidity process that fluctuates around a stationary level. Moreover, for the
stochastic volatility model

dP̃t = �̃(Y 2
t
)dBt

for the reference price process the instantaneous volatility of the portfolio process is given by �̃2(Y 2
t
)|Xt|

2.
Hence, if �̃ is bounded and continuously di↵erentiable with bounded derivative, then � := �̃2 satisfies
the preceding assumptions.

2.3 The main results

If all the processes # take values in a compact set ⇥ then all probability measures Q in Q are equivalent
to P. In this case, the dynamic programming principle suggests that the value function satisfies the
following Hamilton-Jacobi-Bellman-Issacs equation, cf. [19, Theorem 2.6]

�@tV (t, y, x)� LV (t, y, x)� inf
⇠2R

sup
#2⇥

H(t, y, x, ⇠,#, V ) = 0, (t, y, x) 2 [0, T )⇥ Rd
⇥ R, (2.6)

where H is given by

H(t, y, x, ⇠,#, V ) := h�#, @yV (t, y, x)i � ⇠@xV (t, y, x) + c(y, x, ⇠)�
1

✓
a|#|m|x|p,

and
c(y, x, ⇠) := ⌘(y)|⇠|p + �(y)|x|p.

In our case the set of probability measures is not restricted a priori. This suggests to characterize the
value function (2.5) in terms of the solution to the modified HJBI equation

�@tV (t, y, x)� LV (t, y, x)� inf
⇠2R

sup
#2Rd̃

H(t, y, x, ⇠,#, V ) = 0, (t, y, x) 2 [0, T )⇥ Rd
⇥ R. (2.7)
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Since the function H separates additively into two terms that depend on # only and into two terms that
depend ⇠ only,

inf
⇠2R

sup
#2Rd̃

H(t, y, x, ⇠,#, V ) = sup
#2Rd̃

{h�#, @yV (t, y, x)i �
1

✓
a|#|m|x|p}

+ inf
⇠2R

{�⇠@xV (t, y, x) + c(y, x, ⇠)}.

The structure of cost function suggests an ansatz of the form V (t, y, x) = v(t, y)|x|p. In this case,

#⇤(t, y) := argmax
#2Rd̃

nD
�#, Dv(t, y)

E
�

1

✓
a|#|m

o

=✓↵(1 + ↵)|�⇤(y)Dv(t, y)|↵�1�⇤(y)Dv(t, y),

(2.8)

and

⇠⇤(t, y) := argmin
⇠2R

n
� p⇠v(t, y)|x|p�1 sgn(x) + ⌘(y)|⇠|p

o

=
|v(t, y)|�

⌘(y)�
x,

(2.9)

where ↵ = 1
m�1 ,� = 1

p�1 . Thus,

inf
⇠2R

sup
#2Rd̃

H(t, y, x, ⇠,#, V ) =
⇣
H(y,Dv(t, y)) + F (y, v(t, y))

⌘
|x|p

where

F (y, v) := �(y)�
|v|�+1

�⌘(y)�
, H(y, q) := ✓↵|�⇤(y)q|↵+1. (2.10)

Similarly to the discussion in [26, Section 2.2], we expect the value function to be characterized by the
following terminal value problem:

(
�@tv(t, y)� Lv(t, y)�H(y,Dv(t, y))� F (y, v(t, y)) = 0, (t, y) 2 [0, T )⇥ Rd,

lim
t!T

v(t, y) = +1 locally uniformly on Rd.
(2.11)

The problem reduces to the terminal value problem (2.4) in the absence of model uncertainty (H = 0).

The following theorem guarantees the existence of a unique nonnegative viscosity solution to this singular
problem under conditions (L.1)-(L.3), (F.1), (F.2) and � > ↵, which corresponds to m > p. The
additional assumption � > ↵ can also be found in [23] where the authors study the entire solutions of a
similar kind of elliptic equation. The proof is given in Section 3.

Theorem 2.4. Let m > p. Under Assumptions (L.1)-(L.3), (F.1) and (F.2), the singular terminal value
problem (2.11) admits a unique nonnegative viscosity solution v in

Cm̃([0, T�]⇥ Rd),

where m̃ is introduced in condition (F.1).

Since the maximizer #⇤ in (2.8) depends on Dv, we expect the verification theorem to require the
candidate value function v to be of class C0,1. As it turns out the verification argument does not only
require C0,1-regularity of v but also requires the gradient to have a particular asymptotic behavior near
the terminal time. In fact, we prove that uniformly in y as t ! T the function v satisfies

(T � t)1/�v(t, y) = ⌘(y) +O((T � t)1�↵/�) and (T � t)1/�Dv(t, y) = D⌘(y) +O((T � t)
1
2�↵/�).
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Thus, under the additional assumption that � > 2↵, which corresponds to m > 2p� 1, we obtain that

lim
t!T

(T � t)1/�v(t, y) = ⌘(y), and lim
t!T

(T � t)1/�Dv(t, y) = D⌘(y). (2.12)

The proof of the following theorem is given in Section 4.

Theorem 2.5. Let m > 2p � 1. Under Assumptions (L.1)-(L.4), (F.2)-(F.3), the unique nonnegative
viscosity solution v to the singular terminal value problem (2.11) belongs to C0,1([0, T�]⇥Rd) and satisfies
the asymptotics (2.12).

The previously established regularity of the candidate value function is enough to carry out the verifica-
tion argument, which is proven in Section 5.

Theorem 2.6. Let m > 2p� 1. Under Assumptions (L.1)-(L.4), (F.2)-(F.3), let v 2 C0,1([0, T�]⇥Rd)
be the nonnegative viscosity solution to the singular terminal value problem (2.11). Then, the value
function of the control problem (2.5) is given by V (t, y, x) = v(t, y)|x|p, and the optimal control (⇠⇤,#⇤)
is given in feedback form by

⇠⇤
s
=

v(s, Y t,y

s
)�

⌘(Y t,y

s )�
X⇤

s
and #⇤

s
= ✓↵(1 + ↵)|�⇤(Y t,y

s
)Dv(s, Y t,y

s
)|↵�1�⇤(Y t,y

s
)Dv(s, Y t,y

s
). (2.13)

In particular, the resulting optimal portfolio process (X⇤
s
)s2[t,T ] is given by

X⇤
s
= x exp

✓
�

Z
s

t

v(r, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
. (2.14)

Remark 2.7. The preceding results show that – as in [35] – the model with factor uncertainty is equivalent
to the benchmark model (2.2) when the market risk factor � is replaced

�H := �+H(y,Dv(t, y)).

In particular, under model uncertainty the investor liquidates the asset at a faster rate.

We close this section with first order approximations of the value function and the optimal trading
strategy for the model with uncertainty in terms of the solutions to the benchmark model without
uncertainty. These results allow us to obtain the value function and optimal trading strategy based
only on the benchmark model in the case of a small uncertainty-tolerance parameter. We first state our
approximation result for the value function. The proof is given in Section 6.

Theorem 2.8. Let m > 2p� 1. Let w = v(T � t)1/� and w0 = v0(T � t)1/� where v0 denotes the value
function of the benchmark model. Under Assumptions (L.1)-(L.4), (F.2)-(F.3), we have that

lim
✓!0

w � w0

✓↵
= w1, (2.15)

on [0, T ]⇥ Rd, where w1 is a unique nonnegative solution to the PDE
(
�@tv(t, y)� Lv(t, y)� f1(t, y, v(t, y)) = 0, (t, y) 2 [0, T )⇥ R,
v(T, y) = 0, y 2 Rd,

(2.16)

whose driver

f1(t, y, v) = |�⇤Dv0|
1+↵(T � t)1/� �

(� + 1)v�0
�⌘�

v +
1

�

v

(T � t)

depends on the solution to the benchmark model without factor uncertainty.
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Theorem 2.8 allows us to derive a first order approximation of the optimal trading strategy under model
uncertainty in terms of the solution to the benchmark model and the first order approximation to the
value function.

Corollary 2.9. Let m > 2p � 1. Let v1 = w1

(T�t)1/�
and let v0 and ⇠0,⇤ be the value function and the

optimal strategy in the benchmark model, respectively. Under Assumptions (L.1)-(L.4), (F.2)-(F.3),

lim
✓!0

⇠⇤ � ⇠0,⇤

✓↵
= ⇠̃, locally uniformly on [t, T ), (2.17)

where ⇠̃ 2 L1
F (t, T ;R) is defined by

⇠̃s := �⇠0,⇤
s

✓
v1(s, Y t,y

s
)

v0(s, Y
t,y

s )
�

Z
s

t

v0(r, Y
t,y

r
)��1v1(r, Y

t,y

r
) dr

◆
, s 2 [t, T ). (2.18)

The dependence of the relative error k v�v0�✓
↵
v1

v
k1 of the first order approximation for the value function

is shown in Figure 1. Parameters are chosen as

b(y) = �y, � ⌘ 1, ⌘(y) = tanh(�y) + 2, �(y) = e�y
2

, p = 2, m = 5, x = 1, y = 1, T = 1.

Figure 1: Relative error of the first order approximation: value function

Figure 2 displays the expected relative error E
h
max
t2[0,⌧ ]

�� ⇠⇤t �⇠
0,⇤
t �✓

↵
⇠̃t

⇠
⇤
t

��
i
for the trading strategy where ⌧ =

0.9. The simulations suggest that both the value function and the optimal strategy are well approximated,
even for relatively large uncertainty tolerance parameters with the relative errors staying within a 5%
range for ✓  0.5. The reason we consider the relative error for the trading strategy only away from the
terminal time is the uncertain singularity arising in the absolute error that leads to the locally uniform
convergence.

3 Viscosity solution

In this section, we prove Theorem 2.4. The proof uses modifications of arguments given in [28]. In a first
step, we establish a comparison principle for semicontinuous viscosity solutions to (2.11). Due to the
terminal state constraint we cannot follow the usual approach of showing that if a l.s.c. supersolution
dominates an u.s.c. subsolution at the boundary, then it also dominates the subsolution on the entire
domain. Instead, we prove that if some form of asymptotic dominance holds at the terminal time, then
it holds near the terminal time.
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Figure 2: Relative error of the first order approximation: trading strategy

In a second step, we construct a smooth sub- and a supersolution to (2.11) satisfying the required
assumptions. Using Perron’s method, we can then establish the existence of an upper semi-continuous
subsolution and of a lower semi-continuous supersolution, which are bounded by the respective smooth
solutions. In particular, the semi-continuous solutions can be applied to the comparison principle. This
establishes the existence of the desired continuous solution.

We start with the following comparison principle. The proof is given in Section A.2. We emphasize that
the comparison principle will only be used to prove the existence of a viscosity solution. This justifies
the rather strong assumptions (3.1) and (3.2) below.

Proposition 3.1. Assume that Assumptions (L.1)-(L.3), (F.1) and (F.2) hold. Let m̃ be as in condition
(F.1). Fix � 2 (0, T ]. Let u 2 LSCm̃([T ��, T�]⇥Rd) and u 2 USCm̃([T ��, T�]⇥Rd) be a nonnegative
viscosity super- and a viscosity subsolution to (2.11), respectively. If, uniformly on Rd,

lim sup
t!T

u(t, y)(T � t)1/� � ⌘(y)

hyim̃
 0  lim inf

t!T

u(t, y)(T � t)1/� � ⌘(y)

hyim̃
, (3.1)

and

�

s
1
2� + 1

� + 1
⌘(y)  u(t, y)(T � t)1/� , u(t, y)(T � t)1/�  Chyim̃, t 2 [T � �, T ), (3.2)

for a constant C, then
u  u on [T � �, T )⇥ Rd.

We are now going to construct smooth sub- and supersolutions to (2.11) that satisfy the conditions (3.1)
and (3.2) of the above proposition. The supersolution will be defined in terms of the function

ĥ(t, y) := L(T � t)hyim̃ (3.3)

where m̃ is introduced in condition (F.1), and where the constant L will be determined later. Using the
condition (F.1), we can find a constant C0 > 0 such that

� @tĥ(t, y)� Lĥ(t, y)� 2↵✓↵C̄↵+1
|Dĥ(t, y)|↵+1

� �(y)

�Lhyim̃ � C0L(T � t)hyim̃ � C0L
↵+1(T � t)↵+1

hyim̃ � C0hyi
m̃.

(3.4)

Choosing L > 3C0 and then ⌧ = 1
L
, we get that

�@tĥ(t, y)� Lĥ(t, y)� 2↵C̄↵+1
|Dĥ(t, y)|↵+1

� �(y) � 0, (t, y) 2 [T � ⌧, T )⇥ Rd. (3.5)
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Lemma 3.2. Suppose that Assumptions (L.1)-(L.3), (F.1) and (F.2) hold. Let ✏ := 1 � ↵/�. There
exist constants K > 0, � 2 (0, T ] such that

v̌(t, y) :=
⌘(y)� ⌘(y)kL⌘

⌘
k(T � t)

(T � t)1/�
(3.6)

and

v̂(t, y) :=
⌘(y) + ⌘(y)K(T � t)✏

(T � t)1/�
+ ĥ(t, y) (3.7)

are a nonnegative classical sub- and supersolution to (2.11) on [T ��, T )⇥Rd, respectively. Furthermore,
v̌, v̂ satisfy the conditions (3.1) and (3.2).

Proof. In view of (F.2), the quantity k
L⌘

⌘
k is well-defined and finite; hence �0 := 1/kL⌘

⌘
k > 0. It has been

shown in [28] that v̌ is a subsolution to (2.11) on [T � �0, T )⇥Rd when H = 0. Since H is nonnegative,
we know that v̌ is still a subsolution on [T � �0, T )⇥Rd. We now verify that v̂ is a nonnegative classical
supersolution to (2.11) on [T��1, T )⇥Rd for small �1. To this end, we first obtain by a direct computation
that

�@tv̂(t, y)� Lv̂(t, y) =�
⌘(y) +K(1� �✏)⌘(y)(T � t)✏ + �L⌘(y)(T � t)

�
1 +K(T � t)✏

�

�(T � t)(�+1)/�

� @tĥ(t, y)� Lĥ(t, y).

Assuming that K�✏1  1 and �1  1, we see that K(T � t)✏  1 and (T � t)1�✏
 1 for t 2 [T � �1, T ).

Thus,

�@tv̂(t, y)� Lv̂(t, y) ��
⌘(y) +K(1� �✏)⌘(y)(T � t)✏ + 2�C̄⌘(y)(T � t)✏

�(T � t)(�+1)/�

� @tĥ(t, y)� Lĥ(t, y).

(3.8)

Recalling the definition of H and F in (2.10),

�H(y,Dv̂(t, y)) � �2↵✓↵C̄↵+1 |D⌘|
↵+1[1 +K(T � t)✏]↵+1

(T � t)(1+↵)/�
� 2↵✓↵C̄↵+1

|Dĥ(t, y)|↵+1

� �2↵✓↵C̄↵+1
���
|D⌘|↵+1

⌘

���⌘(y)
[1 +K(T � t)✏]↵+1

(T � t)(1+↵)/�
� 2↵✓↵C̄↵+1

|Dĥ(t, y)|↵+1

� �22↵+1✓↵C̄↵+2 ⌘(y)

(T � t)(1+↵)/�
� 2↵✓↵C̄↵+1

|Dĥ(t, y)|↵+1.

(3.9)

Applying Bernoulli’s inequality in the form (u + v + w)�+1
� u�+1 + (� + 1)u�v for u, v, w � 0 to the

term |v̂(t, y)|�+1 in F , we obtain

�F (y, v̂(t, y)) � ��(y) +
⌘(y)�+1 + (� + 1)⌘(y)�⌘(y)K(T � t)✏

�⌘(y)�(T � t)(�+1)/�
. (3.10)

Hence, adding (3.8), (3.9) and (3.10) and using (3.5) yields,

� @tv̂(t, y)� Lv̂(t, y)�H(y,Dv̂(t, y))� F (y, v̂(t, y))

� ⌘(y)
(1 + ✏)K � 2C̄ � 22↵+1✓↵C̄↵+2

(T � t)(1+↵)/�

� @tĥ(t, y)� Lĥ(t, y)� 2↵✓↵C̄↵+1
|Dĥ(t, y)|↵+1

� �(y)

� ⌘(y)
(1 + ✏)K � 2C̄ � 22↵+1✓↵C̄↵+2

(T � t)(1+↵)/�
.

(3.11)

Choosing K �
2C̄+22↵+1

✓
↵
C̄

↵+2

1+✏
and then �1 = min{1, 1

L
, ✏

q
1
K
}, we conclude that

�@tv̂(t, y)� Lv̂(t, y)�H(y,Dv̂(t, y))� F (y, v̂(t, y)) � 0, (t, y) 2 [T � �1, T )⇥ Rd.
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Next, we prove that v̌, v̂ satisfy the asymptotic behavior (3.1) and (3.2). Recalling the definition of v̌, v̂
and using the condition (F.1), we have

(T � t)1/� v̌(t, y) = ⌘(y) + hyim̃O(T � t), uniformly in y as t ! T .

(T � t)1/� v̂(t, y) = ⌘(y) + hyim̃O((T � t)✏), uniformly in y as t ! T .
(3.12)

From this, we see that

lim
t!T

v̌(t, y)(T � t)1/� � ⌘(y)

hyim̃
= lim

t!T

v̂(t, y)(T � t)1/� � ⌘(y)

hyim̃
= 0, uniformly on Rd, (3.13)

which verifies the condition (3.1). The upper bound in (3.2) can be obtained using the condition (F.1)

again. Moreover, for the lower bound in (3.2), choosing � := min{�0(1�
�

q
1
2�+1
�+1 ), �1}, we have that for

all (t, y) 2 [T � �, T )⇥ Rd,

v̂(t, y)(T � t)1/� � ⌘(y) � v̌(t, y)(T � t)1/� = ⌘(y)� ⌘(y)k
L⌘

⌘
k(T � t) �

�

s
1
2� + 1

� + 1
⌘(y).

Remark 3.3. Due to the presence of the gradient term H, an additional term (3.9) needs to be dominated
and thus we make the choice that ✏ = 1� ↵/�. If H = 0, we can choose ✏ = 1 as in [28].

We are now ready to prove the existence result.

Proof of Theorem 2.4. In order to apply Perron’s method, we set

S = {u|u is a subsolution of (2.11) on [T � �, T )⇥ Rd and u  v̂}.

Since v̌ 2 S, the set S is non-empty. Thus, the function

v(t, y) = sup{u(t, y) : u 2 S}

is well-defined and satisfies that v̌  v. Classical arguments4 show that the upper semi-continuous
envelope v⇤ of v is a viscosity subsolution to (2.11). From [44, Lemma A.2], the lower semi-continuous
envelope v⇤ of v is a viscosity supersolution to (2.11). Since v̌  v⇤  v⇤  v̂, we have for all (t, y) 2

[T � �, T )⇥ Rd that

�

s
1
2� + 1

� + 1
⌘(y)  v⇤(t, y)(T � t)1/� , v⇤(t, y)(T � t)1/�  Chyim̃,

and

v̌(t, y)(T � t)1/� � ⌘(y)

hyim̃


v⇤(t, y)(T � t)1/� � ⌘(y)

hyim̃


v⇤(t, y)(T � t)1/� � ⌘(y)

hyim̃


v̂(t, y)(T � t)1/� � ⌘(y)

hyim̃
.

Hence, it follows from (3.13) that

lim
t!T

v⇤(t, y)(T � t)1/� � ⌘(y)

hyim̃
= lim

t!T

v⇤(t, y)(T � t)1/� � ⌘(y)

hyim̃
= 0, uniformly on Rd. (3.14)

From our comparison principle [Proposition 3.1] we can thus conclude that v⇤  v⇤ on [T � �, T )⇥ Rd ,
which shows that v is the desired viscosity solution to (2.11) that belongs to Cm̃([T � �, T�]⇥ Rd).

4
The standard Perron method of finding viscosity solutions for elliptic PDEs can be found in [16]. We refer to [44,

Appendix A] for the proof of this method for parabolic equations.
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Next, we find a sub- and supersolution to (2.11) on [0, T � �] ⇥ Rd with terminal value v(T � �, ·) at
t = T � �. Obviously, 0 is a subsolution of (2.11). We now conjecture that there exists a constant L > 0
such that w := Lhyim̃ is a viscosity supersolution to (2.11). In fact, since v  v̂ at t = T � �, we see that

v(T � �, y) 
C̄

�1/�
⌘(y) + hyim̃ 

✓
C̄2

�1/�
+ 1

◆
hyim̃, y 2 Rd.

Let h(y) := hyim̃. In view of the condition (F.1), we have that

� @tw(t, y)� Lw(t, y)�H(y,Dw)� F (y, w(t, y))

�� LLh(y)� ✓↵C̄↵+1L
↵+1

|Dh|↵+1
� �(y) + L

�+1h(y)�+1

�⌘(y)�

�h(y)

✓
1

�C̄�
L
�+1

� C0L� C0L
↵+1

� C0

◆
,

where the constants C0 and C̄ are chosen as in (3.4) and (F.1), respectively. Choosing L large enough,
we have that

�@tw(t, y)� Lw(t, y)�H(y,Dw)� F (y, w(t, y)) > 0.

Furthermore, w�+1/⌘� is of polynomial growth of order m. Combining the general comparison principle
[Proposition A.1] with Perron’s method, we obtain a viscosity solution v 2 Cm̃([0, T � �] ⇥ Rd). From
the comparison principle for continuous viscosity solutions [Lemma A.3], we get a unique global viscosity
solution v 2 Cm̃([0, T�]⇥ Rd).

4 Regularity of the viscosity solution

This section is devoted to the proof of Theorem 2.5. We assume throughout that Assumptions (L.1)-(L.4)
and (F.2)-(F.3) are satisfied and that � > 2↵. In this case m̃ = 0 and the viscosity solution v obtained
in the previous section belongs to Cb([0, T�]⇥ Rd).

Unlike in [28], continuity is not enough to carry out our verification argument. We need to prove that v is
of class C0,1 and satisfies (2.12). The desired regularity of the viscosity solution away from the terminal
time can be established using classical PDE results or the standard link between viscosity solutions and
forward-backward SDEs once the desired regularity near the terminal time has been established. The
key challenge is thus to prove that there exists some � > 0 such that for (t, y) 2 [T � �, T ) ⇥ Rd the
gradient Dv(t, y) exists and satisfies

|Dv(t, y)| 
C

(T � t)1/�
.

4.1 Regularity near the terminal time

In view of the definition of ✏ in Lemma 3.2, we know that ✏ = 1� ↵

�
2 ( 12 , 1). Recalling the asymptotic

behavior (3.12) of the super- and subsolution, the viscosity solution v constructed in the previous section
is of the form

v(T � t, y) =
⌘(y) + ũ(t, y)

t1/�
, (4.1)

for some function ũ that satisfies

ũ(t, y) = O(t✏) uniformly in y as t ! 0.

We choose the following equivalent ansatz:

v(T � t, y) =
⌘(y)

t1/�
+

u(t, y)

t1+1/�
, u(t, y) = O(t1+✏) uniformly in y as t ! 0. (4.2)

It is worth pointing out that if H = 0, we can choose ✏ = 1 in (4.1) and (4.2). Plugging the asymptotic
ansatz into (2.11) results in a semilinear parabolic equation for u with finite initial condition. The proof
of the following lemma is similar to [26, Lemma 4.1] and hence omitted.
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Lemma 4.1. If, for some � > 05, a function u satisfies

|u(t, y)|  t⌘(y), t 2 [0, �], y 2 Rd, (4.3)

and solves the equation
(
@tu(t, y) = Lu(t, y) + F0(t, y, u(t, y), Du(t, y)), t 2 (0, �] , y 2 Rd,

u(0, y) = 0, y 2 Rd,
(4.4)

where

F0(t, y, u,Du) =tL⌘(y) + tp�(y)�
⌘(y)

�

1X

k=2

✓
� + 1

k

◆✓
u

t⌘(y)

◆k

+ ✓↵t✏
�����

⇤(y)

✓
Du

t
+D⌘

◆����
↵+1

,

then a local solution v 2 C0,1([T � �, T�]⇥ Rd) to problem (2.11) is given by

v(t, y) =
⌘(y)

(T � t)1/�
+

u(T � t, y)

(T � t)1+1/�
.

The case H = 0 has been solved under additional regularity assumptions in [26] using an analytic
semigroup approach. Due to the presence of H in our case, we need to choose ✏ < 1, which renders the
analysis more complex. In particular, the locally Lipschitz continuity in [26, Lemma 4.5] no longer holds
in our case. Instead, we solve equation (4.4) using the weak continuous semigroup approach introduced
in [18, Section 4] in order to obtain a solution in a space of functions with the desired asymptotic behavior
near the initial time.

In a first step we introduce the transition semigroup. Under Assumptions (L.1) and (L.2), the operator

Pt,s['](y) = E['(Y t,y

s
)], ' 2 Cb(Rd), 0  t  s

is well-defined and satisfies the Markov property Pt,r = Pt,sPs,r for 0  t  s  r. Since b and � are
independent of the time variable,

Pt,s['](y) = P0,s�t['](y).

For convenience, we denote
Pt['](y) = E['(Y 0,y

t
)], ' 2 Cb(Rd). (4.5)

For every ' 2 Cb(Rd),
|Pt['](y)|  k'k, (t, y) 2 [0, T ]⇥ Rd. (4.6)

Furthermore, from [18, Theorem 4.65], we have the following proposition.

Proposition 4.2. Suppose that Assumptions (L.1)-(L.4) hold and let ' 2 Cb(Rd). Then for every
0  t  T, the function y ! Pt['](y) is continuously di↵erentiable on Rd. Moreover, there exists a
constant M > 0 such that for every ' 2 Cb(Rd) and for 0  t  T,

|DPt['](y)| 
M

t1/2
k'k, y 2 Rd. (4.7)

Next, we introduce the notion of a mild solution of our modified PDE.

Definition 4.3. We say that a function u : [0, �] ⇥ Rd
! R is a mild solution of the PDE (4.4) if the

following conditions are satisfied:

5
For convenience, we use here the same symbol as in Section 3. We can always choose the smaller one to define �.
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(i) u 2 C0,1
b

([0, �]⇥ Rd).

(ii) for every t 2 [0, T ] and y 2 Rd,

u(t, y) =

Z
t

0
Pt�s[F0(s, ·, u(s, ·), Du(s, ·))](y)ds. (4.8)

We prove the existence of a mild solution to (4.4) by a contraction argument. To this end, we need to
choose an appropriate weighted norm on C0,1

b
([0, �] ⇥ Rd) to cope with the singularity in F0. Recalling

the ansatz (4.2) and the property (4.7), we consider the space

⌃ :=
n
u 2 C0,1

b
([0, �]⇥ Rd) : ku(t, ·)k+ kt1/2Du(t, ·)k = O(t1+✏) as t ! 0

o
(4.9)

endowed with the weighted norm

kuk⌃ = sup
(t,y)2(0,�]⇥Rd

✓
|u(t, y)|

t1+✏
+

|Du(t, y)|

t1/2+✏

◆
.

It is easy to verify that the vector space ⌃ endowed with the norm k · k⌃ is a Banach space.

Lemma 4.4. Suppose that � > 2↵ and that Assumptions (L.1)-(L.4) and (F.2)-(F.3) hold. Let R > 0
and � 2 (0, ✏� 1

2

p
c/R ^ 1]. Define the closed ball B⌃(R) := {u 2 ⌃ : ||u||⌃  R}. For every u 2 B⌃(R),

the function
f0(t, y) := F0(t, y, u(t, y), Du(t, y))

is continuous on [0, �]⇥ Rd.

Proof. For u 2 B⌃(R), we may decompose f0(t, y) in the following way:

f0(t, y) = tL⌘(y) + tp�(y)� (p� 1)⌘(y)g0(t, y) + ✓↵t✏g1(t, y). (4.10)

where

g0(t, y) =
1X

k=2

✓
� + 1

k

◆✓
u(t, y)

t⌘(y)

◆k

and g1(t, y) =

�����
⇤(y)

✓
Du(t, y)

t
+D⌘(y)

◆����
↵+1

.

The assumption �  ✏� 1
2

p
c/R guarantees that the series converges since then

����
u(t, y)

t⌘(y)

���� 
t1+✏R

tc

�✏R

c
 1, t 2 [0, �], y 2 Rd.

Moreover, ����
Du(t, y)

t

���� 
t
1
2+✏R

t
 �✏�

1
2R  c, t 2 [0, �], y 2 Rd. (4.11)

In view of (4.10) it is su�cient to prove that g0 and g1 are continuous in t, uniformly with respect to y
on every compact subset of Rd. In fact, by the mean value theorem, we have for 0  t  s  �, y 2 Rd

that

|g1(t, y)� g1(s, y)| 

�����

�����
⇤(y)

✓
Du(t, y)

t
+D⌘(y)

◆����
↵+1

�

�����
⇤(y)

✓
Du(s, y)

s
+D⌘(y)

◆����
↵+1

�����

 (↵+ 1)C̄↵+1(c+ C̄)↵
����
Du(t, y)

t
�

Du(s, y)

s

���� .
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In order to establish the continuity of g0, notice that for every k � 2 and 0  t  s  �, y 2 Rd it holds
that �����

✓
u(t, y)

t⌘(y)

◆k

�

✓
u(s, y)

s⌘(y)

◆k
�����


1

ck

����
u(t, y)

t
�

u(s, y)

s

����
k�1X

l=0

����
u(t, y)

t

����
l
����
u(s, y)

s

����
k�1�l


Rk�1

ck

����
u(t, y)

t
�

u(s, y)

s

����
k�1X

l=0

t✏ls✏(k�1�l)


kRk�1

ck

����
u(t, y)

t
�

u(s, y)

s

���� s
(k�1)✏


k

c
(
Rs✏

c
)k�1

����
u(t, y)

t
�

u(s, y)

s

���� .

(4.12)

Using the identity k
�
�+1
k

�
= (� + 1)

�
�

k�1

�
, we get that

|g0(t, y)� g0(s, y)|  (� + 1)max{2� � 1,�}
Rs✏

c2

����
u(t, y)

t
�

u(s, y)

s

���� .

The claim now follows from the fact that the maps (t, y) 7! u(t,y)
t

, Du(t,y)
t

are continuous on [0, �]⇥Rd.

The following lemma can be established using similar arguments as above.

Lemma 4.5. Suppose that � > 2↵ and that Assumptions (L.1)-(L.4) and (F.2)-(F.3) hold. For every
R > 0 there exists a constant L > 0 independent of � 2 (0, ✏� 1

2

p
c/R] such that

|F0(t, y, u(t, y), Du(t, y))� F0(t, y, v(t, y), Dv(t, y))|

Lt✏
✓
|u(t, y)� v(t, y)|

t
+

|Du(t, y)�Dv(t, y)|

t

◆
, u, v 2 B⌃(R), t 2 [0, �], y 2 Rd.

We are now ready to carry out the fixed point argument.

Theorem 4.6. Let � > 2↵. Under Assumptions (L.1)-(L.4) and (F.2)-(F.3), there exists a constant
� > 0 such that Equation (4.4) admits a mild solution u in the space ⌃ defined in (4.9).

Proof. Let us define the operator

�[u](t, y) :=

Z
t

0
Pt�s[F0(s, ·, u(s, ·), Du(s, ·))](y)ds (4.13)

Step 1: the map � is well defined on the closed ball B⌃(R). Let u 2 B⌃(R). By Lemma 4.4
and [18, Proposition 4.67]6, we see that �[u] 2 Cb([0, �] ⇥ Rd) and D�[u] 2 Cb((0, �] ⇥ Rd). In order to
see the continuity of D�[u] at t = 0, we di↵erentiate (4.13) to obtain that

D�[u](t, y) =

Z
t

0
DPt�s[F0(s, ·, u(s, ·), Du(s, ·))](y)ds, (t, y) 2 [0, �]⇥ Rd. (4.14)

By Proposition 4.2,

|D�[u](t, y)| 

Z
t

0
M

kf0k

(t� s)1/2
ds =

p

tMkf0k.

From this, we conclude that the map (t, y) 7! D�[u](t, y) belongs to Cb([0, �]⇥ Rd).

6
The strong continuity in this proposition is equivalent to the standard continuity in finite-dimensional space.
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Step 2: contraction property of � on B⌃(R) for a suitable choice of R, �. Let

B(a, b) :=

Z 1

0
ra�1(1� r)b�1dr

be the Beta function with a, b > 0. We choose

R = 2(1 +MB0)
�
kL⌘k+ k�k+ ✓↵k�⇤D⌘k↵+1

�
,

and

� = min{ ✏� 1
2

p
c/R, ✏� 1

2

q
1/
�
2L(1 +MB1)

�
, 1},

where L > 0 is the Lipschitz constant given by Lemma 4.5 and

B0 := B(1 + ✏,
1

2
), B1 := B(2✏+

1

2
,
1

2
).

Let u, v 2 B⌃(R). By Lemma 4.5, we have for (t, y) 2 [0, �]⇥ Rd that

|�[u](t, y)� �[v](t, y)|

=

����
Z

t

0
Pt�s[F0(s, ·, u(s, ·), Du(s, ·))� F0(s, ·, v(s, ·), Dv(s, ·))](y)ds

����



Z
t

0
kF0(s, y, u(s, ·), Du(s, ·))� F0(s, ·, v(s, ·), Dv(s, ·))k ds



Z
t

0
Ls✏

✓
ku(s, ·)� v(s, ·)k

s
+

kDu(s, ·)�Dv(s, ·)k

s

◆
ds

=

Z
t

0
L

✓
s2✏

ku(s, ·)� v(s, ·)k

s1+✏
+ s2✏�1/2 kDu(s, ·)�Dv(s, ·)k

s1/2+✏

◆
ds

Lt2✏+1/2
ku� vk⌃.

Similarly,
|D�[u](t, y)�D�[v](t, y)|

=

����
Z

t

0
DPt�s[F0(s, ·, u(s, ·), Du(s, ·))� F0(s, ·, v(s, ·), Dv(s, ·))](y)ds

����

M

Z
t

0

1

(t� s)1/2
kF0(s, y, u(s, ·), Du(s, ·))� F0(s, ·, v(s, ·), Dv(s, ·))k ds



Z
t

0
ML

1

(t� s)1/2

⇣
s2✏�1/2

ku� vk⌃
⌘
ds

MLB1t
2✏
ku� vk⌃.

Hence

k�[u]� �[v]k⌃ 
1

2
ku� vk⌃.

Step 3: � maps B⌃(R) into itself. Note that sk  1 for all k > 0 and s 2 [0, �] since �  1. Hence,
it holds for every t 2 [0, �] that

|�[0](t, y)| =

����
Z

t

0
Pt�s[F0(s, ·, 0, 0)](y)ds

����



Z
t

0
ksL⌘ + sp�+ ✓↵s✏|�⇤D⌘|↵+1

k ds

 t1+✏(kL⌘k+ k�k+ k�⇤D⌘k↵+1
k),
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and

|D�[0](t, y)| =

����
Z

t

0
DPt�s[F0(s, ·, 0, 0)](y)ds

����



Z
t

0

1

(t� s)1/2
MksL⌘ + sp�+ ✓↵s✏|�⇤D⌘|↵+1

k ds

 t1+✏�1/2MB0(kL⌘k+ k�k+ ✓↵k�⇤D⌘k↵+1).

Thus,

k�[u]k⌃  k�[u]� �[0]k⌃ + k�[0]k⌃  R.

Hence, � is a contraction from B⌃(R) to itself and has a unique fixed point u in B⌃(R).

4.2 Regularity away from the terminal time

In this section we finish the proof of Theorem 2.5. We also provide a standard link between our viscosity
solution and a class of singular FBSDEs that will be useful for proving the verification argument.

Proof of Theorem 2.5. Combining Lemma 4.1 with Theorem 4.6, we know that there exists a mild solu-
tion w 2 C0,1

b
([T � �, T�]⇥ Rd) defined by

w(t, y) :=
⌘(y)

(T � t)1/�
+

u(T � t, y)

(T � t)1+1/�
, on [T � �, T )⇥ Rd.

to the equation (2.11). By [12, Theorem 15], this implies the existence of a solution w in the space
C0,1

b
([0, T � �]⇥ Rd) to the PDE
8
><

>:

�@tv(t, y)� Lv(t, y)� �(y) +
|v(t, y)|�+1

�⌘(y)�
� ✓↵|�⇤(y)Dv(t, y)|↵+1 = 0, (t, y) 2 [0, T � �)⇥ Rd,

v(T � �, y) = w(T � �, y), y 2 Rd.
(4.15)

Altogether, this yields a solution w 2 C0,1
b

([0, T�]⇥Rd) to the PDE (2.11). Since u belongs to the space
⌃ defined in (4.9) it follows from the boundedness of D⌘ derived from (F.2) and (F.3) and the fact that
✏� 1

2 = 1
2 � ↵/� > 0 that w satisfies (2.12). Since v is a viscosity solution to the PDE (2.11) we deduce

from Lemma A.3 that v ⌘ w on [0, T )⇥ Rd. Hence v satisfies the desired regularity properties.

Remark 4.7. Our global regularity result uses [12, Theorem 15] whose proof is based on probabilistic
arguments. Alternatively, one can use PDE arguments to obtain the existence of a global smooth
solution. Classical a priori estimates in [31] show that the gradient of v is bounded if it exists. Under the
additional assumption that the di↵usion operator L generates an analytic semi-group in C(Rd) (which
excludes Ornstein-Uhlenbeck processes) one can then use results established in [34, Chapter 7] to show
that the solution to our HJB equation is a classical solution away from the terminal time; see [26, Proof
of Theorem 2.9] for details.

Since the gradient of the terminal condition of the PDE (4.15) is bounded, classical PDE results show
that the gradient of the solution is uniformly bounded on the entire domain [0, T � �] ⇥ Rd. The same
result follows from the classical link between viscosity solutions to PDEs and FBSDEs. The next result
is standard, see [12, Theorem 15] and [41, Theorem 3.6] for details. Both the FBSDE representation of
our viscosity solution and the global gradient bound will be very useful when proving the verification
argument.

Corollary 4.8. Suppose that � > 2↵ and that Assumptions (L.1)-(L.4) and (F.2)-(F.3) hold. There

exist processes (U t,y, Zt,y) 2 S1
F (t, T�;R)⇥Hq

F (t, T
�;R1⇥d̃) for all q � 2 satisfying

U t,y

s
= v(s, Y t,y

s
), Zt,y

s
= Dv(s, Y t,y

s
)�(s, Y t,y

s
) (4.16)
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and for any t  r  s < T,

U t,y

r
= U t,y

s
+

Z
s

r

F (Y t,y

⇢
, U t,y

⇢
) + ✓↵|Zt,y

⇢
|
1+↵d⇢�

Z
s

r

Zt,y

⇢
dW⇢. (4.17)

Furthermore, there exists a constant C > 0 such that

|Zt,y

r
| 

8
<

:

C

(T � r)1/�
, r 2 [T � �, T );

C, r 2 [t, T � �].

(4.18)

5 Verification

This section is devoted to the verification argument. We first prove admissibility of the strategy ⇠⇤

by using the estimates of the nonnegative viscosity solution v derived from the proof of Theorem 2.4.
Subsequently, we show that (⇠⇤,#⇤) is a saddle point of the cost function and is indeed optimal. The
proof uses a change of measure argument. Since the viscosity solution belongs to C0,1

b
([0, T�]⇥Rd) and

satisfies the asymptotics (2.12), the optimal density #⇤ has su�cient integrability for the corresponding
stochastic exponential to be a true martingale.

Lemma 5.1. The feedback control ⇠⇤ given by (2.13) is admissible, and the portfolio process (X⇤
s
)s2[t,T ]

is monotone.

Proof. From the construction of the viscosity solution in the proof of Theorem 2.4, we have that v̌  v  v̂
on [T � �, T ) where v̌ and v̂ were introduced in (3.6) and (3.7), respectively. Moreover, under condition
(F.3) the function ĥ introduced in (3.3) reduces to ĥ(r, y) = L(T � r) because m̃ = 0. Hence, for
r 2 [T � �, T )

1� k
L⌘

⌘
k(T � r)

(T � r)1/�
⌘(Y t,y

r
)  v(r, Y t,y

r
) 

1 +K(T � r)✏

(T � r)1/�
⌘(Y t,y

r
) + ĥ(r, Y t,y

r
).

For s 2 [T � �, T ),

|X⇤
s
|  |x| exp

✓
�

Z
s

t

v(r, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆

 |x| exp

0

B@�

Z
s

T��

⇣
1� k

L⌘

⌘
k(T � r)

⌘�

(T � r)
dr

1

CA

 |x| exp

0

B@
Z

s

T��

1�
⇣
1� k

L⌘

⌘
k(T � r)

⌘�

(T � r)
dr

1

CA · exp

✓
�

Z
s

T��

1

T � r
dr

◆

 C|x|
T � s

�
s!T
���! 0.

The last inequality holds because lim
r!T

1�(1�kL⌘
⌘ k(T�r))�

(T�r) = �kL⌘

⌘
k. As a result, X⇤

T
= 0.

For controls ⇠⇤ given by (2.13), the process (X⇤
s
)s2[t,T ] is obviously monotone. It remains to establish

the integrability of ⇠⇤. In fact, since 1/⌘, v are bounded on Rd and [0, T � �] ⇥ Rd, respectively, we see
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that
sup

ts<T

|⇠⇤
s
|  sup

tsT��

|⇠⇤
s
|+ sup

T��s<T

|⇠⇤
s
|

= sup
tsT��

v(s, Y t,y

s
)�

⌘(Y t,y

s )�
|X⇤

s
|+ sup

T��s<T

v(s, Y t,y

s
)�

⌘(Y t,y

s )�
|X⇤

s
|

|x| sup
tsT��

v(s, Y t,y

s
)

⌘(Y t,y

s )
+ sup

T��s<T

⇣
1 +KT ✏ + LT

1+1/�

⌘(Y t,y
s )

⌘�

T � s
· C|x|

T � s

�

<+1.

It follows that ⇠⇤ 2 L1
F (t, T ;R) and hence that ⇠⇤ is admissible.

The following lemma shows that for any ⇠ 2 A(t, x) the expected residual costs vanish as s ! T under
a particular class of equivalent measure.

Lemma 5.2. For every ⇠ 2 A(t, x) and every Q 2 Q satisfying

E
h
eq

R T
t |#r|2 dr

i
< 1, for every q > 0,

it holds that
EQ

⇥
v(s, Y t,y

s
)|X⇠

s
|
p
⇤
�! 0, s ! T . (5.1)

Proof. Set ⇡s = E(
R
s

t
#rdWr). For k > 1, s 2 [t, T ], by the Hölder inequality, we have that

E
⇥
(⇡s)

k
⇤
=E

h
ek

R s
t #rdWr�k

2 R s
t |#r|2 dr

· e(k
2�k/2)

R s
t |#r|2 dr

i



✓
E

E(2k

Z
s

t

#rdWr)

�◆1/2

·

⇣
E
h
e(2k

2�k)
R s
t |#r|2 dr

i⌘1/2
< 1.

Since X⇠

s
= X⇠

T
+
R
T

s
⇠r dr =

R
T

s
⇠r dr, using Hölder inequality again, we obtain

|X⇠

s
|
p
 (T � s)1/�

Z
T

s

|⇠r|
p dr.

Close to the terminal time the upper estimate v(s, Y t,y

s
)  C

(T�s)1/�
holds; away from the terminal time,

v is bounded. Hence this estimate holds everywhere and so

EQ

⇥
v(s, Y t,y

s
)|X⇠

s
|
p
⇤
= E

⇥
⇡sv(s, Y

t,y

s
)|X⇠

s
|
p
⇤

 CE
"
⇡s

Z
T

s

|⇠r|
p dr

#

 C

 
(T � s)E

⇥
(⇡s)

2
⇤
E
"Z

T

s

|⇠r|
2p dr

#!1/2

.

Letting s ! T , the desired result (5.1) follows since ⇠ 2 L2p
F (t, T ;R).

Our verification argument will be based on the following probabilistic representation of the viscosity
solution to (2.11).

We are now ready to carry out the verification argument. We will show that v(·, ·)| · |p is indeed equal to
the value function of our control problem and that the candidate strategy is optimal on the whole time
interval.
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Proof of Theorem 2.6. For fixed t  s < T, by Corollary 4.8 we have that

U t,y

t
=U t,y

s
+

Z
s

t

�
F (Y t,y

r
, U t,y

r
) + |Zt,y

r
|
1+↵

�
dr �

Z
s

t

Zt,y

r
dWr.

This allows us to apply to U t,y

r
|X⇠

r
|
p the integration by parts formula on [t, s] and to get that

U t,y

t
|x|p =U t,y

s
|X⇠

s
|
p +

Z
s

t

�
(F (Y t,y

r
, U t,y

r
) + ✓↵|Zt,y

r
|
1+↵)|X⇠

r
|
p

+ p⇠rU
t,y

r
sgn(X⇠

r
)|X⇠

r
|
p�1)

 
dr �

Z
s

t

Zt,y

r
|X⇠

r
|
p dWr.

Denote W#

r
= Wr �

R
r

t
#⇢d⇢. Thus,

U t,y

t
|x|p =U t,y

s
|X⇠

s
|
p +

Z
s

t

�
(F (Y t,y

r
, U t,y

r
) + ✓↵|Zt,y

r
|
1+↵

� #rZ
t,y

r
)|X⇠

r
|
p

+ p⇠rU
t,y

r
sgn(X⇠

r
)|X⇠

r
|
p�1)

 
dr �

Z
s

t

Zt,y

r
|X⇠

r
|
p dW#

r
. (5.2)

In what follows, we show that (⇠⇤,#⇤) is a saddle point of the functional J̃ , i.e.

J̃(t, y, x; ⇠⇤,#)  J̃(t, y, x; ⇠⇤,#⇤)  J̃(t, y, x; ⇠,#⇤).

Step 1: J̃(t, y, x; ⇠⇤,#⇤)  J̃(t, y, x; ⇠,#⇤) for every ⇠.

Set ⇡⇤
s
= E(

R
s

t
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r
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(5.3)

Hence E[(⇡⇤
s
)k] < +1 for every k > 1 and the Novikov condition implies that ⇡⇤ is indeed a positive

martingale. Setting dQ⇤ = ⇡⇤
T
dP, by the Girsanov theorem W#

⇤
is a Brownian motion under Q⇤. This

allows us to show that the stochastic integral in (5.2) is a Q⇤-martingale. Since Zt,y is bounded away
from the terminal time and
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we have that

EQ⇤

Z
s

t

|Zt,y

r
|
2
|X⇠

r
|
2p dr

�1/2
= E


(⇡⇤

s
)2
Z

s

t

|Zt,y

r
|
2
|X⇠

r
|
2p dr

�1/2



 
E

(⇡⇤

s
)2 sup

trs

|X⇠

r
|
2p

�3/4!2/3 
E
Z

s

t

|Zt,y

r
|
2 dr

�3/2!1/3



 
E
"
(⇡⇤

s
)6

4
+

3 sup
trs

|X⇠

r
|
2p

4

#!2/3✓
E

T 3/2 sup

trs

|Zt,y

r
|
3

�◆1/3

< +1.

Set

c(y, x, ⇠) := ⌘(y)|⇠|p + �(y)|x|p, C(y, x, ⇠,#) := c(y, x, ⇠)�
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✓
|#|m|x|p.
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By (2.9), we have that
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Since U t,y

t
is nonnegative, we can obtain that
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The right hand side is finite as s goes to T by Lemma 5.2 together with the admissibility of ⇠ and the
boundedness of ⌘,�. In view of Lemma 5.2, letting s ! T in (5.4) we get

v(t, y)|x|p  J̃(t, y, x; ⇠,#⇤).

Finally note that the equality holds in (5.4) if ⇠ = ⇠⇤. This yields
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s
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! J̃(t, y, x; ⇠⇤,#⇤) as s ! T.

Thus,
v(t, y)|x|p = J̃(t, y, x; ⇠⇤,#⇤)  J̃(t, y, x; ⇠,#⇤).

Step 2. J̃(t, y, x; ⇠⇤,#)  J̃(t, y, x; ⇠⇤,#⇤) for every #.

Let us introduce the sequence of stopping times

⌧n := inf{r 2 [t, T ] :

Z
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Therefore, defining ⇡n

s
= E(
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dWr), the Novikov condition implies that E[⇡n

T
] = 1. Setting dQn =
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T
dP, by the Girsanov theorem W#
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is a Brownian motion under Qn. Moreover, E[(⇡n

s
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every k > 1.

As discussed before, we can show that the stochastic integrals
R
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r
are Qn-martingales

for any n 2 R. Together with (2.8), we have that
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Letting s ! T we get
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by Lemma 5.2. We are now going to show that
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(5.8)
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i
is infinite, this inequality holds naturally since c(Y t,y
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The monotone convergence theorem thus yields
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Using the boundedness of c(Y t,y

· , X⇠
⇤

· , ⇠⇤· ) on [t, T ] again, we apply the dominated convergence theorem
to get that
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Letting n goes to infinity in (5.7), we obtain the inequality (5.8). Recall that J̃(t, y, x; ⇠⇤,#⇤) = v(t, y)|x|p,
we conclude that

J̃(t, y, x; ⇠⇤,#)  J̃(t, y, x; ⇠⇤,#⇤).

Remark 5.3. It was shown that (⇠⇤,#⇤) is a saddle point of the functional J̃ , thus (⇠⇤,#⇤) is indeed a
solution of the robust control problem (2.5). However, J̃ is not convex in ⇠ for fixed #. So the saddle
point (⇠⇤,#⇤) may not be unique.

6 Asymptotic analysis

In Section 2, we provided both theoretical results and numerical examples on the first order approxi-
mations of the value function and the optimal trading strategy for the model with uncertainty. In this
section, we give the proofs of Theorem 2.8 and Corollary 2.9. The main idea is to construct a super- and
subsolution to (2.11) by an asymptotic expansion around the benchmark solution and then to apply the
comparison principle [Lemma A.3].

The following lemma extends the results in [26, Theorem 2.9]. The proof is given in the Appendix A.3.

Lemma 6.1. Let � > 2↵. Under Assumptions (L.1)-(L.4), (F.2)-(F.3), the terminal value problem
(2.4) admits a unique nonnegative solution v0 in C0,1([0, T�]⇥Rd). The solution satisfies the following
estimates:

c

(T � t)1/�
 v0 

C0

(T � t)1/�
, |Dv0| 

C0

(T � t)1/�
, (t, y) 2 [0, T )⇥ Rd,

for some constant C0 > 0.
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The next lemma establishes the existence of a unique nonnegative solution to the terminal value problem
(2.16) and provides a priori estimates on the solution and its derivative.

Lemma 6.2. Let � > 2↵. Under Assumptions (L.1)-(L.4), (F.2)-(F.3), the terminal value problem
(2.16) admits a unique nonnegative viscosity solution w1 in C0,1([0, T ] ⇥ Rd). Moreover, the following
estimates hold:

0  w1  C1(T � t)1�↵/� , |Dw1|  C1(T � t)1/2�↵/� , (t, y) 2 [0, T )⇥ Rd,

for some constant C1 > 0.

Proof. Set A := |�⇤Dv0|1+↵ and B := (�+1)v�
0

�⌘� . Let �0 := 1/kL⌘

⌘
k. Using similar arguments to [26,

Corollary 3.2] and [28, Proposition 3.5], we know that for (t, y) 2 [T � �0, T )⇥ Rd,
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.

Hence, for � := �
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1 + �/2
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Using the estimates on Dv0 in Lemma 6.1 along with the fact that � > 2↵, we have that
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By (6.2) and (6.3), it follows from the Feyman-Kac formula [38, Theorem 3.2] that
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is the unique viscosity solution to the terminal value problem (2.16) on [0, T ] ⇥ Rd. Moreover, we have
for (t, y) 2 [0, T )⇥ Rd that
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for some constant C1.

Next, we study the derivative of w1. For any " 2 (0, T ), restricting the PDE (2.16) to [0, T � "],

(
�@tv(t, y)� Lv(t, y)� f1(t, y, v(t, y)) = 0, (t, y) 2 [0, T � ")⇥ Rd,

v(T � ", y) = w1(T � ", y) y 2 Rd,
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Since A,B are bounded on [0, T �"], it follows from the Bismut-Elworthy formula [22, Theorem 4.2] that
w1(t, ·) is di↵erentiable for t 2 [0, T � "] and
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where C is independent of ". By letting " go to zero, we see that (by an adjustment of C1 if necessary)

|Dw1(t, y)|  C1(T � t)1/2�↵/� , (t, y) 2 [0, T )⇥ Rd. (6.5)

By the transformation v1 = 1
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Moreover, since � > 2↵, there exists a constant C2 > 0 such that for (t, y) 2 [0, T )⇥ Rd,
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(6.7)

Armed with these estimates, we are now ready to prove the asymptotic result.

Proof of Theorem 2.8. Let � be as in (6.1) and set b := C̄
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It is su�cient to prove that I1 > 0 (supersolution) and that I2 < 0 (subsolution) on [0, T )⇥ Rd.

The second order Taylor approximation around v0 in the first summand of I1
i
yields a function ⇣ satisfying

min{v0, ui}  ⇣  max{v0, ui} such that
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The mean value theorem along with the triangle inequality also yields a constant C̃0 > 0 such that
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Step 1: Construction of supersolution. Using the lower bound of v0 in Lemma 6.1, we have that
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, we obtain that I1 > 0.

Step 2: Construction of subsolution. Using the lower bound of v0 in Lemma 6.1 again and
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Hence u2 is a nonnegative viscosity subsolution to (2.11). By Lemma A.3, we then have that u2  v  u1.
Thus, the desired equality (2.15) follows from

✓↵w1 + ✓2↵L2(b(T � t)1/� + 1)  w � w0  ✓↵w1 + ✓2↵L1(b(T � t)1/� + 1).

Based on Theorem 2.8 we can now derive the first order approximation of the optimal trading strategy.

Proof of Corollary 2.9. From the preceding result, we have that on [0, T )⇥ Rd,
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(t, y) 2 [0, T )⇥ Rd, ✓ < ✓0. Assume that ✓ < ✓0 in the sequel.

The second order Taylor approximation of power function around v0 yields a function ⇣ satisfying v0 

⇣  v such that

v� � v�0 = �v��1
0 (✓↵v1 + ✓2↵ṽ✓) +

1

2
�(� � 1)⇣��2(✓↵v1 + ✓2↵ṽ✓)2

= ✓↵�v��1
0 v1 + ✓2↵

✓
�v��1

0 ṽ✓ +
1

2
�(� � 1)⇣��2(v1 + ✓↵ṽ✓)2

◆
.

Recalling the estimates in Lemma 6.1 and (6.7), we have that on [0, T )⇥ Rd,

v 
C0 + C2 +K0

(T � t)1/�
,

v��1
0 v1 

max{C��1
0 , c��1

}C2

T � t
,

v��1
0 |ṽ✓| 

max{C��1
0 , c��1

}K0

T � t
,

⇣��2(v1 + ✓↵ṽ✓)2 
max{(C0 + C2 +K0)��2, c��2

}(C2 +K0)2

T � t
.

(6.9)

Therefore, we obtain that for r 2 [t, T ),

v(r, Y t,y

r
)� � v0(r, Y

t,y

r
)� = ✓↵�v0(r, Y

t,y

r
)��1v1(r, Y

t,y

r
) + ✓2↵O

✓
1

T � r

◆
. (6.10)

Let

�(s) :=

Z
s

t

v(r, Y t,y

r
)� � v0(r, Y t,y

r
)�

⌘(Y t,y

r )�
dr � 0.

Using the second order Taylor approximation of exponential function around 0 yields a function ⇣̃ satis-
fying 0  ⇣̃  � such that

exp (��(s))� 1 =� �(s) +
1

2
exp

⇣
�⇣̃(s)

⌘
(��(s))2

=�

Z
s

t

✓
✓↵�v0(r, Y

t,y

r
)��1v1(r, Y

t,y

r
) + ✓2↵O

✓
1

T � r

◆◆
dr

+
1

2
exp

⇣
�⇣̃(s)

⌘✓Z s

t

✓
�✓↵v0(r, Y

t,y

r
)��1v1(r, Y

t,y

r
) + ✓2↵O

✓
1

T � r

◆◆
dr

◆2

.

In view of the estimate (6.9), we have that

exp (��(s))� 1

= ✓↵
✓
�

Z
s

t

�v0(r, Y
t,y

r
)��1v1(r, Y

t,y

r
) dr

◆
+ ✓2↵O

 
ln

T � t

T � s
+

✓
ln

T � t

T � s

◆2
!
.

(6.11)
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We know that the optimal strategies ⇠⇤, ⇠0,⇤ belong to L1
F (t, T ;R) and are given by

⇠⇤
s
=

v(s, Y t,y

s
)�

⌘(Y t,y

s )�
X⇤

s
= x

v(s, Y t,y

s
)�

⌘(Y t,y

s )�
exp

✓
�

Z
s

t

v(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
,

⇠0,⇤
s

= x
v0(s, Y t,y

s
)�

⌘(Y t,y

s )�
exp

✓
�

Z
s

t

v0(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
.

Similarly to the proof of Lemma 5.1, we obtain that

exp

✓
�

Z
s

t

v0(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
= O(T � s).

Together with (6.10) and (6.11), it follows that

⇠⇤
s
� ⇠0,⇤

s

= x
v(s, Y t,y

s
)�

⌘(Y t,y

s )�
exp (��(s)) exp

✓
�

Z
s

t

v0(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
� x

v0(s, Y t,y

s
)�

⌘(Y t,y

s )�
exp

✓
�

Z
s

t

v0(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆

= ✓↵x
�v0(s, Y t,y

s
)��1

⌘(Y t,y

r )�
exp

✓
�

Z
s

t

v0(s, Y t,y

r
)�

⌘(Y t,y

r )�
dr

◆
·

✓
v1(s, Y

t,y

s
)� v0(s, Y

t,y

s
)

Z
s

t

v0(r, Y
t,y

r
)��1v1(r, Y

t,y

r
) dr

◆
+ ✓2↵O

 
1 + ln

T � t

T � s
+

✓
ln

T � t

T � s

◆2
!

= ✓↵�⇠0,⇤
s

✓
v1(s, Y t,y

s
)

v0(s, Y
t,y

s )
�

Z
s

t

v0(r, Y
t,y

r
)��1v1(r, Y

t,y

r
) dr

◆
+ ✓2↵O

 
1 + ln

T � t

T � s
+

✓
ln

T � t

T � s

◆2
!

= ✓↵⇠̃s + ✓2↵O

 
1 + ln

T � t

T � s
+

✓
ln

T � t

T � s

◆2
!
.

where ⇠̃ is defined in (2.18). Hence, we conclude that

lim
✓!0

⇠⇤ � ⇠0,⇤

✓
= ⇠̃, locally uniformly on [t, T ).

The fact that ⇠̃ 2 L1
F (t, T ;R) follows from the estimates in Lemma 6.1 and (6.7) that imply that

sup
s2[t,T )

|⇠̃s|  sup
s2[t,T )

�⇠0,⇤
s

 
v1(s, Y t,y

s
)

v0(s, Y
t,y

s )
+

Z
T

t

v0(r, Y
t,y

r
)��1v1(r, Y

t,y

r
) dr

!

 �k⇠0,⇤k1

 
C2

c
+max{C��1

0 , c��1
}C1

Z
T

t

(T � r)�↵/� dr

!

= �k⇠0,⇤k1

✓
C2

c
+max{C��1

0 , c��1
}C1(T � t)1�↵/�

◆
< 1.

A Appendix

A.1 Comparison principle

In this section, we state and prove comparison principles for solutions to PDEs with superlinear gradient
term. Both finite and singular terminal values will be considered. We refer to [32] as an important
reference for PDEs with superlinear gradient term. Let us now consider the general PDE

(
�@tv(t, y)� Lv(t, y)�H(y,Dv(t, y))� F (y, v(t, y)) = 0, (t, y) 2 [0, T )⇥ Rd,

v(T, y) = �(y), y 2 Rd.
(A.1)
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A comparison principle for such PDEs is obtained in [32] under a Lipschitz continuity assumption of F
on v. This condition is not satisfied in our case; we only have monotonicity. Additional assumptions
on the solution are thus required to establish a comparison principle. However, we can make a weaker
assumption on the coe�cients than (F.1) and (F.2).

(F.4) The coe�cients ⌘,�, 1/⌘ : Rd
! [0,1) are continuous and � is of polynomial growth of order m.

We first introduce two subsets of functions having superlinear growth. For a given r > 0, a function
h : I ⇥ Rd

! Rd belongs to SSG
±
r

if and only if

lim inf
|y|!1

±h(t, y)

|y|r
� 0.

Notice that h 2 SSG
+
r
(resp., SSG�

r
) if, for any " > 0, there exists C" = C"(h) > 0 such that

h(t, y) � �"|y|r � C"(resp., h(t, y)  "|y|r + C"), (t, y) 2 I ⇥ Rd.

We define SSGr = SSG
+
r
\ SSG

�
r
. Notice that h 2 SSGr if and only if

lim
|y|!1

|h(t, y)|

|y|r
= 0

for every t 2 I.

Proposition A.1. Assume that (L.1)-(L.3) and (F.4) hold and that � 2 Cm(Rd). Let v 2 LSC([0, T ]⇥
Rd) \ SSG

+
m

and u 2 USC([0, T ] ⇥ Rd) \ SSG
�
m

be a nonnegative viscosity super- and a nonnegative
viscosity subsolution to (A.1). Suppose that there exists Ĉ > 0 such that for all (t, y) 2 [0, T ]⇥ Rd,

u�+1(t, y), v�+1(t, y)  Ĉ⌘�(y)hyim. (A.2)

Then,
u  v on [0, T ]⇥ Rd.

Proof. Step 1: linearization. For ⇢ 2 (0, 1), it is easy to verify that ṽ := ⇢v is a viscosity supersolution
of the following PDE:

8
<

:
� @tṽ(t, y)� Lṽ(t, y)� ⇢H(y,

Dṽ(t, y)

⇢
)� ⇢F (y,

ṽ(t, y)

⇢
) = 0, (t, y) 2 [0, T )⇥ Rd,

ṽ(T, y) = ⇢�(y), y 2 Rd.

In what follows, we show that w := u� ṽ is a viscosity subsolution of the following extremal PDE:

�@tw(t, y)� Lw(t, y)� (
1� ⇢

2
)�↵C̄↵+1

|Dw|↵+1
� (1� ⇢)


�(ȳ) +

1 + �

�
Ĉhyim

�
= 0, (A.3)

for (t, y) 2 [0, T )⇥ Rd
\ {w > 0}.

Let ' 2 C2([0, T ) ⇥ Rd) be a test function and (t̄, ȳ) 2 [0, T ) ⇥ Rd
\ {w > 0} be a local maximum of

w � '. We may assume that this maximum is strict in the set [t̄ � r, t̄ + r] ⇥ B̄r(ȳ) ⇢ [0, T ) ⇥ Rd for
small r 2 (0, 1); we choose [0, r]⇥ B̄r(ȳ) if t̄ = 0. Let

�(t, x, y) :=
|x� y|2

2"
+ '(t, y)

and
M" := max

t2[t̄�r,t̄+r],x,y2B̄r(ȳ)

�
u(t, x)� ṽ(t, y)� �(t, x, y)

�
.

30



This maximum is attained at a point (t", x", y") and is strict. We know that

|x" � y"|2

2"
! 0 and M" ! u(t̄, ȳ)� ṽ(t̄, ȳ)� '(t̄, ȳ) as "! 0.

We now apply [16, Theorem 8.3]. In terms of their notation we have that k = 2, u1 = u, u2 =
�ṽ,'(t, x, y) = �(t, x, y). Moreover, we recall the property that P̄

2,�(ṽ) = �P̄
2,+(�ṽ). Then, setting

p" =
x"�y"

"
, we have that

@x�(t", x", y") = p",

�@y�(t", x", y") = p" �D'(t", y")

and that

A = D2�(t", x", y") =

✓
I

"
�

I

"

�
I

"

I

"
+D2'(t", y")

◆
.

From this we conclude that for every ◆ > 0, there exist a1, a2 2 R, X, Y 2 S
d such that

(a1, p", X) 2 P̄
2,+u(t", x"), (a2, p" �D'(t", y"), Y ) 2 P̄

2,�ṽ(t", y"),

such that a1 � a2 = @t�(t", x", y") = 't(t", x") and such that

�(
1

◆
+ kAk)I 

✓
X 0
0 �Y

◆
 A+ ◆A2. (A.4)

From the definition of viscosity solution, we obtain that

�a1 � b(x")p" �
1

2
tr [��⇤(x")X]� F (x", u(x"))  H(x", p")

and that

� a2 � b(y")(p" �D'(t", y"))�
1

2
tr [��⇤(y")Y ]� ⇢F (y",

ṽ(y")

⇢
)

�⇢H(y",
p" �D'(t", y")

⇢
).

Subtracting the two inequalities, we have

� @t't(t", y") + b(y")(p" �D'(t", y"))� b(x")p"

+
1

2
tr [��⇤(y")Y ]�

1

2
tr [��⇤(x")X]

+ ⇢F (y",
ṽ(y")

⇢
)� F (x", u(x"))  H(x", p")� ⇢H(y",

p" �D'(t", y")

⇢
).

We are now going to estimate the terms involving the drift, the volatility, and the functions F and H
separately.

• Since b is Lipschitz continuous,

b(y")(p" �D'(t", y"))� b(x")p" = �b(y")D'(t", y") + (b(y")� b(x"))p"

� �b(y")D'(t", y")� C̄"�1
|x" � y"|

2.

• In order to estimate the volatility term we denote by (ei)1id̃
the canonical basis of Rd̃. By using
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(A.4) and the Lipschitz continuity of �, we obtain

tr [��⇤(x")X]� tr [��⇤(y")Y ]

=
d̃X

i=1

hX�(x")ei,�(x")eii �
d̃X

i=1

hY �(y")ei,�(y")eii



d̃X

i=1

hD2'(t", y")�(y")ei,�(y")eii+
1

"
|�(x")� �(y")|

2 + !(
◆

"2
)

tr
⇥
��⇤(y")D

2'(t", y")
⇤
+ C̄2"�1

|x" � y"|
2 + !(

◆

"2
)

where ! is a modulus of continuity which is independent of ◆ and ".

• We now estimate F̃ := ⇢F (y",
ṽ

⇢
)� F (x", u). To this end, we first observe that

u(t", x")� ṽ(t", y")� '(t", y") � M" � u(t̄, ȳ)� ṽ(t̄, ȳ)� '(t̄, ȳ).

Since (t̄, ȳ) 2 {w > 0} and ' is continuous, we can fix r small enough to obtain that

u(t", x")� ṽ(t", y") � 0.

Recalling the definition of F in (2.10), the fact that F (y, ·) is decreasing on R+ and the fact that
⇢(1� ⇢�) < (1 + �)(1� ⇢) for 0 < ⇢ < 1, this yields

F̃ = ⇢F (y",
ṽ

⇢
)� F (y", u) + F (y", u)� F (x", u)

� (⇢� 1)�(y") +
|u|�+1

�⌘(y")�
� ⇢��

|ṽ|�+1

�⌘(y")�

� !R(|x" � y"|)

= (⇢� 1)�(y") +
|u|�+1

�⌘(y")�
�

|ṽ|�+1

�⌘(y")�

� ⇢(1� ⇢�)
|v|�+1

�⌘(y")�
� !R(|x" � y"|)

� �(1� ⇢)�(y")� (1 + �)(1� ⇢)
|v|�+1

�⌘(y")�
� !R(|x" � y"|)

� �(1� ⇢)


�(y") +

1 + �

�
Ĉhy"i

m

�
� !R(|x" � y"|)

(A.5)

where !R denotes the modulus of continuity with R := |ȳ|+ r.

• We finally estimate H̃ := H(x", p")� ⇢H(y",
p"�D'(t",y")

⇢
). By convexity, we have, for z1, z2 2 Rd,

that

|z1|
↵+1

� ⇢|
z2
⇢
|
↵+1

 (1� ⇢)|
z1 � z2
1� ⇢

|
↵+1.

Hence,

H(x", p")� ⇢H(y",
p" �D'(t", y")

⇢
)

(1� ⇢)✓↵
����
�(x")p" � �(y")(p" �D'(t", y"))

1� ⇢

����
↵+1

(
1� ⇢

2
)�↵C̄↵+1

⇣
|D'(t", y")|

↵+1 + (|x" � y"| · |p"|)
↵+1

⌘

where (L.2), (L.3) are used in the last inequality. If necessary, we can choose C̄ large enough to
satisfy that ✓↵|�|↵+1

 C̄↵+1.
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Denoting a generic modulus of continuity independent of ◆ and " by !, we thus get

� @t'(t", y")� L'(t", y")� (
1� ⇢

2
)�↵C̄↵+1

|D'(t", y")|
↵+1

� (1� ⇢)


�(y") +

1 + �

�
Ĉhy"i

m

�
 !(") + !(

◆

"2
).

Letting first ◆ go to 0 and then sending " to 0, we finally conclude the desired viscosity subsolution
property of w.

Step 2: smooth strict supersolution. We are now going to construct smooth strict supersolutions
to (A.3) on [T � ⌧, T ) for some small ⌧ > 0. To this end, let

 (t, y) := (1� ⇢)ChyimeL(T�t)

where L,C > 0 will be chosen later. Since �,� 2 Cm(Rd) and u 2 SSG
�
m
([0, T ]⇥Rd), we choose a large

enough constant C̄ such that for ⇣ = �,�

⇣(y)  C̄hyim, y 2 Rd,

and such that
u(t, y)  C̄hyim, (t, y) 2 [0, T ]⇥ Rd. (A.6)

Note that
Dhyim = mhyim�2y, D2

hyim = mhyim�4
�
hyi2I + (m� 2)y ⌦ y

�
.

Since b,� grow at most linearly,

L (t, y)  (1� ⇢)CeL(T�t)
⇥
C̄(1 + |y|)|Dhyim|+ C̄2(1 + |y|)2|D2

hyim|
⇤

 (1� ⇢)CeL(T�t)
⇥
2mC̄hyim + 2m(m� 1)C̄2

hyim
⇤

 [2mC̄ + 2m(m� 1)C̄2] (t, y).

Recalling that (m� 1)(↵+ 1) = m, we have

(
1� ⇢

2
)�↵C̄↵+1

|D (t, y)|↵+1

= (
1� ⇢

2
)�↵C̄↵+1

· (1� ⇢)↵+1C↵+1e(↵+1)L(T�t)
|Dhyim|

↵+1

 [2↵m↵+1C̄↵+1C↵e↵L(T�t)] (t, y)

By condition (F.4),

(1� ⇢)


�(y) +

1 + �

�
Ĉhyim

�
 (1� ⇢)

1 + 2�

�
C̄hyim 

1 + 2�

�

C̄

C
 (t, y)

Choosing C > max{2mC̄ + 2m(m� 1)C̄2, 2↵m↵+1C̄↵+1, 1+2�
�

C̄}, we have

� @t (t, y)� L (t, y)� (
1� ⇢

2
)�↵C̄↵+1

|D (t, y)|↵+1
� (1� ⇢)


�(y) +

1 + �

�
Ĉhyim

�

>  (t, y)
h
L� C � 1� C↵+1e↵L(T�t)

i
.

Then taking L > C + 1 + C↵+1e, we get

�@t (t, y)� L (t, y)� (
1� ⇢

2
)�↵C̄↵+1

|D (t, y)|↵+1
� (1� ⇢)


�(y) +

1 + �

�
Ĉhyim

�
> 0

for all y 2 Rd and t 2 [T � ⌧, T ), where ⌧ = 1
↵L

.
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Step 3: conclusions. Since w 2 USC([T�⌧, T ]⇥Rd)\SSG�
m
, the function w� attains its maximum

at some point (t, y) 2 [T � ⌧, T ]⇥Rd. We claim that t = T. Indeed, suppose to the contrary that t̄ < T.
Then, since w is a viscosity subsolution of (A.3), by taking  as a test function,

�@t (t, y)� L (t, y)� (
1� ⇢

2
)�↵C̄↵+1

|D (t, y)|↵+1
� (1� ⇢)


�(y) +

1 + �

�
Ĉhyim

�
 0.

This contradicts the fact that  is a strict supersolution. Thus, for all (t, y) 2 [T � ⌧, T ]⇥ Rd,

w(t, y)�  (t, y)  w(T, y)�  (T, y)  (1� ⇢)�(y)� (1� ⇢)Chyim  0

where the last inequality follows from C > C̄. In particular, w(t, y)   (t, y). Letting ⇢ ! 1, we get
u  v on [T � ⌧, T ]⇥ Rd.

The preceding argument can be iterated on time intervals of the same length ⌧ . Indeed, let us choose
C,L, ⌧ as in Step 2 and put

 (t, y) := (1� ⇢)ChyimeL(T�⌧�t)

on [T � 2⌧, T � ⌧ ]. It follows by (A.6) and the previously established inequality u  v on [T � ⌧, T ]⇥Rd

that for all y 2 Rd,

w(T � ⌧, y) = u(T � ⌧, y)� ṽ(T � ⌧, y)  (1� ⇢)u(T � ⌧, y)  (1� ⇢)C̄hyim.

Following the same arguments as above, we obtain that for all (t, y) 2 [T � 2⌧, T � ⌧ ]⇥ Rd,

w(t, y)�  (t, y)  w(T � ⌧, y)�  (T � ⌧, y)  (1� ⇢)C̄hyim � (1� ⇢)Chyim  0.

These arguments can be iterated to complete the proof.

Remark A.2. It is worth noting that the constant Ĉ in (A.3) is exactly derived from the upper bound of
v in (A.2) when estimating F̃ in (A.5). We show below that using the constant derived from the upper
bound of u instead is also feasible. To this end, we estimate F̃ in the following way:

F̃ = ⇢F (x",
ṽ

⇢
)� F (x", u) + ⇢F (y",

ṽ

⇢
)� ⇢F (x",

ṽ

⇢
)

� (⇢� 1)�(x") +
|u|�+1

�⌘(x")�
� ⇢��

|ṽ|�+1

�⌘(x")�
� !R(|x" � y"|)

� �(1� ⇢)�(x")� (1� ⇢)
1 + �

�
Ĉhx"i

m
� !R(|x" � y"|),

(A.7)

In the last inequality we used the facts that u�+1(t, y)  Ĉ⌘�(y)hyim on [0, T ] ⇥ Rd and ⇢��
� 1 

(� + 1)(1� ⇢) for ⇢ 2 ( �+1

q
�

�+1 , 1).

The next lemma establishes a comparison principle for continuous solutions to (2.11) when imposed with
a singular terminal time. The proof uses the shifting argument given in [26].

Lemma A.3. Assume that (L.1)-(L.3), (F.1) and (F.2) hold. Let m̃ be as in condition (F.1). Let
v, v 2 Cm̃([0, T�]⇥Rd) be a nonnegative viscosity sub- and a nonnegative viscosity supersolution to (2.11),
respectively, such that

lim
t!T

v(t, y) = +1 locally uniformly on Rd.

Then,
v  v in [0, T )⇥ Rd.

In particular, there exists at most one nonnegative viscosity solution in Cm̃([0, T�]⇥ Rd) to (2.11).
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Proof. Due to the time-homogeneity of the PDE in (2.11), viscosity (super-/sub-)solutions stay viscosity
(super-/sub-)solutions when shifted in time. For any � > 0, we define the di↵erence function w :
[0, T � �)⇥ Rd

! R by
w(t, y) := v(t, y)� ⇢v(t+ �, y).

Under assumptions (F.1) and (F.2), we have that v, v belong to SSGm and satisfy the condition (A.2)
in Proposition A.1 on [0, T )⇥Rd. Hence, we can use the similar argument as in the proof of Proposition
A.1 to obtain that w is a viscosity subsolution of the following PDE:

�@tu(t, y)� Lu(t, y)� (
1� ⇢

2
)�↵C̄↵+1

|Du|↵+1
� (1� ⇢)


�(ȳ) +

1 + �

�
Ĉhyim

�
= 0, (A.8)

for (t, y) 2 [0, T � �)⇥ Rd
\ {w > 0} and lim

t!T��

w(t, y)  (1� ⇢)v(T � �, y) for y 2 Rd. In fact, Remark

A.2 shows that we can get around the di�culty of the singularity of v(· + �, ·) at time t = T � � in
this step. Following Steps 2 and 3 in the proof of Proposition A.1, we have that v(t, y)  v(t+ �, y) on
[0, T � �]⇥ Rd. Finally, by letting � ! 0 we conclude that v  v on [0, T )⇥ Rd by continuity of v.

A.2 Proof of Proposition 3.1

Under assumptions (F.1), (F.2) and (3.2), the functions (t, y) 7! (T � t)1/�u(t, y), (T � t)1/�u(t, y) satisfy

the condition (A.2) in Proposition A.1. Let us fix ⇢ 2

✓
�

r
1
4�+1
1
2�+1

, 1

◆
and consider the di↵erence

w := u� ⇢u 2 USCm̃([T � �, T�]⇥ Rd) ⇢ SSGm([T � �, T�]⇥ Rd).

The proof of the following lemma is similar to that of Proposition A.1.

Lemma A.4. The function w is a viscosity subsolution to

� @tw(t, y)� Lw(t, y)� (
1� ⇢

2
)�↵C̄↵+1

|Dw|↵+1
� l(t, y)w(t, y)

� (1� ⇢)

"
�(y) +

1 + �

�

Ĉhyim

(T � t)1/�+1

#
= 0, (t, y) 2 [T � �, T )⇥ Rd

(A.9)

where

l(t, y) :=
F (y, u(t, y))� F (y, ⇢u(t, y))

u(t, y)� ⇢u(t, y)
Iu(t,y) 6=⇢u(t,y).

The next lemma constructs a local smooth strict supersolution to (A.9).

Lemma A.5. There exists L,C, ⌧ > 0 such that

�(t, y) := (1� ⇢)
eL(T�t)Chyim

(T � t)1/�

satisfies

J [�] := �@t�(t, y)� L�(t, y)� (
1� ⇢

2
)�↵C̄↵+1

|D�(t, y)|↵+1 +
1 + 1

4�

�(T � t)
�(t, y)

� (1� ⇢)

"
�(y) +

1 + �

�

Ĉhyim

(T � t)1/�+1

#
> 0, (t, y) 2 [T � ⌧, T )⇥ Rd.

(A.10)

35



Proof. Set  (t, y) := (1� ⇢)eL(T�t)Chyim. Analogous to the proof of Proposition A.1, we have

L�(t, y)  [2mC̄ + 2m(m� 1)C̄2]
 (t, y)

(T � t)1/�
,

(
1� ⇢

2
)�↵C̄↵+1

|D�(t, y)|↵+1
 [2↵m↵+1C̄↵+1C↵e↵L(T�t)]

 (t, y)

(T � t)(1+↵)/�
,

(1� ⇢)

"
�(y) +

1 + �

�

Ĉhyim

(T � t)1/�+1

#


C̄

C
 (t, y) +

1 + �

�

C̄

C

 (t, y)

(T � t)1/�+1
.

Choosing C > max{2mC̄ + 2m(m� 1)C̄2, 2↵m↵+1C̄↵+1, 8 1+�

�
C̄}, we obtain that

J [�] >
L 

(T � t)1/�
�

 

�(T � t)1/�+1
�

C 

(T � t)1/�
� C↵+1e↵L(T�t)  

(T � t)(1+↵)/�

+
1 + 1

4�

�(T � t)1/�+1
 �  �

 

8(T � t)1/�+1

> 


L� C � T 1/�

(T � t)1/�
+

1� 8C↵+1e↵L(T�t)(T � t)1�↵/�

8(T � t)1/�+1

�

Taking L > C + T 1/� and then choosing ⌧ = min{ 1
↵L

, (8C↵+1e1)(↵��)/↵
}, we get J [�] > 0 for all

(t, y) 2 [T � ⌧, T )⇥ Rd.

The following lemma is key to the proof of the comparison principle.

Lemma A.6. Let ⌧ be as in Lemma A.5. The function

�(t, y) := w(t, y)� �(t, y)

is either nonpositive or attains its supremum at some point (t̄, ȳ) in [T � ⌧, T )⇥ Rd.

Proof. Suppose that the supremum of � on [T � ⌧, T )⇥Rd is positive and denote by (tk, yk) a sequence
in [T � ⌧, T )⇥ Rd approaching the supremum point. For the choice of C in Lemma A.5, ⌘(y) < Chyim

for all y 2 Rd. Thus, the representation

�(t, y) =

h
u(t,y)(T�t)1/�

hyim̃ �
⇢u(t,y)(T�t)1/�

hyim̃

i
hyim̃ � (1� ⇢)eL(T�t)Chyim

(T � t)1/�
,

along with Condition (3.1) and the fact that m̃ < m yields

lim sup
t!T

�(t, y) = �1, uniformly on Rd.

Hence lim
k

tk < T. Furthermore, lim
k

|yk| < 1 because w 2 SSG
�
m
. As a result, the supremum is attained

at some point (t̄, ȳ) because � is upper semicontinuous. This proves the assertion.

We are now ready to prove the comparison principle.

Proof of Proposition 3.1. Step 1: comparison on [T � ⌧, T ). Let ⌧ be as in Lemma A.5. We claim
that the function � introduced in Lemma A.6 is nonpositive. It then follows that u  u in [T �⌧, T )⇥Rd

by letting ⇢! 1. In view of Lemma A.6, we just need to consider the case where � attains its supremum
at some point (t̄, ȳ) 2 [T � ⌧, T )⇥ Rd. Since � is smooth and w is a viscosity subsolution to (A.9),

� @t�(t̄, ȳ)� L�(t̄, ȳ)� (
1� ⇢

2
)�↵C̄↵+1

|D�|↵+1
� l(t̄, ȳ)w(t̄, ȳ)

� (1� ⇢)

"
�(ȳ) +

1 + �

�

Ĉhyim

(T � t)1/�+1

#
 0.

(A.11)
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By the mean value theorem and in view of condition (3.2),

l(t, y) =
F (y, u(t, y))� F (y, ⇢u(t, y))

u(t, y)� ⇢u(t, y)
Iu(t,y) 6=u(t,y)

 @uF (y, ⇢
�

s
1
2� + 1

� + 1

⌘(y)

(T � t)1/�
)

 �
1 + 1

4�

�(T � t)
.

(A.12)

Thus, comparing (A.10) with (A.11) yields

l(t̄, ȳ)w(t̄, ȳ) > �
1 + 1

4�

�(T � t)
�(t̄, ȳ) � l(t̄, ȳ)�(t̄, ȳ). (A.13)

Since l  0, we can conclude that �(t̄, ȳ)  0, and so �  0.

Step 2: Comparison on [T ��, T ). If ⌧ > �, then the proof is finished. Else, we can proceed as follows.
From the condition (3.2),

u(t, y), u(t, y) 
Ĉ

⌧1/�
⌘(y), t 2 [T � �, T � ⌧ ].

Since we have already shown that u(T � ⌧, ·)  u(T � ⌧, ·), an application of our general comparison
principle [Proposition A.1] shows that u  u on [T � �, T )⇥ Rd.

A.3 Proof of Lemma 6.1

The existence of a classical solution v0 to (2.4) along with the stated estimates on v0 has been proved
in [26]; the gradient was not given in [26]. In what follows we analyze the C0,1 regularity of v0 under
weaker assumptions. As discussed in [26], we can plug the asymptotic ansatz

v(T � t, y) =
⌘(y)

t1/�
+

u(t, y)

t1+1/�
, u(t, y) = O(t2) uniformly in y as t ! 0. (A.14)

into (2.4) and consider instead the PDE

(
@tu(t, y) = Lu(t, y) + f(t, y, u(t, y)), t > 0 , y 2 Rd,

u(0, y) = 0, y 2 Rd.
(A.15)

where

f(t, y, u) := tL⌘(y) + tp�(y)�
⌘(y)

�

1X

k=2

✓
� + 1

k

◆✓
u

t⌘(y)

◆k

.

We now show that this PDE admits a mild solution in C0,1([0, �] ⇥ Rd). To this end we consider the
space

E := {u 2 C0,1
b

([0, �]⇥ Rd) : ku(t, ·)k+ kt1/2Du(t, ·)k = O(t2) as t ! 0}

endowed with the weighted norm

kukE = sup
0<t�, y2Rd

kt�2u(t, y)k

and define the operator

�[u](t, y) =

Z
t

0
Pt�s[f(s, ·, u(s, ·))](y)ds.
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Let R > 0 and � 2 (0, c/R]. Using arguments given in [26, Section 4], we see that for every u in the closed
ball BE(R) := {u 2 E : kukE  c/�}, the function f(·, u(·)) belongs to Cb([0, �]⇥Rd). In particular, the
map � is well defined on BE(R). Moreover, there exists a constant L > 0 independent of � such that

|f(t, y, u(t, y))� f(t, y, v(t, y))|  L|u(t, y)� v(t, y)|, u, v 2 B̄E(R), (t, y) 2 [0, �]⇥ Rd.

Now we are ready to carry out the fixed point argument.

Let B(a, b) :=
R 1
0 ra�1(1� r)b�1dr be the Beta function with a, b > 0. We choose

R = 2(1 +MB0) (kL⌘k+ k�k) ,

and
� = min{c/R,

�
2L(1 +MB1)

�
, 1},

where L > 0 is the Lipschitz constant given by Lemma 4.5 and B0 := B(2, 1
2 ), B1 := B(3, 1

2 ).

Let u, v 2 B⌃(R). For (t, y) 2 [0, �]⇥ Rd,

|�[u](t, y)� �[v](t, y)| =

����
Z

t

0
Pt�s[f(s, ·, u(s, ·))� f(s, ·, v(s, ·))](y)ds

����



Z
t

0
kf(s, ·, u(s, ·))� f(s, ·, v(s, ·))k ds



Z
t

0
L ku(s, ·)� v(s, ·)k ds

 �Lt2 ku� vk
E
ds.

Similarly,

|D�[u](t, y)�D�[v](t, y)| =

����
Z

t

0
DPt�s[f(s, ·, u(s, ·))� f(s, ·, v(s, ·))](y)ds

����

 M

Z
t

0

1

(t� s)1/2
kf(s, ·, u(s, ·))� f(s, ·, v(s, ·))k ds



Z
t

0
ML

1

(t� s)1/2
�
s2ku� vkE

�
ds

 �t3/2MLB1|u� vkE .

Hence

k�[u]� �[v]k⌃ 
1

2
ku� vkE .

To show that � maps BE(R) into itself, note that �  1 implies sk  1 for all k > 0 and s 2 [0, �].
Hence, for every t 2 [0, �]

|�[0](t, y)| =

����
Z

t

0
Pt�s[f(s, ·, 0)](y)ds

����



Z
t

0
ksL⌘ + sp�k ds

 t2(kL⌘k+ k�k)

and

|D�[0](t, y)| =

����
Z

t

0
DPt�s[F0(s, ·, 0)](y)ds

����



Z
t

0

1

(t� s)1/2
MksL⌘ + sp�k ds

 t3/2MB0(kL⌘k+ k�k)
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Thus,

k�[u]kE  k�[u]� �[0]kE + k�[0]kE  R.

The operator � is therefore a contraction from BE(R) to itself. Hence, it has a unique fixed point u in
BE(R). We conclude that Equation (A.15) admits a mild solution in C0,1

b
([0, �]⇥ Rd).

In view of the ansatz (A.14), v0 is a solution to (2.4) in C0,1
b

([T ��, T�]⇥Rd) and there exists a constant
C > 0 such that for (t, y) 2 [T � �, T )⇥ Rd,

|Dv0| 
C

(T � t)1/�
.

The C0,1-regularity of v0 along with the boundedness of Dv0 on [0, T � �] ⇥ Rd can be obtained
by [12, Theorem 15]. To conclude, for a constant C0 > 0,

|Dv0| 
C0

(T � t)1/�
, (t, y) 2 [0, T )⇥ Rd. (A.16)
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