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Abstract

We analyze linear McKean-Vlasov forward-backward SDEs arising in leader-follower games with

mean-field type control and terminal state constraints on the state process. We establish an existence

and uniqueness of solutions result for such systems in time-weighted spaces as well as a convergence

result of the solutions with respect to certain perturbations of the drivers of both the forward and the

backward component. The general results are used to solve a novel single-player model of portfolio

liquidation under market impact with expectations feedback as well as a novel Stackelberg game of

optimal portfolio liquidation with asymmetrically informed players.
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1 Introduction and overview

Mean field games (MFGs) are a powerful tool to analyze strategic interactions in large populations when

each individual player has only a small impact on the behavior of other players. Introduced independently

by Huang, Malhamé and Caines [18] and Lasry and Lions [23], MFGs have received considerable attention

in the probability and stochastic control literature in the last decade. A probabilistic approach to solving

MFGs was introduced by Carmona and Delarue in [11]. Using a maximum principle of Pontryagin type,

they showed that solving the MFG reduces to solving a McKean-Vlasov forward-backward SDE (FBSDE)

of form, 



dXt = b(t,Xt, Yt,L(Xt, Yt)) dt+ σ dWt,

−dYt = h(t,Xt, Yt,L(Xt, Yt)) dt− Zt dWt,

X0 = χ, YT = l(XT ,L(XT )),

(1.1)

where X is the state of the representative player, Y is the adjoint variable, and L(·) denotes the law of a

stochastic process. In MFGs with common noise [2, 3] the dependence of the coefficients on the law of the

process (X,Y ) is of conditional form. FBSDEs of the form (1.1) also arise in mean-field control (MFC)
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problems [1, 4, 12] and in MFGs with a major player [8, 9, 13] when formulating stochastic maximum

principles. MFGs with a major player are a special class of leader-follower games with mean-field control.

In such a game, the leader’s optimization problem can be viewed as MFC control problem where the

state dynamics follows a controlled FBSDE that characterizes the representative minor agent’s optimal

response to the leader’s control. We study a novel class of leader-follower games with mean-field control

and terminal state constraint on the state processes that naturally arise in Stackelberg games of optimal

portfolio liquidation with asymmetrically informed players.

1.1 McKean-Vlasov FBSDE with terminal state constraint

Let W = (W,W 0) be a multi-dimensional Brownian motion generating the filtration F = (Ft)t≥0 and

let F
0 = (F0

t )t≥0 be the filtration generated by W 0. In this paper, we consider linear McKean-Vlasov

FBSDEs of the form




dQt =
(
−Λ1

tRt − Λ2
tE
[
γtQt| F0

t

]
+ f t

)
dt,

−dRt =
(
Λ4
tQt + Λ3

tE[ζtRt|F0
t ] + Λ5

tE[̺tQt|F0
t ] + gt

)
dt− Zt dWt,

Q0 = χ, QT = 0,

(1.2)

with given initial and terminal condition for the forward, and unspecified terminal condition for the back-

ward process. FBSDEs of this form arise in linear-quadratic MFGs, MFC problems, and leader-follower

games under a terminal state constraint on the state process when formulating stochastic maximum

principles. Under a terminal state constraint on the state sequence the terminal value of the adjoint

process is unknown. The special case Λ2 = Λ3 = Λ5 = f = g = 0 arises in the single player portfolio

liquidation models under market impact studied in, e.g. [5, 17]. The special case Λ2 = Λ5 = f = g = 0

was recently analyzed in [14] in the framework of a MFG of optimal portfolio liquidation.

We prove a general existence and uniqueness of solutions result for the system (1.2) under boundedness

assumptions on the model parameters that allows us to solve single player portfolio liquidation problems

with private information and expectations feedback. The existence and uniqueness result is comple-

mented by a convergence result for the solution of (1.2) with respect to the parameters (f, g) that allows

us to formulate a stochastic maximum principle for leader-follower games of portfolio liquidation with

asymmetrically informed players.

The existence and uniqueness of solutions to (1.2) is obtained via two nested continuation arguments.

Standard continuation methods for McKean-Vlasov FBSDEs established in, e.g. [3, 10] do not apply to

the system (1.2), due to the unknown terminal value of the backward process. In order to overcome this

problem we make a linear ansatz R = AQ+H, from which we derive an exogenous BSDE with singular

terminal condition for the process A, and a BSDE with known asymptotic behavior at the terminal time

for the process H. The driver of the latter BSDE depends on the unbounded process A. The nature of

the FBSDE for (Q,H) is different from [14] where a similar ansatz gave a BSDE with known terminal

condition. Analyzing simultaneously the triple (Q,H,R) allows us to prove the fixed-point condition

arising in the application of the continuation method in a suitable space.

Our second main result is a convergence result for the solution (Q,R) to the system (1.2) with respect

to the “input” (f, g). Our convergence is not in the L2 sense as in the standard FBSDE literature

[24, 27] but rather in the Lν (1 < ν < 2) sense. Specifically, we consider the convergence of the solutions

(Qn, Rn) to a penalized version of (1.2) under a uniform L2 boundedness assumption on the sequence

(f
n
, gn). For such inputs a result of Komlós [21] guarantees the Cesaro convergence of (f

n
, gn) along a

subsequence in Lν (1 < ν < 2). We prove the convergence of the solutions in the same sense. To this

end, we define auxiliary processes to decouple the system (1.2) and then show that these processes solve

the system (1.2) in the right spaces. The convergence result then follows from the previously established

uniqueness result.
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1.2 Applications to optimal portfolio liquidation

Models of optimal portfolio liquidation have received substantial attention in the financial mathematics

and stochastic control literature in recent years; see [5, 15, 16, 17, 22, 26] among many others. In such

models, the controlled state sequence typically follows a dynamic of the form

Xt = x−
∫ t

0

ξs ds,

where x ∈ R is the initial portfolio, and ξ is the trading rate. The set of admissible controls is confined

to those processes ξ that satisfy almost surely the liquidation constraint XT = 0. It is typically assumed

that the unaffected price process against which the trading costs are benchmarked follows some Brownian

martingale S and that the trader’s transaction price is given by

S̃t = St −
∫ t

0

κsξs ds− ηtξt.

The integral term accounts for permanent price impact; the term ηtξt accounts for instantaneous impact

that does not affect future transactions. The trader’s objective is then to minimize the cost functional

J(ξ) = E

[∫ T

0

(
κsξsXs + ηs|ξs|2 + λs|xs|2

)
ds

]

over all admissible liquidation strategies. We refer to [5, 17] for an interpretation of the processes η, κ, λ.

1.2.1 Single player model with expectations feedback

Standard portfolio liquidation models assume that a trader’s permanent price impact is driven by his

observable transactions. If the transactions are not directly observable, then it is natural to assume that

the permanent impact is driven by the market’s expectation about the trader’s transactions as in [1, 6],

given the publicly observable information.

In Section 3 we solve a single-player liquidation model with expectations feedback where uncertainty

is generated by the multi-dimensional Brownian motion W = (W,W 0). The Brownian motion W 0

dtransaction escribes a commonly observed random factor that drives market dynamics; the Brownian

motion W is private information to the trader. Specifically, we assume that the trader’s transaction price

is given by

S̃t = St −
∫ t

0

{
κsE[ξs|F0

s ] + g̃s
}
ds− ηtξt, (1.3)

where S is an F
0 martingale, E[ξs|F0

s ] is the market’s expectation about the trader’s strategy, and g̃ is

an F
0-adapted process that will be endogenized in the next subsection. Assuming a standard quadratic

running cost function as in [5, 16, 17], the objective of the trader is then to minimize the functional

J(ξ) = E

[∫ T

0

κtXtE[ξt|F0
t ] + g̃tXt + ηtξ

2
t + λtX

2
t dt

]
, (1.4)

subject to the state dynamics

dXt = −ξt dt

X0 = x, XT = 0.
(1.5)

We allow the cost coefficients to be private information, i.e. to be F adapted. This justifies the conditional

expectation term in the price dynamics. A standard stochastic maximum principle suggests that the

optimal strategy is given by

ξ∗t =
Yt − E[κtXt|F0

t ]

2ηt
, (1.6)
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where X is the portfolio process, Y is the adjoint variable, and (X,Y ) solves (1.2) with f = 0, g = g̃:





dXt = − Yt − E[κtXt|F0
t ]

2ηt
dt,

−dYt =

(
κtE

[
Yt

2ηt

∣∣∣∣F
0
t

]
− κtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ] + 2λtXt + g̃t

)
dt− Zt dWt,

X0 = x, XT = 0.

(1.7)

If the terms E[κtXt|F0
t ] and κtE

[
1

2ηt

∣∣∣F0
t

]
E[κtXt|F0

t ] drop out of the FBSDE system, then the system

reduces to that arising in the MFG analyzed in [14]. In the next subsection we introduce a model

extension where the privately informed trader is the follower in a Stackelberg game of optimal portfolio

liquidation. As a byproduct we obtain an extension of the MFG in [14] to a MFG with a major player.

A related model without liquidation constraint and without any feedback of the major player’s strategy

on the minor players’ transaction price has been considered in [19].

1.2.2 Mean-Field type Stackelberg game with asymmetric information

In Section 4 we solve a Stackelberg game of optimal portfolio liquidation with asymmetrically informed

players. The leader (she) has the first-mover advantage while the follower (he) has an informational

advantage.

We assume again that uncertainty is generated by the multi-dimensional Brownian motion W = (W,W 0)

and thatW 0 describes a commonly observed market factor whileW is private information to the follower.

For a given F
0-adapted strategy ξ0 of the Stackelberg leader, we assume that the follower’s liquidation

problem is the same as in the previous subsection with

g̃ = κ̃0ξ0

for some F0-adapted process κ̃0 that measures the impact of the leader on the follower’s transaction price.

Let ξ∗(·) be the follower’s optimal response function to the leader’s strategy and put µ∗ := E[ξ∗(·)|F0].

Following the standard approach we assume that the leader’s transaction price is

S̃0
t = St −

∫ t

0

κ0
sµ

∗
s ds−

∫ t

0

κ0
sξ

0
s ds− η0t ξ

0
t (1.8)

for F0-adapted coefficients η0, κ0, κ0. The difference is that now the leader controls the transaction price

both directly and indirectly through the dependence of the follower’s optimal response on her trading

strategy. We furthermore assume that the leader’s cost functional is given by

J0(ξ0) = E

[∫ T

0

(
κ0
tµ

∗
tX

0
t + κ0

tX
0
t ξ

0
t + η0t (ξ

0
t )

2 + λ0
t (X

0
t )

2 + λt(µ
∗
t )

2
)
dt

]
, (1.9)

where X0 denotes her portfolio process and λ0, λ are F
0-adapted. Her control problem is then a MFC

problem with state process (X0, X, Y ), where (X,Y ) solves (1.7) with g̃ = κ̃0ξ0 and

dX0
t = −ξ0t dt

X0
0 = x, X0

T = 0.
(1.10)

We establish a new maximum principle for this control problem from which we derive an explicit repre-

sentation of the major player’s optimal control ξ0,∗ as

ξ0,∗t =
pt + E[κ̃0

t qt|F0
t ]− κ0

tX
0,∗
t

2η0t
(1.11)
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in terms of the state equation (1.10) and the adjoint equations:

−dpt =

(
κ0
tE

[
Yt

2ηt

∣∣∣∣F
0
t

]
− κ0

tE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ] + κ0
t ξ

0
t + 2λ0

tX
0
t

)
dt− Zt dW

0
t (1.12)

and




−dqt =

(
− rt
2ηt

− E
[
κtqt|F0

t

] 1

2ηt
+ f t

)
dt,

−drt =

(
−2λtqt + κtE

[
rt
2ηt

∣∣∣∣F
0
t

]
+ κtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtqt|F0

t ] + gt

)
dt− Zt dWt,

q0 = 0, qT = 0,

(1.13)

where

f t =
κ0
tX

0
t

2ηt
+

λt

ηt
E

[
Yt

2ηt

∣∣∣∣F
0
t

]
− λt

ηt
E

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ]

and

gt = −κtE

[
1

2ηt

∣∣∣∣F
0
t

]
κ0
tX

0
t − 2λtκtE

[
1

2ηt

∣∣∣∣F
0
t

](
E

[
Yt

2ηt

∣∣∣∣F
0
t

]
− E

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ]

)
.

Here, p is the adjoint variable to X0 and (q, r) are the adjoint variables to (Y,X). The system (1.13) is

again a special case of (1.2).

In order to establish our maximum principle we first consider a sequence of unconstrained optimization

problems where the liquidation constraints are replaced by increasingly penalized open positions at the

terminal time. The resulting optimal strategies for the Stackelberg leader turn out to be L2 bounded,

hence they have Cesaro convergent subsequence. From this we deduce that the sequence of state-adjoint

equations for the penalized problems Cesaro converges to the system (1.7), (1.10), (1.12) and (1.13).

To the best of our knowledge no numerical methods for simulating the mean-field FBSDEs arising in

our Stackelberg game are yet available. In order to get some quantitative insight into the equilibrium

dynamics we therefore simulate a deterministic benchmark model with constant coefficients. In this case,

our conditional mean-field FBSDEs reduce to deterministic forward-backward ODEs for which numerical

methods exist. Our simulations suggest that the solution to the Stackelberg game is very different from

the solution to single player models. In particular, beneficial round-trips may exist for the follower. This

is not the case in deterministic single player models; in the Stackelberg game the follower may act as a

liquidity provider for the leader. Furthermore, depending on the strength of interaction the presence of

the follower may (or may not) reduce the leader’s trading cost.

The rest of this paper is organized as follows. Our general existence, uniqueness and convergence results

for the FBSDE (1.2) are established in Section 2. The MFC problem and the Stackelberg game of optimal

portfolio liquidation introduced above are solved in Section 3 and Section 4, respectively. Our numerical

simulations are reported in Section 4.3.

Notation and conventions. Throughout, we work on probability space (Ω,P,F), on which there

exist two independent Brownian motions W 0 and W . We denote by F
0 = (F0

t )0≤t≤T and F = (Ft)0≤t≤T

the filtrations generated by W 0 and W , augmented by the P null sets, respectively, where W = (W,W 0).

For a space I and a filtration G we introduce the following spaces:

L0
G([0, T ]× Ω; I) ={X : X : [0, T ]× Ω → I and X is G progressively measurable and I valued}

Lk
G([0, T ]× Ω; I) =

{
X ∈ L0

G([0, T ]× Ω; I) : E

[∫ T

0

|Xt|k dt
]
< ∞

}
, k ≥ 1

L∞
G ([0, T ]× Ω; I) =

{
X ∈ L0

G([0, T ]× Ω; I) : ess sup
(t,ω)∈[0,T ]×Ω

|Xt(ω)| < ∞
}
.
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The spaces Lk
G
are equipped the norm ‖X‖Lk =

(
E

[∫ T

0
|Xt|k dt

])1/k
. The spaces

S2
G([0, T ]× Ω; I) =

{
X ∈ L0

G([0, T ]× Ω; I) : E

[
sup

0≤t≤T
|Xt|2

]
< ∞

}

S2,−
G

([0, T )× Ω; I) =

{
X ∈ L0

G([0, T )× Ω; I) : sup
ǫ>0

E

[
sup

0≤t≤T−ǫ
|Xt|2

]
≤ C

}

are equipped with the respective norms

‖X‖S2 :=

(
E

[
sup

0≤t≤T
|Xt|2

])1/2

; ‖X‖S2,− := sup
ǫ≥0

(
E

[
sup

0≤t≤T−ǫ
|Xt|2

])1/2

,

and for β > 0 we introduce the space

Hβ =

{
X ∈ S

2
F([0, T ]× Ω; I) : E

[
sup

t∈[0,T ]

∣∣∣∣
|Xt|

(T − t)β

∣∣∣∣
2
]
< ∞

}
with ‖X‖β :=

(
E

[
sup

0≤t≤T

∣∣∣∣
Xt

(T − t)β

∣∣∣∣
2
])1/2

.

For φ ∈ L∞
G
([0, T ] × Ω; I), we denote by ‖φ‖ and φ⋆ its upper and lower bounds, respectively. Finally,

we adopt the convention that a positive constant C may vary from line to line.

2 The McKean-Vlasov FBSDE

In this section, we prove a general existence and uniqueness of solutions result (in a suitable space) for

the FBSDE (1.2) along with the convergence result with respect to the processes (f, g). We assume

throughout that the system coefficients satisfy the following assumption.

Assumption 2.1. i) The stochastic processes γ, ζ, ̺ and Λi (i = 1, · · · , 5) belong to L∞
F
.

ii) There exist constants θi > 0 (i = 1, 2) such that

(
Λ1 − ‖γ‖|Λ2|2

2θ1
− ‖Λ3‖|ζ|2

2θ2

)

⋆

> 0

and (
Λ4 − ‖γ‖θ1

2
− ‖Λ3‖θ2

2
− ‖Λ5‖‖̺‖

)

⋆

> 0.

iii) The initial condition χ belongs to L2
F
and (f, g) ∈ S2

F
× L2

F
.

The linear ansatz R = AQ+H on [0, T ) results in the following FBSDE for the triple (Q,H,R):





dQt =
(
−Λ1

tRt − Λ2
tE
[
γtQt| F0

t

]
+ f t

)
dt,

−dHt =
(
−Λ1

tAtHt − Λ2
tAtE[γtQt|F0

t ] +Atf t + Λ3
tE[ζtRt|F0

t ]

+Λ5
tE[̺tQt|F0

t ] + gt
)
dt− Zt dWt,

−dRt =
(
Λ4
tQt + Λ3

tE[ζtRt|F0
s ] + Λ5

tE[̺tQt|F0
t ] + gt

)
dt− Zt dWt,

R = AQ+H, t ∈ [0, T ),

Q0 = χ, QT = 0,

(2.1)

where A satisfies the singular BSDE

−dAt =
(
Λ4
t − Λ1

tA
2
t

)
dt− Zt dWt, lim

tրT
At = ∞. (2.2)
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It has been shown in [5, 17] that the equation (2.2) is well-posed under Assumption 2.1 and that the

following estimate holds:

1

E

[∫ T

t
Λ1
u du

∣∣∣Ft

] ≤ At ≤
1

(T − t)2
E

[∫ T

t

1

Λ1
u

+ (T − u)2Λ4
u du

∣∣∣∣∣Ft

]
. (2.3)

It follows from (2.3) that A is nonnegative and that for all 0 ≤ t1 < t2 ≤ T ,

e−
∫ t2
t1

Λ1

sAs ds ≤ C

(
T − t2
T − t1

)β

≤ C

(
T − t2
T − t1

)τ

, where β := Λ1
⋆/‖Λ1‖ and 0 ≤ τ ≤ β. (2.4)

2.1 Existence and uniqueness of solutions

In view of [14], we expect to find a solution (Q,H,R) to (2.1) such that (Q,R) ∈ Hα × L2
F
for some

α > 0. Unlike in [14] the process H is only defined on [0, T ). The following heuristics suggests that if we

can find a solution such that (Q,R) ∈ Hα ×L2
F
, then H ∈ S2,−

F
. In fact, by the general solution formula

for linear BSDEs, for any 0 ≤ t < T̃ < T ,

Ht = E

[
HT̃ e

−
∫

T̃
t

Λ1

uAu du +

∫ T̃

t

e−
∫

s
t
Λ1

uAu duKs ds

∣∣∣∣∣Ft

]
,

where

Ks =
(
−Λ2

sAsE[γsQs|F0
s ] +Asfs + Λ3

sE[ζsRs|F0
s ] + Λ5

sE[̺sQs|F0
s ] + gs

)
.

If we knew that

lim sup
T̃րT

E[|HT̃ |
2] < ∞, (2.5)

then taking the limit T̃ ր T and using the estimate (2.4),

Ht = E

[∫ T

t

e−
∫

s
t
Λ1

uAu duKs ds

∣∣∣∣∣Ft

]
. (2.6)

From this and using (2.4) again, we obtain a constant C > 0 such that for any ǫ > 0,

E

[
sup

0≤t≤T−ǫ
|Ht|2

]
≤ C

(
‖Q‖α + ‖f‖S2 + ‖R‖L2 + ‖g‖L2

)
.

Since (2.5) holds for H ∈ S2,−
F

our goal is to establish the existence and uniqueness of a solution

(Q,H,R) ∈ Hα × S2,−
F

× L2
F
. To this end, we apply a nested continuation method to the system:





dQt =
(
−Λ1

tRt − Λ2
tE
[
γtQt| F0

t

]
+ f t

)
dt,

−dHt =
(
−Λ1

tAtHt − Λ2
tAtE[γtQt|F0

t ] +Atf t + pΛ3
tE[ζtRt|F0

t ]

+pΛ5
tE[̺tQt|F0

t ] + gt + ft
)
dt− Zt dWt,

−dRt =
(
Λ4
tQt + pΛ3

tE[ζtRt|F0
s ] + pΛ5

tE[̺tQt|F0
t ] + gt + ft

)
dt− Zt dWt,

R = AQ+H, t ∈ [0, T ),

Q0 = χ, QT = 0.

(2.7)

In a first step, we prove the existence of a unique solution to the above system for p = 0. Subsequently,

we show that the solution result extends to p = 1.

Lemma 2.2. If p = 0, then the FBSDE (2.7) has a solution in Hα × S2,−
F

× L2
F
for any f ∈ L2

F
, where

0 < α < β.
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Proof. Notice that the system (2.7) is still coupled for p = 0. To solve it, we apply a continuation method

to the following system:





dQt =
(
−Λ1

tRt − pΛ2
tE
[
γtQt| F0

t

]
+ f t + b′t

)
dt,

−dHt =
(
−Λ1

tAtHt − pΛ2
tAtE[γtQt|F0

t ] +Atf t + gt + ft + f ′
t

)
dt− Zt dWt,

−dRt =
(
Λ4
tQt + gt + ft + f ′

t −Atb
′
t

)
dt− Zt dWt,

R = AQ+H, t ∈ [0, T ),

Q0 = χ, QT = 0.

(2.8)

Step 1. For p = 0, the system (2.8) is solvable in Hα × S2,−
F

× L2
F
for any (b′, f ′) ∈ Hα ×Hα−1.

If p = 0, then the system (2.8) is decoupled and we let H be

Ht = E

[∫ T

t

e−
∫

s
t
Λ1

uAu du
(
Asfs + gs + fs + f ′

s

)
ds

∣∣∣∣∣Ft

]
, 0 ≤ t < T. (2.9)

Moreover, by the estimate (2.4) and Doob’s maximal inequality, we have for any ǫ > 0,

E

[
sup

0≤t≤T−ǫ
|Ht|2

]
≤ C

(
‖f‖S2 + ‖g‖L2 + ‖f‖L2 + ‖f ′‖α−1

)
, (2.10)

where C is independent of ǫ. Thus, H belongs to S2,−
F

and satisfies the SDE in (2.8).

We now turn to the process Q. Taking R = AQ+H into the SDE for Q yields,

Qt = χe−
∫

t
0
Λ1

uAu du +

∫ t

0

e−
∫

t
s
Λ1

uAu du
(
−Λ1

sHs + fs + b′s
)
ds, 0 ≤ t ≤ T. (2.11)

Using monotone convergence and the estimate (2.10) this implies,

E

[
sup

0≤t≤T

∣∣∣∣
Qt

(T − t)α

∣∣∣∣
2
]

≤ C


‖χ‖L2 + E



(∫ T

0

|Hs|
(T − s)α

ds

)2

+ ‖f‖S2 + ‖b′‖α




= C


‖χ‖L2 + lim

ǫց0
E



(∫ T−ǫ

0

|Hs|
(T − s)α

ds

)2

+ ‖f‖S2 + ‖b′‖α




≤ C

(
‖χ‖L2 + lim

ǫց0
E

[
sup

0≤t≤T−ǫ
|Ht|2

]
+ ‖f‖S2 + ‖b′‖α

)

≤ C
(
‖χ‖L2 + ‖f‖S2 + ‖g‖L2 + ‖f‖L2 + ‖f ′‖α−1 + ‖b′‖α

)
.

(2.12)

This shows that Q ∈ Hα. Integration by parts for the product QR on [0, T − ǫ] yields,

HT−ǫQT−ǫ ≤ AT−ǫQ
2
T−ǫ +HT−ǫQT−ǫ = QT−ǫRT−ǫ

≤ −
∫ T−ǫ

0

(
Q2

t +R2
t

)
dt+ CA0χ

2 + |χH0|+ C

∫ T−ǫ

0

|Qt||gt + ft + f ′
t +Atb

′
t| dt

+

∫ T−ǫ

0

QtZt dW t.

8



Taking expectations on both sides we have

E

[∫ T−ǫ

0

(
Q2

t +R2
t

)
dt

]

≤ E[CA0χ
2] + E[|χH0|] + CE

[∫ T−ǫ

0

|Qt||gt + ft + f ′
t +Atb

′
t| dt

]
+ E[|HT−ǫQT−ǫ|]

≤ C
(
E[A0χ

2] + CE[|χH0|] + ‖Q‖α
)

+ C (‖g‖L2 + ‖f‖L2 + ‖f ′‖α−1 + ‖b′‖α) + E[|HT−ǫQT−ǫ|],

Thus, by taking ǫ → 0, from (2.3), (2.10) and (2.12) we get R ∈ L2
F
.

Step 2. If (2.8) admits a solution for some p ∈ [0, 1] and for any (b′, f ′) ∈ Hα ×Hα−1, then the same

holds for p+ d for some constant d that does not depend on p.

For fixed Q ∈ Hα, since

−dΛ2
E
[
γQ| F0

]
+ b′ ∈ Hα, −dΛ2AE[γQ|F0] + f ′ ∈ Hα−1,

there exists a solution (Q̃, H̃, R̃) ∈ Hα × S2,−
F

× L2
F
to the following system:





dQ̃t =
(
−Λ1

t R̃t − pΛ2
tE

[
γtQ̃t

∣∣∣F0
t

]
− dΛ2

tE
[
γtQt| F0

t

]
+ f t + b′t

)
dt,

−dH̃t =
(
−Λ1

tAtH̃t − pΛ2
tAtE[γtQ̃t|F0

t ]− dΛ2
tAtE[γtQt|F0

t ]

+Atf t + gt + ft + f ′
t

)
dt− Zt dWt,

−dR̃t =
(
Λ4
t Q̃t + gt + ft + f ′

t −Atb
′
t

)
dt− Zt dWt,

R̃ = AQ̃+ H̃, t ∈ [0, T ),

Q̃0 = χ, Q̃T = 0.

(2.13)

It remains to prove that the mapping Φ : Hα → Hα, Q 7→ Q̃ is a contraction when d is small enough and

independent of p. For any Q, Q′ ∈ Hα, let (Q̃, H̃, R̃) and (Q̃′, H̃ ′, R̃′) be the corresponding solutions.

Integration by parts for (Q̃− Q̃′)(R̃− R̃′) on [0, T − ǫ] implies,

E

[∫ T−ǫ

0

(
Λ4
s −

‖γ‖θ1
2

)
(Q̃s − Q̃′

s)
2 dts

]
+ E

[∫ T−ǫ

0

(
Λ1
s −

‖γ‖(Λ2
s)

2

2θ1

)
(R̃s − R̃′

s)
2 dt

]

≤ CE

[
|Q̃T−ǫH̃T−ǫ|

]
+ εE

[∫ T−ǫ

0

(
R̃s − R̃′

s

)2
ds

]
+ CdE

[∫ T−ǫ

0

(Qt −Q′
t)

2 dt

]
.

Letting ǫ → 0 and choosing ε small enough, Assumption 2.1 yields,

E

[∫ T

0

(Q̃s − Q̃′
s)

2 dts

]
+ E

[∫ T

0

(R̃s − R̃′
s)

2 ds

]
≤ CdE

[∫ T

0

(Qt −Q′
t)

2 dt

]
. (2.14)

Considering the SDE for Q̃ in terms of R̃, by (2.14) we have

E

[
sup

0≤t≤T
|Q̃t − Q̃′

t|2
]
≤ CdE

[∫ T

0

(Qt −Q′
t)

2 dt

]
. (2.15)

Since H̃ ∈ S2,−
F

, we have the following expression:

H̃t = E

[∫ T

t

e−
∫

s
t
Λ1

uAu du
(
−pΛ2

tAtE[γtQ̃t|F0
t ]− dΛ2

tAtE[γtQt|F0
t ]

+Atf t + gt + ft + f ′
t

)
dt
)∣∣Ft

]
.

(2.16)
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From (2.16), Doob’s maximal inequality and (2.15) yield that for any ǫ > 0

E

[
sup

0≤t≤T−ǫ
|H̃t − H̃ ′

t|2
]

≤ CE



 sup

0≤t≤T

∣∣∣∣∣E
[∫ T

t

(T − s)β−1

(T − t)β
E[ |Q̃s − Q̃′

s||F0
s ] ds

∣∣∣Ft

]∣∣∣∣∣

2




+ CdE



 sup

0≤t≤T

∣∣∣∣∣E
[∫ T

t

(T − s)β−1

(T − t)β
E[ |Qs −Q′

s||F0
s ] ds

∣∣Ft

]∣∣∣∣∣

2




≤ CE

{
sup

0≤t≤T

∣∣∣∣E
[

sup
0≤s≤T

E[ |Q̃s − Q̃′
s||F0

s ]
∣∣∣Ft

]∣∣∣∣
2
}

+ CE

{
sup

0≤t≤T

∣∣∣∣E
[

sup
0≤s≤T

E[ |Qs −Q′
s||F0

s ]
∣∣Ft

]∣∣∣∣
2
}

≤ CdE

[∫ T

0

(Qt −Q′
t)

2 dt

]
+ CdE

[
sup

0≤t≤T
|Qt −Q′

t|
2
]
,

(2.17)

where C is independent of ǫ. Finally, considering the SDE for Q̃ in terms of H̃, by (2.15), (2.17) and the

same argument as (2.12), we have

‖Q̃− Q̃′‖α ≤ Cd‖Q−Q′‖α.

Thus, when d is small enough, Φ is a contraction. Iterating the argument finitely often and letting

f ′ = b′ = 0 yields the desired result.

Theorem 2.3. The FBSDE system (2.1) admits a unique solution (Q,H,R) ∈ Hα × S2,−
F

× L2
F
, where

0 < α < β; the constant β was defined in (2.4).

Proof. We first prove the existence of a solution. In a second step we prove the uniqueness of solutions.

Step 1. Existence of a solution. By Lemma 2.2, the FBSDE system (2.7) admits a solution (Q,H,R) ∈
Hα × S2,−

F
× L2

F
when p = 0, for any f ∈ L2

F
. Hence it remains to prove that if for some p ∈ [0, 1] the

system (2.7) admits a solution for any f ∈ L2
F
, then the same result holds true for p+ d for some small

enough constant d that is independent of p. The proof is similar to proof of Lemma 2.2.

For any fixed (Q,R, f) ∈ Hα × L2
F
× L2

F
, we introduce the following system:





dQ̃t =
(
−Λ1

t R̃t − Λ2
tE

[
γtQ̃t

∣∣∣F0
t

]
+ f t

)
dt,

−dH̃t =
(
−Λ1

tAtH̃t − Λ2
tAtE[γtQ̃t|F0

t ] +Atf t + pΛ3
tE[ζtR̃t|F0

t ] + pΛ5
tE[̺tQ̃t|F0

t ] + gt

)
dt,

+
(
ft + dΛ3

tE[ζtRt|F0
t ] + dΛ5

tE[̺tQt|F0
t ]
)
dt− Zt dWt,

−dR̃t =
(
Λ4
t Q̃t + pΛ3

tE[ζtR̃t|F0
s ] + dΛ3

tE[ζtRt|F0
s ] + pΛ5

tE[̺tQ̃t|F0
t ] + dΛ5

tE[̺tQt|F0
t ]

+gt + ft) dt− Zt dWt,

R̃ = AQ̃+ H̃, t ∈ [0, T ),

Q̃0 = χ, Q̃T = 0.

(2.18)

Since f + dΛ3
E[ζR|F0] + dΛ5

E[̺Q|F0] ∈ L2
F
, there exists a solution (Q̃, H̃, R̃) ∈ Hα × S2,−

F
× L2

F
by

assumption. This defines a mapping

Φ : (Q,R) ∈ Hα × L2
F → (Q̃, R̃) ∈ Hα × L2

F. (2.19)
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It is sufficient to prove the existence of a fixed point of Φ. To this end, for any Q, Q′ ∈ Hα, R, R′ ∈ L2
F
,

by integration by part and using the same arguments leading to the estimate (2.14),

E

[∫ T

0

(R̃t − R̃′
t)

2 dt

]
+ E

[∫ T

0

(Q̃t − Q̃′
t)

2 dt

]

≤dCE

[∫ T

0

(Qt −Q′
t)

2 dt

]
+ dCE

[∫ T

0

(Rt −R′
t)

2 dt

]
.

(2.20)

The preceding estimate allows us to estimate Q̃ in terms of R̃ as follows

E

[
sup

0≤t≤T
|Q̃t − Q̃′

t|2
]

≤ CE

[∫ T

0

|R̃s − R̃′
s|2 ds

]
+ C

∫ T

0

E

[
|Q̃′

s − Q̃s|2
]
ds

≤ dCE

[∫ T

0

(Qt −Q′
t)

2 dt

]
+ dCE

[∫ T

0

(Rt −R′
t)

2 dt

]
.

(2.21)

By (2.21), a similar argument as in (2.17) yields the existence of a uniform C such that for any ǫ > 0,

E

[
sup

0≤t≤T−ǫ

∣∣∣H̃t − H̃ ′
t

∣∣∣
2
]
≤ CE

[
sup

0≤s≤T
|Q̃s − Q̃′

s|2
]
+ CE

[∫ T

0

|R̃t − R̃′
t|2 dt

]

+ CdE

[
sup

0≤s≤T
|Qs −Q′

s|2
]
+ CdE

[∫ T

0

|Rt −R′
t|2 dt

]
.

(2.22)

Now we return to the expression of Q̃ in terms of H̃, from which we have by (2.21), (2.22) and the same

argument as in (2.12) that,

E


 sup
0≤t≤T

∣∣∣∣∣
Q̃t − Q̃′

t

(T − t)α

∣∣∣∣∣

2

 ≤ Cd‖Q−Q′‖2α + CdE

[∫ T

0

|Rt −R′
t|2 dt

]
. (2.23)

By the estimates (2.20) and (2.23), when d is small enough we have a fixed point which is a solution to

(2.7) when p is replaced by p+ d. Iterating the argument finitely often and then taking f = 0 yields the

existence of a solution.

Step 2. Uniqueness of solutions. Let us assume to the contrary that there exist two solutions (Q,H,R) ∈
Hα × S2,−

F
× L2

F
and (Q′, H ′, R′) ∈ Hα × S2,−

F
× L2

F
to (2.1). As in the proof of Step 1. integration by

part for (Q−Q′)(R−R′) yields,

E

[∫ T

0

(Rt −R′
t)

2 + (Qt −Q′
t)

2 dt

]
= 0. (2.24)

Secondly, by the expression of (Q−Q′) in terms of R−R′, (2.24) yields that

E

[
sup

0≤t≤T
|Qt −Q′

t|2
]
= 0. (2.25)

Thirdly, the expression for (H −H ′), (2.24) and (2.25) yield that for any ǫ > 0

E

[
sup

0≤t≤T−ǫ
|Ht −H ′

t|2
]
= 0. (2.26)

Finally, by the expression for (Q−Q′) in terms of (H −H ′), (2.24), (2.25), (2.26) and arbitrariness of ǫ

yield that

E

[
sup

0≤t≤T

∣∣∣∣
Qt −Q′

t

(T − t)α

∣∣∣∣
2
]
= 0. (2.27)
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Remark 2.4. From the proof of Lemma 2.2 and Theorem 2.3 (see e.g. (2.9) and (2.11)), we see that for

f ≡ 0, the regularity of the solution can be increased to (Q,H) ∈ Hβ ×Hς , where ς < 1
2 ∧ β. This is the

case in [14].

The following corollary is important for the analysis of our leader-follower game of optimal portfolio

liquidation analyzed below. It implies that the follower’s optimal response function is linear convex and

hence that the leader’s control problem is convex.

Corollary 2.5. The mapping (f, g) ∈ S2
F
× L2

F
→ (Q,H,R)(f, g) ∈ Hα × S2,−

F
× L2

F
is well defined and

convex.

Proof. By Theorem 2.3, for each (f, g) ∈ S2
F
× L2

F
, there exists a unique solution (Q,H,R). Thus, the

mapping is well defined. Moreover, by the uniqueness again, we have for ρ ∈ [0, 1]

(Q,H,R)(ρ(f, g) + (1− ρ)(f
′
, g′)) = ρ(Q,H,R)(f, g) + (1− ρ)(Q,H,R)(f

′
, g′).

Using the same arguments as in the proof of Theorem 2.3 we can also get existence of a unique solution

to the “penalized version” of (2.1) where the terminal state constraint on the forward process is replaced

by the terminal condition of the backward process RT = 2nQT . To this end, we introduce the BSDE,

−dAn
t =

(
Λ4
t − Λ1

t (A
n
t )

2
)
dt− Zt dWt, An

T = 2n.

Existence and uniqueness of a solution to this equation has been established in [5]. Moreover, for each

t ∈ [0, T ),

lim
n→∞

An
t = At, a.s.. (2.28)

When the terminal state constraint is replaced by the penalty term introduced above, the system (2.1)

translates into the following system:





dQn
t =

(
−Λ1

tR
n
t − Λ2

tE
[
γtQ

n
t | F0

t

]
+ f

n

t

)
dt,

−dHn
t =

(
−Λ1

tA
n
t − Λ2

tA
n
t E[γtQ

n
t |F0

t ] +An
t f

n

t + Λ3
tE[ζtR

n
t |F0

t ]

+Λ5
tE[̺tQ

n
t |F0

t ] + gnt
)
dt− Zt dWt,

−dRn
t =

(
Λ4
tQ

n
t + Λ3

tE[ζtR
n
t |F0

s ] + Λ5
tE[̺tQ

n
t |F0

t ] + gnt
)
dt− Zt dWt,

Qn
0 = χ, Hn

T = 0, Rn
T = 2nQn

T ,

(2.29)

Corollary 2.6. Assume that for each fixed n ∈ N, (f
n
, gn) ∈ S2

F
×L2

F
. Then, for each n ∈ N the FBSDE

(2.29) admits a unique solution (Qn, Hn, Rn) ∈ Hα,n × S2
F
× L2

F
, where

Hα,n =

{
X : E

[
sup

0≤t≤T

∣∣∣∣
Xt

(T − t+ 1
n )

α

∣∣∣∣
2
]
< ∞

}
.

Remark 2.7. Note that in (2.29), the terminal condition for Hn is 0 so Hn is defined on [0, T ]. In (2.1)

the process H is only defined on [0, T ), due to to the singularity of the process A at the terminal time.

2.2 Convergence

We now prove an approximation result for the system (2.1) in terms of the systems (2.29) as n → ∞.

The convergence result is established under the additional assumption that for any 0 ≤ t1 < t2 ≤ T ,

e−
∫ t2
t1

Λ1

uAu du ≤ C
T − t2
T − t1

and e−
∫ t2
t1

Λ1

uA
n
u du ≤ C

T − t2 +
1
n

T − t1 +
1
n

. (2.30)
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We refer to [14] for sufficient conditions on the model parameters under which this assumption is satisfied.

The proof of the following lemma can be found in [14, Lemma 4.4].

Lemma 2.8. Let f
n ∈ S2

F
and gn ∈ L2

F
be two sequences of progressively measurable stochastic processes

and (Qn, Hn, Rn) be the solution to the system (2.29). If the sequences f
n
and gn are bounded in S2

F

and L2
F
uniformly in n, respectively, then

sup
n

‖Qn‖α,n + sup
n

‖Hn‖S2,− + sup
n

‖Rn‖L2 ≤ C

(
sup
n

‖fn‖S2 + sup
n

‖gn‖L2

)
< ∞.

Lemma 2.9. Let f
n
and gn be two sequences of stochastic processes satisfying the conditions in Lemma

2.8. Then there exists f ∈ L2
F
, g ∈ L2

F
and a convex combination of a subsequence of (f

n
, gn) converging

to (f, g) in Lν with 1 < ν < 2, i.e.,

lim
N→∞

E

[∫ T

0

∣∣∣∣∣
1

N

N∑

k=1

(f
nk

t , gnk

t )− (f t, gt)

∣∣∣∣∣

ν

dt

]
= 0. (2.31)

Proof. Since the sequence (f
n
, gn) is L2 uniformly bounded, the proof of [7, Theorem 2.1] tells us there

exists a subsequence of (f
n
, gn) and a progressively measurable stochastic processes (f, g) such that

lim
N→∞

1

N

N∑

k=1

(f
nk
, gnk)− (f, g) = 0, a.e. a.s. on [0, T ]× Ω.

Fatou’s lemma implies that

E

[∫ T

0

|(f t, gt)|2 dt
]
≤ lim inf

N→∞

1

N

N∑

k=1

E

[∫ T

0

|(fnk

t , gnk

t )|2 dt
]
< ∞.

Thus, Vitali’s convergence result implies (2.31).

The following theorem proves a convergence result for the FBSDE systems associated with the uncon-

strained penalized control problems to the system associated with the constrained one. The result is key

to our maximum principle for the leader-follower game introduced above.

Theorem 2.10. Let (f
n
, gn) be a sequence satisfying the conditions in Lemma 2.9 and (f, g) ∈ L2

F
×

L2
F

be the limit. Let (Qn, Hn, Rn) and (Q,H,R) be the solution to (2.29) and (2.1), respectively.

We further assume the limit f ∈ S2
F
. Then there exists a convex combination of a subsequence of(

1
N

∑N
k=1 Q

nk , 1
N

∑N
k=1 H

nk , 1
N

∑N
k=1 R

nk

)
converging to (Q,H,R) in Sν

F
× L1

F
× Lν

F
, i.e.,

lim
N ′→∞

E


 sup
0≤t≤T

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Qnk

t −Qt

∣∣∣∣∣∣

ν
 = 0,

lim
N ′→∞

E



∫ T

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Hnk

t −Ht

∣∣∣∣∣∣
dt


 = 0,

lim
N ′→∞

E



∫ T

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Rnk

t −Rt

∣∣∣∣∣∣

ν

dt


 = 0.

Proof. The uniform boundedness of f
n
and gn implies the uniform boundedness of Rn in L2 (Lemma 2.8)

and the uniform boundedness of 1
N

∑N
k=1 R

nk in L2. Thus, [7] again yields the existence of a progressively

13



measurable process R ∈ L2
F
and a subsequence of 1

N

∑N
k=1 R

nk such that

lim
N ′→∞

E



∫ T

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Rnk

t −Rt

∣∣∣∣∣∣

ν

dt


 = 0. (2.32)

By (2.31), the convergence of the same convex combination holds for (f
n
, gn):

lim
N ′→∞

E



∫ T

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

(f
nk

t , gnk

t )− (f t, gt)

∣∣∣∣∣∣

ν

dt


 = 0. (2.33)

Define Q as the unique solution in S2
F
to the following mean field SDE in terms of the limits f and R:

Qt = χ+

∫ t

0

(
−Λ1

sRs − Λ2
sE[γsQs|F0

s ] + fs

)
ds. (2.34)

Standard SDE estimates, (2.32) and (2.33) yield,

lim
N ′→∞

E


 sup
0≤t≤T

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Qnk

t −Qt

∣∣∣∣∣∣

ν
 = 0. (2.35)

Now define H in terms of the limits f , R and Q as

Ht =E

[∫ T

t

e−
∫

s
t
Λ1

uAu du
(
−Λ2

sAsE[γsQs|F0
s ] +Asfs + Λ3

sE[ζsRs|F0
s ]

+Λ5
sE[̺sQs|F0

s ] + gs
)
ds
∣∣Ft

]
.

(2.36)

Thus, by (2.3), (2.30) and Hölder inequality,

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Hnk

t −Ht

∣∣∣∣∣∣

≤ C

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1


E



(∫ T

t

∣∣∣e−
∫

s
t
Λ1

uA
nk
u duAnk

s − e−
∫

s
t
Λ1

uAu duAs

∣∣∣ ds
)2
∣∣∣∣∣∣
Ft






1

2

×
(
E

[
sup

0≤s≤T
|E[Qnk

s |F0
s ]|2 + sup

0≤s≤T
(f

nk

s )2
∣∣∣∣Ft

]) 1

2

+
C

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

(
E

[∫ T

t

∣∣∣e−
∫

s
t
Λ1

uA
nk
u du − e−

∫
s
t
Λ1

uAu du
∣∣∣
2

ds

∣∣∣∣∣Ft

]) 1

2

(
E

[∫ T

t

|gnk
s |2 ds

∣∣∣∣∣Ft

]) 1

2

+
C

(T − t)
1

ν


E



∫ T

0

E



∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Qnk
s −Qs

∣∣∣∣∣∣

ν∣∣∣∣∣∣
F0

s


+

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

fnk
s − fs

∣∣∣∣∣∣

ν

ds

∣∣∣∣∣∣
Ft






1

ν

+
C

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

(
E

[∫ T

t

∣∣∣e−
∫

s
t
Λ1

uA
nk
u − e−

∫
s
t
Λ1

uAu

∣∣∣
2

ds

∣∣∣∣∣Ft

]) 1

2

(
E

[∫ T

t

E[(Rnk
s )2 + (Qnk

s )2|F0
s ] ds

∣∣∣∣∣Ft

]) 1

2

+ CE



∫ T

0

E



∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Rnk
s −Rs

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Qnk
s −Qs

∣∣∣∣∣∣

∣∣∣∣∣∣
F0

s


 ds

∣∣∣∣∣∣
Ft




+ E



∫ T

t

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

gnk
s − gs

∣∣∣∣∣∣
ds

∣∣∣∣∣∣
Ft


 .
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Applying Hölder’s inequality again along with Doob’s maximal inequality, the uniform boundedness of

(Qn, Rn, f
n
, gn) and the dominated convergence theorem we get,

lim
N ′→∞

E



∫ T

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Hnk

t −Ht

∣∣∣∣∣∣
dt


 = 0. (2.37)

Let R̂ = AQ+H. For any T̃ < T , by (2.35) and (2.37) we have

lim
N ′→∞

E



∫ T̃

0

∣∣∣∣∣∣
1

N ′

N ′∑

j=1

1

Nj

Nj∑

k=1

Rnk

t − R̂t

∣∣∣∣∣∣
dt


 = 0.

Thus, (2.32) implies that for any T̃ < T ,

E

[∫ T̃

0

|R̂t −Rt| dt
]
= 0.

This proves that

R̂ = R, a.e. a.s. on [0, T ]× Ω.

Thus, the limit (Q,H, R̂) satisfies the system (2.1). Moreover,

(Q,H, R̂) ∈ Hα × S2,−
F

× L2
F.

Indeed, since R ∈ L2
F
and R = R̃ a.e. a.s. on [0, T ]× Ω, we have that R̂ ∈ L2

F
. Moreover, (2.34) implies

that Q ∈ S2
F
, from which (2.36) implies H ∈ S2,−

F
and taking R̂ = AQ +H into (2.34) yields Q ∈ Hα.

Hence, the uniqueness of solutions in Hα × S2,−
F

× L2
F
yields the desired convergence result.

3 A MFC problem of optimal portfolio liquidation

In this section, we solve the single-player portfolio liquidation model with expectations feedback intro-

duced in Section 1.2.1. We make the following assumption which implies Assumption 2.1.

Assumption 3.1. The process g̃ belongs to L2
F
. The progressively measurable stochastic processes η, κ

and λ are nonnegative and essentially bounded. Moreover, there exists some θ′ > 0 such that

η⋆ −
‖κ‖
2θ′

> 0, λ⋆ − ‖κ‖θ′ > 0.

The trader’s objective is to minimize the cost function J(·) introduced in (1.4) over the set of admissible

controls

AF(x) :=

{
ξ ∈ L2

F([0, T ]× Ω;R) :

∫ T

0

ξs ds = x

}
.

A standard stochastic maximum principle suggests the candidate optimal strategy is given by

ξ∗t =
Yt − E[κtXt|F0

t ]

2ηt
(3.1)

where (X,Y ) ∈ Hα × L2
F
is the unique solution to the FBSDE system (1.7). Standard arguments show

that ξ∗ ∈ AF(x). To prove that ξ∗ is indeed the unique optimal control, we establish an auxiliary result

that substitutes for the lack of convexity of the Hamiltonian for our MFC problem.
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Lemma 3.2. For every t ∈ [0, T ), we have

E
[
κtXtE[ξt|F0

t ] + ηtξ
2
t + λtX

2
t

]
− E

[
κtX

∗
t E[ξ

∗
t |F0

t ] + ηt(ξ
∗
t )

2 + λt(X
∗
t )

2
]

≥ E
[(
E[κtX

∗
t |F0

t ] + 2ηtξ
∗
t

)
(ξt − ξ∗t ) + 2λtX

∗
t (Xt −X∗

t ) + κt(Xt −X∗
t )E[ξ

∗
t |F0

t ]
]
.

(3.2)

Moreover, the above inequality becomes an equality if and only if ξt = ξ∗t a.s..

Proof. To prove (3.2), it is equivalent to show

E
[
ηt(ξt − ξ∗t )

2 + λt(Xt −X∗
t )

2 + E[(ξt − ξ∗t )|F0
t ]E[κt(Xt −X∗

t )|F0
t ]
]
≥ 0.

Note that

|E
[
E[(ξt − ξ∗t )|F0

t ]E[κt(Xt −X∗
t )|F0

t ]
]
|

≤ ‖κ‖E
[
E[|ξt − ξ∗t ||F0

t ]E[|Xt −X∗
t ||F0

t ]
]

≤ ‖κ‖
2θ

E

[(
E[|ξt − ξ∗t ||F0

t ]
)2]

+
‖κ‖θ
2

E

[(
E[|Xt −X∗

t ||F0
t ]
)2]

.

Thus,

E
[
ηt(ξt − ξ∗t )

2 + λt(Xt −X∗
t )

2 + E[(ξt − ξ∗t )|F0
t ]E[κt(Xt −X∗

t )|F0
t ]
]

≥ E

[(
η⋆ −

‖κ‖
2θ

)
(ξt − ξ∗t )

2 +

(
λ⋆ −

‖κ‖θ
2

)
(Xt −X∗

t )
2 − ‖κ‖E[|ξt − ξ∗t ||F0

t ]E[|Xt −X∗
t ||F0

t ]

]

+
‖κ‖
2θ

E
[
(ξt − ξ∗t )

2
]
+

‖κ‖θ
2

E
[
(Xt −X∗

t )
2
]

≥ E

[(
η⋆ −

‖κ‖
2θ

)
(ξt − ξ∗t )

2 +

(
λ⋆ −

‖κ‖θ
2

)
(Xt −X∗

t )
2 − ‖κ‖E[|ξt − ξ∗t ||F0

t ]E[|Xt −X∗
t ||F0

t ]

]

+
‖κ‖
2θ

E
[
(E[|ξt − ξ∗t ||F0

t ])
2
]
+

‖κ‖θ
2

E
[
(E[|Xt −X∗

t ||F0
t ])

2
]

≥ E

[(
η⋆ −

‖κ‖
2θ

)
(ξt − ξ∗t )

2 +

(
λ⋆ −

‖κ‖θ
2

)
(Xt −X∗

t )
2

]

≥ 0.

The second claim is obvious from the above estimate.

We are now ready to state and prove the main result of this section.

Theorem 3.3. Under Assumption 3.1 the process ξ∗ defined in (3.1) is the unique optimal control to

the MFC problem (1.4)-(1.5).

Proof. To prove the optimality of the candidate strategy ξ∗ we fix an arbitrary control ξ ∈ AF(x) and

denote by X∗ and X the corresponding state processes. For any ǫ > 0, it follows from Lemma 3.2 that

E

[∫ T−ǫ

0

κtXtE[ξt|F0
t ] + g̃tXt + ηtξ

2
t + λtX

2
t dt

]

− E

[∫ T−ǫ

0

κtX
∗
t E[ξ

∗
t |F0

t ] + g̃tX
∗
t + ηt(ξ

∗
t )

2 + λt(X
∗
t )

2 dt

]

≥ E

[∫ T−ǫ

0

(
E[κtX

∗
t |F0

t ] + 2ηtξ
∗
t

)
(ξt − ξ∗t ) + (2λtX

∗
t + κtE[ξ

∗
t |F0

t ] + g̃t)(Xt −X∗
t ) dt

]
.

(3.3)

16



Integration by part yields,

E
[
YT−ǫ(XT−ǫ −X∗

T−ǫ)
]

=− E

[∫ T−ǫ

0

Yt(ξt − ξ∗t ) dt

]
− E

[∫ T−ǫ

0

(Xt −X∗
t )

(
κtE

[
Y ∗
t

2ηt

∣∣∣∣F
0
t

]

−κtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtX

∗
t |F0

t ] + 2λtX
∗
t + g̃t

)
dt

]

= − E

[∫ T−ǫ

0

Yt(ξt − ξ∗t ) dt

]
− E

[∫ T−ǫ

0

(Xt −X∗
t )
(
κtE

[
ξ∗t |F0

t

]
+ 2λtX

∗
t + g̃t

)
dt

]
.

(3.4)

Putting (3.4) into (3.3), we have

E

[∫ T−ǫ

0

κtXtE[ξt|F0
t ] + g̃tXt + ηtξ

2
t + λtX

2
t dt

]

− E

[∫ T−ǫ

0

κtX
∗
t E[ξ

∗
t |F0

t ] + g̃tX
∗
t + ηt(ξ

∗
t )

2 + λt(X
∗
t )

2 dt

]

+ E
[
YT−ǫ(XT−ǫ −X∗

T−ǫ)
]

≥ E

[∫ T−ǫ

0

(
E[κtX

∗
t |F0

t ] + 2ηtξ
∗
t − Yt

)
(ξt − ξ∗t ) dt

]
= 0.

(3.5)

Letting ǫ → 0, a similar argument as the proof of [14, Theorem 2.9] yields that

lim
ǫ→0

E[YT−ǫ(XT−ǫ −X∗
T−ǫ)] = 0.

Thus, (3.5) implies

J(ξ) ≥ J(ξ∗).

In order to prove the uniqueness of optimal controls, let ξ′ be another optimal control. Then, (3.5) yields

0 = E

[∫ T

0

κtXtE[ξ
′
t|F0

t ] + g̃tX
′
t + ηt(ξ

′
t)

2 + λt(X
′
t)

2 dt

]

− E

[∫ T

0

κtX
∗
t E[ξ

∗
t |F0

t ] + g̃tX
∗
t + ηt(ξ

∗
t )

2 + λt(X
∗
t )

2 dt

]

≥ E

[∫ T

0

(
E[κtX

∗
t |F0

t ] + 2ηtξ
∗
t − Yt

)
(ξ′t − ξ∗t ) dt

]
= 0.

Thus, (3.3) holds with an equality. The second claim in Lemma 3.2 implies the uniqueness.

4 A Stackelberg game of optimal portfolio liquidation

In this section, we solve the Stackelberg game of optimal portfolio liquidation introduced in Section 1.2.2

above. We make the following assumption which implies Assumption 2.1 and Assumption (2.30).

Assumption 4.1. (1) The processes κ̃0, κ, η, 1/η and λ belong to L∞
F
([0, T ]× Ω; [0,∞)).

(2) The processes κ0, κ0, η0, 1/η0 and λ0 belong to L∞
F0([0, T ]× Ω; [0,∞)).
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(3) For some positive constants θ′, θ and θ,

η⋆ −
‖κ‖
2θ′

> 0, λ⋆ − ‖κ‖θ′ > 0.

and

η0⋆ −
‖κ0‖
2θ

> 0, λ0
⋆ −

‖κ0‖θ
2

− ‖κ0‖θ
2

> 0, λ⋆ −
‖κ0‖
2θ

> 0.

(4) For any 0 ≤ s < t ≤ T ,

e−
∫

t
s

Au
2ηu

du ≤ C

(
T − t

T − s

)

and

e−
∫

t
s

An
u

2ηu
du ≤ C

(
T − t+ 1

n

T − s+ 1
n

)
.

The problem of the Stackelberg leader is to minimize the cost functional (1.9) over the set of admissible

controls

AF0(x0) :=

{
ξ0 ∈ L2

F0([0, T ]× Ω;R) :

∫ T

0

ξ0s ds = x0

}
.

The follower’s optimal response function is given by

ξt := ξt(ξ
0) :=

Yt(ξ
0)− E[κtXt(ξ

0)|F0
t ]

2ηt
, (4.1)

where (X,Y ) is the solution to (1.7) with g̃ = κ̃0ξ0. We will occasionally drop the dependence on ξ0 if

there is no confusion. Under Assumption 4.1 the solution (X,Y ) enjoys better regularity properties, due

to Remark 2.4 and the estimate (2.3).

Corollary 4.2. Under Assumption 4.1, the solution to (1.7) belongs to H1×S2
F
. Moreover, Y = AX+B

with B ∈ Hς .

In the next section we first prove that the leader’s problem has a unique solution if the terminal state

constraints are replaced by finite penalty terms and establish a necessary maximum principle for the

penalized problem. Subsequently we prove the convergence of the state and adjoint equations of the

penalized problems as the degree of penalization tends to infinity.

4.1 The penalized problem: existence and maximum principle

The penalized optimization problem is obtained by replacing the terminal state constraint on the leader’s

and follower’s state process by a finite penalty term. The leader’s problem consists in minimizing the

cost functional

J0,n(ξ0) := E

[∫ T

0

κ0
sE[ξ

n

s |F0
s ]X

0
s + κ0

sξ
0
sX

0
s + η0s(ξ

0
s )

2 + λ0
s(X

0
s )

2 + λs(E[ξ
n

s |F0
s ])

2 ds+ n(X0
T )

2

]
(4.2)

over all controls ξ0 ∈ L2
F0 subject to the state dynamics





dX0
t = − ξ0t dt,

dXt = − Yt − E[κtXt|F0
t ]

2ηt
dt,

−dYt =

(
κtE

[
Yt

2ηt

∣∣∣∣F
0
t

]
− κtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|Ft] + 2λtXt + κ̃0

t ξ
0
t

)
dt− Zt dWt,

X0 = x, X0
0 = x0, YT = 2nXT ,

(4.3)
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where the optimal response for the penalized follower ξ
n
is defined as follows in terms of (X,Y ) in (4.3)

ξ
n
:=

Y − E[κX|F0]

2η
.

We are now going to show that the penalized optimization problem has a unique solution. Similar

arguments could be used to prove the existence of an optimal control for the original problem. They

would not, however, give us an open-loop characterization of the optimal control.

Theorem 4.3. For each n ∈ N, the penalized optimization problem (4.2)-(4.3) admits a unique optimal

control in L2
F0 .

Proof. In view of Corollary 2.6 the systems (4.3) is well-posed for each fixed ξ0 ∈ L2
F0 . The representation

of the cost functional

J0,n(ξ0)

= E



∫ T

0

κ0
t

2



√
θX0

t +
E

[
ξ
n

t

∣∣∣F0
t

]

√
θ




2

+
κ0
t

2

(√
θX0

t +
ξ0t√
θ

)2

+

(
λ0
t −

κ0
t θ

2
− κ0

t θ

2

)
(X0

t )
2

+

(
η0t −

κ0
t

2θ

)
(ξ0t )

2 +

(
λt −

κ0
t

2θ

)(
E

[
ξ
n

t

∣∣∣F0
t

])2
dt+ n(X0

T )
2

]

along with Corollary 2.5 and Assumption 4.1 shows that J0,n is strictly convex. Uniqueness of the

optimal strategy follows.

Let J∗ = infξ0∈L2

F0

J0,n(ξ0). Then J∗ < ∞ because J0,n(x0/T ) is bounded. Let {ξ0,n,m} ⊆ L2
F0 be a

sequence such that

lim
m→∞

J0,n(ξ0,n,m) = J∗.

By Assumption 4.1 this implies,

sup
m

E

[∫ T

0

(ξ0,n,ms )2 ds

]
< C. (4.4)

Thus, Lemma 2.9 implies the existence of some ξ0,n,∗ ∈ L2
F0 such that

lim
N→∞

E

[∫ T

0

∣∣∣ξ0,n,Nt − ξ0,n,∗t

∣∣∣
ν

dt

]
= 0, 1 < ν < 2, (4.5)

where

ξ
0,n,N

=
1

N

N∑

k=1

ξ0,n,mk .

Let (X0,n,∗, Xn,∗, Y n,∗) be the solution to (4.3) associated with ξ0,n,∗. Then the same argument as in

the proof of Theorem 2.10 implies,

lim
N→∞

E



∫ T

0

∣∣∣∣∣∣
1

N

N∑

j=1

1

Nj

Nj∑

k=1

(Xn,mk

t , Y n,mk

t )− (Xn,∗
t , Y n,∗

t )

∣∣∣∣∣∣

ν

dt


 = 0, 1 < ν < 2.

Moreover, (4.5) yields,

lim
N→∞

E


 sup
0≤t≤T

∣∣∣∣∣∣
1

N

N∑

j=1

1

Nj

Nj∑

k=1

X0,n,mk

t −X0,n,∗
t

∣∣∣∣∣∣

ν

dt


 = 0.
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Thus, Fatou’s lemma and the convexity of J0,n imply that

J0,n(ξ0,n,∗) ≤ lim inf
N→∞

J0,n


 1

N

N∑

j=1

ξ
0,n,Nj


 ≤ lim inf

N→∞

1

N

N∑

j=1

1

Nj

Nj∑

k=1

J0,n
(
ξ0,n,mk

)
= J∗.

From now on, we denote by ξ0,n,∗ the unique optimal control for the penalized optimization (4.2)-(4.3).

The following theorem provides a characterization of ξ0,n,∗.

Theorem 4.4 (Necessary maximum principle). The optimal control ξ0,n,∗ admits the following repre-

sentation:

ξ0,n,∗t =
pnt + E[κ̃0

t q
n
t |F0

t ]− κ0
tX

0,n,∗
t

2η0t
, a.e. a.s. on [0, T ]× Ω, (4.6)

where X0,n,∗, pn and qn satisfy the following FBSDE system:




dX0,n,∗
t = − ξ0,n,∗t dt,

dXn,∗
t = − ξn,∗t dt,

−dY n,∗
t =

(
κtE

[
ξn,∗t |F0

t

]
+ 2λtX

n,∗
t + κ̃0

t ξ
0,n,∗
t

)
dt− Zt dWt,

−dpnt =
(
κ0
tE
[
ξn,∗t |F0

t

]
+ κ0

t ξ
0,n,∗
t + 2λ0

tX
0,n,∗
t

)
dt− Zt dW

0
t ,

−dqnt =

(
− rnt
2ηt

− E
[
κtq

n
t |F0

t

] 1

2ηt
+ f

n

t

)
dt,

−drnt =

(
−2λtq

n
t + κtE

[
rt
2ηt

∣∣∣∣F
0
t

]
+ κtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtq

n
t |F0

t ] + gnt

)
dt− Zt dWt,

X0
0 = x0, X0 = x, Y n,∗

T = 2nXn,∗
T , pnT = 2nX0,n,∗

T , rnT = −2nqnT , qn0 = 0,

(4.7)

where

ξn,∗t :=
Y n,∗
t − E[κtX

n,∗
t |F0

t ]

2ηt
, (4.8)

f
n

t :=
κ0
tX

0,n,∗
t

2ηt
+

λt

ηt
E
[
ξn,∗t |F0

t

]
, (4.9)

and

gnt := −κtE

[
1

2ηt

∣∣∣∣F
0
t

]
κ0
tX

0,n,∗
t − 2λtκtE

[
1

2ηt

∣∣∣∣F
0
t

]
E
[
ξn,∗t |F0

t

]
. (4.10)

Proof. A unique optimal control ξ0,n,∗ exists, due to Theorem 4.3. It is to be viewed as an exogenous

input to the FBSDE system (4.7). Thus, the system (Xn,∗, Y n,∗) is a special case of (2.29) by taking

(4.8) into account. Corollary 2.6 implies that the system is well-posed. Considering f
n
and gn as inputs,

the system (qn, rn) is well-posed, again due to Corollary 2.6. The characterization (4.6) is then a direct

result of stochastic maximum principle for control of FBSDE with partial information; cf [25].

The ansatz pn = A
n
X0,n,∗+pn shows that the equation for pn could be dropped from the above system.

It yields the following BSDEs for the processes A
n
and pn that will be used in the next subsection:





−dA
n

t =

(
− (A

n

t )
2

2η0t
+

κ0
tA

n

t

2η0t
+ 2λ0

t

)
dt− ZA

n

t dW 0
t ,

A
n

T = 2n

(4.11)

and 



−dpnt =

(
−A

n

t p
n
t

2η0t
− A

n

t E[κ̃
0
t q

n
t |F0

t ]

2η0t
+ κ0

t ξ
0,n,∗
t + κ0

tE
[
ξn,∗t |F0

t

]
)

dt− Zpn

t dW 0
t ,

pnT = 0.

(4.12)
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4.2 The optimal solution to the Stackelberg game

Let us recall that ξ0,n,∗ denotes the leader’s optimal control for penalized optimization with index n ∈ N.

The uniform boundedness of J0,n(x0/T ) in n ∈ N implies,

sup
n

E

[∫ T

0

∣∣∣ξ0,n,∗t

∣∣∣
2

dt+ n(X0,n,∗
T )2

]
< ∞. (4.13)

Thus, the same arguments as in the proof of Lemma 2.9 yield the existence of a progressively measurable

process

ξ0,∗ ∈ L2
F0(Ω× [0, T ];R) (4.14)

such that

lim
N→∞

E

[∫ T

0

∣∣∣∣∣
1

N

N∑

k=1

ξ0,nk,∗
t − ξ0,∗t

∣∣∣∣∣

ν

dt

]
= 0, 1 < ν < 2. (4.15)

Our goal is to prove that ξ0,∗ is the leader’s unique optimal strategy in the original state-constrained

Stackelberg game. To this end, we first establish a representation of ξ0,∗ in terms of the solution to

the system (1.10), (1.12) and (1.13) by proving that the solutions to the system of state and adjoint

equations (4.7) for the unconstrained penalized MFC problem Cesaro converge to the solutions to the

systems (1.7), (1.10), (1.12) and (1.13). From this, we then deduce a sufficient maximum principle for

the leader’s MFC problem from which we conclude the optimality of the candidate strategy ξ0,∗.

4.2.1 Approximation

With the limit ξ0,∗ at hand, we can consider the FBSDE system (1.7), (1.10), (1.12) and (1.13) with ξ0

replaced by ξ0,∗. The system (1.7) for (X∗, Y ∗) is well-posed, due to Corollary 4.2. The system for (q, r)

is well-posed, due to the following corollary.

Corollary 4.5. If we take χ = x0, Λ1 = Λ2 = ζ = 1/2η, γ = Λ3 = ̺ = κ, Λ4 = 2λ, Λ5 = κE
[

1
2η

∣∣∣F0
]
,

Q = −q,

f =
κ0X0,∗

2η
+

λ

η
E
[
ξ∗|F0

]
(4.16)

and

g = −κE

[
1

2η

∣∣∣∣F
0

]
κ0X0,∗ − 2λκE

[
1

2η

∣∣∣∣F
0

]
E
[
ξ∗|F0

]
, (4.17)

where

ξ∗ :=
Y ∗

2η
− 1

2η
E[κtX

∗|F0]. (4.18)

Then the system (1.2) reduces (1.13). Hence, existence and uniqueness of a solution holds for (1.13).

Moreover, r = −Aq +D with D ∈ S2,−
F

.

We now introduce two BSDEs that we expect to be the limits to the equations (4.11) and (4.12):





−dAt =

(
− A

2

t

2η0t
+

κ0
tAt

2η0t
+ 2λ0

t

)
dt− Zt dW

0
t

lim
tրT

At = ∞,

(4.19)

and 


−dpt =

(
−Atpt

2η0t
− AtE[κ̃

0
t qt|F0

t ]

2η0t
+ κ0

t ξ
0,∗
t + κ0

tE
[
ξ∗t |F0

t

])
dt− Zp

t dW
0
t ,

pT = 0.

(4.20)
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where ξ∗ and ξ0,∗ are defined in (4.18) and (4.14), respectively. The following lemma confirms our guess.

It shows that the solutions to the FBSDE system (4.7) converge to the solutions to the FBSDE systems

(1.7), (1.10), (1.13) and (4.20) in the same sense as the optimal solutions to the unconstrained penalized

problems converge to the candidate solution of the constrained problem.

Lemma 4.6. For 1 < ν < 2, it holds that

lim
N→∞

E

[
sup

0≤t≤T

∣∣∣∣∣
1

N

N∑

k=1

X0,nk,∗
t −X0,∗

t

∣∣∣∣∣

ν]
= 0, (4.21)

lim
N→∞

E



∫ T

0

∣∣∣∣∣∣
1

N

N∑

j=1

1

Nj

Nj∑

k=1

Xnk,∗
t −X∗

t

∣∣∣∣∣∣

ν

dt


 = 0, (4.22)

lim
N→∞

E



∫ T

0

∣∣∣∣∣∣
1

N

N∑

j=1

1

Nj

Nj∑

k=1

Y nk,∗
t − Y ∗

t

∣∣∣∣∣∣

ν

dt


 = 0, (4.23)

lim
Ñ→∞

E


 sup
0≤t≤T

∣∣∣∣∣∣
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

qnk

t − qt

∣∣∣∣∣∣

ν
 = 0, (4.24)

lim
Ñ→∞

E



∫ T

0

∣∣∣∣∣∣
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

rnk

t − rt

∣∣∣∣∣∣

ν

dt


 = 0, (4.25)

lim
Ñ→∞

E



∫ T

0

∣∣∣∣∣∣
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

pnk

t − pt

∣∣∣∣∣∣

ν

dt


 = 0. (4.26)

Proof. The convergence (4.21) follows immediately from the convergence (4.15) and the definition of

X0,∗. Taking χ = x, ζ = Λ1 = −Λ2 = 1/2η, γ = Λ3 = ̺ = κ, Λ4 = 2λ, Λ5 = −κE
[

1
2η

∣∣∣F0
]
, f

n
= 0 and

gn = κ̃0ξ0,n,∗ in (2.29) the convergence (4.22) and (4.23) follows from Theorem 2.10, due to the uniform

boundedness of gn in L2.

In (2.29), let χ = x0, Λ1 = Λ2 = ζ = 1/2η, γ = Λ3 = ̺ = κ, Λ4 = 2λ, Λ5 = κE
[

1
2η

∣∣∣F0
]
, Qn = −qn and

(f
n
, gn) as in (4.9) and (4.10). It follows from (4.21)-(4.23) that

lim
N→∞

E



∫ T

0

∣∣∣∣∣∣
1

N

N∑

j=1

1

Nj

Nj∑

k=1

(f
nk

t , gnk)− (f t, gt)

∣∣∣∣∣∣

ν

dt


 = 0, (4.27)

where f and g are defined as in (4.16) and (4.17), respectively. By Corollary 4.2 and the estimate (2.3),

we have f ∈ S2
F
and g ∈ L2

F
. So (4.24) and (4.25) follow again from Theorem 2.10. By (4.15), (4.22),

(4.23) and (4.24) we also have (4.26).

The preceding approximation lemma yields a representation on the candidate optimal strategy in terms

of the candidate optimal state and adjoint processes akin to the maximum principle for the penalized

problem.

Theorem 4.7. The limit ξ0,∗ in (4.15) admits the following representation:

ξ0,∗t =
pt + E[κ̃0

t qt|F0
t ]− κ0

tX
0,∗
t

2η0t
, a.e. a.s. on [0, T ]× Ω, (4.28)

where p := AX0,∗ + p. Moreover, ξ0,∗ ∈ AF(x
0) and p satisfies the dynamic (1.12).
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Proof. The characterization (4.28) follows immediately from Theorem 4.4 and Lemma 4.6. It remains

to verify the admissibility of ξ0,∗. The fact that ξ0,∗ belongs to L2
F0 is due to (4.14). By the uniform

boundedness (4.13),

lim
n→∞

E[(X0,n,∗
T )2] = 0.

By (4.21),

lim
Ñ→∞

E



∣∣∣∣∣∣
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

X0,nk,∗
T −X0,∗

T

∣∣∣∣∣∣

ν
 = 0.

Thus,

E[|X0,∗
T |ν ]

≤ 2E



∣∣∣∣∣∣
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

X0,nk,∗
T −X0,∗

T

∣∣∣∣∣∣

ν
+ 2

1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

E

[
|X0,nk,∗

T |ν
]
→ 0,

which implies X0,∗
T = 0 a.s.. Finally, starting from p := AX0,∗ + p by integration by parts and taking

into account the characterization (4.28), we know p satisfies (1.12).

4.2.2 Sufficient maximum principle

In this section, a sufficient maximum principle is established, from which we obtain the optimality of

ξ0,∗ for the leader’s MFC problem.

Theorem 4.8 (Sufficient maximum principle). Under the Assumption 4.1, ξ0,∗ given by Theorem 4.7 is

the unique optimal strategy to the leader’s optimization problem.

Proof. We denote by (X0,∗, X∗, Y ∗) the states corresponding to ξ0,∗ and by (X0, X, Y ) the states corre-

sponding to a generic strategy ξ0 ∈ L2
F0 . The verification is split into three steps.

Step 1. By Corollary 2.5, X and Y are convex in ξ0 in the sense that

(X(ρξ0 + (1− ρ)ξ0
′

), Y (ρξ0 + (1− ρ)ξ0
′

)) = ρ(X(ξ0), Y (ξ0)) + (1− ρ)(X(ξ0
′

), Y (ξ0
′

)).

Thus, J0 is strictly convex in ξ0. As a result, there is at most one optimal strategy.

Step 2. Integration by part for (X0 −X0,∗)p, (X −X∗)r and (Y − Y ∗)q on [0, T̃ ] for 0 ≤ T̃ < T yields,

E

[
(X0

T̃
−X0,∗

T̃
)pT̃

]
+ E

[
(XT̃ −X∗

T̃
)rT̃

]
+ E

[
(YT̃ − Y ∗

T̃
)qT̃

]

= − E

[∫ T̃

0

(X0
t −X0,∗

t )
(
κ0
tE
[
ξ∗t |F0

t

]
+ κ0

t ξ
0,∗
t + 2λ0

tX
0,∗
t

)
dt

]

− E

[∫ T−ǫ

0

E[κt(Xt −X∗
t )|F0

t ]

(
−κ0

tE

[
1

2ηt

∣∣∣∣F
0
t

]
X0,∗

t − 2λtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[ξ∗t |F0

t ]

)
dt

]

− E

[∫ T̃

0

E

[
Yt − Y ∗

t

2ηt

∣∣∣∣F
0
t

](
κ0
tX

0,∗
t + 2λtE

[
ξ∗t |F0

t

])
dt

]

− E

[∫ T̃

0

(pt + E[κ̃0
t qt|F0

t ])(ξ
0
t − ξ0,∗t ) dt

]
,

where we recall ξ∗ is defined in (4.18).
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Step 3. To prove the optimality of the strategy (4.28) we define, for any T̃ < T the cost functional

J̃0(ξ0) := E

[∫ T̃

0

κ0
t

(
E

[
Yt

2ηt

∣∣∣∣F
0
t

]
− E

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ]

)
X0

t + κ0
t ξ

0
tX

0
t + η0t (ξ

0
t )

2

+λ0
t (X

0
t )

2 + λt

∣∣∣∣E
[
Yt

2ηt

∣∣∣∣F
0
t

]
− E

[
1

2ηt

∣∣∣∣F
0
t

]
E[κtXt|F0

t ]

∣∣∣∣
2

dt

]
.

By direct calculation we have

J̃0(ξ0)− J̃0(ξ0,∗)

≥ E

[∫ T−ǫ

0

(X0
t −X0,∗

t )
(
κ0
tE[ξ

∗
t |F0

t ] + κ0
t ξ

0
t + 2λ0

t ξ
0,∗
t

)
dt

]

+ E

[∫ T−ǫ

0

E

[
Yt − Y ∗

t

2ηt

∣∣∣∣F
0
t

](
κ0
tX

0,∗
t + 2λtE[ξ

∗
t |F0

t ]
)
dt

]

+ E

[∫ T−ǫ

0

E[κt(Xt −X∗
t )|F0

t ]

(
−κ0

tE

[
1

2ηt

∣∣∣∣F
0
t

]
X0,∗

t − 2λtE

[
1

2ηt

∣∣∣∣F
0
t

]
E[ξ∗t |F0

t ]

)
dt

]

+ E

[∫ T−ǫ

0

(ξ0t − ξ0,∗t )
(
κ0
tX

0,∗
t + 2η0t ξ

0,∗
t

)
dt

]

(4.29)

Plugging the result in Step 2 into (4.29) and taking into account the characterization (4.28), we have

J̃0(ξ0)− J̃0(ξ0,∗) + E

[
(X0

T̃
−X0,∗

T̃
)pT̃

]
+ E

[
(XT̃ −X∗

T̃
)rT̃

]
+ E

[
(YT̃ − Y ∗

T̃
)qT̃

]
≥ 0.

The same estimate as in the proof of [14, Theorem 2.9] yields that

lim
T̃րT

E

∣∣∣(X0
T̃
−X0,∗

T̃
)pT̃

∣∣∣ = 0.

Moreover, Corollary 4.2 and Corollary 4.5 imply that

E

[
(XT̃ −X∗

T̃
)rT̃

]
+ E

[
(YT̃ − Y ∗

T̃
)qT̃

]

= E

[
(XT̃ −X∗

T̃
)(−AT̃ qT̃ +DT̃ ) +

(
AT̃XT̃ +BT̃ −AT̃X

∗

T̃
−B∗

T̃

)
qT̃

]

= E

[
(XT̃ −X∗

T̃
)DT̃ + (BT̃ −B∗

T̃
)qT̃

]

→ 0, as T̃ ր T.

Thus, letting T̃ ր T , dominated convergence yields J0(ξ0)− J0(ξ0,∗) ≥ 0.

As a corollary, we obtain that a convex combination of the value functions for the penalized optimization

problems converges to the value function of the constrained problem.

Corollary 4.9. There exists a convex combination of the value functions converging to J0(ξ0,∗), i.e.,

lim
Ñ→∞

1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

J0,nk(ξ0,nk,∗) = J0(ξ0,∗).

Proof. Recall that X0,nk,∗ and ξnk,∗ are the optimal state of the leader and the optimal strategy of the

follower corresponding to ξ0,nk,∗, respectively. Due to the additional penalty term in the definition of

J0,nk and because ξ0,∗ is an admissible strategy for the penalized problem,1

J0(ξ0,nk,∗) ≤ J0,nk(ξ0,nk,∗) = inf
ξ∈L2

F0
([0,T ]×Ω;R)

J0,nk(ξ) ≤ J0(ξ0,∗)

1Notice that J0(ξ0,nk,∗) is well-defined even though ξ0,nk,∗ may not not admissible for the constrained optimization

problem.
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Denote by K(Ñ) the cost functional with (ξ0, X0, ξ) in J0 replaced by

 1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

ξ0,nk,∗,
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

X0,nk,∗,
1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

ξnk,∗


 .

By the convexity, we have

K(Ñ) ≤ 1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

J0(ξ0,nk,∗) ≤ J0(ξ0,∗).

By Lemma 4.6, (4.15) and Fatou’s lemma,

J0(ξ0,∗) ≤ lim inf
Ñ→∞

K(Ñ) ≤ lim inf
Ñ→∞

1

Ñ

Ñ∑

i=1

1

N i

Ni∑

j=1

1

Nj

Nj∑

k=1

J0(ξ0,nk,∗) ≤ J0(ξ0,∗).

4.3 Numerical simulations

We close this paper with a preliminary numerical analysis of the Stackelberg game previously analyzed.

To the best of our knowledge no numerical methods for simulating the mean-field FBSDEs arising in

our game are yet available. We therefore simulate a deterministic benchmark model with constant

coefficients. In this case, the conditional mean-field FBSDEs reduce to deterministic forward-backward

ODEs that can be solved numerically using the MATLAB package bvpsuite [20]. Figure 1 (left) shows

the optimal positions for the leader (solid) and follower (dashed) for the parameter values η = 0.5, κ =

0.5, λ = 2, κ0 = 0.5, κ0 = 0.5, η0 = 0.5, κ̃0 = 1, λ0 = 2, λ = 1, and T = 1, x0 = 8, x = 0. In particular,

we see that a beneficial round trip exists for the follower. The right plot shows the leader’s cost as a

function of the initial portfolio for the same parameter in a model with follower (solid) and a benchmark

model without follower (dashed). For these choices of model parameters, the leader benefits from the

presence of the follower. Figure 2 shows the same quantities as Figure 1, except that the impact of the

leader on the follower is now much stronger: κ̃0 = 10. In this case, the leader suffers from the presence

of the follower.
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Figure 1: Left: optimal position for the leader (solid) and follower (dashed); right: leader’s cost function

in a model with (solid) and without follower (dashed). Weak impact of leader on follower

5 Conclusion

We established existence and uniqueness of solutions results for linear McKean Vlasov FBSDEs with

a terminal state constraint on the forward process. The general results were used to solve novel MFC
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Figure 2: Left: optimal position for the leader (solid) and follower (dashed); right: leader’s cost function

in a model with (solid) and without follower (dashed). Strong impact of leader on follower

problems and mean-field leader-follower games of optimal portfolio liquidation. For the leader-follower

game it could be viewed as a MFC problem where the state dynamics follows a controlled FBSDE. For

such problems we proved a novel stochastic maximum principle. The proof was based on a approximation

method. We proved that both the sequence of optimal solutions and the sequence of state and adjoint

equations associated with a family of penalized problems Cesaro converge to a unique limit that yields

the optimal solution, respectively, the adjoint equations to the original state-constrained problem. To the

best of our knowledge, no numerical methods for simulating the solution to conditional McKean-Vlasov

FBSDEs are yet available. It would be desirable to develop such methods in order to study the interplay

between the leader’s and the follower’s equilibrium strategies in greater detail.
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