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“I don’t believe in psychology. I believe in good moves.” (Bobby Fischer)

1 Introduction

Research in behavioral economics and decision sciences has identified a plethora of dif-

ferent, partly distinct and partly interacting, behavioral deviations from the predictions

of models of rational decision making. These deviations are typically associated with

cognitive limitations related to computational complexity, capacities for memory, and

related factors such as emotional stress in combination with time pressure. This obser-

vation has led to repeated requests to develop and apply models of bounded rationality

as a more adequate description of human behavior than perfect rationality, especially in

complex decision environments (Simon, 1979, 1982; Aumann, 1997; Camerer, 1998).

Nevertheless, the assumption of perfect rationality still prevails as the conventional

starting point to study human behavior in economics, not only in theoretical but also in

applied work. One of the reasons for this is the lack of consensus about an appropriate

alternative benchmark for boundedly rational behavior. In psychology and cognitive

science, there is an ongoing debate about the appropriate behavioral model of decision-

making in complex environments and about the role of optimization in decision-making.

Work along the heuristics and biases approach (Kahneman and Tversky, 1996) mainly

views deviations from rationality as errors and hence detrimental for decision perfor-

mance. In contrast, work in the tradition of fast and frugal heuristics maintains that

decisions based on heuristics are the result of algorithmic reasoning that involves rules

about search, stopping, and decision-making, and can lead to advantageous decisions

(Gigerenzer, 1996; Gigerenzer and Goldstein, 1996). Another strand of work emphasizes

the role of experience and intuition for the capability of making adequate decisions in

complex, often stressful real-world situations where the assessment of various decision

alternatives is often not possible (Klein, 1993; Kahneman and Klein, 2009). Theoret-

ical work on bounded rationality has typically proposed specific, axiomatic models of

bounded rationality in the context of complex choices (see, e.g., Lipman, 1991, 1999;
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Gabaix et al., 2006; Alaoui and Penta, 2016), but no dominant benchmark for assessing

behavior has emerged. This has led to a discrepancy between the development of mod-

eling tools for decision making and their applicability in the business or policy context

(see, e.g. Rust, 2019, in the context of dynamic programming), and raised calls for more

systematic investigations of behavior while relaxing the assumption of perfect rationality

(Iskhakov et al., 2020).

Empirical work has typically established deviations from rationality by comparing

actual behavior against a theoretical benchmark of rationality, often in simplistic, unre-

alistic, or abstract settings that are unfamiliar to the decision makers. Consistent with

the view of heuristics leading to advantageous solutions of decision problems, recent

work in cognitive psychology has emphasized evolutionary factors that shape decision

making and heuristics (Fawcett et al., 2014). Research in computer science has long

argued for an application of concepts of bounded optimization that explicitly accounts

for constraints related to cognitive capacity and time requirements, instead of applying

a rational benchmark (Russell and Subramanian, 1995). More recently, these insights

have been incorporated in conceptual models of computational rationality (Lewis et al.,

2014) or resource-rational analysis (Lieder and Gri�ths, 2020). The main di�culty

in this context has been the same that has plagued the conceptualization of bounded

rationality, namely the development of “a meaningful formal definition of rationality

in a situation in which calculation and analysis themselves are costly and/or limited”

(Aumann, 1997, p. 12).

This paper contributes an analysis of human decision-making by developing a con-

ceptualization of cognitively bounded rationality in a complex real-world setting that is

based on a computational benchmark. This benchmark is based on the exclusive notion

of bounded optimality as consequence of cognitive constraints. Consistency with, or

deviations from, this benchmark thus shed light on the nature of decision making in

complex environments. By isolating the role of behavioral factors that have previously

been associated with behavioral “biases” or heuristics, this approach helps reconciling re-

search on cognitive biases with the view that deviations from a benchmark of cognitively
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bounded rationality might not necessarily entail negative consequences for performance

if deviations are based on intuition and experience that are the result of adaptation of

the limitations of depth of reasoning in the decision problem. While related research has

typically proposed models that focus on specific features of boundedly rational behavior,

our approach starts from a concrete, natural computational benchmark for behavior un-

der cognitive constraints without imposing a specific behavioral model. By comparing

decisions in a complex environment against this benchmark, the design of our analysis

also allows us to investigate the performance consequences of bounded rationality that

deviates from the benchmark of cognitively bounded rationality.

Concretely, we study the decisions of professional chess players who participate in

tournaments with high stakes and incentives to win a game. The context of chess is

ideally suited for the purpose of this study. Chess provides a clean and transparent

decision environment that allows observing individual choices in a sequential game of

perfect information. Despite the conceptually simple structure of the decision problem

that lends itself to an application of standard dynamic programming techniques, the

complexity of the problem rules out perfectly rational behavior in most situations: Even

the best existing chess engines are unable to determine the rationally optimal move in

the large majority of chess positions.1 Hence, by construction any observed behavior is

rooted in bounded rationality. At the same time, professional chess players are commonly

seen as the prototypes of “rational” and experienced individuals who are familiar with

forward-looking strategic behavior.

Our methodology makes use of artificial intelligence embodied in modern chess en-

gines. The strategies suggested by a chess engine that resembles the strength of play of

human players constitute a relevant, transparent, and insightful benchmark for bounded

rationality in light of a decision task for which the determination of the rational strategy

involves an unsurmountable degree of complexity. Hence, this setting allows us to ana-

lyze decisions and the corresponding performance consequences relative to a benchmark

1Exceptions to this rule are positions during the endgame with a very limited number of pieces on the
board, or positions entailing a forced check-mate or forced move repetition leading to a draw within
the computational horizon of the chess engine.
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of bounded rationality stipulated by the objective algorithm of a chess engine that is

subject to comparable cognitive and computational limitations. The information about

decisions at extremely high resolution and accuracy – at the level of an individual move

– can then be used to isolate the exact circumstances and psychological factors that lead

to deviations from this benchmark of bounded rationality and thereby shed light on be-

havioral aspects in boundedly rational behavior. In particular, the detailed information

about the evaluation of a given configuration, the time left for decision making, com-

plexity, and the time used for a given move provides a unique possibility to decompose

di�erent candidates for behavioral factors based on variation within the same person

and game.

The analysis compares the actual moves of human decision makers to the best conceiv-

able move in the respective configuration. This best conceivable move is determined by

a “super chess engine” whose performance and computational capacity exceeds that of

the best humans by far. We also replicate each configuration observed in a large data set

of chess games and determine the decision of a “restricted chess engine” that computes

the best move under the assumption of mutual best response, but that is comparable

in terms of playing strength to human players and simulates play against another chess

engine of similar strength. Like the human decisions, these replicated decisions of the

restricted chess engine are then evaluated in comparison to the moves suggested by the

super chess engine. The analysis of the di�erence-in-di�erences makes it possible to iden-

tify behavioral deviations of professional chess players from the objective benchmark of

bounded rationality constituted by the restricted engine. This setting can also shed light

on the consequences of these deviations for performance using within-person variation

at the level of individual moves. This allows investigating not only whether humans be-

have di�erently, but whether they perform better, compared to the boundedly rational

benchmark provided by chess engines, and under which circumstances.

The results provide new insights into human decision making and document systematic

deviations of human behavior from the benchmark of bounded computational rationality

in several dimensions. These deviations can be related to di�erent behavioral factors
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that have been discussed in the previous literature that compared behavior to the ra-

tional benchmark. While behavioral deviations from rationality are usually associated

with suboptimal performance, this connotation often rests on a priori reasoning or value

judgments as it is typically even harder to identify the consequences for performance

of deviations from the benchmark than the deviations themselves. The approach de-

veloped here allows investigating not only whether humans behave di�erently than a

computational benchmark of bounded optimality, but also whether they perform better

than stipulated by this benchmark. In particular, we find systematic deviations of hu-

man behavior in relation to the current standing reflected in terms of an advantage or

disadvantage. Being in a better position induces deviations from the objective bench-

mark that are associated with worse performance than stipulated by the benchmark,

while being in a worse position is associated with more deviations that are associated

with better performance. A smaller remaining time budget in the game leads to more

frequent deviations and worse performance, suggestive of the detrimental e�ects of time

pressure. We also find evidence for the role of fatigue over the course of a game, which

reduces the likelihood of deviations with better performance. An intensification of cog-

nitive limitations in the context of particularly complex configurations leads to more

frequent deviations from the rational benchmark, but not to a systematic deterioration

in performance. When investigating the mechanisms, we find no systematic di�erences

in the causes and consequences of behavioral deviations from the benchmark between

weaker and stronger players. Strategic interactions or psychological factors, as reflected

by the remaining time of the opponent, seem of limited importance.

To shed light on the ongoing debate in psychology regarding bounded optimality

and computational rationality as adequate representations of decision making, we also

explore a core implication, namely the allocation of decision times. In particular, if

the factors that lead to deviations from the computational benchmark are related to

intuitive reasoning, potentially reflecting heuristics, they should systematically interfere

with the time spent on deliberating a particular decision. An analysis of decision times

reveals that being substantially ahead or behind entails faster decisions, as does time
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pressure and fatigue. Greater complexity induces longer deliberation times, consistent

with decision makers devoting more e�ort to solve a more demanding decision problem.

When considering the relation to deviations from the computational benchmark, and

their performance implications, we find that faster decisions are associated with more

frequent deviations from the rational benchmark, but at the same time are associated

with better performance. This evidence is suggestive of a superior intuitive assessment

of particular configurations, which is presumably related to memory, experience or other

factors relevant for the decision-making process.

Contribution to the Literature. The results of this paper contribute to a substantial

literature that has used chess as the prime example of how to think about and model

strategic behavior. Analyses of optimal behavior in chess laid the grounds of game

theory, with early proofs of the existence of winning strategies by Zermelo (1913) and

equilibrium by von Neumann (1928); see Schwalbe and Walker (2001) for an informative

overview. Chess players have a long history as subjects of studies in psychology, start-

ing with the work of de Groot (1946, 1978). Chase and Simon (1973) and Simon and

Chase (1973) contain early discussions of theories of cognition derived from the study of

chess players. Work in psychology on expert performance regularly uses chess players as

subjects of study (Ericsson, 2006; Moxley et al., 2012). The view of professional chess

players as the prototypes of rational decision makers led several empirical or experi-

mental tests of rational behavior in economics to focus on chess players as subjects of

interest. Examples include experiments with chess players to investigate the empirical

relevance of subgame perfection and backward induction (Palacios-Huerta and Volij,

2009; Levitt et al., 2011), rational learning in repeated games (Gerdes and Gränsmark,

2010), or emotions and psychological factors (González-Diaz and Palacios-Huerta, 2016).

Data from chess tournaments have also been used to analyze various other research ques-

tions. These include, in particular, gender di�erences in patience (Gerdes et al., 2011),

gender e�ects in competitiveness (Backus et al., 2016; de Sousa and Hollard, 2016),

gender and attractiveness (Dreber et al., 2013), self-selection and productivity in tour-
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naments (Bertoni et al., 2015; Linnemmer and Visser, 2016), consequences of political

ideology (Frank and Krabel, 2013), collusion (Moul and Nye, 2009), cheating (Barnes

and Hernandez-Castro, 2015; Haworth et al., 2015) and indoor air quality (Künn et al.,

2019). To our knowledge, this is the first study to analyze move-by-move behavior of

chess players relative to a benchmark of bounded rationality provided by a chess engine

of comparable chess strength to human players.

Recent work has used chess engines to assess the relative performance and strength

of chess players in di�erent time periods (Guid and Bratko, 2011; Alliot, 2017). An-

derson and Green (2018) use chess data at the player-game level to investigate the role

of personal peak performance in the past in terms of ratings, as reference points for

performance. Strittmatter et al. (2020) use data on the player-game level over the past

125 years to estimate the cognitive performance over the life cycle and its dynamics over

time and across cohorts. Anderson et al. (2016) develop a prediction model of errors

based on di�culty, skills and time restricting attention to positions with 5 or less pieces

on the board (so-called endgame table bases) to compare the moves of humans to a

benchmark of perfect play. Recent work by McIlroy-Young et al. (2020) develops a neu-

ral network to predict moves by human chess players. In contrast to the existing work

in this literature, which typically analyzes human performance at the game level and

uses a chess engine that vastly outperforms human chess players to benchmark behavior,

the methodology developed here allows us to identify deviations from a benchmark of

cognitively bounded decision making by comparing behavior to an engine of compara-

ble strength on a move-by-move basis, as well as the performance implications of these

deviations along the lines of a di�erences-in-di�erences setting.

Our computational approach to a benchmark of bounded rationality complements ear-

lier work that proposed specific models of bounded rationality in the context of complex

choices (see, e.g., Lipman, 1991, 1999; Gabaix et al., 2006; Alaoui and Penta, 2016).

Instead of providing evidence for behavior being in line with a specific model, our ap-

proach is to explore the drivers of deviations from the benchmark and their performance

consequences, in line with the research program on computational rationality (Gersh-
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man et al., 2015). For a long time, chess players were hypothesized to heavily rely on

intuition and expertise in their decision making instead of applying bounded optimiza-

tion consistent with computational rationality (e.g. Simon and Chase, 1973; Kahneman

and Klein, 2009; Moxley et al., 2012). However, to our knowledge there exists no clear

evidence on the implications of deviations from bounded rationality for performance. By

documenting that deviations from bounded rationality do not necessarily imply worse

performance but can even lead to better performance than the benchmark, our evidence

also contributes to recent theoretical work on foundations of behavior. Our results pro-

vide evidence that is consistent with the predictions of recent theoretical work that has

considered the optimal speed and accuracy of decisions in settings in which the rela-

tive evaluations of decision alternatives are unknown; the results of this work show that

decision accuracy may actually decrease with longer decision time (Fudenberg et al.,

2018). Likewise, the result that deviations from the rational benchmark can be associ-

ated with better performance is consistent with predictions of models of focusing and

selective memory (Gennaioli and Shleifer, 2010; Bordalo et al., 2020) or case-based de-

cision theory (Sahm and von Weizsäcker, 2016). Finally, our results are consistent with

conjectures in psychology of the importance of intuitive expertise and recognition-primed

decision making complex environments (Shanteau, 1992; Schultetus and Charness, 1999;

Kahneman and Klein, 2009).

Most contributions in behavioral economics have focused on documenting a behav-

ioral deviation from the rational benchmark in one particular dimension in an abstract

setting and theoretical work on bounded rationality has typically focused on one par-

ticular aspect. This paper analyzes field evidence that allows us to isolate behavioral

factors that lead to deviations from a natural benchmark of behavior in a setting that

involves bounded rationality. The comparison of behavior to an objective benchmark in

terms of the quality of a given move relative to the best possible move in a given config-

uration allows us to explore the empirical relevance of various behavioral factors within

a single and comparable research design, as well as their implications for performance.

Our results thereby complement findings of the detrimental e�ects of time pressure on
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the quality of decision making (Kocher and Sutter, 2006) and relate to findings of het-

erogeneous e�ects of time pressure in loss and gain domains (Kocher et al., 2013). Our

findings also contribute to the literature that has emphasized the role of choking under

pressure (Baumeister, 1985; Cohen-Zada et al., 2017; Dohmen, 2008; Genakos et al.,

2015) or limited attention (Föllmi et al., 2016) among professionals. The heterogeneity

in the results for deviations from rational behavior depending on the current positional

standing in the game in terms of advantage or disadvantage is also reminiscent of find-

ings of reference dependence (Bartling et al., 2015) and observations from risk taking in

tournaments (Cabral, 2003; Genakos and Pagliero, 2012). Likewise, the results add to

the literature investigating the role of complexity and cognitive load for individual per-

formance (Deck and Jahedi, 2015) and on the relationship between cognitive limitations

and behavioral biases (Oechssler et al., 2009; Stracke et al., 2017).

The remainder of the paper is structured as follows. Section 2 contains a description

of the data collection and measurement. Section 3 develops the empirical approach.

Section 4 presents the empirical results. Section 6 concludes.

2 Data and Measurement

2.1 Data from Professional Chess Players

In the terminology of game theory, chess is a two-person, sequential, zero-sum game

with perfect information and alternating moves, for which an optimal strategy exists.2

The data used in the empirical analysis have been collected from an internet platform

that broadcasts all professional over-the-board chess tournaments (www.chess24.com)

and contains detailed information for more than 100,000 moves from around 2,000 games

that were played in 97 single round-robin tournaments during the years 2014-2017. All

games were played at regular time controls that allocate a time budget of a minimum

of 2 hours thinking time to each player to conclude the game.3 Appendix Table A1
2See Schwalbe and Walker (2001) for details and a discussion of the historical background.
3According to the regulations by the International Chess Federation FIDE, for a game to be rated each

player must have a minimum of 120 minutes, assuming the game lasts 60 moves per player. The
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provides an overview of the tournaments contained in the data set. The data contain

detailed information about the players, including their performance statistics in terms

of their ELO number.4 We restrict our baseline analyses to games between professional

players with an ELO number of at least 2,500 at the time of the game. Appendix Table

A2 shows summary statistics on the game level.

In addition to the remaining time budget and time consumed for each move, the

move-by-move data comprises information about the exact configuration of pieces on

the board. We use this information to compute an evaluation of this configuration in

terms of the relative standing of each player, an evaluation of the complexity of the

configuration, and an evaluation of move quality, as explained in more detail below. For

the computation of performance, we exclude the first fifteen moves of each player in a

game from our analysis. These are usually so-called “book moves”, which are studied

intensively by players in the preparation of the game and are typically the result of

routine openings.

2.2 Measuring Performance in Chess

To construct a benchmark for behavior, we make use of a chess engine, Stockfish

8, which is an open-source program that computes the best possible move for a given

configuration of pieces on the chessboard. This engine is considered to be one of the best

available programs. The version we use has an estimated ELO rating of approximately

3150 points (in comparison, the incumbent World Champion Magnus Carlsen had an

standard time control regime suggested by the International Chess Federation FIDE is 90 minutes
per player per game plus 30 seconds added to each player’s time budget for each move played;
additional 30 minutes are added to each player’s time budget after each player has played 40 moves
(see https://handbook.fide.com, last accessed May 12, 2020). Tournaments that are not o�cially
organized by FIDE use slight variations of the o�cial FIDE time control regime.

4The ELO number constitutes a method for calculating the relative playing strength of players
(invented by the Hungarian mathematician Arpad Elo). The ELO number increases or de-
creases depending on the outcome of games between rated players. After every game, the
winning player takes points from the losing player, while the total number of points remains
fixed. According to international conventions, an ELO number of at least 2,500 is a require-
ment for being awarded the title of an international grandmaster (this requirement has to be
fulfilled once during the career, but does not have to be maintained to keep the title, see
https://handbook.fide.com/chapter/B01Regulations2017, last accessed April 20, 2020).
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ELO rating of 2872 points in January 2020 according to the o�cial rating list by the

International Chess Federation FIDE).5 This engine can be restricted, such that the

strength of play of the engine corresponds closer to the strength of play of human

players. To construct an objective benchmark of behavior for human players, we use

engines with di�erent strengths of play in the analysis as described in detail below.

An engine behaves exactly as stipulated by standard game-theoretic considerations

subject to intellectual (computational) constraints. For each configuration, the engine

creates a game-tree for all possible moves by white and black for a pre-specified length

of n moves ahead, the so-called search depth. Then, the configurations at the respec-

tive end-nodes are evaluated in terms of pieces left on the board, safety of the king,

mobility of pieces, pawn-structure and so on. Based on this evaluation, the engine then

determines the best move using backward induction under the assumption of mutually

best responses.6 Figure 1 illustrates the decision algorithm solved by the engine. This

delivers a clean and transparent benchmark to evaluate human behavior.

We use a chess engine with superior performance compared to any human player (the

“super engine”) to compute three measures that are central to the empirical analysis.

First, the engine delivers a measure of the relative standing for a given configuration

of pieces on the board, which reflects an evaluation of the current position of a player

and represents a proxy of the winning odds. The evaluation of the current position is

the result of the engine computing, for each configuration observed in the data set, the

best continuation. The relative standing is measured in so-called pawn units, where one

5We limit Stockfish 8 to a search depth of 21 moves to economize on computing costs. The un-
constrained version of Stockfish 8 has an ELO of approximately 3300 points (http://ccrl.
chessdom.com). Based on an approximation by Ferreira (2013), the ELO strength of Stockfish 8
with search depth of 21 corresponds to approximately 3150 points.

6Modern chess engines are almost exclusively based on domain-specific algorithmic heuristics that
were developed specifically to search the sequential game-tree arising from a given configuration.
Current chess engines use an enhanced version of the min-max algorithm that disregards branches of
the search tree that have already been found to be dominated. This reduces the search-space with-
out impacting the final choice of the best move by the engine (https://www.chessprogramming.
org/Alpha-Beta, last visited March 17, 2020). Modern engines like Stockfish 8 calculate ap-
proximately 10-100 million nodes per second on standard personal computing hardware. Only very
recently more general machine learning techniques in the form of neural networks have been embod-
ied in chess engines such as Google’s non-public AlphaZero (Silver et al., 2018).
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Figure 1: Backward Induction in Chess Engines
Note: Illustration of the decision algorithm built into a chess engine. For a given search depth
(number of moves until the end node is reached), the engine calculates evaluations of di�erent
alternative moves under the assumption of mutually best response and determines the move that
delivers the highest evaluation on the end node. The positions at the end nodes are evaluated using
a human-curated evaluation function that considers factors of the chess positions such as number
of pawns and pieces on the board, pawn structure, mobility of pieces and king safety.

unit approximates the advantage of possessing one more pawn.7 Second, we compute a

measure of performance, in terms of the quality of play of a given player, by comparing

the actual move made by the respective player to the best move suggested by the chess

engine. This move is not necessarily the absolutely best move that is possibly conceivable

but on average the move suggested by the engine is better than conceivable by any

human player. In the data, relative performance can be measured by a binary indicator

of whether a player makes the optimal move (or one of the optimal moves in case of

several moves with equal winning odds) as suggested by the chess engine in a given

configuration. Alternatively, one can construct a measure of the quality of a move by

computing the distance of a player’s move (in terms of the conventional metric of pawn

units) from the best move identified by the chess engine.8 Third, we use the engine to
7This measure is relative and indicates an advantage for the player with white pieces for positive

numbers, and for the player with black pieces for negative numbers. For example, if the evaluation
is -1.00 pawn units, black is better “as if one pawn up.”

8Concretely, we configure the engine to compute the corresponding evaluations for the six moves that
it evaluates as best in a given configuration. Increasing the number of moves that are evaluated
further comes at a prohibitively large computational cost. If the actual move played is one of these
six moves, the performance is calculated as the di�erence in evaluation between the best and the
actual move played. If the move played is not among the six best moves, we compute performance
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Figure 2: Computation of Performance Measures: An Example

Note: The engine evaluates the configuration shown on the board as +0.95 (i.e., an advantage for white
of almost one pawn unit) if Black plays Knight to b4 as the next move. Instead, Black played Queen
takes b2, which the engine judges as a slight mistake, with the consequence of an evaluation of +1.14
for White after this move. Hence, the quality of Black’s move is computed as -0.19, i.e., Black played a
move that resulted in the loss of 0.19 pawn units compared to the evaluation resulting after the move
suggested by the engine. In this example, the engine needed 3.87 seconds to reach a search-depth of 21
moves, which corresponds to the measure of complexity of the configuration.

compute, for each observed configuration, a measure of complexity of the configuration.

The more complex the configuration, the longer the engine needs to search the game-tree.

The time consumed by the engine to compute the best strategy for the next n moves

ahead can therefore be used as a measure of the complexity of a given configuration.9

Figure 2 contains a concrete illustration of how these measures are computed.

Appendix Table A3 documents the descriptive statistics of the move-by-move data

used in the analysis.

as the di�erence in the evaluation right before and right after the respective move of the player.
9As baseline measure of complexity, we use the computation time needed by the super chess engine to

reach a search-depth of 21 moves. Alternatively, we use the number of branches (nodes) of the game-
tree that the engine has to calculate to reach a search-depth of 21 as a measure of the branching
factor and thus complexity of a given configuration. The (unreported) results are qualitatively
similar and available upon request.
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3 Empirical Strategy

3.1 Conceptual Approach

We denote by Pic the performance of a move by human player i in a given configuration c

of pieces relative to the benchmark suggested by the super chess engine. This suggestion

is based on the backward induction algorithm described before and constitutes a first

natural benchmark for studying behavioral patterns. The relative performance measure

Pic is not su�cient for isolating behavioral deviations from a benchmark of bounded

rationality, however, because the measure does not account for the fact that the super

chess engine is superior to human players in terms of strength of play. Thus, the objective

human evaluation of a given configuration and the resulting optimal human move might

di�er systematically from the suggested optimal move of the super chess engine as a

result of di�erences in the cognitive limitations that give rise to bounded rationality.

To address this issue, the empirical strategy applies a di�erence-in-di�erences logic

that compares the performance of humans to the performance of an equally strong engine

where, in both cases, performance is measured relative to the best possible move based

on the assessment of the super chess engine. To construct such a directly comparable

benchmark of cognitively bounded rationality with similar playing strength as humans,

we replicate each decision problem faced by humans (for each configuration c observed

in our data set) using a restricted chess engine that is calibrated to have approximately

the same strength of play as the humans observed in the data set. This implies that,

for each observed configuration c, we construct a benchmark performance measure for a

strength of play comparable to that of the human players (with ELO numbers between

2500 and 2880) relative to the best possible move suggested by the super chess engine. In

particular, we restrict the chess engine to a fixed depth of reasoning (in terms of search

depth) that is constant across chess positions in our data.10 This allows us to identify

deviations from this benchmark that are due to humans adapting their reasoning and

10We restrict Stockfish 8 to a search depth of 12 moves, which corresponds to a play strength
equivalent to an ELO of around 2700 when comparing performance di�erences between human
players and the restricted engine (see Appendix Figure A1).
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behavior to the nature of the decision problem.

By construction, the restricted engine plays best response strategies such that the

move played by the restricted chess engine only depends on objective, move-specific

characteristics related to the configuration on the board, but not on subjective player-

specific or game-history-related factors. Deviations of performance of this restricted

engine from the best possible move suggested by the super engine can thus be due

only to cognitive limitations, but not due to behavioral deviations that reflect bounded

rationality in humans. The relative performance of the restricted chess engine thus

delivers a valid performance benchmark of cognitively bounded rationality against which

the performance of humans can be compared. Notice that a plain comparison of moves

between humans and the restricted chess engine would not be su�cient, because it would

not be possible to evaluate the direction – and thus the performance consequences – of

these di�erences. This is only achieved by the comparison to the best possible move

suggested by the super chess engine.

3.2 Parameters of Interest

To illustrate the identification strategy, let the potential relative performance under

the computational benchmark of cognitively bounded rationality in configuration c be

denoted by P ú
c . This is a potential variable that is not observed; we only observe the

realized relative performance Pic in the data, which might di�er from P ú
c because of

behavioral deviations. Performance di�erences due to deviations from this benchmark

are defined by Dic = Pic ≠ P ú
c , where Dic = 0 implies no deviation from the benchmark.

Notice that also Dic is a potential variable that is unobserved. For ease of notation,

define the dummy variable DE
ic = I{Dic ”= 0}, with I{·} being the indicator function, as

an indicator of any deviation from the benchmark.

The goal of the empirical analysis is to identify subjective (psychological) factors

Xic that can be associated with deviations from the benchmark of cognitively bounded
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rationality. The conditional expectation of behavioral deviations is

E[Dic|Xic = x] = E[Dic|DE
ic = 1, Xic = x] · p(x), (1)

where p(x) = Pr(DE
ic = 1|Xic = x) denotes the conditional probability of a behavioral

deviation from the benchmark. The right hand side of equation (1) makes use of the

discrete law of iterated expectations and the fact that E[Dic|DE
ic = 0, Xic = x] = 0. The

marginal e�ects of subjective factors Xic on deviations can be decomposed into e�ects

along the extensive and intensive margin conditional on deviation, since

ˆE[Dic|Xic]
ˆXic¸ ˚˙ ˝

Total E�ect

= E[Dic|DE
ic = 1, Xic] · ˆp(Xic)

ˆXic¸ ˚˙ ˝
Extensive Margin

+ ˆE[Dic|DE
ic = 1, Xic]

ˆXic¸ ˚˙ ˝
Intensive Margin

·p(x). (2)

Deviations from the benchmark in terms of performance di�erences as reflected by Dic

are sensitive to the respective metric in which they are measured (e.g., pawn units). The

extensive margin e�ects have the advantage to not depend on the particular metric of Dic.

To explore the consequences of deviations from the benchmark of cognitively bounded

rationality at the extensive margin, we denote positive deviations, i.e., deviations from

the benchmark that are associated with better performance than the benchmark, by

DP
ic = I{Dic > 0}. Likewise, negative deviations, i.e., behavioral deviations from the

benchmark that are related to worse performance are denoted by DN
ic = I{Dic < 0}.

Furthermore, we denote the conditional probability of a behavioral deviation from the

benchmark that implies better performance by pP (x) = Pr(DP
ic|Xic = x) and the

conditional probability of a behavioral deviation that implies worse performance by

pN(x) = Pr(DN
ic |Xic = x), with p(x) = pP (x) + pN(x). The partial e�ects along the

extensive margin can then be decomposed into partial e�ects on the probabilities of be-

havioral deviations associated with positive and negative consequences for performance,

ˆp(Xic)
ˆXic

= ˆpP (Xic)
ˆXic¸ ˚˙ ˝

Positive Consequences

+ ˆpN(Xic)
ˆXic¸ ˚˙ ˝

Negative Consequences

.
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3.3 Identification

We now sketch an identification strategy that allows identifying the parameters of in-

terest. Let P r
c denote the relative performance in configuration c by the restricted chess

engine (with strength of play similar to that of humans) in comparison to the perfor-

mance under an optimal move suggested by the super engine. Furthermore, we denote

the di�erence between the relative performance of humans and the restricted chess engine

by �ic = Pic ≠ P r
c .

As a first step in the identification of the e�ects of subjective factors Xic, we focus on

the e�ects along the extensive margin. For this purpose, we construct a binary measure

of whether the relative performance of a human player di�ers from the restricted chess

engine, �E
ic = I{�ic ”= 0}. This binary measure represents the observable analogue to Dic

and the identification of the e�ects along the extensive margin relies on the assumption

that

E[�E
ic ≠ DE

ic|Xic = x] = 0 . (3)

This assumption is fundamentally not testable, because deviations from the performance

benchmark, DE
ic, are unobservable. The assumption implies that the conditional proba-

bility that human players deviate from the restricted engine is equal to the conditional

probability that human players deviate from the performance benchmark, which is a

natural assumption in our setting. In the data, 60% of all moves exhibit the same rel-

ative performances for humans and the restricted chess engine. Accordingly, there is

a mass point in the distribution of �ic, which is otherwise a continuously distributed

variable. Notice that the exact calibration of the strength of the restricted engine might

influence the results by influencing the empirical measure of �E. However, as discussed

below, extensive robustness tests show that the results are insensitive to variations in

the calibration of the restricted engine.

Under assumption (3), the marginal e�ect of a subjective (psychological) factor Xic
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on the probability of observing a deviation from the benchmark is given by11

ˆE[�E
ic|Xic]

ˆXic
= ˆp(Xic)

ˆXic
.

This e�ect corresponds to an e�ect along the extensive margin and contains no infor-

mation about the performance implications of this deviation.

Next, consider the marginal e�ects on the probability of behavioral deviations that

imply better or worse performance than the benchmark, respectively. For this purpose,

define �P
ic = I{�ic > 0} and �N

ic = I{�ic < 0}. Under the assumption E[�P
ic≠DP

ic|Xic =

x] = 0, the marginal e�ects of factors X on �P correspond to marginal changes in the

probability of behavioral deviations with better performance,

ˆE[�P
ic|Xic]

ˆXic
= ˆpP (Xic)

ˆXic
.

Similarly, under the assumption E[�N
ic ≠ DN

ic |Xic = x] = 0, the marginal e�ects on

changes in the probability of behavioral deviations with worse performance are given by

ˆE[�N
ic |Xic]

ˆXic
= ˆpN(Xic)

ˆXic
.

Using the categorical measure �C
ic = sgn(�ic) · (1 ≠ I{�ic = 0}), these insights can

be combined to obtain the net e�ect on the probability of deviations with positive and

negative performance consequences,

ˆE[�C
ic|Xic]

ˆXic
= ˆpP (Xic)

ˆXic
≠ ˆpN(Xic)

ˆXic
,

provided that the previous assumptions hold.12

11This follows from

E[�E
ic|Xic = x] = E[�E

ic ≠ DE
ic|Xic = x] + E[DE

ic|Xic = x] = E[�E
ic ≠ DE

ic|Xic = x] + p(x),

and noting that E[�E
ic ≠ DE

ic|Xic = x] = 0 under assumption (3).
12Note that the assumptions E[�P

ic ≠ DP
ic|Xic = x] = 0 and E[�N

ic ≠ DN
ic |Xic = x] = 0 together are

somewhat stronger than assumption (3).
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Finally, reconsider the total marginal e�ect of the subjective factors Xic as described

in equation (2). Using the performance measure �ic, this e�ect can be identified under

the assumption E[P ú
c ≠ P r

c |Xic = x] = 0, such that

ˆE[�ic|Xic]
ˆXic

= ˆE[Dic|Xic]
ˆXic

,

which is a combination of the e�ects along the extensive and intensive margin.13 The in-

tensive margin e�ects of the subjective factors Xic conditional on deviation are identified

under the assumption that (3) and E[P ú
c ≠ P r

c |Xic = x] = 0 both hold.14 Then,

ˆE[�ic|�E
ic = 1, Xic]

ˆXic
= ˆE[Dic|DE

ic = 1, Xic]
ˆXic

.

The interpretation of the intensive margin e�ects conditional on deviation is problematic,

however, because the subjective factors a�ect the performance consequences of deviations

and the probability of observing a deviation at the same time, thus giving rise to a sample

selection problem (see, e.g., Heckman, 1979).

3.4 Estimation

In practice, we use move-by-move data with an observation for the positional configu-

ration of pieces on the board c faced by individual player i in game g. The estimation

13In particular,

E[�ic|Xic = x] =E[Pic ≠ P ú
c |Xic = x] + E[P ú

c ≠ P r
c |Xic = x]

=E[Dic|DE
ic = 0, Xic = x] · (1 ≠ p(x)) + E[Dic|DE

ic = 1, Xic = x] · p(x)
=E[Dic|DE

ic = 1, Xic = x] · p(x),

which follows from applying the discrete law of iterated expectations similarly as in (1).
14In particular,

E[�ic|�E
ic = 1, Xic = x] = E[�ic|Xic = x]

Pr(�E
ic = 1|Xic = x)

= E[Dic|Xic = x]
p(x) = E[Dic|DE

ic = 1, Xic = x] .

The first and last equalities follow from the discrete law of iterative expectations. The second
equality holds under E[P ú

c ≠ P r
c |Xic = x] = 0 (numerator) and assumption (3) (denominator).
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model is then given by

�Õ
gic = Xgic— + „ig + ugic , (4)

with the error term ugic. �Õ
gic denotes the di�erent performance measures (�E

gic, �P
gic,

�N
gic, �C

gic, �gic) described above. All specifications include interacted player-game fixed

e�ects „ig (where subscript ig indicates the player-game-level) to account for systematic

variation in style of play, environmental factors related to the game, or strategic aspects

related to particular pairings. Inference is based on game-level clustered standard errors

to account for interdependencies in the performances of both players.

The parameter vector — represents the partial e�ects of di�erent subjective (psycho-

logical) factors Xgic, — = ˆE[�Õ
gic|Xgic]/ˆXgic. In view of earlier work, we primarily

focus on four subjective (psychological) factors Xgic that might a�ect behavioral devi-

ations from the objective benchmark: emotions and preferences related to the current

standing (being in a better or worse position), time pressure (remaining time budget),

fatigue (number of moves played by each player before the current move), and complexity

(related to cognitive limitations).

4 Behavioral Deviations from the Benchmark

4.1 Main Results

Table 1 contains the results of multivariate regression analyses of the empirical model in

equation (4) for di�erent dependent variables. Column (1) shows coe�cient estimates

for regressions with the binary measure of any deviation from the benchmark, �E,

as dependent variable. Compared to an approximately balanced positional standing,

human players are more likely to deviate from the benchmark when being in a better

position relative to their opponent. In contrast, they are not more likely to deviate in

a worse position. The results for remaining time reveal a positive but only marginally

significant e�ect on the probability to deviate from the benchmark. This suggests that

players deviate more often from the benchmark if they have more time available, rather
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Table 1: Behavioral Deviations from Cognitively Bounded Rationality

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0796úúú 0.0006 0.0790úúú ≠0.0784úúú

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0057 0.0306úúú ≠0.0248úúú 0.0554úúú

(0.0061) (0.0046) (0.0050) (0.0075)
Time Pressure
Remaining time (hours) 0.0136ú 0.0390úúú ≠0.0254úúú 0.0643úúú

(0.0072) (0.0051) (0.0057) (0.0081)
Fatigue
Num. previous moves ≠0.0019úúú ≠0.0018úúú ≠0.0001 ≠0.0016úúú

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0012úúú 0.0015úúú ≠0.0003úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine (super
engine and restricted engine). The variable Num. previous moves is calculated as the number of
previous moves per player. Standard errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05,
úúú: p < 0.01.

than under greater time pressure. Contradicting intuition regarding a potential influence

of fatigue, the probability to deviate from the benchmark is smaller later on in the game.

Greater complexity of the configuration is associated with a higher probability to deviate

from the benchmark.

Columns (2) and (3) present the results for the binary measures of deviations from the

benchmark that also contain information about the direction in terms of the associated

consequences for performance, �P and �N . Here, a somewhat richer picture emerges.

Whereas being in a better position is not associated with human players deviating in a

way that their performance is better than the benchmark (Column (2)), the e�ect on

deviations that imply worse performance than the benchmark is positive and significant

(Column (3)). A possible explanation for this finding is that human players might

decide to play sub-optimal moves that are associated with lower risk or complexity, but
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also worse performance, when in a better position. The opposite picture emerges when

players are in a worse position. In this case, humans are more likely to make deviations

that imply better performance than the benchmark (Column (2)), but are less likely to

make deviations that imply worse performance than the benchmark (Column (3)). This

finding is consistent with stronger incentives for higher performance, for instance due

to loss aversion relative to a reference point of a balanced position. As a consequence,

humans might become less focused or more adventurous when they are in a better

position, but they excel when they are in a worse position.

The picture also becomes richer regarding the influence of time pressure. More re-

maining time increases the likelihood of deviations with better performance than the

benchmark (Column (2)), whereas the likelihood of deviations with worse performance

declines (Column (3)). This provides evidence that deviations with worse performance

become more frequent with less remaining time, consistent with the hypothesis of choking

under time pressure. These opposite e�ects for deviations with di�erent consequences

for performance also explain why remaining time only has a weakly positive e�ect on the

probability of any deviation (Column (1)). Likewise, a clearer picture emerges regarding

fatigue, proxied by the number of moves that have already been played during a game.

In particular, later in the game, deviations from the benchmark that are associated with

better performance become less frequent, whereas there is no significant e�ect on the

likelihood of deviations that are associated with worse performance. Finally, the hypoth-

esis that complexity a�ects deviations from the benchmark is supported by significant

e�ects on deviations with both, higher and lower performance than the benchmark. This

is consistent with the conjecture that it is harder for human players to determine the

optimal continuation in more complex settings. However, this only results in higher

variability of decision quality, but not necessarily in worse average performance.

Column (4) of Table 1 presents results for the categorical measure �C as dependent

variable. This measure allows making inference on the di�erence between the e�ects

obtained for �P and �N . In particular, the estimates confirm the findings that players

in a better position are more likely to exhibit worse performance than the benchmark,
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whereas players that are in a worse position are more likely to deviate with better perfor-

mance than the benchmark. Also the result for time pressure becomes more pronounced,

indicating that less remaining time is associated with more frequent deviations and worse

performance. Fatigue continues to imply more frequent deviations from the benchmark

with performance deteriorating later in the game. Finally, the e�ect of complexity is

significantly negative in the estimates for the categorical variable, but quantitatively

small.

Overall, these findings documents that factors like relative position, time pressure,

fatigue and complexity lead to deviations from the computational benchmark of cog-

nitively bounded rationality. At the same time, some of these deviations entail better

performance than the benchmark, indicating that intuition and experience, possibly

even heuristics, provide humans with a capacity of problem solving that can domi-

nate the computational benchmark in terms of performance. These deviations from the

benchmark are still consistent with the notion of bounded rationality and computational

rationality in the sense of trading o� e�ort, time, complexity, and quality of a move.

These results thereby complement existing work by documenting the empirical preva-

lence of various behavioral factors related to reference points (see, e.g. Bartling et al.,

2015), time pressure (see, e.g. Kocher and Sutter, 2006; Kocher et al., 2013), psycholog-

ical pressure (see, e.g. Dohmen, 2008), fatigue, or cognitive load related to complexity

(see, e.g. Oechssler et al., 2009; Deck and Jahedi, 2015; Stracke et al., 2017). In con-

trast to this previous work, we explore the relevance of these di�erent factors within a

single framework. More importantly, our analysis is based on the notion of a bench-

mark of cognitively bounded rationality, which, among other things, allows us to shed

light on performance consequences of various behavioral factors. Before we explore the

process underlying the observed behavior in more detail in Section 5, we document the

robustness of the findings and report evidence on e�ect heterogeneity.
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4.2 Robustness

Alternative Model Specifications. The results are broadly similar when considering

specifications without player-game fixed e�ects (see Appendix Table A4). Moreover,

controlling for the subjective factors in univariate specifications confirms the robustness

of the main findings (Appendix Table A5 shows this exemplarily for the categorical

variable (�C)). The pattern of the main results remain similar when we exclude moves

in positions that the engine evaluates as exactly equal for both players, presumably

because the optimal continuation results in a repetition of moves (see Appendix Table

A6).

The estimation results obtained with a more flexible specification of the e�ect of

relative positional standing, allowing for non-linear e�ects, confirm the main findings

and does not reveal evidence for pronounced non-linearities in the e�ect (see Appendix

Table A7). Figure 3 shows results for more flexible specifications of the subjective

factors graphically (exemplarily for the dependent variable �C). Figure 3(a) plots the

estimates from a more flexible specification with respect to current relative standing.

The results confirm the main findings of Table 1, which reports the results relative to

balanced positional standings. Performance is worse for a positive evaluation of the

current position compared to a balanced position, but relatively better for negative

evaluations. As in the main analysis, the identification of these e�ects relative to the

benchmark of the restricted engine rules out that this finding is driven by mechanical

e�ects such as reversion to the mean. Figure 3(b) suggests laxer time budget lead to

more frequent deviations with better performance, especially early in the game. Figure

3(c) and (d) confirm that fatigue and complexity lead to worse performance.

Alternative Measures for the Subjective Factors. To investigate the robustness of the

results, we also replicated the analysis with alternative proxy measures for the various

dimensions of behavioral deviations. These include, in particular, relative standing

measured in terms of a continuous measure (in pawn units), time pressure in terms of

proximity to time control when additional time is added to players’ time budget, fatigue
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(a) Current Position
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(b) Time Pressure
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(c) Fatigue
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(d) Complexity

Figure 3: Deviations from Cognitively Bounded Rationality – Categorical Measure (�C)

Note: OLS results of more flexible specifications. Dependent variable is �C and the specification
contains player-game fixed e�ects as in the specification in (4). Variables depicted on the horizontal
axis are split into equal spaced intervals. Dots report point estimates and whiskers report 95% confidence
intervals. The variable Num. previous moves is calculated as the number of previous moves per player.

as proxied by elapsed time, and complexity in terms of the distance of the second-best

move to the first-best move (in terms of pawn units). The results confirm the main

results (see Appendix Table A8). In comparison to the baseline results, players in a

worse position when using a continuous evaluation measure of relative standing are here

even significantly less likely to deviate from the benchmark along the extensive margin

(for �E), but still exhibit better performance when using the categorical measure �C .

Calibration of Restricted Chess Engine. Another potential concern regarding the

empirical strategy is the calibration of the restricted chess engine. In particular, since
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identification relies on di�erent assumptions that involve a comparison between human

behavior and the computational benchmark of cognitively bounded rationality reflected

the restricted engine, the results might be sensitive to the particular calibration as it

might induce measurement error in �Õ
gic. The empirical specification already accounts

for this by including interacted player-game fixed e�ects that capture potential mea-

surement error that enters at the player-game level, e.g., because a particular player

has a systematically higher or lower strength of play than the restricted chess engine.

Moreover, the analysis is based on a fairly homogeneous sample of players with ELO

ratings between 2,500 and 2,880 points. As discussed above, the results are robust even

when the player-game level fixed e�ects are omitted (see Appendix Table A4). Further-

more, measurement error in the response variable does not lead to bias in the coe�cient

estimates of — when it is statistically independent of the regressors, but might increase

the variance (see the discussion about classical measurement error in, e.g., Wooldridge,

2010). Accordingly, statistically independent measurement error may lead to conserva-

tive inference.

The most direct evidence for the insensitivity of the results with respect to the cali-

bration of the restricted engine emerges from estimates conducted with subsamples for

players with di�erent strength of play. The results from the corresponding robustness

checks document that the results are not sensitive to players with di�erent strength of

play or the exact specification of the chess engine. In particular, we find that the overall

pattern of results is identical when including weaker players (with ELO ratings above

2000 instead of restricting to players with ELO ratings above 2,500), or when restricting

to players with ratings between 2,400 and 2,600, or between 2,600 and 2,800 (Appendix

Tables A9, A10 and A11).

Alternative Chess Engine. To assess the robustness of the results with respect to

the particular chess engine, we also replicated the analysis for an alternative engine

to construct the benchmark. This engine (Komodo) is considered to have a di�erent
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playing style than Stockfish 8.15 To the extent that the alternative engine exhibits a

di�erent playing style, it also potentially introduces di�erent measurement error in the

dependent variables �Õ
gic than Stockfish 8, because it uses di�erent computational

algorithms. The results obtained with the alternative engine reveal similar patterns as

the baseline results (see Appendix Table A12).

Total E�ect/Intensive Margin. The analysis so far focused on the extensive margin

e�ects. To obtain estimates of the total e�ects and of the intensive margin e�ects con-

ditional on deviation as in equation (2), we also estimated the model using a continuous

performance measure as dependent variable. In particular, we consider deviations from

the benchmark using the measure � in terms of pawn units. Since the distribution of

pawn units is substantially skewed and since we consider a semi-continuous variable with

a mass point at 0, we construct behavioral deviations from the benchmark in terms of

log-modulus transformed performance, �L.16 Recall that identification relies on the as-

sumption that the conditional expectation of the relative performance of humans under

objectively optimal behavior is equal to the conditional expectation of the relative per-

formance of the restricted engine, E[P ú
c ≠P r

c |Xic = x] = 0. This implies a reliance on the

particular metric used for measuring performance (here pawn units), in contrast to the

identifying assumption for e�ects along the extensive margin stated in (3). The latter

stipulates that the conditional probability of deviations of the relative performance of

human players from the benchmark of the restricted chess engine is equivalent to the

conditional probability of deviations from the objective performance benchmark, which

does not rely on a particular metric. Moreover, the size of the estimated e�ects depends

on the particular metric used, which e�ectively determines the scope of the intensive

margin e�ect.

15We use Komodo 9, which is also considered to be among the world’s strongest chess engines. Ko-
modo’s playing style is typically referred to as being more positional, focusing more on long-term
strategic planning, than that of Stockfish. According to http://ccrl.chessdom.com (archived on
September 10, 2019) it is estimated to have an ELO of 3235 in its unconstrained version. To replicate
moves for the benchmark, we also restrict Komodo to a search depth of 12.

16In particular, we compute �L as �L
gic = sgn(�gic) · ln(|�gic| + 1), where �gic = Pgic ≠ P r

c is the
di�erence in performance measured in pawn units.
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Nevertheless, for completeness, we report the estimates of the total e�ect and the

e�ect along the intensive margin conditional on deviation (see Appendix Table A13

Columns (1) and (2), respectively). In terms of interpretation, the total e�ect is an

alternative measure for the overall performance consequences of behavioral deviations.

Comparing the corresponding results to the baseline results for the dependent variable

�C reveals mostly the same patterns for the total e�ect as for the categorical measure

�C (see Appendix Table A13 Column (1)). The only exception in this pattern refers

to the e�ect of being in a worse position, which exhibits a significantly negative total

e�ect on performance. This e�ect is quantitatively smaller than the e�ect for being in a

better position but of opposite sign compared to the extensive margin e�ect of being in

a worse position. This suggests that being in a worse position increases the probability

of deviations associated with better performance (in terms of �C), but the negative per-

formance e�ects along the intensive margin associated with worse performance dominate

when using the log-modulus transformed performance measure. The other results are

qualitatively comparable; complexity has no significant impact on the total e�ect. The

results for the intensive margin e�ects conditional on deviation are also in line with the

findings obtained of the categorical measure �C (see Appendix Table A13 Column (2)).

The exception is again the e�ect of worse position, which is negative but quantitatively

small and only marginally significant. The intensive margin e�ect for complexity is pos-

itive and significant, but also quantitatively small. These patterns are confirmed when

using the alternative engine to construct the benchmark (see Columns (3) and (4) of

Appendix Table A13).

In light of the more restrictive identification assumptions, the reliance on a particular

performance metric, and the di�cult interpretation because of sample selection (see,

e.g., Heckman, 1979), we view these findings as reassuring for the overall pattern of

results. We conclude that the main insights of the analysis are obtained from the quali-

tative results along the extensive margin, which have the advantage of a straightforward

interpretation and of not relying on a particular performance metric. However, these

findings also cast a note of caution regarding the interpretation of various and sometimes
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diverging findings in the empirical literature on deviations from a rational benchmark,

which might not be directly comparable as they result from di�erent outcome measures

and thus constitute estimates of e�ects that are not necessarily fully comparable.

4.3 Behavioral Heterogeneity

To shed light on the underlying behavioral mechanisms, we estimated various alterna-

tive specifications that allow for interactions between the factors that lead to behavioral

deviations with time pressure, or for heterogeneity in the e�ects of the subjective factors.

Time pressure in terms of less remaining time tends to amplify the probability of any

deviations (in terms of �E) associated with better or worse positions, but do not a�ect

the deviations associated with fatigue or complexity. However, time pressure seems not

to amplify the consequences of behavioral deviations on performance (in terms of �C),

except for complexity where less remaining time is associated with more frequent devi-

ations and even worse performance (Appendix Table A14). These results complement

earlier findings for asymmetric e�ects of time pressure (Kocher et al., 2013).

A conjecture that has been raised repeatedly in psychology is that stronger players

benefit from better intuition (Simon and Chase, 1973; Moxley et al., 2012). To test this

conjecture, we explore whether there is any heterogeneity in the e�ects of the subjective

factors on deviations from the benchmark with respect to player strength, measured

by ELO ratings. The results reveal no systematic patterns except that the behavioral

deviations associated with time pressure are less pronounced for stronger players (see

Appendix Table A15).

To study the potential role of reference dependence based on ex-ante odds along the

lines of earlier work (e.g., Bartling et al., 2015) or a potential role of emotional states

as in work by González-Diaz and Palacios-Huerta (2016), we also test for systematic

heterogeneity in the performance of players playing with white or black pieces. Playing

with white is typically associated with an inherent first-mover advantage at the outset of

a game and therefore exhibits significantly higher ex-ante winning odds. Alternatively,

we test for heterogeneity across favorites and underdogs as defined by the relative rating
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of the two players prior to the game in terms of their ELO numbers. However, in our

specification with player-game fixed e�ects, we find no evidence for significant di�erences

in behavioral deviations along these dimensions (see Appendix Table A16).

To explore the role of strategic and psychological interactions, we also investigate

the influence of the opponent’s remaining time or of the time spent on the previous

move by the opponent, which reveals no statistically significant interactions between the

opponents in terms of an impact on performance (see Appendix Table A17).

5 Evidence for Computational Rationality?

5.1 Decision Times

To shed light on the ongoing debate in psychology and cognitive sciences about whether

the appropriate behavioral model of decision-making in complex environments involves

optimization, the remaining analysis explores the relation between decisions, perfor-

mance, and decision times. The notion of computational rationality (Gershman et al.,

2015) stipulates that optimal decisions in complex environments require approximations

and, particularly, an e�cient use of scarce resources such as time and e�ort. Consis-

tently, also many heuristics involve rules about search for optimal decisions, as well as

rules for optimal stopping and making a decision-making (Gigerenzer, 1996; Gigerenzer

and Goldstein, 1996).

We explore the consistency of computational rationality with our evidence in two

steps. In this section, we investigate whether the factors that lead to deviations from

the computational benchmark are also reflected in decision times. In the next section,

we investigate the role of decision times for decisions and their performance.

Table 2 presents results for decision time as dependent variable, using an otherwise

identical empirical approach as before. The results complement the previous results and

are consistent with a model of computational rationality. In particular, the analysis

of the determinants of decision time reveals that deliberation is relatively more time

consuming when a player is in a better position. The results of the full specification in
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Column (5) reveals that deliberation is most time consuming in configurations where

a player has a clearly better positional standing, while decisions are made faster in

the context of worse positions. Presumably, this reflects a greater salience of possible

or optimal moves in such situations, but it is also consistent with a greater reliance

on intuition and experience for how to proceed. A more constrained time budget in

terms of less remaining time at the decision maker’s disposal is also associated with less

time spent on a move. Hence, under pressure decision makers might be more inclined

to rely on their intuition or experience to make a decision. Later in the game, with

a greater number of moves played, decisions are made faster. This suggests shorter

deliberation as a consequence of fatigue, which indicates a greater reliance on intuition

and heuristics as consequence of tighter constraints on cognitive capacities. Finally,

more complex situations induce slower decisions. In light of recent findings that longer

deliberation times are associated with greater e�ort and depth of reasoning (Alós-Ferrer

and Buckenmaier, 2020), this suggests that decision makers need to invest more e�ort

to get to a decision, consistent with a rational use of resources even when decisions have

to be made under bounded rationality (Lewis et al., 2014; Gershman et al., 2015; Lieder

and Gri�ths, 2020).

5.2 Decision Times and Deviations from the Benchmark

The results presented in the last section indicate that behavioral deviations from the

benchmark do not necessarily imply worse performance. This suggests that human intu-

ition and experience might be an important factor in determining a successful strategy.

The findings on decision times complement this interpretation. To explore this issue

in relation to the question about computational rationality, we investigate the role of

the time players invest in making a decision about a move for decision making in com-

parison to the computational benchmark. If time allocation is determined by implicit

cost-benefit considerations, decision makers spend more time deliberating a move when

the gap in the subjective evaluation between two options is relatively small (Chabris

et al., 2009). Moreover, earlier studies found that additional time for deliberation im-
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Table 2: Time Spent on Move as Dependent Variable

Dependent Variable:
Time spent per move (min.)

(1) (2) (3) (4) (5)

Current Position
Better position (>0.5 pawnunits) ≠0.1857úúú 0.4894úúú

(0.0599) (0.0506)
Worse position (<-0.5 pawnunits) ≠1.2136úúú ≠0.2344úúú

(0.0618) (0.0470)
Time Pressure
Remaining time (hours) 5.1187úúú 4.7149úúú

(0.0871) (0.0977)
Fatigue
Num. previous moves ≠0.0773úúú ≠0.0131úúú

(0.0020) (0.0019)
Complexity
Seconds to reach fixed depth 0.0349úúú 0.0084úúú

(0.0012) (0.0008)

Player-Game Fixed E�ects Y es Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963 3963

Note: OLS estimates. The variable Num. previous moves is calculated as the number of previous moves
per player. Standard errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.

proves performance (Moxley et al., 2012). Recent theoretical work has considered the

optimal speed and accuracy of decisions in settings in which the relative evaluations of

decision alternatives are unknown. This work has shown that faster decisions can also

imply better performance when decision makers already have fairly precise information

and the value of further information acquisition is low, or when decision makers face

(subjectively) simple problems where information acquisition is fast (Fudenberg et al.,

2018). Our setting allows us to provide new evidence for the relation between decision

speed and performance. Under the premise that, for certain configurations, intuition

and expert assessment based on experience lead to a fast and precise assessment of

the best strategy with little gain from additional deliberation, this gives rise to the hy-

pothesis that faster decisions might be associated with more frequent deviations from
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the benchmark, but at the same time are not necessarily associated with worse perfor-

mance. Indeed, if humans deliberately make a decision based on an intuitive assessment

rather than based on long deliberation in situations that allow them do so, faster deci-

sion can even be associated with better performance. This conjecture also follows from

the literature in psychology that has emphasized the role of intuition reflected in fast

perception and pattern recognition (de Groot, 1978; Kahneman, 2003; Kahneman and

Klein, 2009).17

Table 3 reports results for an extended specification for the e�ects of subjective factors

driving behavioral deviations that also accounts for the time spent on a move as an

additional control variable. The coe�cients for the subjective factors are qualitatively

similar to the main results in Table 1 and seem to be una�ected by including the decision

time spent on a move. The results also document, however, that spending more time

on a move is associated with more frequent deviations from the benchmark and worse

performance.

Additional results reveal that the time spent on a move also interacts with the psycho-

logical factors in determining behavioral deviations from the benchmark (see Appendix

Table A18). In particular, more deliberation time in terms of time spent on a move

tends to counteract the influence of being in a better or worse position, or of time

pressure (in terms of less remaining time) on the likelihood of deviating from the bench-

mark. In terms of performance consequences, spending more time amplifies the positive

performance consequences of being in a worse position and the negative performance

consequences of time pressure. Moreover, longer deliberation time on a move tends

to amplify the negative performance consequences associated with deviations from the

benchmark due to fatigue by inducing more errors.

Together, these results indicate that faster decisions are associated with more behav-

ioral deviations from the benchmark of cognitively bounded rationality and, at the same

time, better performance than stipulated by the benchmark. In light of recent evidence
17The discussion about the existence of a speed-accuracy trade-o� goes back to work by Henmon

(1911). Work by Förster et al. (2003) has provided some tentative evidence that faster decision can
also be associated with better performance in an experiment in a non-strategic environment using
proof-reading as a decision task.
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Table 3: Accounting for Decision Times

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0690úúú ≠0.0028 0.0719úúú ≠0.0747úúú

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0108ú 0.0322úúú ≠0.0214úúú 0.0536úúú

(0.0060) (0.0046) (0.0050) (0.0074)
Time Pressure
Remaining time (hours) ≠0.0886úúú 0.0056 ≠0.0942úúú 0.0998úúú

(0.0077) (0.0053) (0.0061) (0.0085)
Fatigue
Num. previous moves ≠0.0016úúú ≠0.0017úúú 0.0001 ≠0.0017úúú

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0026úúú 0.0012úúú 0.0014úúú ≠0.0002úú

(0.0001) (0.0001) (0.0001) (0.0001)
Decision Time
Time spent on move (min.) 0.0217úúú 0.0071úúú 0.0146úúú ≠0.0075úúú

(0.0005) (0.0004) (0.0004) (0.0006)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.

that shorter deliberation times are associated with lower depth of reasoning (Alós-Ferrer

and Buckenmaier, 2020), this suggests a superior intuitive assessment of positional con-

figurations by humans, which is presumably related to intuition and experience, and

which is particularly pronounced during critical phases of the game. These patterns

are consistent with predictions of models of salience and selective memory (Gennaioli

and Shleifer, 2010; Bordalo et al., 2020) under the assumption that chess experts have

a very quick and intuitive perception of the best continuation and of critical positions

that require longer deliberation times. This is also consistent with a two-step approach

where decisions are taken either according to rational considerations or intuitively on a
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case-by-case assessment (Sahm and von Weizsäcker, 2016).

6 Concluding Remarks

In this paper, we provided a systematic analysis of human behavior under cognitively

bounded rationality. In terms of methodology, we constructed a benchmark of cognitively

bounded rationality that utilizes the artificial intelligence embedded in the algorithms

of a chess engine that is subject to comparable computational limitations as humans.

This allowed us to develop an identification strategy of the factors driving behavioral

deviations from this objective benchmark as well as of the performance consequences of

these deviations. This methodology might be useful for analyzing human behavior in

other applications.

The empirical findings of this paper have important implications. The results show

that professional chess players deviate systematically from the boundedly rational bench-

mark represented by a chess engine of comparable strength. In particular, the results

indicate that time pressure, fatigue, complexity, and pressure from being in a better or

worse position induce these deviations. However, the results also show that these devi-

ations do not necessarily a�ect performance negatively, but often even entail superior

performance. We also find that faster decisions are associated with more frequent devia-

tions from the benchmark of bounded rationality and, concurrently, better performance.

In light of previous theoretical literature and additional empirical results, this suggests

that the superior performance is presumably due to experience or intuition of experts

that provides them with a fairly fast and precise assessment of the decision problem and

of the best choice.

While this paper contributes a new methodology to identify behavioral patterns of

bounded rationality as well as its consequences for performance, the results are not

conclusive about the underlying mechanisms. The results for decision times, behav-

ioral deviations and performance suggest that first perception and recognition play an

important role that needs to be understood better. Moreover, it is possible that behav-
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ioral deviations from the benchmark of cognitively bounded rationality are entirely due

to mechanisms related to cognitive processes that underly the decisions of an individ-

ual player. It is equally possible, however, that the deviations are part of a strategy

that incorporates beliefs about likely deviations of the opponent from the benchmark of

boundedly rational behavior, thus incorporating the notion that behavior as stipulated

by a chess engine might not be the optimal strategy, in analogy to the optimal strategy

in a guessing game. Both possibilities are consistent with the empirical approach and the

results presented in this paper. A natural next step in the research agenda is to apply

the methodology developed here to investigate the respective behavioral mechanisms in

more detail.

36



References

Alaoui, L. and A. Penta (2016): “Endogenous Depth of Reasoning,” Review of
Economic Studies, 83, 1297–1333.

Alliot, J.-M. (2017): “Who is the Master?” ICGA Journal, 39, 3–43.

Alós-Ferrer, C. and J. Buckenmaier (2020): “Cognitive sophistication and de-
liberation times,” Experimental Economics, forthcoming.

Anderson, A. and E. A. Green (2018): “Personal Bests as Reference Points,”
Proceedings of the National Academy of Sciences, 115, 1772–1776.

Anderson, A., J. Kleinberg, and S. Mullainathan (2016): “Assessing Hu-
man Error Against a Benchmark of Perfection,” ACM Transactions on Knowledge
Discovery from Data, 11, 45.

Aumann, R. J. (1997): “Rationality and Bounded Rationality,” Games and Economic
Behavior, 21, 2–14.

Backus, P., M. Cubel, M. Guid, S. Sanchez-Pages, and E. Lopez-Manas
(2016): “Gender, Competition and Performance: Evidence from Real Tournaments,”
The School of Economics Discussion Paper Series, 1605.

Barnes, D. J. and J. Hernandez-Castro (2015): “On the limits of engine analysis
for cheating detection in chess,” Computers & Security, 48, 58–73.

Bartling, B., L. Brandes, and D. Schunk (2015): “Expectations as Reference
Points: Field Evidence from Professional Soccer,” Management Science, 61, 2646–
2661.

Baumeister, R. F. (1985): “Choking under Pressure: Self-Consciousness and Para-
doxical E�ects of Incentives on Skillful Performance,” Journal of Personality and Social
Psychology, 46, 610–612.

Bertoni, M., G. Brunello, and L. Rocco (2015): “Selection and the age-
productivity profile. Evidence from chess players,” Journal of Economic Behavior and
Organization, 110, 45–58.

Bordalo, P., N. Gennaioli, and A. Shleifer (2020): “Memory, Attention, and
Choice,” Quarterly Journal of Economics, 135, 1399–1442.

Cabral, L. (2003): “R&D Competition when firms Choose Variance,” Journal of
Economics & Management Strategy, 12, 139–150.

Camerer, C. (1998): “Bounded Rationality in Individual Decision Making,”
Experimental Economics, 1, 163–183.

37



Chabris, C. F., D. Laibson, C. L. Morris, J. P. Schuldt, and D. Taubin-
sky (2009): “The Allocation of Time in Decision-Making,” Journal of the European
Economic Association, 7, 628–637.

Chase, W. G. and H. A. Simon (1973): “Perception in chess,” Cognitive Psychology,
4, 55–81.

Cohen-Zada, D., A. Krumer, M. Rosenboim, and O. Shapir (2017): “Choking
under Pressure and Gender: Evidence from Professional Tennis,” Journal of Economic
Psychology, 61, 176–190.

de Groot, A. D. (1946): Het denken van den schaker: Een
experimenteel-psychologische studie, Amsterdam: Noord-Hollandsche Uitgevers
Maatschappij.

——— (1978): Thought and Choice in Chess, The Hague: Mouton Publishers.

de Sousa, J. and G. Hollard (2016): “Gender Di�erences: Evidence from Field
Tournaments,” Working Paper.

Deck, C. and S. Jahedi (2015): “The e�ect of cognitive load on economic decision
making: A survey and new experiments,” European Economic Review, 78, 97–119.

Dohmen, T. (2008): “Do Professionals Choke under Pressure?” Journal of Economic
Behavior and Organization, 65, 636–653.

Dreber, A., C. Gerdes, and P. Gränsmark (2013): “Beauty queens and battling
knights: Risk taking and attractiveness in chess,” Journal of Economic Behavior and
Organization, 90, 1–18.

Ericsson, K. A. (2006): “Protocol analysis and expert thought: Concurrent verbaliza-
tions of thinking during experts’ performance on representative tasks,” The Cambridge
Handbook of Expertise and Expert Performance, 223–241.

Fawcett, T. W., B. Fallenstein, A. D. Higginson, A. I. Houston, D. E.
Mallpress, P. C. Trimmer, and J. M. McNamara (2014): “The evolution of
decision rules in complex environments,” Trends in Cognitive Sciences, 18, 153–161.

Ferreira, D. R. (2013): “The Impact of the Search Depth on Chess Playing Strength,”
ICGA Journal, 36, 67–80.

Föllmi, R., S. Legge, and L. Schmid (2016): “Do Professionals Get It Right?
Limited Attention and Risk-Taking Behavior,” Economic Journal, 126, 724–755.

Frank, B. and S. Krabel (2013): “Gens una sumus?!—Or does political ideology
a�ect experts’ esthetic judgment of chess games?” Journal of Economic Behavior and
Organization, 92, 66–78.

38



Förster, J., E. Higgins, and A. T. Bianco (2003): “Speed/accuracy decisions in
task performance: Built-in trade-o� or separate strategic concerns?” Organizational
Behavior and Human Decision Processes, 90, 148 – 164.

Fudenberg, D., P. Strack, and T. Strzalecki (2018): “Speed, Accuracy, and
the Optimal Timing of Choices,” American Economic Review, 108, 3651–3684.

Gabaix, X., D. Laibson, G. Moloche, and S. Weinberg (2006): “Costly
Information Acquisition: Experimental Analysis of a Boundedly Rational Model,”
American Economic Review, 96, 1043–1068.

Genakos, C. and M. Pagliero (2012): “Interim Rank, Risk Taking, and Perfor-
mance in Dynamic Tournaments,” Journal of Political Economy, 120, 782–813.

Genakos, C., M. Pagliero, and E. Garbi (2015): “When pressure sinks perfor-
mance: Evidence from diving competitions,” Economics Letters, 132, 5–8.

Gennaioli, N. and A. Shleifer (2010): “What Comes To Mind,” Quarterly Journal
of Economics, 125, 1399–1433.

Gerdes, C. and P. Gränsmark (2010): “Strategic behavior across gender: A com-
parison of female and male expert chess players,” Labour Economics, 17, 766–775.

Gerdes, C., P. Gränsmark, and M. Rosholm (2011): “Chicken or Checkin’?
Rational Learning in Repeated Chess Games,” IZA Discussion Paper, 5862.

Gershman, S. J., E. J. Horvitz, and J. B. Tenenbaum (2015): “Computational
rationality: A converging paradigm for intelligence in brains, minds, and machines,”
Science, 349, 273–278.

Gigerenzer, G. (1996): “On Narrow Norms and Vague Heuristics: A Reply to Kah-
neman and Tversky (1996),” Psychological Review, 103, 592–596.

Gigerenzer, G. and D. G. Goldstein (1996): “Reasoning the Fast and Frugal
Way: Models of Bounded Rationality,” Psychological Review, 103, 650–669.

González-Diaz, J. and I. Palacios-Huerta (2016): “Cognitive performance in
competitive environments: Evidence from a natural experiment,” Journal of Public
Economics, 139, 40–52.

Guid, M. and I. Bratko (2011): “Using heuristic-search based engines for estimating
human skill at chess,” ICGA Journal, 34, 71–81.

Haworth, G., T. Biswas, and K. Regan (2015): “A Comparative Review of Skill
Assessment: Performance, Prediction and Profiling,” in Advances in Computer Games
14th International Conference, ACG 2015, Leiden, The Netherlands, July 1-3, 2015,
Revised Selected Papers, ed. by A. Plaat, J. van den Herik, and W. Kosters, Springer,
vol. 1, 135–146.

39



Heckman, J. J. (1979): “Sample Selection Bias as a Specification Error,”
Econometrica, 47, 153–161.

Henmon, V. (1911): “The relation of the time of a judgment to its accuracy,”
Psychological Review, 18, 186–201.

Iskhakov, F., J. Rust, and B. Schjerning (2020): “Machine learning and struc-
tural econometrics: contrasts and synergies,” Econometrics Journal, forthcoming.

Kahneman, D. (2003): “Maps of Bounded Rationality: Psychology for Behavioral
Economics,” American Economic Review, 93, 1449–1475.

Kahneman, D. and G. Klein (2009): “Conditions for Intuitive Expertise,” American
Psychologist, 64, 515–526.

Kahneman, D. and A. Tversky (1996): “On the Reality of Cognitive Illusions,”
Psychological Review, 103, 582–591.

Klein, G. (1993): “A Recognition Primed Decision (RPD) Model of Rapid Decision
Making,” in Decision Making in Action: Models and Methods, ed. by G. Klein,
J. Orasanu, R. Calderwood, and C. Zsambok, Norwood, N.J.: Ablex, 138–147.

Kocher, M. G., J. Pahlke, and S. T. Trautmann (2013): “Tempus Fugit: Time
Pressure in Risky Decisions,” Management Science, 59, 2380–2391.

Kocher, M. G. and M. Sutter (2006): “Time is money -— Time pressure, in-
centives, and the quality of decision-making,” Journal of Economic Behavior and
Organization, 61, 375–392.

Künn, S., J. Palacios, and N. Pestel (2019): “Indoor Air Quality and Cognitive
Performance,” IZA Discussion Paper, 12632.

Levitt, S. D., J. A. List, and S. E. Sadoff (2011): “Checkmate: Exploring
Backward Induction among Chess Players,” American Economic Review, 101, 975–
990.

Lewis, R. L., A. Howes, and S. Singh (2014): “Computational Rationality: Link-
ing Mechamism and Behavior Through Bounded Utility Maximization,” Topics in
Cognitive Science, 6, 279–311.

Lieder, F. and T. L. Griffiths (2020): “Resource-rational analysis: Understanding
human cognition as the optimal use of limited computational resources,” Behavioral
and Brain Sciences, 43, 1–60.

Linnemmer, L. and M. Visser (2016): “Self-selection in tournaments: The case of
chess players,” Journal of Economic Behavior and Organization, 126, 213–234.

Lipman, B. L. (1991): “How to Decide How to Decide How to...: Modeling Limited
Rationality,” Econometrica, 59, 1105–1125.

40



——— (1999): “Decision Theory without Logical Omniscience: Toward an Axiomatic
Framework for Bounded Rationality,” Review of Economic Studies, 66, 339–361.

McIlroy-Young, R., S. Sen, J. Kleinberg, and A. Anderson (2020): “Align-
ing Superhuman AI with Human Behavior,” Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Moul, C. C. and J. V. Nye (2009): “Did the Soviets collude? A statistical analysis
of championship chess 1940–1978,” Journal of Economic Behavior and Organization,
70, 10–21.

Moxley, J. H., K. A. Ericsson, N. Charness, and R. T. Krampe (2012): “The
role of intuition and deliberate thinking in experts’ superior tactical decision-making,”
Cognition, 124, 72–78.

Oechssler, J., A. Roider, and P. W. Schmitz (2009): “Cognitive abilities and
behavioral biases,” European Economic Review, 72, 147–152.

Palacios-Huerta, I. and O. Volij (2009): “Field Centipedes,” American Economic
Review, 99, 1619–1635.

Russell, S. J. and D. Subramanian (1995): “Provable Bounded-Optimal Agents,”
Journal of Artificial Intelligence Research, 2, 575–609.

Rust, J. (2019): “Has Dynamic Programming Improved Decision Making?” Annual
Review of Economics, 11, 833–858.

Sahm, M. and R. K. von Weizsäcker (2016): “Reason, Intuition, and Time,”
Managerial and Decision Economics, 37.

Schultetus, R. S. and N. Charness (1999): “Recall or Evaluation of Chess Posi-
tions Revisited: The Relationship between Memory and Evaulation in Chess Skill,”
American Journal of Psychology, 112, 555–569.

Schwalbe, U. and P. Walker (2001): “Zermelo and the Early History of Game
Theory,” Games and Economic Behavior, 34, 123–137.

Shanteau, J. (1992): “Competence in Experts: The Role of Task Characteristics,”
Organizational Behavior and Human Decision Processes, 53, 252–266.

Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. (2018): “A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play,”
Science, 362, 1140–1144.

Simon, H. A. (1979): “Rational Decision Making in Business Organizations,” American
Economic Review, 69, 493–513.

41



——— (1982): Models of Bounded Rationality, Cambridge, Mass.: MIT Press.

Simon, H. A. and W. G. Chase (1973): “Skill in Chess,” American Scientist, 61,
394–403.

Stracke, R., R. Kerschbamer, and U. Sunde (2017): “Coping with complexity
– Experimental evidence for narrow bracketing in multi-stage contests,” European
Economic Review, 98, 264–281.

Strittmatter, A., U. Sunde, and D. Zegners (2020): “Life Cycle Patterns of
Cognitive Performance over the Long Run,” Proceedings of the National Academy of
Sciences, 117, 27255–27261.

von Neumann, J. (1928): “Zur Theorie der Gesellschaftsspiele,” Mathematische
Annalen, 100, 295–320.

Wooldridge, J. (2010): Econometric Analysis of Cross Section and Panel Data, Cam-
bridge, Massachusetts: MIT Press), 2nd ed.

Zermelo, E. (1913): “Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels,” in Proceedings of the Fifth Congress of Mathematicians, ed. by E. W.
Hobson and A. Love, Cambridge University Press, vol. 2, 501–504.

42



Appendix with Supplementary Material

Additional Figures
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Figure A1: Player Strength and Average Performance Di�erence between Human Players
and Restricted Chess Engine

Note: This figure plots the di�erence of the performance of a player in comparison to the perfor-
mance of the restricted chess engine. The graph is based on configurations in which human players
had more than one hour remaining time budget and hence had no binding time constraints. ELO
numbers of players’ depicted on the horizontal axis are split into equal-spaced intervals to compute
the average within the interval. Whiskers report 95% confidence intervals.
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Additional Tables

Table A1: List of Tournaments in Dataset

Games Percent
National Championships

Russian Championship 165 8.3%
U.S. Championship 114 5.8%
Ukrainian Championship 78 3.9%
French Championship 62 3.1%
Armenian Championship 60 3.0%
Other National Championships 115 5.8%

Invited Tournaments
Wijk aan Zee 450 22.7%
Norway Chess 84 4.2%
Poikovsky 81 4.1%
Shamkir 76 3.8%
Lake Sevan 69 3.5%
Danzhou 42 2.1%
Other Invited Tournaments 306 15.4%

World Chess Federation Tournaments
FIDE Grand Prix 280 14.1%
Sum 1,982 100.0%

Table A2: Descriptive Statistics – Game Level

Games Mean Std. Dev. Min Max

Player strength
Elo rating white player 1,982 2681.7 85.24 2500 2881
Elo rating black player 1,982 2681.0 85.09 2500 2881
Game result
White player wins 1,982 0.279 0.448 0 1
Draw 1,982 0.566 0.496 0 1
Black player wins 1,982 0.156 0.363 0 1
Duration
Num. moves overall 1,982 41.05 14.55 15 98
Duration game (hours) overall 1,982 3.332 1.443 0 8.113

Note: The variable Num. moves overall is calculated as the number of moves per player in game.
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Table A3: Descriptive Statistics – Move Level

Moves Mean Std. Dev. Min Max

Game characteristics
Elo rating player 106,391 2678.6 86.08 2500 2881
Elo di�erence between players 106,391 -0.103 71.07 -284 284
Performance measures
�E (binary) 106,391 0.398 0.489 0 1
�P (binary) 106,391 0.175 0.380 0 1
�N (binary) 106,391 0.223 0.416 0 1
�C (categ.) 106,391 -0.0479 0.629 -1 1
�L (log-mod) 106,391 -0.0366 0.398 -6.485 5.795
Current position
Evaluation current position (pawnunits) 106,391 0.146 24.30 -327 327
Better position (>0.5 pawnunits) 106,391 0.245 0.430 0 1
Worse position (<-0.5 pawnunits) 106,391 0.213 0.409 0 1
Time pressure and time spent
Remaining time (hours) 106,391 0.665 0.528 0 2.513
Time spent on move (min.) 106,391 2.482 4.072 0 100.5
Num. previous moves 106,391 31.86 13.68 15 98
Duration game (hours) 106,391 2.763 1.409 0 8.113
Remaining time (opp.) 104,409 0.654 0.525 0 2.513
Time spent on move (opp.) 106,391 2.545 4.139 0 100.5
Complexity position
Seconds to reach fixed depth 106,391 30.33 24.14 0.00100 799.3
Distance second best move 105,733 -4.338 32.78 -654 0

Note: Descriptive statistics for the baseline sample. Evaluations of performance are based on the
Stockfish 8 chess engine. The variable Distance second best move contains missing values for config-
urations where there is only one legal move available to the player. The variable Num. previous moves
is calculated as the number of previous moves per player. The variable Remaining time (opp.) has
missing values because the remaining time of the opponent is not recorded for the final move of a game.
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Table A4: Robustness – Specifications Without Player-Game Fixed E�ects

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Game characteristics
Elo player (divided by 100) ≠0.0090úúú 0.0055úúú ≠0.0145úúú 0.0201úúú

(0.0028) (0.0019) (0.0022) (0.0030)
Elo di�erence (divided by 100) ≠0.0077 ≠0.0012 ≠0.0064 0.0052

(0.0063) (0.0045) (0.0049) (0.0070)
Favorite ◊ Elo di�erence 0.0085 0.0008 0.0078 ≠0.0070

(0.0098) (0.0069) (0.0073) (0.0103)
White player (dummy) 0.0125úúú 0.0082úúú 0.0043 0.0038

(0.0034) (0.0024) (0.0027) (0.0038)
Favorite (according to Elo) ≠0.0109úú ≠0.0064ú ≠0.0045 ≠0.0019

(0.0050) (0.0035) (0.0043) (0.0061)
Current Position
Better position (>0.5 pawnunits) 0.0362úúú 0.0034 0.0328úúú ≠0.0294úúú

(0.0050) (0.0033) (0.0039) (0.0051)
Worse position (<-0.5 pawnunits) 0.0540úúú 0.0143úúú 0.0396úúú ≠0.0253úúú

(0.0050) (0.0035) (0.0041) (0.0058)
Time Pressure
Remaining time (hours) ≠0.0002 0.0183úúú ≠0.0185úúú 0.0368úúú

(0.0041) (0.0028) (0.0033) (0.0046)
Fatigue
Num. previous moves ≠0.0007úúú ≠0.0010úúú 0.0003úú ≠0.0013úúú

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0029úúú 0.0011úúú 0.0017úúú ≠0.0006úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects No No No No
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A5: Robustness – Specifications with Subjective Factors in Isolation

Dependent Variable:
Performance: �C (categ.)

(1) (2) (3) (4) (5)

Current Position
Better position (>0.5 pawnunits) ≠0.0951úúú ≠0.0784úúú

(0.0068) (0.0069)
Worse position (<-0.5 pawnunits) 0.0336úúú 0.0554úúú

(0.0074) (0.0075)
Time Pressure
Remaining time (hours) 0.0862úúú 0.0643úúú

(0.0072) (0.0081)
Fatigue
Num. previous moves ≠0.0022úúú ≠0.0016úúú

(0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0004úúú ≠0.0003úúú

(0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A6: Robustness – Excluding Positions with Evaluation Equal to 0.00

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0223úúú ≠0.0228úúú 0.0451úúú ≠0.0679úúú

(0.0062) (0.0048) (0.0052) (0.0077)
Worse position (<-0.5 pawnunits) ≠0.0522úúú 0.0064 ≠0.0586úúú 0.0650úúú

(0.0066) (0.0052) (0.0055) (0.0085)
Time Pressure
Remaining time (hours) 0.0040 0.0367úúú ≠0.0327úúú 0.0693úúú

(0.0078) (0.0057) (0.0063) (0.0092)
Fatigue
Num. previous moves ≠0.0004 ≠0.0012úúú 0.0009úúú ≠0.0021úúú

(0.0003) (0.0002) (0.0002) (0.0003)
Complexity
Seconds to reach fixed depth 0.0024úúú 0.0010úúú 0.0014úúú ≠0.0003úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 88835 88835 88835 88835
Player-Game Observations 3930 3930 3930 3930

Note: In this table, configurations that are evaluated with 0.00 by the chess engine due to a mutally
beneficial move repetition are excluded. OLS estimates. Evaluations of performance are based on the
Stockfish 8 chess engine. The variable Num. previous moves is calculated as the number of previous
moves per player. Standard errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú:
p < 0.01.

48



Table A7: Robustness – Flexible Specifications of Relative Positional Standing

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

1 Slight advantage (+/=) 0.0909úúú 0.0159úúú 0.0750úúú ≠0.0591úúú

(0.0063) (0.0049) (0.0054) (0.0082)
2 Clear advantage (+/-) 0.1028úúú 0.0134úú 0.0893úúú ≠0.0759úúú

(0.0075) (0.0053) (0.0061) (0.0087)
3 Decisive advantage (+-) 0.1082úúú ≠0.0027 0.1108úúú ≠0.1135úúú

(0.0090) (0.0062) (0.0074) (0.0102)
4 Slight disadvantage (=/-) 0.0174úúú 0.0365úúú ≠0.0191úúú 0.0556úúú

(0.0067) (0.0051) (0.0056) (0.0083)
5 Clear disadvantage (-/+) 0.0048 0.0355úúú ≠0.0307úúú 0.0663úúú

(0.0080) (0.0058) (0.0068) (0.0097)
6 Decisive disadvantage (-+) 0.0181úú 0.0408úúú ≠0.0227úúú 0.0635úúú

(0.0087) (0.0065) (0.0072) (0.0106)
Time Pressure
Remaining time (hours) 0.0120ú 0.0391úúú ≠0.0271úúú 0.0661úúú

(0.0071) (0.0051) (0.0056) (0.0080)
Fatigue
Num. previous moves ≠0.0019úúú ≠0.0017úúú ≠0.0002 ≠0.0014úúú

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0027úúú 0.0012úúú 0.0015úúú ≠0.0003úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Advantages
and disadvantages are calculated based on the usual chess conventions: A configuration that is evaluated
by a chess engine as less than 0.3 pawn units better for one side is considered equal (=). A configuration
that is evaluated as between 0.3 and 0.7 pawn units better for one side is considered as a slight advantage
(+/ =) or slight disadvantage (= /≠), respectively. A configuration that is evaluated as between 0.7
and 1.6 pawn units better for one side is considered as a clear advantage (+/≠) or clear disadvantage
(≠/+), respectively. Positions that are evaluated as 1.6 better for one side are considered as a decisive
advantage (+≠) or decisive disadvantage (≠+), respectively. Standard errors are clustered on the game
level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A9: Robustness – Both Players with ELO Numbers Above 2000

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0781úúú 0.0020 0.0761úúú ≠0.0741úúú

(0.0045) (0.0031) (0.0037) (0.0052)
Worse position (<-0.5 pawnunits) 0.0077ú 0.0306úúú ≠0.0229úúú 0.0535úúú

(0.0045) (0.0032) (0.0038) (0.0054)
Time Pressure
Remaining time (hours) 0.0151úúú 0.0430úúú ≠0.0279úúú 0.0709úúú

(0.0057) (0.0041) (0.0047) (0.0067)
Fatigue
Num. previous moves ≠0.0018úúú ≠0.0015úúú ≠0.0003úú ≠0.0012úúú

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0012úúú 0.0016úúú ≠0.0005úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 196736 196736 196736 196736
Player-Game Observations 7164 7164 7164 7164

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A10: Robustness – Both Players with ELO Numbers Between 2400 and 2600

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0876úúú 0.0045 0.0830úúú ≠0.0785úúú

(0.0093) (0.0067) (0.0082) (0.0116)
Worse position (<-0.5 pawnunits) 0.0128 0.0354úúú ≠0.0226úúú 0.0580úúú

(0.0088) (0.0065) (0.0074) (0.0108)
Time Pressure
Remaining time (hours) 0.0026 0.0333úúú ≠0.0307úúú 0.0640úúú

(0.0130) (0.0096) (0.0115) (0.0167)
Fatigue
Num. previous moves ≠0.0022úúú ≠0.0015úúú ≠0.0007úú ≠0.0008úú

(0.0004) (0.0002) (0.0003) (0.0004)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0011úúú 0.0017úúú ≠0.0006úúú

(0.0002) (0.0001) (0.0001) (0.0002)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 45549 45549 45549 45549
Player-Game Observations 1571 1571 1571 1571

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.

52



Table A11: Robustness – Both Players with ELO Numbers Between 2600 and 2800

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0813úúú 0.0034 0.0779úúú ≠0.0746úúú

(0.0080) (0.0059) (0.0061) (0.0090)
Worse position (<-0.5 pawnunits) 0.0069 0.0319úúú ≠0.0250úúú 0.0569úúú

(0.0081) (0.0061) (0.0065) (0.0097)
Time Pressure
Remaining time (hours) 0.0128 0.0391úúú ≠0.0262úúú 0.0653úúú

(0.0088) (0.0061) (0.0070) (0.0096)
Fatigue
Num. previous moves ≠0.0018úúú ≠0.0018úúú ≠0.0000 ≠0.0018úúú

(0.0003) (0.0002) (0.0002) (0.0003)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0013úúú 0.0015úúú ≠0.0002

(0.0002) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 65811 65811 65811 65811
Player-Game Observations 2499 2499 2499 2499

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A12: Robustness – Rational Benchmark Constructed with Komodo-Engine

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0596úúú ≠0.0034 0.0630úúú ≠0.0664úúú

(0.0053) (0.0036) (0.0042) (0.0058)
Worse position (<-0.5 pawnunits) ≠0.0009 0.0204úúú ≠0.0213úúú 0.0417úúú

(0.0054) (0.0037) (0.0045) (0.0061)
Time Pressure
Remaining time (hours) ≠0.0034 0.0234úúú ≠0.0268úúú 0.0503úúú

(0.0060) (0.0041) (0.0050) (0.0068)
Fatigue
Num. previous moves ≠0.0014úúú ≠0.0014úúú 0.0000 ≠0.0014úúú

(0.0002) (0.0001) (0.0001) (0.0002)
Complexity
Seconds to reach fixed depth 0.0010úúú 0.0005úúú 0.0006úúú ≠0.0001

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Performance of the restricted engine is computed using the Komodo chess
engine. The variable Num. previous moves is calculated as the number of previous moves per player.
Standard errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A13: Total E�ect – Results for Semi-Continuous Performance Measure (Log-
Modulus)

Dependent Variable:
Performance: �L (log-mod.)

Stockfish Komodo
Total Intensive Total Intensive
E�ect Margin E�ect Margin

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) ≠0.0472úúú ≠0.0935úúú ≠0.0582úúú ≠0.1538úúú

(0.0042) (0.0102) (0.0043) (0.0136)
Worse position (<-0.5 pawnunits) ≠0.0111úú ≠0.0227ú ≠0.0199úúú ≠0.0434úú

(0.0054) (0.0133) (0.0055) (0.0185)
Time Pressure
Remaining time (hours) 0.0366úúú 0.0716úúú 0.0376úúú 0.0723úúú

(0.0051) (0.0137) (0.0053) (0.0181)
Fatigue
Num. previous moves ≠0.0018úúú ≠0.0050úúú ≠0.0020úúú ≠0.0071úúú

(0.0002) (0.0006) (0.0002) (0.0008)
Complexity
Seconds to reach fixed depth ≠0.0001 0.0005úú ≠0.0000 0.0008úú

(0.0001) (0.0002) (0.0001) (0.0003)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 42309 106391 28974
Player-Game Observations 3963 3904 3963 3856

Note: OLS estimates. The dependent variable is the di�erence in the evaluation of a move relative
to the best possible move in pawn units in terms of a log modulus transformation, such that �L

gic =
sgn(�gic) · ln(|�gic| + 1) with �gic = Pgic ≠ P r

c . Evaluations of performance are based on comparisons
to the Stockfish 8 chess engine as the super engine. In columns (1)-(2) performance of the restricted
engine is computed using Stockfish 8. In columns (3)-(4) performance of the restricted engine is
computed using the Komodo chess engine. The variable Num. previous moves is calculated as the
number of previous moves per player. Standard errors are clustered on the game level. ú: p < 0.1, úú:
p < 0.05, úúú: p < 0.01.
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Table A14: Behavioral Heterogeneity – Interactions with Time Pressure

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.1096úúú 0.0150úú 0.0947úúú ≠0.0797úúú

(0.0091) (0.0063) (0.0075) (0.0104)
Worse position (<-0.5 pawnunits) 0.0233úúú 0.0368úúú ≠0.0135ú 0.0503úúú

(0.0088) (0.0065) (0.0073) (0.0108)
Better position ◊ Remaining time ≠0.0453úúú ≠0.0206úúú ≠0.0247úúú 0.0041

(0.0109) (0.0075) (0.0088) (0.0121)
Worse position ◊ Remaining time ≠0.0278úú ≠0.0088 ≠0.0190úú 0.0102

(0.0112) (0.0079) (0.0090) (0.0126)
Time Pressure
Remaining time (hours) 0.0170 0.0390úúú ≠0.0219ú 0.0609úúú

(0.0171) (0.0116) (0.0128) (0.0174)
Fatigue
Num. previous moves ≠0.0020úúú ≠0.0016úúú ≠0.0004 ≠0.0013úúú

(0.0003) (0.0002) (0.0003) (0.0003)
Num. previous moves ◊ Remaining time 0.0002 ≠0.0002 0.0004 ≠0.0006

(0.0004) (0.0003) (0.0003) (0.0004)
Complexity
Seconds to reach fixed depth 0.0027úúú 0.0010úúú 0.0017úúú ≠0.0007úúú

(0.0002) (0.0001) (0.0002) (0.0002)
Seconds to reach fixed depth ◊ Remaining time 0.0002 0.0004úú ≠0.0002 0.0006úúú

(0.0002) (0.0001) (0.0002) (0.0002)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A16: Behavioral Heterogeneity – Accounting for Color and Favorite Status

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0966úúú 0.0031 0.0935úúú ≠0.0904úúú

(0.0151) (0.0115) (0.0123) (0.0185)
Worse position (<-0.5 pawnunits) 0.0032 0.0289úúú ≠0.0256úúú 0.0545úúú

(0.0098) (0.0076) (0.0080) (0.0121)
White player ◊ Better position ≠0.0053 ≠0.0006 ≠0.0047 0.0041

(0.0189) (0.0141) (0.0154) (0.0226)
Favorite ◊ Better position ≠0.0255 ≠0.0013 ≠0.0241 0.0228

(0.0198) (0.0147) (0.0157) (0.0230)
Favorite ◊ White ◊ Better position 0.0033 ≠0.0037 0.0070 ≠0.0106

(0.0248) (0.0181) (0.0197) (0.0285)
White player ◊ Worse position 0.0007 ≠0.0024 0.0031 ≠0.0055

(0.0160) (0.0125) (0.0131) (0.0200)
Favorite ◊ Worse position 0.0167 0.0116 0.0052 0.0064

(0.0149) (0.0112) (0.0122) (0.0181)
Favorite ◊ White ◊ Worse position ≠0.0295 ≠0.0139 ≠0.0156 0.0017

(0.0249) (0.0192) (0.0213) (0.0320)
Time Pressure
Remaining time (hours) 0.0136ú 0.0389úúú ≠0.0253úúú 0.0643úúú

(0.0072) (0.0051) (0.0057) (0.0080)
Fatigue
Num. previous moves ≠0.0019úúú ≠0.0017úúú ≠0.0001 ≠0.0016úúú

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0012úúú 0.0015úúú ≠0.0003úúú

(0.0001) (0.0001) (0.0001) (0.0001)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 106391 106391 106391 106391
Player-Game Observations 3963 3963 3963 3963

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable White player is a dummy variable indicating the player that plays with white pieces. The
variable Favorite is a dummy variable indicating the player with the higher ELO number prior to the
game. The variable Num. previous moves is calculated as the number of previous moves per player.
Standard errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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Table A17: Behavioral Heterogeneity – Opponent’s Remaining Time and Time Spent

Dependent Variable:
�E (binary) �P (binary) �N (binary) �C (categ.)

(1) (2) (3) (4)

Current Position
Better position (>0.5 pawnunits) 0.0792úúú 0.0005 0.0787úúú ≠0.0782úúú

(0.0060) (0.0043) (0.0048) (0.0069)
Worse position (<-0.5 pawnunits) 0.0015 0.0304úúú ≠0.0289úúú 0.0594úúú

(0.0061) (0.0047) (0.0051) (0.0076)
Time Pressure
Remaining time (hours) ≠0.0002 0.0262úúú ≠0.0263úúú 0.0525úúú

(0.0102) (0.0074) (0.0086) (0.0124)
Fatigue
Num. previous moves ≠0.0017úúú ≠0.0016úúú ≠0.0001 ≠0.0015úúú

(0.0002) (0.0002) (0.0002) (0.0002)
Complexity
Seconds to reach fixed depth 0.0028úúú 0.0012úúú 0.0015úúú ≠0.0003úú

(0.0001) (0.0001) (0.0001) (0.0001)
Time Opponent
Remaining time (opp.) 0.0193ú 0.0164úú 0.0029 0.0135

(0.0103) (0.0076) (0.0086) (0.0125)
Time spent on move (opp.) ≠0.0003 0.0002 ≠0.0005ú 0.0008

(0.0004) (0.0003) (0.0003) (0.0005)

Player-Game Fixed E�ects Y es Y es Y es Y es
Move Observations 104409 104409 104409 104409
Player-Game Observations 3954 3954 3954 3954

Note: OLS estimates. Evaluations of performance are based on the Stockfish 8 chess engine. The
variable Num. previous moves is calculated as the number of previous moves per player. Standard
errors are clustered on the game level. ú: p < 0.1, úú: p < 0.05, úúú: p < 0.01.
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