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Abstract

We analyze how agents’ present bias affects optimal contracting in an infinite-

horizon employment setting. The principal maximizes profits by offering a menu

of contracts to naive agents: a virtual contract – which agents plan to choose in

the future – and a real contract which they end up choosing. This virtual contract

motivates the agent and allows the principal to keep the agent below his outside

option. Moreover, under limited liability, implemented effort can be inefficiently

high. With a finite time horizon, the degree of exploitation of agents decreases over

the life-cycle. While the baseline model abstracts from moral hazard, we show that

the result persists also when allowing for non-contractible effort.
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1 Introduction

Numerous studies have documented that a substantial fraction of the population suffers

from a present bias.1 This present bias affects decision making in diverse domains like

retirement savings behavior, see Laibson (1997), health club attendance, see DellaVigna

& Malmendier (2006), or credit card usage, see Shui & Ausubel (2005). All these settings

have in common that immediate costs have to be traded off with delayed benefits and that

their present bias leads people to make too “shortsighted” decisions. A domain that, so far,

has not been studied with this focus but that also shares this feature – immediate costs,

delayed rewards – is individuals’ career decisions in the labor market.

Deciding which career to take and where to work is one of the most important deci-

sions people make. It is an inherently long-term decision, involving inter–temporal trade-

offs. Moreover, for most employees, and this is well understood by firms, the prospect

of promotion, i.e., career advancement, is among the most important motivating factors.

Survey evidence suggests that most young employees want to make a “career”, i.e., they

strongly care about opportunities for career advancement and development that are offered

by prospective employers2 and the opportunities for career development are a top priority

in job choice3. Hence, many firms prominently advertise their development programs4 and

attract and motivate employees with promotion prospects and career development plans.

However, there is also widespread frustration that these promotion and career prospects

often turn out to be false hopes.5 And this frustration is not (only) caused by firms

defaulting on their promises, but anecdotal evidence suggests that many employees fail to

take career development options. For example, a 2013 Forbes.com article explaining “The

6 Reasons You Haven’t Been Promoted” lists as the number two reason “You Didn’t Do

1See DellaVigna (2009) for an excellent survey.
2See, e.g., slide 28 of the “E&Y Studentenstudie 2014”, http://www.ey.com/

Publication/vwLUAssets/EY_-_Acht_von_zehn_Studenten_sind_zufrieden/$FILE/

EY-studentenstudie-2014-werte-ziele-perspektiven-prsentation.pdf, last accessed, May 29,
2015.

3See, e.g., slide 23 of the “E&Y Absolventenbefragung 2013”, http://www.ey.com/Publication/

vwLUAssets/EY-Absolventenbefragung_2013/$FILE/EY-Absolventenbefragung-2013-Studie.pdf,
last accessed, May 29, 2015.

4To be a “Great Place to work” the Harvard Business Review asks firms to “Provide employees with
ongoing opportunities and incentives to learn, develop and grow [. . . ]”; see https://hbr.org/2011/09/

the-twelve-attributes-of-a-tru.html, last accessed January 28, 2015.
5A Google search for “frustration promotion” gives about 17,800,000 hits. The phenomenon has also

been documented by several studies in organizational psychology; see, e.g., Garavan & Morley (1997) or
Rindfuss et al. (1999).
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Anything Special” and as number three “You Didn’t Take Initiative”.6

Here we offer an explanation of this phenomenon that builds on the above described core

feature of career choices: The cost/reward structure with immediate costs, but delayed

benefits. Such a structure opens up room for time-inconsistency phenomena. Here we

study how the design of optimal long-term employment contracts is affected by such a

present bias. We analyze how agents’ present bias affects contracting in an infinite-horizon

employment setting, abstracting from other agency problems such as moral hazard, adverse

selection, or limited commitment.7 Naive agents are offered a menu of contracts, consisting

of a virtual contract – which they plan to choose in the future – and a real contract

which they end up choosing. This virtual contract allows the principal to exploit the

agent, because a major part of the agent’s compensation is shifted from the real into the

virtual contract. If the agent is protected by limited-liability, implemented effort can be

inefficiently high from a social planner’s perspective. Moreover, it turns out that changes

that in general should improve the agent’s situation, like employment protection legislation,

in fact hurt him in our setting. Finally, considering a finite-horizon version of our model

reveals that the degree of exploitation of naive agents decreases over the life-cycle, i.e.,

older (naive) workers are ceteris paribus better off.

In the main part of the analysis, we assume a setting where a risk neutral principal and

a risk neutral agent interact over an infinite time horizon. Whereas the principal discounts

future profits exponentially, the agent discounts future utilities in a quasi-hyperbolic way.

In any period, the agent can either work for the principal or not. If the agent works

for the principal, he chooses costly effort. Effort generates a deterministic output which is

consumed by the principal. The agent receives a fixed wage payment and a bonus. As effort

today yields output today and effort and output are verifiable, a present bias per se does

not represent an obstacle for efficient outcomes. A static contract could implement efficient

allocations and allow the principal to extract the full surplus. Therefore, sophisticated

present–biased agents, i.e., those who are aware of their future self-control problems, are

effectively in the same situation as agents without any present bias. They do not suffer

from their self-control problems because it is optimal to compensate them for their effort

at the end of a given period. Any distortion will thus be due to the fact that the principal,

6See http://www.forbes.com/sites/glassheel/2013/06/10/the-6-reasons-you-havent-been-promoted,
last accessed December 9, 2016.

7Below, in Sections 7.4 and 7.8, we show that the presence of a moral hazard or an adverse selection
problem, respectively, leaves our main results unaffected.
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who is aware of a naive agent’s bias, can design a dynamic contract to exploit the agent’s

self-control problem and extract excess rents.

A naive agent, who is not aware of his future self-control problems, is offered a menu of

contracts, consisting of a virtual contract which the agent intends to choose in the future

and a real contract which he ends up choosing. The virtual contract has a “probation

phase” in the first period it is chosen. In this probation phase, the agent receives a low

utility as he either has to work extra hard or receives only a very low compensation. This

probation phase deters the present-biased agent from actually choosing the virtual contract

as it entails immediate costs but only delayed gratification. After the probation phase, the

virtual contract grants the agent very attractive compensation. From today’s perspective,

the prospect of this attractive compensation after the probation phase outweighs the low

utility during the probation phase tomorrow and thus makes the agent willing to accept a

lower compensation today. However, when tomorrow comes, the lower utility during the

probation phase does not seem worth the future benefits anymore and the agent postpones

taking up the virtual contract. Consequently, the agent always ends up choosing the real

contract which gives him a utility below his outside option. Hence, in our setting, long–term

contracts are strictly better for the principal than a sequence of spot contracts.8

To come back to the above example of career choice, we find that firms can exploit

naive present–biased employees by offering them a lucrative “career” as compensation for

(presumably) short-run sacrifices. However, the naive present–biased agent fails to take

up this option as he incrementally postpones making an extra investment to get onto the

career trajectory. In fact, we do observe that in many employment settings, the agent is

offered the “carrot” of international mobility or lucrative career prospects. However, there

is often some additional effort required like organizing a stay abroad or just “going the extra

mile” in a new, challenging assignment. While employees think that they will collect these

benefits and hence are motivated by them, many will never be in the position to consume

them as they will procrastinate and indefinitely postpone making a career.9 Nevertheless,

the employee is willing to accept lower compensation today because of his misconceived

8This differs from standard results in contract theory where, in general, whenever actions taken by the
agent in period t affect the output of period t only, a sequence of short-term contracts is as efficient as a
long-term contract; see, e.g., Malcomson & Spinnewyn (1988) or Fudenberg et al. (1990).

9Several studies in organizational psychology documented the frustrations of young employees with
respect to their success in achieving their occupational expectations; see, e.g., Garavan & Morley (1997)
or Rindfuss et al. (1999).
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effort (and career) expectations. As a consequence, the firm can provide incentives at

substantially lower costs. When we analyze a version of our model with a finite horizon,

(young) agents who are at the beginning of their working lives will be exploited more by

the principal as they can be more easily lured by career prospects: They work weakly more

(strictly so, if there is a binding limited liability constraint) and are paid less. This broadly

resembles actual labor market patterns where we find age earning profiles with relatively

better paid but less productive older workers.10

Finally, note that how much the principal can exploit the agent with the real contract

depends on how auspicious the virtual contract appears. The agent is promised the total

surplus of the virtual contract, and this (discounted) value is substracted from the agent’s

real payments. Thus, anything that makes this surplus look more attractive from today’s

perspective – such as a higher “standard” discount factor or lower outside options – actually

harms a naive present-biased agent. This gives rise to the additional interpretation of our

model where a more stringent employment protection actually harms a naive present–

biased agent: The principal’s outside option (which can also be negative) includes the cost

the latter has to bear when firing the agent. Therefore, higher firing costs (for example

induced by a more stringent employment protection) increase the future virtual surplus

and consequently reduce the amount the agent is paid in the real contract.

Moreover, we analyze a number of extensions to document the robustness of our findings.

We let the agent be protected by limited liability and allow for a weaker present bias in

the monetary domain, as well as for moral hazard, for competition in the labor market and

hence varying bargaining power of the agent and partial naivete of the agent. Furthermore,

we allow the agent to learn about his present bias over time and consider the case of

heterogeneous and unobservable agent types. None of these extensions changes our findings

qualitatively. They rather offer additional insights:

If the agent is protected by limited liability, the principal cannot always fully exploit the

agent when letting him work at the efficient effort level. Instead, once limited liability

becomes binding and reducing the payment is no longer possible because the agent already

receives a zero payment in the real contract, the principal resorts to extracting additional

rent by inducing the agent to work harder than the efficient effort level. Therefore, seem-

10This general pattern, overly hard work early on in an agent’s working live and relatively less hard work
towards the end of a career is also generated in models of career concerns; see Holmstrom (1999). However,
there this pattern is driven by a signal-jamming logic.
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ingly contradicting the standard procrastination result, in our model, naive present–biased

agents might work harder than agents without a present bias.

When we allow for a weaker present bias in the monetary domain, our results do not

change qualitatively. Moreover, we find that a naive agent who has a present bias in the

effort domain may benefit from a bias in the monetary domain because this would reduce

the degree to which compensation could be shifted from the real into the virtual contract.

Under the assumption of unobservable agent types, the principal generally still offers

exploitative menus of contracts. In this case, only the extent of exploitation is lower than

when types are observable in order to make each agent select the menu intended for his

type.

Allowing for moral hazard, bargaining, the existence of partially naive types and the

possibility of learning about one’s type do not affect the structure of profit-maximizing

contracts. Neither moral hazard nor bargaining change the basic structure of the optimal

contract. A (partially) naive agent expects that in the future choosing the virtual contract

will be strictly better than choosing the real contract, while in fact, tomorrow he will be

just indifferent. For this decision, his true present bias is relevant, not his perception about

its future extent. This result on partial naivete also implies that the offered contracts do

not change when the agent is able to learn that he is time-inconsistent (unless he learns his

bias perfectly and becomes fully sophisticated).

The paper is organized as follows. Following a literature overview in Section 2, Section 3

introduces our model. Section 4 deals with the benchmark cases of the principal facing a

rational or a sophisticated agent. Section 5 sets up the principal’s problem when facing

a naive time-inconsistent agent and Section 6 presents our main results. Section 7 deals

with a finite time horizon, limited liability, a weaker present bias in the monetary domain,

moral hazard, competition and bargaining, partially naive agents, learning, and adverse

selection. Section 8 concludes, Appendix A collects the figures, and Appendices B and C

collect all proofs.

2 Related Literature

The paper relates to the literature on inconsistent time preferences, first formalized by

Strotz (1955), who allows for an individual’s discount rate between two periods to depend
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on the time of evaluation. Phelps & Pollak (1968) argue that since inconsistent time

preferences affect savings, the possibility of individuals having a present bias should be

incorporated into growth models. Laibson (1997) shows that given people have inconsistent

time preferences, choices that seem suboptimal – for example the purchase of illiquid assets

– can actually increase an individual’s utility by binding future selves and hence providing

commitment. He develops the workhorse model to analyze inconsistent time preferences

for individuals, the β− δ-model: An individual gives extra weight to utility today over any

future period, but discounts all future instances in a standard exponential way. O’Donoghue

& Rabin (1999a) compare the welfare of so-called “sophisticated” and “naive” individuals,

where the former are aware of their time inconsistency and the latter are not.

Besides numerous theoretical contributions, there also is substantial evidence suggesting

that people make decisions that are not consistent over time. For example, consider Shui

& Ausubel (2005) or DellaVigna and Malmendier (2004, 2006), who document present–

biased behavior for credit card usage and health club attendance respectively. Kaur et al.

(2010, 2015) provide evidence from a field experiment with data entry workers that self-

control problems at work are important. The recent study by Augenblick et al. (2015) is

particularly interesting for us as they document that subjects show a considerable present

bias in effort (while they only find limited time inconsistency in monetary choices). This

suggests that studying the role of present bias in the workplace and in workers’ careers is

a particularly relevant and promising topic of research.

There is also a literature focusing on optimal contracting choices when agents exhibit

time-inconsistencies. O’Donoghue & Rabin (1999b) develop a model where a principal

hires an agent with present–biased preferences in order to complete a task, but the agent’s

costs of doing so vary. If the latter is the agent’s private information, it can be optimal

to employ a scheme of increasing punishments if the task has not been completed yet.

Whereas the interaction in O’Donoghue & Rabin (1999b) is basically one-shot, i.e., the

relationship between principal and agent is terminated once the task has been completed,

we show how repeated interaction can have a substantial impact on optimal contracts, by

allowing the agent to choose among a menu of contracts (with history-dependent elements)

in every period.

Similar to O’Donoghue & Rabin (1999b), Gilpatric (2008) analyzes a contracting problem

between a principal and a (risk-neutral) agent where the latter’s effort choice is observable.

He shows that it might be optimal to let the agent slack-off after signing the contract
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(where the slacking-off is unpredicted by a naive agent), however requiring the agent to

“compensate” the principal for that. We relate to Gilpatric (2008) in the sense that agents

make different choices than they expected, the principal foresees that and can exploit it.

However, the setting in Gilpatric (2008) is not fully dynamic as principal and agent only

interact once.

Both Li et al. (2012) and Yılmaz (2013) analyze a repeated moral hazard setting with a

risk-neutral principal and a risk-averse agent, where the latter has β–δ-preferences. Yılmaz

(2013) shows that due to time-inconsistency, a lesser degree of consumption smoothing is

optimal. Similarly, Li et al. (2012) find that the principal might optimally sell a risk project

to a risk-averse agent. However, both restrict the contracting space to consist of only one

element, and hence do not allow the agent to revise his observable actions in future periods.

From a modeling perspective, but analyzing a rather different environment, the paper clos-

est to ours is Heidhues & Kőszegi (2010). They analyze contracting with time-inconsistent

consumers in a competitive credit market and find that naive consumers are attracted by

contracts characterized by cheap baseline repayment terms and large fines for delays. Naive

consumers overborrow and end up paying fines and suffering welfare losses. These can be

reduced by prohibiting excessive fines. The results in our present paper are driven by a re-

lated basic intuition. Nevertheless the application, institutional details, and interpretation

of results in this paper are different.

Furthermore, Eliaz & Spiegler (2006) analyze optimal contracts for consumers with dif-

ferent degrees of sophistication. The principal benefits monotonically from a lower degree

of sophistication. They do not allow for repeated interaction, though, and hence do not

aim to characterize dynamic contracts.

Being naive about one’s future time preferences might also be perceived as a specific form

of overconfidence. The following two papers look at overconfidence in a principal-agent

setting with moral hazard. Both Gervais & Odean (2011) and de la Rosa (2011) find

that, for certain parameter values, the principal can incentivize the agent more cheaply

as the agent overestimates the likelihood to succeed. In our model the agent’s bias makes

it cheaper for the principal to incentivize the agent as well, however, the structure of the

optimal contract is entirely different.11 Hoffman & Burks (2015) analyze a data set of a

11One could conceive of a specific model based on overconfidence that would generate similar dynamic
patterns as our setting based on present bias. However, such a model would have to be structurally very
close to our model where we assume that the present bias makes the agent expect to be better off tomorrow.
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trucking firm with detailed information on drivers’ beliefs about their future performance.

Many drivers overestimate their future productivity and adjust their beliefs only slowly.

The firm benefits from - as Hoffman & Burks (2015) interpret it - the drivers’ overconfidence

as drivers with a larger bias are less likely to quit.

3 Model Setup

Technology & Per-Period Utilities There is one risk neutral principal (“she”) and

one risk neutral agent (“he”). We consider an infinite time horizon where time is discrete

and periods are denoted by t = 0, 1, 2, .... In any period t, the agent can either work for

the principal or not, which is described by dt ∈ {0, 1}. If dt = 1, the agent works for the

principal and chooses effort et ≥ 0. This choice is associated with effort costs c(et), where

c(et) is a strictly increasing, differentiable and convex function, with c(0) = 0, c′(0) = 0, and

limet→∞ c′ = ∞. Effort et generates a deterministic output y(et) = etθ which is consumed

by the principal. Furthermore, the agent receives a fixed wage payment wt and a bonus

bt(et). Note that we do not impose a limited liability constraint on the agent, hence the

payments can (and under some instances will) be negative (implying payments from agent

to principal). We consider the case of limited liability below, in Section 7.2. The agent’s

payoff in period t when dt = 1 is

wt + bt(et)− c(et)

whereas the principal receives

etθ − bt(et)− wt.

If dt = 0, i.e., the agent does not work for the principal in period t, he receives his outside

option u. The principal’s outside option in this case is denoted by π (where u and π can

also be negative).

The effort level maximizing total surplus if the agent works for the principal, denoted by

eFB, is implicitly defined by

θ − c′(eFB) = 0.
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For the remainder of the paper, we assume θeFB−c(eFB)−u−π > 0, i.e., the employment

relationship is socially efficient.

Time Preferences The principal discounts the future exponentially with a constant

factor δ ∈ (0, 1], whereas the agent discounts future utilities in a quasi-hyperbolic way

according to Phelps & Pollak (1968) and Laibson (1997): While current utilities are not

discounted, future (period t) utility is discounted with a factor β δt, with β ∈ (0, 1] and

δ being identical to the principal’s discount factor. Hence, the agent is present–biased

and his preferences are dynamically inconsistent. Concerning the agent’s belief about his

future preferences for instant gratification, we follow O’Donoghue & Rabin (2001) and

their description of partial naivete. While an agent discounts the future with the factor β,

he thinks that in any future period, he will discount the future with the factor β̂, where

β ≤ β̂ ≤ 1. In other words, the agent may be aware of his present bias but expects it

to be weaker than it actually is. We will mainly focus on two extreme cases, β̂ = 1 and

β̂ = β. The first case describes a fully naive agent who – in every period – thinks that from

tomorrow on, his present bias will disappear and he will discount the future exponentially.

The second case describes a sophisticated agent who is fully aware of his persistent present

bias. In Section 7.6 we explicitly allow for partial naivete, i.e., β̂ ∈ (β, 1) and show that

the outcome in this case is exactly the same as with a fully naive agent. Furthermore, in

Section 7.7 we also allow for learning in the sense that β̂ decreases over time and show that

results are robust as long as learning is not perfect. Finally, note that we assume the agent

to be equally present–biased regarding money and effort.

Perceptions Here, we have to distinguish between intra- and inter-player perceptions.

Concerning the first, we assume the agent’s beliefs to be dynamically consistent as defined

by O’Donoghue & Rabin (2001) (p. 129), i.e., the agent’s belief of what he will do in period

τ must be the same in all t < τ .

Concerning inter-player perceptions, we assume common knowledge concerning the prin-

cipal’s time preferences. Furthermore, the principal is aware of the agent’s time preferences

and knows his values β and β̂. This implies that for a (partially) naive agent, the princi-

pal correctly predicts any (potential) discrepancy between intended and realized behavior.

Finally, we assume that the agent believes the principal to share his own perception of

himself. A (partially) naive agent hence is convinced that the principal also perceives the
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agent’s future present bias to be characterized by β̂. In Section 7.8 we explicitly allow for

unobservable types and derive optimal screening contracts.

Contractability, Timing, and Histories To isolate the effect of the agent’s present

bias on the structure of the employment relationship, we abstract from any other potential

agency problem. Hence, the agent’s effort as well as wage and bonus payments are verifiable

and the principal can commit to long-term contracts.12 The principal’s commitment is

limited by the firm value, though, and she can always escape her obligations by declaring

bankruptcy and proceeding to consume her outside option π in every subsequent period.13

We do not allow the agent to commit to long-term contracts. Note that this assumption

turns out to be without loss of generality: Since the principal benefits from the (partially)

naive agent’s misperceptions about his future choices, she actually does not want to grant

the agent the opportunity to commit to a long-term contract. Moreover, if the agent is ei-

ther not present–biased or sophisticated about his present bias, any long-term commitment

on his side will not increase profits. Hence, we can restrict attention to situations where

the agent is free to leave in any period.14

In the first period of the game, in t = 0, the principal makes a take-it-or-leave-it long-term

contract offer, denoted by C, to the agent. This offer consists of a menu of contracts (with

finitely many elements) for every future period, contingent on any possible history. Each of

these contracts contains a fixed wage payment and a bonus for every potential effort level.

The principal is fully commited to this long-term contract and could only walk away from

her obligations by declaring bankruptcy.

The menu of contracts offered in period t is denoted by Ct. It has It elements, where

a single element is indexed it ∈ {0, .., It}, i.e., Ct =
{

C it
t

}It

it=1
=

{

wit
t , b

it
t (et)

}It

it=1
, where

wit
t ∈ (−∞, ∞) for each it, and bitt (et) ∈ (−∞, ∞) for each it and each et. At the beginning

of every period t, the principal first decides whether to declare bankruptcy or whether to

offer Ct. This choice is denoted by dPt ∈ {0, 1}, where dPt = 0 indicates a bankruptcy and

implies that Ct = {∅}.

12This strong commitment could be endogenized in a setting with many agents where the principal’s
behavior can be observed by everyone, and where she cares about her reputation to keep her promises.

13Alternatively, we can assume that the principal can fire the agent at some cost – for example reflecting
the degree of employment protection – implying that π could also be negative. Bankruptcy or firing costs
are then given by − π

1−δ
.

14Again, any costs for the agent to leave his current occupation could be captured by an appropriate
choice of u.
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Declaring bankruptcy is an irreversible decision (hence, dPt+1 = 0 automatically follows

from dPt = 0), inducing principal and agent to consume their outside utilities π and u

in every subsequent period. Given dPt = 1, the agent chooses whether to work for the

principal or not, hence selects dt ∈ {0, 1}. If dt = 0, principal and agent consume their

outside utilities in the respective period. If dt = 1, the agent selects one element out of

Ct, where this choice is denoted by ît ∈ It. Then, the agent receives wît
t and makes his

effort choice, triggering the (automatically enforced) bonus payment bîtt (et). Finally, the

principal consumes the output etθ and the game moves on to the next period.

The publicly observable events during periods t ≥ 0 are ht =
{

dPt , Ct, dt, ît, wt, et, bt(et)
}

.

The history of publicly observable events at the beginning of period t is ht = ∪t−1
τ=1hτ ∪{C},

with h0 = {∅}. Furthermore, H t is the set of histories until t and H = ∪tH
t the set of

histories.

Strategies Following O’Donoghue & Rabin (1999b), we use the phrase perception-perfect

strategy to describe players’ strategies. Such a strategy specifies a player’s behavior given

dynamically consistent beliefs about future behavior. Whereas a time-consistent or a so-

phisticated agent correctly predicts his future behavior, the same is not necessarily true for

a (partially) naive agent who has wrong beliefs concerning his future time preferences.

The principal’s strategy is denoted by σP . In period t = 0, it determines the long-term

contract C. In every period t ≥ 0, C maps the history ht ∈ H t into an offered menu

of contracts, Ct. Following any history ht ∈ H t, t ≥ 0, σP also determines whether the

principal follows C or terminates the contract by declaring bankruptcy.

An agent’s strategy is denoted by σA and – given ht ∪ {dPt } ∪ {C} – determines dt and

eventually ît and et.

Real and Virtual Contract Without loss of generality, we can restrict Ct to either con-

sist of one or two elements, depending on the agent’s naivete. If the agent is sophisticated

or not present–biased, he does not have misperceptions concerning his future behavior, and

Ct consists of exactly one element. Given that a profit-maximizing contract is included in

the menu, adding additional contracts will have no (or even adverse) effects on profits.

If the agent is (partially) naive, the principal finds it optimal to let Ct consist of exactly

two elements: the element that the agent believes to choose in the future, and the element
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the agent is actually going to choose (which is correctly anticipated by the principal). We

call the former the virtual contract and describe the respective components (as well as

the effort level the agent expects to choose when selecting the virtual contract) with a

superscript “v”. The latter is called real contract and its components (as well as the effort

level the agent chooses when selecting the real contract) are described with the superscript

“r”.

Payoffs The agent’s actually realized utility stream at the beginning of any period t in

a setting where the principal never declares bankruptcy is

U r
t = drt (b

r
t + wr

t − c(ert )) + (1− drt ) u+ β
∑

∞

τ=t+1 δ
τ−t [drτ (b

r
τ + wr

τ − c(erτ )) + (1− drτ ) u].

For naive types, this real utility may be different from their perceived payoff, namely if

he expects to choose the virtual contract in the future. A naive agent’s perceived payoff

– consisting of real current and virtual future payoffs – is indicated with the superscript

“rv”.

U rv
t = drt (b

r
t + wr

t − c(ert )) + (1− drt ) u+ β
∑

∞

τ=t+1 δ
τ−t [dvτ (b

v
τ + wv

τ − c(evτ )) + (1− dvτ ) u].

The principal’s payoff in any period t in a setting where she never declares bankruptcy is

Πr
t =

∑

∞

τ=t δ
τ−t [drτ (e

r
τθ − brτ − wr

τ ) + (1− drτ ) π].

However, a naive agent wanting to choose the virtual contract in the future expects the

principal to maximize

Πrv
t = drt (e

r
tθ − brt − wr

t ) + (1− drt ) π +
∑

∞

τ=t+1 δ
τ−t [dvτ (e

v
τθ − bvτ − wv

τ ) + (1− dvτ ) π].

For later use, we further perceived future virtual payoffs,

U v
t =

∑

∞

τ=t δ
τ−t [dvτ (b

v
τ + wv

τ − c(evτ )) + (1− dvτ ) u]

for the agent, and for the principal:

Πv
t =

∑

∞

τ=t δ
τ−t [dvτ (e

v
τθ − bvτ − wv

τ ) + (1− dvτ ) π].

Equilibrium We apply the concept of perception-perfect equilibrium, which maximizes

players’ payoffs, given each player’s perception of their own future behavior as well as of

the other’s future behavior.

The principal hence chooses C in order to maximize Πr
0, and dPt in order to maximize Πr

t ,

taking into account the agent’s actual, i.e., “real”, behavior. The (partially) naive agent,

though, expects the principal to choose dPt in order to maximize Πrv
t or Πv

t , respectively.
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The (partially) naive agent makes optimal choices given her current preferences and her

perceptions of future behavior, i.e., expecting to have different time preferences in the

future. Hence, he chooses dt, ît and et in order to maximize U rv
t , given that an agent

believes to choose the virtual contract rather than the real contract in the future.

4 Benchmarks: Time-Consistent and Sophisticated Agent

We first derive two benchmarks, profit-maximizing menus of contracts with time-consistent

and with sophisticated present-biased agents.

Time-consistent agent Consider a time-consistent agent, i.e., an agent who has β =

β̂ = 1. Since the agent’s effort is verifiable, effectively there is no agency problem that must

be addressed. In this case, the principal does not need to make use of her ability to make

long-term commitments. Instead, she can use a series of spot contracts in order to make

the agent choose surplus-maximizing effort in every period, and collect the whole surplus

for herself.

One possibility to generate such an outcome is to offer the following contract in every

period t: w = u, b(eFB) = c(eFB), and b(ẽ) = 0 for ẽ 6= eFB. The agent always accepts

such a contract and exerts effort eFB. Since the principal extracts the whole surplus, she has

no incentives to declare bankruptcy. The optimal menu of contracts with a time-consistent

agent hence maximizes the surplus and holds the agent down to his outside option.

Sophisticated present-biased agent A sophisticated present-biased agent (i.e., β̂ =

β), is aware of his future preferences and hence of the choices he is going to make in the

future. Then, as with a time-consistent agent, it is sufficient to let C consist of only one

element in every period. Generally, the principal has the opportunity to reward the agent

for effort with a bonus paid at the end of the period, or with the promise of a higher

continuation payoff. Since β < 1, though, the agent effectively discounts the future at

a higher rate than the principal does. Therefore, it is optimal for the principal to also

offer the following contract in every period t: w = u, b(eFB) = c(eFB), and b(ẽ) = 0

for ẽ 6= eFB. This contract makes the agent accept the contract in every period, induces

him to choose the surplus-maximizing effort level, and allows the principal to extract the

whole surplus. Note that this contract cannot be improved upon by taking into account
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the agent’s effective lower discount factor and shifting payments to period 0. In this case,

the agent would simply walk away after this period. Concluding, time-inconsistencies have

no impact on the optimal contract if the agent is sophisticated about his present bias. This

is because the production technology is effectively static in the sense that there are no

technological linkages across periods, because the agent can immediatetly be compensated

for his effort, and because effort is verifiable.

5 The Principal’s Problem with a Naive Agent

This section considers the principal’s problem when facing a naive present–biased agent, i.e.,

whose β̂ = 1. In Subsection 7.6, we show that the results derived here remain unaffected

if β̂ ∈ (β, 1). Note that as with a sophisticated agent, the possibility of writing formal

spot contracts to motivate the agent implies that the existence of a present bias does not

automatically trigger inefficiencies. The same spot contract offered to a sophisticated agent

could also be offered to naive present-biased agents, yielding exactly the same outcome.

However, now the principal can design a menu of long-term contracts which can exploit

the naive agent’s misperception of his future behavior. She is able to include elements into

C that seem optimal for the agent from the perspective of earlier periods – but that are

not chosen once the agent actually faces the respective choice. As discussed above, we can

without loss of generality restrict C to consist of exactly two elements in every period: The

contract the agent actually chooses and the contract the agent had planned to choose from

the perspective of earlier periods. We call the former contract the real contract and add the

superscript “r” to all its components and the latter contract the virtual contract and add the

superscript “v” to all its components. Both contracts can be contingent on the full history

of the game, ht, i.e., C(ht) = {Cr(ht), Cv(ht)} = {(wr(ht), br(ert , h
t)) , (wv(ht), bv(evt , h

t))}.

Hence, C also gives values U r(ht), U rv(ht), U v(ht), Πr(ht), Πrv(ht) and Πv(ht) for every

history ht.

In the following, we focus on contracts that, on the equilibrium path, have drt = dvt =

dPt = 1 in all periods t. Hence, the principal never declares bankruptcy, and the agent

always accepts the employment offer. Any (temporary or permanent) termination of the

relationship can never be optimal – simply because the principal could always include

the optimal contract for time-consistent and sophisticated agent in the long-term contract

offered to the naive agent, which the latter would accept if the alternative was dt = 0.
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The elements of the long-term contract C must satisfy four classes of constraints, where

the first three are standard in contracting problems: 1) Individual rationality con-

straints for the agent (IRA) which make him accept one of the offered contracts (compared

to reject all of them for the respective period and consume his outside option instead). 2)

Individual rationality constraints for the principal (IRP) that keep her from declaring

bankruptcy. 3) Incentive compatibility constraints for the agent (IC) that induce him

to select the principal’s preferred effort level. These constraints must also hold for the

virtual contracts, i.e., for future histories that never materialize. Finally, 4) Selection

constraints ensure that the agent keeps choosing the real contract in every period, while

still intending to choose the virtual contract in all future periods.

Individual rationality constraints for the agent For every history ht, it must be

optimal for the agent to accept the real contract (expecting to choose equilibrium effort ert

and to select the virtual contract in all future periods), compared to rejecting any contract

and consuming u in the respective period:

wr(ht) + br(ht, ert )− c(er) + βδU v
(

ht ∪ {dt = 1}
)

≥ u+ βδU v
(

ht ∪ {dt = 0}
)

. (rIRA)

Note that when stating U v (·), we only include the elements that are relevant for the

respective constraint (and do the same when describing other constraints), assuming that

all other elements are chosen as prescribed by play on the equilibrium path.

Furthermore, C has to be such that the agent expects to accept a contract in all future

periods, i.e., for all ht,

U v
(

ht ∪ {dt = 1}
)

≥ U v
(

ht ∪ {dt = 0}
)

(vIRA)

has to hold.15 However, an individual rationality constraint is not needed for U r because

the agent does not expect to select the real contract in future periods. I.e.,

wr(ht) + br(ht, ert )− c(er) + βδU r
(

ht ∪ {dt = 1}
)

≥ u+ βδU r
(

ht ∪ {dt = 0}
)

does not have to hold. In fact, this constraint is generally violated and the agent effectively

will be exploited and receive less than his outside option.

15Note that vIRA also implies Uv(ht) ≥ u
1−δ

for all histories.
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Individual rationality constraints for the principal For every history ht, the fol-

lowing constraints must be satisfied for the principal:

Πrv(ht) ≥
π

1− δ
(vrIRP)

Πv(ht) ≥
π

1− δ
(vIRP)

If either of these constraints was not satisfied, the agent would expect the principal to not

honor her obligations in the virtual contract and instead shut down. A real IR constraint

for the principal, Πr(ht) ≥ π/(1− δ), is not required because of the agent’s misperceptions

about his own behavior. However, it is obvious that shutting down will never be optimal

for the principal because she could at any point offer the optimal contract for the time-

consistent or sophisticated agent and thereby collect a rent that is strictly positive.

Incentive compatibility constraints It has to be in the agent’s interest to choose

equilibrium effort ert , given the compensation he receives today, and given his expectation

of future (virtual) payoffs. This gives rise to a real incentive compatibility constraint,

−c(ert ) + br(ht, ert ) + βδU v
(

ht ∪ {ert}
)

≥ −c(ẽrt ) + br(ht, ẽt) + βδU v
(

ht ∪ {ẽt}
)

, (rIC)

which has to hold for all histories ht and effort levels ẽt in a given contract menu.

The agent also has to expect to select on-path effort levels in the virtual contract, which

for all histories ht and effort levels ẽt gives

−c(evt ) + bv(ht, evt ) + βδU v
(

ht ∪ {evt }
)

≥ −c(ẽrt ) + br(ht, ẽt) + βδU v
(

ht ∪ {ẽt}
)

. (vIC)

Note that because effort is verifiable, one could simply assume infinitely negative payments

in case the agent does not choose equilibrium effort. We take the current general formulation

because it allows us to easily extend our setup to limited liability and moral hazard.

Selection constraints Finally, the agent has to select the real contract in every period,

however expect to select the virtual contract in the future. For every history ht, this yields
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the constraints

wr(ht)+br(ht, er)−c(ert )+βδU v
(

ht ∪
{

ît = r
})

≥ wv(ht)+bv(ht, ev)−c(evt )+βδU v
(

ht ∪
{

ît = v
})

(rC)

and

wv(ht)+bv(ht, ev)−c(evt )+δU v
(

ht ∪
{

ît = v
})

≥ wr(ht)+br(ht, er)−c(ert )+δU v
(

ht ∪
{

ît = r
})

.

(vC)

Note that due to naivete, β does not feature in (vC).

Objective The principal’s objective is to offer a long-term menu of contracts C =

{Cr(ht), Cv(ht)} for all ht ∈ H that maximizes Πr(h0) , subject to (rIRA), (vIRA), (rIRP),

(vIRP), (rIC), (vIC), (rC) and (vC) that must hold for any potential history. In the fol-

lowing, we first simplify the problem and then characterize an optimal long-term menu of

contracts, C.

6 Results

6.1 Preliminaries

First, we show that the real contract can be stationary without loss of generality, hence its

components are independent of the (on-path) history of the game. The same is true for the

virtual contract, with the exception of the first period where it is (expected to be) chosen.

Lemma 1. The real contract is stationary, hence independent of the history of the game.

The virtual contract is independent of calendar time and is of the form Cv
τ , where τ counts

the virtual contract’s number of periods after it has first been chosen. Furthermore, the

virtual contract is stationary for all τ ≥ 2.

The proofs for all lemmas and propositions are collected in Appendices B and C.

In the remainder of this article, we use the subscript 1 for the first period of the virtual

contract. For all subsequent periods, we omit time subscripts. The real contract hence

consists of er, wr, br, the virtual contract of ev1, w
v
1 , b

v
1 for the first and ev, wv, bv for all

subsequent periods after it has been selected.
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Stationarity of the real and later periods of the virtual contract is straightforward, as the

game is stationary and principal and agent are both risk-neutral. However, in order to be

able to exploit the agent’s present bias and keep him below his outside option, the virtual

contract must be different in the first period it is chosen: In order to extract rents from

the agent in the real contract – the contract that is actually selected in every period (and

hence triggers real transfers) – the principal shifts as much as possible of the compensation

promised to the agent into the virtual contract. However, the principal has to ensure that

the virtual contract is never selected by the agent. This is achieved by designing the first

period of the virtual contract to be sufficiently unattractive for the agent – but sufficiently

attractive to expect him to still opt for Cv in future periods. In our first main result, we

show that the offered menu of contracts effectively harms the agent.

Proposition 1. If the agent is naive and has β ∈ (0, 1), then in the profit-maximizing

menu of contracts, wr − c(er) + br < u.

The principal uses the promise of a virtual future surplus to keep the agent below his

outside option while still accepting the contract – which is perceived to be optimal by the

agent as he expects to earn a rent in the future from choosing the virtual contract – and

working for the principal in every period.16

In Appendix B, we show that the profit-maximizing structure ofC allows us to simplify the

problem by eliminating several constraints: Because the agent receives a rent in the virtual

contract, the respective (IR) constraints on the agent’s side can be omitted. Furthermore, it

is optimal to make the virtual contract attractive enough for the agent to always expect to

choose it in future periods. It only remains for the principal to make sure that the agent is

not selecting it when actually facing the choice in every period. Note that, unless β = 1 or

the agent is always kept at his outside option, (vC) and (rC) cannot bind simultaneously:

Either the agent believes that he will be indifferent in the future or he will actually be

indifferent. Because the principal could profitably make the real contract less attractive if

the agent were not indifferent when choosing between the contracts, (rC) binds and (vC)

does not. Furthermore, we can set wr = wv
1 = wv = 0 without loss of generality, because

the principal can arbitrarily substitute between wages and bonus payments as effort is

verifiable. In Appendix B we show that the principal’s objective can be expressed as the

16That the principal can exploit the agent because the agent does not stick to his planned action is rem-
iniscent of extant results in the literature; see, e.g., Heidhues & Kőszegi (2010), DellaVigna & Malmendier
(2004), or Eliaz & Spiegler (2006).
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problem of maximizing

Πr =
erθ − br

1− δ
,

subject to

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ 0 (rIRA)

evθ − bv ≥ π (vIRP)

−c(er) + br − u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ (bv1 − c(ev1)− u) +
δβ

1− δ
(bv − c(ev)− u) . (rC)

6.2 Profit-Maximizing Contract

In this section, we fully characterize a profit-maximizing menu of contracts C.

Lemma 2. A profit-maximizing menu of contracts has the following features:

• The constraints (rIRA), (rC) and (vIRP) hold with equality

• er = ev = eFB

• br = c(eFB) + u− β(1− β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

.

The first bullet point of Lemma 2 indicates that the principal promises the whole virtual

rent to the agent (binding (vIRP)), with the exception of the first virtual period which is

constructed to be just sufficiently unattractive to be never selected by the agent (binding

(rC)). Here, we also see that if the principal was able to credibly make arbitrary promises

and not able to shut down (i.e., if she did not face (IR) constraints), we would not have

an equilibrium. In this case, the principal would promise infinitely high payments to the

agent in the virtual contract, and extract infinitely high payments from the agent in the

real contract. Furthermore, even though the agent expects to get a rent in the future, his

expected rent from today’s perspective (including today’s payoffs from the real contract)

is zero (binding (rIRA)).
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First-best effort levels in the real and virtual contract (with the exception of ev1) not only

maximize the surplus that the principal can reap in any case. ev = eFB also maximizes the

future rent the agent expects, making it possible to reduce real payments by the highest

feasible amount.

Finally, the real bonus br captures the link between real and virtual compensation. The

first elements, c(eFB) + u, capture the agent’s effort costs and outside option, hence would

constitute his “fair” compensation. The last term characterizes the principal’s savings

compared to this fair compensation. It amounts to the total expected and discounted rent

the agent expects from chosing the virtual contract in the future, which is supposed to serve

as the reward for today’s effort. If this value is rather high, br can actually be negative - in

this case, the agent has to make a payment to the principal in every period in order to keep

the option of receiving future virtual rents. Note that, as we show below in Section 7.2,

even in the arguably more realistic case of limited liability the agent would not be better

off. In such a setting, the principal will respond to a binding limited liability constraint by

requiring real effort to be above eFB. While this leaves the agent’s real utility unaffected, it

entails an allocative inefficiency and allows the principal to extract only a lower rent from

the agent compared to the case absent the binding limited liability constraint.

Real payoffs of principal and agent are characterized in Proposition 2.

Proposition 2. Real net per-period payoffs of principal and agent are

πr − π =
(

eFBθ − c(eFB)− u− π
)

(

1 + β(1− β)
δ2

1− δ

)

and

ur − u = −β(1− β)
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

,

respectively.

Proposition 2 implies that agents with levels of β close to 0 or 1 can hardly be exploited

by the principal. The real loss for the agent is maximized for intermediate values of β (see

Figure 1). Put differently, agents with a medium inclination to procrastinate can be most

effectively exploited. Hence, these types are preferred by the principal (see Figure 2). The

reason for this is that agents with a β close to 1 do not depart from time-consistency very
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much and agents with a β close to 0 do not care very much about the future, so the virtual

future surplus cannot have a big impact on today’s choices.

*************************************************************************

Figure 1 (agent) and Figure 2 (principal) to appear about here

*************************************************************************

Consequently, our model predicts that firms benefit from offering long-term contracts

– as compared to a sequence of spot contracts – to agents with an intermediate time-

inconsistency, while there are no benefits from offering long-term contracts to other agents.

If there were some additional costs of long-term contracts, e.g., because they are more

complicated to write, then agents with an intermediate degree of time-inconsistency would

be more likely to receive long-term contracts than other agents.

Finally, we take a brief look at the first period of the virtual contract, which is constructed

as something like a probation phase in order to deter the agent from ever selecting Cv. It

only depends on the difference c(ev1) − bv1, without the exact values of bv1 and ev1 being

relevant. Note that this also implies that if the agent’s present bias would only manifest in

one domain, i.e., either in monetary payments or effort, our results would (qualitatively)

be the same as we discuss in Section 7.3. Using the respective binding constraints gives

c(ev1)− bv1 =
δβ

1− δ

(

eFBθ − c(eFB)− π − u
)

− u.

A policy of subsidizing career-development (which could be captured by a subsidy to

effectively increase bv1) would not help, since the principal would adjust the required level

of ev1 accordingly in order to keep the agent from selecting the virtual contract.

Figure 3 depicts the path of effort over time and Figure 4 the path of utility over time.

*************************************************************************

Figure 3 and Figure 4 to appear about here

*************************************************************************

Note that a high relationship surplus, as well as much “standard” patience (high δ), is
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bad for the naive agent. Put differently, if the future is not valued very much, then the

agent does not want to trade today’s payment against future benefits and hence cannot

be exploited as much. The agent also benefits if the principal’s outside option is higher,

which contrasts our analysis to Nash bargaining and relational contracting models. If the

principal’s outside option is higher, then she can only commit to lower future benefits

for the agent. As the agent expects to earn less in the future, he wants to earn more

today and can be exploited less. Somewhat counter-intuitively, this argument implies that

employment protection, associated with increased layoff costs (corresponding to a reduced

outside option), might hurt the agent. This makes it easier for the principal to commit to

future employment and hence improves the scope for exploitation.

Corollary 1. The agent’s utility is increasing in π, the principal’s outside option.

7 Discussion and Extensions

7.1 Finite Time Horizon

While employment relations are in general long term, they still might have a pre-defined

(maximum) tenure. In particular, in many markets and countries there exists a manda-

tory retirement age. Here we document that our results are qualitatively robust when we

consider a model with a finite time horizon.

Proposition 3. For a finite time horizon T , a profit-maximizing contract has the following

features for all periods t ≤ T :

• ert = evt = eFB.

• brt = c(ert )+u−β(1−β)δ2
∑T−t−2

j=0 δj
(

eFBθ − c(eFB)− π − u
)

,with
∑k

j=0 xj :=0∀k<0.

• ur −u = −β(1−β)δ2
∑T−t−2

j=0 δj
(

eFBθ − c(eFB)− π − u
)

, with
∑k

j=0 xj := 0 ∀k < 0.

Note that for T → ∞, this expression approaches the result of the infinite-horizon case.

The more periods there are left, the larger are the total future benefits the principal can

(“virtually“) promise to the agent. Hence, the worker is willing to accept lower payments

today, although he does not actually choose the virtual contract in the future.
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At later stages of a career, i.e., in periods closer to retirement, less future benefits can

be promised to the agent. In fact, this protects the agent as he cannot be exploited as

much. In combination with a limited liability constraint, which we will analyze in Section

7.2high effort level in order to exploit the agent as much as possible. This finding broadly

resembles actual labor market patterns where we find age earning profiles with relatively

better paid but less productive older workers.

Corollary 2. For a finite time horizon T , the optimal brt is decreasing in T − t. That is,

the principal can exploit the agent more if he is in the early stages of his career.

7.2 Limited Liability

We have shown that without a lower bound on payments, br can actually be negative,

indicating effective payments from agent to principal in addition to the agent’s effort. In

many cases, though, payments are restricted by some lower bound. In this section, we

assume that the agent is protected by limited liability, i.e., payments can not be negative

(br ≥ 0). Interestingly (and different from moral hazard problems with limited liability

where the agent generally gets a rent), the agent is not better off than before but receives

exactly the same level of real utility. This is because the principal optimally responds

to a binding limited liability constraint by letting the agent work harder and setting er

above eFB to extract additional rents. Hence, we might face a situation where the present–

biased agent works harder than a sophisticated or time-consistent one. This seems at odds

with a popular interpretation of present bias as a source of procrastination and laziness.

However, the agent still procrastinates in our setting by pushing off a seemingly even more

unattractive combination of effort and bonus (the first period of the virtual contract) over

and over again.

Summing up, the profit-maximizing contract when payments have to be non-negative is

characterized in Proposition 4.

Proposition 4. Assume b, w ≥ 0 in every period t. Then, a profit-maximizing contract C

has

er ≥ eFB, ev = eFB and br = max
{

0, c(eFB) + u− β(1− β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

}

.

Moreover,

• if c(eFB) + u − β(1 − β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

< 0 holds, the limited liability
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constraint for the agent’s real bonus binds. Then er > eFB and is chosen such that

br = c(er) + u− β(1− β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

= 0.

• If c(eFB) + u − β(1 − β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

≥ 0, the limited liability con-

straints do not bind and hence do not affect C.

• In either case, the agent’s real payoff is ur−u = −β(1−β) δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

.

The agent’s real payoff is unaffected by him being protected by limited liability. Hence,

the full burden of the inefficient outcome is borne by the principal: Because an effort above

eFB reduces total surplus, she can extract less from the agent than when payments are not

restricted. While under a binding limited liability constraint for the agent’s real bonus, the

principal’s net profit is πr−π = erθ−π, it is πr−π =
(

eFBθ − c(eFB)− u− π
)

(

1 + β(1− β) δ2

1−δ

)

if no limited liability constraints bind.

7.3 Weaker Present Bias in the Monetary Domain

Augenblick et al. (2015) find in an experiment that people have a stronger present bias in

effort than in monetary choices. Our results are qualitatively the same if the agent has a

weaker or no present bias in the monetary domain. Moreover, we find that having a weaker

or no present bias in the monetary domain even hurts a naive present-biased agent.

Let β be the discount factor for all future periods as before but now restricted to effort.

Let β′ ∈ (β, 1] be that discount factor for money and the outside option. Morever, let b′

and e′ be the bonus and effort levels in these situations. By the same arguments as in our

basic model, the equivalents of the contraints (rIRA) and (rC) hold with equality, i.e.,

br′ = c(er′) + u+
β′δ

1− δ
u− δ(β′bv′1 − βc(ev′1 ))−

δ2

1− δ
(β′bv′ − βc(ev′)) (1)

and

br′ = c(er′) + bv′1 − c(ev′1 ) + δβ′(c(ev′ − c(ev′1 ).
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These equations together imply

bv′1 − c(ev′1 ) = u+
δβ

1− δ
c(ev′)−

δβ′

1− δ
(bv′ − u). (2)

Unlike in our basic model, where solving for the optimal first-period virtual contract only

pinned down the difference between bv1 and c(ev1), the optimal bv′1 and c(ev′1 ) are unique.

As one can see from equation (1), the principal benefits from choosing them as high as

possible. Consequently,

bv′1 = θev′1 − π.

Furthermore, as the maximal future per-period surplus from the agent’s perspective is

determined by maximizing β′(θe−π−u)−βc(e), the optimal effort for the later periods of

the virtual contract is higher than in our basic model, i.e., ev′ > ev. Together with equation

(2) we can conclude that

br′ < br − (β′ − β)δ

(

δ

1− δ
bv′ −

1

1− δ
u+ bv′1

)

< br.

This implies that the principal can exploit a naive agent whose present bias is more intense

in the effort domain than in the monetary domain more than an an agent whose present

bias is equally intense in both domains. The reason for this is that an agent with a less

severe present bias in the monetary domain discounts the high bonus of the future virtual

contract less, which lets the future virtual contract appear even more attractive to him.

7.4 Moral Hazard

In this extension, we show that our main results do not depend on the assumption that

contracts can be based on the agent’s effort, but also hold under moral hazard. In this

case, the naive agent is still mainly incentivized by rents provided by the virtual contract.

However, the agent can only select the virtual contract if output has been high. Otherwise

he must stick to the real contract for another period. In words, this means that only an

employee who has been successful in doing his job has the option to take the next step and

go for the virtual contract.

More precisely, consider the following adjustment to our model setting: Effort et is the
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agent’s private information. Output remains verifiable, but now amounts to yt ∈ {0, θ},

with Prob(yt = θ) = et. Hence, output is not deterministic anymore but can be either high

or low. Effort determines the probability with which high output is realized. Moreover,

in order to guarantee an interior solution we assume limet→1 c
′ = ∞. This implies that

first-best effort eFB is still characterized by θ − c′(eFB) = 0. For concreteness we also set

u = π = 0.

First, note that the optimal contract for a sophisticated agent is the same as for a time-

consistent agent: In every period, the agent receives the bonus if output has been high.

This bonus is set such that the agent chooses first-best effort, i.e., b = θ. Furthermore,

the wage is used to extract the generated rent, hence w = u + c(eFB) − eFBθ. Then, the

principal collects the full surplus, and the optimal contract is stationary. This is different

from the repeated moral hazard settings in Rogerson (1985) or Spear & Srivastava (1987),

where the optimal contract contains memory. This is driven by the agent’s risk aversion,

though, which does not make it optimal to effectively sell the firm to the agent in every

period (as is the case with a risk neutral agent).17

The structure of the optimal contract menu for the naive agent is the same as without

moral hazard, with the exception that the bonus is only paid if output has been high (note

that because we can freely choose wr, it is without loss of generality to set the bonus after

a low output realization to zero).

Therefore, the naive agent’s expected utility in a given period amounts to U rv = wr −

c(er) + erbr + βδU v
1 . Furthermore, the agent’s virtual payoffs amount to U v

1 = wv
1 − c(ev1) +

ev1b
v
1 + δU v and U v = (wv − c(ev) + evbv) /(1− δ).

Now, the principal must use wage payments in the real and first period of the virtual

contract to finetune the arrangement, that is, extract real rents and in the end make the

agent not go for the virtual contract. Without moral hazard, the principal could also

set ev1 in a way to prevent the agent from choosing the virtual contract. Now, effort

is automatically pinned down by bonus payments and future rents. More precisely, the

17Even with a risk neutral agent the optimal contract might contain memory, namely if the agent
were protected by limited liability. Then, a profit-maximizing contract would provide incentives via a
combination of bonus payments and on-path termination threats. See Fong & Li (2016), who derive a
profit-maximizing dynamic contract in case output is not verifiable.
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agent’s real effort is given by

er ∈ argmax [erbr − c(er)] . (rIC)

Therefore, er is characterized by br − c′(er) = 0. Virtual effort levels are characterized by

bv1 − c′(ev1) = 0 and bv − c′(ev) = 0, respectively.

It is straightforward to show that the agent still receives the full virtual rent from the

second virtual period on, and that it remains optimal to maximize this rent. Hence, ev =

eFB (that is, bv = c′(eFB), and wv is set such that uv = eFBθ − c(eFB)− π). Furthermore,

br is set such that er = eFB as well (since we do not impose a limited liability constraint

in this section, the bonus br can potentially be negative). The first virtual period is – as

before – designed in a way that the agent actually does not select the virtual but sticks to

the real contract.

As without moral hazard, it is optimal to have (rIRA) and (rC) constraints hold as

equalities (furthermore, the respective solution will satisfy the (vC) constraint).

These constraints are U rv ≥ u + βδ u
1−δ

(rIRA) and U rv ≥ uv
1 + βδU v (rC), where uv

1 =

wv
1 + ev1b

v
1 − c(ev1), and can be rewritten as

(

wr − c(eFB) + eFBbr
)

+ βδU v
1 ≥ u+ βδ

u

1− δ
(rIRA)

and

(

wr − c(eFB) + eFBbr
)

+ βδU v
1 ≥ uv

1 + βδU v. (rC)

Having both constraints bind yields

ur = u− δ2β(1− β)
(eFBθ−c(eFB)−π−u)

1−δ
and uv

1 = u− βδ
(eFBθ−c(eFB)−π−u)

1−δ
.

Concluding, the agent still is exploited in case a moral hazard is present, with (qualita-

tively) equivalent comparative statics. Furthermore, the first period of the virtual contract

can be set such that the agent never selects it in the end.
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7.5 Bargaining

So far, we have assumed that the principal has full bargaining power and can hence de-

termine the terms of the employment relationship. Then the agent accepts any contract

that at least gives him his outside option. However, in many labor market settings firms

compete for agents. This will generally allow agents to extract a share of the relationship

surplus. In this extension, we explore whether our results hold up if the principal does

not have full bargaining power. We assume that players (potentially) bargain about how

to allocate the relationship surplus at the beginning of every period. We do not explicitly

model the bargaining process, but assume that players arrive at a Nash bargaining out-

come where the principal keeps a share α and the agent a share 1 − α of the relationship

surplus. More precisely, the agent accepts any offer that in expectation leaves him with at

least 1−α of the per-period relationship surplus. We use this approach and do not assume

that players bargain about the total relationship surplus (like, for example, Ramey and

Watson, 1997, or Miller and Watson, 2013) because the different effective discount factors

also trigger different valuations of the future surplus stream.

We show that unless α = 0, i.e., the agent has full bargaining power, the structure of the

optimal menu of contracts for a naive agent remains unaffected. Therefore, competition on

the labor market does not cause our results to disappear. This is only the case if competition

for the agent’s labor is perfect and frictionless. Naturally, the agent is better off for lower

values of α, but is still exploited in the sense that his real share of the relationship surplus

is lower than 1− α.

Importantly, because the principal can commit to long-term contracts, she is able to

backload the agent’s compensation and hence can commit not to renegotiate the virtual

contract (different from e.g., Miller and Watson, 2013, and Fahn, 2016, where the principal’s

inability to commit not to renegotiate any agreement has substantial negative consequences

on the efficiency of a long-term employment relationship). However, because the agent can

not commit not to renegotiate an agreement, a front-loading of the agent’s compensation

is not feasible – although it might be optimal under some instances given the agent’s lower

effective discount factor.

Now, the (net) surplus in a given period t amounts to etθ − c(et) − u − π. In order to

characterize payments, we also have to specify what happens if bargaining fails. We assume

that in this case, players do not enter an employment relationship in the given period and
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consume their respective outside options. Concluding, and already taking into account that

the agent expects to select the virtual contract in future periods, the agent is willing to

accept any offer that gives him at least an equivalent to u+(1−α) (erθ − c(er)− u− π)+

βδ {u+ (1− α) (ev1θ − c(ev1)− u− π) + δ [u+ (1− α) (evθ − c(ev)− u− π)] /(1− δ)}.

As before, the principal will optimally offer a contract menu that shifts a major part of the

compensation into the virtual contract. Therefore, it remains optimal to promise the agent

the full virtual surplus (from the second virtual period on), and consequently reduce real

payments. Furthermore, er = ev = eFB. In addition, the agent’s utility in the first virtual

period, uv
1, must be sufficiently low such that the agent will eventually not go for the virtual

contract. There, we set ev1 = eFB, which is without loss of generality because what matters

in the first period of the virtual contract is the value uv
1, not the exact specifications of ev1

and wv
1 .

Still, the relevant constraints which pin down payments and utilites are (rIRA) and (rC).

We also have to take into account that the agent’s real (IC) constraint looks different be-

cause once he deviates from selecting equilibrium effort, he cannot be punished by receiving

his outside option from then on. Instead, he would be able to negotiate a new contract,

expecting a share 1 − α of the relationhsip surplus. Therefore, when deviating, the agent

only sacrifices this period’s bonus payment and the option to select the virtual period in

the subsequent period. However, it can be shown that the (rIC) constraint is automatically

implied by the (rIRA) constraint.

This yields the following (relevant) constraints:

wr + br − c(eFB) + βδ

(

wv
1 + bv1 − c(eFB) + δ

wv + bv − c(eFB)

1− δ

)

≥ u+ (1− α)
(

eFBθ − c(eFB)− u− π
)

+ βδ

[

u+ (1− α)
(

eFBθ − c(eFB)− u− π
)]

1− δ

(rIRA)

and

wr + br − c(eFB) + βδ

(

wv
1 + bv1 − c(eFB) + δ

wv + bv − c(eFB)

1− δ

)

≥ wv
1 + bv1 − c(eFB) +

δβ

1− δ

(

wv + bv − c(eFB)
)

. (rC)
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Those will bind for the same reasons as above and pin down the values of the agent’s real

utility, as well as his utility in the first period of the virtual contract:

ur − u =
(

eFBθ − c(eFB)− u− π
)

(

(1− α)−
α (1− β) βδ2

1− δ

)

and

uv
1 − u =

(

eFBθ − c(eFB)− u− π
)

(

(1− α)−
αβδ

1− δ

)

.

Therefore, the agent receives less than his fair share, which would amount to u + (1 −

α)
(

eFBθ − c(eFB)− u− π
)

in every period. Furthermore, the agent’s real payoff is de-

creasing in α. For α = 1, the outcome is just like the one we derived in the main part.

Only for α = 0, the agent cannot be exploited. Then, ur = uv
1 = uv, and the distinction

between real and virtual contract becomes immaterial. To conclude, the structure of the

optimal menu of contracts is not affected by different distributions of bargaining power.

Only if the agents have full bargaining power (α = 0), a situation akin to frictionless

competition on the labor market, agents are not exploited.

7.6 Partial Naivete

So far we only considered the extreme cases of completely naive and fully sophisticated

agents. Now we relax this assumption and show that a partially naive agent receives

exactly the same contract as a fully naive agent. A partially naive agent thinks that in any

future period, he will discount the future with a factor β̂ ∈ (β, 1). A fully sophisticated

agent has β̂ = β, whereas a completely naive agent has β̂ = 1.

The principal’s maximization problem is very similar to the problem when she faces a

completely naive agent. (v1IC), (vIC), and (vC) are changed as these constraints involve

the agent’s expectations about his future self:

−c(ev1) + bv1 + β̂
δ

1− δ
(wv + bv − c(ev)− u) ≥ 0, (v1IC)

−c(ev) + bv + β̂
δ

1− δ
(wv − c(ev) + bv − u) ≥ 0, (vIC)
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and

(wv
1 + bv1 − c(ev1)) + β̂

δ

(1− δ)
(wv + bv − c(ev))

≥ (wr + br − c(er)) + β̂δ

[

(wv
1 + bv1 − c(ev1)) +

δ

(1− δ)
(wv + bv − c(ev))

]

. (vC)

The analysis is analogous to the one with the naive agent and by the same arguments

we can omit several constraints. Thus we are left with the following simplified problem,

maximizing

Πr =
erθ − br

1− δ
,

subject to

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ 0, (rIR)

−c(er) + br − u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ (bv1 − c(ev1)− u) +
δβ

1− δ
(bv − c(ev)− u) , (rC)

(bv1 − c(ev1)− u) +
δ

(1− δ)
(bv − c(ev)− u) β̂

(1− δ)
(

1− β̂δ
) ≥

(br − c(er)− u)
(

1− β̂δ
) , (vC)

evθ − bv ≥ π. (vIRP)

We show in Appendix B that (vC) never binds, which implies that the principal optimally

does not differentiate between a fully and a partially naive agent. The reason is exactly

the same as in the case with a fully naive agent: Unless β = β̂ or the agent is always kept

at his outside option, (vC) and (rC) cannot bind simultaneously.

Proposition 5. The partially naive agent receives the same contract as the fully naive

agent.

A (partially) naive agent thinks that in the future choosing the virtual contract is strictly
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better than choosing the real contract. In fact, tomorrow he will be just indifferent, though.

For this decision, his true β is relevant but his belief β̂ is not. Hence, for a given β, the

principal will only offer two different sets of contracts to all agents: the virtual and the real

contract for the naive agents, no matter whether they are fully or only partially naive, and

the first-best contract for the sophisticated and the rational agents. Such a discontinuity

in the form of contracts is a common feature among papers that look at different degrees

of sophistication, whether all but the fully sophisticated types receive exactly the same

contract (as in our paper; also see Heidhues and Kőszegi, 2010) or very similar contracts

(e.g., DellaVigna and Malmendier, 2004) or rather naive types receive one contract and

rather sophisticated types another (e.g., Eliaz and Spiegler, 2006).

7.7 Learning

In our main model, we assume that the agent fails over and over again: In every period he

selects the real contract, although before he planned to take up the virtual contract in the

current period. This assumption seems quite strong. One might expect that at least after

a couple of failed attempts to actually select the virtual contract, the agent should realize

that he has a present bias (for fully naive agents) or that his present bias is stronger than

he thought (for partially naive agents). In the following, we show that even if the agent

becomes aware of this, as long as he does not become fully sophsiticated, the principal will

offer exactly the same contract.

Take any learning process characterized by a sequence of beliefs where the agent starts

with a belief β̂1 about his present bias. Whenever he fails to accept the virtual contract,

he learns that his beliefs β̂t−1 about his present bias must have been wrong and adjusts his

belief to β̂t ≥ β.

Corollary 3. Consider an arbitrary learning process in which β̂t > β for all t, i.e., the

agent never learns his true β. Then learning about the present bias does not affect the

optimally offered contracts.

This immediately follows from Proposition 5.

If the agent has the chance to learn his true β, he will choose the first-best contract from

then on, which can always be added to the menu of contracts by the principal, but will

only be chosen by a sophisticated agent.
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Corollary 4. If the learning process allows the agent to learn his true β (or leads to belief

β̂ < β) with a positive probability, then it is optimal to add the first-best contract to the

menu of contracts.

This result is straightforward: When adding the first-best contract to the menu of con-

tracts, an agent who has become sophisticated will from then on choose the first-best

contract. A (fully or partially) naive agent does not have an incentive to select the first-

best contract as he is indifferent between the first-best contract and the contract intended

for him.

7.8 Unobservable Agent Types

So far we have assumed that the principal can tailor her offer to the agent’s type. However,

in real world contexts it is not clear whether the principal necessarily knows an agent’s

type. We show that our results are robust to considering the case of unobservable agent

types: Agents are optimally separated, and each receives a menu tailored to his type.

Moreover, menus generally are still exploitative in the same vein as before, only the extent

of exploitation is reduced for some, in order to prevent one type from mimicking another

one. Intuitively, the principal will focus on exploiting types she is more likely to face, and

hence induces a separation by reducing the exploitative rents she collects from less frequent

types.

Formally, assume there are two types of agents, i ∈ {1, 2} with different values βi. For

simplicity, we set β̂1 = β̂2 = 1. Relaxing this would not affect the results. Without loss of

generality, assume β1 < β2 ≤ 1. This allows the principal to screen agents as they value

the future differentially despite having the same belief about their future β. Let s1 be the

share of agents in the population with β1, and 1 − s1 the share of agents with β2. The

principal cannot observe the agent’s type, but only knows the distribution of types. As

we assume that the principal can fully commit to the long-term contract contingent on the

history of the game, she can preclude an agent, after the initial contract choice, to switch

from one contract to the contract intended for the other type.18 Hence, if different menus

are offered, we need to make sure that it is optimal for agent i to select the respective

18Note that it turns out to be in fact optimal for the principal to preclude these switches. If it were
optimal to let the agent switch the principal could have just amended the original contract by the respective
components of the alternative contract.
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contract intended for type i, which we denote C̃i.

Now, letC1 andC2 be the profit-maximizing contracts derived in Subsection 6.2, with the

slight modification that the virtual contract is only offered from t = 1 on, i.e., the agent can

only choose the real contract in t = 0.19 If these menus were also offered for unobservable

types, agent 2 would actually go for C1. This is because agent 1 is just indifferent between

taking up the contract and choosing his outside option. As β1 < β2, agent 2 values the

future benefits of the virtual contract more than agent 1 and hence expects to receive a

higher utility from C1. Furthermore, since C1 is designed in such a way that agent 1 is

just indifferent between the virtual contract and the real contract, agent 2 would actually

choose the virtual contract after selecting C1.

Hence, either C̃2 must be constructed in a way that makes it optimal for agent 2 to

choose it (keeping C̃1 = C1), or C̃1 must be made sufficiently unattractive for 2 (keeping

C̃2 = C2). How exactly the menus are adjusted is described in the Appendix, the main

result is given in Proposition 6. We say that an agent is fully exploited when he receives

the same utility as in our main analysis with one type of naive present-biased agent. We

say that an agent is not exploited when he receives the utility of his outside option in every

period. We say that an agent is partially exploited if an agent receives a utility in between.

Proposition 6. For all β1, β2, δ > 0, with β1 < β2 < 1, there exists a threshold s ∈
(

0, β2−β1

β2

)

such that for all s1 ≤ s it is optimal to offer a menu of contracts such that agent

1 is not exploited and agent 2 is fully exploited.

Furthermore, it is optimal to offer two different contracts to the agents which both exploit

the agents, but only partially for all s1 ∈ [s, 1 − β1] . For all s1 ≥ 1 − β1, it is optimal to

fully exploit agent 1 and to partially exploit agent 2.

Therefore, one type is still exploited in exactly the same way as with observable types,

the other type is less exploited in order to induce a separation. Note that we also show

in the Appendix that a separation is always strictly optimal for β2 < 1. If β2 = 1 and

s1 > 1− β1, the principal is indifferent between inducing a separation or just letting agent

2 select C̃1 = C1 who would then go for the virtual contract. If writing different menus was

associated with some small costs, we would predict only one menu, with time-consistent

agents actually “making a career”. Therefore, our results are qualitatively unaffected if

19This does not change anything for agent 1, but makes C1 less attractive for agent 2.
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types cannot be observed, only the extent of exploitation has to be reduced for one type.20

8 Conclusion

In this paper we have shown how a principal should optimally contract with a present–

biased agent in a long-term relationship absent moral hazard. The principal can take

advantage of a naive present–biased agent and push him even below his outside option by

offering a menu of contracts: a virtual contract which consists of a relatively low compensa-

tion in the initial period but promises high future benefits and a real contract which keeps

the agent below his outside option. The agent expects that he will choose the virtual con-

tract from the next period on and therefore accepts a lower compensation today. However,

he always ends up choosing the real contract and hence never actually gets to enjoy the

generous benefits from the virtual contract. These findings are robust to imposing limited

liability on the agent, taking moral hazard into account, giving the agent some bargaining

power, letting the agent have differently strong present biases in different domains, consid-

ering the case of partial naivete, allowing the agent to learn about his bias, and considering

a finite time horizon.

A number of our results appear at odds with usual findings or basic intuition in models

with time-inconsistent agents. First, in our model, the time-inconsistent agent might work

harder than his time-consistent counterpart, while in many other settings previously studied

in the literature he appears more lethargic and lazy. This is driven by the limited liability

constraint. As the agent cannot receive a negative compensation, the only way to exploit

him further is to let him work inefficiently hard. Note, however, that – very much in line

with the standard intuition – the agent still procrastinates as he indefinitely postpones the

investment to take up the virtual contract and actually “make a career”.

Second, a higher outside option for the principal actually benefits the agent, a result

contrary to relational contracting or Nash-bargaining intuitions. The reason for this is that

a higher outside option makes it harder for the principal to credibly commit to employing

the agent in the future and providing him with generous benefits. Therefore, the promised

20Other papers analyze screening time-inconsistent agents: First, Heidhues and Kőszegi (2010) analyze
a screening problem between two agents where one is naive and the other is sophisticated. By contrast, we
allow for two naive agents. Second, Yan (2011) does not look at naive types with differently strong present
biases. Finally, Li et al. (2014) and Galperti (2015) analyze setups where all agents are sophisticated.
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future benefit must be lower, making the virtual contract appear less desirable and thus

the agent can be exploited less today.

Third, our results suggest that employment protection regulations might in fact hurt

agents. Inverting the preceding argument, employment protection increases the principals

commitment to future employment, allowing her to credibly promise a higher compensation

in the future – which she will never have to pay as the agent will always choose the real

over the virtual contract. Hence, the agent is willing to accept a lower payment or work

harder today.
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Figure 2: Profit as Function of β

i



Figure 3: Effort Path in Virtual Contract

Figure 4: Utility Path in Virtual Contract
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B Preliminaries: Simplifying the Problem

First, we derive a number of preliminary results that help us to prove our main results.

Lemma B1. Without loss of generality, the following holds for all histories:

• U v (ht ∪ {dt = 0}) = u
1−δ

• If the agent selects effort ẽt 6= evt in the virtual contract, then bv(ht, ẽt) ≤ 0 and
U v (ht ∪ {ẽt}) =

u
1−δ

• If the agent selects ẽt 6= ert in the real contract, then br(ht, ẽt) ≤ 0 and U v (ht ∪ {ẽt}) =
u

1−δ
.

Proof. The optimality of bv(ht, ẽt) ≤ 0 for ẽt 6= evt and br(ht, ẽt) ≤ 0 for ẽt 6= ert is
straightforward because lower values of br(ht, ẽt) and bv(ht, ẽt) relax (IC) constraints.

Concerning continuation values after the agent either chose dt = 0 or did not exert the
equilibrium effort level, assume that, for example, there is a history ht with U v (ht ∪ {dt = 0}) >
u

1−δ
. Replace the contract following the history ht ∪ {dt = 0} with the following stationary

contract for all subsequent histories: er = ev = eFB, wr = wv = u, br = bv = c(eFB). This
relaxes (IR) and (IC) constraints for history ht, and keeps all off-equilibrium constraints
following the history ht ∪ {dt = 0} satisfied. The same can be done for all other cases.

The next Lemma also simplifies the analysis.

Lemma B2. Without loss of generality, we can set wr(ht) = wv(ht) = 0 for all histories
ht.

Proof. Assume wv(ht) > 0. Reducing wv(ht) by ε and increasing bv(ht) by ε > 0 does not
tighten any constraint, but relaxes (vIC). Assume wr(ht) > 0. Reducing wr(ht) by ε > 0
and increasing br(ht) by ε does not tighten any constraint but relaxes (rIC).

Hence, the constraints (rIRA) and (rIC), and (vIRA) and (vIC), respectively, are identical,

allowing us to omit (rIC) and (vIC).

Now, the remaining constraints are

br(ht, ert )− c(ert ) + βδU v
(

ht ∪ {dt = 1}
)

≥ u+ βδ
u

1− δ
. (rIRA)

U v
(

ht ∪ {dt = 1}
)

≥
u

1− δ
(vIRA)

Πrv(ht) ≥
π

1− δ
(vrIRP)
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Πv(ht) ≥
π

1− δ
(vIRP)

br(ht, ert )−c(ert )+βδU v
(

ht ∪
{

ît = r
})

≥ bv(ht, evt )−c(ev)+βδU v
(

ht ∪
{

ît = v
})

(rC)

bv(ht, evt )− c(ev) + δU v
(

ht ∪
{

ît = v
})

≥ br(ht, ert )− c(er) + δU v
(

ht ∪
{

ît = r
})

(vC)

In the next two Lemmas, we derive the structure of C, hence prove 1 and show that the

real contract is stationary, as well as the virtual contract with the exception of the first

period where it is chosen.

Lemma B3. br(ht, er)− c(ert ) is the same for all histories ht.

Proof. Assume there are two histories ht and ht such that the agent’s real net payoff
differs for both histories, and without loss of generality assume that br(ht, er

t
) − c(er

t
) >

br(ht, ert )− c(ert ). Then, replace b
r(ht, er

t
)− c(er

t
) by br(ht, ert )− c(ert ), as well as the virtual

contract following the history ht by the virtual contract following the history ht. This
increases the principal’s real profits, without affecting any constraint for any other history
– also not in earlier periods, because there the agent does not expect to choose the real
contract in any future period. Hence, the agent’s incentives in earlier periods are not
affected by what happens if he chooses the real contract in a future periods.

Therefore, the real contract is history-independent, and we can omit dependence on time

and histories when describing the elements of Cr.

In a next step, we show that the virtual contract can be independent of calendar time in

a sense that without loss of generality, its components are only contingent on the number

of subsequent previous periods in which the virtual contract has been chosen. Denote Cv
τ

as the τ ’s subsequent period where the virtual contract has been chosen (hence, τ ≥ 1),

independent of the remaining components of the history of the game.

Lemma B4. Without loss of generality, the virtual contract Cv(ht) is of the form Cv
τ for

all histories of the game. Furthermore, it is stationary for all τ ≥ 2.

Proof. First, we show that the agent’s expected continuation utility after chosing the real

contract in any period, U v
(

ht ∪
{

ît = r
})

or, if using the form Cv
τ , U

v
1 (h

t), is the same for

all histories. To the contrary, assume there are two equilibrium histories ht and ht where the
agent’s respective future virtual utility differs, i.e., assume U v

1 (h
t) 6= U v

1 (h
t) and without

loss of generality U v
1 (h

t) > U v
1 (h

t). Replace all components of the history following ht

with the components of the history following ht. Then, all constraints following ht remain
satisfied, and br − c(er) can be reduced (before, rIRA was slack at the history ht).
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Hence, U v
1 (h

t) is the same for all histories ht, i.e., we can write U v
1 . To prove that the

virtual contract can be stationary for all τ > 2, note that the respective elements of Cv
τ are

only relevant for the constraints (vIRA), (vIRP) and (vC). Now take the history ht̃ where
the value U v

2 (·) assumes its highest value. If there are histories with a lower U v
2 , replace

the respective elements of the virtual contract with ones determining U v
2 (h

t̃), implying that
also U v

2 (·) can be independent of calendar time. Finally, take the per-period value of U v
2 ,

(1−δ)U v
2 , and set all per-period utilities for the virtual contract for τ ≥ 2 equal to (1−δ)U v

2 .
This is clearly feasible and violates no constraint.

These two Lemmas also prove Lemma 1. Hence, in the following, we omit time- and

history-dependence when describing the elements of Cr. Regarding Cv
τ , we also omit de-

pendence on τ for all τ ≥ 2. For τ = 1, we keep the subscript ”1”. Therefore, the remaining

constraints are

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ 0 (rIRA)

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u) ≥ 0 (v1IRA)

(bv − c(ev)− u) ≥ 0 (vIRA)

erθ − br + δ

[

(ev1θ − bv1) +
δ

1− δ
(evθ − bv)

]

≥
π

1− δ
(vrIRP)

(ev1θ − bv1) +
δ

1− δ
(evθ − bv) ≥

π

1− δ
(v1IRP)

evθ − bv ≥ π (vIRP)

−c(er) + br − u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ (bv1 − c(ev1)− u) +
δβ

1− δ
(bv − c(ev)− u) (rC)
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(bv1 − c(ev1)− u) +
δ

(1− δ)
(bv − c(ev)− u)

≥ (br − c(er)− u) + δ

[

(bv1 − c(ev1)− u) +
δ

(1− δ)
(bv − c(ev)− u)

]

(vC)

Note that we added u
(

1 + βδ

1−δ

)

on both sides of (rC) and u
1−δ

on both sides of (vC).

In a next step, we prove Proposition 1, which can be rephrased as

Proposition 7. If the agent is naive and has β ∈ (0, 1), then in the profit-maximizing
menu of contracts, −c(er) + br < u.

Proof. First, assume−c(er)+br > u. Then, (vC) and (v1IRA) imply that (bv1 − c(ev1)− u)+
δ

(1−δ)
(bv − c(ev)− u) must be strictly positive as well. Change C in the following way: Set

br − c(er)− u = bv1 − c(ev1)− u = (bv − c(ev)− u) = 0, which leaves all constraints satisfied
and increases the principal’s profits. Note that these considerations already allow us to
omit (vrIRP), (v1IRA) and (vC).

Now, assume that−c(er)+br = u. ChangeC in the following way: First, set (bv1 − c(ev1)− u) =
(bv − c(ev)− u) = 0 for given effort levels, which satisfies all constraints. Then, reduce bv1
by ε and increase bv by ε1−δ

δβ
. This increases bv1 +

δ
1−δ

bv and hence relaxes (rIRA), (v1IRA),

(vIRA) and (rC) (and does not violate limited liability as well as (v1IRP) and (vIRP)
constraints for ε sufficiently small), and therefore allows the principal to reduce br.

−c(er) + br < u immediately implies that, given (rIRA), the (v1IRA) constraint auto-

matically holds and can be omitted. The same is true for (vC). Furthermore, the (vrIRP)

constraint can be omitted: erθ − br − π will be strictly positive in a profit-maximizing

equilibrium, and (v1IRP) yields (ev1θ − bv1) +
δ

1−δ
(evθ − bv) ≥ π

1−δ
.

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ 0 (rIRA)

(bv − c(ev)− u) ≥ 0 (vIRA)

(ev1θ − bv1) +
δ

1− δ
(evθ − bv) ≥

π

1− δ
(v1IRP)

evθ − bv ≥ π (vIRP)
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−c(er) + br − u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]

≥ (bv1 − c(ev1)− u) +
δβ

1− δ
(bv − c(ev)− u) (rC)

Lemma B5. (vIRA) and (v1IRP) constraints are slack and can hence be omitted in profit-
maximizing equilibrium.

Proof. First, assume that (vIRA) binds. Increasing bv by ε and reducing ev1θ − bv1 by δ
1−δ

ε
keeps all constraints unaffected with the exception of (vIRA) and (rC) which are relaxed.

Concerning (v1IRP), first note that if it binds, the same has to be true for (vIRP).
Otherwise, we could reduce bv1 by ε (if (vIRP) is slack but (v1IRP) binds, bv1 > 0 for sure)
and increase bv by ε1−δ

δ
. This would not affect (v1IRP) and (rIR), but relax (rC).

Now, assume that (v1IRP) and (vIRI) bind. This implies that bv1 > 0, that the agent gets
the whole virtual surplus, and constraints are:

br − c(er)− u+ βδ

[

(ev1θ − c(ev1)− π − u) +
δ

1− δ
(evθ − c(ev)− π − u)

]

≥ 0 (rIR)

−c(er) + br − u+ βδ

[

(ev1θ − c(ev1)− π − u) +
δ

1− δ
(evθ − c(ev)− π − u)

]

≥ (ev1θ − c(ev1)− π − u) +
δβ

1− δ
(evθ − c(ev)− π − u) (rC)

There, the right hand side of (rC) is positive, hence that (rIR) is slack. Therefore, a
slight reduction of bv1, accompanied with a reduction of br or an increase of er (to keep (rC)
unaffected) would keep (rIR) satisfied and increase the principal’s profits.

C Proofs to Lemmas and Propositions from the Main

Part

Proof to Lemma 2 and Proposition 2

Proof. Given the remaining constraints, the principal’s maximization problem gives rise to
the following Lagrange function:
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L =
erθ − br

1− δ
+ λrIR

[

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]]

+ λrC [−c(er) + br − u− (bv1 − c(ev1)− u) (1− βδ)− δβ (bv − c(ev)− u)]

+ λvIRP (evθ − bv − π) ,

with first-order conditions

∂L

∂br
=

−1

1− δ
+ λrIR + λrC = 0

∂L

∂er
=

θ

1− δ
− c(er)′ (λrIR + λrC) = 0

∂L

∂ (bv1 − c(ev1))
= λrIRβδ − λrC (1− βδ) = 0

∂L

∂bv
= λrIRβδ

δ

1− δ
− λrCδβ − λvIRP = 0

∂L

∂ev
= −λrIRβδ

δ

1− δ
c(ev)′ + λrCδβc(e

v)′ + λvIRP θ = 0.

Hence, λrIR = 1
1−δ

− λrC and θ − c(er)′ = 0, i.e., er = eFB. Rearranging these conditions

further yields λrC = λrIR
βδ

(1−βδ)
, λvIRP = λrIR

βδ2(1−β)
(1−δ)(1−βδ)

, and

βδ2(1−β)
(1−δ)(1−βδ)

(θ − c(ev)′) = 0, i.e., ev = eFB.

Hence, (rC), (rIR) and (vIRP) can only bind simultaneously, which also implies that all
of them must bind. To the contrary, assume that (rC) and (rIR) do not bind. Then, br

can be further reduced until one of them binds, further increasing the principal’s profits.
Using these results gives the values for br, ur and πr.

Proof to Proposition 3

Proof. We solve this by backward induction: In the last period, there are no future periods
left, so the agent is just compensated for first-best effort: erT = eFB, brT = c(eFB). In
the second to last period, the agent cannot be fooled regarding the last period as he will
end up choosing the contract giving him the highest utility. So again, the agent is just
compensated for first-best effort: erT−1 = eFB, brT−1 = c(eFB). In T − 2, the agent can
be fooled by offering him a virtual contract in which he earns the whole production in
the last period if he has earned less (or has worked harder) in the second to last period:
evT = evT−1 = eFB, bvT−1 = c(eFB) + u− βδ

(

eFBθ − c(eFB)− π − u
)

, bvT = eFBθ − π, where
bvT−1 makes the T −1 agent just indifferent between the virtual and the real contract. If the
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virtual contract above is promised to him, he is willing to work below his outside option in
T − 2: erT−2 = eFB, brT−2 = c(eFB)+ u− β(1− β)δ2

(

eFBθ − c(eFB)− π − u
)

. Analogously,
in earlier periods the promised virtual contract will always promise the whole surplus to
the agent from the period after the entry period on, so the entry period bonus that makes
the agent indifferent is given by bvt = c(eFB) + u− βδ

∑T−t−1
j=0 δj

(

eFBθ − c(eFB)− π − u
)

.
This in turn allows the principal to exploit the agent by setting brt = c(ert ) + u − β(1 −
β)δ2

∑T−t−2
j=0 δj

(

eFBθ − c(eFB)− π − u
)

.

Proof to Proposition 4

Proof. Note that none of the steps we performed to simplify the original problem is affected
by the presence of a limited liability constraint. Hence, relevant constraints are the same,
and the Lagrange function becomes:

L =
erθ − br

1− δ
+ λrIR

[

br − c(er)− u+ βδ

[

(bv1 − c(ev1)− u) +
δ

1− δ
(bv − c(ev)− u)

]]

+ λrC [−c(er) + br − u− (bv1 − c(ev1)− u) (1− βδ)− δβ (bv − c(ev)− u)] + λbrb
r

+ λvIRP (evθ − bv − π) ,

with first-order conditions:

∂L

∂br
=

−1

1− δ
+ λrIR + λrC + λbr = 0

∂L

∂er
=

θ

1− δ
− c(er)′ (λrIR + λrC) = 0

∂L

∂ (bv1 − c(ev1))
= λrIRβδ − λrC (1− βδ) = 0

∂L

∂bv
= λrIRβδ

δ

1− δ
− λrCδβ − λvIRP = 0

∂L

∂ev
= −λrIRβδ

δ

1− δ
c(ev)′ + λrCδβc(e

v)′ + λvIRP θ = 0

Hence, λrIR = 1
1−δ

− λrC − λbr and θ−c(er)′

1−δ
+ c(er)′λbr = 0. Rearranging further yields

λrC = λrIR
βδ

(1−βδ)
, λvIRP = λrIR

βδ2(1−β)
(1−δ)(1−βδ)

, and βδ2(1−β)
(1−δ)(1−βδ)

(θ − c(ev)′) = 0. Furthermore,

(rC), (rIR) and (vIRP) all bind simultaneously, which follows from the same arguments as
in the prove to Proposition 2.

Hence, if br = 0, er is above the level given by θ−c(er)′ = 0. Plugging binding constraints
into utilities gives the desired values.
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Proof to Proposition 5

Proof. We show that (vC) does not bind.
Ignore the non-negativity constraints. (rIRP) binds. If not, one could increase bv by ε and

decrease bv1 by δβ̂

1−δβ̂
ǫ. Then one could decrease br slightly without violating any constraint

and thereby increasing the principal’s profits.
(rC) binds: Note that (vC) can only bind simultaneously if β = β̂. Assume β < β̂ and (rC)
does not bind. Then one could decrease br by ε (or increase er accordingly) and increase
bv1 by ε

βδ
without violating any constraint, but increasing the principal’s profits.

(rIR) binds: Otherwise one could decrease both br and bv1 without violating any constraint,
but increasing the principal’s profits.

Proof to Proposition 6

Proof. We will first approach the solution to the principal’s screening problem under the
assumption that offering one menu of contracts for each agent is optimal. Then we will
show that offering one menu of contracts for each agent is indeed optimal.

Separation by Menu Choice Assume the principal wants the agents to choose different
contracts. To develop an idea about the structure of these contracts, take C1 and C2, the
profit-maximizing contracts derived in the main part, with the slight modification that the
virtual contract is only offered from t = 1 on. Hence, agents can only choose the real
contract in t = 0. We will discuss how to optimally modify these contracts below.

Assume the principal offered C1 and C2. Then agent 2’s expected utility level when
choosing C1 was

Ũ r
2 = δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1) > 0. This is positive because of
β2 > β1, hence agent 2 puts more weight on future utilities than agent 1 does, and since
both agent did not expect to get a rent before. Furthermore, because the respective (rC)
constraints have been binding before, agent 2 would actually go for the virtual contract.

When choosing C2 (and expecting to select the virtual contract in the future), agent 1
gets:

Ũ r
1 = δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β1 − β2) < 0. Hence, agent 1 would stick to
C1.

Separation by menu choice involves giving at least one agent an expected rent (which
will also materialize in a real rent compared to the case with symmetric information). The
principal could either adjust C2 in a way that it becomes more attractive for agent 2
(without making it too attractive for agent 1), or adjust C1 in a way that it becomes less
attractive for agent 2.

First, note that the principal is restricted in increasing 2’s virtual surplus - simply because
this is already made as attractive as feasible for agent 2, with the exception of the first period
where it is expected to be chosen. Hence, the principal has the following opportunities to
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make C2 more attractive: She can include an additional payment in period t = 0 (which
only consists of the real contract), which we denote X2. Alternatively, she can increase the
payments in the (first period of the) virtual contract in t = 1. Since she still wants agent 2
to actually choose the real contract in t = 1 and since the (rC) constraint has been binding
before, she must increase the payments in the real contract in period t = 1 by the same
amount. This amount is denoted by Y2. Offering agent 2 a contract where she chooses C2

but then takes the virtual contract is dominated by this contract. Then, the agent would
still receive Y2, but additionally capture the rents from later periods in the virtual contract.

Finally, the principal could reduce agent 1’s payoff from the virtual contract and instead
increase the real payoff he receives in period t = 0. We denote this amount by Z1. More
precisely, an increase of 1’s real contract by Z1 goes hand in hand with a reduction of his
virtual payments by an amount Z1v (in order to keep the rIR constraint for agent 1 binding)
and potentially with an increase of his real payments in later periods (in order to keep the
(rC) constraint for agent 1 binding). Note that a decrease of the virtual surplus in t = 1
does not only affect the contract in t = 1, but also limits what contracts the principal can
offer in any later period. The principal cannot always simply decrease the payment of the
virtual contract starting in the next period. If Z1v is large and only the payment of the
virtual contract starting in the next period was reduced, the agent would plan to choose
the real contract in the next period and to choose the virtual contract only in the period
after that (which would violate (vC)). Reducing the payment of the real contract is not an
option, because the agent would eventually rather quit than choose the real contract. So
the principal has to decrease the payment of the later virtual contract and even increase the
next period’s real contract in order to make the agent choose the real contract in the next
period. If the necessary reduction of the payment in the later virtual contract is large, even
later contracts might have to be changed by the same logic. The larger Z1v, the more later
periods are affected. When we talk about Z1, we mean the full set of these adjustments.
However, we first assume that any costs of these additional adjustments after t = 0 are
zero, solve the simplified problem, and take the actual costs into account thereafter.

Now, expected payoffs when choosing the intended contracts and when all other compo-
nents remain unchangend are

U r
1 = Z1 − β1δZ1v = 0 (hence Z1v =

Z1

β1δ
) and U r

2 = X2 + β2δY2.

When deviating and selecting the other agent’s menu, an agent’s expected payoffs (and
expecting to pursue the virtual contracts there) are

Ũ r
1 = δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β1 − β2) +X2 + β1δY2 and

Ũ r
2 = δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1) + Z1 −
β2

β1

Z1.

If separation by menu-choice is intended, each agent must have an incentive to choose his
intended contract, i.e., the no-deviation (ND) constraints U r

i ≥ Ũ r
i must hold. Plugging in

the respective values, we get

X2 + β1δY2 ≤
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β2 − β1) . (ND1)
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for agent 1 and

X2 + β2δY2 + Z1

(

β2 − β1

β1

)

≥
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1) (ND2)

for agent 2.

Compared to the situation where the principal can observe each agent’s βi, in our simpli-
fied problem, she has to make additional real expected payments of

K = s1Z1 + (1− s1) (X2 + δY2) .

The profit-maximizing set of menus of contracts that induces a separation by menu choice
now minimizes these costs, subject to (ND1) and (ND2).

First of all, note that (ND2) must bind. Otherwise, any of the payments could be reduced,
thereby also relaxing (ND1) and reducing the principal’s real costs. Furthermore, note that
when comparing X2 and Y2, the principal would ceteris paribus always prefer to use X2,
i.e., using X2 is cheaper than using Y2: A reduction of Y2 by ε requires increasing X2 by
δβ2ε in order to keep (ND2) satisfied. This adjustment would lead to a cost change of
δβ2ε− δε < 0.

The following lemma provides a lower bound of the total effective costs of using Z1, X2

and Y2 as a function of s1. We make use of the fact that (ND2) binds and that costs are
linear in payments.

Lemma C6. The following use of Z1, X2 and Y2 minimizes the cost of separation by menu
choice if there were no costs due to Z1 later than in t = 0:

• s1 ≤
(β2−β1)

β2

X2 = Y2 = 0 and Z1 = β1 (1− β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

; costs are

K = s1β1 (1− β1)
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

• (β2−β1)
β2

< s1 ≤ 1− β1

Y2 = 0, X2 = (1− β2) (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

and

Z1 = β1 (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

; costs are

K = [s1β1 + (1− s1) (1− β2)] (β2 − β1)
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

• s1 > 1− β1

Z1 = 0, X2 = (1− β1 − β2) (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

and
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δY2 = (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

;

costs are

K = (1− s1) (2− β1 − β2) (β2 − β1)
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

.

Proof. By Lagrange optimization, we minimize costs, subject to (ND) as well as non-
negativity constraints. There, note that Z1 and Y2 cannot be negative: If Z1 was negative,
player 1’s (rIR) constraint would not hold (and it will not be optimal to increase agent 1’s
virtual surplus, since this would further tighten the (ND2) constraint). If Y2 were negative,
player 2’s (rIR) constraint would not hold in period t = 1. X2 can be negative, but only if
Y2 is increased accordingly. Hence, the constraint X2 + δβ2Y2 ≥ 0 must hold as well.

This gives the Lagrange function

L = −s1Z1 − (1− s1) (X2 + δY2)

+λND1

[

δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β2 − β1)−X2 − β1δY2

]

+λND2

[

X2 + β2δY2 + Z1

(

β2−β1

β1

)

− δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1)
]

+µX (X2 + δβ2Y2) + µY Y2 + µZZ1

and first-order conditions
∂L
∂Z1

= −s1 + λND2

(

β2−β1

β1

)

+ µZ = 0,

∂L
∂X2

= − (1− s1)− λND1 + λND2 + µX = 0,
∂L
∂Y2

= − (1− s1) δ − β1δλND1 + β2δλND2 + δβ2µX + µY = 0.

We know that λND2 > 0, furthermore rearranging and substituting gives the three condi-
tions

∂L
∂Z1

: λND2 =
β1(s1−µZ)

β2−β1

, (I)

∂L
∂X2

: λND1 =
−(β2−β1)+s1β2

β2−β1

− β1µZ

β2−β1

+ µX , (II)

∂L
∂Y2

: s1 − (1− β1)− β1µZ + µY

δ
+ µX (β2 − β1) = 0. (III)

Combining (II) and (III) implies that λND1 =
(1−s1)(1−β2)−

µY
δ

β2−β1

.

In the following, we just go through all potential cases and analyze whether they are
feasible and if yes under which conditions.

1. s1 − (1− β1) > 0. Then, (III) implies that µZ > 0, giving the following potential
cases:

(a) µY > 0: This is not feasible, since for Y2 = Z1 = 0, obtaining

X2 = δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1) from binding (ND2) and
plugging it into (ND1) gives β1 ≥ β2, which is ruled out by assumption.

(b) µY = 0: Then, (ND1) binds as well. Obtaining
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X2 =
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1)−β2δY2 from binding (ND2)
and plugging it into (ND1) gives

Y2 =
δ

1−δ

(

eFBθ − c(eFB)− π − u
)

(β2 − β1), implying that

X2 =
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1 − β2) (β2 − β1). Then,

X2 + δβ2Y2 =
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β1) (β2 − β1) > 0.

2. s1 − (1− β1) < 0. Then, (III) implies that either µX > 0 or µY > 0, or both, giving
the following potential cases:

(a) µX > 0, µY > 0: Since X2 = Y2 = 0, µZ = 0, and a binding (ND2) constraint
gives Z1 = β1 (1− β1)

δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

. Furthermore, (II) implies
that this is only feasible for − (β2 − β1) + s1β2 < 0.

(b) µX > 0, µY = 0: Hence, (ND1) binds as well. PluggingX2 = −δβ2Y2 into (ND2)
gives Z1 = β1 (1− β1)

δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

. Plugging X2 = −δβ2Y2 into
(ND1) gives
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β2 − β1)+ δY2 (β2 − β1) = 0, which is not
feasible.

(c) µX = 0, µY > 0:

i. µZ = 0: (III) gives µY = −δ [s1 − (1− β1)], hence λND1 =
s1β2

β2−β1

− 1 > 0 if

− (β2 − β1) + s1β2 > 0. Then, binding (ND1) gives
X2 =

δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− β2) (β2 − β1), and plugging this into

(ND2) gives: Z1 = β1 (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

. (II) implies
that this is only feasible for − (β2 − β1) + s1β2 ≥ 0.

ii. µZ > 0: Only using X2 is not feasible (see 1.(a)).

By the above lemma, we obtain restrictions on s and the threshold 1− β1. Note that the
menu offered for low s1 is C2 and the first-best contract (intended to be chosen by agent
1).21 It is easy to see that this is optimal even for the actual costs of Z1

22 if s1 is low

21To see this, note that Z1 = β1 (1− β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

comes with Z1v =

(1− β1)
δ

1−δ

(

eFBθ − c(eFB)− π − u
)

which means that agent 1’s perceived net utility from t = 1 on
is reduced to zero. At the same time, making the agent accept a real contract that puts his utility below
his outside option requires a benefit in the future virtual contract such that the perceived combined utility
of accepting the real contract and choosing the virtual contract in the future is at least (and optimally
exactly) zero. As this must hold even if the virtual contract is discounted with βδ from the time when the
agent accepts the real contract, this means that taking the future real contract and the virtual contract
after that must have a positive net utility from agent’s perspective in t = 0. This is a contradiction to it
being reduced to zero.

22In fact, the costs of increasing Z1 are s1

(

Z1 +
∑∞

i=1 max{0, Z1

δ2(1−β1)
− β1

1−δ

(

eFBθ − c(eFB)− π − u
)

(1− δi(1− β1))}
)

.

To simplify the analysis, we use a cost function that does not take into account potential payments in
later real contracts (due to a high Z1) as a lower bound.
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enough: The costs of Z1 occur for the fraction of agents of type 1, s1, whereas X2 and Y2

have to be paid to the fraction of agents of type 2, 1− s1. As Z1 can be substituted by X2

and Y2 in a linear way (to separate the types), there exists an s such that X2 = Y2 = 0 is
optimal for all s1 ≤ s. Hence, when there are only few agents of type 1, the principal does
not exploit them, while fully exploiting the agents of type 2.
To see that it is optimal to alter both C1 and C2 compared to the case without screening
for intermediate values of s1, note that the lower bound for the cost of using Z1 is equal
to the actual costs if Z1 is low enough and does not require to alter any contracts but the
real contract at the begining of the game and the virtual contract starting in the following
period. Hence, the principal should choose a positive Z1 for s1 < 1 − β1. At the same
time, the principal should not only use Z1 as the actual costs for using Z1 would be strictly
larger than the lower bound in this case.

Note that also (vIRA), (vIC), and (vC) are fulfilled, as they are not affected by the
changes.23 For (vrIRP) and (vIRP) observe that the compensation in the real contract
in the first period and in the virtual contract’s first period are not higher than the prin-
cipal’s surplus in these periods: c(eFB) + u − β2(1 − β2)

δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

+

(1− β2) (β2 − β1)
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

≤ eFBθ − π and

c(eFB) + u − β2
δ

1−δ

(

eFBθ − c(eFB)− π − u
)

+ (β2 − β1)
δ

1−δ

(

eFBθ − c(eFB)− π − u
)

≤

eFBθ−π. For the real contract in the second period the compensation does not exceed the
principal’s surplus when (β2 − β1 − β2(1− β2)δ − β2δ)

δ
1−δ

≤ 1, which is true.

Separation by Action Now we calculate the costs for the principal when she offers only
one menu of contracts which is supposed to be chosen by both agents and show that these
costs are higher than making agents choose different menus of contracts.

Instead of offering a menu of contracts for each type of agent, the principal could just
let agent 2 choose 1’s contract, taking into account that 2 would then go for the virtual
contract and make a career. In this case, it is without loss of generality to assume that only
the profit-maximizing menu for agent 1, C1, is offered. Note that it cannot be optimal to
induce separation by menu choice and then let agent 2 actually choose the virtual contract
(unless β2 = 1). Such a setting would give agent 2 a higher real rent than the one derived
above because (ND) constraints would still have to hold.

If agent 2 is offered C1, his expected as well as real utility is

U r
2 = Ũ r

2 = (1− β1) (β2 − β1)
δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

,

whereas agent 1 expects to get nothing.

Compared to the situation with symmetric information, though, the principal also foregoes
the benefits from exploitation – because agent 2 not only select C1, but also goes for the
virtual contract. Recall that under symmetric information, the net per-period profits the

23(vC) is fulfilled by construction if Z1 is large.
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principal generates are πr − π =
(

eFBθ − c(eFB)− u− π
)

(

1 + β(1− β) δ2

1−δ

)

. Hence, un-

der symmetric information, the principal’s total profits when dealing with agent 2 would be
(eFBθ−c(eFB)−u−π)

1−δ

(

1 + β2(1− β2)
δ2

1−δ

)

. If letting agent 2 choose C1, the principal’s profits

dealing with agent 2 are (1+δ)
(

eFBθ − c(eFB)− π − u
)

+(2− β1) β1
δ2

1−δ

(

eFBθ − c(eFB)− π − u
)

.

Therefore, the principal’s costs when letting agent 2 chooseC1, taking into account that he
then actually goes for the virtual contract, compared to the case of symmetric information
(which also served as our benchmark above), are

K̃ = (1− s1)

[

1 +
β2(1− β2)

1− δ
− (2− β1) β1

]

δ2

1− δ

(

eFBθ − c(eFB)− π − u
)

.

Comparing these costs to the costs of separation by menu choice for large s1 (which serve
as an upper bound), the condition equivalent to separation by action being cheaper,

[

1 +
β2(1− β2)

1− δ
− (2− β1) β1

]

≤ (2− β1 − β2)(β2 − β1),

shows that separation by action can only be optimal if β2 = 1.

For β2 = 1, the cost expressions for separation by actions and for separation by menu
choice are the same for s1 > 1− β1, so separation by action is (weakly) optimal.
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