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Abstract: This paper investigates the dynamics of behavioral changes during a crisis.

We study this in the context of the first year of the Covid-19 pandemic, where behavioral

responses were important in mitigating the costs of the pandemic. To identify behavioral

responses to unanticipated and transient health risk shocks, we combine high-frequency

cellphone mobility data with detailed incidence data in Germany. Using an event-study

design on local outbreaks, we find that county-level mobility immediately and significantly

decreased by about 2.5% in response to an outbreak independent of non-pharmaceutical

interventions. We also find that the reproduction rate decreased by about 17% in response

to a local outbreak. Both behavioral responses are quite persistent even after the relative

health risk has dissipated. By the time of the second wave, the behavioral response to a

second or third shock is small or negligible. Our results demonstrate the importance of

(1) integrating behavioral persistence in models used to study behavior and policies that

change behavior, (2) the e↵ectiveness of policies that provide high-frequency localized

information on health risks, and (3) the potential persistence of behavioral changes after

the Covid-19 pandemic has passed.
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1 Introduction

In times of crisis, individuals make drastic changes in their behavior either in direct

response to a hardship or to mitigate the increased risk. Research has shown that be-

havioral changes can persistent long after the risk or crisis has passed. For example,

current research using retrospective data shows that previous exposure to an early life

financial crisis (Malmendier and Nagel, 2011; Osili and Paulson, 2014), violent conflict

(Callen et al., 2014; Kesternich et al., 2015), or natural disaster (Cameron and Shah,

2015) a↵ects behavior many years or decades after the event. While the literature has

provided important evidence on the possible channels for the changes in behavior, little

is known about the dynamics of the behavioral changes during a crisis (Rasul, 2020).

In other words, how does behavior change at the time of a major shock? Are there

lags in adjustment? How does the history of exposure to shocks a↵ect future behavioral

responses?

Credible estimation of behavioral dynamics outside of the lab is challenging as it

requires high frequency data taken at the time of an unanticipated and arguably random

or exogenous shock. Furthermore, in order to understand the persistence of the behavioral

changes, the shock must be transient. Lastly, to understand how the history of exposure

to shocks a↵ects future behavior, the setting must include multiple exposures to shocks

over time.

In this paper, we study the behavioral responses in a recent global health crisis, the

Covid-19 pandemic, using high-frequency panel data on infections and cell-phone mobility

data in Germany. In particular, we estimate the dynamic e↵ects of unanticipated, local,

and transient outbreaks on mobility and the reproduction rate. Our empirical strategy is

based on Covid-191 being an overdispersed pathogen, where a small fraction of individuals

are responsible for a large fraction of the transmission. In the case of Covid-19, studies

have shown that only 10–20% of individuals are responsible for 80–90% of transmission

in clusters often called “super-spreader” events (see e.g. Baggett et al., 2020; Endo et al.,

2020; Hamner et al., 2020; James et al., 2020; Lemieux et al., 2020; Majra et al., 2021;

1The expressions Covid-19, coronavirus and SARS-CoV-2 are used interchangeably.
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Riou and Althaus, 2020).2 This feature of the virus implies that the local risk level can

change unexpectedly and dramatically when an outbreak occurs. We also find that the

increased relative risk due to outbreaks is transient, where the incidence rate converges

to that of neighboring counties after two to three weeks. In summary, our strategy allows

us to investigate behavioral changes both at the time of the shock and the behavioral

dynamics after a transient shock has dissipated.

We estimate the e↵ect of a shock using an event-study approach that examines the

changes in behavior in a county when an unanticipated and transient outbreak occurs.3

We identify local unanticipated outbreaks by comparing the number of cases in a seven-

day period to the number of cases we would expect based on a parsimonious epidemio-

logical model. We define a local unexpected outbreak as a county and a seven-day period

where the observed number of cases exceeds the expected number based on our model.

Our preferred specification identifies 259 outbreaks between February and November of

2020.4

We find that a local outbreak significantly reduces the number of trips taken inside

the county and also reduces the number of trips between other counties and the outbreak

county. The number of trips is reduced by about 2.5%. We do not, however, find any

changes in the number of trips before the outbreak is publicly reported by the national

health agency, making it unlikely that the changes are due to knowledge of a risky event

or of individuals with symptoms. The mobility data measures only one aspect of many

behavioral adjustments that can reduce risk. To capture the overall impact of behavioral

changes on disease transmission, we study changes in the reproduction rate which is

defined as the expected number of cases directly generated by one case in a population.

We find a substantial decrease in the reproduction rate after an outbreak of about 17%.

2Some commonly known “super-spreader” events or clusters are the example of a Korean woman
infecting 1000+ others in a few days and a wedding in Hamm, Germany, that triggered a surge in
infections in the beginning of September.

3We examine mobility measured using cell-phone data on the number of trips taken within and across
counties each day and the reproduction rate. See Section 3 for more information.

4Our preferred specification requires that the excess cases in a county is at the 98th percentile for
all counties in Germany between February and November 2020. This definition captures the well-known
outbreaks (e.g. Heinsberg in February, Gütersloh in June, Hamm in September, and Berchtesgaden in
October). See Section 4.2 for more information.
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Controlling for non-pharmaceutical interventions (NPIs) makes little di↵erence in our

estimates which indicates that we are capturing a voluntary response. Likewise, we

provide evidence that the behavioral responses are not concentrated at commuting hours

and, hence, are unlikely to be driven by work-from-home policies at firms.

The dynamics of the behavioral response has several noteworthy features. First, the

changes in mobility and reproduction rate are quite persistent. The changes in mobility

are essentially unchanged more than a month after an outbreak by which time the in-

creased relative risk has dissipated. Likewise, more than a month after the outbreak, the

reproduction rate is still reduced by 11%, about sixty percent of the short-run e↵ect. The

behavioral response also depends on the history of outbreaks (e.g. first, second, third

outbreak) in a county and the point in the pandemic at which the outbreak occurred.

The mobility response to the first outbreak in a county was 1.5 to 2.2 times stronger in

the second wave compared to the first wave.5 Conversely, counties that had a subsequent

outbreak in the second wave had no measured mobility response. The dynamics of the

behavioral response for the reproduction rate are similar to the results for mobility, where

the response was stronger in the second wave compared to the first wave. In contrast,

the response to a subsequent outbreak in the second wave is significant but 62% of the

response to a first outbreak around the same time. These results are suggestive of im-

portant fixed costs in making behavioral changes. The results on the reproduction rate

suggest that some forms of behavioral response (e.g. wearing a mask) have important

marginal costs and depend less on the history of shocks.

We further investigate heterogeneity in response to local outbreaks along three distinct

dimensions: Counties may di↵er in (i) costs of adjusting mobility, e.g. depending on the

fraction of workers that can work from home, (ii) relative risks of infection, e.g. depending

on transportation modes and structure of urbanization, and (iii) average beliefs about

the risk of the virus. We find that counties with a larger touristic sector and a larger

share of workers that can work from home reduce their mobility more in response to local

5Interpreting di↵erences in behavioral responses at di↵erent points in time is challenging as the
environment was also changing (e.g. the severity of NPIs). The behavioral response may be greater
during the second wave due to behavioral reasons, or because the presence of fewer NPIs allowed for a
stronger voluntary response.
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outbreaks indicating that behavioral responses are indeed larger if costs are lower.6 We

do not, however, find evidence that prevalence of public transport or beliefs on the risk of

Covid-19 a↵ect the mobility responses.7 We do not find evidence that the reproduction-

rate response varies by costs of adjusting mobility or the other proxies. Finally, we provide

evidence that our results are robust to estimators that account for heterogeneous e↵ects,

and to varying the definition of outbreaks. We also find no measured e↵ect when using

placebo outbreaks.

This paper contributes to several strands of literature. First, the paper adds to a

growing literature in economics studying the role of information in shaping people’s health

behavior and beliefs (e.g. Bollinger et al., 2011; Cawley et al., 2021; Dupas, 2011; Oster,

2018b; Wisdom et al., 2010). This body of literature investigates whether people adjust

their behavior to information on health risk. Yet, evidence on that matter is inconclusive.

One strand of literature shows that people appear reluctant to undertake costly behaviors

with health benefits. For example, people are resistant to changing sexual behavior in

the face of HIV, to change diet in response to a diabetes diagnosis, and do not get regular

cancer screenings (Caldwell et al., 1999; Cummings and Cooper, 2011; Hut and Oster,

2018; Kim et al., 2019; Oster, 2012, 2018a; Prina and Royer, 2014). Another strand of

literature, however, argues that people are sensitive to changes in health risk and demand

for self-protection (Chan, 2015; Kremer, 1996; Lautharte and Rasul, 2022; Oster, 2018b;

Philipson, 2008). These studies document a prevalence-elasticity of private demand for

prevention against disease. Lautharte and Rasul (2022), for example, show that people

respond to public health alerts linking the Zika virus to the risk of congenital disease

for those in utero. We add to this body of literature by investigating whether and how

individuals adjust their behavior to high-frequency localized information about transitory

shocks to the level of health risk. Studying unanticipated outbreaks allows us to report

6We take the share of people with a college-degree as measure for the likelihood of working from
home. Previous literature shows that people with higher educational degree are more likely to do home
o�ce in response to the pandemic (von Gaudecker et al., 2020).

7We use the vote share of the AfD, a right-wing party, in the last state elections as a proxy for
beliefs. A number of studies in the US have shown that partisanship a↵ects people’s beliefs on the risks
of Covid-19. Similarly in Germany, the AfD party was critical of the government handling of Covid-19
and one may expect that counties with high AfD vote shares would, likewise, respond less to an outbreak.
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credible estimates of how behavior changes over time and how it depends on the history

of similar past shocks. Moreover, investigating transitory shocks allows us to observe

behavioral aspects of the response such as the persistence of changes when the relative

risk levels decline, and how individuals behave when exposed to subsequent shocks.

Second, in the light of the Covid-19 pandemic, a recent strand of literature investigates

the e↵ect of information about the risk of the virus on people’s beliefs, their behavioral

response, and ultimately on mitigating the spread of the disease. These studies examine

various channels of information provision such as Twitter, TV shows, the word of politi-

cal leaders, and also experimentally provided information in di↵erent social and political

environments, e.g. India, Mexico, Brazil, and USA. They jointly show that providing

information alters people’s risk perception (Fetzer et al., 2021) and significantly deter-

mines people’s behavior (Ajzenman et al., 2020; Banerjee et al., 2020; Brzezinski et al.,

2020; Gutierrez et al., 2020; Grossman et al., 2020). While the detailed high-frequency

data in our study allow us to investigate real-time behavioral responses, the data do not

enable us to study the e↵ects of information provision on people’s beliefs and their pref-

erences. However, a change in risk perception in response to the information on a local

outbreak is a one potential mechanism driving our findings. Our paper complements

the aforementioned literature by providing empirical evidence on real-time behavioral re-

sponses to information on changes in the relative risk level. This allows us to get a better

understanding of the adjustment trajectory of people’s behavior to transitory shocks.

The paper proceeds as follows. Section 2 gives background information on the charac-

teristics of Covid-19 and describes the experience of the pandemic in Germany including

the policy responses. Section 3 presents the data and descriptive statistics. Section 4

outlines the empirical strategy. Section 5 presents the results and Section 6 concludes.

2 Background

In this section, we first give an overview of the characteristics of Covid-19 relevant to

our analysis. Then we describe the experience of the pandemic in Germany including the
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policy responses.

2.1 Characteristics of Covid-19

The Covid-19 pandemic is a major threat to human health. According to the World

Health Organization, there have been 112 million confirmed cases and 2.5 million deaths

worldwide.8 A SARS-CoV-2 infection primarily causes respiratory diseases with symp-

toms ranging from mild upper respiratory tract illness to severe viral pneumonia with

respiratory failure and even death. At the same time, many individuals infected with

the virus never develop symptoms (Huang et al., 2020). Hence, the clinical spectrum ap-

pears to be wide, encompassing asymptomatic infections, mild diseases comparable to a

common cold, as well as severe lower respiratory tract diseases with many patients being

hospitalized, and death (Gandhi et al., 2020). Potential long-term consequences of an in-

fection with Covid-19, such as fatigue and dyspnoea, are currently studied (Huang et al.,

2021; Zhao et al., 2020). Recent estimates suggest that the infection fatality rate (IFR)

of Covid-19 is about 1%, which is substantially higher than, for example, the estimated

IFR of 0.1% of influenza (Pritsch et al., 2021; Staerk et al., 2021; World Health Orga-

nization, 2020a). Particularly, the elderly population and individuals with underlying

medical conditions, such as cardiovascular diseases, diabetes or chronic lung illnesses, are

at risk of developing a severe course of Covid-19 infections (Centers for Disease Control

and Prevention, 2021; Wu and McGoogan, 2020; Zhou et al., 2020).

Covid-19 spreads rapidly – within a couple of months, the world turned from a few

reported cases in the city of Wuhan in China to a state in which almost all countries

reported infections and deaths. The transmission of Covid-19 occurs from human-to-

human, primarily through droplets, aerosols and close contact with infected individuals

(Gandhi et al., 2020). The transmissibility of Covid-19 exhibits two disease-specific fea-

tures relevant for our study: First, there is growing evidence in the medical literature that

Covid-19 is an overdispersed virus, where a small fraction of individuals is responsible

8See https://covid19.who.int/ accessed on 27th February 2021. For comparison, seasonal
influenza causes worldwide approximately 300,000–500,000 deaths per year (Girard et al., 2005; Lambert
and Fauci, 2010).
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for a large fraction of the transmission (see e.g. Baggett et al., 2020; Endo et al., 2020;

Hamner et al., 2020; James et al., 2020; Lemieux et al., 2020; Majra et al., 2021; Riou and

Althaus, 2020). Second, the median incubation period before individuals feel symptoms

is four to five days, with a range from 2 to up to 14 days (Gandhi et al., 2020; Lauer

et al., 2020).9

In the absence of a Covid-19 vaccine, prevention of infections was limited to reducing

the physical proximity between individuals and to wearing face masks (Chu et al., 2020;

Ferguson et al., 2020).10 A number of public health measures (NPIs) were aimed at

reducing contact rates in the population and thereby mitigating the spread of the virus.

Examples of the policy interventions adopted during this time include closing schools,

restaurants and retail events, and contact banning.

2.2 Covid-19 Pandemic and Policy Response in Germany

At the end of January 2020, the World Health Organization declared the outbreak

of the novel Coronavirus SARS-CoV-2 (i.e. Severe Acute Respiratory Syndrome Coron-

avirus 2) as a “public health emergency of international concern” (World Health Orga-

nization, 2020b). At this time the epicenter of the outbreak was Wuhan city, the capital

of Hubei province in China. About a month later, the virus had reached Europe and

started to spread uncontrolled within Germany.11 As a consequence, the German govern-

ment introduced a number of regulations to limit social contacts and thus, the di↵usion

of the Covid-19 virus.12 The political response can be classified into at least four stages

(Figure A1): The first stage is characterized by the increasing political and social aware-

ness due to a growing number of local outbreaks such as in the district Heinsberg after a

carnival party. To curb the spread of the virus, the government appealed to all citizens

9Additional information is drawn from the European Center for Disease Prevention and Control
(European Centre for Disease Prevention and Control, 2021a) and from the Robert Koch Institute
(Robert Koch Institut, 2021b)

10Note that recently some vaccines for the protection against Covid-19 have been approved. However,
during the period we consider in our study no vaccines against Covid-19 were available.

11In Germany, COVID-19 spread after the detection of two cases on February 25, 2020. An earlier
outbreak at the end of January had been completely contained.

12Information provided in this subsection is drawn from the German ministry of health (Bundesmin-
isterium für Gesundheit, 2021) (in German) and from the European Center for Disease Prevention and
Control (European Centre for Disease Prevention and Control, 2021b).
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to avoid social contacts whenever possible (e.g. Angela Merkel made nationally-televised

speeches on March 12 and 18) and started to gradually impose social distancing policies.

Most schools, childcare facilities, and retail stores were closed starting on March 16th on-

wards. Travel restrictions, such as enhanced controls at the borders and a 30-day entry

ban for non-EU inhabitants, were enforced. The second stage is described by a national

contact ban – meeting more than one person from outside one’s household was prohib-

ited, and keeping a minimum distance of 1.5 meters was required. By mid-April incidence

rates started to decrease, which allowed authorities to gradually relax social distancing

policies. During the third stage (May to October), incidence rates were comparatively

low on the national level. Local outbreaks, however, led to temporary rises in the disease

rates at the county level. One prominent example of a cluster event is the outbreak of

Covid-19 in a meat processing plant in Gütersloh. The government agreed to respond

locally to outbreaks, once the 7-day incidence rate within a county exceeded 50 cases

per 100,000 inhabitants. Travel restrictions within the EU were largely removed during

the summer months. In October, the number of local outbreaks increased rapidly, so

that local policy interventions were not su�cient any more. As a response, the German

government announced enhanced regulations at the national level from November, 2nd

onwards. The fourth stage is described as so-called “lockdown light” – schools, child care

facilities, and retail shops remained open, while restaurants and bars were closed.

3 Data and Descriptive Statistics

In this section, we describe the data we use to build a balanced panel for 401 districts

(i.e. NUTS Level 3 regions) and 350 days spanning the period from January 1st to

December 20th, 2020 (140,350 observations).13

13Due to technical reasons, the mobility data is missing for 4 days in December.
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3.1 Covid-19 Incidence Data

We use daily data on PCR positive cases of SARS-CoV-2 within Germany. The

data is provided by the national public health institution, the Robert Koch Institute

(RKI).14 According to the Infectious Disease Protection Law (Infektionsschutzgesetz ),

lab-diagnosed cases of Covid-19 are reported to the local public health departments in

order to monitor the temporal and spatial di↵usion of the virus within Germany.15 The

reporting system follows strict rules to improve comparability across regions: Physicians

and laboratories are obliged to inform local health departments about a positive test

result within at most 24 hours. The date of cases in our data is the date the positive

test result is reported to the local health department. The local health departments,

in turn, deliver the information to the health authorities of the respective federal state

with at most a one day delay. The state health department gathers the information

and passes it to the Robert Koch Institute at the national level on the same or the

next working day. Only reported cases that fulfill well-defined criteria are included in

the data set (Infektionsschutzgesetz, §11 ). While the standardized procedure ensures

high data quality, as well as comparability across time and regions, it creates a two day

lag between the registration of positive test results at the local health department and

publicly provided information on new Covid-19 cases by the Robert Koch Institute.16

The data set covers information on the day of reporting a positive PCR test result to

the local health department, day of first symptoms, and the county of residence of the

individual infected. Individuals are not included in the data set if they are not laboratory

tested. Hence, the data likely understates the actual number of cases of Covid-19 as a

14The data is publicly available via COVID-19 Data Hub (COVID-19 Datenhub, 2021).
15The information is taken from the o�cial webpage of the Robert Koch Institute (in German) (Robert

Koch Institut, 2021a).
16Note that local health departments also publish information on positive test results which may

create some discrepancy between information published by local health departments and the Robert Koch
Institute. Nationwide newspapers such as “Bild”, “Frankfurter Allgemeine Zeitung”, and “Handelsblatt”
use the RKI data as source for providing information on county-specific incidence rates (websites accessed
on 3rd March 2021).
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study conducted in Munich shows (Pritsch et al., 2021).17

Figure 1 illustrates the daily number of cases reported to the Robert Koch Institute

between the end of February, 2020 and December, 2020. Germany experienced two waves

of Covid-19 infections: The first wave started at the end of February and continued to the

end of April. The second wave started in October. We classify the pandemic into three

phases – 1st wave, summer, and 2nd wave – to study heterogeneous response behavior

over time. Appendix Table A.1 presents the summary statistics of the new infections as

counts and incidence rates separately by phase of the pandemic and by federal states.

Figure 1: Cases of Infection
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Notes: The figure illustrates the daily number of cases reported cases by the Robert Koch Institute.
The vertical gray lines present the di↵erent phases of the pandemic. The first phase describes the
1st wave of the pandemic between the end of February and the end of April. The second phase
covers the summer months. The third phase refers to the 2nd wave of the pandemic starting in
October.

17The study shows that in a representative sample of 2,994 private households living in Munich
1.82% individuals are tested positive for SARS-CoV-2 specific antibodies indicating that these individuals
are/were infected with Covid-19. During the same time period, however, only 0.46% of the citizens in
Munich have reported a positive PCR-test result to the national health agency. Hence, the reported
number of cases likely understates the “true” number of individuals infected with Covid-19.
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3.2 Data on Aggregate Mobility

To measure mobility patterns in Germany, we use cell phone data provided on a daily

basis. When cell phone users move, their phones switch between cell towers to ensure

connectivity. These cell tower switches are used to estimate the number of trips taking

place between two geographic areas which is a proxy of human mobility over time and

space (Oliver et al., 2020). We obtain data on the daily number of trips between and

within counties in Germany for the period from January 1st, 2020 to December 31st, 2020

from Teralytics, a business partner of Telefónica.18

Panel A in Figure 2 describes the average daily number of inflows per capita in a county

between January and December 2020. By late March the number of trips decreased

substantially by about 50%. During the summer months mobility patterns increased

again and remained stable at a level comparable to the number of trips per capita in

January and February. Starting in October, we observe a reduction in mobility again.

Panel B in Figure 2 outlines the average daily number of trips within a county. The

change in mobility over time follows a similar pattern as for mobility between counties.

Appendix Table A.1 presents summary statistics for the number of trips per capita by

phase of the pandemic and federal states.

18Note that origin-destination pairs that have less than 5 trips taking place between them are not
included int the data set. We do intentionally not extend the analysis past 2020, as the availability
of vaccines, as well as the occurrence of new virus mutants likely a↵ect behavioral responses. Hence,
behavioral responses to outbreaks in 2020 are plausibly not comparable to ones in 2021.
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Figure 2: Mobility Patterns

(a) Inflow/Outflow per capita

Date

In
− 

/o
ut

flo
w

 p
er

 c
ap

ita

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Daily
7−day MA

(b) Internal Trips per capita
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Notes: The figures display the daily number of trips per capita (gray line) and the 7-day moving av-
erage of the number of trips (red line) between January 1st, 2020 and December 31st, 2020. Panel A
illustrates the average inflow (outflow) per capita into (out of) a county. Panel B summarizes the
mean number of trips per capita within a county. The vertical dashed lines outline di↵erent phases
of the pandemic.
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We supplement the cell phone data with laser scanner data to measure hourly mobility

patterns. We obtain data from scanners counting pedestrians in 128 locations in 59

German municipalities. Most of the scanners measure pedestrian tra�c on the busiest

shopping and commuting streets in each town. The scanners count all pedestrians taller

than 80 cm who cross an imaginary line across a street. If the same person crosses the

line multiple times, each crossing is counted separately. We obtain the scanner data for

the period from January 1st, 2020 to December 31st, 2020 from Hystreet.com GmbH, a

company specialized in recording urban mobility patterns19. The advantage of the laser

scanner data is that we can estimate the e↵ects by time of day. We do not repeat the full

analysis with this data as it only covers about 20% of the counties, but we find similar,

although less precise, e↵ects.

3.3 Additional Data

We supplement the data on disease incidence and mobility with information on local

NPIs. Data on local NPIs in Germany is provided by an interdisciplinary consortium

that works on behalf of the German Ministry of Economics and Energy.20 The consor-

tium collects information on NPIs based on data provided on o�cial websites of state

governments. Appendix Table A3 presents summary statistics of the NPIs considered in

this study. The consortium also publishes information on county characteristics, such as

the share of AfD votes, use of public transport, and the share of college educated, that we

use to study heterogeneous behavior in response to local outbreaks (see Appendix Table

A2 for summary statistics).

19We obtained the data between 18.03.2022 and 21.03.2022. The data can be downloaded for free
from https://hystreet.com/.

20The interdisciplinary consortium comprises “infas-Institut für angewandte Sozialwissenschaft”, “in-
fas 360 GmbH” and the Institute for Hygiene and Public Health of the University of Bonn. The data
sets are gathered for research purposes. For more information see https://www.corona-datenpl
attform.de. Accessed on 8th Feburary 2022.
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4 Empirical Strategy

In this section, we describe our empirical strategy for distinguishing di↵erent sources

of information, identifying unexpected outbreaks, and studying the dynamics of the ag-

gregate behavioral response to unexpected outbreaks. We start by describing the strategy

used to disentangle changes in mobility caused by di↵erent sources of information (Sec-

tion 4.1). In Section 4.2, we outline a model for predicting the incidence rate in each

county on each day in Germany and classify outbreaks as an excess of cases above what

is predicted by the model. In Section 4.3, we present both event study and di↵erence-in-

di↵erences models for estimating the change in mobility due to the outbreak. Section 4.4

assesses the identification strategy.

4.1 Identification of Information Sources

The timing of disease progression and delays in testing allow us to define distinct

periods during which individuals receive information from two di↵erent sources: (i) Pri-

vate information on people falling sick, and (ii) Public information on reported Covid-19

cases.

If a local event sparks an unexpected outbreak, individuals may obtain private in-

formation on people falling sick about 4 to 7 days (inter-quartile range) after the event

(Lauer et al., 2020). Data on disease incidence, further, document that individuals get

tested an average of about 5 days after first feeling symptoms. Hence, there is a delay of

about a week between private information arriving based on individuals feeling sick and

public information on excess cases being reported by the national public health agency.21

Combining high-frequency data with knowledge of incubation and testing delays allows

us to disentangle changes in behavior caused by private information from changes induced

by public information.

Figure 3 illustrates the timing of first symptoms and observed cases graphically. Con-

sider an infection cluster that occurs at relative date �t = �8. We show the distribution

21Recall from Section 3.1, that it takes about 2 days until the information on positive test results is
passed on from the local to the national health department.
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of the incubation time (i.e. time period between infection and first feeling symptoms)

based on estimates using the log-normal distribution from Lauer et al. (2020).22 To cal-

culate the delay between first symptoms and cases being reported by the national public

health agency, we draw on information from the RKI dataset. We define �t = 0 as the

start of the observed outbreak which is specified as the day of the first decile of positive

cases.23 We define the period �t 2 (�7,�1) as the “private information” period, where

behavior may change due to private information about individuals getting sick. Figure 3

shows that more than 82% of individuals feels symptoms by �t = �1, but only 10% of

the cases are reported by the national health agency at that point. The “public infor-

mation” period includes the days �t 2 (0, 6), when behavior may start to change due to

excess cases being reported. Finally, we define a post period as �t 2 (7, 21), when we

expect that there is no additional information about the outbreak.24

22We use the parameter estimates in Appendix Table 2 in Lauer et al. (2020).
23The first decile is our approximation of the first day of excess positive test results (see Section 4.2).
24About 80% of observed cases have been reported by �t = 7.
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Figure 3: Timing of First Symptoms and Cases
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Notes: This figure shows the distribution of the relative date of first symptoms and positive cases
reported publicly for infections that occur at �t = �8. The relative date (�t = 0) is chosen with
respect to the first decile of the positive case information. The log-normal distribution of first
symptoms relative to the infection date is taken from Appendix Table 2 in Lauer et al. (2020).
The delay between first symptoms and positive test results reported by the national public health
agency is based on author’s calculations from RKI dataset (see Section 3).
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4.2 Identification of Outbreaks

We identify outbreaks by comparing the observed number of cases in a seven-day

period to the number of cases predicted by a simple epidemiological model. The model

used to predict the expected incidence ic,s,t (cases per 100,000 inhabitants) in county c,

state s, day-of-the-week dotwt, phase pt, and day t is:

ic,s,t =
7X

j=1

�jic,s,t�j + �i
c,dotwt,pt + �is,t + ⌘c,t, (1)

where �j captures how the incidence depends on the seven-day incidence history in the

same county. The model includes county times day-of-the-week times phase fixed e↵ects

(�i
c,dotwt,pt) and state times day fixed e↵ects (�is,t).

25 The fixed-e↵ects account for di↵er-

ences in testing regimes across counties, the incidence rate in the surrounding state, and

the e↵ect of any state-level policy changes. Importantly, individuals might expect the

incidence to increase in a county if the incidence is already high in the surrounding state.

Our procedure identifies outbreaks that are unexpected with respect to both the history

of cases in the county and the number of cases in the state.

We define an outbreak as a seven-day period where the observed incidence exceeds the

expected incidence based on our simple model (̂ic,s,t). We consider two di↵erent criteria

due to sampling variation when the expected number of cases is low. For counties where

the expected number of cases is at least five cases per day (henceforth: Small-count

Threshold), we take the ratio of the observed incidence to the predicted over seven days.

If this ratio is greater than a threshold X, then we identify an outbreak in county c in the

seven-day period (see Equation 2a, Ratio Criterion). As we are using count data, the ratio

will be sensitive to sampling variation when the expected cases are low.26 For this reason,

we use a fixed number of cases as the threshold when the expected number of cases is

25County times day-of-the-week FE are allowed to vary by phase of the epidemic in Germany (1st

wave, summer, 2nd wave) due to di↵erences in testing and reporting regimes across counties and across
phases. As Figure 1 shows, there is important day-of-the-week variation even in aggregate data.

26Consider the Poisson distribution. If the expected number of cases on a given day is five, then
observing at least twice the number of cases has a probability of 1.4%. For this reason, we fix the
threshold in terms of number of cases when the expected number of cases is five cases or lower. Five is
the number when the Poisson probability of observing twice the number of cases is at least one percent.
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below five per day on average (see Equation 2b, Fixed Criterion).27 Let Ic,s,t ⌘ ic,s,t ⇤popc

be the number of cases observed in a county, where popc is the population divided by

100,000 inhabitants. The decision rule is then

P6
j=0 ic,t+j

P6
j=0 îc,t+j

� X if
6X

j=0

Îc,t+j � 35

| {z }
Small-count Threshold| {z }

Ratio Criterion

(2a)

6X

j=0

Ic,t+j � X ⇤ 35 if
6X

j=0

Îc,t+j < 35

| {z }
Small-count Threshold| {z }

Fixed Criterion

. (2b)

In determining the threshold X, we consider di↵erent percentiles of the distribution of

the ratio
P

j=0,6 ic,t+jP
j=0,6 îc,t+j

conditional on
P

j=0,6 Îc,t+j � 35 in the data.

Equations 2a and 2b identify the seven-day period of an outbreak. We identify the

first day of excess cases (i.e. first day of the observed outbreak) as the first day out of

the seven when the number of observed cases is above the 90th percentile of the Poisson

distribution given the number of expected cases from the model. Finally, if two outbreaks

occur within six weeks of each other in the same county, we ignore the second outbreak

as it is likely part of a single large outbreak.

4.3 Event Study and Di↵erences-in-Di↵erences Designs

To investigate whether and to what extent information about local outbreaks a↵ect

the behavioral response, we use both event study and di↵erence-in-di↵erences designs.

Recall from Section 4.1, that we can define three periods during which individuals may

respond to di↵erent sources of information relative to first day of excess cases (�t = 0):

“private information period” (�t 2 (�7,�1)), “public information period” (�t 2 (0, 6)),

and the “post period” (�t 2 (7, 21)).

The main estimation equation for outcome yc,s,t is

27We also consider small-count thresholds of four and seven in our robustness exercises and it does
not a↵ect our results. See Section 5.4.
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yc,s,t =
X

k

↵kT
k
c,t + µc,nct + �c,dotwt,pt + �s,t + �0NPI c,t + ✏c,s,t, (3)

where we define the treatment variable T k
c,t di↵erently depending if we are estimating

the event study model or the di↵erence-in-di↵erences model. For the base event study

specification, the treatment variable is defined as

T k
c,t(ES) = Dc,t�k if � 21  k  21,

where Dc,t is an indicator that is 1 if it is the first day of an outbreak in county c at time

t and 0 otherwise. We normalize ↵ES
�1 = 0. In other words, all e↵ects are relative to the

day before the first day of observed excess cases. For the di↵erence-in-di↵erences model,

we aggregate the pre-period, public-information period, and the post-period,

T k
c,t(DiD) =

8
>>>><

>>>>:

P�1
j=�21 Dc,t�j if k = 1
P6

j=0 Dc,t�j if k = 2
P21

j=7 Dc,t�j if k = 3

,

where we normalize ↵DiD
1 = 0. In other words, all e↵ects are relative to the period 1 to

21 days before the first day of excess cases (pre-period).

The parameters of interest are a set of dummies ↵j indicating a change in mobility or

reproduction rate relative to the pre-period. We include county times outbreak history

fixed e↵ects µc,nct , where nct ⌘
P�22

j=�1 Dc,t�j counts the number of outbreaks that have

happened at least 21 days in the past in a county.28 We include county times day-of-

the-week times phase fixed e↵ects (�c,dotwt,pt), which accounts for seasonal and day of

the week variation in mobility at the county level. State times day fixed e↵ects (�s,t)

account for any state-level policies and seasonal variation at the state level. Finally, we

include a vector of indicators on di↵erent non-pharmaceutical interventions (NPI c,t) at

the county-day level, which accounts for policy changes that happen within states, (e.g.

28In other words, we bin the periods at the endpoints of the event windows absorbing possibly het-
erogeneous treatment e↵ects for each outbreak in a county.
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NPI’s implemented in response to the outbreak).

As outcome variables we consider within- and between-county mobility, measured as

the logarithm of the daily number of trips, and logarithm of the reproduction rate in the

county. To measure between-county mobility, we sum the number of inter-county trips

that begin or end in the county of interest.

4.4 Assessing the Identification Strategy

Identification is achieved within a county over time. The identifying assumption is

that – conditional on the set of fixed e↵ects – the timing of a local outbreak is exogenous.

Threats to identification include (1) county-specific time-varying unobserved charac-

teristics (omitted variables) that correlate with outbreaks and behavior, and (2) reverse

causality (e.g. a change in mobility patterns a↵ects local incidence rates).

Local events (e.g. carnival, seasonal work in agriculture, private celebrations) may

induce increased mobility in a particular county and thus, cause local Covid-19 outbreaks.

In the case of publicly known local events, people might perceive an increased risk of

infection prior to the event and, thus adjust their mobility in anticipation of an outbreak.

Hence, the exogeneity assumption of local outbreaks may be violated.

To tackle the concern of potential outbreak endogeneity, we first exploit that the

incubation time of Covid-19 takes on average 4 to 5 days (Gandhi et al., 2020), and

the time between first symptoms and positive test results is 2 to 7 days. Individuals

with knowledge of a local ”risky” event (e.g. wedding, religious gathering)should start to

change their behavior around the time of the event. Hence, there is plausibly a delay of

at least 7 days between a change in behavior caused by knowledge of a local event and

one induced by information from an increase in incidence rates. Hence, combining high

frequency data with disease-specific characteristics (i.e. incubation time) allows us to

disentangle changes in behavior due to a local event from ones due to information from

the reported incidence rates. Second, to identify local outbreaks we use the predictions

derived from the incidence model specified in Equation 1.29 This approach allows us to

29See Section 4.2 for a detailed description of the identification of local outbreaks.
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identify unexpected changes in the number of locally reported cases.

Finally, it is noteworthy that we control for local NPIs imposed in the aftermath

of an outbreak. For example, child care facilities and schools were closed to curb the

outbreak in a meat-processing plant in Gütersloh. Overall, we find few local NPIs were

implemented in the first three weeks after an outbreak (see Appendix Figure A5) and

controlling for NPIs has essentially no e↵ect on our results (see Section 5.2).

5 Results

In this section, we present our empirical results on unanticipated outbreaks in Ger-

many and the behavioral response to the outbreaks. Section 5.1 describes the 259 out-

breaks we identify in Germany. Section 5.2 presents our main results on the behavioral

response due to information about the outbreaks. Section 5.3 presents how the main ef-

fects vary by the history of outbreaks, the phase of the pandemic, and the characteristics

of the counties. Finally, in Section 5.4, we discuss the sensitivity of our results to using

an estimator that is robust to treatment e↵ect heterogeneity, to using di↵erent criteria

of outbreaks, and to using placebo outbreaks.

5.1 Unanticipated Covid-19 Outbreaks in Germany

We identify unanticipated outbreaks by looking for excess incidence rates relative to

expected incidence rates based on a simple model that includes lagged incidence, state

times day fixed e↵ects, and county times day-of-the-week fixed e↵ects (see Equation 1).30

Appendix Table A4 presents the estimates of the incidence rate model. The fixed e↵ects

alone explain about 74% of the variation in the incidence rates. This is not surprising

because there is a strong day-of-the-week variation in the reporting of cases and the state-

level incidence rate is a good predictor of the incidence rate in the counties. Including

state times day fixed e↵ects is important as an increase in incidence rates that can be

predicted by the incidence rate at the state level is unlikely to be unanticipated. The

30See Section 4.2 for more details.
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lagged incidence rate in a county is also an important predictor of future incidence rates

as can be seen in the second column of Appendix Table A4.31 We use the incidence rate

model to predict incidence rates in each county on each day.

We define an outbreak as an excess in the observed incidence rates compared to

the expected from our model using Equations 2a and 2b. Appendix Figure A2 shows

the distribution of the ratio of observed to expected incidence rates in the data. Our

preferred threshold is the 98th percentile (i.e. X = 1.54), which identifies 259 outbreaks

between February and November. In other words, we identify outbreaks in counties that

have more than a 54% excess in a seven-day period, or more than 54 cases when the

expected number of cases is less than 35 in a seven-day period (1.54 ⇥ 35 ⇡ 54). The

Ratio Criterion (i.e. Equation 2a) identifies 161 outbreaks and 98 are identified by the

Fixed Criterion (i.e. Equation 2b). Table A5 shows the number of outbreaks we identify

in each phase and by each criteria. More outbreaks are identified by the Ratio Criterion,

except in the summer phase when incidence rates were quite low.

To better understand how unanticipated outbreaks are identified, we present the time-

series figures for four well-known examples of outbreaks in Germany. Figure 4 displays

the daily observed cases (blue line), the daily expected cases (green line), the earliest

seven-day period that an excess is observed (grey shading), and the first day of excess

cases determined by the Poisson Threshold (purple vertical line).32

Figure 5 shows the spatial distribution of outbreaks across Germany, while Appendix

Figure A3 presents the temporal distribution of outbreaks. The outbreaks are distributed

relatively evenly across the counties of Germany and across time.

Further, we construct the distribution of the relative date of first symptoms for cases

that were reported on the first day of the observed outbreak (�t = 0). Appendix Fig-

ure A4 shows the distribution of first reported symptoms for our set of outbreaks. Most

individuals with positive cases start having symptoms in the seven days before the start of

the observed outbreak. This distribution further motivates our definition of the “private

31With the lagged incidence rates, the model explains about 78% of the variation in incidence rates.
32Perhaps the dates chosen for Gütersloh are surprising, but it is important to note that this was

a particularly large outbreak and the first day of excess cases are larger than they appear due to the
di↵erences in scale.
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Figure 4: Examples of Well-known Outbreaks in Germany

(a) March Outbreak in Heinsberg

(b) June Outbreak in Gütersloh

(c) September Outbreak in Hamm

(d) October Outbreak in Berchtesgaden

Notes: These figures show four examples of well-known outbreaks that are also identified by our
procedure. The blue time-series line shows the cases reported to the national public health institute
on each day and the green time-series line shows the cases predicted by our model. The grey shaded
area represents the seven-day period of the beginning of the outbreak and the purple vertical line
shows the first date of the outbreak identified by our procedure. All four outbreaks are identified
by the Ratio Criterion (Equation 2a).
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Figure 5: Counties with Outbreaks

� � � �

Notes: This figure shows how the outbreaks are distributed across Germany. Some counties have
more than one outbreak in the February to November period.
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information” period. In other words, the private information period is the period when

infected individuals start to have symptoms, but when there is no public information

about the outbreak yet.

Finally, we show that the outbreaks present transitory shocks–in the sense that the

relative risk of infection in an outbreak county compared to the control countries dissi-

pates after about three weeks. Appendix Figure A6 shows that the relative risk starts to

decline about 7-14 days after the outbreak, by about 21 days after the outbreak the rela-

tive risk in an outbreak county is similar to the one in the control counties, and by about

28-42 days after the outbreak the relative risk in the outbreak county is even lower than

in the control counties. This feature can be explained by the persistence in behavioral

changes due to a local outbreak (see Section 5.2).

5.2 Behavioral Responses to Outbreaks

We now study the behavioral response to the outbreaks identified in Section 5.1. We

focus on two types of outcomes. First, we have two high-frequency measures of mobility:

the number of trips within a given county and the number of trips to and from a given

county. The mobility outcomes give us high-frequency, direct measures of a particular

kind of behavior that is not directly a↵ected by our outbreak selection procedure. Of

course, there are many types of behaviors that reduce the likelihood of infection (e.g.

wearing masks, avoiding indoor meetings with large groups of people, social distancing

in public areas). Our second type of measure is the ratio of two seven-day sums of cases

in a particular county (Rct ⌘
P⌧=t

⌧=t�6 Ic,⌧
�P⌧=t�4

⌧=t�10 Ic,⌧ ), called the reproduction rate.33

While the reproduction rate will capture the overall change in risk-avoidance behaviors

of individuals, it will also be mechanically biased by the outbreak selection mechanism

during the first week of the outbreak.34 The two types of measures are complementary.

While the mobility responses have information about the response at the beginning of the

33We use the definition of the reproduction rate applied by the Robert Koch Institut (2020). Summing
cases over seven days smooths out strong day-of-the-week e↵ects that vary by county (e.g. some counties
do not report test results on Sundays).

34One can think of our outbreak selection procedure as selecting weeks where the measured reproduc-
tion rate is high.
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outbreak, both measures are informative of medium and long-run changes in behavior.

Recall that due to the progression of the disease and delays in getting tested, we can

interpret changes in mobility on di↵erent days as being driven by di↵erent sources of

information. Let the relative date be represented by �t, where �t = 0 is the first day of

excess cases of an outbreak. Individuals may reduce mobility due to private information

about a risky event (e.g. a wedding or festival) in the period�t 2 (�8,�6), due to private

information about people falling ill in the period �t 2 (�5,�1), and public information

on excess cases in the period �t 2 (0, 6).35

Our main results use an event study design to distinguish the e↵ects of di↵erent

sources of information on the behavioral response. Figure 6 presents the event study on

the e↵ect of an outbreak on the number of within-county trips, the number of between-

county trips, and the reproduction rate. We normalize the e↵ects relative to �t = �1

as we do not observe any change in the three outcomes before the start of the outbreak.

We shade the public-information periods, when individuals start learning about excess

cases. We do not find any pre-trend in the data that may be due to knowledge of a

risky event, nor do we see a significant change in mobility during the private information

period. It is not until public information of the outbreak becomes available that mobility

begins decline. The decrease in mobility plateaus after about seven days have passed

since the first day of excess cases. The e↵ects look similar for within-county travel and

between-county travel, where the e↵ect is a bit delayed and larger for between-county

trips.

We find similar results for the reproduction rate, although we cannot interpret the

estimates at the time of the outbreak. Recall from Section 4.2, that we identify outbreaks

if the observed cases over a seven day period are higher than the predicted number of cases

based on the previous seven days. In other words, as we are selecting counties and days

where Rct is high, we expect Rct to mechanically increase in the first seven days of the

outbreak. More generally, we expect the outbreak selection procedure to bias the results

on the reproduction rate in the relative periods �t 2 (�6, 15), with the bias being quite

35If a risky event is large enough, we may observe an increase in mobility at the time of the event.
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large for �t 2 (0, 6).36 Notice though that the pre-trend is quite flat for �t < �7. As in

the mobility data, we see a significant decrease in the reproduction rate after �t > 15. In

summary, we don’t find any evidence from the estimates on mobility or the reproduction

rate that individuals are anticipating the outbreaks. Moreover, the mobility data show

that individuals are quite responsive to high-frequency risk information as they start to

modify their behavior only a few days after the start of an outbreak. Finally, we find

that individuals decrease their mobility after an outbreak and this partly explains the

substantial decrease in the reproduction rate. All three figures show that the e↵ects are

quite persistent, which is something we investigate in more detail shortly.

We quantify the average e↵ect by estimating the di↵erence-in-di↵erences specification,

shown in Table 1. The estimates are normalized relative to the period �t 2 (�21,�1).

In order to understand if local NPIs are driving our results, we present results with

and without controlling for local NPIs. We find that controlling for NPIs makes little

di↵erence in our estimates.37 The average mobility e↵ect in the public-information period

is between a third to half of the full e↵ect in the post period as individuals are learning

about and adapting to the outbreak. Again, the reproduction rate is substantially higher

in the first seven days of the outbreak reflecting our selection of outbreaks. In the medium

run, unexpected outbreaks significantly decrease within- and between-county mobility by

about 2.4 percent and 2.6 percent, respectively. While this may seem like a small change,

the overall e↵ect is quite large when considering the reproduction rate. The reproduction

rate significantly declines by about 0.33 after an outbreak.38 In Table 2, we investigate

the persistence of these e↵ects by extending the window an additional three weeks.39 We

find that the e↵ects on mobility are quite persistent, where the decline in mobility has not

36The estimates will be biased downward for �t 2 (�6,�1) as you might expect from selection
since these dates are used for predicting cases and appear in the denominator of the Ratio Criterion
(see Section 4.2). The bias is expected to be large and positive in the outbreak period (�t 2 (0, 6)).
Remember the calculation of Rct includes cases in (t,t-6) in the numerator, so we expect that Rct could
be biased upwards by the selection mechanism until �t = 12. Finally, one might expect that Rct would
likewise be biased downwards for �t 2 (9, 15) as part of the outbreak is still included in the denominator
of Rct.

37Note that NPIs are set almost exclusively at the state level in Germany and, hence, the e↵ect of
NPIs are being absorbed by the state times day fixed e↵ects. Indeed, we show in Appendix Figure A5
that there is little increase in the number of NPIs after an outbreak.

38The average decline in the reproduction rate is similar if we restrict the post-period to� t 2 (16, 21).
39The corresponding event study figures can be seen in Appendix Figure A7.
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changed 42 days after an outbreak. While the decline in the reproduction rate is smaller,

the average e↵ect of a decrease of 0.25 in the reproduction rate is still substantial 42 days

after the outbreak.

One concern is that the behavioral changes are not voluntary responses, but are

driven by work-from-home policies at the firms in the county. While it is di�cult to

rule this out with our data, we investigate how the e↵ects vary by hour of the day using

the laser scanner data described in Section 3.2. To the extent that the laser scanner

data is representative of overall mobility in a county, we can investigate whether the

overall behavioral response is being driven by changes in mobility during commuting

hours. Appendix Figure A11 shows the event study pooling the day into six hour periods.

Appendix Figure A12 shows how the di↵erence-in-di↵erences estimates vary by hour of

the day. We don’t find evidence that the overall behavioral response in the laser scanner

data is being driven by changes during commuting hours.
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Figure 6: Event Studies of the Behavioral Response to Outbreaks

(a) Trips Within Outbreak County
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(b) Trips To/From Other Counties
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(c) Reproduction Rate (logRct)

��

���

�

��

�

(V
WLP

DW
HG
�(
IIH
FW
�5
HO
DW
LY
H�
WR
�W 
��

��� ��� �� � �� ��� ����

'D\V�5HODWLYH�WR�6WDUW�RI�WKH�2XWEUHDN

Notes: County-level event studies of the log number of trips taken within a county with an out-
break (Panel a), log number of trips taken between the outbreak county and other counties (Panel

b), and the log reproduction rate in a county Rct ⌘
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Panel c). The

model controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI
indicators at the county-day level (see Section 4.3 for more information). Time �t = 0 is the first
day of excess cases in the outbreak (see Section 4.2). The shaded area represents the seven-day
period when the excess of cases is observed and information about the outbreak is revealed by the
public health authorities. The dashed line in Panel c reflects the point at which the calculation of
Rct is no longer mechanically a↵ected by the outbreak selection. Event studies showing longer post
periods are shown in Appendix Figure A7.
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Table 1: Di↵erence-in-Di↵erence Estimates of the Behavioral Response to Outbreaks

Within County Between County Reproduction Rate

Public Information -0.0114⇤⇤ -0.0112⇤⇤ -0.0104⇤⇤ -0.0103⇤⇤ 0.4620⇤⇤⇤ 0.4610⇤⇤⇤

� 2 (0,6) (0.004) (0.004) (0.004) (0.004) (0.016) (0.026)
Post-Period -0.0239⇤⇤⇤ -0.0234⇤⇤⇤ -0.0266⇤⇤⇤ -0.0261⇤⇤⇤ -0.1699⇤⇤⇤ -0.1711⇤⇤⇤

� 2 (7,21) (0.005) (0.005) (0.005) (0.005) (0.014) (0.021)

Observations 140350 140350 140350 140350 100359 100359
Adj.R2. 0.994 0.994 0.992 0.992 0.187 0.164
NPI FE No Yes No Yes No Yes

Notes: This table presents the di↵erence-in-di↵erence estimates of the event studies shown in Fig-
ure 6. The dependent variables are the log number of trips taken within a county with an outbreak
(Columns 2 and 3), the log number of trips taken between the outbreak county and other counties

(Columns 4 and 5), and the log reproduction rate in a county Rct ⌘
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧

(Columns 6 and 7). Public Information refers to the seven-day period (�t 2 (0, 6)) when the excess
of cases is observed and information about the outbreak is revealed by the public health authorities.
The Post Period refers to �t 2 (7, 21), where �t = 0 is the first day of excess cases in the outbreak
(see Section 4.2). The estimates are normalized relative to the period �t 2 (�21,�1). The model
controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indi-
cators at the county-day level (see Section 4.3). Standard errors are clustered at the county level.
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 2: Comparing Short-Run and Long-Run Di↵erence-in-Di↵erence Estimates of the
Behavioral Response to Outbreaks

Within County Between County Reproduction Rate

Public Information -0.0111** -0.0109** -0.0098** -0.0097* 0.4619*** 0.4604***
� 2 (0,6) (0.0038) (0.0038) (0.0038) (0.0038) (0.0257) (0.0256)

Post Period -0.0239*** -0.0235*** -0.0261*** -0.0257*** -0.1745*** -0.1765***
�t 2 (0, 6) (0.0055) (0.0055) (0.0052) (0.0052) (0.0201) (0.0204)

Post Period -0.0257*** -0.0254*** -0.0254*** -0.0250*** -0.1033*** -0.1050***
� 2 (22,42) (0.0073) (0.0072) (0.0063) (0.0063) (0.0221) (0.0223)

Observations 140349 140349 140349 140349 100358 100358
Adj.R2. 0.994 0.994 0.992 0.992 0.163 0.164
NPI FE No Yes No Yes No Yes

Notes: This table presents the di↵erence-in-di↵erence estimates of the event studies shown in Appendix
Figure A7. The dependent variables are the log number of trips taken within a county with an outbreak
(Columns 2 and 3), the log number of trips taken between the outbreak county and other counties

(Columns 4 and 5), and the log reproduction rate in a county Rct ⌘
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Columns

6 and 7). Public Information refers to the seven-day period (�t 2 (0, 6)) when the excess of cases is
observed and information about the outbreak is revealed by the public health authorities. The Post
Period refers to�t 2 (7, 21), where�t = 0 is the first day of excess cases in the outbreak (see Section 4.2).
The estimates are normalized relative to the period �t 2 (�21,�1). The model controls for day times
state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the county-day level
(see Section 4.3). Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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5.3 Heterogeneity in Behavioral Responses

There are a number of reasons why the mobility response to an outbreak may vary

across counties and across time. Counties may di↵er in the average costs of reducing

mobility (e.g. more factory workers than programmers), mobility may expose populations

in certain counties to greater risk (e.g. higher usage of subways than cars), or the average

beliefs about the risk of the virus may vary across populations. In the following, we

provide suggestive evidence on each of the three channels.

Table 3 shows how e↵ects vary by stage of the pandemic and history of outbreaks.

It also shows how e↵ects vary with level of urbanization of the county. Table 4 shows

how e↵ects vary by continuous proxies: share of college educated, hotel beds per capita,

public transportation trips per capita, and share of voters who voted for the party AfD

in the last state election. The continuous variables are standardized with mean zero and

standard deviation one to ease interpretation and comparability of the results.

Investigating the response to information about transitory shocks allows us to pro-

vide evidence about the types of costs facing individuals as they adjust their behavior.

Columns 2-4 in Table 3 show the response for the first outbreak and then subsequent

outbreaks in a county, as well as how the response varies by phase of the pandemic.

Focusing on the first outbreak in a county, we see that mobility declines by between

2-3% in the first wave, about 1% in the summer, and about 4.5% in the second wave.

We interpret these results as showing that “pandemic fatigue” was not important in the

mobility response to unanticipated outbreaks.40 Interestingly, the mobility response for

subsequent outbreaks in the summer is 1.6-2%, and then not significant in the second

wave. That the mobility response in the second wave is strongest for the first outbreak

and consistent with zero for subsequent outbreaks is suggestive of important fixed costs

to adjusting mobility. The response in the reproduction rate is consistent with fatigue or

increasing marginal costs. The response is strongest for first outbreaks in the first wave

40The response may have been weaker during the summer as people were less attentive when the
national incidence rate was low. For example, a simple query in google trends for “rki corona” or “rki
corona fallzahlen” shows that the number of searches in Germany about the coronavirus were higher
during the first and second wave compared to the summer period, reaching four to five times higher at
the peaks in the middle of our first and third phases.
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with the reproduction rate decreasing by 0.45. The response in reproduction rate to a

first outbreak decreases to 0.38 in the summer and 0.27 in the second wave. Likewise

the response is lower for subsequent outbreaks, where it is about 0.23 in the summer and

second wave. These results along with the evidence on persistence of responses in the

previous section are suggestive of important fixed costs in changing behavior, especially

when it comes to mobility. We do find that other types of behavior, as evidenced by the

reproduction rate, may have important marginal costs that increase with the number of

shocks and the length of the pandemic.

The costs of adjusting mobility may vary if a large share of workers can work from

home, if a large share of the mobility is discretionary, or if individuals are tired of restric-

tions on mobility. We investigate each of these in turn. If the likelihood of being able to

work from home is larger for college-educated workers, then we may expect the e↵ects

to be larger in counties where the fraction of individuals with tertiary degrees is higher.

Interestingly, we do not find that the e↵ect on within-county mobility changes depends

on education. The e↵ect for between-county mobility is stronger in counties with a higher

fraction of individuals with a tertiary degree. The e↵ect is fifty percent larger in a county

with a one standard deviation higher share of tertiary degrees.

Trips taken due to tourism or business travel may be easier to reduce compared to

other kinds of trips, like commuting to work. We study how the e↵ects vary by the

importance of the travel industry in a county, proxied by hotel beds per capita. Indeed,

we find that the e↵ect of an outbreak on mobility is much larger in counties where the

travel industry is important. Counties with one standard deviation more hotel beds per

capita have mobility e↵ects that are two and a half times larger for within-county travel

and twice as large for between-county travel.

If the average risk of a trip is higher, we may expect the mobility response to be larger.

The average risk may be larger in counties with higher usage of public transportation

or in counties with a higher population density. Interestingly, as seen in Table 4, we do

not find that the mobility response depends on the number of public transportation trips

per capita. In Table 3, we separately estimate the e↵ects for four di↵erent categories of
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population density. We do find that the e↵ects are larger in “Large Cities” and do not

find a significant e↵ect in “Cities” and “Rural Areas with Small Cities”.41 Paradoxically,

we find equally large e↵ects in the ”Rural” areas—least dense category—as in “Large

Cities”. Many of the rural counties in our sample are also places with high levels of

tourism. If we control for the interaction with hotel beds per capita, we find that the

mobility response in rural areas decreases by half, while it increases in cities. We interpret

this as evidence that the increased e↵ect in rural areas is mostly due to the lower costs

of discretionary travel, while the e↵ect in cities is consistent with the increased risk of a

higher population density.

Beliefs about the risk of Covid-19 in a county may lead to stronger or weaker responses

to an outbreak. A number of studies in the US (e.g. Andersen, 2020; Allcott et al., 2020;

Barrios and Hochberg, 2020; Grossman et al., 2020; Painter and Qiu, 2020) have shown

how counties with higher Republican support were less likely to change their behavior in

response to Covid-19. Similarly in Germany, the AfD party was critical of the government

handling of Covid-19 and one may conjecture that counties with high AfD vote shares

would, likewise, respond less to an outbreak. In line with the findings in the US, we

provide evidence that the reproduction rate decreases less in counties with a larger AfD

vote share in response to an outbreak. Mobility patterns, however, are not a↵ected at a

significant level by the AfD vote share.

Finally, we separately estimate the e↵ects for the outbreaks determined by two out-

break criteria (see Section 4.2). In other words, we check to see if the response is the

same in counties with fewer than 35 expected cases at the time of the outbreak and

counties with more than 35 cases at the time of the outbreak. On the one hand, we find

that the mobility responses to outbreaks identified by the Ratio Criterion (Equation 2a)

and outbreaks identified by the Fixed Criterion (Equation 2b) are nearly the same (see

41We refer to the classification into di↵erent types of urbanization proposed by Kuhlmann (2019).
“Large Cities” denote Kreisfreie Großstädte with more 100,000 inhabitants. “Cities” present Städtische
Kreise with a population density of at least 150 inhabitants/km2 and at least 50% of the population
living in a city. “Rural Areas with Small Cities” include (i) counties with a population density less
than 150 inhabitants/km2 and at least 50% of the population living in a city and (ii) counties with a
population density of at least 100 inhabitants/km2 and less 50% of the population living in a city. “Rural
Areas” denote counties with a population density smaller than 100 inhabitants/km2 and less than 50%
of the population living in a city.
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Appendix Table A9). On the other hand, the reduction in the reproduction rate is much

larger in counties with few expected cases, -0.25 (-.45) in counties with more (less) than

35 expected cases over a seven day period at the time of an outbreak. Note that the cal-

culation of the reproduction rate only considers the cases in a given county and does not

account for across-county spread. The di↵erence in response may reflect that the actions

of individuals in a given county have a smaller measured e↵ect on the reproduction rate

when there are higher rates of infection from other counties.
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Table 3: Heterogeneity Analysis: Part I

Outbreak Number and Phase Type of Urbanization

Within Between logRct Within Between logRct Within Between logRct

Post Period - 1st Outbreak ⇥ 1st Wave -0.021* -0.028** -0.133***
(0.008) (0.009) (0.033)

Post Period - 1st Outbreak ⇥ Summer -0.013* -0.010 -0.247***
(0.006) (0.007) (0.049)

Post Period - 1st Outbreak ⇥ 2nd Wave -0.046** -0.044*** -0.202***
(0.016) (0.012) (0.036)

Post Period - Subsequent Outbreak(s) ⇥ Summer -0.016** -0.020** -0.182***
(0.006) (0.007) (0.049)

Post Period - Subsequent Outbreak(s) ⇥ 2nd Wave 0.003 -0.009 -0.126*
(0.008) (0.009) (0.050)

Post Period - 1st Outbreak ⇥ Large Cities -0.034*** -0.041*** -0.166*** -0.054*** -0.058*** -0.167***
(0.010) (0.012) (0.033) (0.011) (0.013) (0.037)

Post Period - 1st Outbreak ⇥ Cities -0.003 -0.008 -0.142*** -0.011 -0.014* -0.135***
(0.005) (0.005) (0.030) (0.007) (0.006) (0.032)

Post Period - 1st Outbreak ⇥ Rural Small Cities -0.027** -0.024* -0.181*** -0.017* -0.016 -0.177***
(0.010) (0.011) (0.046) (0.009) (0.010) (0.052)

Post Period - 1st Outbreak ⇥ Rural -0.044** -0.045*** -0.218*** -0.021 -0.027** -0.234***
(0.016) (0.012) (0.044) (0.011) (0.009) (0.050)

Observations 140350 140350 100359 140350 140350 100359 140350 140350 100359
Adj.R2. 0.994 0.992 0.163 0.994 0.992 0.162 0.994 0.992 0.164
FE Yes Yes Yes Yes Yes Yes
Period ⇥ Hotel Beds Interaction No No No No No No Yes Yes Yes

Notes: This table studies heterogeneity in the behavioral response to local outbreaks relative to the base di↵erence-in-di↵erence estimates in Table 1. Columns
2-4 consider heterogeneity by phase and whether an outbreak was the first in a county. Columns 5-10 considers heterogeneity due to the level of urbanization
of the county. The models with urbanization are estimated additionally controlling for interactions with the standardized ”hotel beds per capita” variable from
Table 4 (Columns 11-13). The Post Period refers to �t 2 (7, 21), where �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The estimates
are normalized relative to the period �t 2 (�21,�1). The estimates for the ”Public Information” period �t 2 (0, 6) and the corresponding interactions are
not shown. The model controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the county-day level (see
Section 4.3). Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 4: Heterogeneity Analysis: Part II

Tertiary School Degree Public Transport AFD Vote Share Hotel Beds Per Capita

Within Between logRct Within Between logRct Within Between logRct Within Between logRct

Post Period -0.0231*** -0.0253*** -0.1714*** -0.0235*** -0.0257*** -0.1707*** -0.0221*** -0.0249*** -0.1622*** -0.0242*** -0.0267*** -0.1714***
(0.005) (0.005) (0.021) (0.005) (0.005) (0.021) (0.005) (0.005) (0.021) (0.005) (0.005) (0.022)

Post Period⇥ Tertiary School Degree -0.0048 -0.0127** 0.0070
(0.004) (0.005) (0.017)

Post Period⇥ Public Transport 0.0013 -0.0060 0.0158
(0.005) (0.006) (0.018)

Post Period⇥ AfD Vote Share 0.0051 0.0047 0.0402
(0.007) (0.006) (0.024)

Post Period⇥ Hotel Beds per Capita -0.0395*** -0.0293*** -0.0061
(0.009) (0.006) (0.019)

Observations 140350 140350 100359 140350 140350 100359 140350 140350 100359 140350 140350 100359
Adj.R2. 0.994 0.992 0.164 0.994 0.992 0.164 0.994 0.992 0.164 0.994 0.992 0.164
FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table studies heterogeneity in the behavioral response to local outbreaks relative to the base di↵erence-in-di↵erence estimates in Table 1. Columns
2-4 consider heterogeneity by the share of individuals with a tertiary school degree in a county. Columns 5-7 consider heterogeneity by public transportation
per capita inhabitants, Columns 8-10 on the vote share for AfD in the last state elections. Columns 11-13 study di↵erences in the response to the number of
hotel beds per capita in a county. All four variables are standardized to have zero mean and standard deviation of 1.0. The Post Period refers to �t 2 (7, 21)
relative to the first day of excess cases in the outbreak (see Section 4.2). The estimates for the ”Public Information” period �t 2 (0, 6) and the corresponding
interactions are not shown. The model controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the county-day
level (see Section 4.3). Standard errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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5.4 Sensitivity Analysis

We estimate a number of alternative specifications to understand the robustness of

our results.

Alternative DiD Estimator by De Chaisemartin and d’Haultfoeuille (2020)

A fast-growing body of literature shows that two-way fixed e↵ects regressions provide

consistent estimates only under the assumption of e↵ect homogeneity (e.g. Goodman-

Bacon, 2021; Borusyak et al., 2021; Callaway and Sant’Anna, 2021; Sun and Abraham,

2021). In staggered roll-outs, already-treated units will act as controls for later-treated

units (Goodman-Bacon, 2021). If treatment e↵ects are heterogeneous over time and

across groups, two-way fixed e↵ect models provide inconsistent estimates for the average

treatment e↵ect (ATE).

To address concerns about the reliability of DiD estimators in the presence of e↵ect

heterogeneity, we replicate our findings by using the alternative DiD estimator proposed

by De Chaisemartin and d’Haultfoeuille (2020) which compares the outcome evolution of

groups being treated for the first time and not yet treated groups.

Appendix Figure A9 and Appendix Figure A10 show that our main results presented in

Section 5.2 are nearly identical to the ones produced using the alternative DiD estimator

proposed by De Chaisemartin and d’Haultfoeuille (2020). We did not expect our estimates

to have large biases in our setting for three reasons. First, we have a large number of

never treated units, where about half of the counties never experience an outbreak (see

Section 5.1). Second, our empirical strategy includes county times outbreak history fixed

e↵ects which absorb persistent county-specific behavior changes outside of the event-study

window (see Section 4.3). Third, the fraction of counties that have overlapping event

study windows (i.e. the remaining source of potential bias from e↵ect heterogeneity) is

small relative to the total number of counties in our sample.

Definition of Outbreaks We run a number of robustness checks showing that our

findings are not sensitive to the definition of outbreaks (see Section 4.2 for more infor-

mation on the definition of outbreaks).
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We vary the X-threshold (97th, 98th, and 99th percentiles, Appendix Table A11) and

the small-count threshold (four, five, and seven expected cases per day, Appendix Ta-

ble A12) for identifying outbreaks. Appendix Table A10 shows the number of outbreaks

identified using the di↵erent thresholds and for the di↵erent criteria, where the number

of outbreaks identified varies from 140 to 353. We estimate the di↵erence-in-di↵erences

model using each of these sets of outbreaks in Appendix Table A11 and Appendix Ta-

ble A12. Lowering the X-threshold leads to slightly lower estimates for the e↵ect, but

the di↵erence with preferred specification is negligible. Increasing the X-threshold on

the other hand, leads to a substantial increase in the estimated e↵ects. The higher

X-threshold only includes larger outbreaks, and so it may not be surprising that the

responses are larger in this case (Appendix Table A11). The estimated e↵ect is smaller

when lowering the small-sample threshold, this is expected as we are introducing some

outbreaks that are the being identified from the small-count noise. The estimated e↵ects

when raising the small-count threshold are nearly the same as our preferred specification

(Appendix Table A12).

Placebo We perform a placebo study, where, for each outbreak in the data, we replace

the county identifier with a randomly chosen county and then repeat the analysis. Ap-

pendix Figure A8 shows the event study analysis using placebo outbreaks and Table A8

show the Di↵erence-in-Di↵erence estimates. We do not find any e↵ect in the placebo

outbreak sample.

6 Conclusion

This paper underscores the importance of public information as a policy tool for

mitigating public health risks. We study this in the context of Covid-19, where behavioral

responses have been important to contain the spread of the virus and, hence, the costs

of the pandemic. To identify behavioral responses induced by public information versus

other sources, we combine high-frequency data with facts about the incubation period

of Covid-19 and reporting time in Germany. We first develop a simple epidemiological
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model that allows us to identify unexpected local outbreaks by comparing the observed

number of cases to the expected number. Based on the model, we find 259 outbreaks

at the county level that are distributed relatively evenly across the counties in Germany

and across time. Using an event-study design on local unexpected outbreaks, we find

that mobility significantly decreases by about 2.5% in response to public information

about the outbreak, while private knowledge about people falling sick does not appear

to cause a change in behavior. We also find substantial changes in the reproduction

rate after an outbreak of about 0.33. Both behavioral responses are quite persistent

and depend on the history of outbreaks in a county and the stage of the pandemic. In

addition, there are important heterogeneities in the behavioral responses, where responses

are stronger in counties with high population density, with more hotels per capita, and

with a higher share of college educated. These findings are consistent with behavioral

changes depending on the relative risk and costs of changing mobility.

This paper demonstrates that providing high-frequency localized information on

health risks is an important tool in the toolbox of public health policy makers. Indi-

viduals quickly respond to unanticipated changes in risk levels and the responses persist

even when the change in relative risk levels dissipates. The persistence of behavioral

changes points to important fixed costs, which may be behavioral in nature (e.g. habit

formation), may involve private costs (e.g. setting up a home o�ce) or may be due to

institutional rule changes (e.g. employers changing work-from-home policies). Under-

standing the sources of these fixed costs is an important element in designing e↵ective

public health policies. The presence of fixed costs also means that researchers need to ac-

count for the history of policies and shocks experienced by individuals when constructing

models of risk-avoidance behavior. Likewise, attempts to understand the e↵ectiveness of

di↵erent policies will depend on these histories and may help explain the large variation

in estimates of NPIs in di↵erent countries and contexts.
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A Appendix

A.1 Summary Statistics

Table A1: Summary Statistics Part I: Infections and Trips

New infections, mean (std.dev.) Trips per capita, mean (std.dev.)
State # of counties Phase Obs Cases Incidence Outgoing Incoming Internal

All states 401 before 20,050 0.68 (0.29) 0.68 (0.29) 1.46 (0.41)
1st wave 28,070 5.79 (13.25) 2.83 (5.18) 0.50 (0.26) 0.50 (0.26) 1.24 (0.39)
summer 61,353 2.15 (6.76) 0.89 (1.94) 0.68 (0.28) 0.68 (0.28) 1.54 (0.48)

2nd wave 36,892 39.57 (73.07) 18.21 (17.63) 0.61 (0.28) 0.61 (0.28) 1.46 (0.45)

Baden-Würtemberg 44 before 2,200 0.62 (0.26) 0.62 (0.26) 1.55 (0.40)
1st wave 3,080 10.51 (15.05) 4.47 (6.27) 0.44 (0.23) 0.44 (0.23) 1.29 (0.37)
summer 6,732 2.64 (4.43) 1.00 (1.47) 0.59 (0.23) 0.59 (0.23) 1.52 (0.38)

2nd wave 4,048 47.47 (45.58) 18.66 (14.32) 0.54 (0.25) 0.54 (0.24) 1.52 (0.43)

Bayern 96 before 4,800 0.91 (0.33) 0.90 (0.33) 1.42 (0.45)
1st wave 6,720 6.40 (14.60) 4.71 (7.87) 0.64 (0.32) 0.63 (0.32) 1.16 (0.41)
summer 14,688 1.76 (6.15) 1.12 (2.59) 0.89 (0.31) 0.89 (0.30) 1.50 (0.53)

2nd wave 8,832 29.59 (50.69) 20.95 (17.92) 0.81 (0.34) 0.81 (0.33) 1.43 (0.45)

Berlin 1 before 50 0.22 (0.04) 0.22 (0.03) 1.78 (0.29)
1st wave 70 84.97 (76.02) 2.33 (2.09) 0.16 (0.05) 0.16 (0.05) 1.35 (0.38)
summer 153 58.86 (52.57) 1.61 (1.44) 0.22 (0.04) 0.21 (0.03) 1.56 (0.28)

2nd wave 92 903.95 (501.08) 24.80 (13.75) 0.19 (0.04) 0.18 (0.04) 1.46 (0.30)

Brandenburg 18 before 900 0.74 (0.26) 0.72 (0.24) 1.40 (0.48)
1st wave 1,260 2.33 (5.19) 1.43 (2.89) 0.59 (0.24) 0.59 (0.24) 1.30 (0.47)
summer 2,754 0.52 (1.32) 0.34 (0.86) 0.86 (0.26) 0.86 (0.26) 1.75 (0.64)

2nd wave 1,656 23.51 (26.81) 17.48 (20.80) 0.73 (0.25) 0.73 (0.25) 1.72 (0.65)

Bremen 2 before 100 0.57 (0.14) 0.56 (0.13) 1.52 (0.29)
1st wave 140 6.46 (12.65) 1.40 (2.28) 0.43 (0.17) 0.42 (0.16) 1.21 (0.32)
summer 306 5.11 (7.63) 1.41 (2.06) 0.52 (0.14) 0.52 (0.14) 1.40 (0.26)

2nd wave 184 60.88 (67.49) 14.79 (10.71) 0.49 (0.17) 0.49 (0.16) 1.35 (0.30)

Hamburg 1 before 50 0.32 (0.06) 0.32 (0.05) 1.73 (0.31)
1st wave 70 69.36 (60.72) 3.77 (3.30) 0.22 (0.09) 0.22 (0.08) 1.28 (0.33)
summer 153 20.89 (23.52) 1.13 (1.28) 0.29 (0.06) 0.28 (0.05) 1.51 (0.29)

2nd wave 92 319.12 (158.07) 17.33 (8.59) 0.25 (0.06) 0.25 (0.06) 1.42 (0.32)

Hessen 26 before 1,300 0.60 (0.22) 0.61 (0.22) 1.40 (0.37)
1st wave 1,820 4.61 (6.89) 1.97 (2.91) 0.44 (0.20) 0.45 (0.20) 1.18 (0.33)
summer 3,978 2.72 (5.04) 1.03 (1.54) 0.58 (0.19) 0.58 (0.19) 1.44 (0.36)

2nd wave 2,392 49.97 (52.73) 19.83 (15.60) 0.52 (0.19) 0.52 (0.19) 1.37 (0.38)

Mecklenburg-Vorpommern 8 before 400 0.50 (0.22) 0.49 (0.22) 1.72 (0.39)

50



1st wave 560 1.24 (2.13) 0.67 (1.28) 0.41 (0.21) 0.40 (0.21) 1.53 (0.41)
summer 1,224 0.43 (1.21) 0.22 (0.68) 0.69 (0.24) 0.68 (0.25) 2.50 (0.91)

2nd wave 736 15.04 (17.74) 7.49 (8.72) 0.53 (0.24) 0.52 (0.25) 2.02 (0.68)

Niedersachsen 45 before 2,250 0.60 (0.22) 0.60 (0.22) 1.47 (0.39)
1st wave 3,150 3.28 (7.55) 1.58 (2.80) 0.46 (0.21) 0.46 (0.21) 1.25 (0.37)
summer 6,885 1.49 (4.08) 0.72 (1.57) 0.60 (0.21) 0.60 (0.21) 1.52 (0.41)

2nd wave 4,140 21.52 (34.56) 11.40 (11.57) 0.54 (0.22) 0.54 (0.22) 1.46 (0.42)

Nordrhein-Westfalen 53 before 2,650 0.53 (0.16) 0.53 (0.15) 1.61 (0.34)
1st wave 3,710 8.92 (13.33) 2.65 (3.58) 0.38 (0.16) 0.39 (0.16) 1.32 (0.33)
summer 8,109 4.67 (9.01) 1.35 (2.47) 0.50 (0.14) 0.50 (0.14) 1.56 (0.32)

2nd wave 4,876 66.93 (59.47) 19.86 (13.85) 0.44 (0.14) 0.44 (0.14) 1.43 (0.35)

Rheinland-Pfalz 36 before 1,800 0.79 (0.27) 0.79 (0.26) 1.26 (0.33)
1st wave 2,520 2.41 (3.83) 2.07 (3.12) 0.59 (0.25) 0.59 (0.25) 1.07 (0.28)
summer 5,508 0.87 (1.96) 0.71 (1.46) 0.80 (0.24) 0.80 (0.23) 1.32 (0.34)

2nd wave 3,312 18.87 (19.88) 16.38 (14.65) 0.70 (0.24) 0.70 (0.24) 1.22 (0.35)

Saarland 6 before 300 0.61 (0.17) 0.61 (0.17) 1.47 (0.31)
1st wave 420 6.05 (11.36) 3.24 (4.52) 0.43 (0.18) 0.43 (0.18) 1.16 (0.30)
summer 918 0.90 (1.62) 0.54 (0.95) 0.59 (0.17) 0.59 (0.17) 1.44 (0.30)

2nd wave 552 30.23 (32.74) 17.53 (12.92) 0.54 (0.18) 0.54 (0.18) 1.39 (0.31)

Sachsen 13 before 650 0.49 (0.18) 0.49 (0.18) 1.54 (0.37)
1st wave 910 5.20 (7.78) 1.66 (2.43) 0.39 (0.19) 0.39 (0.19) 1.36 (0.38)
summer 1,989 1.39 (2.94) 0.45 (1.02) 0.53 (0.19) 0.53 (0.20) 1.66 (0.39)

2nd wave 1,196 108.95 (103.10) 36.29 (34.21) 0.46 (0.20) 0.46 (0.20) 1.59 (0.44)

Sachsen-Anhalt 14 before 700 0.53 (0.21) 0.54 (0.21) 1.65 (0.46)
1st wave 980 1.60 (3.15) 0.97 (1.77) 0.45 (0.20) 0.45 (0.20) 1.51 (0.43)
summer 2,142 0.53 (1.45) 0.31 (0.78) 0.58 (0.20) 0.59 (0.21) 1.79 (0.46)

2nd wave 1,288 22.01 (25.58) 13.86 (15.46) 0.53 (0.22) 0.54 (0.22) 1.73 (0.49)

Schleswig-Holstein 15 before 750 0.59 (0.19) 0.58 (0.18) 1.38 (0.30)
1st wave 1,050 2.58 (4.77) 1.21 (1.99) 0.43 (0.19) 0.43 (0.19) 1.17 (0.31)
summer 2,295 0.93 (2.16) 0.49 (1.33) 0.61 (0.19) 0.60 (0.18) 1.55 (0.50)

2nd wave 1,380 14.71 (17.52) 7.04 (7.00) 0.53 (0.19) 0.52 (0.19) 1.38 (0.38)

Thüringen 23 before 1,150 0.60 (0.21) 0.60 (0.21) 1.35 (0.43)
1st wave 1,610 1.45 (2.87) 1.52 (2.92) 0.48 (0.21) 0.49 (0.21) 1.22 (0.39)
summer 3,519 0.51 (1.38) 0.58 (1.69) 0.63 (0.21) 0.63 (0.22) 1.43 (0.42)

2nd wave 2,116 18.66 (22.98) 20.67 (25.26) 0.57 (0.23) 0.58 (0.23) 1.41 (0.43)

Notes: The table reports the mean and standard deviation of the set of variables included in the analysis. The data is pooled over the period of obser-
vation and counties (N=401). Incidence is defined as the daily number of cases per 100,000 inhabitants.
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Table A2: Summary Statistics Part II: Additional Variables

Mean S.D.

No. of Beds in Hotels per Capita 4.26 5.24
Public Transport per Capita 0.29 0.09
Share of Tertiary Degree 11.85 3.23
Vote Share AfD 12.47 6.15
Large Cities 0.17 0.37
Cities 0.33 0.47
Rural Areas w/ Small Cities 0.25 0.43
Rural Areas 0.25 0.44

Notes: This table reports mean and standard deviation of variables used in the hetero-
geneity analysis. The data are cross-sectional and provided at the county level.
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Table A3: Summary Statistics Part III: Non-Pharmaceutical Interventions

1st Wave Summer 2nd Wave

Mean SD Mean SD Mean SD

Child Care, School and Work
Day Care 0.35 0.48 0.66 0.47 0.86 0.35
Primary Schools 0.42 0.49 0.89 0.31 0.91 0.29
Secondary Schools 0.35 0.48 0.91 0.28 0.92 0.27
Workplace 0.07 0.26 0.24 0.42 0.13 0.34

Travel
Travel Restrictions Domestic 0.12 0.33 0.13 0.34 0.00 0.00
Travel Restrictions Foreign 0.04 0.20 0.00 0.00 0.00 0.00
Public Transport 0.00 0.00 0.00 0.00 0.00 0.00

General NPIs
Mask Mandate 0.09 0.29 0.99 0.10 1.00 0.00
Social Distancing 0.45 0.50 0.87 0.34 0.95 0.22
Exit Restrictions 0.15 0.35 0.05 0.21 0.09 0.29
Contacts - Private Space 0.19 0.39 0.57 0.49 0.76 0.42
Contacts - Public Space 0.41 0.49 0.99 0.07 0.98 0.13
Testing 0.02 0.14 0.12 0.33 0.08 0.27

Service, Hotels, Restaurants
Services 0.52 0.50 0.99 0.07 0.99 0.07
Hotels 0.52 0.50 0.96 0.20 0.93 0.25
Restaurants 0.57 0.50 1.00 0.00 0.97 0.18
Retails 0.49 0.50 0.91 0.28 0.97 0.16

Events, Sports and Culture
Events Indoor 0.56 0.50 0.99 0.08 0.98 0.13
Events Outdoor 0.57 0.50 0.97 0.17 0.99 0.11
Night Life 0.55 0.50 1.00 0.00 1.00 0.02
Sports Indoor 0.55 0.50 0.96 0.20 0.96 0.19
Sports Outdoor 0.55 0.50 0.94 0.23 0.93 0.25
Culture and Education 0.54 0.50 0.96 0.20 0.97 0.16

Observations 28070 61353 36892

Notes: This table reports mean and standard deviation of the NPIs considered in this
study, by phase of the pandemic. The variables present the fraction of days a particular
NPI was in place.
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Figure A1: Periods of the Covid-Pandemic in Germany

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec

Pre-Covid

Period
Start

of

Pandemic

1st NPIs
1.3 - 22.3

Lockdown

23.3 - 6.5
Hotspot Strategy

Partial lift
of NPIs
7.5 - 1.11

Lockdown

light

2.11 -

Notes: The figure illustrates di↵erent periods of political response to the spread of Covid-19 in
Germany.

54



A.2 Supplementary Information on the Identification of Out-

breaks

Table A4: Incidence Model

Incidence Ratest

Incidence Ratet-1 0.1465***
(0.011)

Incidence Ratet-2 0.0921***
(0.011)

Incidence Ratet-3 0.0956***
(0.009)

Incidence Ratet-4 0.0945***
(0.011)

Incidence Ratet-5 0.0709***
(0.011)

Incidence Ratet-6 0.0971***
(0.009)

Incidence Ratet-7 0.0468***
(0.012)

Observations 131127 131127
Adj.R2. 0.742 0.777
FE Yes Yes

Notes: The table displays the estimates of Equation 1 in the text. Column 1 includes
county times day-of-the-week times phase fixed e↵ects (�i

c,dotwt,pt
) and state times day

fixed e↵ects (�ist). In Column 2, we additionally control for lagged incidence rates.
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Table A5: Summary of Outbreaks Identified

No. of Outbreaks

Total Identified by Eq. 2a Identified by Eq. 2b

1st Wave 105 77 28

Summer 80 36 44

2nd Wave 74 48 26

Total 259 161 98

Notes: The table summarizes the number of outbreaks per phase of the pandemic. Column 1
presents the total number of outbreaks per phase. Column 2 and 3 display the number of outbreaks
identified by Equation 2a and Equation 2b, respectively.

Table A6: Summary Statistics Part V: Number of Outbreaks per Phase and Outbreak
Number

1st Wave Summer 2nd Wave Total

1st Outbreak 104 43 57 204

2nd Outbreak 1 34 12 47

3rd Outbreak 0 3 5 8

Total 105 80 74 259

Notes: The table summarizes the number of first, second, and third outbreaks within a county per
phase of the pandemic.
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Table A7: Summary Statistics Part IV: Comparison of Counties with at least one Out-
break to Counties without Outbreak

With Outbreak Without Outbreak

Mean SD Mean SD P-Value

Population Size 226064.33 174914.58 187320.25 298207.18 0.11
Population Density 605.36 783.91 459.59 600.37 0.04
Large Cities 0.22 0.42 0.11 0.32 0.00
Cities 0.34 0.48 0.31 0.46 0.48
Rural with Small Cities 0.21 0.41 0.29 0.46 0.05
Rural 0.23 0.42 0.28 0.45 0.18
Share with Tertiary Degree 12.08 3.63 11.62 2.76 0.16
Mean Age 44.15 1.82 44.94 2.03 0.00
Unemployment Rate 5.31 2.41 5.41 2.42 0.67

Observations 204 197 401

Notes: The table summarizes the mean and standard deviation in counties with at least one out-
break (Columns 1 and 2) and in counties without any identified outbreak (Columns 3 and 4).
Column 5 reports the p-value of the di↵erences in means between counties with at least one out-
break and ones without any outbreak.

Figure A2: Distribution of the 7-Day Incidence Rate Relative to the Expected 7-day
Incidence Rate
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Notes: The figure illustrates the empirical distribution of the 7-day incidence rates relative to the
expected 7-day incidence rates if the number of expected cases within that 7 day window exceeds
35. The red line displays the 98th percentile threshold.

57



Figure A4: Distribution of First Symptoms
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Notes: This figure shows the distribution of the relative date of first symptoms for the cases that
were reported on the first day of the observed outbreaks (�t = 0). Note that the relative date
includes a two-day delay between individuals getting tested and the cases being publicly reported
by the national public health agency (See Section 3).

Figure A3: Distribution of Outbreaks, per Day
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Notes: The figure illustrates the number of outbreaks per day. The red dash vertical lines represent
the classification into the phases of the pandemic.
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A.3 Sensitivity of Results

Figure A5: Event Study of the Local Policy Responses to Outbreaks
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Notes: County-level event study of the number of local NPIs implemented in a county. The model
controls for day times state fixed e↵ects, and county times day-of-the-week fixed e↵ects (see Sec-
tion 4.3 for more information). Time �t = 0 is the first day of excess cases in the outbreak (see
Section 4.2). The shaded area represents the seven-day period when the excess of cases is observed
and information about the outbreak is revealed by the public health authorities.

Figure A6: Event Study of the Incidence Rates to Outbreaks
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Notes: County-level event study of incidence rates (i.e. cases per 100,000 inhabitants) in a county.
The model controls for day times state fixed e↵ects, and county times day-of-the-week fixed e↵ects
(see Section 4.3 for more information). Time �t = 0 is the first day of excess cases in the outbreak
(see Section 4.2). The shaded area represents the seven-day period when the excess of cases is
observed and information about the outbreak is revealed by the public health authorities.
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Figure A7: Event Studies of the Behavioral Response to Outbreaks - Long Post-Outbreak
Window

(a) Trips Within Outbreak County
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(b) Trips To/From Other Counties
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(c) Reproduction Rate (logRct)
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Notes: County-level event studies of the log number of trips taken within a county with an outbreak
(Panel a), log number of trips taken between the outbreak county and other counties (Panel b),

and log of the reproduction rate in a county log(Rct) = log
⇣P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧
⌘
(Panel c).

The model controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and
NPI indicators at the county-day level (see Section 4.3). Time �t = 0 is the first day of excess
cases in the outbreak (see Section 4.2). The shaded area represents the seven-day period when the
excess of cases is observed and information about the outbreak is revealed by the public health
authorities. The dashed line in Panel c reflects the point at which the calculation of Rct is no longer
mechanically a↵ected by the outbreak selection.
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Table A8: Di↵erence-in-Di↵erence Estimates of the Behavioral Response to Placebo Out-
breaks

Within County Between County logRct

Post-Period 0.0016 -0.0013 -0.0296
(0.004) (0.004) (0.023)

Observations 140350 140350 100358
Adj.R2. 0.994 0.992 0.149
NPI FE Yes Yes Yes

Notes: This table presents the di↵erence-in-di↵erence estimates of the event studies using ”Placebo”
Outbreaks shown in Appendix Figure A8. Placebo outbreaks are assigned the same dates as actual
outbreaks, but are randomly assigned to a di↵erent county. The dependent variables are the log
number of trips taken within a county with an outbreak (Column 2), the log number of trips taken
between the outbreak county and other counties (Column 3), and the log reproduction rate in a

county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Column 4). The Post Period refers to �t 2 (7, 21),

where �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The estimates
are normalized relative to the period �t 2 (�21,�1). The estimates for the ”Public Information”
period �t 2 (0, 6) are not shown. The model controls for day times state fixed e↵ects, county times
day-of-the-week fixed e↵ects, and NPI indicators at the county-day level (see Section 4.3). Standard
errors are clustered at the county level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure A8: Event Studies of the Behavioral Response to Placebo Outbreaks

(a) Trips Within Outbreak County
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(b) Trips To/From Other Counties
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(c) Reproduction Rate (logRct)
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Notes: County-level event studies using ”placebo” outbreaks. Placebo outbreaks are assigned the
same dates as actual outbreaks, but are randomly assigned to a di↵erent county. The panels show
the log number of trips taken within a county with a placebo outbreak (Panel a), log number of trips
taken between the placebo outbreak county and other counties (Panel b), and the log reproduction

rate in a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Panel c). The model controls for day times state

fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the county-day level
(see Section 4.3). Time �t = 0 is the first day of excess cases of the outbreak (see Section 4.2). The
shaded area represents the seven-day period when the excess of cases is observed and information
about the outbreak would be revealed by the public health authorities. The dashed line in Panel c
reflects the point at which the calculation of Rct would no longer be mechanically a↵ected by the
outbreak selection.
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Figure A9: Event Studies of the Behavioral Response to Outbreaks
De Chaisemartin and d’Haultfoeuille (2020) Estimator

(a) Trips Within Outbreak County
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(b) Trips To/From Other Counties
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(c) Reproduction Rate (logRct)
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Notes: County-level event studies of the log number of trips taken within a county with an outbreak
(Panel a), log number of trips taken between the outbreak county and other counties (Panel b), and

the log reproduction rate in a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Panel c). The outcomes

are first regressed on controls for day times state fixed e↵ects, county times day-of-the-week fixed
e↵ects, and NPI indicators at the county-day level (see Section 4.3). The residuals of the regression
are then used as the dependent variable in the De Chaisemartin and d’Haultfoeuille (2020) estimator
(see Section 5.4). Time �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The
shaded area represents the seven-day period when the excess of cases is observed and information
about the outbreak is revealed by the public health authorities. The dashed line in Panel c reflects
the point at which the calculation of Rct is no longer mechanically a↵ected by the outbreak selection.
Event studies showing longer post periods are shown in Appendix Figure A10.
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Figure A10: Event Studies of the Behavioral Response to Outbreaks
De Chaisemartin and d’Haultfoeuille (2020) Estimator - Long Post-Outbreak Window

(a) Trips Within County
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(b) Trips To/From Other Counties
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(c) Reproduction Rate (logRct)
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Notes: County-level event studies of the log number of trips taken within a county with an outbreak
(Panel a), log number of trips taken between the outbreak county and other counties (Panel b), and

the log reproduction rate in a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Panel c). The outcomes

are first regressed on controls for day times state fixed e↵ects, county times day-of-the-week fixed
e↵ects, and NPI indicators at the county-day level (see Section 4.3). The residuals of the regression
are then used as the dependent variable in the De Chaisemartin and d’Haultfoeuille (2020) estimator
(see Section 5.4). Time �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The
shaded area represents the seven-day period when the excess of cases is observed and information
about the outbreak is revealed by the public health authorities. The dashed line in Panel c reflects
the point at which the calculation of Rct is no longer mechanically a↵ected by the outbreak selection.
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Figure A11: Event Studies of the Behavioral Response to Outbreaks - Pedestrian Data

(a) Between 0:00 and 6:00
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(b) Between 6:00 and 12:00
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(c) Between 12:00 and 18:00
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(d) Between 18:00 and 24:00
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Notes: City-level event studies of the log number of pedestrians within a six-hour window in cities
with an outbreak. The model controls for day times region fixed e↵ects, city location times day-of-
the-week fixed e↵ects, and NPI indicators at the county-day level (see Section 4.3). Time �t = 0 is
the first day of excess cases in the outbreak (see Section 4.2). The shaded area represents the seven-
day period when the excess of cases is observed and information about the outbreak is revealed by
the public health authorities.
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Figure A12: Di↵erence-in-Di↵erences Estimates of the Behavioral Response to Outbreaks
by Hour of the Day
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Notes: This figure presents the di↵erence-in-di↵erence estimates of the event studies shown in Appendix
Figure A11. The dependent variable is the log number of pedestrians passing by a city location in a city
with an outbreak. The Post Period refers to �t 2 (7, 21), where �t = 0 is the first day of excess cases
in the outbreak (see Section 4.2). The estimates are normalized relative to the period �t 2 (�21,�1).
The model controls for day times region fixed e↵ects, city-location times day-of-the-week fixed e↵ects,
and NPI indicators at the county-day level (see Section 4.3). Standard errors are clustered at the city
level.
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Table A9: Outbreaks identified by Ratio/Fixed Criteria

Within Between logRct

Post Period ⇥ Ratio Criterion (Eq. 2a) -0.023** -0.027*** -0.121***
(0.007) (0.007) (0.021)

Post Period ⇥ Fixed Criterion (Eq. 2b) -0.023*** -0.024*** -0.256***
(0.005) (0.006) (0.038)

Observations 140350 140350 100359
Adj.R2. 0.994 0.992 0.164
FE Yes Yes Yes

Notes: This table compares the behavioral response to di↵erent definitions of outbreaks relative
to the base di↵erence-in-di↵erence estimates in Table 1. The dependent variables are the log
number of trips taken within a county with an outbreak (Column 2), the log number of trips taken
between the outbreak county and other counties (Column 3), and the log reproduction rate in

a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Column 4). The first row captures the response to

outbreaks identified by the Ratio Criterion (Equation 2a) and the second row captures the response
to outbreaks identified by the Fixed Criterion (Equation 2b). The Post Period refers to �t 2 (7, 21),
where �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The estimates are
normalized relative to the period �t 2 (�21,�1). The estimates for the ”Public Information”
period �t 2 (0, 6) and the corresponding interactions are not shown. The model controls for
day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the
county-day level (see Section 4.3). Standard errors are clustered at the county level. * p < 0.05, **
p < 0.01, *** p < 0.001
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Table A10: Sensitivity Analysis: Description of Outbreaks

Main Specification Change in Sum-Count Threshold Change in X-Threshold

28 49 97th 99th

1st wave 105 (77, 28) 103 (74, 29) 98 (69, 29) 137 (104, 33) 61 (45, 16)

Summer 80 (36, 44) 98 (45, 53) 52 (23, 29) 101 (47, 54) 41 (15, 26)

2nd wave 74 (48, 26) 72 (59, 13) 81 (56, 25) 115 (85, 30) 38 (23, 15)

Total 259 (161, 98) 273 (178, 95) 231 (148, 83) 353 (236, 117) 140 (83, 57)

Notes: The table summarizes the number of outbreaks per phase of the pandemic. The first number in the bracket refers to the number identified by
Equation 2a and the second is identified by Equation 2b, respectively.
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Table A11: Sensitivity Analysis: Changing the X-Threshold

97th Percentile 98th Percentile 99th Percentile

Within Between logRct Within Between logRct Within Between logRct

Post Period -0.0208*** -0.0233*** -0.1593*** -0.0234*** -0.0261*** -0.1711*** -0.0290*** -0.0364*** -0.1669***
(0.004) (0.004) (0.017) (0.005) (0.005) (0.021) (0.008) (0.008) (0.033)

Observations 140350 140350 100358 140350 140350 100359 140350 140350 100359
Adj.R2. 0.994 0.992 0.163 0.994 0.992 0.164 0.994 0.991 0.158
FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table compares the behavioral response using di↵erent definitions of outbreaks relative to the base di↵erence-in-di↵erence estimates in
Table 1. Columns 2-4 (5-7) present results defining the X-threshold by the 97th (99th) percentile (i.e. X-Threshold), where the default is the 98th

percentile. The dependent variables are the log number of trips taken within a county with an outbreak (Column 2), the log number of trips taken

between the outbreak county and other counties (Column 3), and the log reproduction rate in a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Column 4).

The Post Period refers to �t 2 (7, 21), where �t = 0 is the first day of excess cases in the outbreak (see Section 4.2). The estimates are normalized
relative to the period �t 2 (�21,�1). The estimates for the ”Public Information” period �t 2 (0, 6) and the corresponding interactions are not
shown. The model controls for day times state fixed e↵ects, county times day-of-the-week fixed e↵ects, and NPI indicators at the county-day level (see
Section 4.3). * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A12: Sensitivity Analysis: Changing the Small-Count Threshold

P
j=0,6 Îc,t+j 7 28

P
j=0,6 Îc,t+j 7 35

P
j=0,6 Îc,t+j 7 49

Within Between logRct Within Between logRct Within Between logRct

Post Period -0.0183*** -0.0224*** -0.1699*** -0.0234*** -0.0261*** -0.1711*** -0.0197*** -0.0245*** -0.1551***
(0.005) (0.005) (0.022) (0.005) (0.005) (0.021) (0.006) (0.005) (0.021)

Observations 140350 140350 100359 140350 140350 100359 140350 140350 100359
Adj.R2. 0.994 0.992 0.167 0.994 0.992 0.187 0.994 0.991 0.158
FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table compares the behavioral response using di↵erent definitions of outbreaks relative to the base di↵erence-in-di↵erence estimates in
Table 1. Columns 2-4 (5-7) summarize results when changing the decision rule such that the expected number of cases must be below 28 (49) within
a week (i.e. Small-Count Threshold), where the default threshold is 35 expected cases per week. The dependent variables are the log number of trips
taken within a county with an outbreak (Column 2), the log number of trips taken between the outbreak county and other counties (Column 3), and

the log reproduction rate in a county Rct =
P⌧=t

⌧=t�6 Ic,⌧
.P⌧=t�4

⌧=t�10 Ic,⌧ (Column 4). The Post Period refers to �t 2 (7, 21), where �t = 0 is the

first day of excess cases in the outbreak (see Section 4.2). The estimates are normalized relative to the period �t 2 (�21,�1). The estimates for the
”Public Information” period �t 2 (0, 6) and the corresponding interactions are not shown. The model controls for day times state fixed e↵ects, county
times day-of-the-week fixed e↵ects, and NPI indicators at the county-day level (see Section 4.3). Standard errors are clustered at the county level. *
p < 0.05, ** p < 0.01, *** p < 0.001
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