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Abstract4

We consider a budget-constrained mechanism designer who selects an optimal set of
projects to maximize her utility. Projects may differ in their value for the designer,6

and their cost is private information. In this allocation problem, the quantity of pro-
cured projects is endogenously determined by the mechanism. The designer faces8

ex-post constraints: The participation and budget constraints must hold for each
possible outcome, while the mechanism must be strategyproof. We identify set-10

tings in which the class of optimal mechanisms has a deferred acceptance auction
representation which allows an implementation with a descending-clock auction.12

Only in the case of symmetric projects do price clocks descend synchronously such
that the cheapest projects are implemented. The case in which values or costs are14

asymmetrically distributed features a novel tradeoff between quantity and quality.
The reason is that guaranteeing allocation to the most favorable projects under16

strategyproofness comes at the cost of a diminished expected number of conducted
projects.18
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1 Introduction

We study the problem of a procurer who can spend a fixed budget on any of2

n available projects which differ in the value the procurer derives from them.
Projects (agents) have private information about their costs and want to get4

funding beyond the necessary minimum. The designer’s goal is to select an
affordable set of maximal aggregate quality. In other words, she faces a mech-6

anism design variant of the knapsack problem1 with strategic behavior due to
informational asymmetries. Essentially, we approach this problem as an “up to8

possibly n-units” procurement problem with n agents with single-unit supply
where demand quantity is determined after observing projects’ reports under a10

budget constraint. The budget constraint, the individual-rationality constraints,
and the incentive-compatibility constraints are imposed ex-post, i.e., for any12

cost realization, the sum of transfers must not exceed the budget, implemented
projects always have to be at least fully compensated, and truth-telling must be a14

(weakly) dominant strategy. We fully characterize the optimal mechanism in the
two-project case and the symmetric case, and suggest an implementation with a16

descending-clock auction with a deferred acceptance rule. Furthermore, we dis-
cuss which insights of the two-project case carry over to the general asymmetric18

case and identify weakening the substitutes condition as the natural next step of
this research endeavor. Because of a tradeoff between quantity and quality, an20

optimal price clock may have to stop for a period of time leading to instances in
which an inferior project is implemented instead of a superior one.22

This framework matches a large range of allocation problems, in which a de-
signer needs to allocate a divisible but fixed capacity among agents. Allocation24

problems, in which a financial budget constraint represents the fixed capacity,
include the procurement of bus lines, bridges, and streets, or the allocation of26

subsidies or research money. Alternatively, the capacity constraint can represent
the payload limit on a freighter or on a space shuttle,2 or a limited amount of28

time to be devoted to several tasks. Out of many suitable applications, we em-
ploy as our leading example a development fund that desires to distribute money30

to nonprofit projects with nonmonetary benefits.

1The knapsack problem is a classical combinatorial problem, dating as far back as 1897. A
set of items is assigned values and weights. The knapsack should be filled with the maximal
value, but can carry only up to a given weight. For an overview of the literature on knapsack
problems, see Kellerer, Pferschy, and Pisinger (2004).

2Clearly, the capacity of a space shuttle is limited. The problem of optimally allocating the
capacity and incentivizing projects to reduce payload is economically relevant, see Ledyard,
Porter, and Wessen (2000).
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Our paper not only helps to understand a class of economically relevant prob-
lems, the framework also presents a novel methodological challenge. The ex-post2

nature of both the participation and the budget constraint precludes the use
of standard pointwise optimization techniques à la Myerson (1981). Nonethe-4

less, rewriting the problem involves expressing expected transfers in terms of the
allocation function as an auxiliary step. As the designer maximizes expected6

payoff including residual money, we can employ a procurement analogue of My-
erson’s notion of “virtual values”. However, our results qualitatively translate to8

a setting in which the designer does not value residual money.

By focusing on strategyproof deterministic mechanisms, we can reduce the prob-10

lem to finding a set of optimal cutoff functions zi that, for each project i, map the
cost vector of other projects c−i into a cutoff cost level. Project i is conducted if12

and only if i’s cost report falls weakly below cutoff zi(c−i) and the correspond-
ing compensation payment for that case equals this cutoff. Next, we investigate14

properties these cutoff functions exhibit in optimum. In the two-project case,
the optimal allocation rule has substitutes: Given a project is implemented for16

some cost vector, it is also implemented when, all else being equal, the cost of the
rival project is increased. This property may cease to be optimal in more general18

cases. However, we show that any optimal allocation rule with substitutes has
non-bossy winners: A single project that is implemented cannot affect the allo-20

cation without changing its own allocation status. Finally, the optimal allocation
rule excludes all projects with negative “virtual surplus” from the allocation.22

By virtue of these properties, such a mechanism has an equivalent deferred accep-
tance (DA) auction representation as analyzed in Milgrom and Segal (2015). We24

show that project substitutability is not necessary and discuss a weaker form of
substitutes. A DA auction is an iterative algorithm that computes the allocation26

and transfers of an auction mechanism and possesses attractive features with
respect to bidders’ incentives that go beyond dominant-strategy implementabil-28

ity. First, in any DA auction, revealing the type truthfully is an “obviously
dominant strategy” as defined by Li (2015).3 Second, any DA auction is weakly30

group-strategyproof. In other words, it is impossible for a coalition of projects to
coordinate their bidding strategies such that it strictly increases the utility of all32

projects in the coalition. Third, the dominant-strategy equilibrium outcome of
any DA auction is the only outcome that survives iterated deletion of dominated34

3There does not exist any deviation such that, in any information set in which a deviating
action is played, the best-case deviation payoff (against even the most favorable profile of
strategies of the other players that is consistent with this information set) is strictly larger
than the worst-case payoff from truthful bidding (achieved against the least favorable such
strategy profile).
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strategies in the corresponding full information game with the same allocation
rule but where players pay their own bid. Therefore predicting the dominant-2

strategy equilibrium outcome in a DA auction can be considered robust.

Milgrom and Segal (2015) argue that these properties make DA auctions suit-4

able for many challenging environments such as radio spectrum reallocations.
Most importantly, they show that every DA auction can be represented by6

a descending-clock auction. Among several potential applications, they also
consider our budget-constrained procurement setup (Example 7: “Budget Con-8

straint”). However, they do not show optimality of the DA auction. Therefore
we can strengthen the argument in favor of DA auctions. The techniques estab-10

lished in our paper may be helpful to prove optimality of DA auctions in the
other settings mentioned in their paper.12

The existence of a corresponding (direct) DA auction implies that the allocation
rule can be implemented with an appropriately designed descending-clock auction14

as its corresponding indirect form: Every project faces a clock with a continuously
descending price on it, and indicates whether it is willing to conduct its project16

at this price. Prices do not ascend again. In this auction, it is a weakly dominant
strategy for any project to exit the auction once the clock price hits the project’s18

actual cost level. We show that it is optimal to rank projects according to their
cost and “greenlight” the cheapest ones, when projects have identical values and20

costs are drawn from the same distribution. That is, price clocks run down
synchronously and hence projects exit in order of their costs until the budget22

suffices to pay the current clock price to all remaining active projects.

For the case in which costs are drawn from different distributions and/or project24

values differ, we restrict attention to the two-project case to retain tractability.
In applications, the designer may prefer some projects over others and might26

have different information over cost distributions. In standard procurement set-
tings, the quantity of units to be procured is not endogenously determined by28

a budget-constrained mechanism as in our model, but it is exogenously fixed to
be some quantity k. It is well known that in k-unit procurement auctions the k30

projects with the greatest nonnegative virtual surpluses are implemented, e.g.,
Luton and McAfee (1986). In the asymmetric case, the ranking implied by costs32

and the ranking implied by virtual surpluses do not necessarily coincide. Broadly
speaking, the designer discriminates against stochastically stronger projects, and34

prefers projects with higher values. The asymmetry requires that each project
faces an individual clock and prices decrease asynchronously. In settings with36

exogenously given quantity restrictions, the clocks’ speed can be optimally ad-
justed such that the virtual surplus of marginal projects is kept equal at all times,38

see Caillaud and Robert (2005, Proposition 1).
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Interestingly, the optimality of such an allocation rule does not simply translate
into the asymmetric case of our environment. In contrast, projects are not always2

greenlighted in order of their virtual surpluses. Therefore we cannot adopt the
approach of Caillaud and Robert (2005). Instead, the descending-clock imple-4

mentation of the optimal allocation includes individual clocks stopping at certain
times. Here, a “quantity-quality tradeoff” kicks in: We show that the optimal6

allocation generically features instances in which out of two rival projects the
project with lower virtual surplus is chosen. The reasoning behind this result8

is that the number of procured units is endogenous. In the asymmetric case,
always greenlighting in order of virtual surplus reduces the expected number10

of greenlighted projects compared to the optimal mechanism. Strategyproofness
creates a tradeoff between quantity (have a higher probability to implement more12

projects) and quality (guarantee to implement the superior project) of the pro-
cured projects. This discrimination of the stronger project is employed on top14

of the discrimination due to stochastic domination through the virtual costs.

Clock auctions are generally easy to understand and hard to manipulate. Fur-16

thermore, they are less information hungry than, for example, sealed bid auc-
tions. In descending-clock auctions, the designer only learns the private infor-18

mation of those projects that are not greenlighted. In fact, Milgrom and Segal
(2015) show that clock auctions are the only strategyproof mechanisms that pre-20

serve winners’ unconditional privacy: Winners only need to reveal the minimum
of their private information that is necessary to prove that they should be win-22

ning. These features of clock auctions make them attractive for applications in
which there is limited trust between the involved parties.24

To the best of our knowledge, this paper is the first that considers purely ex-
post constrained optimal procurement design. Such a restrictive setting can be26

seen as a “worst-case scenario” for the designer, suiting many economic appli-
cations. In our leading example of the development fund, an ex-post budget28

constraint appears natural as budgets are usually fixed. The nonprofit nature of
the projects might prohibit acquiring additional money on the financial market.30

Information rents are necessary, because a project might want to spend money on
extra equipment that is convenient for the project’s staff but has no value for the32

designer. In practice, such incentive problems are often resolved using dominant-
strategy implementable mechanisms. In strategyproof mechanisms, agents have34

no incentive to invest in espionage activities or to hire consultants to avoid mis-
specification of beliefs. Mainly, dominant strategies are desirable as they are36

easy to explain and not prone to manipulation. For similar reasons, we restrict
attention to deterministic mechanisms. Deterministic mechanisms obviate the38

need for a credible randomization device and are therefore more easily applica-
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ble in practice. As our agents care about their ex-post payoff, each constraint in
a stochastic mechanism would have to hold for all outcomes of the mechanism’s2

randomization anyway. Finally, ex-post participation constraints are necessary
because projects simply cannot be conducted with insufficient funds, and the4

designer wants to avoid costly renegotiations when the projects default.

1.1 Literature6

Even though the knapsack problem has a wide range of economic applications,
there are relatively few publications in economics on this issue. Most promi-8

nently, Maskin (2002), in his Nancy L. Schwartz memorial lecture, addressed the
related problem of the UK government that put aside a fixed fund to encourage10

firms to reduce their pollution. The government faces n firms that have private
marginal cost of abatement θi and can commit to reduce xi units of pollution. To12

reduce pollution as much as possible, the government pays expected compensa-
tion transfers ti to the firms, who report costs and proposed abatement to maxi-14

mize ti−θixi. For some distributions, Maskin (2002) proposes a mechanism that
satisfies an ex-post participation constraint, an ex-post incentive compatibility16

constraint, and the condition that the budget is not exceeded in expectation. In
response to Maskin (2002), Chung and Ely (2002b) look at a more general class18

of mechanism design problems with budget constraints and translate them into
a setting à la Baron and Myerson (1982). Their approach nests Maskin (2002)20

and also Ensthaler and Giebe (2014a) as special cases. However, Ensthaler and
Giebe (2014a) more explicitly derive a constructive solution. In contrast to us,22

they all consider a soft budget constraint that only requires the sum of expected
transfers to be less than the budget. By incorporating the budget constraint24

into a Lagrangian function and ignoring the monotonicity (incentive) constraint,
they find a mechanism that, under the standard regularity condition, indeed is26

incentive compatible.

In addition, Ensthaler and Giebe (2014a) use AGV-budget-balancing (such as28

Börgers and Norman, 2009) to obtain a mechanism which is ex-post budget-
feasible. However, transformation into a mechanism with an ex-post balanced30

budget in such a way comes at the cost of sacrificing ex-post individual ratio-
nality. Many applications do not allow this constraint to be weakened. For32

instance, subsidy applicants usually cannot be forced to conduct their proposal
when receiving only a small or possibly no subsidy. Alternatively, limited lia-34

bility justifies insisting on ex-post individual rationality. Because we want both
constraints to hold ex-post, we cannot build on their techniques and, thus, we36

approach the problem by characterizing the optimal allocation rule.
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To the best of our knowledge, no paper exists that jointly considers optimal
mechanism design under ex-post budget balance and ex-post individual rational-2

ity in a procurement setting. Ensthaler and Giebe (2014b) propose a belief-free
clock mechanism that coincides with our optimal mechanism in the symmetric4

case for many parameterizations4 but differs in the asymmetric case by hold-
ing the cost-benefit-ratio equal among projects. However, it has to be stressed6

that our mechanism designer knows the priors and projects’ values, and exploits
this knowledge, i.e., our mechanism is not detail-free. By simulating different8

settings, they conclude that this mechanism outperforms a mechanism used in
practice. In contrast to their setting, the mechanism designer in our model values10

residual money. In Section 4, we discuss lesser weights on residual money and
find that our main results qualitatively translates to the case in which residual12

money is neglected.

Because of the appeal of dominant-strategy incentive-compatible (DIC) mech-14

anisms compared to Bayesian incentive-compatible (BIC) mechanisms, many
researchers have produced valuable BIC-DIC equivalence results. These results16

characterize environments in which restricting attention to the more robust in-
centive criterion comes without loss. Our setup is not contained in these environ-18

ments. For any BIC mechanism, Mookherjee and Reichelstein (1992) show that
one can construct a DIC mechanism implementing the same ex-post allocation20

rule, whenever this allocation rule is monotone in each coordinate. However, the
ex-post transfers of the constructed DIC mechanism are not guaranteed to satisfy22

ex-post budget balance. More recently, Gershkov, Goeree, Kushnir, Moldovanu,
and Shi (2013) employ a definition of equivalence in terms of interim expected24

utilities introduced by Manelli and Vincent (2010). For any BIC mechanism,
including the optimal one, they construct a DIC mechanism that yields the same26

interim expected utilities. Here, the ex-post allocation as well as the ex-post
transfers might differ between the two. Therefore a DIC mechanism equivalent28

to a feasible BIC mechanism might violate the ex-post constraints in our setting.

Budget-constrained procurement setups have received much attention in the com-30

puter science literature. Instead of specifying the optimal mechanism, the au-
thors in this literature typically aim to construct allocation algorithms that give32

good approximation guarantees. In other words, they try to maximize the min-
imal payoff an algorithm can guarantee compared to the full-information knap-34

sack solver’s payoff. Apart from the seminal paper by Singer (2010), the works of
Dobzinski, Papadimitriou, and Singer (2011) and Chen, Gravin, and Lu (2011)36

are notable examples of this approach. Anari, Goel, and Nikzad (2014) present
a stochastic algorithm and show that it gives the best possible approximation38

4For all parameter constellations such that virtual surplus is always nonnegative.
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guarantee in the many-projects limit in which any individual project’s costs are
small compared to the budget. While the above papers examine the belief-free2

case, Bei, Chen, Gravin, and Lu (2012) propose an algorithm for setups in which
the designer knows how the private information is distributed.4

Other auction theoretic papers featuring “knapsack auctions” deal with a slightly
different problem compared to us. Aggarwal and Hartline (2006) consider a set-6

ting in which each agent is characterized by his object of commonly known size
and a privately known valuation for having his object placed in the auctioneer’s8

knapsack with commonly known capacity. They are looking for the truthful
auction that best approximates the optimal full-information monotone pricing10

rule which maximizes the auctioneer’s profit. Mu’Alem and Nisan (2008) cover
the case of an auctioneer maximizing social welfare instead. Dütting, Gkatzelis,12

and Roughgarden (2014) study the performance of DA auctions for knapsack
auctions, i.e., they show DA auctions fail to achieve a constant factor approx-14

imation of the optimal social welfare in knapsack auctions. Dizdar, Gershkov,
and Moldovanu (2011) investigate a similar knapsack problem of a profit maxi-16

mizing auctioneer in a dynamic setting: Agents sequentially arrive over time and
are either included in the knapsack immediately or lost forever. Thereby they18

avoid combinatorial issues, which gives rise to a threshold property of the opti-
mal mechanism. In such knapsack auctions, the mechanism designer maximizes20

the sum of transfers, and the value only enters the individual projects’ payoff
while the capacity constraint is imposed on the weight assigned to agents. In our22

framework, the value is collected by the auctioneer and the capacity constraint
is imposed on the sum of transfers. Because of the latter, knapsack auctions and24

our knapsack procurement auctions are not dual problems.

There seems to be no reasonable analogy for our setting to another setting in26

which the mechanism designer is a similarly constrained seller and the agents are
buyers. The literature on group-strategyproof cost-sharing mechanisms, initiated28

by Moulin (1999), considers the dual of a “surplus-sharing” problem. The crucial
difference between this problem and our “budget-sharing” problem is that the30

agents themselves produce the output to be distributed, while in our case the
budget to be distributed is fixed and unrelated to the surplus created by the32

agents, which is collected by the mechanism designer. Budget-constrained buyers
in auctions have been discussed in the literature, e.g., by Che and Gale (1998) or34

Pai and Vohra (2014). However, these authors study budget-constrained agents
whereas in our setting the designer is budget-constrained.36

In the following section, we introduce the model. We start the analysis in Section
3 that is divided into a preliminary analysis for the general case, a full charac-38

terization of the general two-project case and the symmetric case, and finally
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a discussion of the general asymmetric case. Next, we discuss extensions and
possible modifications to the model in Section 4. Finally, we conclude in Section2

5.

2 Model4

We consider a set of n projects I = {1, . . . , n} and one mechanism designer. The
designer gains utility vi if and only if project i ∈ I is conducted. Each project6

can be conducted exactly once and its value is independent of the allocation.5

We consider projects to be utility maximizing agents. If project i is executed, it8

incurs cost ci ∈ Ci := [ci, ci]. Let C := ×i∈ICi and C−i := ×j∈I\{i}Cj. Let the
realization of a cost vector be denoted by c = (ci, c−i) ∈ C. The costs are the10

projects’ private information and are independently drawn from a distribution Fi.
We assume Fi to be continuously differentiable with a strictly positive density fi12

on the support. The value of the project vi and the distribution Fi are common
knowledge. If Fi = F and vi = v for all i ∈ I, we refer to this environment as14

the symmetric case.

To compensate project i for its cost, the designer pays transfer ti. We employ a16

revelation-principle argument and without loss of generality only consider direct
mechanisms.6 A direct mechanism is characterized by 〈qi, ti〉. It maps a vector18

of cost reports c ∈ C into binary provisions decision and transfers. We denote
an allocation rule by γ : C → P(I). It maps a cost vector into the set of “green-20

lighted” projects, an element of the power set of I. Correspondingly, we call
I \ γ(c) the set of “redlighted” projects, the projects that are not implemented.22

We restrict attention to deterministic mechanisms. This restriction implies that

5That is, there are no exogenously given complementarities in a sense that one project’s
value increases when it is conducted together with another one or that the implementation of
one project renders the other one worthless.

6In general, the revelation principle does not hold when restricting attention to deterministic
mechanisms: Deterministic direct mechanisms are unable to replicate mixed-strategy equilibria
in deterministic indirect mechanisms, as noted by, e.g., Strausz (2003). However, in our setting
we do not lose generality. A mixed-strategy equilibrium consists of a distribution over pure-
strategy profiles. Because the mechanism is implementable in dominant strategies any of
these pure-strategy profiles also constitutes a pure-strategy equilibrium, in particular the pure-
strategy equilibrium associated with the designer’s most preferred outcome. Similarly, because
the mechanism is ex-post constrained, this outcome is feasible. Therefore, while there are
allocations that (in the class of deterministic mechanisms) can only be implemented by indirect
mechanisms, the designer’s most preferred feasible allocation can truthfully be implemented in
a direct mechanism.
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once all cost reports are collected, we know with certainty which project is se-
lected by the mechanism. In other words, the decision of implementation qi is
binary,

qi(c) = I(i ∈ γ(c)),

where I denotes an indicator function that equal one if the corresponding condi-
tion is true and zero otherwise.2

Given a mechanism and a cost realization c, project i’s utility from reporting
cost c′i is given by its transfer minus the cost it bears,

ui(c
′
i, c) = ti(c

′
i, c−i)− qi(c

′
i, c−i)ci.

The designer derives value vi from each greenlighted project i while having to
pay the sum of transfers. Therefore she wants to maximize the aggregate value
of greenlighted projects net of transfers paid. Her (ex-post) utility function uD
implies that the designer values residual money,

uD(c) =
∑

i

(
qi(c)vi − ti(c)

)
. (1)

We impose an ex-post participation constraint. That is, if i is greenlighted the
transfer must be at least as high as its cost,

ti(ci, c−i)− qi(ci, c−i)ci ≥ 0 ∀i ∈ I, (ci, c−i) ∈ C. (PC)

In addition, the designer has a budget constraint which is “hard” in the sense
that she cannot spend more than her budget B for any realization of the cost
vector. That is, the designer can never exceed her budget,

∑

i

ti(c) ≤ B ∀c ∈ C. (BC)

Finally, incentive compatibility has to hold ex-post. Alternatively, we can say
that the mechanism has to be implementable in (weakly) dominant strategies7

or that the mechanism must be strategyproof. Therefore for every realization of
the cost vector, project i’s truthful report must yield at least as much utility as
any possible deviation,

ti(ci, c−i)− qi(ci, c−i)ci ≥ ti(c̃i, c−i)− qi(c̃i, c−i)ci

∀i ∈ I, c−i ∈ C−i and ci, c̃i ∈ Ci. (IC)
7In our private value environment, these two concepts are equivalent in a direct revelation

mechanism. In general, however, ex-post incentive compatibility is essentially a generalization
of dominant-strategy implementability to interdependent value environments. See Chung and
Ely (2002a).

10



3 Analysis

We search for the direct mechanism that maximizes the expected utility of the2

designer and refer to this mechanism as the optimal mechanism. One may think
that a natural approach to this problem would be to express the ex-post transfer4

ti(ci, c−i) as a function of the ex-post allocation decision qi(ci, c−i), taking c−i as
given, and applying the envelope theorem. In that case, it would be possible to6

restrict attention to the allocation in order to solve for the optimal mechanism.
However, this approach does not reduce the complexity of the problem. The8

reason is that the ex-post transfers and allocation for one cost vector restrict
transfers and allocation for other cost vectors through the budget constraint in10

a manner much more involved than standard monotonicity. In particular, the
budget constraint with the ex-post transfer expressed as a function of the ex-post12

allocation may be ill-behaved. Therefore we cannot straightforwardly arrive at
sufficient conditions using convex optimization.814

Instead, we aim at deriving a set of properties that every mechanism must inherit
to be optimal. We start by rewriting the general problem. For the case n = 2,16

we establish such properties by showing that the expected payoff yielded by
any feasible mechanism not having one of the properties can be increased by18

adopting the properties. By virtue of these properties, the optimal allocation
can be implemented by a myopic clock auction as defined by Milgrom and Segal20

(2015). These properties extend to the symmetric case. However, we provide
asymmetric examples with n > 2 that violate the properties in the optimal22

mechanism, but are still implementable with a clock auction.

3.1 General preliminary analysis24

Our first step is to show that strategyproofness implies that the optimal mecha-
nism has to be a cutoff mechanism.26

Lemma 1. The optimal mechanism can be represented by cutoff functions zi :
C−i → Ci such that project i is greenlighted if and only if it reports a cost weakly
less than its cutoff,

qi(ci, c−i) = I(ci ≤ zi(c−i)).

The transfer to project i equals its cutoff if it is greenlighted and zero otherwise,

ti(ci, c−i) = qi(ci, c−i)zi(c−i).

8Requiring either the budget or the participation constraint to hold only in expectation
would enable us to use the techniques employed by Ensthaler and Giebe (2014a).
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Proof. For any two cost reports ci, c
′
i ∈ Ci of project i and for some c−i ∈ C−i,

(IC) implies that if the allocation of i is the same, qi(ci, c−i) = qi(c
′
i, c−i), also the2

transfer has to be the same, ti(ci, c−i) = ti(c
′
i, c−i). Otherwise, project i could, as

one of the cost types, profitably deviate to the report yielding the higher transfer.4

Conditional on i’s allocation status and given any cost reports c−i, the transfer
is fixed and does not vary with i’s cost report. Hence, given c−i, there can only6

be two different transfers ti for project i, one for each allocation status, tqi=1
i (c−i)

and tqi=0
i (c−i).8

Define zi(c−i) := tqi=1
i (c−i)− tqi=0

i (c−i). Then, (IC) implies

qi(ci, c−i) =

{
1 if ci ≤ zi(c−i)

0 if ci > zi(c−i)
.

Suppose to the contrary that for some realization ĉi < zi(c−i) and some other10

c̃i < zi(c−i), qi(ĉi, c−i) = 0 and qi(c̃i, c−i) = 1. Then, type ĉi can profitably
deviate to reporting c̃i to ensure the green light which yields a utility increase of12

zi(c−i)− ĉi. An analogous argument applies for ĉi > zi(c−i) > 0.9

The last step is to show that tqi=0
i (c−i) = 0. This result follows from the mecha-14

nism being optimal, i.e., maximizing expected utility of the designer.

As a direct consequence of dominant-strategy implementability, Lemma 1 shows
that allocation and transfers are characterized by cutoffs. Project i is green-
lighted whenever it reports a cost that lies weakly below the cutoff. Crucially,
these cutoffs are functions of the other cost reports c−i. However, the optimal
cutoffs remain to be determined. The maximization problem of the designer is

9When ci = zi(c−i), (IC) permits both qi(ci, c−i) = 0 and qi(ci, c−i) = 1. By convention,
we assume qi(ci, c−i) = 1 in this case. However, writing a mechanism this way precludes
the specification of tie-breakers, which might be necessary to conserve budget balance. For
example, in a two-project example we would write down the mechanism “greenlight the cheaper
project” as z1(c2) = c2 and z2(c1) = c1. If c1 = c2 a tie-breaker is needed to select a project.
As this is a zero-probability event, the choice of the tie-breaker does not impact the designer’s
payoff. Similarly, as projects are indifferent, their ex-post utility is unaffected. Therefore we
refrain from specifying a tie-breaker and proceed with our analysis as if both projects are
greenlighted in these cases.
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given by
max{zi}i∈I

Ec [
∑

i qi(c)vi − ti(c)]

s.t. (BC),
qi(c) = I(ci ≤ zi(c−i)) ∀c ∈ C,

ti(c) = I(ci ≤ zi(c−i))zi(c−i) ∀c ∈ C.

(2)

Incentive compatibility and participation constraints hold by construction, as qi
and ti are determined by cutoff functions. Even the particularly crazy candidate2

in Figure 1 (introduced later) is incentive compatible and individually rational.

The next step towards solving this problem involves applying standard methods
introduced by Myerson (1981). Let the conditional expected probability of being
greenlighted and the conditional expected transfer be

Qi(ci) = Ec[qi(ci, c−i)|ci]

and Ti(ci) = Ec[ti(ci, c−i)|ci].

The interim incentive compatibility required by Myerson (1981) is weaker than4

our condition (IC). Consequently, the expected transfer is determined by the

allocation, Ti(ci) = Qi(ci)ci +
∫ ci
ci
Qi(x)dx. The usual monotonicity condition is6

trivially fulfilled as we are dealing with cutoff mechanisms. This reformulation
in turn allows us to rewrite the objective function as a function of the alloca-8

tion. Substituting into problem (2) and integrating by parts yields the following
maximization problem,10

max{zi}i∈I
Ec

[∑
i I(ci ≤ zi(c−i))

(
vi − ci −

Fi(ci)
fi(ci)

)]

s.t.∑
i∈I

I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c ∈ C.
(3)

We call ϕi(ci) := ci +
Fi(ci)
fi(ci)

the virtual cost of project i and ψi(ci) := vi − ϕi(ci)
the virtual surplus. Here, ϕ and ψ are the procurement analogues to standard12

auction terminology. We can directly see from problem (3) that the optimal
mechanism maximizes the expected sum of greenlighted virtual surpluses.14

Note that constrained optimization by Lagrangian is not straightforward here
because of the nondifferentiability of the indicator function. Instead, in the16

following we derive useful properties of the optimal cutoffs that can be exploited
to characterize the optimal mechanism. A cutoff mechanism is by construction18

monotonic in the following sense:

13



Definition 1. An allocation rule γ is monotonic in costs if i ∈ γ(ci, c−i) and
c′i < ci imply i ∈ γ(c′i, c−i) for all c−i ∈ C−i.2

In words, if a project gets greenlighted for some cost vector, it also gets green-
lighted when, all else equal, its cost is lower. To proceed, we restrict the class of4

distributions from which costs can be drawn.

Assumption 1 (Log-concavity). For all i, the cumulative distribution function6

Fi is log-concave.

This assumption is standard in information economics. It is equivalent to the8

reverse hazard rate function f/F being a weakly decreasing function or the ratio
F/f being weakly increasing. Hence, the standard regularity condition is implied:10

ϕi is strictly increasing and ψi is strictly decreasing. A decreasing reverse hazard
rate is the procurement analogue to the assumption of increasing hazard rate12

functions with a selling auctioneer.

Regularity ensures that a lower cost ci translates to a higher virtual surplus
ψi(ci). Hence, we can define the following cutoff cost type

z∗∗i :=

{
ψ−1
i (0) if ψ−1

i (0) ∈ Ci

ci otherwise
, (4)

where regularity implies the invertibility of ψi and thus allows for the above14

definition of z∗∗i . In the symmetric case, z∗∗i = z∗∗ for all i ∈ I. Let ζ∗∗ be the
n-dimensional vector with z∗∗i as i-th element for all i ∈ I.16

Definition 2. An allocation rule γ is ζ∗∗-exclusive if, for all i ∈ I, ci > z∗∗i
implies that i 6∈ γ(ci, c−i) for all c−i ∈ C−i.18

A cutoff mechanism is ζ∗∗-exclusive if and only if zi(c−i) ≤ z∗∗i for all c−i ∈ C−i

and for all i ∈ I. If the budget sufficed, a designer would want to greenlight all20

projects with nonnegative virtual surplus. Crucially, the arguments leading to
this statement also imply that it is never optimal to greenlight a project with22

negative virtual surplus.

Lemma 2. The optimal mechanism is ζ∗∗-exclusive. In the trivial case,
∑
z∗∗i ≤

B, the optimal cutoffs are independent of the cost reports,

zi(c−i) = z∗∗i ∀c−i ∈ C−i and ∀i ∈ I.

The proof of this lemma is standard and hence omitted. It immediately follows24

from the rewritten objective function (3): Greenlighting a project with negative

14



virtual surplus decreases the designer’s payoff and uses part of the budget. Guar-
anteeing the green light for high-cost types comes at the cost of having to pay2

higher information rents to all cost types. For the same reason, also a budget-
unconstrained designer would implement a ζ∗∗-exclusive mechanism, even when4

the surplus vi − ci is positive for all projects.

To continue our analysis, we focus on the more tractable two-project case in the6

next subsection. The first aim is to provide more structure on the cutoff functions
that determine the optimal allocation. This enables us to fully characterize the8

optimal allocation and how to implement it.

3.2 n = 210

Reducing the set of mechanisms that are candidates for optimality implies a
strong property in the two-project case: Project substitutability means that, if12

a project gets greenlighted for some cost vector c, it is also greenlighted when,
all else equal, another project’s cost is increased. This property relates to the14

cross-monotonicity defined in the cost-sharing problem of Moulin and Shenker
(2001): An agent’s cost share cannot increase when the allocation set expands.16

Definition 3. An allocation rule γ has substitutes if i ∈ γ(c) and c′j > cj for some
j 6= i implies i ∈ γ(c′j, c−j). Otherwise, the allocation rule has complements.18

Having in mind a setting with an exogenously determined amount of projects to
be procured and without a budget constraint, this property is clearly optimal,20

because if i is among the projects with the highest virtual surpluses for some cost
vector, it is also among them when the cost of some other project j is increased,22

i.e., when j’s virtual surplus is decreased. However, with the budget constraint,
this property does not hold in a full-information setting.10 A cutoff mechanism24

has substitutes if all functions zi are weakly increasing in each argument.

The optimality of this property will be proved jointly with Lemma 3 and Lemma26

4. The intuition is straightforward: The cost realizations of all projects are
independent and therefore project i’s cost report only influences the allocation28

of project j 6= i via the budget constraint. Project i’s cost report fixes the
cutoff of project j and thus determines the residual budget available to itself in30

10For example, there are two projects, v1 > v2. Under full information, both projects get
implemented for a cost vector (c1, c2) = (B − z, z). Then, increasing c1 would kick project 2
out of the allocation. In contrast, in our asymmetric-information setting where c2 pins down a
cutoff z1(c2) for project 1, project 1 instead loses the green light status, when its cost increases
while c2 remains constant.
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case project j is implemented. If project i exceeds its cutoff, this frees budget
to be distributed to project j. Consequently, j’s transfer should either remain2

constant or increase. For n > 2, a cost report does not simultaneously pin down
all other cutoffs and the remaining budget. In asymmetric cases, it is possible4

that projects endogenously become complements, see Subsection 3.4.

Project substitutability is related to the next property, non-bossiness. However,6

the two properties are not equivalent since an allocation rule can have non-
bossy complements as seen in Example 2. Milgrom and Segal (2015) provide an8

example with substitutes and a bossy winner.

Definition 4. An allocation rule γ is non-bossy if γ(c′i, c−i) ∩ {i} = γ(c) ∩ {i}10

implies γ(c′i, c−i) = γ(c).

An allocation rule γ has non-bossy winners if for any i ∈ I, c ∈ C, and c′i ∈ Ci,12

i ∈ γ(c′i, c−i) ∩ γ(c) implies γ(c′i, c−i) = γ(c). Otherwise, winners can be bossy.

An allocation rule γ has non-bossy losers if for any i ∈ I, c ∈ C, and c′i ∈ Ci,14

i 6∈ γ(c′i, c−i) ∪ γ(c) implies γ(c′i, c−i) = γ(c). Otherwise, losers can be bossy.

An allocation has non-bossy substitutes if it has substitutes and is non-bossy. An16

allocation has non-bossy complements if it has complements and is non-bossy.

In words, a non-bossy winner (loser) cannot affect the allocation without chang-18

ing its own green-light (red-light) status. In Example 3, we illustrate that an op-
timal allocation rule can have bossy losers when there are at least three projects.20

The following lemma states that, given both projects are greenlighted for two
different cost vectors, the transfers for both cost vectors have to be the same.22

That is, when both projects are greenlighted, their transfer is constant. Intu-
itively, optimal cutoffs cannot depend on greenlighted projects’ cost, because for24

these projects the cutoff coincides with the transfer. If the budget constraint is
binding, a greenlighted project would be able to influence its own cutoff, i.e., the26

budget minus the transfer to the other (greenlighted) project. This contradicts
the notion of a cutoff mechanism.28

Lemma 3. Suppose the nontrivial case with n = 2. If γ is optimal and γ(c̃1, c̃2) =
γ(ĉ1, ĉ2) = {1, 2}, the transfers to both projects are constant. That is,30

t1(c̃1, c̃2) = z1(c̃2) = z1(ĉ2) = z,

t2(c̃1, c̃2) = z2(c̃1) = z2(ĉ1) = B − z.

Proof. By Lemma 1, the optimal mechanism has to be a ζ∗∗-exclusive cutoff
mechanism. Take any feasible candidate mechanism with any cutoff functions
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{z1, z2} violating the lemma and define

a1 = max{c1|∃c2 : c2 ≤ z2(c1), c1 ≤ z1(c2)}

a2 = max{c2|∃c1 : c1 ≤ z1(c2), c2 ≤ z2(c1)}, (5)

i.e., ai is the highest cost of project i such that both projects are implemented.
Since by assumption there exist cost vectors such that both projects are green-2

lighted, the sets over which we have defined a1 and a2 are non-empty. The
maximum exists by left-continuity of any optimal function zi.

11 For a graphical4

illustration of a feasible candidate mechanism violating the lemma and of how
to improve such a mechanism, consult Figure 1.6

B c1

B

c2

a2

a1

ċ2

ċ1

z2

z1

Figure 1: The depicted feasible mechanism greenlights both project for all cost
combinations in the darker gray area. This mechanism cannot be optimal, since
the alternative mechanism constructed is feasible as well, additionally greenlights
a project in the lighter gray area and is otherwise equivalent.

Hence by definition of a1, there (not necessarily uniquely) exists ċ2 such that a1 =
z1(ċ2). Similarly, there exists ċ1 such that a2 = z2(ċ1). By definition, (ċ1, ċ2) ≤8

(a1, a2) and at cost realization (ċ1, ċ2) both projects are implemented. The bud-
get feasibility of the candidate mechanism implies a1 + a2 ≤ B such that the10

following constructed alternative mechanism is feasible as well.

The initial candidate cannot be optimal, since it is outperformed by an alterna-12

11We can replace any function zi with a left-continuous function that is identical up to a set
of points with Lebesgue-measure zero. Hence, if there exists an optimal function zi that is not
left-continuous, then there also exists a left-continuous version of the same function that yields
the same payoff and hence is also optimal.
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tive mechanism with cutoffs

ẑi(cj) =

{
ai if cj ≤ aj

zi(cj) else.

This alternative mechanism weakly outperforms the initial candidate state-by-2

state as it either implements the same allocation or a strictly better one by
greenlighting an additional project. If a1 + a2 6= B and both ai < z∗∗i , then the4

alternative mechanism can be improved further by increasing cutoffs such that
the budget constraint binds.6

In Lemma 5, a form of the previous lemma is generalized to n > 2 if γ has
substitutes: Given two cost vectors implement the same allocation and only8

differ in the cost levels of greenlighted projects, the transfers to these greenlighted
projects are identical for both cost vectors.10

Lemma 4. Suppose n = 2. The optimal mechanism has substitutes,

zi(c̃j) ≥ zi(ĉj) for almost every c̃j > ĉj (6)

and is non-bossy.

Proof. In Lemma 3, we have shown that an optimal zi is constant for all cj ≤ aj,12

as defined in (5). Consequently, the set of cost combinations such that both
projects are implemented is14

A := {(c1, c2) : c1 ≤ a1, c2 ≤ a2}

and |γ(c1, c2)| ≤ 1 if (c1, c2) 6∈ A. By the cutoff nature of the optimal mechanism,
we also know that j 6∈ γ(c1, c2) if ci ≤ ai and cj > aj. By Lemma 2, γ(c1, c2) = ∅16

if (c1, c2) ∈ Z∗∗ with

Z∗∗ := {(c1, c2) : ci > min{z∗∗i , B} for both i ∈ {1, 2}}.

As a result, it is feasible and optimal to greenlight exactly one project for cost
vectors (c1, c2) 6∈ A ∪ Z∗∗. If it is optimal and feasible to implement project 1
given some cost vector (z1(ĉ2), ĉ2), then, by regularity, the mechanism designer
also prefers to greenlight project 1 when the cost of project 2 is increased to
c̃2 > ĉ2 with

ψ1(z1(ĉ2)) ≥ ψ2(ĉ2) > ψ2(c̃2), (7)

i.e., decreasing cutoffs are suboptimal, z1(c̃2) ≥ z1(ĉ2). Since cutoff functions18

are weakly increasing, a project 2 cannot kick project 1 out of the allocation by
reporting a higher cost. If project 2 reports a lower cost, it either does not change20

the allocation (if c2 ≤ a2) or project 1 is replaced by project 2, because the first
inequality in (7) is flipped. As a result, winners and losers are non-bossy.22
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On a first glance, Inequalities (7) seem to suggest that it is always optimal
to greenlight the project with the higher virtual surplus when |γ(c1, c2)| = 1.2

However, always greenlighting the better project may not be feasible when the
set A is determined optimally. Suppose that in optimum, ψ1(a1) > ψ2(a2). Then,4

an allocation γ(a1+ ε, a1) = 1 for some ε > 0 would not be strategyproof: Given
c2 = a2, project 1 of cost type a1 would want to misreport costs to gain a transfer6

of at least a1+ε. Such a combination of (a1, a2) turns out to be a generic feature
of the optimal mechanism.8

Let us consider the nontrivial two-project case: The rewritten maximization
problem of the designer (3) is given by

maxz1(c2),z2(c1) E
[
I(c1 ≤ z1(c2))

(
v1 − c1 −

F1(c1)
f1(c1)

)

+I(c2 ≤ z2(c1))
(
v2 − c2 −

F2(c2)
f2(c2)

) ]

s.t.
I(c1 ≤ z1(c2))z1(c2) + I(c2 ≤ z2(c1))z2(c1) ≤ B ∀(c1, c2) ∈ C.

(8)

By virtue of the optimal properties, the designer must greenlight project i once
its cost is below the constant ai. If both projects report greater costs, the designer
is free to choose one of them. A glance at the objective function (8) reveals that
in such a case it is desirable to greenlight the project with greater positive virtual
surplus. This insight allows us to rewrite the objective function (8) as a function
of constant z,

max
z
π(z) =

∫ z

0

ψ1(c1)dF1(c1) +

∫ B−z

0

ψ2(c2)dF2(c2) (9)

+

∫ c2

max{ψ−1

2
(ψ1(z)),B−z}

∫ min{ψ−1

1
(ψ2(c2)),z∗∗1 ,B}

z

ψ1(x)dF1(x)dF2(c2)

+

∫ c1

max{ψ−1

1
(ψ2(B−z)),z}

∫ min{ψ−1

2
(ψ1(c1)),z∗∗2 ,B}

B−z

ψ2(x)dF2(x)dF1(c1),

i.e., the problem collapses to finding a single constant.

In the symmetric case, the ranking of virtual surpluses coincides with the reversed10

order of costs. Hence, it can easily be seen that in the symmetric case either both
projects are implemented or the one with lower costs. This observation for the12

symmetric case extends to more than two projects, n > 2, see Subsection 3.3.
A natural extension of this mechanism to the asymmetric case would involve14

adjusting the cutoffs so that they equalize virtual surplus. This modification
ensures that, if a project has to be redlighted, the least attractive project in16
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terms of virtual surplus is rejected. We call this allocation rule the candidate
allocation.2

The nongeneric condition for optimality of the candidate allocation is stated
in (10). To implement the candidate allocation, the constant cutoffs at which4

both projects are greenlighted must be a pair (a1, a2) = (z, B − z) such that

ψ1(z) = ψ2(B−z). Then, however, optimality is only obtained if F2(B−z)
f2(B−z)

= F1(z)
f1(z)

.6

The intuition behind this statement is straightforward. Selecting z in order to
satisfy ψ1(z) = ψ2(B − z) allows the designer to always greenlight the project8

with the higher virtual surplus, whenever it is not feasible to greenlight both
projects. However, if F2(B−z)

f2(B−z)
6= F1(z)

f1(z)
the cutoffs z and B − z do not maximize10

the probability to greenlight both projects. Consequently, the designer can adjust
the cutoffs {z, B− z} to trade off a higher probability of implementing the most12

favorable allocation (γ(c1, c2) = {1, 2}) against a positive probability of having
to implement the less preferred of two possible singleton allocations (γ(c) = {j},14

when project j has lower virtual surplus).

Therefore two aspects of the designer’s payoff maximization - getting projects16

with high virtual surplus and getting as many projects as possible - are only
aligned if condition (10) is met. In the symmetric case, the condition holds by18

construction. However, in an asymmetric environment it is generically violated.

Proposition 1. In the nontrivial asymmetric two-project case, i.e., n = 2 and
z∗∗1 + z∗∗2 > B, in which values or cost distributions differ across projects, it is
generically not optimal to always greenlight the project with the higher virtual
surplus. That is, under the optimal allocation rule γ, there may exist cost vectors
such that

i 6∈ γ(ci, cj), and j ∈ γ(ci, cj)

although
ψi(ci) > ψj(cj).

Proof. Given the max operators in (9), the derivative takes a different form
depending on whether ψ1(z) ≷ ψ2(B − z). However, as π is continuously differ-
entiable, it suffices to look at one of the two forms,

∂π

∂z

∣∣∣∣
z:ψ1(z)≥ψ2(B−z)

=

∫ ψ−1

1
(ψ2(B−z))

z

ψ1(x)dF1(x)f2(B − z)+

+ ψ1(z)f1(z)F2(B − z)

− ψ2(B − z)f2(B − z)F1(ψ
−1
1 (ψ2(B − z))).
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Now, consider z corresponding to the candidate allocation with ψ1(z) = ψ2(B −
z), which yields

∂π

∂z
= 0 ⇔

F2(B − z)

f2(B − z)
=
F1(z)

f1(z)
, (10)

a nongeneric case. Consequently, it is generically not optimal to always allocate
to the project with the higher virtual surplus.2

Proposition 1 is driven by a tradeoff between quantity and quality: Even though
the designer prefers the project with higher virtual surplus conditional on imple-4

menting only a single project, she sometimes greenlights the project with lower
virtual surplus out of two rival projects, as quantity is endogenous here. By6

endogenous quantity, we mean that the designer is only restricted by the feasi-
bility constraints and is otherwise free to choose how many projects she want to8

procure. The simplest way to lay out the intuition behind Proposition 1 is by
an example.10

Example 1. There are two projects, (n = 2) with v1 = 5, v2 = 4.5 and c1 and c2
are uniformly distributed on support [0, 1]. The budget is given by B = 1. The
optimal cutoff functions are given by:

z1(c2) =





0.53 if c2 ≤ 0.47

c2 + 0.25 if 0.47 < c2 ≤ 0.75

1 if c2 > 0.75

z2(c1) =

{
0.47 if c1 ≤ 0.72

c1 − 0.25 if c1 > 0.72.

The corresponding optimal allocation is:

(q1, q2) =





(1, 1) if 0 ≤ c1 ≤ 0.53 and 0 ≤ c2 ≤ 0.47

(1, 0) if 0 ≤ c1 ≤ 0.72 and c2 > 0.47

(1, 0) if c1 > 0.72 and ψ1 ≥ ψ2

(0, 1) if 0.53 < c1 ≤ 0.72 and c2 ≤ 0.47

(0, 1) if c1 > 0.72 and ψ1 < ψ2.
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The corresponding transfers are:

t1(c1, c2) =





0.53 if c2 ≤ 0.47 and c1 ≤ 0.53

c2 + 0.25 if 0.47 < c2 ≤ 0.75 and c1 ≤ c2 + 0.25

1 if c2 > 0.75

0 otherwise

t2(c1, c2) =





0.47 if c1 ≤ 0.72 and c2 ≤ 0.47

c1 − 0.25 if c1 > 0.72 and c2 < c1 − 0.25

0 otherwise.

Consider Example 1. The candidate allocation demands cutoffs such that ã1 =2

0.625 and ã2 = 0.375 for allocating to both projects. At these cutoffs, the prob-
ability of greenlighting both projects is 0.625 · 0.375 ≈ 0.234. This allocation4

is depicted in Panel 2a. In contrast, the maximal feasible probability to green-
light both projects is at equal cutoffs, â1 = â2 = 0.5. The corresponding area6

is the dotted square in the lower-left corner of Panel 2b. However, at these cut-
offs it is not incentive compatible to guarantee the green light for the project8

with higher virtual surplus in every case. More specifically, it is not incentive
compatible to allocate along the dotted12 diagonal line, if at least one project10

exceeds âi. Hence, strategyproofness introduces a tradeoff between maximizing
the probability of greenlighting both projects and allocating to the preferred one12

if only one project is feasible. Consequently, the optimal (a∗1, a
∗
2) do not lie at

(0.625, 0.375) but rather at (0.53, 0.47). Importantly, this optimal discrimination14

against the stronger project is pursued on top of the usual discrimination against
stochastically stronger projects reflected in the virtual costs.16

Given the optimal allocation in Example 1, there are some realizations of the cost
vector for which the designer greenlights the project with lower virtual surplus.18

These realizations are represented by the shaded area in Panel 3a. Here, the
constraints and the choice of (a1, a2) force the designer to greenlight project 2,20

even though project 1 has the higher virtual surplus.

The cost vectors for which the designer implements both projects are represented22

by the rectangular area in the lower-left corner of Panel 3a. Any point (a1, a2)
on the dashed line representing the budget constraint satisfies a1 + a2 = B.24

12Not to be confused with the dashed diagonal representing the budget constraint.
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Moving this corner point southeast from (0.5, 0.5) along the dashed budget line
has two effects: shrinking the shaded area and shrinking the area of the lower-left2

rectangle. While it is desirable to shrink the shaded area, in which the designer
must allocate to project 2 despite its lower virtual surplus, it is undesirable to4

shrink the size of the rectangle, which in this example represents the probability
that both projects are conducted. Given that we have an interior solution in this6

example, at (a1, a2) these two effects balance each other out.

B, c1 c1

B, c2

c2

both

1

2

ã1

ã2

(a) Candidate allocation.

B, c1 c1

B, c2

c2

both

1

2
a∗2

a∗1

(b) Optimal allocation.

Figure 2: Candidate and optimal allocation for Example 1.

Graphically, the fact that there is no slack in the budget constraint if both8

projects are greenlighted implies that the area representing points at which both
projects are executed touches the dashed line at least once. In fact, it can touch10

the budget line exactly once, as it is not possible to greenlight both projects
when c1 > a1 or c2 > a2 without violating (BC) sometimes. This result means12

that the area where both projects are greenlighted is the rectangle with corners
(0, 0) and (a1, a2). Then, if c1 < a1 but c2 > a2, the nature of cutoffs prevents the14

designer from greenlighting project 2. Therefore project 1 must be greenlighted,
as represented by the lightly shaded area in Panel 3b. A similar argument applies16

to the darkly shaded area. Thus, looking at Panel 3b, the choice of (a1, a2)
determines the allocation for all cost realizations except those in the upper-right18

corner. Here, the designer is free to choose the allocation, as long as the line
delineating whether project 1 or 2 gets greenlighted is (weakly) increasing or20

vertical. Not surprisingly, it is optimal to greenlight the project with the higher
virtual surplus.22

Having characterized the optimal allocation, we now turn to the issue of how to
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B, c1 c1

B, c2

c2

1

2
a∗2

a∗1

both

(a) Greenlighting the project with lower vir-
tual surplus.

B, c1 c1

B, c2

c2

both
a∗2

a∗1

2 by (IC)

1 by (IC)

free to
choose (IC)
allocation

(b) (IC)-constraints on the allocation.

Figure 3: Greenlighting the project with lower virtual surplus and (IC)-
constraints on the allocation (Example 1).

implement it. Taking stock, among all mechanisms satisfying (PC), (BC) and
(IC), any mechanism that maximizes the designer’s expected payoff (1) belongs2

to a certain class of mechanisms: We have shown that the optimal two-project
mechanism is4

Property 1 monotonic in costs,

Property 2 ζ∗∗-exclusive,6

Property 3 non-bossy, and

Property 4 has substitutes.8

Being able to restrict attention to mechanisms with these properties is highly
useful, as these mechanisms are a much more tangible class than the substantially10

larger set of all permissible cutoff mechanisms. In addition, all mechanisms with
these properties can be implemented with a DA auction as proposed by Milgrom12

and Segal (2015). To this end, we first restate their definition adapted to our
setting.14

Definition 5 (DA auction). A deferred acceptance (DA) auction is an iterative
algorithm defined by a collection of scoring functions

sAi : Ci × CI\A → R+
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that are weakly increasing in ci for all i ∈ A and for all A ⊂ I. Let At ⊂ I denote
the set of active bidders in iteration t and initially A1 = I. The algorithm stops
in some period T when all active projects have a score of zero, sAT

i = 0 for all
i ∈ AT . Then the set of greenlighted project is AT . Otherwise, at each iteration
t, the project with the highest score is removed. The payment pti of project i
at iteration t is either given by the highest possible cost that i could have had
without being removed from the set of active bidders or by the last iteration’s
payment, depending on which payment is smaller,

pti(c) =

{
sup{c′i : s

At

i (c′i, cI\At
) < sAt

j (cj, cI\At
)} for j ∈ At \ At+1,

min{sup{c′i : s
At

i (c′i, cI\At
) ≤ 0}, pt−1

i } if t = T.

The algorithm is initialized with p0i = min{ci, z
∗∗
i , B}.13

The main appeal of DA auctions lies in their incentive guarantees. They are not2

only strategyproof, they are obviously strategyproof, as defined by Li (2015).
Moreover, DA auctions are weakly group-strategyproof. That is, no coalition of4

projects can manipulate their reports such that it strictly increases the utility
of all projects in the coalition: At least one member of the coalition receives a6

weakly worse payoff whenever other coalition members benefit. Because collusion
in auctions is generally illegal, compensating the worse off coalition member is8

not contractible. In addition, the dominant-strategy equilibrium outcome in a
DA auction can be interpreted as robust in the following sense: Consider the10

full-information game in which all cost reports are observed, projects can report
any cost, the allocation is determined according to the DA auction’s allocation12

rule, but projects receive their own report as payments. The dominant-strategy
equilibrium outcome of the DA auction is the only outcome that survives iterated14

deletion of dominated strategies in this game.

Proposition 2. (Milgrom and Segal (2015)) Any monotonic allocation rule with16

substitutes and non-bossy winners has a DA auction representation and can be
implemented with a descending-clock auction.18

Milgrom and Segal (2015) prove this statement for finite type spaces in their
Proposition 7. The informed reader may notice that their proposition is an if-20

and-only-if statement. However, the necessity of the substitutes condition hinges
on the fact that they want the statement to hold for any subset of the type22

space. We discuss this necessity further in Subsection 3.4. By Proposition 2,

13Compared to Milgrom and Segal (2015), we slightly tweak the updating function of pay-
ments without changing the deferred acceptance nature of the algorithm and any of its prop-
erties.
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the optimal allocation can be implemented with a descending-clock auction. In
the following, we show how to accommodate the tradeoff between quantity and2

quality elaborated on in Proposition 1 in a modified clock auction.

Corollary 1. Generically, in an optimal implementation with descending price4

clocks, the clocks not only run at individual speeds, occasionally some clocks also
have to halt.6

Since the optimal allocation rule in the symmetric case is anonymous, it can
be implemented with a single clock that suggests prices for all active projects.8

However, in asymmetric cases, each project must have an individual price clock,
because heterogeneous virtual surplus functions require individual speeds. In-10

terestingly, an implication of the quantity-quality tradeoff is that sometimes one
clock has to halt. For Example 1, the clock prices, denoted by τi, are depicted in12

Figure 4 as a function of time. The duration of the auction can be divided into
three segments. The auction starts with both clocks at z∗∗1 = z∗∗2 = c. First, τ214

decreases while τ1 is held constant, which happens until both clock prices lead to
the same virtual surplus, i.e., ψ2(τ2) = ψ1(c2). Second, both τ1 and τ2 decrease si-16

multaneously, but asynchronously keeping virtual surplus equal, ψ1(τ1) = ψ2(τ2),
until τ2 = z2(c1). Third, only τ1 decreases until τ1 = z1(c2). If at this point both18

projects still remain in the auction, the auction stops and both are greenlighted.
Otherwise, the inferior project 2 is greenlighted.20

time

prices
τ1, τ2

c

τ2

τ1

a∗1

a∗2

ψ−1
2 (ψ1(c))

end

Figure 4: Optimal descending-clock auction in Example 1.

The cost vectors for which the designer greenlights project 2 despite its lower
virtual surplus, represented by the shaded area in Panel 3a, are also represented22

graphically in Figure 4: If the auction ends in the third time segment (shaded area
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of Figure 4) before both projects can be greenlighted, project 1 must have exited
because τ1 dropped below c1. Project 2 is greenlighted and receives transfer a∗22

even though project 1 has the higher virtual surplus. Therefore if cost vectors in
the shaded area of Panel 3a realize, the optimal descending-clock auction ends4

in the third time segment.

We should emphasize again a novel feature of this descending-clock auction. The6

clocks of both projects are paused asynchronously over some time of the auction.
One project’s clock runs down while the other project’s clock stops. Since we8

have examined a very simple example with only two projects, each project’s clock
is paused only once. If an allocation with more projects is implementable with10

price clocks, the projects’ clocks may pause and resume several times.

Given the complexity of our problem, we do not find a simple and general (n > 2)12

full characterization of the optimal mechanism in the asymmetric case that we
further elaborate on in Subsection 3.4. In our examples with two projects, the14

problem boils down to finding one point, (a1, a2), with respect to one crucial
tradeoff. Naturally, the number of relevant tradeoffs increases with the number16

of projects. Therefore unfortunately, optimization with a larger set of projects
quickly loses tractability.18

3.3 n > 2. The symmetric case

In this section, we focus on symmetric projects, i.e., environments with vi = v20

and Fi = F for every project i ∈ I. An implication of this assumption is that the
order of costs coincides with the order of virtual surpluses and that z∗∗i = z∗∗ for22

all i ∈ I. Hence, there is no such tradeoff as in asymmetric cases: The designer
can maximize the probability to implement the best allocation (greenlight as24

many projects as the budget allows) without being forced to greenlight an inferior
project by the incentive constraint.26

Proposition 3. Arrange the projects in ascending order of their reported costs,
c1 ≤ c2 ≤ · · · ≤ cn ≤ cn+1 := c, and define zk := min

{
B
k
, z∗∗, ck+1

}
. In28

the symmetric case, given any cost vector, the optimal number of implemented
projects k∗ is given by k∗ := max{k|ck ≤ zk} and all implemented projects30

receive identical transfer zk
∗

.

Proof. First of all, define k = max{k : kc ≤ B} as the maximal possible number
of procured projects. Even under full information it is never budget-feasible to
implement more than k projects. Consequently, implementing the cheapest k
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projects is the designer’s most favorable allocation. Let c−i,k be the k-th highest
cost of i’s competitors. By setting

zi(c−i) = min{z∗∗, c−i,k} if c−i,k ≤
B

k
(11)

for all i ∈ I the designer guarantees the first-best allocation for all vectors such
that ck ≤

B

k
for any k > k: The cheapest k projects are greenlighted when they2

have nonnegative virtual surplus, otherwise all projects with nonnegative virtual
surplus are greenlighted.4

By setting

zi(c−i) = min{z∗∗,
B

k
} if c−i,k−1 ≤

B

k
< c−i,k (12)

for all i ∈ I the designer guarantees the first-best allocation for all vectors such
that ck ≤ B

k
< ck+1. As all cost distributions are identical, the probability to6

implement this payoff-maximizing set is maximized by setting these symmetric
cutoffs.8

The designer cannot additionally implement the first-best allocation for other
cost vectors without violating at least one of the constraints. By setting cut-10

offs asymmetrically, the designer can greenlight k projects for other cost vectors.
However, such an alternative mechanism features a lower probability to imple-12

ment k projects.

Since for all other cost vectors the payoff-maximizing set is not implementable,14

the designer considers the next-best set, implementing the (k − 1) cheapest
projects. Analogously to the steps before, she sets16

zi(c−i) = min{z∗∗,
B

k − 1
, c−i,k−1} if c−i,k−1 ≤

B

k − 1

to maximize the probability to implement the next-best set (greenlighting the
cheapest k−1 projects) taken as given the cutoffs set in Equations (11) and (12).18

We arrive at the proposed mechanism by continuing in this fashion.

To sum up, in the symmetric case, the optimal allocation rule takes a simple20

form: The cheapest projects are greenlighted and the mechanism greenlights as
many projects as the budget allows, while each procured project receives the22

same compensation. Any project that is redlighted prefers this allocation status
over having to conduct the project with the associated compensation. It can24

be easily verified that this allocation rule indeed inherits all the properties we
derived in the asymmetric two-project case. Thus, the optimal allocation is26

implementable with price clocks.
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There are two rationales for greenlighted projects to get the same transfer. First,
as shown in the proof of Proposition 3, this cutoff rule maximizes the probability2

of getting as many projects as possible. Strategyproofness prevents the budget
from being shifted away from projects with low cost reports to projects with high4

costs as in the full-information allocation. Therefore offering equal cutoffs is the
best the designer can do. Second, as seen in (3), the rewritten maximization6

problem of the designer, the expected utility of the designer is given by the sum
of virtual surpluses of greenlighted projects. Therefore she wants to greenlight8

those projects with the highest virtual surpluses. That goal is consistent with
offering equal cutoffs to greenlighted projects and excluding those with higher10

cost. In the optimal allocation, greenlighted projects have higher virtual surplus
than those which are not greenlighted. The compatibility of the two goals - get12

as many projects as possible and get those with the highest virtual surpluses - is
a special feature of the symmetric case, as he have demonstrated in Proposition14

1.

c1 B c1

c2 = c
B

c2

both

1

2

(a) Budget-constrained, full information.

c1 B c1

c2
B

c2

both

1

2z2(c1)

z1(c2)

none

z∗∗

z∗∗

(b) Budget-constrained, private information.

Figure 5: An example of optimal allocations for the symmetric case with n = 2.

Figure 5 illustrates the optimal budget-constrained allocations in an example16

with two projects. Panel 5b shows the fully-constrained optimal allocation jux-
taposed with the relaxed optimal allocation when (IC) is neglected, shown in18

Panel 5a. First, note that in this example v ≥ c and c < B. Therefore a
fully-unconstrained designer with full information would always greenlight both20

projects, and a budget-constrained designer with full information would always
greenlight at least one project. However, since z∗∗ < c, there exist realizations22

of c (the upper-right corner of Panel 5b) such that no project gets greenlighted
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in the (IC)-constrained optimal allocation, even though doing so would be prof-
itable from an ex-post perspective. The negative virtual surpluses of the projects2

in these cases indicates that the cost of allocating to such a project - incentive
compatibility requires higher transfers for other cost types - outweighs the bene-4

fit from an ex-ante perspective. The second major difference between the relaxed
optimal allocation and the optimal allocation can be seen for those realizations of6

costs such that allocating to both projects would be feasible only in the relaxed
problem. This difference is a result of the designer’s inability to shift budget8

from low-cost to relatively higher-cost projects with a strategyproof mechanism.

Corollary 2. In the symmetric case, the optimal direct mechanism can be im-10

plemented by a descending-clock auction. The clock price, denoted by τ , starts
at z∗∗ and descends continuously and synchronously down to B

n
. Projects can12

drop out at any price but cannot re-enter. The auction stops once the clock price
can be paid out to all projects remaining in the auction.14

In any iteration, a scoring function of the corresponding DA auction is

sAt

i (ci, At) = max

{
ci −

B

|At|
, 0

}
.

We consider the descending-clock auction of Corollary 2 to be a natural indirect
mechanism that implements the outcome of the optimal allocation. Project i’s16

equilibrium strategy, which implements this outcome, has it staying active as
long as the price is weakly larger than its private cost, τ ≥ ci. It is easily18

verifiable that this is a weakly dominant strategy for project i.

3.4 n > 2. The asymmetric case20

In general, not all our insights from the two-project case carry over as nicely as in
the symmetric case. In this section, we first establish that the sufficient properties22

for implementability by clock auctions continue to hold if project substitutability
holds, Lemma 5. However, it turns out that there are two major reasons why an24

optimal allocation rule may not have substitutes, as discussed with Example 214

and 3. Let us start with a generalized form of Lemma 3 assuming that project26

substitutability holds.

Lemma 5. Suppose γ has substitutes. For any cost vectors (cG, cR), (c
′
G, cR) ∈

C such that G = γ(cG, cR) = γ(c′G, cR) and R = I \ G, the optimal cutoff

14The spirit of this example is due to Daniel Garćıa.
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function zg for all g ∈ G is (almost everywhere) independent of the costs of all
greenlighted projects cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR) ∀g ∈ G.

The proof is stated in the appendix. It generalizes the intuition of the two-project
proof by defining some ai similar to (5), which is set-individual and contingent on2

cost reports of redlighted projects. The proof relies on the substitutes condition
in Inequality (14). Unlike the two-project case, with more projects there not4

necessarily exists a cost combination ċ such that zg(ċ−g) = aGg for all projects g in
some allocation set G. As an immediate consequence of Lemma 5, the following6

corollary establishes that any optimal cutoff mechanism with substitutes has
non-bossy winners. That is, for optimal allocation rules with substitutes a clock-8

auction implementation exists.

Corollary 3. Any optimal mechanism with substitutes also has non-bossy win-10

ners: If γ has substitutes, for all vectors ĉG : ĉg ≤ c̃g for all g ∈ G,

G = γ(c̃G, c̃R) implies γ(ĉG, c̃R) = G.

Hence, for all i ∈ I, for all c−i ∈ C−i, and for all ĉi, c̃i ∈ Ci with ĉi < c̃i, in any
optimal mechanism,

ĉi < c̃i ≤ zi(c−i) implies γ(ĉi, c−i) = γ(c̃i, c−i).

However, there are settings such that project substitutability is not optimal.12

Importantly, complementarities can ensue endogenously despite our assumption
that projects’ values and costs are independent of the allocation. If the lowest14

possible cost levels ci are such that greenlighting some project combinations
is never feasible, projects can endogenously become complements. We call such16

parameter combinations disjoint and also refer to two projects as disjoint if for no
cost vector both projects can feasibly be greenlighted together. The first reason18

for complementarity is that two projects are only desirable when implemented
together as seen in the following example: The designer prefers implementing20

1 and 2 together over implementing 3 alone, but once either 1 or 2 becomes
too expensive the other project is dropped as well in favor of implementing only22

project 3.

Example 2. Suppose n = 3 and z∗∗i = ci for all i ∈ {1, 2, 3}. Let the values be24

such that

ψ1(c1) + ψ2(c2) > ψ3(c3) > max{ψ1(c1), ψ2(c2)}
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for all (c1, c2, c3) ∈ C and let the cost supports be such that

c1 + c2 < c3 ≤ B < min{c3 +min{c1, c2}, c1, c2}.

Then, the corresponding optimal mechanism has the following form

z1(c2, c3) =

{
z if c2 ≤ B − z

0 otherwise
, z2(c1, c3) =

{
B − z if c1 ≤ z

0 otherwise
,

z3(c1, c2) =

{
c3 if c2 > B − z or c1 > z

0 otherwise

This example can be seen as an extension of the asymmetric two-project case to2

a third project that can never be implemented together with any of the other
two. To find the optimal allocation, the designer hast to find a constant z such4

that {1, 2} is implemented when (c1, c2) ≤ (z, B − z) as in the two-project case.
However, she does not have to consider the quantity-quality tradeoff. The reason6

is that project 3 is optimally greenlighted once one of the other projects’ costs
exceeds its cutoff.8

Here, bidder substitutability fails because, as c1 increases (ε > 0) from z − ε to
z + ε, project 2 with costs c2 ≤ B − z gets dropped from the allocation set. The10

designer cannot consider an alternative mechanism that reduces z3 marginally
to increase z2 because the lower cost bounds prohibit that projects 2 and 3 are12

ever conducted together and implementing {3} is preferred to implementing {2}
alone. The cutoff mechanism in this example has non-bossy complements as14

projects 1 or 2 can only influence the allocation by changing their own allocation
status.16

This example satisfies only two of the three sufficient conditions for an imple-
mentation by a DA auction or clock auction. Clearly, the substitutes condition18

we imposed is not necessary. In this disjoint example, it is easy to construct an
implementation with price clocks: All clocks start at the upper bounds. Then (at20

arbitrary speed) the prices of 1 and 2 descend to (z, B − z). If both projects are
still active, the price for project 3 jumps to zero, and 1 and 2 are implemented22

with their corresponding clock prices. If any project i ∈ {1, 2} drops out earlier,
then the price for j 6= i, j ∈ {1, 2} drops to zero, while price 3 remains at c3: 324

is implemented with its maximal transfer.

Because project 1 and 2 are complements their price clocks have to be inter-26

connected. This interconnection of price clocks is not a contradiction to the
requirement that a DA scoring function of any project i only depends on ci and28
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the costs of rejected projects, cI\A. The reason is that a single project i ∈ {1, 2}
can infer from its own cost whether allocation {1, 2} is ruled out. Thus, either2

one of the two projects is rejected in the first iteration (has the highest score) or,
if both projects find the payoff-maximizing allocation set to be feasible, project4

3 is rejected and the algorithm stops in the next iteration. If a project i ∈ {1, 2}
is rejected in the first iteration, the score of the remaining project j ∈ {1, 2}6

can depend on the cost of the rejected project i to be rejected next. Return-
ing to a deferred acceptance logic, the scoring function first test whether the8

most-preferred allocation is blocked by project 1 or 2.

The next example features another kind of complementarity. In this example,10

project 3 can be a bossy loser. To construct this example, we intertwine a disjoint
two-project symmetric environment with an additional small project. The small12

project can additionally be implemented if the residual budget suffices, which by
construction of the example is not always the case.14

Example 3. Suppose n = 3 and z∗∗i = ci for all i ∈ {1, 2, 3}. Let

ψ1(c) = ψ2(c) > ψ3(c3)

for all (c, c, c3) ∈ C and let F1 = F2 (implying c1 = c2) with cost supports such16

that

min{2c1, c1 + c3} > B > c1 + c3.

The optimal mechanism takes the following form

z1(c2, c3) = c2, z2(c1, c3) = c1, z3(c1, c2) = B −max{c1, c2}.

Here, the designer prefers to implement the cheaper of the symmetric projects18

and adds small project 3 when feasible. The redlighted symmetric project can
be a bossy loser since it determines the transfer to the other symmetric project.20

Hence, it determines the residual budget for project 3 and this residual budget is
the cutoff level of project 3. As a result, an increase in the redlighted symmetric22

project’s cost can, all else equal, kick project 3 out of the allocation set without
affecting the rejected project’s status. Again, there exists a straightforward DA-24

auction (clock-auction) implementation. Once a symmetric project is rejected,
the second-iteration scoring function of project 3 can check whether the rejected26

project blocked the implementation of project 3.

In the above examples, the allocation rules are monotonic and have non-bossy28

winners. However, they only satisfy a weaker form of project substitutability:
All projects are substitutes for disjoint projects, i.e., the cutoff of a project is30
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weakly increasing in the cost of disjoint projects. For Example 2, we can readily
verify that z1 and z2 are constant in c3, and z3 is weakly increasing in c1 and c2.2

Similarly, in Example 3, z1 is increasing in c2 and vice-versa. While z1 is weakly
decreasing in c2 and vice-versa in Example 2 and while z3 is weakly decreasing4

in c1 and c2 in Example 3, these projects are not disjoint with each other.

Weakening the substitutes condition is in the spirit of the matching literature6

where substitutability is known as a sufficient condition for many results, while
it is clearly not always necessary in matching with contracts, see, e.g., Hatfield8

and Kojima (2008). While there is no less-restrictive sufficient conditions for
all matching insights relying on substitutes, there are plausible weaker sufficient10

conditions for some known results. As a successful example, Hatfield and Kojima
(2010) introduce the concept of bilateral substitutes as a sufficient condition for12

a stable matching to exist in the canonical doctors-match-hospitals model. It re-
mains a question for future research to identify the weakest substitutes condition14

allowing for a DA-auction implementation in our setting.

4 Discussion16

With our model as a starting point, there are several interesting modifications.
In this section, we address the most natural alternative models or extensions.18

vi as private information, potentially correlated with ci - The designer
can neglect asking for vi directly since no meaningful non-babbling equilibria20

in the vi-dimension exist. If the conditional density of vi|ci has full support,
project i cannot credibly announce being a “high” type, say vi. If we slightly22

change the regularity assumption such that E[vi|ci]− ci −
F (ci)
f(ci

must be strictly
increasing, our results generalize by exchanging the previously commonly known24

vi with E[vi|ci]. This regularity condition mildly restricts the degree of positive
correlation.26

Interdependent types - We can interpret the symmetric case as a setting
in which identical projects are provided at individual costs. Hence, one may28

wonder about a setting in which projects only draw an imperfect signal about
the cost, which finally depends on other projects’ signals as well. In a clock30

auction in such an environment, active projects update their belief about the cost
whenever a project drops out. Moreover, the designer learns this information as32

well. Therefore the design of the optimal mechanism crucially depends on the
information structure.34
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Residual money - Whether it is reasonable to assume that the designer values
residual money depends on the application. In Ensthaler and Giebe (2014a),2

money does not enter the objective function, only the constraints. To clarify
the relation to their paper, we introduce a linear weighting λ ∈ [0, 1] of residual4

money, and provide comparative statics on parameter λ. The objective function
can be rewritten as in (3),6

max{zi}i∈I
Ec

[∑
i I(ci ≤ zi(c−i))

(
vi − λ

(
ci +

Fi(ci)
fi(ci)

))]

s.t.∑
i∈I

I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c ∈ C.

This objective function highlights one difference to the original setting. Instead
of ζ∗∗-exclusive the optimal mechanism is ζ∗∗

λ -exclusive: Define ψi,λ(c) = vi −8

λ(c+ Fi(c)
fi(c)

) as the λ-adjusted virtual surplus and define the vector ζ∗∗
λ with i-the

element z∗∗i,λ = min{ci, ψ
−1
i,λ (0)}.10

Our insights in this paper qualitatively extend to any linear weighting λ. In
fact, the optimal allocation in the symmetric case remains unchanged if ζ∗∗

λ =12

(c1, c2, . . . , cn) for all λ ∈ [0, 1], i.e., when the original optimal mechanism did
not exclude any cost types. For any combination of cost supports and values,14

there exists a sufficiently small λ′ > 0 such that the designer’s ranking over
projects is lexicographic. In other words, λ′ must be sufficiently small such that16

no λ′-weighted difference in cost can offset any difference in values.

Introducing a weight λ affects the quantity-quality tradeoff. To illustrate how18

the optimal allocation varies when λ is perturbed, we consider Example 1 again,
see Figure 6. A lower λ means that the designer prefers the high-value project 120

for higher cost reports relative to the low-value project 2 for a given cost report.
This difference is illustrated by a right-shift in the diagonal that represents the22

loci such that both projects have equal (λ-adjusted) virtual surplus.

Reducing the weight of residual money increases the measure of cost reports24

for which the optimal mechanism implements project 2 despite project 1 having
the larger λ-adjusted virtual surplus. As illustrated in Figure 6, reducing λ26

means that, in the optimal mechanism, the cutoffs at which both projects are
greenlighted move southeast along the budget line, thus reducing the probability28

to greenlight both projects. The reason is that for lower λ a higher weight is
placed on the high-value project 1.30
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B, c1 c1

B, c2

c2

λ = 1

λ = 0.5

λ = 0

Figure 6: Decreasing λ augments the quantity-quality tradeoff: The gray areas,
where the project with lower λ-adjusted virtual surplus is implemented, increases.

5 Conclusion

Despite their importance, knapsack problems with private information have been2

somewhat overlooked by the economics literature. We examine a setting in which
a budget-constrained procurer faces privately-informed sellers under ex-post con-4

straints. Amongst many possible economic problems, this setting particularly
applies to development funds, which are typically endowed with a fixed budget6

and want to distribute this money to a set of heterogeneous projects. Such prob-
lems often entail relationships in which sellers can renege on the terms of the8

agreement ex-post. To avoid nondelivery, shelving the project or costly renegoti-
ation, it is appropriate to impose ex-post constraints on the agents’ participation.10

For a relevant subset such settings, we have shown that DA auctions constitutes
the class of optimal deterministic strategyproof mechanisms.12

An optimal mechanism is described by a set of cutoff functions: All projects
that report costs below their cutoff are implemented and receive a transfer equal14

to their cutoff. In any two-project case, these cutoff functions are weakly in-
creasing in the other project’s costs, which means that the optimal allocation16

rule has substitutes: Given a project is implemented for some cost vector, it
is also implemented when, all else being equal, the cost of the rival project is18
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increased. For any optimal allocation rule that has substitutes, we show that
it also has non-bossy winners: A project that is implemented cannot affect the2

allocation without changing its own allocation status. In particular, if two dif-
ferent realizations of the cost vector lead to the same allocation, then the cutoffs4

of conducted projects only vary in the costs of projects not conducted. Finally,
the optimal allocation rule excludes all projects with negative “virtual surplus”6

from the allocation.

These properties allow for a characterization as a deferred acceptance (DA) auc-8

tion, introduced by Milgrom and Segal (2015). The DA auction representation
provides a simple implementation via descending-clock auctions, which are easy10

to understand and usable in practice. In addition, DA auctions have attrac-
tive properties regarding incentive compatibility which make the prediction of12

equilibrium play more robust. Furthermore, we investigate exemplary settings
in which project substitutability fails, but a DA-auction implementation exists14

nevertheless. Thereby, we shed light on the necessity of substitute-like condi-
tions.16

We fully describe the optimal allocation and the corresponding descending-clock
auction in an environment in which projects are ex-ante symmetric. The optimal18

mechanism is monotone in the sense that the cheapest projects are greenlighted
and all projects conducted receive the same transfer. This transfer either corre-20

sponds to the lowest cost among redlighted projects or the budget is distributed
equally. The equivalent clock auction features a single price clock that continu-22

ously descends until all active projects can be financed.

For asymmetric environments, in which values and/or cost distributions differ,24

we demonstrate a novel tradeoff between quantity and quality of the implemented
projects. The designer prefers projects with high virtual surplus over projects26

with low virtual surplus and she prefers more projects over fewer projects. In
models in which the designer wants to procure a fixed number of projects, she28

would always choose the projects with the highest virtual surpluses. If quantity is
endogenously determined by a budget-constrained mechanism designer, it is ex-30

ante not always desirable to select the best projects. When the best projects are
always conducted, incentive compatibility would force the designer to reduce the32

expected number of greenlighted projects. This insight entails a consequence for
the corresponding descending-clock auction: Clocks not only run asynchronously,34

but also periodically have to stop for certain projects.

We identify an interesting question for future research, namely, what is the36

weakest substitute condition such that a DA implementation exists. Having
an understanding of such a condition paves the way to study extensions such as38
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multiple projects per agent and projects that are complements by assumption
instead of (exogenous) substitutes. For practitioners, a simple approximately2

optimal detail-free mechanism may be of great value. The characterization of
the optimal mechanism as a DA auction sheds light on how to construct such an4

approximately optimal mechanism such as Ensthaler and Giebe (2014b). Halting
clocks should be a key feature for the corresponding clock auction in asymmetric6

environments. While we provide an elegant indirect mechanism, this mechanism
is only easy to implement when details of the environments are known.8
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6 Appendix

Lemma 5. Suppose γ has substitutes. For any cost vectors (cG, cR), (c
′
G, cR) ∈

C such that G = γ(cG, cR) = γ(c′G, cR) and R = I \ G, the optimal cutoff
function zg for all g ∈ G is (almost everywhere) independent of the costs of all
greenlighted projects cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR) ∀g ∈ G.

Proof. When γ(c) is a singleton, i.e., when only one project is greenlighted, the
statement follows from the nature of a cutoff function. Take a feasible candi-
date mechanism with a set of (by substitutability) weakly increasing cutoff func-
tions {zi}i∈I . Assume that given some cost vector c̃R there exists a set of cost
vectors cG with positive Lebesgue-measure such that for all those cost vectors
γ(cG, c̃R) = G. Then aGi (c̃R) according to the following definition

aGi (c̃R) = max{ci|∃cG−i : ci ≤ zi(cG−i, c̃R),

and cg ≤ zg(cG−g, c̃R)∀g ∈ G,

and c̃r > zr(cG, c̃R−r)∀r ∈ R} (13)

exists for all i ∈ G.2

In words, aGi (c̃R) is the highest cost of project i such that, given some cost vector
c̃R of projects that are not executed, there exists some vector cG−i of costs of4

competing projects that induces a cutoff zi(cG−i, c̃R) above said cost while each
element cg of the vector cG−i is lower than the cutoff induced by aGi (c̃R) and the6

elements of the cost vectors c̃R and cG−i−g,

∀g ∈ G \ {i}, cg ≤ zg(c̃R, cG−i−g, a
G
i (c̃R)).

Simultaneously, it must hold that these costs induce a cutoff such that no project8

r ∈ R is conducted for this cost vector,

∀r ∈ R, c̃r > zr(c̃R−r, cG−i, a
G
i (c̃R)).

By left-continuity of the cutoff functions (see proof of Lemma 3), the limit is10

reached from below and there exists at least one cost vector (c̃R, ċG−i, a
G
i (c̃R))

such that G is the set of executed projects and aGi (c̃R) = zi(c̃R, ċG−i) holds.12

By construction,

ċg ≤ aGg (c̃R) ∀g ∈ G \ {i},
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because, given c̃R, there cannot exist a cost vector where only all projects in G
are executed and the cost of project g exceeds aGg (c̃R).2

By the assumption of substitutes, zi is weakly increasing. Hence

aGi (c̃R) = zi(c̃R, ċG−i) ≤ zi(a
G
G−i(c̃R), c̃R), (14)

where aGG−i is the vector of all a
G
g defined according to (13) except aGi . The same

logic also applies to all other projects g ∈ G.4

Consequently,

G ⊆ γ(aGG(c̃R), c̃R).

and thus the budget constraint requires that

∑

g∈G

zg(a
G
G−g(c̃R), c̃R) ≤ B. (15)

From here on, the proof in the main text applies.6
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