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Abstract

Brokesova, Deck and Peliova [Int. J. Ind. Organ. 37 (2014) 229-237] have shown
that comparative static results from two-period behavior-based pricing models hold
in laboratory experiments, but they observed significant differences from point pre-
dictions. We report findings in conformity with these point predictions throughout a
uniform pricing benchmark, a replication of Brokesova, Deck and Peliova’s behavior-
based pricing treatment and a follow-up experiment. Reference dependence seems to
shift participants’ second-period pricing behavior upwards. A post hoc analysis shows
that considering myopic consumers instead of strategic consumers explains a downward
shift of first-period prices and rationalizes the findings of Brokesova, Deck and Peliova.
Volatile price levels affect price-based welfare measures such as sellers’ profits and cus-
tomers’ total costs. We show that transport costs serve as a robust welfare measure,
alleviating the impact of distorted prices. These findings are relevant for the design of
experiments and when assessing the efficiency of experimental markets.
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1 Introduction

The majority of papers on behavior-based pricing originated from Fudenberg and Tirole
(2000, henceforth F&T). Most commonly, the models in these papers are characterized by
a two-period structure, where consumers are served by two sellers at uniform prices in the
first period and at differentiated prices in the second period. The second-period prices
are differentiated according to the first-period purchasing decisions of consumers. Among
these papers is Chen and Pearcy (2010) who study the role of varying degrees of preference
dependence and price pre-commitment. Brokesova et al. (2014, henceforth BDP) implement
the model of Chen and Pearcy (2010) experimentally by varying the ability to price pre-
commit and the persistence of preferences. Their first case directly corresponds to the
simple short-term contracts with independent preferences from F&T, while their second case
corresponds to poaching under short-term contracts (behavior-based pricing) from F&T.

With their results BDP support the comparative static predictions of Fudenberg and
Tirole (2000) and Chen and Pearcy (2010). However, they encounter discrepancies between
the models’ point predictions and their findings. BDP’s observed profits and customer
costs are driven by the skewed price levels and predominantly do not reflect the theoretical
predictions either. This paper aims to clarify two issues. First, we want to explore why point
the predictions for prices do not hold and whether there are circumstances under which they
do. Second, we want to show that transport costs are a more appropriate welfare measure
whenever price predictions do not hold, albeit comparative static results do.

We introduce a benchmark uniform pricing treatment following F&T for which we ob-
serve convergence towards price predictions in both periods. This contrasts the first case
of BDP, where first-period prices are similar to our experiment, while participants chose
lower than predicted second-period prices. In our second treatment, where behavior-based
pricing is permitted, we observe that first-period prices converge towards price predictions
which contrasts BDP’s second case, while second-period prices diverge from price predic-
tions in line with BDP. In a follow-up experiment we only consider the second period, using
simulated first-period cutoffs. There we do not observe divergence of second-period prices.

The most puzzling discrepancy is the difference in first-period prices between the sec-
ond case of BDP and our behavior-based pricing treatment. Unlike BDP we observe higher
prices and a peak in the distribution at the theoretical point prediction. The most evident
explanation for this difference is that BDP actually implemented myopic instead of strategic
consumers and subjects use experimentation rather than deduction in their pricing deci-
sions in the experiment. We show that assuming myopic consumers leads to a theoretical
prediction, which is in line with the observed prices in BDP’s second case.

1



Welfare measures such as customer costs and profits are directly derived from prices.
When prices are volatile and prone to behavioral biases, then the same is true for these mea-
sures. We show that transport costs serve as a robust welfare measure, which is independent
of price levels but captures the impact of price dispersion and poaching efforts by sellers.

2 An experiment on uniform and behavior-based pricing

BDP analyzed behavior-based pricing while varying two dimensions: the ability to price
pre-commit and the extent of preference dependence. We step back from this by contrasting
whether sellers can employ behavior-based pricing or not. We do not consider price pre-
commitment and we only consider perfectly dependent preferences. Taken together our
set-up boils down to a comparison of uniform pricing and behavior-based pricing as laid out
by F&T.

2.1 Theoretical background

The market structure underlying this experiment closely follows F&T. Two sellers i, j ∈
{A,B} with i 6= j are located on either endpoint of a linear city model a la Hotelling with
length θ̄. We assume that A is located at 0 and B is located at θ̄. Both sellers produce
nondurable goods at constant marginal costs of c over two periods n ∈ {1, 2}. Consumers
are distributed uniformly over the interval [0, θ̄] and demand one at most unit per period.
The consumers’ valuation of the good is v and they incur transport costs which corresponds
to the distance travelled. Thus, a consumer located at θ̂ receives utility v − pA − θ̂ when
buying from seller A and v − pB − (θ̄ − θ̂) when buying from seller B. Sellers, as well as
consumers do not discount the second period. Throughout we assume v is sufficiently high
to ensure full market coverage.

Uniform pricing
In the first case, both sellers post a uniform price pni in each period n. After observing prices
pnA and pnB, there is a consumer at θn who is indifferent between buying from A or B. The
consumers’ according indifference condition is

v − pnA − θn = v − pnB − (θ̄ − θn). (1)

From this we can derive θn as the location of the indifferent consumer as

θn =
pnB − pnA + θ̄

2
. (2)

2



In each period sellers face a static optimization problem

Seller A: max
pnA

(pnA − c) · θn Seller B: max
pnB

(pnB − c) · (θ̄ − θn). (3)

We use the first order condition to find the response functions

pni =
pnj + c+ θ̄

2
. (4)

By symmetry we find the according equilibrium prices

pni = θ̄ + c. (5)

This corresponds to the theoretical prediction for Case 1 “Independent preferences and no
price pre-commitment” of BDP, as every price is the one-shot Nash equilibrium price.

Behavior-based pricing
In the second case, both sellers post a uniform price in period 1 (p1

A and p1
B) and employ

behavior-based pricing in the second period. Behavior-based pricing allows them to set dif-
ferentiated prices for old costumers (pOA and pOB) and new costumers (pNA and pNB ), dependent
on the first-period purchasing decisions. A consumer who bought from firm i in the first
period is considered an old costumer for firm i and a new costumer for firm j and vice versa.
We solve the game via backward induction. When entering the second period first-period
prices p1

A and p1
B determine the location of the indifferent consumer θ1, which sellers observe.

Consumers on the interval [0, θ1] bought from seller A in period 1 and are denoted as A’s
turf, while consumers on the interval [θ1, θ̄] bought from firm B and are denoted as B’s turf.
Both sellers charge the old customer price (pOA and pOB) towards their own turf and the new
costumer price (pNA and pNB ) towards the other seller’s turf. On A’s turf consumers are faced
with the prices pOA by A and pNB by B. Given these prices we can set up the indifference
condition for the consumer at location θA ∈ [0, θ1]

v − pOA − θA = v − pNB − (θ̄ − θA). (6)

From this we solve for θA and get

θA =
pNB − pOA + θ̄

2
. (7)
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Similarly, we derive θB ∈ [θ1, θ̄]

θB =
pOB − pNA + θ̄

2
. (8)

In the second period sellers solve the following optimization problems as functions of θ1:

Seller A: max
pOA ,p

N
A

(pOA − c) · θA + (pNA − c) · (θB − θ1),

Seller B: max
pOB ,p

N
B

(pOB − c) · (θ̄ − θB) + (pNB − c) · (θ1 − θA).
(9)

Using the first order conditions we can derive the optimal second-period prices as

pOA =
1

3
(2θ1 + θ̄ + 3c), pNA =

1

3
(3θ̄ − 4θ1 + 3c),

pOB =
1

3
(3θ̄ − 2θ1 + 3c), pNB =

1

3
(4θ1 − θ̄ + 3c).

(10)

In the first period, forward-looking consumers can anticipate these pricing strategies. The
first-period cutoff θ1 denotes the consumer who is indifferent between i) buying from seller
A in the first period and switching to seller B in the second period and ii) buying from
seller B in the first period and switching to seller A in the second period. The indifference
condition is

v − p1
A − θ1 + v − pNB − (θ̄ − θ1) = v − p1

B − (θ̄ − θ1) + v − pNA − θ1. (11)

Using pNA and pNB from 10 we can solve this for θ1 and find

θ1 =
3

8
(p1
B − p1

A) +
θ̄

2
. (12)

In the first period forward-looking sellers face the following optimization problems:

max
p1A

(p1
A − c)θ1 + (pOA − c)θA + (pNA − c)(θB − θ1),

max
p1B

(p1
B − c)(θ̄ − θ1) + (pOB − c)(θ̄ − θB) + (pNB − c)(θ1 − θA).

(13)

We plug in the expressions for θ1 from 12 and for pOA, pNA , pOB and pNB from 10 and solve the
resulting first order conditions for p1

A and p1
B to yield the symmetric equilibrium prices as

p1
i =

4

3
θ̄ + c pOi =

2

3
θ̄ + c pNi =

1

3
θ̄ + c. (14)

This is equivalent to Case 2 “Constant preferences and no price pre-commitment” of BDP.

4



2.2 Experimental design

We implement an experiment in line with BDP with two treatments, corresponding to our two
cases from Section 2.1. The experiment was programmed and conducted with the experiment
software z-Tree (Fischbacher, 2007). Like BDP we chose θ̄ = 120 and c = 50, so that results
are directly comparable. As shown in Table 1, our predictions for Treatment 1 “Uniform
pricing” correspond to the predictions of Case 1 of BDP, where the two afternoon prices
(Price for loyal customers and Price for new customers) of BDP are condensed into the
single Second-period price. Treatment 2 “Behavior-based pricing” is a replication of Case 2
of BDP.1

Treatment 1 2

Uniform
pricing

Behavior-based
pricing

Introduction price 170 210

Old customer price 130

New customer price 90

Second-period price 170

a) Price predictions in our Treatments.

Case 1-Baseline 2

Buyer Preferences Independent Fixed

Price pre-commitment No No

Morning price 170 210

Price for loyal customers 170 130

Price for new customers 170 90

b) Excerpt from Table 1 in BDP.

Table 1: Price predictions.

There are two minor differences between our experiment and that of BDP. First, BDP
framed the task as ice-cream vendors on a beach, whereas we kept the task general, stating
the participants take the role of a seller who is located at location 0 of a line, with another
seller at the opposing end at 120. However, as in BDP they learn that they compete for
computerized buyers who are uniformly distributed along the line. They were informed that
buyers make decisions under consideration of prices and transport costs of both periods and
seek to minimize their total expenditures.2 Second, in contrast to BDP who used matching
groups of 4, we use the whole group of 20 participants in the first and 18 participants in
the second treatment as a matching group. As in BDP participants play over 20 rounds,
where one round lasts for two periods, corresponding to the theoretical market. Hence, each
participant is matched with each other participant slightly more than once on average in
our experiment. While this reduces the number of independent groups, it also decreases
reputation effects that could lead to tacit collusion.

1Our Introduction price corresponds to the Morning price, our Old customer price corresponds to the
Price for loyal customers and our New customer price corresponds to the Price for new customers.

2Instructions and review questions were handed out in print and are available upon request.
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The experiment was conducted in the experimental laboratory at TU Berlin with partic-
ipants drawn from the WZB ORSEE pool (Greiner, 2015). The experiments lasted around
90 minutes. On average participants earned e 7.20 in the first treatment and e 7.75 in the
second treatment in addition to a e 5 show-up fee. Participants were 25 years old on average.
Around one third of the subjects were female. About two thirds of the participants were
in their undergraduate studies, with industrial engineering and natural sciences as the most
common fields of study.

2.3 Results

Table 2 shows aggregate behavior between our two treatments on the left and the two cases
of BDP on the right, where p-Values are based on random-effects GLS regressions on the
difference among observed and predicted prices at the individual level.

Treatment 1 2

Uniform
pricing

Behavior-based
pricing

Introduction price

Observed mean 147.3 174.2

Model prediction 170 210

p-Value <0.001 <0.001

Old customer price

Observed mean 149.77

Model prediction 130

p-Value 0.013

New customer price

Observed mean 114.6

Model prediction 90

p-Value <0.001

Second-period price

Observed mean 141.4

Model prediction 170

p-Value <0.001

a) Prices by treatment in our experiment.

Case 1-Baseline 2

Buyer Preferences Independent Fixed

Price pre-commitment No No

Morning price

Observed mean 141.5 138.2

Model prediction 170 210

p-Value 0.002 <0.001

Price for loyal customers

Observed mean 119.7 129.2

Model prediction 170 130

p-Value <0.001 0.750

Price for new customers

Observed mean 116.5 114.1

Model prediction 170 90

p-Value <0.001 <0.001

b) Excerpt from Table 2 in BDP.

Table 2: Comparison of observed prices.

While BDP observed no significant difference in their Case 1 between both second-period
prices, they found a difference between second-period prices and the first-period price (see
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Afternoon price effect in Table 2 of BDP). We do not find a significant difference between the
corresponding introduction price and second-period price in our first treatment (see Table 6
in the Appendix). Likewise, the distributions of introduction and second-period prices are
very similar in our experiment, as shown in Figure 1a, in contrast to BDP, as shown in
Figure 1b.

We observe a substantially larger average introduction price in Treatment 2 compared
to Case 2 of BDP. We also observe a larger old customer price, but a similar new customer
price. As shown in the distribution of prices in Figure 1a we observe similar patterns for the
introduction prices in both treatments, with a left-skewed distribution which peaks close to
the theoretical prediction. This is not the case in BDP, as seen in Figure 1b. Accordingly,
as shown in Table 6 in the Appendix, we observe a much larger second-period price effect
compared to the corresponding Afternoon price effect in Table 2 of BDP, as well as a larger
old customer price effect compared to the corresponding Loyal customer price effect in Table
2 of BDP.
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(a) Treatments 1 and 2 in our experiment. (b) Cases 1 and 2 in BDP.

Figure 1: Comparison of distribution of prices (solid lines represent predicted prices).
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The introduction price in our Treatment 2 is significantly larger than in Treatment 1 (see
Table 7 in the Appendix), confirming a treatment effect on the first-period price in line with
the comparative static prediction of the model. This effect was absent in BDP. In contrast
to BDP we see a larger rightwards shift for old customer prices.

In Figure 3 in the Appendix, we show the average prices over rounds. We find that prices
converge towards their prediction in Treatment 1, which we confirm by round-wise OLS
regressions on the difference of observed and predicted prices, as shown in Table 8 in the
Appendix. By the last round this difference is close to and insignificantly different from zero
for both the introduction price and the second-period price. We observe a similar pattern
for the introduction price in Treatment 2. Yet, we find a different pattern for the second-
period prices in Treatment 2. Both old and new customer prices are insignificantly different
from their predictions in the beginning, but significantly larger than their predictions in the
second half of the experiment.3

In the spirit of backward induction, we first explore the apparent divergence from pre-
dicted levels of the second-period prices in behavior-based pricing experiments, which is
observed in BDP and our experiment. Subsequently, we show a potential explanation for
the disparity of first-period prices between BDP and our experiment.

3 Reference dependence impacts second-period prices

First-period prices converge towards the price predictions in both of our treatments. Second-
period prices in Treatment 2 seemingly diverge from their price predictions. In this chapter
we explore why that is the case by limiting our attention to the second period. First, we
show that theoretical subgame predictions for second-period prices increase whenever the
cutoff is not sufficiently centered. This increase, however, is not substantial and does not
explain the higher observed prices. Second, we show results of a follow-up experiment, where
we simulate the first-period cutoffs based on our prior findings. In this follow-up experiment
participants act close to the price predictions throughout all 20 rounds.

3.1 Theoretical preamble

In Case 2 of BDP and our Treatment 2 second-period prices were remarkably higher than
theoretically predicted. In the following we want to rule out asymmetric market shares as
a driver for these observations. The equilibrium in (14) is symmetric and implies θ1 = θ̄/2.

3Results in Figure 3 and Table 8 use the subgame corrected predictions which are introduced in Chap-
ter 3.1 and are even stronger when not using the correction.
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In our Treatment 2, we observe first-period cutoffs between the full range of 0 and θ̄ = 120,
while only 3.89% of the observed cutoffs are exactly θ̄/2 = 60. Hence, we need to check
whether first-period cutoffs of θ1 6= θ̄/2 affect second-period prices.

Let us fully specify the best-response functions from (10) for firm A

pOA =


1

3
(2θ1 + θ̄ + 3c) if θ1 ≥

1

4
θ̄

θ̄ − 2θ1 + c if θ1 <
1

4
θ̄
, pNA =


1

3
(3θ̄ − 4θ1 + 3c) if θ1 ≤

3

4
θ̄

c if θ1 >
3

4
θ̄
. (15)

Similar for firm B we get

pOB =


1

3
(3θ̄ − 2θ1 + 3c) if θ1 ≤

3

4
θ̄

2θ1 − θ̄ + c if θ1 >
3

4
θ̄
, pNB =


1

3
(4θ1 − θ̄ + 3c) if θ1 ≥

1

4
θ̄

c if θ1 <
1

4
θ̄
. (16)

Now we denote the average prices for old and new customers respectively as p̄O = (pOA+pOB)/2

and p̄N = (pNA + pNB )/2 dependent on θ1 and get

(
p̄O, p̄N

)
=



(
θ̄ − 4

3
θ1 + c,

θ̄

2
− 2

3
θ1 + c

)
if θ1 <

1

4
θ̄(

2

3
θ̄ + c,

θ̄

3
+ c

)
if

1

4
θ̄ ≤ θ1 ≤

3

4
θ̄(

4

3
θ1 −

θ̄

3
+ c,

2

3
θ1 −

θ̄

6
+ c

)
if θ1 >

3

4
θ̄

, (17)

where we can take the first derivate with respect to θ1:

(∂p̄O
∂θ1

,
∂p̄N

∂θ1

)
=


(−2

3
, −1

3
) if θ1 <

1

4
θ̄

( 0, 0 ) if
1

4
θ̄ ≤ θ1 ≤

3

4
θ̄

(
2

3
,

1

3
) if θ1 >

3

4
θ̄

. (18)

A change in the first-period cutoff does not affect the average old and new customer prices
while θ1 ∈ [θ̄/4, 3 · θ̄/4]. When correcting the model predictions for Treatment 2 according
to equation 15 we would expect an average old customer price of 132.55 instead of 130 and
an average new customer price of 91.275 instead of 90.4 As the results shown in Figure 3
and Table 8 are created under the corrected model predictions, we can rule out asymmetric
first-period market shares as a driver for higher second-period prices.

4First-period cutoffs were not sufficiently centered in 1/6 of our observations and caused a change in the
average predicted prices.
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3.2 Experimental follow-up

We conduct an additional Treatment 3 “Follow-up experiment” in which we forego the first
period of Treatment 2. We provide participants the required information, the first-period
cutoff, without being confounded by the theoretically unnecessary information of first-period
prices. In the follow-up experiment participants were confronted with a similar market
situation as in the original experiment, only that the first period has already been played.
Similar to before, participants took the role of sellers and posted prices for ‘near’ and ‘far’
customers. The ‘near’ customers correspond to the old costumers, while ‘far’ customers
correspond to the new customers from Treatment 2.5 Participants were faced with randomly
simulated cutoffs and learned that these were derived from earlier experiments.

In Figure 5 in the Appendix, we show the distribution of first-period cutoffs in Treatment 2.
Using a qq-plot (see Figure 4 in the Appendix), Shapiro-Wilk tests and Shapiro-Francia tests,
we confirmed that the first-period cutoffs follow normal distributions, both overall and for
each individual period. However, around 60% of the observations are actually multiples of
3.75, which results whenever the difference of chosen prices is a multiple of 10. To account
for this, we draw the according share of cutoffs from a truncated normal distribution of mul-
tiples of 3.756 and the rest out of a normal distribution of multiples of 0.3757. Further we
account for the fact that 3.75 is a multiple of 0.375, when specifying the respective shares.
We do this, by first drawing from a uniform distribution on the interval [0, 1] to determine
from which of the two normal distributions to draw, given a critical value. The critical value
is derived from the observed share of cutoffs which are multiples of 3.75 called s10 and those
that are not s−10 by solving the following system of equations:

s10 = scrit10 +
scrit−10

10
,

s−10 =
9

10
scrit−10,

s−10 = 1− s10.

(19)

For example, if for a given round the first-period price difference was a multiple of 10 in
6 out of 10 markets, i.e. s10 = 0.6, we would find the critical cutoff value scrit10 = 0.55.
To keep the draws as close to the original observations as possible and avoid situations
for the participants that did not occur in the original experiment, we fix the mean at 60,
but vary the lower bound, upper bound, standard deviation and the critical value scrit10 for

5For the remainder of this paper we will refer to the customers in Treatment 3 as old and new customers.
63.75 is 3

8 · 10, the most common integer step of differences between two prices
70.375 is 3

8 · 1, the smallest integer step of differences between two prices
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each round according to the original experimental values of the respective round. Truncated
normal distributions are achieved by redrawing an observation when it is either below the
lower bound or above the upper bound. Given that the lower bounds (upper bounds) are
well below (above) the mean at a considerably low standard deviation, this approach is
highly efficient (see Robert, 1995; Chopin, 2011). In Figure 6 in the Appendix, we show
the distribution of simulated cutoffs in Treatment 3 against the distribution of cutoffs in
Treatment 2.

As in the first two treatments participants, were drawn from the WZB ORSEE pool and
shared similar demographic characteristics (age, gender, field of study). The experiment was
slightly shorter in duration at 60 minutes, as no first period was played. The participants
earned e 6.24 on average in addition to a e 5 show-up fee. The exchange rate was increased
so that the total payment remained similar to the first two treatments.

3.3 Findings

A comparison of aggregate prices in Table 38 and the distribution of prices in Figure 2 reveals
that second-period prices are insignificantly different from their model prediction at a 5%

significance level in Treatment 3. Further, both prices are significantly lower in Treatment
3 compared to Treatment 2 (see Table 7 in the Appendix).

Treatment 2 3

Behavior-based
pricing

Follow-up
experiment

Old customer price

Observed mean 149.77 125.06

Model prediction 130 130

p-Value 0.013 0.068

New customer price

Observed mean 114.6 83.65

Model prediction 90 90

p-Value <0.001 0.088

Table 3: Analysis of Prices (follow-up).
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Figure 2: Distribution of prices (follow-up).

For the subsequent discussion we correct the model predictions by calculating second-

8Again, p-Values are based on random-effects GLS regression among observed and predicted prices at
the individual level.
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period predictions following equation 15. However, we only find a marginal impact of these
corrections with an average predicted old customer price of 131.53 and an average predicted
new customer price of 90.76.

We find that in Treatment 2, second-period prices increase together with the introduction
price, as shown in Figure 3 in the Appendix. In Treatment 3, where the first period is absent
we do not observe a considerable change of prices over rounds. This is confirmed by round-
wise OLS regressions shown in Table 8 in the Appendix. We only observe two rounds in
which both the old and new customer price are significantly different from their predictions
and three instances where one of the two prices is significantly different from the prediction.9

We still observe a significant old customer price effect with a similar effect size as in the
behavior-based pricing treatment, as shown in Table 6 in the Appendix. We conclude that
the presence of the first period does impact overall price levels in the second period, but
does not affect the poaching efforts within the second period.

4 Myopic consumers induce lower first-period prices

While we have shown that the upwards price shift in the second period is driven by the
availability of the first-period prices, there are remarkable differences between the chosen
first-period prices in Case 2 of BDP compared to the second treatment in our experiment. In
the following we conjecture that this might be driven by a faulty fraction in the computation
of the first-period cutoff in the code of BDP. We show that this may in fact represent a case
of behavior-based pricing with myopic consumers.

Behavior-based pricing with myopic consumers
Whether consumers are naïve or strategic only alters their actions in the first period. Hence
we can readily skip the analysis of the second period, as it is identical to the case of behavior-
based pricing in section 2.1. When going back to period one naivety of consumers will change
the indifference condition from (11) to

v − p1
A − θ′1 = v − p1

B − (θ̄ − θ′1). (20)

This condition is akin to (1) with θ′1 instead of θ1 and thus yields the same cutoff as (2)

θ′1 =
p1
B − p1

A + θ̄

2
. (21)

9Note that we performed these regressions at a complaisant significance level of 90%. Four out of the
seven aforementioned significant differences would not hold under a significance level of 95%.
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The maximization problems of firms are similar to (13) with θ′1 plugged in instead of θ1:

max
p1A

(p1
A − c)θ′1 + (pOA − c)θA + (pNA − c)(θB − θ′1),

max
p1B

(p1
B − c)(θ̄ − θ′1) + (pOB − c)(θ̄ − θB) + (pNB − c)(θ′1 − θA).

(22)

Solving the maximization problems for p1
A and p1

B with consideration of θ′1 from (21) and the
response functions from (10), where we replace θ1 by θ′1, yields

p1
i = θ̄ + c. (23)

This result is identical to the uniform pricing result in (5).10

Case 1 of BDP and the just presented “behavior-based pricing with myopic consumer”
share the term (p1

B − p1
A + θ̄)/2 as their first-period cutoff. Case 2 of BDP and our behavior-

based pricing case are different in this term as shown in equation 12, where the difference
in prices p1

B − p1
A is multiplied by 3/8 instead of 1/2. We have shown in Treatment 1 and

Treatment 2 in our experiment, complemented by Case 1 of BDP that there is a peak in the
price distribution close to the model prediction whenever a uniform price is chosen in the
first period. This only fails for Case 2 of BDP, where prices are similar to their Case 1 and
our Treatment 1, with a peak in the price distribution at a similar point, just short of 170.
This would be in line with the price prediction in equation 23.

While this does not fit the instructions of BDP according to which consumers are strategic
in their first period decision, it is a surprising testament of how powerful the price predictions
are in this model. Note that BDP’s instructions are somewhat vague concerning buyer
behavior in the first period. Buyers are described minimize their total expenditures with
their first period decision, considering their location and the current prices, while anticipating
optimally chosen prices in the second period. On the other hand, second-period behavior
is described very explicit, covering precise calculations of the location of the indifferent
consumer and the resulting cutoff. It may not be immediately imminent to an uninformed
participant that a consumers’ strategic decision in the first period entails a lowered willingness
to buy from the far seller. Rather than relying on the instructions participants seemed to
have experimented over the course of the experiment to optimize their pricing decisions.

10The uniform pricing benchmark is identical for myopic and strategic consumers, due to the independence
of the periods.
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5 Transport costs as a robust welfare measure

As chosen prices are prone to distortions, as we discussed earlier, we cast doubt on the
reliability of consumer costs and profit as welfare measures as used by BDP. Both measures
are easily shifted by price levels and mask the efficiency of the market. Instead we propose to
measure total welfare directly by means of the transport costs. While this is not necessarily
the preferred welfare measure in terms of policy recommendations, it is superior to assess
an experimental markets’ efficiency. It is sensitive to comparative static implications such
as poaching and to efficiency losses due to price dispersion, but insensitive to distorted price
levels. Under uniform pricing the total welfare is given by

W =

∫ θ1

0

(v − θ) dθ +

∫ θ̄

θ1

(v − (θ̄ − θ)) dθ +

∫ θ2

0

(v − θ) dθ +

∫ θ̄

θ2

(v − (θ̄ − θ)) dθ. (24)

By rearranging we can separate gains and costs as

W = 2 ·
∫ θ̄

0

v dθ −
(∫ θ1

0

θ dθ +

∫ θ̄

θ1

(θ̄ − θ) dθ +

∫ θ2

0

θ dθ +

∫ θ̄

θ2

(θ̄ − θ) dθ
)
, (25)

where the first term denotes the gains G under full market coverage

G = 2 ·
∫ θ̄

0

v dθ = 2θ̄v, (26)

while the remainder denotes the transport costs that are subtracted from the gains:

T =

∫ θ1

0

θ dθ +

∫ θ̄

θ1

(θ̄ − θ) dθ +

∫ θ2

0

θ dθ +

∫ θ̄

θ2

(θ̄ − θ) dθ. (27)

Similarly we can derive the transport costs under behavior-based pricing as

T̃ =

∫ θ1

0

θ dθ +

∫ θ̄

θ1

(θ̄ − θ) dθ +

∫ θA

0

θ dθ +

∫ θ1

θA

(θ̄ − θ) +

∫ θB

θ1

θ dθ +

∫ θ̄

θB

(θ̄ − θ) dθ. (28)

The gains from (26) are independent of the consumers purchasing decisions when the market
is fully covered. Hence, it is sufficient to consider the losses in form of transport costs in (27)
and (28) to evaluate welfare effects.

In Table 4 we show that profits for sellers and total costs for consumers were lower
in uniform pricing compared to behavior-based pricing in the first period in contrast to
BDP who found no effect. This is driven by higher introduction prices in our Treatment 2
compared to Case 2 of BDP. However, transport costs were insignificantly different in the
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Seller’s Customers’ Seller’s Customers’

profit total costs transport costs profit total costs transport costs

Treatment 1 -1374.7∗∗∗ -2820.8∗∗∗ -71.48 572.2∗∗ 386.1 -758.2∗∗∗

(158.5) (366.8) (73.40) (174.0) (405.9) (90.28)
Treatment 3 -1396.2∗∗∗ -2821.9∗∗∗ -29.46

(151.6) (342.5) (95.54)
Constant 5150.0∗∗∗ 20339.9∗∗∗ 4039.9∗∗∗ 3844.9∗∗∗ 18344.3∗∗∗ 4654.5∗∗∗

(324.6) (876.5) (114.7) (243.0) (627.1) (132.6)

Base case Treatment 2 Treatment 2 Treatment 2 Treatment 2 Treatment 2 Treatment 2
Considered period First First First Second Second Second
Observations 760 380 380 1158 579 579

Standard errors in parantheses. Estimation by OLS regressions with round fixed-effects. Analysis is done
on individual level for sellers and on market level for customers. Treatment 1 - Uniform pricing, Treatment
2 - Behavior-based pricing, Treatment 3 - Follow-up experiment. ** and *** denote significance at the
1% and 0.1% level, respectively.

Table 4: Treatment effects on welfare measures in the first and second period

first period between both treatments. The difference in total costs is fully explained by the
difference in prices payed (product costs).

In Table 4, we further show that second-period profits and total costs are larger in Treat-
ment 1 compared to Treatment 2, which is opposite to the findings of BDP. Transport costs
are significantly different between the uniform pricing and behavior-based pricing treatments
in the second period. In contrast, there are no differences in transport costs between the
follow-up experiment and the behavior-based pricing treatment, while profits and total costs
were significantly smaller in the follow-up experiment compared to the behavior-based pricing
treatment. This is a direct consequence of the lower prices chosen by the participants.

We show the effect of disjoining the decision process in Table 5. There we calculated
hypothetical mean profits, mean total costs and mean transport costs for three cases. The
first and second case correspond to the first and second treatment. In the third case we
combine the follow-up experiment as the second period findings with the results of the
first period of the behavior-based pricing treatment. Both mean profits and total costs are
lower in the combined case compared to the uniform pricing treatment, whereas they were

Considered treatment in
First period Uniform pricing Behavior-based pricing Behavior-based pricing

+ + +

Second period Uniform pricing Behavior-based pricing Follow-up Experiment

Sum of mean
profits 10485.44 11287.95 9895.11

total costs 20498.92 21716.29 20308.95

transport costs 4013.48 4428.334 4413.841

Table 5: Sum of mean profits, total costs and transport costs between cases.
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originally larger in the behavior-based pricing treatment compared to the uniform pricing
treatment. In contrast, both the sign and the magnitude in the differences of transport
costs between the behavior-based pricing and the uniform pricing treatment, respectively
the combined case and the uniform pricing treatment, remain similar. This shows that
price-based measures (profits and total costs) are volatile and may obfuscate the actual
effects on efficiency. Transport costs are independent of prices and more suitably reflect the
efficiency of the market.

6 Discussion

We designed an experiment on theoretical grounds provided by F&T and in the vein of
an experiment by BDP. In contrast to BDP we can confirm the positive first-period price
effect of behavior-based pricing over uniform pricing, validating an additional comparative
static result from F&T’s model. We show that this is potentially caused by an error in the
code of the program of BDP. We pursued whether there are explanations for other instances
in which observed prices did not meet their model predictions. We find that in the case
of behavior-based pricing second-period prices are driven upwards when participants play
the first period themselves, but not when both periods are disjoint and played by different
participants.

Disjoining the decisions of the first and second period reveals a volatility of chosen strate-
gies. Going forward this insight can be helpful in the design of experiments. For multi-
period experiments separating the individual stages might be necessary to conclusively re-
veal whether participants play according to predictions. Further, when volatility is expected
measures of interest should be chosen carefully. Transport costs and brand preferences are
usually not observable in real markets. However, we have shown that transport costs are a
suitable welfare measure that is robust to the aforementioned confounding factors.

A couple of questions remain open and might be answered in future research. It is still
unclear how exactly first-period prices drive second-period prices upward in the behavior-
based pricing cases in BDP and in our experiment. Are prices interpreted as a signaling
device? Do prices shift beliefs about second period behavior? Or is it possible that that
first-period prices serve as pure anchors in their impact on decision making? Furthermore,
we cannot explain why participants in BDP’s Case 1 chose lower second-period prices. Did
they misunderstand the task and perceived a certain risk? Or did they expected prices in the
second period to carry more meaning than they actually had? One could probably answer
these questions by separating the confounding factors that are in play here, similar to what
we have done in the case of behavior-based pricing with our follow-up experiment.
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7 Appendix

Uniform
pricing

Behavior-based
pricing

Follow-up
experiment

Second-period price effect -5.890 (4.484) -59.54∗∗∗ (5.393)

Old customer price effect 35.13∗∗∗ (5.751) 41.41∗∗∗ (4.371)

Constant 147.3∗∗∗ (3.795) 174.2∗∗∗ (7.104) 83.65∗∗∗ (3.685)

Reference Price Introduction price Introduction price Old customer price

Observations 800 1080 796

Standard errors in parantheses. Estimation by OLS regressions with standard errors clustered at the
subject level. *** denotes significance at the 0.1% level.

Table 6: Analysis of prices within treatments.

Introduction price Old customer price New customer price

Behavior-based pricing 26.85∗∗∗ 24.71∗∗ 30.94∗∗∗

(7.936) (8.281) (7.191)

Constant 147.3∗∗∗ 125.1∗∗∗ 83.69∗∗∗

(3.749) (2.672) (3.652)

Base case Uniform
pricing

Follow-up
experiment

Follow-up
experiment

Observations 760 758 758

Standard errors in parantheses. Estimation by random-effects GLS regressions with standard
errors clustered at the subject level. ** and *** denote significance at the 1% and 0.1% level,
respectively.

Table 7: Analysis of prices between treatments.
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Figure 3: Average observed prices per round by treatments.
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Treatment 1
Uniform pricing

Treatment 2
Behavior-based pricing

Treatment 3
Follow-up experiment

Introduction
price

Second period
price

Introduction
price

Old customer
price

New customer
price

Old customer
price

New customer
price

Round
1 -46.40∗∗∗ -51.60∗∗∗ -69.17∗∗∗ 0.444 7.444 -6.944 -10.56∗∗

(7.294) (7.399) (10.76) (10.59) (8.632) (7.839) (5.269)
2 -41.75∗∗∗ -52.30∗∗∗ -69.78∗∗∗ 2.833 14.97 1.500 -3.750

(7.820) (8.163) (10.40) (11.90) (11.98) (8.390) (7.626)
3 -39.65∗∗∗ -43.00∗∗∗ -60.39∗∗∗ 9.333 9.111 -14.85∗ -13.55∗

(7.093) (7.408) (12.72) (14.25) (10.85) (7.953) (7.033)
4 -28.85∗∗∗ -40.90∗∗∗ -50.89∗∗∗ 15.22 11.58 0.400 -5.250

(7.071) (7.376) (11.11) (12.01) (8.244) (6.517) (10.09)
5 -27.75∗∗∗ -47.55∗∗∗ -53.06∗∗∗ 3.333 25.31∗ -2.000 -5.700

(6.486) (8.890) (13.16) (13.83) (14.77) (8.470) (10.78)
6 -33.35∗∗∗ -40.50∗∗∗ -50.22∗∗∗ 6.778 17.78 -1.300 -3.250

(6.932) (6.771) (10.60) (11.94) (10.81) (6.641) (7.775)
7 -27.80∗∗∗ -38.15∗∗∗ -36.89∗∗∗ 15.50 26.47∗∗∗ -5.550 -5.675

(6.296) (8.601) (11.05) (11.40) (9.035) (7.881) (8.784)
8 -28.65∗∗∗ -40.10∗∗∗ -40.56∗∗∗ 17.83 20.11 -3 -6.800

(7.536) (9.523) (10.72) (11.16) (13.32) (5.468) (4.351)
9 -28.80∗∗∗ -29.90∗∗∗ -47.17∗∗∗ 2.444 12.97 -8.000 -6.900

(7.019) (8.034) (11.54) (10.91) (9.963) (5.462) (8.724)
10 -20.40∗∗ -23.10∗∗ -39.22∗∗∗ 14.11 32.78∗∗∗ 1.300 -5.450

(8.451) (10.73) (7.870) (8.999) (10.80) (6.227) (5.879)
11 -18.40∗∗ -24∗∗ -27.39∗∗∗ 17.33 36.00∗∗∗ -7.750 -7.525

(9.240) (11.33) (7.903) (12.82) (11.17) (7.772) (9.521)
12 -19.15∗∗∗ -19.15∗∗∗ -18.39∗∗ 31.61∗∗∗ 45.72∗∗∗ -7.800∗ -10

(6.986) (7.304) (7.867) (11.82) (12.40) (4.690) (8.398)
13 -16.85∗∗ -14.85∗∗ -27.56∗∗∗ 28.61∗∗∗ 22.78∗∗ -8.150 -4.750

(6.944) (7.495) (9.107) (9.617) (11.18) (5.697) (10.49)
14 -14.90∗∗ -19.60∗∗ -31.56∗∗ 15.78 21.86∗ -10.75 -6.650

(7.376) (7.917) (12.19) (14.08) (12.56) (7.283) (6.883)
15 -11.35∗ -21.75∗∗∗ -21∗∗ 17.33 24.36∗∗ -10.40∗ -8.000

(6.140) (7.465) (9.986) (11.94) (11.01) (5.540) (5.410)
16 -16.20∗∗ -20.40∗∗ -18.39∗∗∗ 28.17∗∗∗ 26∗∗ -19.05∗∗∗ -13.90∗∗

(7.649) (8.408) (7.001) (9.779) (11.44) (6.669) (6.912)
17 -13.60∗∗ -13.60∗ -21.89∗∗ 20.11∗ 22.00∗∗ -8.150 -7.650

(6.076) (7.237) (9.465) (11.42) (10.77) (5.430) (6.580)
18 -6.850 -11.15 -17.44∗∗ 31.44∗∗∗ 28.42∗∗∗ -1.700 2.200

(4.343) (6.787) (7.375) (10.51) (10.96) (9.692) (12.20)
19 -7.000∗ -11.30∗∗ -11.94 35.94∗∗∗ 38.56∗∗∗ -7.750 -8.450

(3.669) (5.590) (8.432) (12.01) (11.64) (5.786) (5.496)
20 -5.950 -8.550 -3.667 30.17∗∗ 22.94∗∗ -9.500 -11

(4.529) (5.196) (10.68) (12.98) (11.23) (5.784) (7.498)

Standard errors in parantheses. Estimation by round-wise OLS regressions. Coefficients are the difference
between observed and predicted prices. *, ** and *** denote significance at the 10%, 5% and 1% level,
respectively.

Table 8: Regressions on difference between observed and predicted prices per round and treatment.
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Figure 4: Quantiles of first period cutoff in Treatment 2 against quantile of normal distribution.
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Figure 5: Distribution of cutoffs in Treatment 2 with normal density (black) and kernel density (light gray).
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