
Strategy-Proof and Envy-Free Random
Assignment

Christian Basteck (WZB Berlin)
Lars Ehlers (Université de Montréal)

Discussion Paper No. 307
December 22, 2021

Collaborative Research Center Transregio 190 | www.rationality-and-competition.de
Ludwig-Maximilians-Universität München | Humboldt-Universität zu Berlin

Spokesperson: Prof. Georg Weizsäcker, Ph.D., Humboldt University Berlin, 10117 Berlin, Germany
info@rationality-and-competition.de

https://rationality-and-competition.de
mailto: info@rationality-and-competition.de


STRATEGY-PROOF AND ENVY-FREE RANDOM ASSIGNMENT

CHRISTIAN BASTECK† LARS EHLERS‡

Abstract. We study the random assignment of indivisible objects among a set
of agents with strict preferences. We show that there exists no mechanism which
is unanimous, strategy-proof and envy-free. Weakening the first requirement to
q-unanimity – i.e., when every agent ranks a different object at the top, then each
agent shall receive his most-preferred object with probability of at least q – we
show that a mechanism satisfying strategy-proofness, envy-freeness and ex-post
weak non-wastefulness can be q-unanimous only for q ≤ 2

n
(where n is the number

of agents). To demonstrate that this bound is tight, we introduce a new mechanism,
Random-Dictatorship-cum-Equal-Division (RDcED), and show that it achieves
this maximal bound when all objects are acceptable. In addition, for three agents,
RDcED is characterized by the first three properties and ex-post weak efficiency.
If objects may be unacceptable, strategy-proofness and envy-freeness are jointly
incompatible even with ex-post weak non-wastefulness.

JEL Classification: D63, D70.

Keywords: random assignment, strategy-proofness, envy-freeness, q-unanimity.

1. Introduction

Consider the problem of assigning indivisible objects among a set of agents – each
agent is to receive at most one and we assume they have strict preferences over the
set of objects. Further, while objects’ characteristics may include a fixed monetary
payment, there are no additional transfers. Problems like this arise in many real-life
applications such as on-campus housing (where rents are fixed), organ allocation,
school choice with ties in applicants’ priorities, etc. Whenever several agents would
like to consume the same object, the indivisibility of objects, together with the absence
of any compensating transfers, will render any deterministic assignment unfair. This
is the main reason for implementing random assignments in such contexts.

Since agents’ preferences are private information, the design of random assignment
mechanisms has to provide incentives to report them truthfully (as otherwise the
assignment is based on false preferences). Moreover, in many applications, the
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2 STRATEGY-PROOF AND ENVY-FREE RANDOM ASSIGNMENT

resulting assignments should be based on agents’ (ordinal) rankings of objects, rather
than on their preferences over all possible lotteries as the elicitation of the latter is
difficult in practice – for example, school choice programs will typically ask applicants
to provide a list of schools, ranked from most- to least-preferred.

Strategy-proofness makes truthful reporting a dominant strategy and thus should
ensure that agents truthfully reveal their ordinal preferences over objects for any
underlying utility representation of preferences. Unfortunately, the literature on
random assignment mechanisms contains several impossibility results as soon as
strategy-proofness and equal-treatment-of-equals, as a minimal fairness requirement,
are married with different ex-ante/ex-post notions of efficiency.1 In some sense, these
efficiency notions are hence “too strong”. In addition, equal-treatment-of-equals may
be considered “too weak” a notion of fairness as it only constrains random assignments
in rare cases where agents’ preferences are identical, which seems contrived given
that fairness concerns were the principal reason to consider random assignments
in the first place. Our paper keeps the strategy-proofness requirement, strengthens
equal-treatment-of-equals to envy-freeness and explores the efficiency frontier given
these two constraints. From a practical point of view, this allows to answer the
question whether losses in efficiency are mild enough to allow to insist on strategy-
proofness and envy-freeness. For example, in the related problem of school choice
with priorities, the well known Deferred Acceptance mechanism is strategy-proof and
justified-envy-free,2 and is hence widely used despite being inefficient.

First, we marry strategy-proofness and envy-freeness with arguably one of the
weakest well known efficiency requirements, namely unanimity. In our setting it
requires that if all agents rank different objects first, then each agent shall receive his
most-preferred object with probability one – in other words, whenever there exists a
unique efficient assignment, then this assignment is chosen for sure. Unfortunately,
we find this requirement to yield another impossibility (together with strategy-
proofness and envy-freeness). Given this, we introduce a quantitative measure of
how much unanimity is respected: q-unanimity means that in any such situation
every agent receives his most-preferred object with probability of at least q. Of
course, 0-unanimity is satisfied by any mechanism and by lowering q from one to
zero we obtain a possibility together with strategy-proofness and envy-freeness. The
important question is to determine the exact bound. We show that for two or more
agents this bound is equal to 2

n , where n denotes the number of agents – no mechanism
may be q-unanimous for any q larger than 2

n . We also introduce object-unanimity
whereby a certain object shall be assigned to a specific agent who ranks this object
first while all other agents rank it last. We show that the impossibility pertains when

1Throughout ‘ex-ante’ is to be understood as before realizing the final deterministic assignment;
this corresponds to the term ‘interim’ used in mechanism design outside of the literature on random
assignments.

2That is, no agent envies another agent with lower priority.
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q-unanimity is replaced with q-object-unanimity (whereby the specific agent shall
receive his most preferred object with probability of at least q).

To demonstrate that this bound can be achieved, we introduce a new mecha-
nism, called Random-Dictatorship-cum-Equal-Division mechanism (RDcED). In this
mechanism, any agent is chosen with equal probability to chose as dictator and
receive his most-preferred object, while all other objects are assigned uniformly (at
random) among the remaining agents. For three agents we show that RDcED is the
unique mechanism which is ex-post weakly non-wasteful, ex-post weakly efficient,
strategy-proof and envy-free on the domain where all objects are acceptable. Hence,
RDcED is characterized by a natural set of properties for three agents. RDcED
satisfies 2

3 -unanimity for three agents (as any agent is chosen with probability 1
3 to

be the dictator and when another agent is the dictator, the agent receives his most-
preferred object with probability 1

2); for an arbitrary number n of agents, RDcED
satisfies 2

n -unanimity and hence achieves the maximal bound for q-unanimity among
all mechanism that are ex-post weakly non-wasteful, strategy-proof and envy-free.
The same is true for q-object-unanimity.

When agents may consider objects unacceptable, our impossibility result becomes
more severe. Strategy-proofness and envy-freeness are then jointly incompatible
with even ex-post weak non-wastefulness – that is, we have to accept situations
where, ex-post, an agent remains unassigned even though there exists an unassigned
object that is acceptable to that agent. Only after further weakening ex-post weak
non-wastefulness by restricting it to hold for profiles where there exists a unique
non-wasteful assignment of objects do we arrive at a possibility result.

Finally, we show that by allowing waste on the domain of acceptable objects, one
can increase the bound for q-unanimity beyond 2

3 for three agents. More precisely, we
construct a mechanism for three agents which (i) assigns any agent no object with
probability 1

6 and (ii) satisfies strategy-proofness, envy-freeness and 5
6 -unanimity.

However, gains in efficiency (at least among agents that are assigned an object) by
allowing for waste are limited – we show that the maximal level of q-unanimity
achievable by allowing for waste is monotonically decreasing in the number of agents
and that for three agents both q-unanimity and q-object-unanimity can be satisfied
with at most q = 17

18 in the class of strategy-proof and envy-free mechanisms.
Below we discuss the related literature in detail . The main starting point is the

impossibility of strategy-proofness, envy-freeness and ex-ante efficiency. Bogomolnaia
and Moulin [2001] show that this remains unchanged when envy-freeness is weakened
to equal-treatment-of-equals. Furthermore, they introduce the probabilistic serial
(PS) mechanism and show that it is envy-free and ex-ante efficient (hence necessarily
violates strategy-proofness).3 Nesterov [2017] shows that the impossibility persists

3Bogomolnaia and Heo [2012] and Hashimoto et al. [2014] provide axiomatic characterizations
of the PS mechanism. Chang and Chun [2017] identify a restricted domain where the impossibility
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when ex-ante efficiency is weakened to ex-post efficiency.4 In closely related ongoing
work, overlapping with our first result, Shende and Purohit [2020] show independently
that strategy-proofness and envy-freeness are incompatible with unanimity (which
they refer to as contention-free efficiency). After observing this impossibility, the
authors move on by restricting attention to so-called (Balanced) Pairwise Exchange
Mechanisms. They show in this limited class of mechanisms the equivalence strategy-
proofness and envy-freeness, and analyze them in further detail. In contrast, we
keep the set of mechanisms unrestricted throughout and determine the possibility
frontier (in terms of unanimity).5 Recently, Mennle and Seuken [2021] decomposed
strategy-proofness into three properties which they call swap-monotonicity, upper
invariance and lower invariance.

In terms of possibility results, it is known that the random serial dictatorship
(RSD, also known as random priority) mechanism satisfies strategy-proofness, equal-
treatment-of-equals and ex-post efficiency – i.e., weakening both envy-freeness and
ex-ante efficiency results in a possibility. Our contribution is to keep envy-freeness
(since fairness understood as equity is the principal reason for implementing a random
assignment) and strategy-proofness and to explore by how much exactly we have to
weaken ex-post efficiency to arrive at a possibility result.

Most of our results focus on the preference domain where all objects are acceptable.
If agents may rank objects as unacceptable and possibly receive no object, notions of
efficiency have to take into account the set of (un)assigned objects:6 a deterministic
assignment is (weakly) non-wasteful if no (unassigned) agent prefers an unassigned
object to his assignment. As a stronger requirement, ex-ante non-wastefulness de-
mands that if an agent finds an object acceptable but receives no object with positive
probability, then the acceptable object must be assigned with probability one. More-
over, if he prefers an object over another and is assigned the less-preferred with
positive probability, then the preferred object must be assigned with probability one.
Martini [2016] shows that there is no mechanism satisfying strategy-proofness, equal-
treatment-of-equals and ex-ante non-wastefulness, i.e., another principal impossibility
result on the full domain. In comparison, our impossibility result invokes a stronger
notion of fairness and a weaker notion of non-wastefulness. Erdil [2014] studies the
ex-ante waste of strategy-proof mechanisms, and shows that RSD is dominated by a

with equal-treatment-of-equals remains unchanged whereas Liu and Zeng [2019] characterize the
restricted tier domains where a possibility with equal-treatment-of-equals is obtained (together
with strategy-proofness and ex-ante efficiency).

4Zhang [2019] proves a strong group-manipulability result, imposing ex-post efficiency and
auxiliary fairness axioms that are by themselves weaker than envy-freeness.

5Note that in general strategy-proofness and envy-freeness are not equivalent as any serial
dictatorship mechanism is strategy-proof but not envy-free, and the mechanism choosing the uniform
assignment except for unanimous profiles where the unanimously most preferred assignment is
chosen probability one, satisfies envy-freeness but violates strategy-proofness.

6Bogomolnaia and Moulin [2015] show PS to achieve the maximal size guarantee among all
envy-free mechanisms.
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strategy-proof mechanism which is less wasteful. It is an open problem to establish
the minimal waste in the class of mechanisms satisfying strategy-proofness and
equal-treatment-of-equals.

The paper is organized as follows. Section 2 introduces random assignments, their
properties and several popular mechanisms. Section 3 contains the impossibility
pertaining to unanimity and establishes the upper bound of 2

n for q-unanimity
among n agents. Section 4 introduces RDcED to show that the bound is tight and
characterizes it for three agents. Section 5 presents a novel impossibility result for non-
wasteful assignments on the full preference domain and shows how non-wastefulness
or unanimity can be weakened to allow for a possibility result. Finally, Section 6
analyses how the upper bound on q-unanimity may be increased by allowing for
waste and Section 7 concludes.

2. Model

Let N = {1, . . . , n} denote the set of agents and O = {o1, . . . , on} denote the finite
set of objects. Throughout we suppose ∣N ∣ = ∣O∣ ≥ 3. Each agent i has strict preferences
over O ∪ {i} where i stands for being unassigned; let Ri denote the corresponding
linear order7 and write Pi for its asymmetric part (where xPiy is defined by xRiy

and x ≠ y). Let Ri denote the set of all strict preferences of agent i over O ∪ {i}. Let
RN = ×i∈NRi denote the set of all preference profiles R = (R1, . . . , Rn). Let Ri denote
the set of all strict preferences of agent i over O ∪ {i} such that oRii for all o ∈ O,
i.e., where all objects are acceptable. We denote this domain by RN = ×i∈NRi and
refer to is as the no-disposal domain, as no agent would ever dispose of any assigned
object. For the full domain we write RN .

An assignment is a mapping µ ∶ N → O ∪N such that8 µi ∈ O ∪ {i} for all i ∈ N

and µi ≠ µj for all i ≠ j. Let M denote the set of all assignments.
An assignment µ is efficient under R if there exists no µ′ ∈ M such that µ′iRiµi

for all i ∈ N and µ′jPjµj for some j ∈ N . Let PO(R) denote the set of all efficient
assignments under R.

An assignment µ is weakly efficient under R if there exists no µ′ ∈ M such that
µ′iPiµi for all i ∈ N . Let WPO(R) denote the set of all weakly efficient assignments
under R.

An assignment µ is non-wasteful under R if for all i ∈ N and all x ∈ O ∪ {i}, xRiµi

implies there exists j ∈ N with µj = x. Note that this implies µiRii. Let NW(R)
denote the set of all non-wasteful assignments under R.

An assignment µ is weakly non-wasteful under R if for all i ∈ N and all x ∈ O∪{i},
xRiµi and iRiµi together imply that there exists j ∈ N with µj = x. Again this
implies µiRii. Here it is considered waste if an object is assigned to no one but

7Thus Ri is (i) complete, (ii) transitive and (iii) antisymmetric (xRiy and yRix implies x = y).
8We will use throughout the convention to write µi instead of µ(i) for any i ∈ N .
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desired by an unassigned agent or if an agent is assigned an unacceptable object.
Let WNW(R) denote the set of all weakly non-wasteful assignments under R. Note
that verifying weak non-wastefulness only requires the knowledge of each agent’s
acceptable objects but no knowledge of the ranking among them (which is necessary
to determine non-wastefulness or efficiency of a deterministic allocation).

For any profile R, we have PO(R) ⊆ NW(R) ⊆ WNW(R), and there is no relation
between (weak) non-wastefulness and weak efficiency.

Let ∆(M) denote the set of all probability distributions overM. Given p ∈ ∆(M),
let pia denote the associated probability of i being assigned a. Let supp(p) denote
the support of p. Then (i) p is ex-post efficient under R if supp(p) ⊆ PO(R), (ii) p is
ex-post weakly efficient under R if supp(p) ⊆ WPO(R), (iii) p is ex-post non-wasteful
under R if supp(p) ⊆ NW(R), and (iv) p is ex-post weakly non-wasteful under R if
supp(p) ⊆ WNW(R).

For all i ∈ N , all Ri ∈ Ri and all x ∈ O ∪ {i}, let B(x, Ri) = {y ∈ O ∪ {i} ∶ yRix}.
Then given any p, q ∈∆(M), pi stochastically Ri-dominates qi if for all x ∈ O ∪ {i},

∑
y∈B(x,Ri)

piy ≥ ∑
y∈B(x,Ri)

qiy.

A random assignment p stochastically R-dominate another random assignment q if
pi Ri-dominates qi for all i ∈ N . A random assignment is sd-efficient if there is no
random assignment q ≠ p that stochastically R-dominates it.9 Given two random
assignments p and q, we say that p and q are equivalent if pi = qi for all i ∈ N .

A mechanism is a mapping φ ∶ RN → ∆(M). Then φ(R) denotes the random
assignment chosen for R, and φia(R) denotes the probability of agent i being
assigned object a. Then φ is sd-efficient if for all R ∈ RN , φ(R) is sd-efficient under
R. Similarly, we define ex-post (weak) efficiency and ex-post (weak) non-wastefulness
for a mechanism.

Then φ is strategy-proof if for all R ∈ RN , all i ∈ N and all R′i ∈ Ri, φi(R)
stochastically Ri-dominates φi(R′i, R−i). Note that for any ordinal mechanism (where
an agent only submits his ordinal ranking), strategy-proofness is equivalent to the
requirement that for any von Neumann-Morgenstern utility presentation of his
true ordinal ranking, submitting the true ordinal ranking maximizes his expected
utility. Most real-life mechansims only elicit this ordinal information (instead of von
Neumann-Morgenstern utilities).

Furthermore, φ is envy-free if for all R ∈ RN and all i ∈ N , φi(R) stochastically
Ri-dominates φj(R) (where in φj(R) the outside option j is replaced by i). If φ(R)
attaches probability one to assignment µ, then this is equivalent to µiRiµj for all

9Bogomolnaia and Moulin [2001] refer to this as ‘ordinal efficiency’. It implies Pareto-efficiency
with respect to expected utilities for some von Neumann-Morgenstern-representations of agents’
ordinal preferences over objects [McLennan, 2002].
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i, j ∈ N . Finally, φ is symmetric (respectively, treats equals equally) if for all R ∈ RN

and all i, j ∈ N , Ri = Rj implies φio(R) = φjo(R) for all o ∈ O.
We also define two invariance conditions of a mechanism with respect to renaming

agents and with respect to renaming objects.
Given a permutation τ ∶ N → N and R ∈ RN , let τ(R) be the profile such that

for all i ∈ N , τ(R)i = Rτ(i). A mechanism φ is anonymous if for any permutation
τ ∶ N → N and R ∈ RN , we have φi(τ(R)) = φτ(i)(R) for all i ∈ N .

Given a permutation σ ∶ O → O and R ∈ RN , let Rσ
i be such that (i) for all a, b ∈ O,

aRib iff σ(a)Rσ
i σ(b) and (ii) for all a ∈ O, aRii iff σ(a)Rii, and Rσ = (Rσ

i )i∈N . A
mechanism φ is neutral if for any permutation σ ∶ O → O and R ∈ RN , we have
φio(R) = φiσ(o)(Rσ) for all i ∈ N and all o ∈ O.

Note that most properties are defined in terms of an agent’s random assignment.
For a given set of properties, we say that a mechanism φ is unique in terms of
probability shares, if for any other mechanism ϕ satisfying this set of properties,
φ(R) and ϕ(R) are equivalent for any profile R.

Below we introduce some of the well-known mechanisms on the no-disposal domain.
The uniform assignment (UA) mechanism10 randomizes uniformly over all ∣N ∣!

deterministic non-wasteful assignments (irrespective of agents preferences). Hence
for individual object assignment probabilities we have: for all R ∈ RN , UAio(R) = 1

n

for all i ∈ N and o ∈ O.
A strict priority ranking over N is denoted by ≻. Let L denote the set of all strict

priority rankings. Given ≻∈ L, let f≻ denote the (deterministic) serial dictatorship
mechanism where agents are assigned their most-preferred among all available objects
in order of their priority.11 Then the random serial dictatorship (RSD) mechanism is
defined by RSD(R) = 1

n! ∑≻∈L f≻(R) for all R ∈ RN .
We omit the formal definition of the probabilistic serial (PS) mechanism12 and

provide an intuitive formulation instead: each agent starts eating with uniform speed
from his most-preferred object; once an object is exhausted, each agent eats with
uniform speed from his most-preferred among the remaining objects, and so on until
all objects are exhausted. The assignment probabilities of any agent in PS are simply
the shares of objects the agent has eaten during this process.13

10Chambers [2004] characterizes UA via consistency.
11For any R ∈ RN and i1 ≻ i2 ≻ ⋯ ≻ in, i1 receives his most Ri1-preferred object in O (denoted

by f≻i1
(R)), and for l = 2, . . . , n, il receives his most Ril

-preferred object in O/{f≻il
(R), . . . , f≻il−l

(R)}
(denoted by f≻il

(R)).
12For that, we refer the reader to Bogomolnaia and Moulin [2001]; Bogomolnaia [2015] offers an

alternative definition of PS, and Katta and Sethuraman [2006] extend PS to the domain where
indifferences are allowed.

13Note that the PS-mechanism pins down individuals’ object assignment probabilities directly,
rather than a random assignment per se, i.e., a convex combination of deterministic assignments.
Nonetheless, corresponding random assignments exists as any bistochastic matrix (pia)i∈N,a∈O can
be decomposed as a convex combination of permutation matrices by the Birkhoff-von Neumann
Theorem [Birkhoff, 1946].
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3. Unanimity

Efficiency and fairness are particularly hard to reconcile where agents’ preferences
are in conflict. In search of a possibility result, let us thus begin our analysis by
focussing on profiles were preferences are aligned, such that there is unanimous
agreement on a unique most-preferred outcome. In our context, these are precisely
those profiles where each agent ranks a different object first; we shall refer to them as
unanimous profiles. As a restriction of efficiency to this subset of profiles, unanimity
demands each agent to receive his most-preferred object.14 Formally, a mechanism φ

satisfies unanimity if for any profile R ∈ RN where there exists µ ∈ M such that for all
i ∈ N and all x ∈ O ∪ {i} we have µiRix, then φiµi

(R) = 1 for all i ∈ N . Hence, φ(R)
attaches probability one to µ when all agents unanimously prefer this assignment
to any other assignment (or equivalently, (assignment) unanimity). Note that there
is no distinction between an ex-post and ex-ante notion of unanimity; unanimity is
implied by both ex-post efficiency and, a fortiori, ex-ante efficiency. Furthermore,
as we are interested in the compatibility of envy-freeness and efficiency, unanimous
profiles stand out as they are the only profiles where those two requirements are
compatible ex-post.

Unfortunately, we find that even this restriction of efficiency to only a small set of
profiles is incompatible with strategy-proofness and envy-freeness.

Theorem 1. On the domain RN for ∣N ∣ ≥ 3, there exists no mechanism which is
unanimous, strategy-proof and envy-free.

We defer the proof of Theorem 1, as it will turn out to be an almost immediate
implication of our second, more general, impossibility result.15

For that, instead of requiring full unanimity, one may weaken the requirement
and demand that at all unanimous profiles, each agent receives their most-preferred
object with probability at least q. Formally, given q ∈ [0, 1], a mechanism φ satisfies
q-unanimity if for any profile R ∈ RN where there exists µ ∈ M such that for all
i ∈ N and all x ∈ O ∪ {i} we have µiRix, then φiµi

(R) ≥ q for all i ∈ N .16 Clearly,
q-unanimity is compatible with strategy-proofness and envy-freeness for sufficiently
low values of q (trivially for q = 0). For example the uniform assignment mechanism
satisfies the first two properties and 1

∣N ∣ -unanimity.
Before answering for what maximal bound q, q-unanimity can be attained, let us

also consider a related requirement, for profiles where there is unanimous agreement
that a certain object should be assigned to a specific agent. In particular, for a profile
where all agents consider all objects acceptable and the object most-preferred by one

14Observe that unanimous profiles are also the only profiles where there exists a deterministic
envy-free assignments other than the trivial assignment leaving all agents unassigned.

15Note that RSD satisfies strategy-proofness, symmetry, unanimity and object-unanimity (which
we define below).

16This is weaker than requiring µ to be chosen with probability at least q.
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agent i is considered least-preferred by all others, efficiency requires that i receives
his most-preferred object.17 We refer to a mechanism ensuring such assignments
as object-unanimous. Formally, given q ∈ [0, 1], a mechanism φ satisfies q-object-
unanimity, if for any profile R ∈ RN where there exists i ∈ N and x ∈ O such that
for all y ∈ O we have (i) xRiy and (ii) yRjx for all j ≠ i, then φix(R) ≥ q. Given that
preferences are aligned with respect to the most-preferred object of agent i,18 we may
ask, as for q-unanimity, for what maximal bound q, q-object-unanimity is compatible
with strategy-proofness and envy-freeness.

Theorem 2. On the domain RN for ∣N ∣ ≥ 3, if a mechanism φ satisfies ex-post weak
non-wastefulness, strategy-proofness and envy-freeness, then it fails to be q-unanimous
(q-object-unanimous) for any q > 2

∣N ∣ .

Proof. Let φ be a mechanism satisfying the properties. Since φ satisfies ex-post weak
non-wastefulness, we know that assignment probabilities sum to one, both for each
agent and hence also for each object; ∑a∈O φia(R) = ∑i∈N φia(R) = 1 for all i ∈ N , all
a ∈ O and all R ∈ RN . Let ∣N ∣ = n.

First, we show that φ is q-object-unanimous with q ≤ 2
n under the auxiliary

assumption that φ is neutral.
For that, consider the following profile R (where j stands for all n− 1 agents other

than 1 and where higher ranked objects are preferred over those ranked lower.)

R1 Rj

o1 o2 ∶ 1
n−1 − ε2

o2 o3 ∶ 1
n−1 − ε3

o3 o4 ∶ 1
n−1 − ε4

⋮ ⋮
on−1 on ∶ 1

n−1 − εn

on o1

On the right hand side one finds the assignment probabilities for the n − 1 agents
2 to n and the n − 1 objects o2 to on – by envy-freeness (EF), they all receive
objects with the same (object-specific) probability so that by feasibility εk ≥ 0 for
all k ∈ {2, . . . , n}. The remaining probabilities follow as residuals – in particular
φjo1(R) = ∑n

k=2 εk and φ1o1(R) = 1− (n− 1)∑n
k=2 εk. Hence, toward our claim, we will

show that ∑n
k=2 εk ≥ n−2

n(n−1) .
Now for any k ≠ 1, consider the following four profiles.

17Moreover, then for any deterministic assignment µ other than the trivial assignment leaving
all agents unassigned, assigning i his most-preferred object under µ is necessary and sufficient for
both (i) agent i not to envy any other agent’s object (µiRiµj for all j ∈ N) and (ii) any agent j not
to envy agent i’s object (µjRjµi for all j ∈ N).

18Note that any random assignment that assigns i their most-preferred object with probability
less than one is stochastically R-dominated by another that assigns it with higher probability.
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Rk
1 Rk

j

o1 o2

o2 o3

⋮ ⋮
ok−1 ok

ok o1

ok+1 ok+1

⋮ ⋮
on on

Rk′

1 Rk′

j

o2 o2

o3 o3

⋮ ⋮
o1 ok

ok o1

ok+1 ok+1

⋮ ⋮
on on

Rk′′

1 Rk′′

j

o2 o2

o3 o3

⋮ ⋮
o1 ok

ok+1 o1

⋮ ok+1

on ⋮
ok on

Rk′′′

1 Rk′′′

j

o2 ok

o3 o2

⋮ ⋮
o1 ok−1

ok+1 o1

⋮ ok+1

on ⋮
ok on

In Rk, compared to R, agents j ≥ 2 move o1 up, just below ok (for k = n this
step is superfluous). By strategy-proofness (SP) and EF this does not change their
assignment probabilities for ok, φjok

(Rk) = 1
n−1 − εk. Moreover the residual φ1ok

(Rk)
remains unchanged. Next, in moving to Rk′ , agent 1 demotes object o1 to just above
ok (for k = 2, this step is superfluous). By SP this leaves his, and hence by EF also
all j’s, probability of receiving ok unchanged. Moreover at Rk′ , all agents agree on
the ranking of objects other than o1 and ok and hence receive them with probability
1
n by EF. This pins down the assignment probabilities of o1 as residuals, in particular
φjo1(Rk′) = n−2

n(n−1) +εk. Again by SP (and EF), the assignment probabilities for object
o1 remain unchanged as we move to Rk′′ and then to Rk′′′ (the first step is superfluous
for k = n, the second for k = 2).

Now, consider the following profile

R̃1 R̃j

o2 o1

o3 o2

o4 o3

⋮ ⋮
on on−1

o1 on

By neutrality, we find that for j ≠ 1 and k ≠ 1, the probabilities with which j

receives object ok are given by the probabilities with which they receive object o1 in
Rk′′′ :

φjok
(R̃) = φjo1(Rk′′′).

Hence, the probabilities with which they receive objects ok, k ≠ 1, in R̃ sum to
n−2

n +∑
n
k=2 εk. As a residual this yields φjo1(R̃) = 2

n −∑
n
k=2 εk. Since all n − 1 agents

j ≠ 1 cannot in total receive more than 1 of object o1, we have

1 ≥ (n − 1)
⎛
⎝

2
n
−

n

∑
k=2

εk

⎞
⎠
= 2 − 2

n
− (n − 1)

n

∑
k=2

εk ⇔ (n − 1)
n

∑
k=2

εk ≥
n − 2

n
.
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Thus, agent 1 may not receive o1 with probability larger than 2
n in profile R. Hence,

2
n serves as an upper bound on q-object-unanimity.

By strategy-proofness and envy-freeness, this remains the case as 1 changes the
order in which he ranks objects below o1 or the other agents change the order in
which they rank objects above (now they may also differ in their rankings) which
completes the proof of our claim. In particular, agents j ≠ 1 may all rank a different
object first. Then 1 is still assigned o1 with probability at most 2

n , which serves as
an upper bound on q-unanimity.

Finally, assume there exists a non-neutral mechanism which is strategy-proof,
envy-free and q-unanimous or q-object-unanimous with q > 2

n . Then any mechanism
derived from it by permuting objects would likewise satisfy these properties – so
a uniform mixture over all these permuted mechanisms would restore neutrality
and satisfy q-unanimity (q-object-unanimity) with q > 2

n , a contradiction to the first
part. □

As mentioned earlier, Theorem 2 allows us to readily prove Theorem 1. For this,
we need the following lemma.

Lemma 1. On the domain RN , if a mechanism φ satisfies strategy-proofness and
envy-freeness, then every agent receives the same total assignment probabilities of
objects at any preference profile: for all R, R′ ∈ RN and all i, j ∈ N ,

∑
x∈O

φix(R) = ∑
x∈O

φjx(R′) ≡ Qφ.

Proof. For all i, j ∈ N and all R, R′ ∈ RN such that R′ = (R′j, R−j) we have

(1) ∑
x∈O

φix(R) = ∑
x∈O

φjx(R) = ∑
x∈O

φjx(R′j, R−j) = ∑
x∈O

φix(R′),

where the first and last equality follow by envy-freeness while the second equality is
due to strategy-proofness. Since any R∗ ∈ RN can be derived from R by at most n

changes in agents’ preferences, we have

∑
x∈O

φix(R) = ∑
x∈O

φix(R∗) = ∑
x∈O

φjx(R∗) ≡ Qφ,

where the first equality follows by iterated application of (1), while the second equality
is due to envy-freeness. □

Proof of Theorem 1. By Theorem 2 it remains to show that any unanimous, strategy-
proof and envy-free mechanism φ satisfies ex-post weak non-wastefulness. By Lemma
1, φ yields the same total assignment probability Qφ for each agent and at each
profile, including unanimous profiles. As φ is unanimous, we have Qφ = 1. Hence,
φ is ex-post weakly non-wasteful. By Theorem 2, it can be q-unanimous only for
q ≤ 2

∣N ∣ – a contradiction to unanimity. □
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Note that Lemma 1 and the above argument also show Theorem 1 to remain
unchanged when we replace unanimity by object-unanimity.

Remark 1. Alternatively one may consider (ex-post) q-efficiency meaning that for any
profile the mechanism attaches at least probability q to efficient assignments. Formally,
a mechanism φ satisfies q-efficiency if for any profile R ∈ RN , ∑µ∈PO(R)φ(R)(µ) ≥ q.
Now as for deterministic assignments efficiency implies both unanimity and object-
unanimity, q-efficiency implies both q-unanimity and q-object-unanimity. Hence,
Theorem 2 remains unchanged when q-unanimity is replaced with q-efficiency. Thus,
we maintain the same impossibility if we consider the (ex-post) efficiency frontier
among strategy-proof and envy-free mechanisms.19

4. Random-Dictatorship-cum-Equal-Division

Theorem 2 provides only an upper bound for q-unanimity. Below we provide a
mechanism that achieves this bound, which implies that this bound is tight.

For that, denote agent i’s most-preferred object under Ri by ōRi
and define the

Random-Dictatorship-cum-Equal-Division mechanism (RDcED) ϕ as follows. For any
i ∈ N and any R ∈ RN consider the set of non-wasteful assignments where i receives
his most-preferred object:

Mi(R) = {µ ∈ M∣µi = ōRi
and µj ∈ O for all j ∈ N}.

Hence, Mi(R) contains all (n − 1)! assignments resulting from all possible permuta-
tions when assigning objects in O/{ōRi

} among agents N/{i}. Define ϕi by taking
ϕi(R) to be the uniform mixture over all µ ∈ Mi(R). In words, the ϕi assigns i

his most-preferred object before applying the uniform assignment mechanism to all
remaining objects and individuals. Finally, define ϕ as the uniform mixture over all
ϕi:

ϕ(R) = 1
n

ϕi(R).
It selects some agent i uniformly at random, lets him choose with highest priority
and then divides the remaining objects equally by applying the uniform assignment
mechanism.

When all objects are acceptable, the following observations are immediate:

● ϕ is neutral, anonymous, ex-post weakly non-wasteful, strategy-proof and
envy-free.

19Hence, Theorem 1 and Theorem 2 both strengthen Theorem 1 of Nesterov [2017], who finds
ex-post efficiency to be incompatible with strategy-proofness and envy-freeness – one may replace
ex-post efficiency either by the weaker requirement of unanimity or by the two requirements of
q-efficiency (with q ∈ ( 2

n
, 1)) and ex-post weak non-wastefulness that are both weaker than ex-post

efficiency. The same remains true for object-unanimity instead of unanimity.
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● ϕ(R) stochastically-R-dominates the uniform assignment UA(R) – but is itself
stochastically-R-dominated by the random assignment under the random
serial dictatorship mechanism RSD(R).
● An object, which is either not ranked first by any agent or ranked first by all

agents, is assigned uniformly (at random) to each agent with probability 1
n .

In particular, if all agents’ most-preferred objects coincide, then we arrive at
the uniform assignment.
● An object, which is ranked first by all agents except for i, is never assigned

to i, and it is assigned to each j ≠ i with equal probability 1
n−1 .

● An object, which is ranked first only by i, is assigned to i with probability
1
n + n−1

n
1

n−1 = 2
n .

● In general, for the assignment probabilities under RDcED, we find

ϕio(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
n + n−1

n

n−1−∣{j≠i∣o=ōRj
}∣

(n−1)2 , if o = ōRi

n−1
n

n−1−∣{j≠i∣o=ōRj
}∣

(n−1)2 , if o ≠ ōRi

.

In particular, we find that the upper bounds formulated in Theorem 2 are tight.

Proposition 1. On the domain RN for ∣N ∣ ≥ 3, the Random-Dictatorship-cum-Equal-
Division mechanism (RDcED) satisfies ex-post weak non-wastefulness, strategy-
proofness, envy-freeness, 2

∣N ∣-unanimity and 2
∣N ∣-object-unanimity.

Moreover, since under RDcED always at least one agent receives his most-preferred
object, RDcED is ex-post weakly efficient. For three agents the latter property
together with ex-post weak non-wastefulness, strategy-proofness and envy-freeness
characterize RDcED.

Theorem 3. On the domain RN for ∣N ∣ = 3, the Random-Dictatorship-cum-Equal-
Division mechanism ϕ is the unique mechanism in terms of probability shares satis-
fying ex-post weak efficiency, ex-post weak non-wastefulness, strategy-proofness and
envy-freeness.

Proof. As shown above, ϕ satisfies the properties of Theorem 3. For the other
direction, let N = {1, 2, 3} and O = {a, b, c}. Let φ denote an arbitrary mechanism
that satisfies the properties above. We will show that for any profile R, φ(R) and
ϕ(R) are equivalent, i.e., φi(R) = ϕi(R) for all i ∈ N .

1. First, we show that whenever some object, say a, is ranked first twice, φ assigns
it to both agents ranking it first with probability 1

2 (and to the third with probability
zero). Without loss of generality, let agent 3 be the agent not ranking a first and
that 3 ranks c above b. Now, consider the following profile R̃:
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R̃1 R̃2 R̃3

a a c

b b a

c c b

By ex-post weak efficiency, 3 cannot receive a with positive probability – in that
case, 1 or 2 (say 1) would receive b and the other (say 2) c. But if instead 1 received
a, 2 received b and 3 received c, everyone would be strictly better off. So by ex-post
weak efficiency, 3 receives a with probability zero and by envy-freeness both 1 and 2
receive a with probability 1

2 each. Moreover, by strategy-proofness and envy-freeness,
the same assignment probabilities hold independently from the order in which 1 and
2 rank b and c. Finally, even as 3 demotes a and ranks it last, strategy-proofness
demands that it receives none of it (while the other two still receive it with probability
1
2 by ex-post weak non-wastefulness and envy-freeness).

2. Next, consider the case where some object, say a, is ranked first by all agents.
As we will see, under φ all objects are assigned uniformly. For the case where all
agents have the same preferences, this is immediate. If there is some disagreement
on the second and third ranked objects, consider w.l.o.g. profile R below along with
two other profiles:

R1 R2 R3

a a a

b b c

c c b

R′1 R′2 R′3
b b a

a a c

c c b

R′′1 R′′2 R′′3
b b a

a a b

c c c

In profile R′′, we have φ3c(R′′) = 1
3 (by envy-freeness) and φ3b(R′′) = 0 (since b is

ranked first twice, see 1. above). By strategy-proofness we thus have φ3c(R′) = 1
3 and

φ3b(R′) = 0, and by envy-freeness φ1c(R′) = φ2c(R′) = 1
3 . By strategy proofness and

envy-freeness, 1 and 2 are still assigned c with probability 1
3 as we first replace R′1

by R1 and then R′2 by R2. Hence c is assigned uniformly in profile R. Of course the
same is true for a (by envy-freeness) and, as a residual, for b.

3. Next, we will show that if two agents rank the same object, say b, first while a
third, say 3, ranks a different object, say c, first, then 3 will receive his most-preferred
object (c) with probability 2

3 . For that, note that the probability with which 3 receives
c is independent of the order in which he ranks a and b (by strategy-proofness).
Assume he ranks b second, i.e., consider the following profile R̂:

R̂1 R̂2 R̂3

b b c

⋮ ⋮ b

a
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Then we know by the above (1.) that φ3b(R̂) = 0. Moreover for Ř3 ∶ bŘ3cŘ3a

we know that φ3(Ř3, R̂−3) is the uniform lottery (2.), so by strategy-proofness,
φ3c(R̂) + φ3b(R̂) = 2

3 . Hence, as claimed, φ3c(R̂) = 2
3 .

4. Together, 1., 3., and envy-freeness pin down the assignment for most profiles
where two distinct objects are ranked first. For these profiles, two agents, say 1 and 2,
rank the same object, say b, first. If they also agree on the ranking of a and c, then
by ex-post weak non-wastefulness and envy-freeness, each receives 1

6 of the object
that 3 ranks first, say c.

If they do not agree on the ranking of a and c, there are two possible profiles (up
to a relabelling of 1 and 2 and objects a and c). Consider first profile Q̃:

Q̃1 Q̃2 Q̃3
1
2 ∶ b 1

2 ∶ b 2
3 ∶ c

1
6 + ϵ̃ ∶ c 1

3 + ϵ̃ ∶ a 0 ∶ b
1
3 − ϵ̃ ∶ a 1

6 − ϵ̃ ∶ c 1
3 ∶ a

To see that in Q̃, ε̃ = 0, consider a switch by 1 in their ranking of b and c – then they
(and 3) receive c with probability 1

2 (by 1.) and 2 receives b with probability 2
3 (by

3.). By envy-freeness, 1 (and 3) receive b with probability 1
6 . As a residual 1 receives

a with probability 1
3 – and does so even before the switch (by strategy-proofness), so

that ε̃ = 0.
5. The only type of profile with two distinct first-ranked objects that remains, is

represented by profile Q below where relative to Q̃, 3 has changed the ranking of
a and b, now ranking last the object that is ranked first by the other two agents.
Consider Q alongside the following three profiles Q′, Q′′, and Q′′′:

Q1 Q2 Q3
1
2 ∶ b 1

2 ∶ b 2
3 ∶ c

1
6 + ϵ ∶ c 1

3 + ϵ ∶ a 1
3 ∶ a

1
3 − ϵ ∶ a 1

6 − ϵ ∶ c 0 ∶ b

Q′1 Q′2 Q′3
b a c

c b a

a c b

Q′′1 Q′′2 Q′′3
b a c

c b b

a c a

Q′′′1 Q′′′2 Q′′′3

b a b

c b c

a c a

Note that Q is just one switch away from the ‘Condorcet-cycle’ profile Q′: if 2
switches a and b we are there. Hence, by strategy-proofness, φ2c(Q′) = φ2c(Q) = 1

6 − ϵ.
At Q′ the set of weakly efficient assignments is equal to

µ1 =
⎛
⎝

1 2 3
b a c

⎞
⎠

, µ2 =
⎛
⎝

1 2 3
b c a

⎞
⎠

, µ3 =
⎛
⎝

1 2 3
c a b

⎞
⎠

and µ4 =
⎛
⎝

1 2 3
a b c

⎞
⎠

.

Note that µ2 is the only weakly efficient assignment at Q′ where agent 2 receives
c, and also the only weakly efficient assignment where agent 3 receives a. Hence,
by ex-post weak efficiency, φ(Q′) attaches probability 1

6 − ϵ to µ2, and we have
φ3a(Q′) = φ2c(Q′) = 1

6 − ϵ. Between Q′′ and Q′ agent 3 switches a and b so that by
strategy-proofness, φ3a(Q′′) ≤ φ3a(Q′) = 1

6 − ϵ. Finally, at Q′′′, φ2a = 2
3 (by 3.) and
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hence φ3a(Q′′′) = φ1a(Q′′′) = 1
6 . As 3 swaps b and c between Q′′ to Q′′′, strategy-

proofness implies φ3a(Q′′) = φ3a(Q′′′) = 1
6 and we arrive at 1

6 = φ3a(Q′′) ≤ 1
6 − ϵ so

that ε = 0.
6. Finally, up to relabelling of objects and agents, there are two types of profiles

where three distinct objects are ranked first – either there are three distinct second-
ranked alternatives, so that we are in a ‘Condorcet cycle’ profile, or there is an
object that is ranked second twice. For a profile of the first type, consider once
more Q′. Looking at Q, strategy-proofness yields φ2c(Q′) = φ2c(Q) = 1

6 . Moreover
by ex-post weak efficiency, φ3a(Q′) = φ2c(Q′) = 1

6 . In the same way, one can show
that φ2b(Q′) = φ1a(Q′) = 1

6 and φ1c(Q′) = φ3b(Q′) = 1
6 which leaves each agent with

a probability of receiving their top ranked object with probability 2
3 . Analogously,

the same can be shown for any ‘Condorcet-cycle’ profile, i.e., profiles that differ from
Q′ by relabelling objects or individuals.

We are left with Q′′. By strategy-proofness, φ3c(Q′′) = φ3c(Q′) = 2
3 . Also φ3c(Q′′)+

φ3b(Q′′) = φ3c(Q′′′) + φ3b(Q′′′) = 5
6 , and hence, φ3b(Q′′) = 1

6 . Then as residual
φ3a(Q′′) = 1

6 and by envy-freeness, φ1a(Q′′) = 1
6 . Hence, φ2a(Q′′) = 2

3 . By strategy-
proofness, φ2c(Q′′) = φ2c(Q̃) = 1

6 . All remaining probabilities follow as residual. □

Observe that neither anonymity and nor neutrality are initially assumed but
follow as consequences of the axioms in Theorem 3. To check those are independent,
observe that if we dropped ex-post weak non-wastefulness, a random dictatorship
where only the dictator is assigned his most-preferred object while everyone else
remains unassigned would satisfy all the other axioms. PS satisfies all axioms but
strategy-proofness, RSD all but envy-freeness and UA all but ex-post weak efficiency.

Remark 2. Instead of q-unanimity, we may require exact q-unanimity – where for a
unanimous profile each agent receives his most-preferred object with (exact) probability
q. Formally, given q ∈ [0, 1], a mechanism φ satisfies exact q-unanimity if for any
profile R where there exists µ ∈ M such that for all i ∈ N and all x ∈ O ∪ {i} we have
µiRix, then φiµi

(R) = q for all i ∈ N .
Note that 1-unanimity and exact 1-unanimity are equivalent while exact q-unanimity

implies q-unanimity. Hence, Theorem 2 remains unchanged when q-unanimity is
replaced with exact q-unanimity. Moreover, as RDcED satisfies exact 2

∣N ∣-unanimity,
the same holds for Proposition 1.

5. Unacceptable Objects

Until now our results were confined to the no-disposal domain RN , where every
agent finds all objects acceptable. For the full domain RN , where being unassigned
is not necessarily ranked at the bottom of an agent’s preference, our impossibility
result Theorem 1 remains true, as RN is a superdomain of RN . Moreover, as we show
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below, on this domain we may replace unanimity with ex-post weak non-wastefulness
without altering the conclusion of Theorem 1.

Theorem 4. On the domain RN for ∣N ∣ ≥ 3, there exists no mechanism which is
ex-post weakly non-wasteful, strategy-proof and envy-free.

Theorem 4 is an immediate implication of Theorem 1 and the following lemma.

Lemma 2. On the domain RN , ex-post weak non-wastefulness and strategy-proofness
together imply unanimity.

Proof. Let φ satisfy ex-post weak non-wastefulness and strategy-proofness. Suppose
that φ violates unanimity. Then for some profile R and µ ∈ M, we have µiRiµ′i
for all i ∈ N and all µ′ ∈ M and yet φ does not attach probability one to µ. By
ex-post weak non-wastefulness, at least one agent must find at least one object as
acceptable under R (as otherwise φ(R) attaches probability one to µ by ex-post
weak non-wastefulness). Let Ñ denote the set of agents who find at least one object
acceptable. For any i ∈ N/Ñ who finds no object acceptable, ex-post weak non-
wastefulness implies φii(R) = 1. So for there to be a violation of unanimity, there
exists j ∈ Ñ such that Rj ∶ µj Rj . . . with µj ∈ O and φjµj

(R) < 1. Let R′j ∶ µj Rj j . . .

and R′ = (R′j, R−j). By strategy-proofness, φjµj
(R′) = φjµj

(R) < 1. Thus, by ex-post
weak non-wastefulness, there exists k ∈ Ñ/{j} with φkµj

(R′) > 0. Hence, by ex-post
weak non-wastefulness, Rk ∶ µk Rk . . . µj Rk . . . k and φkµk

(R′) < 1. Then k in R′ is in
the role of j in R and we move to R′′ where k is ranked second by k and k receives his
most-preferred object µk with probability less than one. Again this requires another
agent l ∈ Ñ/{j, k} receiving µk with positive probability – continuing in this way, we
arrive at a profile where all agents in Ñ rank a different object first, consider exactly
one object acceptable and yet there is at least one agent in Ñ who remains unassigned
with positive probability – a violation of ex-post weak non-wastefulness. □

The above Theorem 4 is the first impossibility result on the full domain not involv-
ing any efficiency requirement and only an extremely weak ex-post non-wastefulness
notion. It bears resemblance to the impossibility result presented by Martini [2016],
who finds that strategy-proofness and the weaker fairness requirement of symmetry
are incompatible with a stronger notion of (ex-ante) non-wastefulness. Note that if
we content ourself both with the weak fairness requirement of symmetry and our
weak non-wastefulness requirement, a possibility result emerges – the random serial
dictatorship mechanism satisfies both, together with strategy-proofness.

If we instead insist on strategy-proofness and envy-freeness, the following limited
notion of unanimity is jointly compatible: a mechanism φ satisfies weak unanimity if
for all R where there exists µ ∈ M such that for all i ∈ N and all x ∈ O ∪ {i}/{µi}
we have both µiRiµ′i and iRiµ′i, then φ(R) attaches probability one to µ. In other
words, if every agent finds at most one object acceptable and no two agents find the
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same object acceptable, then with probability one each agent who finds no object
acceptable receives none while all others receive their only acceptable object. Put
differently, weak unanimity demands, that at preference profiles where there exists a
unique non-wasteful assignment, that assignment is chosen with probability one –
compared to unanimity that demands an assignment to be chosen whenever it is the
unique efficient assignment. Hence weak unanimity not only weakens unanimity, but
is also implied by weak non-wastefulness.

Proposition 2. On the domain RN for ∣N ∣ ≥ 3, there exists a mechanism satisfying
weak unanimity, strategy-proofness and envy-freeness.

We show Proposition 2 by extending the uniform assignment mechanism UA to
the full domain as follows. For any R ∈ RN , define assignment probabilities in two
steps:

(1) For any object a, let na(R) denote the number of agents who consider a

acceptable; then assign each agent i who finds a acceptable a probability
share of sia(R) = 1

na(R) of the object (i.e., we split the object equally among
all agents who consider it acceptable).

(2) For all i ∈ N and all a ∈ O, choose UAi(R) such that

∑
x∈B(a,Ri)

UAix(R) =min
⎧⎪⎪⎨⎪⎪⎩
∑

x∈B(a,Ri)
six(R), 1

⎫⎪⎪⎬⎪⎪⎭
.

That is, agent i receives each object a with probability of at most their
probability share sia, starting from his most-preferred object and up until
either his probability shares are exhausted or until his total assignment
probabilities sum to one.

As with the probabilistic serial, this definition only pins down individual assignment
probabilities rather than a convex combination of deterministic assignments µ ∈ M.
However, the Birkhoff-von Neumann Theorem ensures that such convex combinations
exist. Moreover, the individual assignment probabilities suffice to verify that our
extension of UA satisfies the alleged properties.

One easily verifies that UA is strategy-proof – failing to report an acceptable object
as acceptable only shrinks the budget set of probability shares while reporting an
unacceptable object as acceptable may only worsen the choice from that budget
set. Similarly, envy-freeness is readily verified, as two individuals who both consider
an object acceptable will receive an equal probability share towards their budget
set, while an agent that finds an object unacceptable will not envy others for being
assigned that object. Last, to verify weak unanimity, observe that at a profile where
each agent finds a different, and only one, object acceptable, each agent will receive
a probability share of one of their only acceptable object, and hence is assigned that
object for sure.



STRATEGY-PROOF AND ENVY-FREE RANDOM ASSIGNMENT 19

To see that UA, while satisfying the properties in Proposition 2, fails to be ex-post
weakly non-wasteful on RN , as implied by Theorem 4, consider the following example.

Example 1.
R1 R2 R3

a b c

b

Here agent 1 will receive a probability share of 1 of object a and hence, as it is also
his most-preferred object, be assigned that object for sure under UA. In terms of
probability shares, object b is split between agents 1 and 2, with each receiving 1

2 but
only 2 may be assigned the object, with probability 1

2 . As b is 2’s only acceptable object,
he will remain unassigned with equal probability and, in this case, find that b has not
been assigned – a violation of ex-post weak non-wastefulness.

6. Allowing for Waste when All Objects are Acceptable

Theorem 2 shows that for ex-post weakly non-wasteful mechanisms, strategy-
proofness and envy-freeness imply that q-unanimity (q-object-unanimity) may only
be satisfied for q ≤ 2

∣N ∣ on the no-disposal domain.
What if we were to accept waste (even though all agents find all objects are

acceptable), i.e., to allow that the total probability with which any agent receives
an acceptable object (Qφ) was reduced below 1? While envy-freeness and strategy-
proofness still ensure that the same Qφ holds for all agents and across all profiles, the
total assignment probabilities for objects may vary, both within and across profiles
when Qφ < 1. As the following example demonstrates, this additional flexibility allows
to increase the upper bound on q-unanimity that is achievable – mechanism φ below
satisfies strategy-proofness, envy-freeness, and q-unanimity for q = 5

6 = Qϕ. Hence,
ex-post weak non-wastefulness is indispensable in Theorem 2.

Example 2. Let N = {1, 2, 3} and O = {a, b, c}. For all R ∈ RN , φ(R) is defined as
follows (where Qφ = 5

6 so that any agent is always unassigned with probability 1
6):

(1) If under R all agents rank different objects at the top, then each agent receives
their top ranked object with probability 5

6 .
(2) If under R all agents rank the same object at the top, then each agent receives

their top ranked object with probability 1
3 , their second ranked object with

probability 1
3 and their third ranked object with probability 1

6 .
(3) Otherwise two agents rank the same object at the top, say 1 and 2 rank a at

the top, while the remaining agent 3 ranks a different object, say b, at the
top; then agent 3 receives his top ranked object with probability 1

2 , his second
ranked object with probability 1

6 and his third ranked object with probability
1
6 ; any agent ranking a first and c second receives a and c with probability
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5
12 each; any agent ranking a first and b second a with probability 5

12 , b with
probability 1

4 , and their third ranked object c with probability 1
6 .

It is straightforward that φ satisfies 5
6-unanimity, envy-freeness, anonymity and

neutrality. We check that ϕ satisfies satisfies strategy-proofness: if R is in (1), then
this is immediate; if R is in (2), then an agent can only deviate to another profile in
(2) by reversing the ranking of his second and third most-preferred object (worsening
his outcome) or to a profile in (3) (but then he receives the most-preferred object
with probability 1

6 < 1
3 and the least preferred object with probability at least 1

6). If R

is in (3), then

● agent 3 can only deviate to another profile in (3) (reverse the ranking of a

and c with no change or rank c first with a worse outcome) or to a profile
in (2) by ranking a first – but then he gets weakly less of his most-preferred
object (at most 1

3 instead of 1
2) and of his two most-preferred objects (at most

2
3 instead of 2

3);
● agent 1 (or 2) who ranks c second can deviate to another profile in (3) by

reversing the order of b and c (worsening his outcome) or by ranking b first
(but then he gets only 5

12 of his two most-preferred objects a and c), or to a
profile in (1) by ranking c first (but then he gets none of his most-preferred
object and still 5

6 of his two most-preferred objects);
● agent 1 (or 2) who ranks b second can deviate to another profile in (3) by

reversing the order of b and c (worsening his outcome) or by ranking b first
(but then gets 1

4 or none of his most-preferred object a and still at most 2
3 of

his two most-preferred objects a and b), or to a profile in (1) by ranking c

first – but then he gets none of his two most-preferred objects a and b;

While waste in the above sense is a serious curtailment of efficiency, it raises the
question whether a ‘small’ amount of waste is sufficient to construct an ‘almost’
unanimous mechanism. To be precise, let us write qn for the highest possible value q,
such that for an economy of size n, i.e., ∣N ∣ = ∣O∣ = n, there exists a strategy-proof
and envy-free mechanism that is q-unanimous.20 Do there exist markets of size n

such that qn can be arbitrarily close to 1? Unfortunately our hopes are dashed once
again. In fact, as the market grows in size, the upper bound on feasible q-unanimity
is ever shrinking.

Theorem 5. Let qn be the maximal value q such that there exists a strategy-proof and
envy-free mechanism on the domain RN , ∣N ∣ = n, that is q-unanimous. Then qn is
weakly decreasing in n.

20As for any economy of size n, and for any labelling of objects, O, and agents, N , the set of
mechanisms is closed and bounded in Rs (where s = (∣O∣!∣N ∣)×(∣N ∣ × ∣O∣) = n!n×n2), this maximum
is well-defined for any given N and O. As the maximum does not depend on the labelling of objects
and agents, qn is well-defined for any given n.
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Proof. Consider N = {1, . . . , n}, O = {o1, . . . , on} as well as N ′ = N ∪ {n + 1} and
O′ = O ∪ {on+1}. For any mechanism φ′ on RN ′ that is strategy-proof, envy-free and
q-unanimous for some q ∈ [0, 1], we show that there exists another mechanism φ on
RN that satisfies the same properties – in particular one that is at least q-unanimous
for the same q. As qn and qn+1 are defined as the maximal feasible bounds on q-
unanimity, this implies that the bound qn must be at least as high as the bound
qn+1.

For that, construct φ for each profile R ∈ RN as follows: extend preferences Ri by
letting each agent i ∈ N rank object on+1 at the last position to arrive at R′i, and let
agent n + 1 ∉ N rank on+1 as the most-preferred object. Further, we may fix agent
n + 1’s preferences in any arbitrary order, say as follows (where i ∈ N/{n + 1}):

R′i R′n+1

⋮ on+1

⋮ on

⋮ ⋮
on+1 o1

Define the set of profiles R′ ∈ RN ′ thus derived as QN ′ ⊂ RN ′ and set φia(R) =
φ′ia(R′) for any i ∈ N , a ∈ O ∪ {i} and all R ∈ RN . Since φ′ is (by assumption)
strategy-proof and envy-free on RN ′ , it is a fortiori strategy-proof and envy-free on
QN ′ .

But then φ is also strategy-proof on RN , as reporting R̃i instead of Ri yields a
stochastically dominated random assignment over objects in O:

∑
oj∈B(ok,Ri)

(φioj
(R) − φioj

(R̃i, R−i)) = ∑
oj∈B(ok,R′i)

(φ′ioj
(R′) − φ′ioj

(R̃′i, R′−i)) ≥ 0

for all ok ∈ O and all i ∈ N , where the inequality follows from the fact that φ′ is
strategy-proof on QN ′ . In the same way, envy-freeness of φ′ on QN ′ implies envy-
freeness of φ on RN . To see that φ is q-unanimous, consider any profile R ∈ RN

where all i ∈ N rank a different object ok ∈ O first. Then at the associated profile R′

each agent i ∈ N ∪ {n+ 1} ranks a different object ok ∈ O ∪ {on+1} first. Hence, by our
assumption on φ′, each agent receives their most-preferred object with probability
at least q at φ′(R′) and by our construction of φ the same holds for all i ∈ N at
φ(R). □

It follows from Theorem 2 that q3 < 1 (as otherwise q3 = 1 and by Lemma 1 there
would exist a mechanism satisfying ex-post weak non-wastefulness, strategy-proofness
and envy-freeness). This together with Theorem 5 yields that for any ∣N ∣ ≥ 3, the
maximal bound q, such that there exist a strategy-proof and envy-free mechanism
which is q-unanimous, is weakly lower than q3 < 1, i.e., q is uniformly bounded away
from one for all n. A fortiori, the same holds for mechanisms which are in addition
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q-object-unanimous. As a final result, we determine the maximal bound for such
mechanisms for three agents.

Theorem 6. On the domain RN with N = {1, 2, 3} and allowing waste, there exists a
strategy-proof and envy-free mechanism satisfying q-unanimity and q-object-unanimity
if and only if q ≤ 17

18 .

Proof. Note that 17
18 = 85

90 and we specify the probabilities in terms of shares of 1
90 .

Consider the following nine profiles.

R1
1 R1

2 R1
3

a85 b85 c85

⋮ ⋮ ⋮

R2
1 R2

2 R2
3

a40 a40 c85

b45 b45 a0

c0 c0 b0

R3
1 R3

2 R3
3

a40 a40 c60
x

b25 c25 a7.5
67.5−x

c0 b17.5 b17.5

R4
1 R4

2 R4
3

a40 a40 c45

c15 c15 a10

b30 b30 b30

R5
1 R5

2 R5
3

a45 a45 c85

b40 b40 b0

c0 c0 a0

R6
1 R6

2 R6
3

a45 a45 c60
x

b40 c15
y b25

85−x

c0 b25
40−y a30

R7
1 R7

2 R7
3

a45 a45 c45

c40 c40 b40

b17.5 b17.5 a0

R8
1 R8

2 R8
3

a30 a30 a30

b25 b25 b25

c30 c30 c30

R9
1 R9

2 R9
3

a30 a30 a30

b37.5 b37.5 c55

c17.5 c17.5 b0

First, it can be verified that the neutral mechanism ϕ defined by the above nine
profiles is strategy-proof and envy-free, and satisfies both 17

18 -unanimity and 17
18 -object-

unanimity. Note that by neutrality, for any profile R ∈ RN , we have one of the
following cases: (i) all agents rank a different object first (which corresponds to R1),
(ii) all agents rank the same object first (which corresponds to R8 or R9), (iii) two
agents rank one object first and they rank the third agent’s top object last (which
corresponds to R2 and R5), (iv) two agents rank one object first and they rank the
third agent’s top object second (which corresponds to R4 and R7), or (v) two agents
rank one object first, one of them ranks the third agent’s top object last and the
other one second (which corresponds to R3 and R6). Thus, as ϕ is neutral, ϕ is
completely defined by the nine profiles above.

Second, let φ be a strategy-proof and envy-free mechanism satisfying q-unanimity
and q-object-unanimity. Then, without loss of generality, we may suppose that φ

is neutral (by the argument in the proof of Theorem 2) and that φ always assigns
probability q to any agent to all real objects (as otherwise we subtract Qφ − q for
any φi(R) from the lowest ranked objects, and the resulting mechanism continues to
satisfy all of the properties). Suppose that q > 85 (where again we write 85 instead of
85
90). We show that φ must choose the same probabilities as above except for where
we have specified lower indices (in profiles R3 and R6).
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Obviously, by q-object-unanimity, φ3c(R5) = q > 85. Furthermore, by q-unanimity,
φ1a(R1) = φ2b(R1) = φ3c(R1) = q.

Consider profile R9: we have by feasibility, φ3a(R9) ≤ 30, and by strategy-proofness
(from R5), φ3c(R9) > 55 and φ3b(R9) = 0. Thus, by envy-freeness and feasibility,
φ1c(R9) = φ2c(R9) < 17.5

Now we have φ1a(R5) = φ2a(R5) ≤ 45 implying (by using R1 and strategy-proofness)
φ1b(R5) = φ2b(R5) > 40.

But now we have in R7, φ3a(R7) = 0 (as agent 3 can move b to the top and receive
by q-object-unanimity probability q for object b). By invoking strategy-proofness for
1 and 2 from R9 (by switching the ranking of a and b), and then using neutrality to
arrive at R7, we have φ1b(R7) = φ2b(R7) < 17.5. Thus, φ1c(R7) = φ2c(R7) > 22.5 (as
φ1a(R7) = φ2a(R7) ≤ 45). Thus, φ3c(R7) < 45.

But now as agent 3 moves from R7 to R4 by switching the ranking of a and b,
we have φ3c(R4) < 45. In R2, we have φ1a(R2) = φ2a(R2) > 40 (from R1). Hence,
φ1a(R4) = φ2a(R4) > 40, and by feasibility, φ3a(R4) < 10. But then by envy-freeness,
φ3b(R4) ≤ 30. Hence,

q = φ3a(R4) + φ3b(R4) + φ3c(R4) < 10 + 30 + 45 = 85,

which is a contradiction to q > 85. Hence, we must have q = 85.
Now all the probabilities can be derived in straightforward manner using the above

arguments if q = 85. □

It is worth mentioning that for any mechanism achieving the maximal bound
in the proof of Theorem 6, that for the profile R8 where all agents have identical
preferences, the middle ranked object is wasted whereas the top ranked and last
ranked object are assigned with probability one.

7. Conclusion

We have determined the possibility frontier in terms of unanimity for assignment
mechanisms that are both strategy-proof and envy-free. Even for preference profiles
where there is unanimous agreement on the preferred assignment, it can only be
chosen with a small probability on which we provide an exact bound.

Moreover, for our new mechanism, RDcED, which lies on the possibility frontier
in terms of unanimity, is characterized by a natural set of axioms for three agents,
we find that while it improves upon RSD in that it is envy-free, it is also Pareto-
dominated by the latter. That is, while RSD may yield random assignments where
an agent may envy another, RDcED avoids this, but only by making both agents
worse off – a rather unsatisfactory solution.21

21Note how this contrasts with the relation between two strategy-proof mechanisms in a related
setting were agents enjoy different, object-specific priorities: Deferred Acceptance (DA) and Top
Trading Cycles (TTC). Here, the first avoids justified envy while the latter is efficient – however,
TTC does not Pareto-dominate DA.
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Our results narrow the limits for efficiency under the considered constraints. Below
we describe alternative avenues for future research.

On the one hand, in small markets, one could explore which gains in efficiency are
achievable by contenting ourselves with weaker notions of incentive compatibility
than strategy-proofness or weaker notions of fairness than envy-freeness. While
such weakenings can be formulated in the current framework where agents compare
random assignments based on stochastic dominance,22 another approach would be to
base agents’ comparisons of random assignments in terms of their associated expected
utility – while the notion of (ex-ante) efficiency would become stronger by such a
change, strategy-proofness and envy-freeness become easier to satisfy, potentially
creating room for Pareto-improvements relative to RDcED. Note, however, that elic-
iting information on agents’ von Neumann-Morgenstern utility functions, underlying
their ordinal ranking of objects, may be difficult in practice. Here additional research
on real-life elicitation procedures might be useful.

On the other hand, one may consider large markets. Here one may make markets
large in two different ways: either by keeping the set of object types fixed and
adding copies to match an increasing number of agents, or by considering economies
with a large number of distinct agents and distinct objects. First, when we add
object copies, Liu and Pycia [2016] have shown in their Theorem 2 that any two
symmetric and “regular”23 mechanisms, which are asymptotically strategy-proof and
asymptotically efficient, coincide asymptotically, i.e., they choose the same allocations
in the limit. For instance, this implies asymptotic coincidence of RSD24 and PS (which
was first shown by Che and Kojima [2010]), and that RSD and, respectively, PS
satisfy unanimity, object-unanimity and asymptotically both strategy-proofness and
envy-freeness. An open question is, whether there exists a sequence of mechanisms,
converging to RSD and PS as we add object copies, which is strategy-proof and
envy-free for all finite markets. Second, when we consider economies with a large
number of distinct agents and distinct objects, Manea [2009] has shown that RSD is
sd-efficient with probability zero, and hence RSD and PS diverge with probability
one. As we have shown, the extent to which q-(object-)unanimity can be attained
in the class of strategy-proof and envy-free mechanisms is bounded away from one
when we increase both the number of agents and objects n, but it is an open question
whether the bound of q = 2

n can be substantially improved even for larger markets.
Hence, we do not obtain any extreme convergence result à la Liu and Pycia [2016] or
any extreme divergence result à la Manea [2009].

22See for example, Basteck [2018] for an extensive analysis of logical relationships between various
fairness concepts in the present context.

23Loosely speaking, this means that agents cannot change to “too much” the random assignments
of other agents (in terms of probability shares) as the market becomes large.

24RSD is regular, provided the number of copies for each object type grows at the same rate as
the number of agents, e.g., in replica economies.
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