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1 Introduction

How to motivate their employees is of utmost importance for firms. Many use some
form of incentive pay and, since individual contribution to firm value can rarely be
measured objectively, often rely on informal, subjective assessments of performance
(Kampkotter and Sliwka (2016), Frederiksen et al. (2017)). Alternatively, social norms
might induce employees to increase their effort in response to generous wages (Ak-
erlof, 1982). Indeed, a vast amount of evidence indicates that “standard” incentives
as well as gift-exchange considerations motivative employees (see DellaVigna et al.,
2019, for a recent contribution). However, there is less understanding of whether pay-
for-performance and generous wages merely constitute two substitutable components
of a firm’s “incentive toolkit” (as studies within static settings indicate, see Englmaier
and Leider, 2012a; DellaVigna et al., 2019), or whether more intricate interactions pre-
vail — in particular taking into account the long-run nature of employment relationship
and the inherent incompleteness of real-world labor contracts.

In this paper, I incorporate the notion that an informal relational contract might not
only determine an employee’s performance-based pay, but also establish a norm to re-
ciprocate generous wages. I derive a tractable setup to explore how individual respon-
siveness to such a norm affects the optimal provision of informal incentives over the
course of an employee’s career. In its early stages, direct incentives where a bonus is
promised in exchange for effort are more important because a longer remaining time
horizon allows the employer to credibly promise a higher bonus. In later stages, gen-
erous wages assume a more significant role and gradually replace direct incentives.
Moreover, the norm of reciprocity already shapes the incentive system at the beginning
of a career. Then, it determines the future surplus of the employment relationship which
constrains the power of direct incentives.

The idea that a relational contract can establish a norm to reciprocate goes back to
the law scholar Ian Macneil. He developed a norms-based approach to contracting,
in which a relational contract is a manifestation of the norms supposed to govern the
behavior of the involved parties (Macneil, 1980; Macneil, 1983). This perception is sup-
ported by recent evidence from Kessler and Leider (2012) and Krupka et al. (2017) who
demonstrate that contracts — in particular informal “handshake agreements” — can gen-
erate inherent enforcement mechanisms by establishing norms that parties feel obliged
to honor. I build upon this idea and assume that the norm of reciprocity is enforced
by an employee’s social preferences. These are not only individual- or relationship-
specific, but also shaped by the history of the employment relationship — in the sense

that they deteriorate once the firm has broken a promise. This notion borrows from



recent experimental evidence showing that norms and thus social preferences seem to
respond to a person’s environment. For example, Kimbrough and Vostroknutov (2016)
state that a small change in context can substantially alter the norms governing a sit-
uation, which consequently influences the extent of the prosociality of actions. Fehr
and Schurtenberger (2018) demonstrate that norms pushing for prosocial behavior can
quickly emerge. The persistence of these norms relies heavily on the ability to punish
norm violations.

More precisely, I set up a repeated principal-agent model with a predetermined last
period. The risk-neutral agent can exert costly effort which benefits the risk-neutral
principal and is observable but not verifiable. Hence, formal court-enforceable contracts
cannot be used to motivate the agent. Instead, both parties may form a self-enforcing re-
lational contract, which determines bonus payments the principal is supposed to make
to reward the agent’s effort. In addition, the relational contract specifies a norm of
reciprocity, implying that a generous wage payment by the principal is supposed to be
reciprocated by the agent via higher effort. The agent responds to this norm because
he has preferences for reciprocity. These preferences might be individual- or match-
specific (for example because the agent has developed sentiments for the principal; see
Akerlof, 1982) and are activated by non-discretionary wage components, by which I
mean payments that are not paid as a reward for past effort. Thus, the principal has
the following two means to provide incentives: (i) directly by promising a bonus to be
made after the agent has exerted effort and (ii) indirectly via the norm of reciprocity
and paying a non-discretionary wage before the agent is exerting effort. For the former,
the principal uses “relational incentives”, where the bonus is enforced by repeated game
incentives. For the latter, the principal uses “reciprocity-based incentives”. My speci-
fication allows to separate both incentive tools and designate each payment to exactly
one of the two. Thus, besides having a larger intuitive appeal compared to a setting
in which all payments are regarded as a gift (hence also direct performance pay the
agent is supposed to receive anyway), my approach simplifies the analysis of optimal
incentives within the relational contract.

The agent’s responsiveness to the norm of reciprocity is affected by the history of
the game. If the principal reneges on a promised bonus, not only does the relational
contract break down (as is standard in the literature), but also the agent’s preferences
for reciprocity toward the principal disappear. In addition to the aforementioned experi-
mental literature demonstrating the path dependency of social preferences, such a norm
function is inspired by Cox et al. (2007) and Cox et al. (2008). They develop an ap-
proach to modeling reciprocity grounded in neoclassical preference theory. Preferences

for reciprocity are stronger if actions upset the status quo. In my setting, the status quo



corresponds to the equilibrium prescribed by the relational contract, and (downward)
deviations by the principal not only constitute a violation of the relational contract, but
also affect the agent’s reciprocal preferences. Moreover, in essence the specification
of the agent’s reciprocal preferences is similar to the expectation-based loss aversion
model of K&szegi and Rabin (2006). As in K&szegi and Rabin (2006), the “behav-
ioral” component of the agent’s preferences in my setting evaluates realized outcomes
by relating them to (expected) equilibrium outcomes.

Importantly, the norm function allows the use of relational incentives even though
there exists a predetermined last period. Because the agent’s preferences for reciprocity
disappear once the principal reneges on a promised bonus and because the principal’s
profits in the last period of the game are higher with reciprocal preferences than with-
out, her behavior in the penultimate period affects her profits in the last period. This
interaction between relational and reciprocity-based incentives carries over to earlier
periods and enables the principal to credibly promise an effort-based bonus. The max-
imum size of this bonus is determined by the so-called dynamic enforcement (DE)
constraint, which states that a bonus must not exceed the difference between future dis-
counted profits on and off the equilibrium path. Since future on-path profits increase in
the extent of the agent’s reciprocal preferences, the principal can also provide stronger
relational incentives foday if the agent is more reciprocal. This source of complemen-
tarity between relational incentives and the agent’s reciprocal preferences is amended
by an additional channel. The (DE) constraint in a given period is relaxed and more
effort can be implemented if she pays a generous wage in this period, implying that
reciprocity-based preferences are particularly valuable whenever the constraint binds.
Therefore, relational and reciprocity-based incentives are complements and more ef-
fort is implemented with a combination of the two, a result that has received empirical
support from Boosey and Goerg (2018). Both are dynamic substitutes, however, in the
sense that relational incentives are gradually replaced by reciprocity-based incentives
over time. The reason is that the (DE) constraint is tighter in later periods (having fewer
remaining periods reduces the principal’s future profits), which amplifies the benefits of
reciprocity-based incentives as time passes.

This implies that a profit-maximizing incentive scheme has the highest effort in the
early stages of the employment relationship, where it remains until the (DE) constraint
starts to bind. Then, the principal’s reduced credibility effectively constrains her ability
to pay a sufficiently high bonus. This decreases effort, which in turn lets the principal
respond with an increase in the non-discretionary fixed wage and consequently place
a higher weight on reciprocity-based incentives. Overall, effort gradually decreases

in the final periods of the employment relationship. In line with this result, there is



indeed evidence that the productivity of workers declines once they approach retirement
(Haltiwanger et al., 1999; Skirbekk 2004; Lallemand and Rycx, 2009).

Effort is also higher if the agent has more pronounced preferences for reciprocity.
This result has received empirical support from Dohmen et al. (2009), who use data
from the German Socio-Economic Panel (SOEP) which also contains information on
the reciprocal inclinations of individuals. Moreover, the positive effect of reciprocal
preferences on effort is stronger if reciprocity-based incentives are more important (i.e.,
in later periods when the (DE) constraint binds). This outcome is in line with evidence
provided by Fahn et al. (2017). Using the same data and approach as Dohmen et al.
(2009), they show that the positive interaction between reciprocal inclinations and effort
is substantially stronger for older workers close to retirement.

Next, [ investigate a number of additional implications of having relational contracts
with reciprocal agents. First, I explore how labor market competition affects the op-
timal dynamic incentive scheme and show that more intense competition for workers
can actually intensify the use of reciprocity-based incentives. For this, I follow Schmidt
(2011) and assume that more intense competition for workers decreases the principal’s
outside option and increases the wage the agent must at least be offered. I also assume
that this “minimum wage” serves as a reference wage for the norm of reciprocity in the
sense that the agent only perceives higher wages as generous. Better outside opportu-
nities generally reduce the relationship surplus and consequently the potential strength
of relational incentives. Now, more intense labor market competition has opposing ef-
fects on the principal’s outside option and the agent’s reference wage. If the effect on
the agent’s reference wage dominates, more intense labor market competition reduces
the rent generated in the relationship. This restricts the power of relational incentives
and consequently magnifies the importance of reciprocity-based incentives. Otherwise,
more intense labor market competition allows for stronger relational incentives.

Second, I allow the principal to formally commit to pay a (non-discretionary) wage
in the subsequent period. This resembles actual labor market contracts which often
have longer time horizons and specify fixed wage payments for their whole term. Since
employment protection laws or a minimum tenure of a labor contract constrain the
use of firing threats and hence efficiency wages, a formal commitment to paying non-
discretionary wages in the future seems to be detrimental to the provision of incentives.
In my case, though, commiting to a non-discretionary wage in the future allows to
credibly promise a higher discretionary bonus today. The reason is that the future wage
has to be paid even if the principal has reneged on today’s bonus, whereas the agent
only reciprocates to this wage if the bonus has been paid.

In a number of extensions, I explore the robustness of my results, for simplicity all



within a two-period setting. In Section 5.1, I let the agent’s preferences for reciprocity
not merely be triggered by non-discretionary, but by all realized payments (i.e., includ-
ing by wages paid in response to past effort). Then, only upfront wages and no bonuses
are used to compensate the agent.

Some additional results are generated in Section 5.2, where I allow for asymmetric
information on the agent’s reciprocal preferences. There, I assume that the agent might
either be reciprocal (as in the previous analysis) or selfish (i.e., without any reciprocal
preferences). If the likelihood of facing a reciprocal agent is high, a “separating con-
tract” is optimal for the principal. This incorporates high effort in the first period which
however will only be exerted by the reciprocal type, whereas the selfish type shirks and
is subsequently fired. If the likelihood of facing a selfish agent is high, it might be op-
timal for the principal to offer a “pooling contract”. This incorporates low effort in the
first period which is exerted by both types. In the second period, the selfish type collects
the wage and subsequently shirks. The pooling contract resembles outcomes derived in
the reputation literature (see Mailath and Samuelson (2006) for an overview), in which
the presence of even a small proportion of “commitment types” can motivate selfish
agents to cooperate in a finitely repeated game because it allows them to maintain a
reputation for (potentially) being cooperative. Furthermore, it is a common perception
that in lab experiments with repeated interaction, selfish types who imitate coopera-
tive (or “fair”) types are responsible for driving high cooperation in early periods (Fehr
et al., 2009).

However, the existence of the pooling contract in my setting relies on a perfect
Bayesian equilibrium being played at which any deviation from equilibrium effort lets
the principal assign probability 1 to facing the selfish type. Nonetheless, even if pre-
ferred by the principal, such a pooling contract may not satisfy the intuitive criterion
(Cho and Kreps, 1987). Deviation to a higher effort than that specified by the pool-
ing contract would only be incentive compatible for the reciprocal type, but not for the
selfish type. Such an upward deviation would thus reveal the agent to be reciprocal and
allow for an adjustment of the second-period wage that makes the principal and recipro-
cal agent better off. Then, only a separating contract can be sustained, which can have
implications for the interpretation of many experimental results. High effort in early
periods and low effort in later periods might also be due to an early separation of types,
followed by a relational contract between the remaining matches. Indeed, the experi-
mental exercise conducted by Brown et al. (2004) generates this outcome. Their theo-
retical explanation (i.e., some players have fairness preferences, whereas those without
imitate the fair players early on) can only account for the observed effort dynamics, but

not for the high amount of separations in initial periods. Therefore, I provide a com-



plementary interpretation of the higher cooperation in lab experiments with repeated
interaction.

In Section 5.3, I explore the implications of negative reciprocity in the sense that
the agent wants to retaliate if the principal has reneged on a promised payment. If the
agent’s preferences for negative reciprocity are sufficiently strong, the results are as
in the main part of the paper, even if the agent’s preferences for positive reciprocity
do not disappear after a deviation by the principal. I also incorporate recent evidence
that individuals get accustomed to generous wages (Jayaraman et al., 2016, Sliwka
and Werner, 2017). To do so, I assume that the wage paid in the first period becomes
the second period’s reference wage that has to be surpassed before the agent responds
to the norm of reciprocity (Section 5.4). Then, the backloading of reciprocity-based
incentives is even more pronounced because a positive first-period wage — albeit still
inducing higher effort via the norm of reciprocity — increases the reference wage later
on. Finally, in Section 5.5, I assume that the norm of reciprocity relates to the material
rent the agent is bound to receive in a period, which equals the difference between on-
path payments and effort costs. Then, the principal is less inclined to pay an upfront

wage because also the bonus activates the agent’s preferences for reciprocity.

Related Literature

One of the most robust, thoroughly researched outcomes in behavioral economics is that
individuals not only maximize their own material payoffs, but also take others’ well-
being into account when making decisions (DellaVigna, 2009). Many individuals seem
to possess social preferences, where an important component is captured by preferences
for intrinsic reciprocity. A plethora of research since Fehr et al. (1993) and Fehr et al.
(1998) has found experimental support for the existence of reciprocal preferences (see
Camerer and Weber (2013) for an overview of experimental research, or DellaVigna
and Pope (2018) for more recent evidence). Most of these exercises have been care-
ful to rule out repeated interaction in order to isolate the effect of social preferences.
However, to matter in the workplace, reciprocal preferences should not be marginal-
ized by repeated game considerations. It is thus crucial to understand how repeated
interaction affects the optimal provision of incentives for reciprocal individuals (Sobel,
2005). Some experimental studies have approached this question and disentangled the
two motives for cooperation. Reuben and Suetens (2012) use an infinitely repeated
prisoner’s dilemma to assess the relative importance of strategic motives (i.e., driven by
repeated interaction) and intrinsic reciprocity and find that cooperation is mostly driven

by strategic concerns. Similarly, Dreber et al. (2014) find that strategic motives seem to



be more important than social preferences in an infinitely repeated prisoner’s dilemma.
Cabral et al. (2014) conduct an infinitely repeated veto game to distinguish between
explanations of generous behavior. They find strategic motives to be the predominant
motivation, but also present evidence for the importance of intrinsic reciprocity. Hence,
experimental evidence suggests that repeated game incentives are an important mode to
support cooperation even for individuals with reciprocal preferences. However, a sound
understanding of how firms optimally design dynamic incentive schemes for reciprocal
agents is still lacking. The present paper addresses this gap by providing a tractable
theoretical framework that incorporates the norm of reciprocity into a relational con-
tracting framework.

The theoretical literature on intrinsic reciprocity can be arranged along the lines of
whether reciprocal behavior is merely triggered by outcomes or whether the counter-
part’s intentions matter as well. The classic gift exchange approach developed by Ak-
erlof (1982) is an example of outcome-based reciprocity, where firms can strategically
use wages above the market-clearing level to induce their employees to work harder.
Applying this idea to a moral hazard framework with reciprocal agents, Englmaier
and Leider (2012a) show that generous compensation can not only be a substitute for
performance-based pay, but may also increase profits. On the contrary, Rabin (1993)
claims that the perceived kindness of an action should be the driving force to induce
reciprocal behavior and develops the techniques for incorporating intentions into game
theory. Dufwenberg and Kirchsteiger (2004) apply this psychological game theory to
extensive games. Segal and Sobel (2007) develop a more tractable approach, demon-
strating how a player’s preferences over strategies might be represented as a weighted
average of the utility from outcomes of the individual and his opponents. Netzer and
Schmutzler (2014), however, state that the extent to which intention-based reciprocity
can explain gift exchange in the workplace is limited. They argue that, if only intentions
matter, a self-interested firm cannot benefit from its employees’ reciprocal preferences.
Falk and Fischbacher (2006) develop a theory incorporating both aspects, outcomes
and intentions. They assume that an action is perceived as kind if the opponent has the
option to treat someone less kind. Their exercise incorporates evidence that while indi-
viduals respond to outcomes, those responses are considerably stronger if the choices
are at the counterpart’s discretion (see Falk et al., 2006; Fehr et al., 2009; Camerer and
Weber, 2013). Cox et al. (2007) and Cox et al. (2008) develop a theoretical framework
that can generate such results without having to resort to psychological game theory.
Under their approach, which is based on neoclassical preference theory, individuals
merely respond to observable events and opportunities instead of beliefs about others’

intentions or types. I build upon these ideas and apply them to a dynamic setting.



Some papers have explicitly incorporated norms into (static) models as drivers of
reciprocal behavior (Lopez-Pérez, 2008; Kessler and Leider, 2012; Kimbrough and
Vostroknutov, 2016), stating that deviating from the behavior specified by a norm is
costly for individuals. These studies thus present alternative approaches for how a norm
can enforce cooperative behavior.

I also contribute to the literature on relational contracts. Bull (1987) and MaclLeod
and Malcomson (1989) derive relational contracts with observable effort, whereas Levin
(2003) shows that those also take a rather simple form in the presence of asymmetric
information. Malcomson (2013) delivers an extensive overview of the literature on re-
lational contracts. Within this broader area, a few papers have investigated the implica-
tions of incorporating “behavioral” components into a relational contracting framework.
Dur and Tichem (2015) incorporate social preferences into a model of relational con-
tracts and show that altruism undermines the credibility of termination threats. Con-
treras and Zanarone (2017) assume that employees suffer when their formal wage is
below that of their colleagues. They show that these “social comparison costs” can be
managed by having a homogeneous formal governance structure, while achieving the
necessary customizations through relational contracts. Fahn and Hakenes (2019) show
that teams can serve as a commitment device for present-biased individuals. To the best
of my knowledge, the present paper is the first to incorporate intrinsic preferences for
reciprocity into a relational contracting framework, and the first to show that the norm
of reciprocity allows for the formation of relational contracts even with a predefined

last period.

2 Model Setup

2.1 Environment and Technology

There is one risk-neutral principal (“she”) and one risk-neutral agent (“he”). At the
beginning of every period ¢ € {1,...,T}, with 1 < T < oo, the principal decides whether
to make an employment offer to the agent or not (d© € {0,1}). In case an offer is
made (d” = 1), it specifies an upfront wage w, € R.! The agent’s acceptance/rejection
decision is described by @4 € {0,1}. Upon acceptance (d? = 1), the agent receives
w; and chooses an effort level e, € R, which is associated with effort costs c(e) =

I'The non-negativity constraint simplifies the definition of reciprocity below in a sense that I do not
have to differentiate between positive and negative payments. Moreover, I want to rule out negative
up-front wages which could allow the principal to extract “reciprocity rents” that the agent enjoys
later.



e3> /3.2 Effort generates a deterministic output ¢;0, with 6 > 0, which is subsequently
consumed by the principal. Afterwards, the principal can pay a discretionary bonus
b, € R If the principal refrains from making an offer (d© = 0) or if the agent rejects
an offer made by principal (¢ = 0), both consume their outside option utilities, which
(for now) are set to zero. Moreover, the principal and agent share a discount factor
0 €(0,1].

2.2 Relational Contract, Preferences, and the Norm of
Reciprocity

Neither effort nor output is verifiable; however, they can be observed by both parties.
Therefore, only relational but no formal incentive contracts are feasible. The relational
contract is a self-enforcing agreement determined by principal and agent and constitutes
a subgame perfect equilibrium of the game. In addition to the standard components of
a game — players, information, action spaces, preferences and equilibrium concept — I
incorporate a norm function that activates the norm of reciprocity and maps the game’s
history into the agent’s preferences. Before introducing this norm, I formally describe
histories and feasible strategies. A discussion of several assumptions made with respect

to the norm of reciprocity follows in Section 2.3.

Histories and feasible strategies The events in period ¢ are denoted by i, =
(df, ws, d?, e/, by), with h; being public information. A history of length r — 1, h'~!
(for t > 2) collects the events up to, and including, time r — 1, i.e. A~ := (hf)tf_:ll.
The set of histories of length ¢ — 1 is denoted by /#"~! (and 7#° = {0}). 1 focus on
pure strategies. For the agent, a pure strategy specifies what wage offers to accept in
each period as a function of the previous history, and what level of effort to exert as a
function of the previous history and current-period wages. Formally, it is a sequence
of mappings {G{‘}thl, where, for eacht < T, 6 = (d?,e,), and d* : "1 x {0,1} x
R, — {0,1}, (W=, dP ,w,) = dA(W =, dP ,w;) and ¢, : '~ x {0,1} xR, x {0,1} —
R, (W1, dP wy,d)) v e;(W1,dP w;,d,).

In each period, a pure strategy for the principal specifies her wage offer as a function
of the previous history as well as the bonus payment as a function of the previous his-
tory, current-period wages and effort. Formally, it is a sequence of mappings { o/ },T:p
where, for eacht < T, 6/ = (d¥,w;,b,), and d : "1 — {0,1}, (W~ ") > dP (W),

2 assume this specific functional form for analytical tractability. Other (convex) cost functions deliver
similar results as long as the third derivative is positive. A positive third derivative is needed for an
interior solution in Section 3.1.



wy: A< {0,1} = Ry, (K 1dP) = w (W), b0 A1 < {0,1} xRy x {0,1} x
R+ — R+, (hl_l,d[P,W[,dt,et) —> b[(ht_],dtp,wt,d[,et).

Relational Contract and the Norm of Reciprocity The relational contract is
agreed upon at the beginning of the game. It “activates” the norm of reciprocity and
stipulates reference functions which specify history-dependent actions players are sup-
posed to take. For the agent, the relational contract determines an acceptance function
dA (W=, d" w;) as well as an effort function & (h'~',d", w;,d,), with (cf,, ¢;) € o;*. For
the principal, the relational contract determines an offer function d” (h'~'), a wage func-
tion W, (h'~!,d") and a bonus function b, (k' ', wy,d;,e;), with (df, iy, b;) € of.

The norm of reciprocity states how the agent is supposed to reciprocate against “non-
discretionary” upfront wages, that is, wages that are not paid as a reward for past effort.
To incorporate this notion, the total wage v, (4’ ~!,d") is split into a discretionary part
Wwa(h'~1,dP) and a “non-discretionary” component. The latter is not a (direct) function
of the agent’s past choices and defined as W@ (A1 \ {'!, dA'~1} dF), where ' ~! :=
(ef)tf_:]1 and dA 1= (d?)tr_:ll. Note that this specification does not rule out an indirect
relationship between the agent’s effort and w?d, since the latter is a function of the
principal’s previous actions which itself are affected by the agent’s behavior. Whereas
the bonus and discretionary wage constitute the “direct” incentive system that grants
payments as a reward for previously exerted effort, " stipulates subsequent effort by
the agent who adheres to the norm of reciprocity.

The agent’s responsiveness to the norm of reciprocity is given by his utility function,

which — in period ¢ — equals

Uy = dt <bt +wy — C(et) —+ ntW?d€t0> .

The term 1, € [0, o) captures the agent’s inherent preferences for positive reciprocity
(negative reciprocity is considered in Section 5.3) and lets the principal’s output enter
the agent’s utility whenever w4 > 0.3 Its value in a given period depends on the history
via a norm function, which takes the following form: When the relational contract is
agreed upon at the beginning of the game, the reciprocity parameter is activated with
N1 =N > 0. The value 11 depends on the agent’s individual characteristics, but also
on the match-specific relationship between the principal and the agent.* 7, remains

at n if the principal’s actions so far have been consistent with the reference functions

3In a more general setting, the norm of reciprocity would be activated only if w/? exceeded some
reference wage (which might be determined by a minimum wage or the agent’s outside option).
Here, such a reference wage would equal zero; in Section 4.1, I allow for positive reference wages.

“For example because the agent develops sentiment for the principal when working for her (Akerlof,
1982).

10



specified by the relational contract. Otherwise, it drops to zero and remains there in all
subsequent periods.5 Therefore, in all periods ¢ > 2,
n ifdl =db (™), by > b(h™ 1, dE o we,dd er), we > Ww(h™ 1 db) all T <1

N: = .
0 otherwise.

Thus, 1n; does not drop to zero after a deviation by the agent (and if no bonus is paid
in response), capturing the idea that the agent’s general “goodwill” towards the prin-
cipal depends on the latter’s behavior, not on his own. Hence, the agent’s reciprocal
inclinations towards the principal disappear once the latter refuses to make an offer she
was supposed to make, or if she does not compensate the agent accordingly. This also
includes deviations with respect to w¥ because otherwise, the principal could poten-
tially reduce the non-discretionary wage after a deviation by the agent, which would
contradict the definition of w to be independent of the agent’s previous effort.

The principal has no preferences for reciprocity and only maximizes her (monetary)
payoffs:

o =d; (e,0 —by —wy).

Now, a subgame perfect equilibrium determines equilibrium functions @ (h'~1), w,(h'~1,dF),
dA(W=1,dP wy), e, (W=, dP ,wy,d?), and b, (W', dP ,w;,d?,e;). In addition, for every
history, I impose the consistency requirements df = d,P , Wy = Wy, cf,A = d;“, é; = ¢;, and
b, = b,. Incorporating these restrictions to a subgame perfect equilibrium, I denote the
resulting equilibrium as a subgame norm-perfect equilibrium (SNPE).

In an SNPE in which d” = d4 = 1 in all the periods of the game, the following
recursive relationships hold in all periods 7 € {1, ..., T} for the principal’s profits I, and
the agent’s utility Uy, where I set I17| = Ur41 = 0:

Hz 26;9 — b[ — Wy + 5Hl‘—|—1
Ur =b; +wi —c(e;) + TltW?detG +0U41.

In what follows, the objective is to characterize an SNPE that maximizes the princi-
pal’s profits at the beginning of the game, IT;.

Before characterizing such a profit-maximizing SNPE in Section 3, I discuss the
assumptions made with respect to the agent’s preferences for reciprocity and the finite

horizon of the game.

SThis definition can also be applied to settings in which the principal does not observe effort and output
is not verifiable. Then, the bonus could be a function of output, and 1, would also drop to zero if the
principal reneged on paying it.
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2.3 Discussion of Assumptions

Reciprocity I build on the original gift exchange idea by Akerlof (1982) and assume
that the principal can strategically “use” the norm of reciprocity. The agent understands
the purpose of a gift received by the profit-maximizing principal but still reciprocates.
This presumption is supported by experimental evidence presented by Malmendier and
Schmidt (2017), who show that subjects reciprocate to gifts even though they under-
stand that the giver is selfish and expects something in return.

The agent’s responsiveness to the norm of reciprocity, the value 7;, depends on
whether realized behavior deviates from the reference functions determined by the rela-
tional contract. Thus, the “behavioral” component of the agent’s preferences is not only
a function of the principal’s past actions, but also of (expected) equilibrium behavior.
This approach is inspired by the expectation-based loss aversion model of K&szegi and
Rabin (2006), where the extent of the agent’s “behavioral” reaction to some realized
event relates this event to expected equilibrium outcomes. It also builds upon Cox et al.
(2008) who assume that an action by one player is perceived as more (less) generous
— and consequently causes a stronger reciprocal reaction — if it allows the other player
to obtain a higher (lower) monetary payoff (Cox et al. (2008), Definitions 1 and 2; Ax-
iom R). Furthermore, (positive or negative) reciprocal reactions are stronger whenever
an action upsets the status quo compared with this same action if it only upholds the
status quo (Cox et al. (2008), Axiom S, Part 1). I capture the first aspect by assuming
that realized payments trigger reciprocal behavior by the agent. Concerning the second
aspect, I account for the “standard” role of a relational contract in the sense that it es-
tablishes a direct incentive system in which payments are promised in return for effort.
Hence, wages and bonuses paid as a reward for past effort do not trigger reciprocal be-
havior, and 1 drops to zero after the principal refuses to compensate the agent for his
performance. I also show that the latter is not needed if negative reciprocity is explic-
itly considered (Section 5.3) and that my main results are robust to letting the agent’s
reciprocal preferences respond to all payments (Sections 5.1 and 5.5). Although my
approach might at first sight seem more complicated than a setting in which the agent
reciprocates to all payments (i.e., also performance pay the agent is bound to receive
anyway after high effort), it actually simplifies the analysis of the dynamic relational

contract because both means to provide incentives can easily be separated.®

0ne could also argue that, if performance pay was very generous in relation to the agent’s effort cost,
it should be regarded as a gift. However, such a payment could be split into a part that compensates
the agent for his effort costs and one that grants him a rent. Paying this rent up front (and anticipating
that the agent exerts effort accordingly) would then be equivalent to paying a non-discretionary wage
in my setting.
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Moreover, 1 drops to zero only after a deviation by the principal but not by the
agent, hence the agent’s general willingness to reciprocate gifts from the principal only
depends on the latter’s behavior. Otherwise, the agent would directly punish himself
with a deviation, an implication I want to rule out.

Furthermore, I assume that reciprocity only enters the agent’s stage game payoffs.
This notion is consistent with evidence delivered by Bellemare and Shearer (2009),
who show that a gift causes a positive effort response — but that this effect is only
temporary. In Section 5.4, I also analyze a situation in which a positive wage today
increases tomorrow’s reference wage.

The reciprocity term in the agent’s utility function contains 68, representing the extent
to which the principal benefits from the agent’s effort. This is in line with evidence that
an important factor for reciprocity is the agent’s assessment of the value generated for
the principal (Hennig-Schmidt et al., 2010; Englmaier and Leider, 2012b).

Finally, I assume that the principal knows 7. In Section 5.2, I explore the conse-

quences of asymmetric information concerning the agent’s preferences for reciprocity.

Finite Time Horizon I analyze a game of T periods, and most of the results on the
dynamics of the employment relationship rely on the time horizon being finite. Whereas
many real-life employment relationships either have a pre-defined ending date or an
increasing probability of termination (which could be captured by a decreasing discount
factor and generate the same dynamics, because those rely on the gradual reduction of
future profits), most people work in multi-worker firms that continue to exist when
workers retire. In my setting, this would imply that the principal also has the option
to hire other agents for the job under consideration — after period 7" or potentially even
before. Taking this into account, my results survive as long as multilateral punishments
are not feasible (e.g., because deviations in one relationship cannot be observed by other
(prospective) employees). With multilateral punishments, the principal’s commitment
in the employment relationship would not necessarily be smaller in the later periods
of an employment relationship (which drives the dynamics in my setting). However,
although deviations have to be private information of one match to render multilateral
relational contracts (as in Levin, 2002) unfeasible, it would be fine for outsiders to
observe whether the agent is employed or is fired. Then, only a premature termination
could be punished by any “new” agent. This would make it costly for the principal to
replace the agent early on, leaving my results valid.

If I completely ruled out punishments by prospective new agents in the case of a
premature termination, the opportunity to employ other agents would manifest in a

positive outside option for the principal, which I explore in Section 4.1. There, I assume
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that this outside option is sufficiently small for the principal to never have an incentive
to terminate an employment relationship on the equilibrium path. This could be due
to replacement costs when hiring a new agent, like search costs or other labor market
frictions, or direct replacement costs. Moreover, a sufficiently small outside option of
the principal also rules out the use of efficiency wages, because any firing threat would

not be credible (note that firing the agent would correspond to set d¥’ = 0).

3 Results

3.1 Reciprocity Spot Contract

I first derive a profit-maximizing spot contract and hence omit the time subscripts. Be-
sides serving as a benchmark, such a contract will also be offered in the final period, T'.
In a spot contract, b = 0 because the principal has no incentive to make a payment to
the agent after the latter has exerted effort. Therefore, the only means to incentivize the
agent is a positive non-discretionary wage. Since w = w"?, I omit the “nd” superscript
in this section. Given w, and presuming he decides to work for the principal, the agent
chooses effort to maximize his per-period utility u = w — e /3 + nweb.

The conditions for using the first order approach hold, and thus the agent’s incentive

compatibility (IC) constraint yields
e =+/nwb. 10

The principal sets w to maximize her expected per-period profits &£ = ¢*6 — w. Here,
she has to take into account that accepting the contract must be optimal for the agent.

This is captured by the agent’s individual rationality (IR) constraint,

*\3
w— % +nwe 6 > 0. (IR)

Concluding, the principal’s problem is to
maxe*0 —w,
w
subject to (IR) and (IC) and the non-negativity constraint w > 0.

Lemma 1 The profit-maximizing reciprocity spot contract has w = 163 /4 and e* =
N62/2. Therefore, t = 16> /4 and u=1n6°/4+1n°6°/12.
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The proof can be found in the Appendix.

Intuitively, a positive wage lets the agent partially internalize the principal’s payoff,
which is why he reciprocates and selects a positive effort level. Because this interaction
is stronger for a more reciprocal agent, a higher 1 induces larger values of w, e*, 7, and

u.

3.2 Relational Contract

Now, I analyze how a relational contract is used to incentivize the agent. Two aspects
are of particular interest, namely the enforceability of the relational contract and how
the norm of reciprocity affects outcomes. These aspects are explored in the next sub-

sections, where I derive the properties of a profit maximizing relational contract.

3.2.1 Preliminaries and Optimization Problem

The relational contract determines payment functions w{ (A’ =1, dF), wi (h'=1\ {e'~1, aA*=1} [ aF),
and b, (H' ’l,d,P ,w,,d;“,et). The promise to make these payments must be credible,

which is captured by dynamic enforcement (DE) constraints for each period ¢,

—by+ 81,4 > 61144, (DE)

as well as individual rationality (IR) constraints, IT; > fI,H. Because b; > 0, (IR)
are implied by (DE) constraints and can hence be omitted. I, describes the princi-
pal’s on-path and 1, | her off-path continuation profits. The (DE) constraint indicates
that discretionary payments are only feasible if IT,, | > I, 1, i.e., if future equilibrium
play can be made contingent on the principal’s current behavior. Generally, relational
contracts require a (potentially) infinite time horizon because of a standard unraveling
argument that can be applied once a predetermined last period exists. If the equilibrium
outcome in the last period is unique, the same holds for all preceding periods. In my
case, however, the situation is different because the norm function lets 7, drop to zero
once the principal refuses to make a specified payment. Moreover, the “standard” grim
trigger punishment is imposed afterward and relational contracts are no longer feasible
(adapting Abreu (1988) to my setting in the sense that any obseravable deviation from
agreed upon behavior should be punished by a reversion to a player’s minmax payoff).
This implies that the principal’s continuation profits are IT,,; = 0 if she has deviated
in any T <t, and her behavior in period t < T indeed affects her future profits. Hence,

not only does the relational contract determine whether a given payment “activates” the
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agent’s reciprocal preferences, but the latter are also a prerequisite for the relational
contract to work.

In the next step, I explore the agent’s incentives to exert equilibrium effort. Those are
generally determined by a combination of reciprocity-based incentives (via a positive
w;ld ) and relational incentives (via b; and wfl ). Recall that my specification of the norm
function implies that after a deviation by the agent, the reciprocity parameter remains
at 1. This indicates that the agent does not necessarily deviate to an effort level of zero.
Moreover, since effort is public information, it is without loss to only specify a positive
bonus b; > 0 if the agent has exerted equilibrium effort and no bonus otherwise. Thus,
the agent’s (IC) constraint (which must hold in every period ) equals
(é)’

3

*\3
e ~
G a0 s byt S > O a0 450, (C)

3

where U, 1 is the agent’s continuation utility after a deviation by himself. Moreover, if

the agent deviates, he will choose an effort level &; = argmax (—e3 /3+ nw{’dee), ie.,
& = \/nw0. é is the effort the agent would select if he only responded to the norm of
reciprocity. Relational incentives using subsequent discretionary payments are needed
to motivate the agent to exert additional effort e; — é;.

An (IR) constraint U; > 0 must also hold in every period but is implied by (IC) be-
cause payments are assumed to be non-negative and because the right-hand side of (IC)
cannot be smaller than zero (after a deviation, the agent can always secure a utility of
zero by exerting no effort and then leaving the principal).

Concluding, the principal’s problem is to maximize

T
Im =) 6 I,

t=1

subject to a (DE) and (IC) constraints for every period 7.
First, I derive a number of preliminary results, which substantially simplify the prob-

lem and are collected in Lemma 2.

Lemma 2 There exists a profit-maximizing equilibrium which has the following prop-
erties in all periods t:
o w, =wH

e (IC) holds as an equality

[ ] UI:UI
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o The equilibrium is sequentially optimal, hence the problem is equivalent to max-

imizing each .

The proof can be found in the Appendix.

First, it is without loss of generality to only use bonus payments for the provision
of relational incentives. Thus, w; = w/? for the remainder of the paper, and all upfront
wages are non-discretionary. This simplifies the separation of “standard” direct incen-
tives (which are denoted “relational incentives” and provided by b;) from those relying
on the norm of reciprocity (denoted “reciprocity-based incentives” and provided by wy).

Second, the (IC) constraint binds in every period. If it did not bind, the bonus b; could
be slightly reduced, which would increase profits and relax the (DE) constraint without
violating the (IC) constraint. Thus, the agent does not receive a rent for relational
incentives. However, he enjoys a rent whenever w, (= w"?) > 0, i.e., when reciprocity-
based incentives are provided. Importantly, though, these “warm-glow” rents cannot be
used to provide relational incentives in earlier periods: If the agent was bound to lose
them after a deviation (for example because of a firing threat as with efficiency wages),
the upfront wage would not be non-discretionary anymore, and the agent would not
reciprocate.’

Third, U; = U, then follows because it is without loss of generality to provide rela-
tional incentives only with a current bonus. Thus, continuation play generally is not
affected by the agent’s actions, which finally implies that the profit-maximizing rela-
tional contract is sequentially optimal.

Collecting all results, binding (IC) constraints as well as U; = U, yield b; = ef /3—
nwie,0+2/3 (\/W ) ’ Plugging this into the principal’s profits and (DE) constraints,
the optimization problem becomes to maximize

= e10— by —w, = e — <e,3/3 —Mwe0+2/3 (\/Wf) W, in every period
t, subject to

3

e 2 3

?l—nw,961§5nt+1 —§<\/T’W[9> . (DE)
There, note that the enforceability of relational contracts is generally determined by a

comparison of today’s effort costs with the discounted future (net) payoffs generated in

the relationship. Only if the latter are large enough are they sufficient to cover today’s

costs of exerting effort. Here, two additional terms enter if the (non-discretionary)

"This would be different if either bonus or discretionary wages also triggered direct reciprocal responses
by the agent. Then, the respective payments would merely assume a larger relative weight in the
optimal incentive scheme (see Sections 5.1 and 5.5).
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wage is positive; first, the agent’s preferences for reciprocity reduce the necessary bonus
payment to implement a given effort level; second, if the agent deviates, he still selects

positive effort.

3.2.2 Reciprocity-Based Incentives in a Relational Contract

In this section, I derive the conditions the use of reciprocity-based incentives in a re-
lational contract. Different from relational incentives, those require a rent going to the
agent, thus a positive wage is not paid in any case. First, I abstract from issues of en-
forceability and assume that the (DE) constraint does not bind (i.e., it is satisfied for the
principal’s preferred effort level). This situation is equivalent to one in which formal

contracts based on effort would be feasible.

Lemma 3 Assume the (DE) constraint does not bind in periodt < T. Then, there exists
a m > 0 such that setting a strictly positive wage is optimal for 1 > M, whereas the
optimal wage is zero for N < 7.

The proof can be found in the Appendix.

Lemma 3 implies that even if the principal’s discounted future on-path profits are suf-
ficiently large to not restrict her in setting the most preferred effort-based bonus b;, she
might still decide to grant the agent a rent. This is because the agent’s responsiveness to
the norm of reciprocity reduces his effective effort costs, but only in combination with a
strictly positive upfront wage w;. The principal thus faces a trade-off between the higher
costs when paying a positive wage and the higher effort the agent is willing to exert in
response. If the agent’s preferences for reciprocity are sufficiently large, the latter effect
dominates. In the following, I refer to the effort and wage levels for a non-binding (DE)
constraint as the first-best levels.

In the next step, I assess how the agent’s preferences for reciprocity affect the out-

comes if her (DE) constraint binds.

Lemma 4 Assume the (DE) constraint binds in period t < T. Then, equilibrium effort
is smaller than with a non-binding (DE) constraint. Moreover, if paying a fixed wage
is optimal in the situation with a non-binding (DE) constraint (i.e., if N > M), the fixed
wage is now larger. Otherwise (i.e., if N < M), there exists a )y < N such that setting a
strictly positive wage is optimal for N > 1);, whereas the optimal wage equals zero for

N < 7). Finally, 1}, is increasing in d.

The proof can be found in the Appendix.
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Besides reducing effective effort costs, an upfront wage also relaxes the principal’s
(DE) constraint by decreasing the bonus that must be paid for implementing a given
effort level. Therefore, if the (DE) constraint binds, the wage is generally larger than
when it does not bind.

All this implies that reciprocity-based incentives can improve the power of relational
incentives for a given value of 1, and vice versa (this complementarity between the two
means to provide incentives is further fueled by a positive effect of 1 on future profits,
see Proposition 2). Indeed, such a combination yields more efficient and profitable
outcomes than the use of only one of them — a result that has received empirical support
from Boosey and Goerg (2018). They conduct a lab experiment in which a manager and
a worker interact for two periods. The worker can spend time completing a series of
real effort tasks and is paid an upfront wage in every period. In addition, the principal
may have the opportunity to pay a fixed bonus between the two periods, after the first
period output has been observed. Boosey and Goerg (2018) find that average output is
considerably larger with this option than in those treatments in which the principal either
cannot pay a bonus (in which case, a positive effort is still observed, indicating that the
participants have reciprocal preferences), or the bonus can be paid at the beginning or
end of the game. This supports my result that a relational contract can boost productivity
with agents who are known to be reciprocal and that a relational contract then can even

be sustained with a finite time horizon.

3.2.3 Relational and Reciprocity-Based Incentives as Dynamic
Substitutes

In this section, I characterize how, for a given value of 1, the interaction between re-
lational and reciprocity-based incentives evolves. The (DE) constraint might or might
not bind in any period ¢t < T depending on discount factor 8, reciprocity parameter 17,

and productivity 6. Furthermore, the (DE) constraint becomes tighter in later periods.

Lemma 5 Forevery 0 > 0, the (DE) constraint in period T — 1 holds for first-best effort
and wage levels if 1 is sufficiently large. For any values 1) and 0, the (DE) constraint
in period T — 1 does not hold for first-best effort and wage levels if the discount factor
is sufficiently small.

Furthermore, I1,_1 > 1I1; forallt <T.

The proof can be found in the Appendix.

The principal’s commitment in a relational contract is determined by what she has to

lose given she deviates. If the discount factor is small, she cares less about a potential
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reduction in future profits and is therefore less willing to pay a bonus to compensate
the agent for his effort. Conversely, a larger reciprocity parameter 1) increases future
profits and reduces today’s effective effort costs. The second part of Lemma 5 states
that on-path profits decline over time. As time passes, the remaining time horizon and
consequently the number of periods in which profits can be generated falls. This also
triggers a reinforcing effect. Since Iy > 0, the (DE) constraint allows a larger effort
level in period T — 1 than in period 7. Then, per-period profits in period 7 — 1 are
higher than those in period 7', and implementable effort in period 7" — 2 is even larger
than in period 7 — 1, and so on.

All this implies that if the (DE) constraint binds in a given period 7, it will also bind
in all subsequent periods ¢ > 7. If it is slack in a given period 7, it will also be slack in

all previous periods r < f. This yields the following effort and compensation dynamics.

Proposition 1 Equilibrium effort is weakly decreasing over time, i.e., e; < e;_,. More-
over, ef < e;_, implies e;kH < e}, whereas e;kH = ¢} implies ef = e _|.

The equilibrium wage is weakly increasing over time and the bonus weakly decreas-
ing, i.e., wy > w;_1 and by < b;_1. Moreover, w; > w;_1 and by < b;_1 imply w;1 > wy
and by 1 < by, whereas wy1 = wy and by = by imply w1 = w; and by = b;_1.

The agent’s total compensation, w; + b;, might increase or decrease over time.

The proof can be found in the Appendix.

Proposition 1 indicates that effort and compensation are time-invariant in the early
stages of the employment relationship, as long as the future is sufficiently valuable for
the (DE) constraint not to bind. Once the end of the employment relationship is close
and the (DE) constraint binds, effort and bonus profiles become downward-sloping and
the wage profile upward-sloping. This is because the principal can no longer credibly
promise her preferred bonus. On the one hand, this reduces equilibrium effort. On the
other hand, the principal might respond with a wage increase that raises equilibrium
effort due to the agent’s preferences for reciprocity. The effort increase caused by a
higher wage does not fully compensate for the effort reduction caused by the binding
(DE) constraint, though, because the costs of implementing one additional unit of effort
are now higher with reciprocity-based incentives than with relational incentives. Over
time, the (DE) constraint is further tightened (Lemma 5).

Hence, toward the end of an employment relationship, relational incentives are grad-
ually replaced by reciprocity-based incentives (bonus |, wage 1), with the substitution

however being incomplete (effort |). The dynamics of the agent’s total compensation,
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w; + by, are not necessarily monotone and depend on the relative importance of rela-
tional and reciprocity-based incentives.

Consistent with the described effort dynamics, there is evidence that a worker’s pro-
ductivity decreases once he approaches retirement. Using US data, Haltiwanger et al.
(1999) find that a firm’s productivity is higher if it has a lower proportion of workers
older than 55. Skirbekk (2004) reports that older workers generally have lower pro-
ductivity and are overpaid relative to their productivity. Using Belgian data, Lallemand
and Rycx (2009) show that having a high share of workers above 49 is harmful for a
firm’s productivity. Reduced effort in the last periods of an employment relationship
has also been observed in many lab experiments (e.g., Brown et al., 2004; Fehr et al.,
2009). Those results have mainly been attributed to selfish individuals imitating those
with social preferences in early periods to collect rents later on. I further explore this
aspect in Section 5.2 and show that my model can deliver an alternative explanation of
many of the results presented by Brown et al. (2004).

Before going on, note that wage and bonus dynamics rely on my specification of
reciprocity and make use of the result that it is without loss (but not uniquely opti-
mal) to exclusively use b, to provide relational incentives in period 7, whereas upfront
wages only provide reciprocity-based incentives (Lemma 2). Thus, I am cautious relat-
ing these results to empirical evidence (such as the wide-spread occurrence of upward
sloping wage curves over employees’ careers; see Waldman, 2012 for a summary). The
gradual replacement of relational incentives (the agent responds to promised payments
to be made after effort has been exerted) with reciprocity-based incentives (the agent re-
sponds to a “gift” before effort is exerted), however, is robust to different specifications

of reciprocity (see sections 5.1 and 5.5)

Payoffs

Now, I present results on the dynamics of players’ payoffs. Whereas the principal’s per-
period profits decrease over time (once (DE) binds), the opposite is true for the agent’s
per-period utilities. This result is also driven by the gradual replacement of relational
with reciprocity-based incentives; because of the binding (IC) constraint, the agent only

collects a rent with the latter.

Lemma 6 The principal’s per-period profits m; are weakly decreasing over time, i.e.,
7 < 1. Moreover, iy < W1 implies ;1 < T; , whereas 7,1 = Ty implies T, = ;1.
The agent’s per-period utility u, is weakly increasing over time, i.e., u; > u; 1. More-

over, uy > u;—1 implies u;1 > u;, whereas u; 1 = u; implies uy = u;_.

The proof can be found in the Appendix.
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3.3 Reciprocity

In the previous sections, I derived the properties of a profit-maximizing relational con-
tract for a given value of 11. Now, I explore how the agent’s responsiveness to the norm

of reciprocity affects effort during his career.

Proposition 2 Equilibrium profits I1; and effort e; increase in 1. This positive effect is

stronger if the (DE) constraint binds (i.e., in later periods).

The proof can be found in the Appendix.

First, a higher n directly raises e, (and consequently profits) for a given w; > 0 due
to the reduction in effective effort costs. Second, there is an indirect effect. Because
future profits also increase in 7, the (DE) constraint in period ¢ is relaxed, which further
leads to higher effort and profits. This interaction provides an additional source for
the complementarity between relational and reciprocity-based incentives. Moreover,
Proposition 2 indicates that the positive effect of 1 on effort is stronger if the principal’s
(DE) constraint binds (i.e., in the later stages of the agent’s career). Then, the incentive
system places more weight on reciprocal incentives, and the role of 7 intensifies.

Evidence on the generally positive relationship between reciprocity and effort has
been provided by Dohmen et al. (2009) based on data from the SOEP, an annual panel
survey representative of the German population that contains a wide range of questions
on the personal and socioeconomic situation as well as labor market status and income
of respondents. In a number of years (2005, 2010, and 2015), it contained questions
designed to capture individual reciprocal inclinations. As a measure of (non-verifiable)
effort, Dohmen et al. (2009) use overtime work, finding that individuals with stronger
reciprocal inclinations are more likely to work overtime. Moreover, Fahn et al. (2017)
find evidence that is consistent with a stronger effect of reciprocity on effort towards
the end of an individual’s career. They confirm the results of Dohmen et al. (2009), and
also show that the positive link between reciprocity and overtime is significantly more

pronounced for older workers close to retirement.

4 Further Implications

In the next two subsections, I further explore how the agent’s reciprocal preferences
affect the optimal design of relational contracts in various environments. First, I analyze
how different levels of the relationship surplus shape the interplay between relational

and reciprocity-based incentives. The size of the relationship surplus is to a large extent
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determined by players’ outside opportunities, hence I argue that the results from this
section can generate insights on the role of labor market competition. Second, I show
that a formal commitment to pay future (non-discretionary) wages — a feature shared by
many real-world employment relationships — can increase the principal’s commitment

in the relational contract.

4.1 Relationship Surplus and Competition

An important question in (behavioral) economics relates to the effect of labor mar-
ket competition on the relevance and persistence of social preferences. A number of
theoretical and empirical contributions indicate that social preferences are driven out
by competition if contracts are complete (Fehr and Schmidt, 1999; Dufwenberg et al.,
2011). With incomplete contracts (such as in the present setting), however, the situation
is different (Fehr and Fischbacher, 2002; Schmidt, 2011). Schmidt (2011) analyzes how
labor market competition might affect the utilization of fairness preferences by firms.
Applying a static model, he shows that induced effort levels are the same for all degrees
of competition and that only rents are shifted between firms and workers.

In this section, I discuss how competition shapes the optimal relational utilization
of reciprocity-based preferences. I show that in a more competitive labor market, the
principal actually makes more use of reciprocity-based incentives if more intense labor
market competition reduces the rent generated by the relational contract. My approach
to model labor market competition follows Schmidt (2011), where the degree of com-
petition determines the outside options of principal and agent. This reduced-form ap-
proach substantially simplifies the analysis and still allows me to generate a number of
insights. The principal’s outside option equals IT > 0 and is the same in every period
t. As discussed in Section 2.3, this view can be supported by the presumption that T
reflects only the agent’s time horizon, whereas the firm’s is potentially infinite. Then,
IT would include the profits from hiring new agents once the current employment rela-
tionship is terminated (with multilateral punishments not being feasible). Moreover, IT
is assumed to be smaller than profits in period T (because of sufficiently high costs of
replacing the agent with a new one). Hence a premature on-path termination and the
use of efficiency wages are not optimal. A larger degree of competition for workers
is likely to decrease IT because more intense competition increases the costs and time
incurred in finding a new agent.

The agent’s outside opportunities are captured by the wage w > 0 he could secure
when working for a different employer. Note that this specification is less restrictive

than it might seem for a setting in which most incentives are informal. Because the agent
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does not receive a rent from relational incentives, his value from being employed (by
his current or alternative employers) is solely determined by upfront wages. Thus, one
could let the agent’s outside option be constituted by a more general increasing function
of his outside wage. This, however, would not affect my results qualitatively but only
complicate the exposition. Moreover, w is constant over time (although one might
expect older employees to have worse outside opportunities), which is not material for
my results as long as the marginal effect of competition on w is the same in all periods.
More intense competition for workers increases the outside wage w. Importantly, w now
also constitutes the new reference wage that determines whether wages are regarded
as generous and “activate” the norm of reciprocity. Therefore, the agent’s per-period

payoff in period t amounts to

e3

ut:Wt"i_bl_‘_nt(Wt_W)eet_?tv

which already incorporates that a wage below w would not be accepted by the agent.

First, I characterize effort and wage in a spot reciprocity contract.

Lemma 7 Effort in the profit-maximizing spot reciprocity contract is independent of w
and T1. Moreover, dw /0w = 1, and dw/dT1 = de /oW = de/IT1 = 0.

The proof can be found in the Appendix.

The principal responds to a higher w with an increase in w; to keep incentives con-
stant. Therefore, labor market competition does not affect the importance of the norm
of reciprocity for the optimal provision of incentives in a static setting. w only causes a
redistribution of rents, whereas the outcomes are entirely independent of IT (as long as
m =163 /4 —w >TI, which I implicitly assume and which implies that exercising the
outside option is not optimal for the principal). This replicates the results of Schmidt
(2011), who presents equivalent findings for the case of fairness preferences.

To derive a profit-maximizing relational contract with positive outside options, I first

characterize the agent’s (IC) constraint for a general w > 0:

by — ()’

o) 3
: +n(w,—W)etez§( n(w—w6) .

The outside wage w enters the agent’s (IC) constraint only via the associated increase
in the reference wage. This is different from a “standard” efficiency wage effect, where

a better outside option of an employee directly reduces his incentives to work hard.
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Here, any firing threat (which is an important component of the efficiency wage mech-
anism) would not be credible because keeping the agent provides the principal with a
payoff above IT.

The principal’s (DE) constraint amounts to
—b; 4 811, > S11.

(DE) is tightened by a larger IT, and thus the principal can ceteris paribus commit to a
larger bonus if facing tighter competition for labor.

The general structure of a profit-maximizing relational contract is as in my main
model, with constant wage and effort levels as long as (DE) is slack as well as upward-
sloping wage and downward-sloping effort profiles once (DE) becomes binding. Still,
IT and W crucially affect the importance of reciprocity-based incentives, as described in

Proposition 3.

Proposition 3 Larger values of w and/or 11 tighten the (DE) constraint.

If (DE) does not bind in period t, dw,/0w = 1. Moreover, dw,/dIl = de, /oW =
de; /Ol = 0.

If (DE) binds in periodt, dw,;/dw > 1 and dw, /dT1 > 0. Moreover, de; /dw < 0 and
de;/dTI < 0.

Finally, for given values of w and I1, the effort and compensation dynamics are as in

Proposition 1

The proof can be found in the Appendix.

As larger values of w and IT have no direct effect on the optimal provision of incen-
tives, the principal implements the same effort for all values of w and IT if (DE) does not
bind (i.e., in earlier periods of the employment relationship). Then, as in a reciprocity
spot contract, a higher w causes a mere redistribution of rents from the principal to the
agent (and dw, /dw = 1).

However, higher values of w and IT reduce the principal’s future profits. This tightens
the (DE) constraint and, once the constraint binds, restricts the principal’s possibility of
using relational incentives. As in the main analysis (see Lemma 1 and Proposition 1),
she mitigates the necessary effort reduction by expanding reciprocity-based incentives
and raising w, beyond the increase induced by a larger w. Hence, dw;/dw > 1 and
ow,/dT1 > 0 if (DE) binds.

Now, more competition in the labor market increases w but reduces I1, both of which
have opposite effects. If the effect of a lower IT dominates, a more competitive la-

bor market allows the effort reduction induced by a binding (DE) to materialize at a
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later point. Moreover, effort is generally higher and fixed wages are lower, and thus
reciprocity-based incentives assume a less important role. The opposite happens if the
effect of a higher w dominates and more intense labor market competition reduces the
relationship surplus. Then, the (DE) constraint binds earlier if the labor market is more
competitive, effort is lower and wages are higher. All this is driven by the reduced com-
mitment in the relational contract, letting reciprocity-based incentives become more

important in a profit-maximizing dynamic incentive scheme.

4.2 Long-Term Commitment

So far, I have assumed that although future wages are part of the (informally speci-
fied) relational contract, there is no legal obligation for the principal to pay any upfront
wage at the beginning of any period. In most real-world employment relationships,
though, a formal employment contract specifies fixed wage payments for months and
years in advance.® Such an unconditional commitment to wage payments seems coun-
terproductive for the provision of (formal or relational) incentives, in particular if legal
institutions — such as employment protection laws — or contractual arrangements limit
the use of firing threats and thus the effectiveness of efficiency wages. In the following,
I show that the ability to formally commit to future non-discretionary wage payments
can increase profits, by increasing the principal’s credibility when providing relational
incentives. For the following analyis, I set T = 2.

I assume that, at the beginning of the first period, the principal not only can pay wy,
but in addition formally commit to an amount W, paid at the beginning of the second
period. The agent reacts reciprocally towards w, in period 2, when this payment is
actually made. Committing to future payments also comes with a cost, and the agent
reacts less strongly to a wage that has been set in the past, in the sense that only yw,
enters the “reciprocity term” in the agent’s utility function, with ¥ < 1. When the second
period comes, the principal can further increase the wage by w, — W, (hence w, amounts
to the total second-period wage), to which the agent fully reciprocates. Finally, the
principal is not able to fire the agent at the end of the first/beginning of the second
period.

Note that, without costs of commitment, setting a positive W, would always be
(weakly) optimal because equilibrium outcomes are deterministic. In reality, there also
might be forces outside the model that make it costly for the principal to reduce her

future flexibility, for example demand fluctuations that let the size of a firm’s optimal

8These contracts then might or might not include additional performance-based pay. Indeed, there is
evidence that even though the compensation of most employees is somehow tied to their performance,
a substantial share of their salary is not (Lemieux et al. (2009), p. 22).
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workforce vary.

Now, the agent’s second-period (on-path) utility amounts to

3
)

3 +1n (P2 +wa —W2)e20,

u) = wpy —

and ey = \/[Wz — (1 — }’)Wg] T[@.
At the beginning of period ¢ = 2, the principal takes W, as given and sets wyp to

maximize

%) 2629 — W

=v/[w2— (1=7) 2] n66 —w,

which yields wy, = 1603 /4 + (1 —y) W2, e =1n602%/2, and M = n63 /4 — (1 — ) W,.
Thus, the implemented second-period effort level is independent of ;. Profits m, are

decreasing in w» for y < 1, thus it would be optimal to set w, = 0 from the perspective

of period 2. However, a positive W, can be optimal from the perspective of period 1

because it relaxes the principal’s dynamic enforcement constraint, —b; + 8 > —dWws:

Proposition 4 Assume the principal can commit to Wy, as specified above.
o If 1?63 is sufficiently large, (DE) does not bind. Then, W, = 0.

o Otherwise, (DE) binds. In this case, W, > 0 if y is sufficiently large.

The proof can be found in the Appendix.

A positive Wy entails direct costs because it triggers less reciprocal behavior than a
payment that is initiated today. Therefore, W, = 0 if the (DE) constraint is slack. If (DE)
binds, though, a positive W, is optimal if 7 is not too small. The reason is that the agent
receives Wy in any case, irrespective of whether the principal has paid the first-period
bonus or not. However, the agent only reacts reciprocally to w; in case by has been paid.
Thus, the costs of a deviation go up for the principal, and her increased vulnerability

allows to credibly promise a higher bonus.’

This mechanism is reminiscent of outcomes in Ramey and Watson (1997) or Englmaier and Fahn
(2019). There, physical investments increase the future rent generated by the relational contract by
more than reservation values. Thus, investments increase players’ commitment, and “overinvest-
ments” can be optimal.
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5 Extensions and Robustness

In the following, I change some of the previously made assumptions and explore how

this affects my results, still using a simplified setting with 7" = 2.

5.1 Reciprocity Triggered by all Current Payments

First, I let the agent’s preferences for reciprocity be triggered by all realized current
payments. Then, wages paid as a reward for previously exerted effort (and not only
w{ld) also induce the agent to reciprocate. This does not hold for the bonus, however,
which is paid after effort has been exerted (in Section 5.5, I let the norm of reciprocity
extend to expected bonus payments). Therefore, only upfront wages are used to pro-
vide incentives because they can assume the role of the bonus and additionally induce
reciprocal behavior.

To formally underpin this claim, the agent’s second-period effort still maximizes u, =

€5 = +/Mw76.

Different from before, the principal does not maximize 7, when selecting w;, hence

wy —c(ez) + MwaBer; hence,

the profit-maximizing equilibrium is not sequentially optimal. Instead, w; is also a

function of e; and set to maximize the principal’s total discounted profit stream, I1;.

The agent’s first-period effort must satisfy his (IC) constraint. Here, I assume that once

the agent deviates, b = 0, and wj is set such that 7, is myopically maximized (in which

case w3 =103/4, ¢5 =n62/2, and u, = 163 /4 +136°/12).1° Therefore, if the agent

deviates, he chooses ¢ to maximize ii; = w| —e3 /3+ 1w 0ey, and thus & = /w1 0.
All this implies that the agent’s (IC) constraint equals

3

e
bl—?l-l—nwlOeT-l-S wo +

Z(Wf]
3

3 3 306
>2(—V”W19)+5<’79 n-o > (IC)

- 3 4 * 12
The principal is only willing to make equilibrium payments if her (DE) constraint
holds,

—b1+ 08 (20 —w) >0 (DE)

Furthermore, 1 drops to zero if w differs from the amount promised at the beginning

10 before, a firing threat, which would maximize the power of incentives, is not credible.
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of period 1.

Then, the principal sets wy, wp, and b; to maximize IT) = ej0 —w; —b1+ 6 (e50 —w»),
subject to (IC) and (DE), and taking into account that €5 = \/nw,6.

The structure of the optimal arrangement is similar to that in the main part, with
two exceptions. First, it is optimal to set b; = 0. On the contrary, assume a profit-
maximizing equilibrium has b1 > 0. Then, a reduction in b; by a small € > 0 together
with an increase in wy by €/0 does not affect (DE) and IT;, but does relax (IC). There-
fore, wy is above the level maximizing 7, and bounded by the condition that second-
period profits must be non-negative. This implies that the back-loading of upfront wages
is more pronounced than before. Second, the principal’s profits will be larger than those
in the main model because the payments used to provide relational incentives also trig-
ger reciprocal behavior, an aspect missing before.'!

However, it is not possible anymore to easily separate the two means to provide incen-
tives because w» is not only used to provide reciprocity-based incentives in the second,
but also for relational incentives in the first period. Put differently, the second-period
“warm-glow” is also at the discretion of the agent’s first-period effort and thus used
to provide relational incentives. Still, because relational incentives are only relevant
in the first period, this section indicates that relational incentives continue to be more

important in early stages of the relationship.

5.2 Asymmetric Information

So far, I have assumed that the principal is aware of the agent’s 1), for example because
of personality tests used in the hiring process. In this section, I explore the potential
implications of asymmetric information on the agent’s reciprocal inclinations. I assume
that the agent can either be a “reciprocal” type with 11 > 0 (with probability p € (0, 1))
or a “selfish” type with no reciprocal preferences (with probability 1 — p). Moreover,
the agent’s type is his private information. Assuming that the principal can design
the incentive scheme and does so in a profit-maximizing way, she chooses one of the
following two options. First, the principal asks for a first-period effort level that only the
reciprocal, but not the selfish agent is willing to exert. Then, the selfish agent collects
the first-period wage, but is subsequently detected and fired (because he would exert no
effort in the second period). I call this a “separation contract”. Second, the effort request
is sufficiently low that it satisfies the selfish type’s (IC) constraint. In this case, the

agent’s effort choice cannot be used to screen agents and both types are also employed

"'With the equilibrium values from the main part and with w, adjusted to include the first-period bonus,
the (IC) constraint would now be slack.
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in the second period. Only then does the selfish agent — after collecting w, — shirk by
exerting zero effort. I call this arrangement a “pooling contract”.

I retain the setting of Section 5.1 where the norm of reciprocity is triggered by all re-
alized payments. Although this does not allow for a clear distinction between relational
and reciprocity-based incentives anymore, it simplifies the analysis of asymmetric infor-
mation because, in a separation contract, the reciprocal agent takes into account that he
will only remain employed if he exerts equilibrium effort in the first period. Therefore,
his incentives to exert first-period effort are not only determined by the correspond-
ing direct incentives, but also by the benefits of not being regarded as the selfish type.
Taking this into account, only future wages are used to motivate the agent (Section 5.1).

Now, I derive a Perfect Bayesian Equilibrium where any deviation by the agent lets
the principal assign probability 1 to facing the selfish type. Then, a separation and a
pooling contract are both feasible. The (IC) constraints, one for the selfish type (ICS),
and one for the reciprocal type (ICR), already taking into account that e; = /w0,

amount to

3
—63—1—{—5W220 (ICS)
3 2 (/w6 3
—%+T1W19€1+5 Wz—i—%]
53
> —%1 + w081, (ICR)

with & = v/nw1 0. Different from Section 5.1, a deviation from the equilibrium effort
now results in a termination and henceforth zero off-path continuation utilities. For any
effort level e; > &1 (ICS) is tighter than (ICR) (this is shown in the proof to Proposition
5). Therefore, if the principal offered the profit-maximizing contract designed for a
reciprocal type (which involves a binding (ICR) constraint), this would automatically
result in a separation of types. Moreover, effort in a pooling contract will be determined

by a binding (ICS) constraint.

Proposition 5 In a profit-maximizing perfect Bayesian equilibrium at which any devi-
ation from equilibrium effort induces the principal to assign probability 1 to facing a
selfish type, a pooling contract is optimal if p is sufficiently small. If p is sufficiently

large, a separating contract is optimal.

The proof can be found in the Appendix.
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Generally, the principal faces the following trade-off. First, with a pooling contract,
the first-period effort is rather low (determined by a binding (ICS) constraint); however,
it is exerted by both types. Then, only the reciprocal type exerts effort in the second
period, whereas both are paid w,. In this case, the principal’s expected profits are
I = €160 —wi +8 [p(vwan66 —ws) — (1 — p)wy], and outcomes resemble those in
the classical reputation literature (see Mailath and Samuelson, 2006). Second, with
a separating contract, the first-period effort is higher for a given w, (and determined
by a binding (ICR) constraint), however only exerted by the reciprocal type. Then,
both types are paid wy, whereas the selfish type is fired and only the reciprocal type
remains employed in the second period. In this case, the principal’s expected profits
are IT} = —wy + p [e10 4+ 8 (vVw2n06 —w»)]. If p is sufficiently small, the principal
prefers a pooling contract.

This pooling contract, however, relies on the assumption that the reciprocal type can-
not reveal himself by choosing a higher effort level. But this restriction generally does
not survive the Intuitive Criterion as a refinement of a perfect Bayesian equilibrium
(Cho and Kreps, 1987). Assume that, in a pooling contract, an agent chooses an ef-
fort level slightly higher than equilibrium effort. Since the selfish type’s (IC) constraint
binds, whereas the reciprocal type’s is slack, a deviation to a higher effort level should
indicate that the principal in fact faces the reciprocal type. If the principal responds to
this revelation by offering the profit-maximizing second-period wage for the reciprocal
type and if this gives the latter a higher utility than equilibrium play, an upward de-
viation by the reciprocal type indeed increases his utility. To support the relevance of
this argument, in the proof to Proposition 5, I show that for low p and consequently a
pooling contract,'? e% = Y/38p?1n63 and wy = €3/38 = p?n6>. If the reciprocal type
deviates and chooses an effort level e} + €, the principal will take this as a signal that
she faces the reciprocal type and might instead offer w, = 163 /4 (the second-period
wage that maximizes her profits with a reciprocal type; see the proof to Lemma 1). This
wage also increases the reciprocal type’s utility for p < 1/2.

Although a more general characterization of an optimal arrangement under asym-
metric information is beyond the scope of this paper, note that a large amount of ex-
perimental evidence indicates that cooperation is larger in repeated than in one-shot
interactions, even with a predefined last period. This is usually attributed to selfish
types imitating those with social preferences to collect future rents (Fehr et al., 2009).

I aim to provide support for a complementary story that takes into account that indi-

3

2More precisely, for p> < (ﬁ) /387.
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viduals with social preferences also behave strategically.'? If the uninformed party can
determine the incentive scheme, and in particular ask for a certain effort level, pooling
equilibria at which a selfish type imitates a reciprocal type are much harder to main-
tain. Then, an early separation of types can be achieved by requiring an effort level that
just satisfies the reciprocal type’s (IC) constraint, with the remaining matches thereafter
having a relational contract that produces outcomes resembling my main results (high
effort in early periods, declining effort once the last period approaches). Such results
have indeed been observed in the lab experiments conducted by Brown et al. (2004).
They compare different settings, in particular one in which players (among whom one
side assumes the role of firms and the other side represents workers) have the option to
form long-term relationships or are randomly matched in each of the 15 rounds. Firms
pay wages in every period and ask for effort from “their” workers, who subsequently
select their effort levels. Brown et al. (2004) find that effort is significantly larger in the
treatment with long-term relationships, where effort only falls in the last two periods.
They present a theoretical explanation where some players have fairness preferences
and where those without imitate the fair players early on, which mirrors the pooling
contract in my setting. However, they observe many separations early on (70 percent in
period 1, 65 percent in period 2) but few separations in later periods, which indicates
that their outcomes rather resemble separating contracts.

The setting in Brown et al. (2004) admittedly differs from my theoretical model in
several ways. For example, students who assume the role of firms might also have
social preferences, whereas only the agent is reciprocal in my setting. Nevertheless,
the presented theoretical analysis, together with a careful analysis of experimental re-
sults such as those presented by Brown et al. (2004), justify the notion that not only
the “selfish types mimic fair types” story of a pooling contract might contribute to ex-
plaining many experimental results. In particular, if players do not face an inflexible
environment such as a standard prisoner’s dilemma, the possibility of separating types
early on and subsequently having a relational contract might also contribute to the high

cooperation observed in repeated, but finite, gift-exchange experiments.

5.3 Negative Reciprocity

So far, I have focused on the positive effects of the norm of reciprocity. I have abstracted
from any potential “dark side” of reciprocal preferences in the sense that if an agent

is granted a lower payment than expected, he wants to actively harm the principal.

3This is not assumed in most of the reputation literature (Mailath and Samuelson, 2006), where “com-
mitment” types automatically choose cooperative actions.
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The potential consequences of negative reciprocity have been explored by, for example,
Dufwenberg and Kirchsteiger (2004), Dohmen et al. (2009), and Netzer and Schmutzler
(2014). In this section, I introduce negative reciprocity and show that it leads to the same
results as in the main part of this paper, even if 1) does not drop to zero after a deviation
by the principal. This section therefore also serves as a robustness exercise to show that
my results continue to hold if the agent’s preferences are unaffected by the principal’s
behavior.

I use the approach introduced by Hart and Moore (2008), who assume that the terms
of a contract provide reference points and determine a party’s ex post performance.
If someone receives less than he feels entitled to, he shades on performance, thereby
causing a deadweight loss that has to be borne by the other party. Such an assumption
has received empirical support from Malmendier and Schmidt (2017), who show that
individuals exert negative reciprocity upon a potential gift giver if they expected a gift
but did not receive one. I adapt the setting of Hart and Moore (2008) to my environment
and assume that the relational contract also determines the agent’s reference point.

Therefore, the agent feels entitled to the equilibrium bonus b7. If he receives a lower
bonus, his period-1 utility decreases by 1 (b} — by), where 7 > 0 and b, is the bonus ac-
tually paid by the principal. Moreover, the agent can reduce this utility loss via shading
(e.g., by sabotaging the principal), by an amount ¢ at the agent’s discretion. I assume
that the agent still has to be employed by the principal to shade and the principal can fire
the agent before making the choice whether to pay the bonus. Hence, she can escape
the shading costs & but would then also sacrifice potential future profits.'#

All this implies that the utility stream of the agent, conditional on not being fired,

amounts to

Uy =by +wy —c(e]) + w10} —max{[n (b} —b;) — c],0}
+ 6 (wy —c(e3) +nw,0e3).

The principal’s payoff stream if she does not fire the agent before paying the bonus

amounts to

11 :ele—wl—bl—(f

+ 06 (260 —w»).

Since shading is not costly for the agent, it is optimal to set ¢ = 1 (b —by) (for
by < bY). Furthermore, the second-period effort and wage equal wo = 1) 63 /4 and e; =

4Thus, a bonus is still not feasible in the last period of the game.
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162 /2, respectively; hence, the second-period profits are 7, = 163 /4 (see Lemma 1).
The principal faces two decisions. First, which bonus b; € [0,b7] to pay, and second
whether to fire the agent. Concerning the first decision, if the principal decides to pay a

bonus b1 < b} (and not fire the agent), her profits amount to

I1y =10 — w —I—(ﬂ—l)b] —ﬂ_bT

This immediately reveals that by = 0 is optimal for N < 1, whereas by = by forn > 1.
by = by on the equilibrium path. Thus, n < 1 also implies b] = b; = 0, and only
reciprocity spot contracts are feasible in this case.

Now assume 71 > 1. Then, the principal sets by = b} if she does not fire the agent.
She will terminate the relationship, however, if the bonus is larger than the period-2
profits, i.e., if b] > O m.

The principal’s optimization problem becomes maximizing 7; = ej0 — b —wy, sub-
ject to the agent’s binding (IC) constraint, which yields b} = (e%)3/3 — nw;e6 +
2/3 (\/W)3, as well as subject to b} < 8m,. The last condition is equivalent to
the (DE) constraint, and thus the problem in this section is the same as the optimization
problem in the main part of the paper.

These results are collected in Lemma 8.

Lemma 8 The profit-maximizing equilibrium with negative reciprocity, and a constant

norm function n;(W'~1) = n VA~ | has the following characteristics:
e Ifn <1, by =0. Moreover, e] = &5 = N6%/2 and wi = w, =1n63/4.

o If n= 1, b} > 0, and outcomes are as characterized in Section 3.2, with wi <
wy =n03/4 and e} > e5 =102/2, as well as de/dn > de} /dn.

5.4 Adjustment of the Reference Wage

Some evidence points toward a declining effect of gifts in long-term interactions. Gneezy
and List (2006) conduct a field experiment in which they permanently increase the
wages of recruited workers. Although workers respond with an immediate effort in-
crease, this is only temporary, and effort falls to an amount only slightly above the ini-
tial level. Jayaraman et al. (2016) explore the effects of a mandated 30% wage increase
for tea pluckers in India. They find that productivity substantially increases immedi-

ately after the wage raise. However, it starts falling again in the second month after
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the change and returns to its initial level after four months. Sliwka and Werner (2017)
examine how reciprocal effort is affected by the timing of wage increases. They find
that a permanent wage raise only temporarily increases effort and that the only way
to permanently benefit from an individual’s reciprocal behavior is to constantly raise
wages.

This evidence suggests that individuals adapt to wage increases and update their ref-
erence wages. In the following, I incorporate this evidence and assume that the refer-
ence wage above which the agent is willing to reciprocate depends on his past wages.
More precisely, the agent starts with a reference wage of zero. In the second period, the

first-period wage w becomes the new reference wage.'> Hence, the agent’s utilities are

uy =by+wy;—c(e]) +nwie]0
up = by +wy —c(ez) +max{0,n (wa—wj)e0}.

First, I compute the profit-maximizing spot reciprocity contract in the last period.
Then, no bonus is paid, and — taking into account that setting w, > wy is optimal —
effort maximizes —e% /3+1m (wp —wi)ez0. As shown in Lemma 7, effort is unaffected
by the higher reference wage; hence, €5 = 162/2 and w3 = 163 /4 +w.

The outcomes for an optimal relational contract are given in Lemma 5.4.

Lemma 9 Assume the second-period reference wage is equal to wi. Then, wi < wy.

Moreover, the (DE) constraint might or might not bind.

e If it does not bind, de/dn < de5/dn. Furthermore, there exists a 1 > 0 such
that the optimal wage is zero for 1 <1). In this case, e} > e5. For n > 7, setting

a strictly positive wage is optimal, and e} can be smaller or larger than .

o Ifit binds, there exists a 7] > 0 such that the optimal wage equals zero for n < 1,
whereas it is strictly positive for 11 > 7). In both cases, e} can be smaller or larger

*
than é;.

M can be smaller or larger than 1, and both are larger than if the second-period refer-

ence wage equals zero independent of w.

The proof can be found in the Appendix.

5This resembles the setting of DellaVigna et al. (2017), who apply a similar assumption (with the
exception that the reference point path is exogenous, whereas it is endogenous in my setting) to a
model of reference dependent loss aversion.
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The principal is reluctant to trigger the agent’s reciprocal preferences in the first pe-
riod. In particular, if  is large, she wants to maintain this opportunity until later when
relational contracts are no longer feasible. Therefore, the threshold for 1 above which
a positive first-period wage is paid is larger than that in the main part of the paper —
implying that the backloading of reciprocity-based incentives is more pronounced than
with a constant reference wage. A higher w also does not necessarily relax the (DE)
constraint anymore (which implies that 7) does not have to be smaller than 7). This is
because a positive first-period wage has two effects on the tightness of the (DE) con-
straint. On the one hand, as in the main part, the necessary bonus to implement a certain
effort level is reduced, which relaxes the constraint. On the other hand, future profits
are reduced via the adjustment of the reference wage, which tightens the constraint.
Moreover, e is not necessarily larger than e; because the reluctance to pay a positive

wy also reduces the agent’s willingness to exert effort in the first period.

5.5 Reciprocity Triggered by Rents

Finally, I explore the implications of reciprocity being triggered by the agent’s material
rent, in contrast to only by monetary payments. Thus, I assume that the agent’s per-

period utilities are

Uy = (bl +wq —c(el)) (1 +n€19)
up = (wp—c(ez)) (14+mnez0).

Importantly, when choosing his effort level, the agent also reciprocates on the equi-
librium bonus of this period before it is paid. Hence, the principal is less inclined to
pay a positive fixed wage in the first period. Only if a sufficiently tight (DE) constraint
considerably restrains the bonus is w; positive.

Formally, effort in the second period is given by the agent’s first order condition,

4
—e% — ge%'nG +won6 =0.
This is taken into account by the principal who sets w, to maximize 7, = e;0 — wy.

In the first period, the principal’s (DE) constraint still equals —b; + 8, > 0, whereas
the agent’s (IC) constraint becomes

(e7)’
3

)(1+ne’{9)2 (wl—(iﬁ) (14+1né,0). (IC)

(b1 +wi—
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Here, ¢é; is characterized by —é% — %é?n@ +win6 =0, and e} > é; if by > 0.

Lemma 10 Assume that the agent’s preferences for reciprocity are triggered by his
material rent. Then, the (DE) constraint binds given T = 2 and 6 < 1. Moreover, there
exists a 1| > 0 such that the optimal wage equals zero for N < 1), whereas it is strictly
positive for 1 > 1.

In any case, e > e5 and w1 < w».

The proof can be found in the Appendix.

With 7' = 2, second-period profits cannot be sufficiently large for a non-binding (DE)
constraint given 0 < 1. However, in a more general setting with more than two periods,
(DE) might indeed be slack. In this case, the proof to Lemma 10 reveals that paying a
positive wage would not be optimal because the purpose of a positive wage — triggering
the agent’s reciprocal inclinations — can equivalently be achieved by a bonus, which
additionally allows for higher effort via the use of relational incentives. With a binding
(DE) constraint, the principal might pay a fixed wage in the first period, but only if 1} is

large enough.

6 Conclusion

I showed that the norm of reciprocity can have important implications for the optimal
provision of dynamic incentives. Relational and reciprocity-based incentives reinforce
each other and should optimally be used in combination. At the beginning of an em-
ployee’s career, relational incentives assume a larger role because a longer remaining
time horizon increases a firm’s commitment. Once the end of the career approaches,
reciprocity-based incentives gradually become more important. More intense competi-
tion for empoyees increases the importance of the norm of reciprocity for the provision
of incentives if a lower relationship surplus reduces the effectiveness of relational incen-
tives. Finally, formally committing to paying non-discretionary wages in the future can

raise a firm’s profits because this increases its commitment in the relational contract.
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Appendix

Proof of Lemma 1 I maximize profits 7 = ¢6 — w, taking into account that effort
equals e = /w0, and that the agent’s (IR) constraint, u = w —e> /3 +Nwed = w +
(2/ 3)\/T]W93 > 0, must be satisfied. Naturally, the latter holds for any w > 0.

The principal’s first order condition equals

drn  de
—=—0-1=0
dw dw ’
which yields
_né’
w=-—
Hence, 5
«_ 1o
e ="
andt=n63/4,u=n6°/4+n36%/12 > 0. [ |

Proof of Lemma 2 The principal maximizes I1;, subject to (IC) and (DE) con-

straints for every period,

. (e;k)3 nd x _(éf)3 nd g
bt —3 +nWt 619+6UH_1 > 3 +ert e;9+5U,+1 (IC)
—b; + 611, > 0. (DE)

U, 1 describes the agent’s off-path continuation utility after a deviation by himself.
After the principal deviates (downwards), 1 drops to zero, and continuation payoffs
of principal and agent are zero. For this proof, I hence mostly focus on deviations by
the agent, hence assume (DE) constraints hold on and off the equilibrium path and n
remains constant. I only have to take care of the possibility of upward deviations by the
principal (i.e., increasing future payments of w after a deviation by the agent), which
do not reduce 7. If these upward deviations are optimal off the equilibrium path, they
affect the size of U, and hence the agent’s incentives to provide equilibrium effort.

First, it is without loss of generality to set w/ = 0 after all histories: Assume w? >
0. Reducing it to zero and increasing b, 1 by dw¢ leaves all payoffs and constraints
unaffected. In the following, I hence assume that w? = 0 in all periods ¢ and for all
histories.

Second, w™ is — by definition — independent of the agent’s past effort choices. Thus,

I need to prove consistency, in the sense that it is indeed optimal for the principal to
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not change w™ after a deviation by the agent. In this respect, I assume that all w{ld
in a profit-maximizing relational contract are smaller than the wage in a reciprocity
spot contract (Lemma 1) and later verify that this is indeed optimal (see Proposition
1). Then, firing the agent after he did not perform accordingly is not subgame perfect
and can thus be ruled out as a potential response of the principal. The reason is that,
with non-discretionary wages not exceeding the profit-maximizing wage in a reciprocity
spot contract, the principal makes positive profits even if no relational incentives are
provided on top (if some w"¢ were larger, I would have to check whether spot contracts
with “too high” wages still generate positive profits). This also implies that the principal
does not lower non-discretionary wages after a deviation (because this would let 17 drop
to zero).

Third, I need to verify that increasing w”“ after a deviation by the agent is not optimal
(otherwise, a deviation might increase the agent’s continuation utility and consequently
his incentives to deviate). Note that, according to the definition of w?d, the agent only
reciprocates to wage components that are independent of the agent’s past effort, hence
increasing the wage after a deviation of the agent would not induce a stronger reciprocal
reaction. However, this (arguably unintuitive) assumption is less restrictive than it might
seem. The reason is that the agent does not enjoy a rent from relational incentives
(see below). Therefore, even if higher values of w/? increased the agent’s reciprocal
reaction accordingly, raising w/¢ would not be subgame perfect. Instead, the principal
would continue to offer the on-path contract, thereby maximizing her (off-path) profits
and minimizing U, (which would take the same value as with the current setup). All
this implies that U; contains the same non-discretionary wage stream {w?? }:: L as Up.
Moreover, Icanset U, =Y.I_, (w’%d — 53—% +nwid é16> , which corresponds to the agent’s

minmax payoff given {w’éd}:: . (and provided w; > 0, which rules out negative upfront
payments to extract the agent’s “reciprocity rent). The reason is that, using standard
arguments, a series of spot contracts always constitutes on equilibrium of such a finitely
repeated game.

Fourth, T show that for given values w™ and e;, it is (weakly) optimal for the prin-
cipal to set b; — % + nw?dete = —% + nw{‘dé,G in all periods. To do so, I proceed
sequentially and start with period ¢ = 1:

3 53
e Assume b; — %‘ + nw’l’dele > —%1 + nw’l'déle. Reduce b by a small € > 0,
which increases I1; and relaxes the first-period (DE) constraint.

3 53
e Assume b — 63—1 + nw’l’del 0 < —%‘ + T]wrl‘dél 6. Because w¥ has been set to zero
in all periods, this implies that there exists at least one period T > 1 in which
3 53
by — %T + nwﬁdefe > —%T + nwﬁdére. Assume T is the first of these periods.
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3
Reduce b7, by € > 0 and increase b; by 0 —lg. Proceed until either b — %‘ +
53
1

3 3
nwrl‘dele = —% + nwrl‘dele or by, — % + nwﬁldeﬁe = —% + T]w’%ldefle. In the
3

. . . e
latter case, move to the second period 7, > 7 in which b, — % + nwﬁfefze >
53

€ . . 3 53
-3+ nwﬁférz 0 (such a period must exist as long as by — 63—1 + nw’fdel 0 < —%1 +
nwrl‘déle), reduce bg, by € > 0 and increase b by 8% 1¢, and so on. Continue

: e nd & nd 5
until by — F +Nwi%e10 = —5 +nwié6.

3
In period ¢ = 2, proceed accordingly if b, — %2 + nwgd €20 # 0, as well as in all following
periods.
nd e nd nd & nd

It follows that u; = wi* +b, — % +nwi“e10 = wi* — <+ +nwi“é,0, and consequently
that U, = U, in all periods ¢, and that all (IC) constraints hold as equalities.

Finally, these results imply that there exists a sequentially optimal profit-maximizing
equilibrium, in the sense that maximizing II; is equivalent to maximizing each per-
period profit 7, subject to (DE) and binding (IC) constraints. This is because the agent’s
incentives to exert effort in any period ¢ are solely determined by payments made in
period ¢, w? and b,. There, b; is bounded by the principal’s future payoff stream, thus
maximizing each 7; ceteris paribus maximizes I1j, but also yields the largest maximum
feasible values of b, without adverse effect on (IC) constraints.

|

Proof of Lemma 3 If the (DE) constraint does not bind in a period ¢, the princi-
pal maximizes profits 7; = ¢,0 — ((et)3/3 —nNwe,0+2/3 (\/W)3> — wy, subject to
wy > 0.

The Lagrange function equals L, = ¢,0 — (¢;)3 /3 +nw;e;0 —2/3 (\/W)3 —w +
Aw,we, Where A, > O represents the Lagrange parameter for the agent’s limited liability

constraint, giving first order conditions

o,
def

oL, B
a—Wt_nG(et—\/W)—l-l-lw,—O-

=0- (€[)2+TIW;9 =0

First, assume that A,,, = 0. Then, the first order conditions yield w, = (1?63 — 1)2 /(4n363)
and ef = (1+n%6%) /(216). Second, assume that A,, > 0 and hence w, = 0. Then,

3
ef=+v0and m = % <\/§> . To establish the existence of 7, note that dm; /dw; |y, 0=

\/N?%63 — 1. This is positive for n > 1/1/63, hence a strictly positive wage is optimal
in this case and not otherwise. |
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Proof of Lemma 4 Including the respective (DE) constraints, the Lagrange function

of the principal’s maximization problem in a period ¢ becomes

3
Ltzet —e,/3—|—nw,et9 2/3 (\/ le,@) — Wy
2 3
+A«DEt |:6Ht+1 — = <\/ Tth ) — € /3+17wt96t} +WtA’Wt7

where A, > 0 represents the Lagrange parameter for the agent’s limited liability
constraint and Apg, > 0 represents the Lagrange parameter for the principal’s dynamic
enforcement constraint.

First order conditions are

dL
= G—et —}-T[W,Q—f—?tDE, [ e,z—f—nwte} =0

(9
887 = nOet—HO\/T[WtQ—l-i-)LDEt [—nev nwt9+n9€t} +AWz =0.
t

(1"293(14-2,1)[;[)—])2
417393(1-0-2@5[)2

First, assume that A,,, = 0. Then, the first order conditions yield w, =

293
% It follows that, given Apg, > 0 and n > 7 (i.e., N%63 —
DE;
(]“‘ADE[) )2 (1‘]293—]>2

40363 (14+2pr, ) 4n76°

and e} =

1, implying that w, > 0 if (DE) does not bind), (n°6 and

140260 (14+2pg, ) 141263
2119(14—/105,) 2ne -

Second, assume that A4,, > 0 and hence w; = 0. Then, ¢ = /0/(1+Apg,) . To
establish the existence of 7}, note that dL/dw; |,,—o= \/N2603 (1+ Apg,) — 1 = 0. This
is positive for n > /1/63 (1 + Apg, ), and thus a strictly positive wage is optimal in this
case and not otherwise. Finally, for Apg, > 0, fj = \/ 1/63(1+Apg,) <N = \/W

Moreover, 7] increases in 0 because Apg, decreases in d (see the proof to Lemma 5).

Proof of Lemma5 The (DE) constraint in period 7 — 1 (where on-path continuation
profits are IT7 = 103 /4) equals (¢})?/3 — nw,0e; < 163 /4—2/3 (Wf First,
note that for 1 <1, in which case the first-best wage is zero and first-best effort equals
V6, the (DE) constraint equals (v/6)3/3 < §n63/4. This cannot hold if n <7 =

\/1/63, even for § — 1.

Therefore, assume 11 > 7 for the remainder of this proof. Then, first-best effort and
wage levels are e = (1+126%) /(216) and w = (n?6° — 1)2 (4n363), and the (DE)

41



constraint in period 7 — 1 becomes

2093 _ 3
3n<6° —1 Sane .
61363 4

(D

Because 11 > 7, the left-hand-side is strictly positive. Therefore, the constraint is vio-
lated for first-best effort and wage levels if 6 — 0.
To show that first-best effort can be implemented in period 7 — 1 if 1 is sufficiently

large, I compute the derivative of the left-hand-side of 1 and obtain (1 — 11293) /2n*63,
3n263—1
of 1 is strictly positive and increasing in 1). Therefore, 1 is satisfied if 1 is sufficienty

which is negative for n > 7). Moreover, Tl)iinoo = 0, whereas the right-hand side
large.

Concerning the second part of the Lemma, recall that the equilibrium is sequen-
tially efficient, hence the principal’s maximization problem is equivalent to maximizing
T, = e} 0 — b} —w; in every period ¢, subject to the (DE) constraint (e})? /3 — nw, e} <
oIl — % (\/W)3 It follows that, for a given w;, the maximum implementable
effort in period 7 is ceteris paribus strictly increasing in Il |, whereas per-period prof-
its 7; are consequently weakly increasing in II; ;. Furthermore, per-period profits in
periods ¢ < T can be expressed as functions of IT,,, i.e. (1. 1), with 7r; > 0.

The profit-maximizing spot reciprocity contract is the principal’s optimal choice in
the last period T, hence 7y = I17 = 63 /4. In all previous periods, the principal still
has the option to implement the spot reciprocity contract (by setting b7 = 0 and w; =
ne’ /4), therefore m, > mr Vt.

Now, I apply proof by induction to verify that Il,_; > I1;. First, IIr_; > 17 because

7y = mr_y + 0y > iy + 811y =7 (1+8) > Ir.

For the inductin step, assume that IT, > IT, ;. Since 7/ (T, {) >0, m;_1 > ;. Therefore,
I, | = m_y + 611, > m + 811, > m + 611, = I1;, which completes the proof. [ |

Proof of Proposition 1 First, assume n > 1 = +/1/63, hence w, > 0Vt. Further-
(T]293(1+)1,DEt)—1)2

more, in Lemmas 3 and 4, I have established that w, = >
40363 (14+2pk, )

and e} =

141263 (1+Apr, )
2n9<l+lDEt)
straint in period z. Hence, w; =w,_ and ¢] = ¢, if Apg, = Apg, , =0. By Lemma 4, if

, where Apg, is the Lagrange parameter associated with the (DE) con-

Apg, , =0but Apg, > 0, then w; > w;_; and e/ < ¢,_;. Finally, assume that Apg, , > 0.
(n26° (14208, ,)-1)°

and
4773 0 (1+ADE1—I )2

First, I show that in this case also Apg, > 0: Plugging w,_; =
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1+T]293 (1+/’1'DE;71 )
2n9(1+7LDEt,1)

e, | = into the binding (DE) constraint for period t — 1 yields
37]293 (l +7LDEt_1) —

1
3 — 61_[[
61363 (1+Apr, )

. . .. . A
I can also treat Apg, | as a function of I;. By the implicit function theorem, 51%“ =

25n393(1+lDE[_1)4 . —. . 213 .
20 (10, ) <0 (since n > 7 implies -6~ > 1). Hence, Lemma 5 yields Apg, | <

ApE,, which implies Apg, | > 0= Apg, > 0. Furthermore, if Apg, = 0 in a period ¢, this

also holds for all previous periods.

aw, _ (n°6*(1+4pg,)-1)
aA«DEt 2n363<1+lDEt)3

a *

whereas the effort path is decreasing because of -r2— = -1 < 0. Finally,
p & BA'DEI 21‘]9(14—)1@5)2 y

The wage schedule is increasing in periods t < T since >0,

wage and effort in period T are e} = Hgﬁ and wr = 5%3, respectively. e7 < e/ for all
2n3
% (& n%6° (1+Apg,) < 1+1026° (14 Apg,)).
(1263 (14+4pg, )—1)°
40363 (1+2p8, )
For the remainder of the proof, assume n <7, hence w; =0 and e¢; = VO if Apg, = 0.
As before, Apg, = 0 implies Apg, | =0, and Apg, > 0 implies Apg, | > Apg,.

The following cases still have to be explored:

t < T follows from 17792 <

wr >w; forall t < T follows from nTG3 > ((:) 2n%6° (1 + Apg,) > 1).

(1’]293(1%—1[)@)—1) 1+T]293(1+1D5t)
4n363(1+2p5, )" 2m6(1+2pz,)
the previous analysis regarding wages w; and effort levels e, for T > ¢, can be

and

2
o Apg, > 0and w, > 0. Then, w, = and e} =

applied. The previous analysis can also be applied if Apg, , > 0 and w,_; > 0.

Now, assume Apg, , > 0and w;_; = 0. Then, ¢;_| = \/9/ (1 + /'LDEH) (see the
proof to Lemma 4), and I have to show that

06 S 1—|—7]293(1—|—ADEI)
(14 Apg, ;) 216 (1+ Apg,)

In the proof to Lemma 4, I haven proven that w;_; = 0 implies n < \/ 1/ 03 (1 + ApE, | ) ,

which can be re-written to \/ 0/ (1 + /'LDEH) >N 62. Therefore, it is sufficient to
show that 162 > [14+126° (1+ Apg,)] /[2n6 (1 + Apg, )], which becomes 1 >
\/ 1/63 (1+ Apg,). This, however, is implied by w, > 0 (see the proof to Lemma
4).

e Apg, = 0 and Apg,, > 0, with w1 = 0. Now, ¢/, < e; follows from ¢/ =
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VO0/(1+ApE,), e,y = \/9/ (1+ApE,,) and ApE, ., > ApE, -

* _1+n293(1+)“DEr+1)
+17 2176(1—0—7LDE,+1)

e Apg, =0and Apg,,, >0, withw;; 1 > 0. Now, ¢; = V6 and e

and I have to show that

1—|—TI293 (1+;LDE )
\/§> 1+1
216 (1+ 4ok, )

& (1+ 205, (200267 —026°) > 1.

Again, wy4 > 0 implies (1+Apg,,,) > 1/1?6° (see the proof to Lemma 4),
hence it is sufficient to prove that (taking into acount that n <7 implies 21/12603 —
n%63 >0)

24/n%63 —n?63
(v )
1263

=2/1263 (1 . \/71293) >0,

which holds because of n < 1.

>1

Concerning the bonus, note that the binding (IC) constraint delivers b, = (¢)3/3 —

* 3 . (n263(1+lDEt)71)2
nwee; 0 +2/3 (\/nw,G) . It follows that, if w;, = 4n393(1+lDE,)2 >0,

b 30263 (14 Apg,) — 1
=

67]393 (1 - )LDEt)3 ’
1203
with db; _ 2n<0 (I‘HLDEt);H <0
(1+7LDE,) 271393(1‘M~DEt)
Moreover, if w; = 0, then
3
0
(H"lDEt)
bt - 3 )

with db; /d (1+ Apg,) < 0. Bonus dynamics then are computed equivalently to wage

and effort dynamics.

293 (17293(“%13@)_1)2

Concerning total compensation, I focus on the case n > 1, hence w; =

0. Then,

41’]393(1-1-205[)2

d(wi+b) 20763 (1+Apk) +1+126% (1 +Apg,)” — (1 + Ao,

d(1+)uDEt) 41‘[393(1—1—2@15,)4

b
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which is negative for Apg, — 0. To show that this expression can also be positive, note

that a binding (DE) constraint delivers

31’]293 (1 +)~DE,) —1
61303 (1+ Apg,)’

= 6Hl+17

hence 312603 (1 + Apg,) —1>0. At3n%6° (1 + Apg,) — 1 =0, the numerator of d (w; +b;) /d (1 + Apg,)
becomes (3n?6° —2) /91263 > 0.
[ |

Proof of Lemma 6. First, I consider the case w, > 0, hence 7263 (1 + Apg,)—1>0.
Then,

3
Mt:W;‘Fbt—e?t‘i—nW;e;ke

3
:W,—|—2/3<\/1‘[W,9>
_ 00+ Aps) -7 [ (1707 (14 205) - 1)|
41363 (1+ Apg,)* 3(1+Apg,)
ou; (6’ (14+Apg,) —1) | 2(n%6° (1+Apg,) —1)
d(1+Apg) 213603 (1+Apg)’ 6 (1+ApE,)

(0263 (1+Apg,) —1)°

>0
121’]393 (1 +ADE,)

Moreover,

T, =eO —w—band

om, de ow db

0
d(1+Apg) J(1+Apg,) d(1+Apg,) J(1+ApEg)

_ n?0°(1+4pg,) Apg, + (n°6° (1 + Apg,) — 1) <0

213603 (14 Apg,)*

45



Finally,

496 _ _21%6° 1 2093 1
(TI 0 (1+)LDE,)+(1+ADE,)2) 1 (TI 0 (1+)LDE,)>

li =
i 41363 + 3
n93 n293
= 1 =
A [ + 3 ur
and
I p2g° nteo_ e’ ., 1
lim 7 — (1+2pE, ) n 0_ (1+4pe, ) (l+/lDE,)2
Tog, e 216 41363
3n293_ 1

(1“'/1DEt) o n93 -

— U
67]393(1—1—11)5[)2 4 g

Second, I consider the case w; = 0.
Then

u,:O,

g= | — (e_L) and
e (1+)'DEz) 3(1+)“DE,)

877,} _ 03 }LDE, <0
d(1+Apg)  \| (14 Apg)> 2(1+ApE,)

Finally, note that w, > 0 for Apg, sufficiently large, hence the first case also applies
to ADE; —» oo, [ |

Proof of Proposition 2. First, note that e} = 116%/2, which is obviously increasing
in 1. Second, assume that a positive wage is optimal in any period t < T (i.e.,if n >N
with a non-binding (DE) constraint and 11 > 7) with a binding (DE) constraint). Then,
e = % with Apg, > 0, and
de; 1263 (1+Apg) — 1 1 OADE,
on 2020 (1+Apg) 206 (1+ Apg,)* oM

> 0.
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There, dApg, /dN < 0 because Apg, is decreasing in I, (see the proof to Proposition
1), and because profits in all periods increase in 1: This is obviously true for 7y =
ne’ /4. Therefore, (DE) constraints in all periods 7 < T are relaxed. Moreover, the
agent’s (IC) constraints in all periods T < T are relaxed by a higher 1 if w; > 0 and stay
unaffected if w; = 0.

Now, assume that w; = 0 is optimal in any period ¢t < T . Then, ¢ = \/m ,

with )’DEz >0, and
8e§‘ _ _l 0 . 8)~DE, Z 0.
an 2\ (14 2pg)° 91

The second part (de; /dn is larger if Apg, > 0) immediately follows. [ |

Proof of Lemma 7. For a given w > w, the agent chooses an effort level that maxi-
mizes u =w+1n (w— W) 8e—e3 /3, hence e* = /N (w— W) 6. Taking this into account,
the principal maximizes profits 7 = e*0 —w = \/m 0 — w, subject to w > w.
First ignoring the latter constraint, the principal’s first-order condition equals

92
1 ~1=0.
2y/n(w—w)6
This yields
_ne*
w = 1 +w,
which is larger than w.
Hence,
s _ne’
2 )
andn:nTeﬁ—W,u:nTm—knigﬁ%—W. |

Proof of Proposition 3. In any period ¢, the principal maximizes
3
T —e6— ((e,)3/3 — N (w—7)e0+2/3 ( 1 (v, —) 9) ) ~ wy, subject to (DE)
and w; > w. First, I assume that (DE) does not bind (which is possible if  and/or 0 are

sufficiently large — see the proof to Lemma 3). Then, the Lagrange function equals

Lt :ete — (6;)3/3+n (Wt —W)ete
2

—5( n (w, —w) 9)3—W1+M, (wy —w),
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with first order conditions

aLz_ 2 _ o
867—9—(61) +n(W[—W)9—0

oL, — B
—aWt_n9<e,— n(w,—w)e)—1+lw,—0

Istart with A,,, = 0. Then, the first order conditions yield w, = (n?6°% — 1) 2 /(4n303) +
wand ¢f = (1+n?6%) /(2n6). Now, assume that A, > 0 and hence w; = w. Then,
e’ = /6. Moreover, note that dm; /dw, |, —w= /1263 — 1. This is positive for n >
\/W , hence a strictly positive wage is optimal in this case and not otherwise. There-
fore, effort levels in both cases (w; > 0 and w; = 0) are not affected by w, as well as the
threshold 17 above which w; > 0 is optimal. Therefore, equilibrium effort is independent
of w. It follows that e} and w; are independent of TT.

Now, I include the respective (DE) constraints, which yields the Lagrange function

of the principal’s maximization problem in a period ¢

Li=e8—e/3+1 (w —W)e—2/3 ( 1 (wi —w) 0)3 —w,
+Apg, |8 (T —TI) — g (Wf — &334 (w— W) Qet}
+ A, (Wr — W),
where 4,, > 0 represents the Lagrange parameter for the agent’s limited liability
constraint and Apg, > O represents the Lagrange parameter for the principal’s dynamic

enforcement constraint.

First-order conditions are

oL
def

aL
3y, =NBer =m0y (we —w)6 —1
t
+/1DEZ[—779 n(Wt_W)e‘f‘Tleet]—}—ﬂ,Wt:().

I start with A4,,, = 0. Then, the first order conditions yield
— ((1+/IDEt)n29371)2 1+(1+ADEt)n293

=0 —e? + 1 (w —W) 0+ Apg, [—€f + 1 (w —W) 0] =0

_ o )2417393 +Wwand ¢, = (1=hog, 1210 It follows that, given Apg, > 0
DE; g
- 2 203 112 203
295 _ 1 >0, (PO(As) 1)’ (R0-1)" 10 (1 ds) _ 1ipe?
and n°9°— 120, 4n393(1+/'LDE;)2 amrer 40 206 (1+Anx, ) 2n6

Now, assume that A,, > 0 and hence w, = w. Then, ¢ = /0/(1+Apg,) . To
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show that both cases, w; = w and w; > w, are feasible, note that dL/dw; |, —w=

/1263 (14 Apg,) — 1 = 0. This is positive for n >

V/1/63 (14 Apg,), hence a strictly

positive wage is optimal in this case and not otherwise.

Now, I show that II; is decreasing in w. This implies that (DE) is more likely to

bind for a higher w, and thus — once (DE) binds — Apg, increases with w (see the proof

to Lemma 5). First, I have already shown (in the proof to Lemma 7) that I[17 = 77 is

decreasing in w. Therefore, (DE) in period T — 1 is tightened, and consequently profits

nr—1 and Il7_ are reduced for larger values of w. This tightens the (DE) constraint in

period T — 2 and reduces profits 77—, and I17_5, and so on. Therefore, I, is decreasing

in w for all ¢, and Apg,, if positive, is increasing.

Therefore,

de; 1

0 )LDEt

<0

ow _2779(1+)~DE,)2 ow

J 1+2 263 —1) 9A
Vit_(( DE) N 3) DE | g4,
ow 20303 (14 Apg,)° 9w
ith > w. Ith =Ww,
de;f 1 0 ar
e_t - — 3 3 EEt < 0
ow 2\ (1+Apg,)> oW
aWt
— =1
ow
Finally, Apg, increases in I because a larger IT tigthens (DE) (see the proof to Lemma
5).
Therefore,

def 1

3105

Ol 20 (1+Aps)” NI

dw _ ((1+24pg,)n*60° —1) dAp,

<0

+1>1.

Il 21363 (1+Apg,)’

oIl

Proof of Proposition 4. First, I give a more precise description of the outcomes if

the principal can commit to 7, to which the agent reacts with y;:
If n293 > 3+v9-60 %766, (DE) does not bind. Then, wy = 0 and w; > 0.

For n293 < 3+v9-60 V3%_65, (DE) binds. In this case,
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Wi

o wi =W, =0ifn?6°<3§and y < (43_‘51 /—,1293)

wIN

o wi =0and, > 0if n20° < 35 and y > (35\/17293) ,orif n263 > 35 and
y>n263.

142, /42
o wi >0if y< 1?6 and n*6° > 5. Then, W > 0if n*6? < re2yizé) - %) and

Yy > %8 , and W, = 0 otherwise.

To prove this result, note that the principal sets e;,by, wi and W, to maximize

93
Hl :e16—b1 —W1+5 (nT—(l—'}’)Wz) y
subject to
I ;
b — =L+ w0 > 2/3 <\/nw19> (IC)
93

—b1+ 0 <nT —l—}’v%) >0 (DE)

w1 >0

wy > 0.

As before, (IC) binds in a profit-maximizing equilibrium. Solving (IC) for b; and sub-
stituting it into II; and (DE) yields the Lagrange function

%3 3 03
L—ep— ) +nwle’1‘0—2/3<\/r[w16> —wH—SVT—(l—}/)WZ}

3
(e7)’
3

3

3 0
+ ApE | — +nwiej0—2/3 <\/T[W19> +0 (TTT—F’}’V%)} +M2W2+)\IW1W1.
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First-order conditions are

oL
L g (¢4~ mwi0) (1+A0g) =0
0
:>(1+1DE):m
oL
a—:—1+<ne19 Vv Nwy n9> (14+Apg) + 4w, =0
w1
no’
—1—
= (e1+v/win6)
oL
awzz—S(l—’}/)—f—ADEa’}/—}-Mz:O.

:>M2 = 6(1 — ’}/) —ADES}/

The last condition already reveals that wy = 0 if Apg = 0.
In the following, I analyze all potential cases and derive conditions for each of those
to hold.

1.) Slack (DE)

This case mirrors the results derived in Lemma 3, derived for the specific case of two
periods: Apg = 0 yields
=0(1+nwy), 2)

and we have to disginguish between the two cases w; = 0 and w; > 0.

A) w; =0 First-order conditions yield 4,,, >0&¢e; > 1 62, whereas e = /60 follows

from (2), hence 1263 < 1 is a necessary condition for this case to hold.

Finally, a slack (DE) constraint at these values requires

42
2 3
%6 (35) |

which is at odds with 726> < 1. Hence, if only one period is left, a non-binding (DE)

constraint requires wy > 0 (for < 1), also see the proof to Lemma 5.

(n6*-e1)’
ne

145112993 —and consequently wi = (Hz,,—e) /M6 — follows from (2).
(e +\/W) =0« \/erl 7792—61 andelgn()z. This
1 1

Also note that A,,, =1 —
implies 726> > 1, and a non-binding (DE) constraint at these values requires

B) wi > 0 First-order conditions yield A, =0 & w;| = , Whereas e] =
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14n263\3 3
_(Z?,e ) L(ned 21Jr”’7293—2/3 UM B I B LA
3 2n6 2n6 21n6 4 — 7

Since n293 > 1, this condition becomes
2—-61n%0°+386n%0° >0,

and either holds for n26° > (3++v9—68) /38 or n?6° < (3—v/9—68) /38. Again,
since n293 > 1, (DE) does not bind for

2.) Binding (DE)

Assume (DE) binds, hence n%6% < (34 1/9—68) /35. Moreover, first-order condi-
tions reveal that 7 < 6 (1+nw1). In the following, I explore all four potential cases

separately and assess the conditions for each of them to hold.

0.4, =0 First- ions vi I
A) w; =0,V, =0 First-order conditions yield A,,, >0« 1 CENG) >0&e >

162, Recall that e% < 6 must hold as well, hence w; = 0 if the necessary condition
n293 <1

is satisfied.

Moreover, a binding (DE) constraint, taking into account w; = wy = 0, yields e; =
J/5316.

Ay, > 0 also requires 8 (1 —y) — Apg 6y > 0 and consequently 1 — m}/ >0,

2
3n\3
Y < (67) 0.

Concluding, the requirements for this case are

which is equivalent to

TRy 537179 <V0en?ed< %, which always holds for n%6°% < 1

° ¢ = @3/5%’79 > n6% < n?6° < 2§, which is tougher than n26° < 1
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2
° YS (53 2293)3

. . . . 2
B) w; =0,W2>0 Asincase A), first-order conditions yield A,,, >0<1— (Tﬂ\/?vljrw) >
0 < e; > 162, as well as e% < 0, which give the necessary condition

n°6° < 1.
Moreover, Ay, = 6 — %Sy =0« e; = /07, and a binding (DE) constraint yields
1

— 5—;}/

) )

Concluding, the requirements for this case are
o e >N6><=y>n%e°
%
293
o >0s > (5#) ; the latter is tighter than y > 1267 if 02603 < 38
Therefore, the requirements become

e v>1203if1n203 > 36

2
3
o y> (6¢> if n?03 < 36

C) w1 >0, >0 First-order conditions yield A,,, =1— % =0&winb =
1 1
T]92—€1 :>T]92261.
2
Moreover, A,, =0 < w :M aswellas Ay, =0 1 — 2 —y=0
’ 1 1 ne s p) [e%_nwle]’y

Combining these two conditions delivers

_ n?03+y
el_—2n6 .
203
%énezﬁws n°6°

The condition for a binding (DE) constraint, e% < 6 (14+nwp), becomes 0 < 1—17,
hence is always satisfied at these values.

Finally, a binding (DE) constraint yields
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3
<n293+y>3/3 _ (n263—y>2 n0’+y | 2 ( (n263—y) 2) _ghe’
210 210 e 13 210 7

oy

A,

wy =

Since ¥ < 1263,

iRy 5 (176%)
5 o 91

"= 73635y

-N

L L P(1-2y/i-&) 7(1+2/i-4 .
This implies that v is positive for 263 € ( ( 5 6y) , ( 5 67) , which
requires y > %5 . The upper bound is consistent with y < n%63 if y > %6 . The lower

bound is consistent with y < 0263 if

0
— < vY—0.
4 6y_y J

67

ENIN

There, the right hand side is positive for ¥ > 6. Then, this condition becomes y <
: - 203 P+2/1-8) ) . 3
which contradicts Y > 6. Thus, n°6° € | y, ———5—= | if y > 70.

Concluding, the requirements for this case are

e Y< 1263, y> 35 (thus also n26% > 3§)

. 77293 c <% 7’2(1+2(S i—ésy)) .

2 2
D) w; >0, W, =0 First-order conditions yield 4,,, =0 < w; = (nen—ee'), whereas a
1+1%63

2ne -
W)—O@\/wm =N62—e; =N6%>e.
(161

ne

binding (DE) constraint implies e% <O(l+nw) e <
Also note that 4,,, =1 —

(61+

Moreover, a binding (DE) constraint, taking into account wy = and wy, =0,

yields

3 3 3
—631 +(n6>—e1)’er - 2/3( (n92—e1)2) +5<%>=0- 3)
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Since ¢} < nGz, this condition becomes
) 2 03
§e§—4e%n92+3e1n294—§n396+5n7 —0 “)

There, note that the partial derivative of the left-hand side of the (IC) constraint with
respect to eq, —e% +nw10 = —21n6%e; +n26*
higher e; would relax (IC), contradicting that it binds. Hence, e; > nGZ /2. Ate) =
162 /2, the left hand side of (4) equals 532—3 > 0. Moreover, the partial derivative of the

left hand side of (4) with respect to e; equals 4e% —8e11 6% +3n26%, which is negative

, must be negative because otherwise, a

for the relevant range e| € [77792, n 62] . Thus, within this range the left-hand side of (4)
is minimized for e; = 762 and then equals —1263/3 + & /4. All this implies that, if
“1203/3+6/4 <0< 0263 >35/4, there is a e; € [”T"z neﬂ solving (4).

Finally, first-order conditions reveal that A, >0 < 1 — Wowle]’y > 0, hence

0
11— .
21n62%e; — n264] =90

. 2 .
Since e} > %, this becomes

y<2n6e; —n%60° < n%6°.

Hence, necessary conditions for this case to be feasible are ¥ < 1263 and 263 >
39/4. Then, this case holds if the conditions of C) are not satisfied. |

Proof of Proposition 5. First, I show that, for p — 1, a separating contract yields
higher profits than a pooling contract. There, note that, in any profit-maximizing equi-
librium, (ICS), the selfish type’s (IC) constraint, is tighter than (ICR), the reciprocal
type’s (IC) constraint:

3

—63—1—{—5W2 >0 (ICS)
3 2 (v/wa0)°
—%1+71W19€1+5 Wz—l—%]

2 (v’

With wy = 0, (ICS) is tighter than (ICR) for any second-period wage w, because
second-period utilities are larger for the reciprocal type. A strictly positive w; can
only possibly be optimal for the principal if it further relaxes (ICR) ((ICS) is unaf-
fected by wy), which confirms that (ICS) is tighter than (ICR) in any profit-maximizing
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equilibrium. This implies that a strictly higher effort level can be implemented with a
separating contract (then however only exerted by the reciprocal type) than with a pool-
ing contract (then exerted by both). For p — 1, profits under both regimes approach
10 —w;+9 (\/VTT]G 0 — wz), which is larger with a separating contract because of
the higher effort implemented in this case.

To show that a pooling contract yields higher profits than a separating contract for
p — 0, I first assume that the principal offers a pooling contract and explore its proper-
ties. Then, I do the same with a separating contract, and finally compare both alterna-

tives.

Pooling contract In any profit-maximizing equilibrium, (ICS) is tighter than (ICR).
Therefore, (ICS) determines feasible effort in a pooling contract. This also implies that
w1 = 0, because a positive w; might only relax (ICR).

Now, the principal maximizes I1;, subject to her own (DE) constraint, pe;6 —wy, > 0,
as well as the selfish agent’s (IC) constraint, —? + 6wy > 0. This will bind because,
otherwise, the principal could ask for a higher first-period effort level without violating
any constraint. Moreover, the reciprocal type exerts an effort level e, = /w>n8 in the
second period, whereas the selfish type’s second period effort amounts to zero, hence
I, =e160+0 (pW@—Wz).

Taking all this into account, the Lagrange function becomes

e e 4 e

and the first order condition

L 2 2
L oy | P19 ] (5 am) =0,
861 e% 6

First, assume Apg = 0. Then, ] is characterized by

0 . _
2 ’37—5<9—(e1)2>+pn92\/e_1:0. 5)

Second, assume Apg > 0. Then, ] is determined by the binding (DE) constraint,

e} =/36p?n63.

To compute the condition for when (DE) actually binds, I plug e} = /38 p>1 63 into
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the first order condition,

92 2
o+ L1 1 1(8+Aoe)
24/55m0
1 e?
:9—§§(5+7LDE)
2
1<335p2n93>
29—5 5 (0+Ape)=0
Therefore, (DE) binds if 6 — 162 ( {/38 p? 2>O or
’( ) 2 ( p rl - )
3
2
(V)
pr< ——".

In this case, which is the relevant case for p — 0, the principal’s profits with a pooling
Y =et6 = /35 p2n6°.

\3 +\3 *2_
p’/(?s) 7799—%] = e} {9+(61)T29}, where e is

Separating contract In case she offers a separating contract, the principal maxi-
mizes IT) = p[e10 + 6 (e20 —wy)] — wy, where e; = \/wo1 0, subject to her own (DE)
constraint, e;0 —w, > 0 (which is relevant in case the agent turns out to be reciprocal),

equilibrium are

Otherwise, I} = €16 + &

characterized by (5).

the limited liability constraint, w; > 0, as well as the reciprocal agent’s binding (IC)

constraint,

)3 2 (v/nw20)’
—%‘FHWIQET—FS wz+%
3
2 (Vw0
_2(Viwio)” e ) (IC)

There, note that
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d_e]k_neef— nwio neo
dwi (e’lk)z —nwi® e+ Vnwio

det 8 [1+/nw016]

dwy (e”f)z —nw; 0

Therefore, the Lagrange function becomes L = p [el 0+0 (\/wzn 600 — wz) + ADE (\/wzn 06 — wz)} —

w1 + Ay, wi, with first order conditions

dL ne
= 0—1 =0
owq pel ++1/Nw 0 +)VW1

JL 8 [1++/Nw20n6] n6? n62
= — U )| =
6+ (2\/—W21’]9 ) Ao (2\/—W21’]9 ) 0

For later use, note that the first condition implies that wi = 0 for p — 0 (because e}

dwn e% —nw0

is bounded away from zero for any strictly positive 9).

First, assume Apg = 0, hence

1++/nw0n6 no?
5 0+ —1=0.
e;—Nw 0 2y/won0

This, together with the reciprocal agent’s (IC) constraint, determines outcomes if

wi = 0. If w; > 0, outcomes are additionally given by

92
P*n——lz(),
e;+vnwi6

and an explicit characterization of the results is not feasible.
Now, assume Apg > 0. Then, a binding (DE) constraint implies wy = n93.

If w; =0, (IC) yields
27366
¢t = \3/35 [n93+ "3 ]

To compute the condition for when wi = 0 (if (DE) binds), I plug these values into
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2
the first first order condition, p né — 14 A, =0. Therefore, w; =0 if
i/36 [n 93+L7§96}

62
2136
</35 [n93+—n—3 }

38 [n93 - 2’73&]
n396

To compute the condition for when (DE) binds (if w; = 0), I plug these values into

p’ <

the second first order condition. Therefore, (DE) binds for

5 [1+n6°n6]
2
({/38 [no*+ 252 )

2 < 86° 1 +n293}32.
9 [n93+—2";96]

1
—6>
26_0,

or

0

The right hand side of this condition is larger than 1, and (DE) always binds if w; = 0.
Therefore, (DE) always binds if p — 0 because then, w; = 0 (see above). On a general
note, though, wlwant to emphasize that this might change in a more general setup with
a longer time horizon.

All this implies that, for p — 0, profits with a separating contract are

217396]

I = peio :p6\3/35 [n93+ 3

Comparison For p — 0, profits with a pooling contract are I} = {/38p?n 62, and

Hf =p0 \3/ 30 [7] 03+ 2"3&} for a separating contract. Therefore,
Iy > I}
/35700 2 po 33 [0+ 217
<l>p <1+ 2”;63) :

which holds for p — 0.
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Proof of Lemma 9. The principal maximizes
*\3 * 3 1’]93
I =10 — ()3 /3+nwief0—2/3 (x/nw16> —wi 48 (L= —wi ),
subject to w; > 0 and

*\3
@ —nw19e1k+% <\/T[W19>3 <é (T—W1> . (DE)

3 3

This yields the Lagrange function

3 63
L:€19—(€1)3/3+T’W1€19—2/3 (\/T]W19> —Wl—|—6 (nT_W1>
63 2 3 3
"’)vlel"i‘)LDE {nw19e1+5(nT—wl>_5(,/17%9) _(e;) }7

where A,,, > 0 represents the Lagrange parameter for the agent’s limited liability con-

straint, and Apg > 0 the Lagrange parameter for the principal’s dynamic enforcement

constraint.

First order conditions are

:9—e%+nw19+7tDE [nw10—eﬂ =0

oL
861
oL
E =Ne10 —N0/Nnw10—1-6+A4,,
+ ApE [n@e’{—S—nGx/nwle} =0.

First, assume Apg = 0. Then, I have to consider the two cases w; = 0 and w; > 0.
Ifwy =0, e = V6 and I, = 2/3 (\/5)3 +6n 93/4. Moreover, dI1; /dw; |y, 0=
\/W— 1 — &8, therefore w; = 0 for 2603 < (14 5)2, whereas w; > 0 for 1263 >
(1+0 )2. Recall that the condition for a positive wage in case (DE) is not binding in the
main part (i.e., without an adjustment of the reference wage) equals 126> > 1.
Furthermore, ¢} > ¢3 < 1?63 < 4, which holds because 7?63 < (1+ 8 )2. Moreover,
0=wi <wp="0 and %9 =0 < %2,
To check the feasibility of the case Apg = 0 and wy = 0, I plug the respective values
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into the (DE) constraint, and obtain

16

2n3
952 =M

This is consistent with 7263 < (14 8)? if 36 (1 + &) > 4. Now, assume 17263 >
(1 +5)2 and Apg = 0. Hence, A4,,, =0, and the first order conditions yield e¢; =
(148)% 47263 [n26°—(1+6)"]"

2n6(1+96) 4(1+6)*n363
only is consistent with 263 > (14§ )2 if § is sufficiently small. In any case, w; < w»

and de}/dn < de}/dn, where the latter condition is equivalent to §1726% > — (1 + 5)%.

and wy = . Moreover, e} > 5 < 86°n? < (1+ 5)2, which

To check the feasibility of the case Apg = 0 and wy > 0, I plug the respective values
into the (DE) constraint, and obtain

(1+6)°n203—1 1(2-6)
2§5( (1+6) )HH&Z? 263

The right hand side is increasing in 2 if & is large enough. Since 1263 > (1+ §)2,
this condition holds if it is satisfied for 7263 = (1 + &) For this case, it becomes

5
(1+68)%

There, the right hand side is increasing in § and, for § — 1, approaches 3 + % > %.

W&~

§62(2+6)+§6—

Hence, this case is feasible if 17 and/or § are large enough.

Now, assume that the (DE) constraint binds, hence Apg > 0.

First, I assume that A,,, > 0, hence w; = 0 and ¢/ = \/6/(1+ Apg,). To establish
the existence of 7], note that dL/dwy |y, —0= (T]G\/@/(T/M)Et)— 5) (1+Apg) — 1,
which is positive for n263 > (148 (1+Apg))*/ (14 Apg). This threshold is larger
than with a non-binding (DE) if Apg > (1 — 8%) /82, which might or might not hold.
Moreover, provided n26% < (148 (1+Apg))? /(14 Apg) . €5 > e = 1263 (14 Apg,) <
4, which might or might not hold.

Second, I assume 126% > (1+8 (1+Apg))* /(1 + Apg), hence A, = 0. Then, the

first order conditions yield
203 (14 App) + (1+8 (1 +Apg))?
210 (1+2Ape) (1+ 8 (1+ApE))
2
12603 (14 Apg) — (148 (1+ Apg))?
413603 (14 Ape)* (148 (1 + Apg))*

wp =
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2
M > 1263, which might or might not be consistent with
8(1+ApE)

12603 > (146 (1+Apg))*/ (14 ApE). |

Now, e] > €5 <

Proof of Lemma 10. In the second period, the principal maximizes m, = €20 — wy,

where e, is given by

4
—e% — §e§n9 +won6 =0.

This yields

V1+4n263 -1

e =

4n6
2,43
s _at Ul
noe
o ot 81N26° +1—+/1+4n203
274 121262
_(63)* (14 1ne30)°
n6 '

Recall that last-period profits in the main setup are 1163 /4, which is larger than the
amount obtained here.

In the first period, at ej, u; is decreasing in ej. If it were increasing, the agent would
further raise his effort level. This implies that (IC) is binding in a profit-maximizing
equilibrium. If it were not binding, the principal could ask for a higher effort level
without paying more.

Plugging the binding (IC) constraint,

6*3
b]z(;)

(503) (14+1né:6)

_W1—|-<W1— 3 (1—|—T]e>i<9),

into profits and the (DE) constraint yields the Lagrange function

*\3 5 \3 5
L oo ) _(W1_<ef> ) (1+72)
3 3 ) (14+ne;6)
(e})’ ( (51)3) (14+n¢é,8)
A ApE | — — — om |,
+ Ay, W1 + ADE 3 +wi wi 3 (1+ne*{9)+ /%

where A,,, > 0 represents the Lagrange parameter for the agent’s limited liability con-

straint, and Apg > 0 the Lagrange parameter for the principal’s dynamic enforcement
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constraint.

First order conditions are

JdL 2,)°\ N6 (1+né 0
=0 () + (wl_ & ) 16 (1+71:0)
€1 (1+ne*{9)

+ ADE

eV (w @)\ no(1+ne6)| _

N e

oL _(p2.92\ (141ne0) w}_(a3 ne  de

ow, (1 ()dw1> (1+ne;0) (] 3 )(1+nej‘9)dw1
(y_(p2.92 N\ (4ne0) (- (@) ne  de
! (1 ()dw1> (1+ne;0) < ! >(1+ne*1‘9)dw1]

+A/W1 :O

+ ApE

Using —&7 —4/383160 +w;n6 = 0, which implies wy = &7 /16 +4/3&3, those con-

ditions become

L 1+1n¢é,6)*
a_:g_ (67)2_5%<+n—€1)2 (14+Apg) =0
° (1+nei6)

JdL ~ (1+neb)
dwr  (1+n€0)

(1+A’DE)+)'W1 +Ape =0

First, assume Apg = 0. Then, I have to consider the two cases w; = 0 and w; > 0.
However, w; > 0 and consequently A4,,, = 0 cannot be optimal, since in this case, the
second condition would become — (1 +né@) /(1 +nej0) =0.

Therefore, Apg = 0 implies w; = 0; hence € = 0 and
¢ =Ve.

Moreover e} =/ > (W— 1) /(4n0)=¢sandw; =0< (3 +3e310) /(n0) =
wo.

However, note that for two periods and 6 < 1, Apg = 0 is not feasible: For w; = 0,
b = (\/5)3 /3 and e} = /6, the (DE) constraint becomes

(V) (1+4n%6%)\/1+4n26° —6126° —1
— +6 > 0.
3 241363

There, the second term increases in 1 and approaches 62V 63 /9 for 1 — 0. Therefore,
the constraint does not hold for any 6 and 1 if § < 1.
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Now, assume that (DE) binds. Again, I start with wy =0. Then, e] =+/0/ (1 + ApE),

and

. dL (1+ApE)
| =— A
0w (14+nev) T AbE
(1 ‘|’)~DE)

- | 1]263 +)~DEa
( + (1+ADE>>

which is positive for

Put differently,

if 720312, — Apr — 1 < 0, hence if Apg < (1 +/1 +4n293) /(2n26°). In this case,

0

1++/1+4n2%063
(1 + 21263

e] >

B 2n%64
21203 +1++/1+4n263
This is larger than ¢} = (\/1 T an?03 — 1) /(4n8), if
121n*6° > 0.

Therefore, e] > €5 and wi < w».
Now, assume that Apg > (1 ++/1 +4n263> /(2n?63), hence w; > 0. Solving the

first first order condition for Apg and plugging it into the second yields

6 [1+n6(ej+é1)]ef (1+ein0)+é;(1+né10)] _o
(1+ne€;0) ’

which, together with the binding (DE) constraint, determines e} as well as &; (and

52
consequently wy). Making use of —é% — ;—‘é?n@ +wind =0=w; = ;—}9 + %‘é?, the
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latter becomes

(1 -2)

~2 * ~
————— 42 (e] —€1)
In order to prove e] > e; and wi < wp, I first show that e] is increasing and & is
decreasing in O 7,:

0 _ n0{ejein0+ne 2 6+2(e}+21 ) (14021 6) } +(14+202,6)

(14ne;0)
X 4 7*((ff)zﬂffl+5?)+(ff*"1)(6f+251)+2e‘,e7+3e’{é%ne—3éf—4é?n9
dej  _ 3 (1+1¢19)
d(6m) Eln9(1+n619)2—[(1+n967])(1+e’]‘n9);rn6e’|‘(1+2€Tn6)](l+ne’l‘9) _nG{eTeTnGJrEIEInSJrZ((eTJrél);l+n€19)}+(1+2ne“19)
(14nej0) 1+nej6
- 2 5 % %20 252 453
—(e})?+8 78?”13;2 &+ AR A
nep 1
0 _ n0{efein6+ne2642(e}+21)(14026) } +(14+212,6)
(14ne;0)
- —((e)2+e +E?)g+(ef—",)(ﬁ{+25|) i ze,e7+3eEa%nef3§%74e7n9
K 1+ne6
e 0(1+n210)*~[(1+162;)(1+¢;n8)+n0ef (1+2¢i10)] (1+ne; 6 0{ejeino+e18n0+2(e+21 ) (1402 0) }+(1+2n1 0)
i nei [(1+n62) ¢in0)+nbej(1+2¢in6)](1+ne;6) _n {ejeinb+e121m0+2(e}+21 ne6)} néy
(147n¢16)” (14ne70)
a2 52 (148106)? 281 (e;—¢1) (142¢1)
(e1)” +¢é (1+ne70)2 T (tinee)

There, the numerator equals

_no{eiein+neéie10+2(ef +é1)(14+né10)}+(1+21é,0)

" <0,
(1+nejo)
and the denominator

& (1+né0)> — (n6é +1)(1+en6)> —n6et (1+2¢i16) (1+1¢e6) 2 —2)e 1+2¢n6
—&)é 1 2eme.
(1+7ne:6)° ' (1+1ne;j6)

a2 (1+Em0)? \ n6{eieine+&emo+2(et +&))(1+1é,0)} + (1+2né6)

+| —(e7)”+¢é B " s

(1+ne;0) (1+ne;0)

which is negative because of e} > &;. Therefore,

*
de)

TR

If 0m =0, by =0, and m; is maximized by setting w; = wy, implying e} = €.

Therefore, e} > €5 given 7 > 0.
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Moreover,

&n0(1+0é0)*~[(1+162;)(1+¢in8)+n8e; (1+2in6)] (141} 6)
(1+ne;0)°
—(@)P+& (14¢176)*

0

-1
de; " (14net0)’
d(8m) | @ne(+na16)*—[(14162)(1+¢in0)+n6e; (1+2¢in6)](1+ne0)  n6{ejeino+a121m6+2(cj+21)(1+n210) }+(1+2n210)
(1+ne;0)° (1+neje)
a2 52 (1+8106)? 22y (e}—21)(1+2)
(e1) +el(l+n(“;9)2 (1+n¢70)

This is negative, since the denominator is negative and the numerator, which equals

[(14+16&))(14¢in6)+n6ei(1+2¢5160)] (1+ne;0)—&n6 (14+né6)

(1+ne6)° |
is positive.
Therefore,
dWl
— <0.
d(ém)

If 6 =0, by =0, and m; is maximized by setting w; = wy. Therefore, wi < wp

given oy > 0.
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