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Abstract

Traditionally, the choice-based conjoint analysis relies on the assumption of rational deci-

sion makers that use all available information. However, several studies suggest that people

ignore some information when making choices. In this paper, we build upon recent devel-

opments in the choice literature and employ a latent class model that simultaneously allows

for attribute non-attendance (ANA) and preference heterogeneity. In addition, we relate vi-

sual attention derived from eye tracking to the probability of ANA to test, understand, and

validate ANA in a marketing context. In two empirical applications, we find that a) our pro-

posed model fits the data best, b) the majority of respondents indeed ignores some attributes,

which has implications for willingness-to-pay estimates, segmentation, and targeting, and c)

even though the latent class model identifies ANA well without eye tracking information,

our model with visual attention helps to better understand ANA by also accounting for

differences in attribute processing patterns.

Keywords: Attribute non-attendance; Eye tracking; Discrete choice modeling; Choice-

based conjoint analysis



1 Introduction

Choice-based conjoint analysis (CBC) is a popular tool in marketing used to elicit consumer

preferences, predict consumers’ response to new product introductions, identify segments

that similarly value product attributes, and optimize product design, targeting and pricing

strategies (Rao 2014). The basis for analyzing the observed choices from CBC is the ran-

dom utility maximization (RUM) model, with consumer “rationality” as its key behavioral

pillar (McFadden 2001). More explicitly, under RUM, consumers are considered to have

stable preferences, process all available information, and select the option that maximizes

their utility. However, the validity of these assumptions has been largely challenged (e. g.,

DellaVigna 2009). Particularly regarding the assumption of full information processing, it

has long been argued that due to limited cognitive capacity, individuals often simplify their

choices (e. g., Payne, Bettman, Coupey, and Johnson 1992) and ignore some information

about product attributes or alternatives (e. g., Orquin and Loose 2013).

The marketing literature has been mainly interested in the case where consumers neglect

some of the available alternatives, which is conventionally labeled as “choice set” forma-

tion (e. g., Swait and Ben-Akiva 1987; Bronnenberg and Vanhonacker 1996). This issue is

specifically common in revealed preference data (i. e., market data), where consumers face

dozens or even hundreds of product options. In typical CBC settings, alternatives are usu-

ally restricted to a manageable number, e. g., three to four, and include a higher number

of attributes (Rao 2014). However, some respondents may not deem all the attributes to

be relevant or may tend to ignore them due to choice task characteristics, e. g., complex-

ity (Hensher 2014). Hence, in the CBC, it seems more plausible that respondents ignore

attributes, conventionally termed “attribute non-attendance” (ANA)1, rather than alterna-

tives. In turn, in a given context, non-attended attributes do not contribute to the utility of

a particular individual, implying that the corresponding preference parameters in the utility

1Note that the term “non-attendance” comes mainly from transportation science and in this context is used
as a synonym for “ignoring” or “not considering” an attribute in the decision-making. To avoid being at
odds with the main body of ANA literature, we adopt the corresponding terminology.
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specification should be zero. In light of ANA, models assuming the use of all attributes in

decision-making (hereafter “full (attribute) attendance”2) may result in biases in parameter

estimates and, subsequently, in the derived willingness-to-pay (WTP) and welfare estimates

(e. g., Gilbride, Allenby, and Brazell 2006; Scarpa, Gilbride, Campbell, and Hensher 2009).

Given the plausibility and implications of ANA, in the following paper, we focus on its

prevalence in a marketing context.

One of the most promising ideas for tackling ANA, mainly issuing from fields such as

transportation, environmental, and health economics, is the use of a latent class model, where

each a priori defined class represents a specific attribute attendance/non-attendance pattern

(hereafter “attribute processing strategy”) and hence a different utility specification (e. g.,

Hole 2011; Hess, Stathopoulos, Campbell, and Caussade 2013). The main advantage of this

approach is that ANA can be inferred based on the observed choices alone instead of relying

on auxiliary information such as respondents’ self-stated measures (e. g., Hensher 2006) or

proxies of ANA derived from process-tracing techniques (e. g., Currim, Mintz, and Siddarth

2015; Meißner, Scholz, and Decker 2011). Such information can still be useful, and using it to

augment the models for inferring ANA is a promising area, allowing a better understanding

of the underlying individual behavior. For example, Hole, Kolstad, and Gyrd-Hansen (2013)

and Hess et al. (2013) demonstrate the benefits of using a stated ANA measure coupled

with the latent class model. Nevertheless, an open question remains: how beneficial would

process-tracing measures, specifically eye tracking, be within such a modeling framework for

identifying ANA? This is precisely the focus of the current paper.

We build on Hole et al. (2013) and use a latent class approach that allows for the simulta-

neous inference of ANA and preference heterogeneity and, in addition, integrates information

from eye tracking. In doing so, our objective is to better understand and capture different

attribute processing strategies individuals may apply when making choices. The measures

derived from eye tracking, being representative of underlying cognitive processes (e. g., Wedel

2Note that as we assume all alternatives are considered, “full (attribute) attendance” is equivalent to full
information processing or full compensatory decision rule.
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and Pieters 2008) and indicating the relevance of information (e. g., Meißner and Oll 2017),

are best suited for this purpose. Moreover, as Meißner, Musalem, and Huber (2016) demon-

strate, individuals become more efficient and selective in information processing during the

CBC tasks. Thus, eye tracking can be particularly informative in uncovering ANA in a CBC.

Furthermore, eye movements are driven by both top-down (e. g., consumers’ goals, traits,

emotions) and bottom-up (e. g., salience, location, features of the stimuli) factors (Wedel and

Pieters 2008). As such, without making a distinction, they may allow capturing different

drivers of ANA, i. e., person- (e. g., true irrelevance) and task-related (e. g., complexity).

Our second objective is to understand the effect of visual attention on consumers’ actions,

i. e., choice. In particular, we model this relationship so that visual attention affects the

likelihood of attending an attribute. Subsequently, the attended attributes enter the utility

function, are traded-off against each other and affect choice. Additionally, we investigate

whether this relationship varies across attributes.

Third, we are interested in understanding the prevalence of ANA in a marketing context,

where typically we observe varying levels of complexity in the choice task (e. g., many product

features and alternatives), consumer involvement, knowledge, and risks associated with the

product category (e. g., buying a car involves higher stakes than buying a pair of headphones).

Additionally, we aim to assess the consequences of neglecting ANA for managerially relevant

measures, such as WTP.

In two empirical applications, we indeed find evidence that individuals ignore attributes,

with the majority attending to only three to four out of six available and almost no one

attending to all. We demonstrate that neglecting ANA results in substantial biases in pref-

erence parameters and, accordingly, in derived aggregate and individual-level measures such

as the relative importance of attributes and WTP. Moreover, we find a positive and signif-

icant effect of visual attention on the likelihood of attending an attribute and demonstrate

that eye tracking is helpful in determining the allocation of individuals into and the size of

the segments, which describe specific attribute processing strategies.
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We, therefore, contribute to the literature in several ways. First, we provide further

empirical evidence of ANA in two different marketing contexts and outline the implications

of the strict assumption of full attribute attendance. Second, we contribute by proposing

a novel framework of how visual attention might affect choices through its implicit link to

the relevance of and subsequent attendance to attributes. This further allows investigating

attribute-specific differences in how attention translates into attendance. Third, we provide

further validation of methods for inferring ANA based on the observed choices. We find

that relying only on the observed choices can be sufficient for recovering general patterns in

applied attribute processing strategies and the distribution of WTP.

The rest of the manuscript is structured as follows. In Section 2, we review the relevant

literature on existing approaches to incorporating ANA as well as on the use of eye tracking in

studying decision-making and choice. Subsequently, we describe the methodology, including

our main models as well as benchmark models, the derivation of the visual attention measure,

the estimation procedure as well as measures of interest derived from the obtained parameter

estimates. In Section 4, we present and discuss the results of two empirical applications. The

paper concludes with a summary and an outline of avenues for future research.

2 Relevant Literature

Our study links eye tracking with discrete choice models that account for ANA. Therefore, in

the following section, we concisely review the literature on methods that explicitly account

for ANA and outline general trends and recent developments in this area. Furthermore, we

provide an overview of the eye tracking research in relation to decision-making and choice

and outline some important findings.
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2.1 Methods to Account for ANA

To date, in the existing literature, two main approaches accommodating ANA can be out-

lined (Hensher 2014). One approach, which we will refer to as exogenous, solely relies on

supplementary data collected during an experiment such as stated ANA (e. g., Hensher 2006),

attribute importance ranking (e. g., Hess and Hensher 2013) from debriefing questions, click

data from Mouselab experiments (e. g., Currim et al. 2015) and measures derived from eye

tracking (e. g., Balcombe, Fraser, and McSorley 2015; Meißner et al. 2011). The preference

parameters in the random utility specification are then conditioned on these measures by

setting them to zero (e. g., Hensher, Rose, and Greene 2005), rescaling them downwards

(“shrinking”; e. g., Balcombe et al. 2015), or estimating a separate set of parameters for

non-attenders (e. g., Hess and Hensher 2010). Each of the auxiliary measures used has cer-

tain limitations. In particular, stated ANA is a subjective measure and depends on the

recall, belief, and motivation of the respondents (Hess and Hensher 2010). On the other

hand, Mouselab experiments may influence the respondents’ information search process (an-

dreas and Betsch 2008). In contrast, in the case of the more objective eye tracking measure

(Meißner and Oll 2017), one needs to derive a discrete measure for use as a proxy for ANA.

For example, Balcombe et al. (2015) use fewer than two fixations as an indicator of ANA

in a given choice task. If the attribute was not attended to in more than half of the choice

tasks, it is considered non-attended throughout the choice experiment. However, the choice

of the cutoff in each and across all choice tasks may influence the model outcomes. More-

over, attribute-specific cutoffs might be more suitable, as some attributes may require more

“looking”, depending on how they are presented (e. g., as a picture, number, text, font size,

etc.)3. In the case of all of the measures, a common limitation of the exogenous methods

remains their deterministic use (i. e., assuming a one-to-one relationship with ANA).

To address this limitation, several scholars have proposed inferring ANA from the ob-

3One way of identifying optimal cutoffs could be by, e. g., employing a grid-search. However, the optimization
problem can become rather complex in the case of attribute-specific cutoff values.
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served choices rather than solely relying on additional data (Hensher 2014). We refer to

this class of approaches as endogenous methods. Within this framework, e. g., Hess and

Hensher (2010) suggested inferring ANA on the basis of high dispersion of the individual-

level conditional parameter distribution. In contrast, e. g., Scarpa et al. (2009) and Hole

(2011) propose a latent class approach probabilistically allocating individuals into a priori

defined classes that are based on (many or) all possible attendance/non-attendance combi-

nations, i. e., attribute processing strategies. This approach was shown to outperform the

exogenous approach relying on the stated ANA measure (e. g., Scarpa, Zanoli, Bruschi, and

Naspetti 2013). Endogenous models were further developed to simultaneously accommodate

heterogeneity in individual preferences (e. g., Gilbride et al. 2006; Hess et al. 2013; Hole et

al. 2013). As Hess et al. (2013) and Hole et al. (2013) demonstrate, neglecting preference

heterogeneity may result in an overstatement of the amount of ANA, as the model may not

correctly distinguish between zero and low sensitivity.

A few scholars have proposed further augmenting these models by conditioning class

allocation on auxiliary information, thus bridging the gap between the exogenous and en-

dogenous approaches. For example, Swait, Popa, and Wang (2016) have used complexity

measures, potentially capturing task-driven ANA. However,Alemu, Morkbak, Olsen, and

Jensen (2013), using debriefing questions, establish that true irrelevance of the attributes is

a common reason for ANA. Heidenreich, Watson, Ryan, and Phimister (2018) further find

higher levels of ANA for respondents who are more familiar with the particular product cat-

egory. In contrast, Hole et al. (2013) and Collins, Rose, and Hensher (2013) use stated ANA

as a covariate, which should capture different drivers of ANA. Nevertheless, the objectivity

and reliability of this measure remain an issue.

We build upon the outlined developments in the ANA literature and adopt an endogenous

approach for incorporating ANA. We simultaneously account for heterogeneity in preferences

(Hole et al. 2013) and, in contrast to the existing literature, condition the class allocation

on a measure of visual attention derived from eye tracking. Notably, the main body of
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research on ANA streams from other fields, including transportation, environmental and

health economics. However, ANA has practical relevance and importance in marketing,

given the large variation in characteristics for the choice situations consumers face.

2.2 Eye tracking, Decision-making and Choice

Eye tracking has a long history in psychology and marketing research and has been used

in diverse settings to understand attentional processes, search behavior and choice (Wedel

and Pieters 2008). As eye movements are considered to be representative of covert attention

and cognitive processes (e. g., Wedel and Pieters 2008), it has been paramount in studying

consumer decision-making (see Orquin and Loose 2013 for a comprehensive review).

For example, Shi, Wedel, and Pieters (2013) study the information acquisition of con-

sumers on comparison websites. Notably, they find that not all alternatives and attributes

receive attention or are discarded at the decision stage. Meißner et al. (2016) explore at-

tentional processes in CBC. They show that repeated choices reinforce the ease of finding

relevant information and that through the sequence of choice tasks, respondents become

more selective and faster at acquiring that information. Orquin, Chrobot, and Grunert

(2018) further demonstrate that predictability of the location of the information, which is

the case in the CBC, increases (decreases) the likelihood of looking at information of high

(low) relevance. That is, while eye movements are generally a result of both bottom-up (e. g.,

size of the stimuli), and top-down (e. g., consumer goals) factors, due to the learning that

occurs in repeated choices, the latter seems to prevail (Orquin, Bagger, and Loose 2013).

Other studies use eye tracking to relate attention to preferences (e. g., Toubia, De Jong,

Stieger, and Füller 2012), consideration set formation (e. g., Chandon, Hutchinson, Bradlow,

and Young 2009), as well as choice (e. g., Pieters and Warlop 1999). Furthermore, it has been

essential in studying and modeling consumer search behavior (e. g., Van der Lans, Pieters,

and Wedel 2008; Reutskaja, Nagel, Camerer, and Rangel 2011; Liechty, Pieters, and Wedel

2003). Most notably, several studies have proposed joint models of information search and
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choice. For example, Stüttgen, Boatwright, and Monroe (2012) jointly model search with

a satisficing choice rule, i. e., where consumers stop the evaluation process as soon as they

find a satisfactory product. Yang, Toubia, and De Jong (2015) propose a dynamic search

model, where information acquisition process represents a cognitive cost that needs to be

compensated.

In contrast, we do not model information search. Instead, we are interested in the link

between visual attention and the underlying attribute processing strategy and treat it as an

exogenous indicator of the relevance of the attribute information (Meißner and Oll 2017).

From this perspective, the studies of Balcombe et al. (2015), Meißner et al. (2011), Krucien,

Ryan, and Hermens (2017), and Van Loo, Nayga, Campbell, Seo, and Verbeke (2018) use

eye tracking in the ANA context. However, they adopt an exogenous approach, which suffers

from the limitations outlined in Section 2.1. Furthermore, e. g., Krucien et al. (2017) allow a

continuous measure of visual attention to update the preference parameters. In contrast, we

utilize an endogenous approach that allows us to link eye fixations to the underlying ANA

strategies in a probabilistic manner, avoiding any explicit assumptions about a causal effect

of eye movements on preferences as outlined by Orquin and Loose (2013).

3 Methodology

We start the following section by describing our main model – the mixed endogenous at-

tribute attendance (MEAA) model – which explicitly allows us to accommodate both ANA

and preference heterogeneity as well as to connect visual attention from eye tracking to the

consumers’ applied attribute processing strategy. After that, we will discuss how we derive

the measure of visual attention to be used in the MEAA model, and last, we explain the

calculation of the measures (e. g., the relative importance of attributes, WTP) and quan-

tities (e. g., posterior probabilities) that are obtained as a transformation of the parameter

estimates and used to generate insights in the empirical application.
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3.1 Mixed Endogenous Attribute Attendance Model

The MEAA model (Hole et al. 2013) is a confirmatory latent class approach (Hess et al. 2013)

that relaxes the assumption of full information processing. In particular, individuals can

ignore any number and combination of attributes. Given K attributes, there exist 2K possible

attendance/non-attendance combinations or attribute processing strategies (e. g., Hess et al.

2013). In the MEAA model, for each of the possible attribute processing strategies, we have a

corresponding latent class s (s = 1, . . . , S) that can be described by a K-dimensional column

vector λs = [λs1, . . . , λsK ]′ of zeros and ones, indicating the attributes that are (λsk = 1) and

are not included (λsk = 0) in the specific class s.

In this model, the utility individual i (i = 1, . . . , I) obtains from alternative j (j =

1, . . . , J) in choice task t (t = 1, . . . , T ) is class-specific:

Uijt|s = xijt · βis + ǫijt, (1)

where xijt is a K-dimensional row vector of attribute values describing alternative j in

choice task t for individual i, βis is a column vector of corresponding preference parameters,

and ǫijt is an identically distributed type I extreme value error term. The subscripts i and s

indicate that the vector of preference parameters is individual- and class-specific. The former

allows incorporating preference heterogeneity, assuming the individual parameters βi are

distributed multivariate normal: βi ∼ N(β, Σ). The class-specific parameters are obtained

via the elementwise multiplication of λs with the individual-specific vector of parameters:

βis = λs ◦ βi. For the attributes not included in class s, the corresponding elements in λs set

the preference parameters to zero. We use effects coding for all categorical attributes (e. g.,

brand) and linear specification for price-related attributes.4 If multiple elements in xijt are

related to an attribute (“attribute-levels”), we map the λs vector onto the correct parameter

dimension.

4Note that dummy coding is not an option here because then the reference level of an attribute has a utility
of zero and cannot be differentiated from ANA (Gilbride et al. 2006).
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To obtain a better idea of different utility functions in each of the classes, we provide

a simple example, where products are described by only three attributes. This results in

S = 23 = 8 possible classes. As the parameter estimates are switched on and off, each class

is characterized by a different linear (additive) utility function, which we present in Table 1.

As a result, several decision rules are incorporated: (class 1) full compensatory (i. e., full

attendance), (class 8) random choice, (classes 5-7) (a probabilistic version of) lexicographic,

and (classes 2-4) semicompensatory, i. e., the compensatory rule applies only within the

particular subset of attributes.

[Insert Table 1]

Even though, we allow for ANA, we assume that individuals are utility maximizers. In doing

so, we follow the bounded rationality literature, which states that individuals can still act

rationally by maximizing their utility but do so based on partial and imperfect information

(Rasouli and Timmermans 2015). Given the distribution of the error term, within each class

s, the probability of individual i choosing alternative j in choice task t is:

Pijt|s =
exp(xijt · βis)∑

j′∈J exp(xij′t · βis)
. (2)

Following Hole (2011), we assume the likelihood of attending a particular attribute is inde-

pendent of attending other attributes (independence of attribute attendance (IAA)). Thus,

the class probabilities τis (where 0 ≤ τis ≤ 1 and
∑S

s=1 τis = 1) can be modeled as a map-

ping from the attribute attendance probabilities, πik, which are parametrized as a logistic

function:

τis =
K∏

k=1

π
λsk

ik · (1 − πik)1−λsk (3)

πik =
exp (zik · γ)

1 + exp (zik · γ)
, (4)

where zik is a K +E-dimensional row vector of K attribute-specific intercepts and (possibly)
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E attribute-specific individual-level variables (e. g., revealed or stated ANA) with corre-

sponding parameter vector γ. Note that the additional variables entering zik are optional,

and the MEAA model can be estimated without any extra information. In this case, the at-

tribute attendance probabilities πik and respective class probabilities τis are common across

individuals, and the subscript i can be dropped. The submodel in Equation (3) is closely

related to the model proposed by Swait and Ben-Akiva (1987) for modeling choice set het-

erogeneity and to the concomitant latent class models of Kamakura, Wedel, and Agrawal

(1994). Although the IAA assumption seems restrictive, it ensures parsimony and the prac-

ticality of the model because the number of parameter rises linearly with K, not S, as would

be the case if we used a multinomial logit model for τis with S − 1 class-specific intercepts

(Hole 2011; Hole et al. 2013). In addition to the loss of parsimony, relaxing the IAA assump-

tion may reduce model stability (i. e., potential issues with local maxima) while offering only

marginal improvements in fit (Hess et al. 2013).

The unconditional probability of individual i choosing alternative j in choice task t can

be derived by combining Equations (2) and (3). τis can be interpreted as the size of class s

and is the prior probability of finding individual i in class s.

Pijt =
S∑

s=1

τis · Pijt|s. (5)

The utility function in Equation (1) allows a straightforward derivation of restricted models,

which do not include either ANA, preference heterogeneity or both. Figure 1 summarizes

the relationships between different model versions.

[Insert Figure 1]

For example, by setting τ1 = 1 (i. e., everyone belongs to class 1 with full attendance), the

MEAA model is reduced to the mixed multinomial logit (MMNL) model. By setting Σ = 0

while retaining all S classes, the MEAA reduces to the endogenous attribute attendance

(EAA) model proposed by Hole (2011). Combining both restrictions leads to the multinomial
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logit (MNL) model. Hence, MNL, EAA, and MMNL are all special cases of the MEAA model

and will serve as benchmarks in the empirical application.

3.2 Estimation Procedure

For statistical inference, we employ maximum likelihood estimation with sample log-like-

lihood LL(θ) =
∑

i∈I ln(Li) where Li is the likelihood of individual i, and θ denotes the

vector of unknown parameters θ = [β, Σ, γ]′. For the MEAA model, Li is the weighted sum

of the respective class-specific likelihoods, i. e., Li =
∑S

s=1 τis · Li|s. The latter represents the

sequence of observed choices for individual i conditional on class s because the data have a

panel structure (i. e., t choice tasks for each individual i), and we assume that individuals

do not change the attribute processing strategy across tasks:

Li|s =
∫ T∏

t=1

J∏
j=1

P
yijt

ijt|sφ(βi|β, Σ)dβi, (6)

where yijt is a dummy indicating whether alternative j was chosen by individual i in choice

task t, and φ is the density of the normal distribution. For the MMNL model, no weighting by

class probabilities is necessary. For the EAA model, preference parameters are homogenous,

and therefore no integration over the parameter distribution is required. For MNL, neither

integration over the parameter distribution nor weighting by class probabilities is required.

As the integral over the density of βi in Equation (6) has no closed-form solution, we adopt

the simulated maximum likelihood approach and approximate it using 500 Halton draws

(Train 2009). We estimate all parameters simultaneously using the gradient-based Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm (see Train 2009, p. 225). Because latent class

models may have multiple local optima (see Wedel and Kamakura 2000), multiple starting

values were tested to find the global optimum (Dayton and Macready 1988).
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3.3 Postestimation Measures

Based on the estimated parameters, we derive several measures and quantities that are

central for our empirical analysis.

In the (M)EAA models, we can simultaneously segment respondents into specific classes

characterizing particular attribute processing strategies. We therefore use the estimated

parameters θ̂ in Equations (3) and (6) to obtain posterior class probabilities via Bayes’ rule

(Wedel and Kamakura 2000):

τ̂
post.
is =

τ̂is · Li|s∑S
s=1 τ̂is · Li|s

, (7)

Here, the prior class probabilities are reweighted by the estimated likelihood of each individ-

ual i conditional on class s. The resulting posterior class probabilities represent a “fuzzy”

segmentation criterion, and individuals can be fractional members of (multiple) attribute

processing strategy segments. Given our assumption that each individual has a specific at-

tribute processing strategy, we opt for a nonoverlapping segmentation and assign individuals

to the class where the value of τ̂
post.
is is the highest (cf. Desarbo, Ramaswamy, and Cohen

1995). To assess the degree of overlap, we use an entropy-based measure (e. g., Wedel and

Kamakura 2000):

entropy = 1 +

∑I
i=1

∑S
s=1 τ̂

post.
is · ln (τ̂post.

is )

I · ln(S)
. (8)

This measure is bound between 0 and 1, with values of zero indicating complete overlap

between class allocations (i. e., all posterior class probabilities are equal) and values close to

one implying a more certain class assignment with minimal overlap.

Furthermore, we derive some key measures that represent a transformation of the esti-

mated preference parameters such as the relative importance of attributes and WTP, which

have practical significance for marketing managers (Rao 2014). We base these measures on
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the conditional individual-level estimates β̂is. That is, we utilize all the available informa-

tion (e. g., observed choices and other individual-level information) in a submodel of class

probabilities in Equation (3)) to increase the accuracy of the preference estimate for a given

individual (e. g., Hensher, Rose, and Greene 2015).

After obtaining the class for each individual with the highest value of τ̂
post.
is ), denoted

by ŝ, we employ Bayes’ rule again to condition on the observed choices and compute the

posterior means of the parameters on the individual level (Train 2009):

β̂
post.
iŝ =

∫
β̂iŝ

∏T
t=1

∏J
j=1 P

yijt

ijt|ŝφ(βi|β, Σ)dβi∫ ∏T
t=1

∏J
j=1 P

yijt

ijt|ŝφ(βi|β, Σ)dβi

, (9)

where we again employ a simulation method with Halton draws to approximate the inte-

grals. We use this definition of individual estimates because it preserves the value zero on

the individual level if i is classified as a non-attender. This feature is of central importance in

marketing applications because it also translates into the derived measures, such as relative

importance and WTP (as described next), and thus helps the analyst target on the indi-

vidual level. Note that EAA model preference parameters are the same for all individuals.

Therefore, the subscript i in β̂i in Equation (9) can be dropped. For the MMNL model, we

do not have to condition on a specific class.

The relative importance of an attribute is the ratio of its utility range to the sum of the

utility ranges of all attributes (Rao 2014). We compute the utility ranges on the individual

level from β̂
post.
iŝ . Furthermore, we use two aggregate measures for the (M)EAA model

(similar to Gilbride et al. 2006). First, we calculate the mean across all individuals, which

also includes individuals who did not attend to attribute k and have a corresponding relative

importance of zero. Second, we are interested in assessing this measure for individuals who,

in fact, attended to the specific attribute. Therefore, we further compute the average relative

importance for this subset of individuals. For targeting specific segments, this measure of

relative importance entails essential and relevant information for managers.
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We compute individual WTP values from β̂
post.
iŝ by dividing the parameters (respectively,

the differences in attribute-level related parameters) of nonprice related attributes by the

negative price parameter. Hence, conveniently, we rescale the utility of each attribute in

monetary units based on the marginal rate of substitution (Rao 2014). Following a similar

logic as that used for the relative importance computation, we derive an average WTP for an

attribute across all and one across the subset of individuals who attended to the attribute.

3.4 Measure of Visual Attention

Subsequently, we use a continuous measure of visual attention derived from eye tracking

as an additional exogenous individual-level information, which enters zik in Equation (4) in

the (M)EAA model specification. This is similar to the inclusion of consumer descriptors

(concomitant variables) in a latent class model for segmentation purposes (e. g., Kamakura

et al. 1994; Wedel and Kamakura 2000). For example, Gupta and Chintagunta (1994) use

demographics in the context of brand choice using scanner panel data. In a similar manner,

Swait and Adamowicz (2001) employ complexity measures when modeling choices from a

stated choice experiment. Generally, the supplementary information used as a covariate in

the submodel of class probabilities proves to increase model fit and aid with the identification

of the latent classes (Dayton and Macready 1988).

We use eye fixations as an input for our metric. This choice from among the possible

eye tracking metrics is motivated by the fact that the number of fixations is one of the

most commonly used proxies indicating information acquisition and attention (Wedel and

Pieters 2008; Holmqvist et al. 2011) and has been previously used in the context of ANA

(e. g., Balcombe et al. 2015). Furthermore, in line with previous literature, we also find

it to be highly correlated with fixation duration. In CBC, the information in each choice

task is presented in a matrix form, where attributes are typically presented as rows and

alternatives as columns. Given K attributes and J alternatives, this results in a K × J

matrix, with each (k, j) element characterizing attribute k for alternative j. We define each
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of the (k, j) elements as a separate area of interest. In a given task t for each individual i,

we count the number of fixations on each area of interest, i. e., the (k, j) element. We further

aggregate the fixation counts on each area of interest across all J alternatives and T choice

tasks. Next, we standardize this measure within each individual and label it as vaik. This

enables us to control for any potential heterogeneity in individual processing capacities. The

motivation for standardization here is similar to that in Pieters and Warlop (1999), where

they mean center the visual attention measure for each individual to control for differences

in experimental conditions.

Using vaik as additional information in zik should help to model πik and, therefore, τis.

In particular, we expect a positive effect of vaik on πik. Nevertheless, the probabilistic

relationship between visual attention and the particular attribute processing strategy, in

contrast to exogenous approaches to accommodating ANA, allows for the possibility that

looking at given information does not guarantee that it is deployed in decision-making.

4 Empirical Application

We start the following section by describing the two datasets we chose for our empirical

application. We then continue with a detailed discussion of the estimation results, e. g., model

fit, parameter estimates, including the effect of visual attention, as well as the differences in

subsequent individual class memberships, the relative importance of attributes and WTP.

4.1 Data

We employ two studies involving choices in different durable product categories: coffee mak-

ers and laptops, conducted by Meißner et al. (2016) and Yang et al. (2015), respectively.

Both studies combine a CBC study with an eye tracking experiment, i. e., eye movements of

the respondents were simultaneously tracked while they completed the choice tasks (for de-

tails on the eye tracking devices used and the experimental setup, we kindly refer the reader
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to the respective articles). We chose these two datasets because they represent typical CBC

studies used in marketing research. Therefore, the results of our analysis are relevant to

a broader marketing audience. However, they differ in terms of the product category and

some features of the experimental setup and design presented in Table 2, which enables us

to validate that the general patterns we find also hold across contexts.

[Insert Table 2]

In both cases, the respondents were sampled from students of European universities. After

excluding responses with incomplete data or a straight-lining pattern, we obtain samples

of 59 (coffee makers) and 70 (laptops) respondents, which is a typical sample size for eye

tracking experiments. The studies vary in the number of choice tasks: 12 in coffee makers

and 20 in laptops, i. e., fewer observations per respondent are available for the coffee makers

study. Moreover, a “none” option was included in the coffee makers study, with an average

choice share of 15.4%. The rest of the choice shares were equally distributed among the

three alternatives. In the laptop study, the average distribution of the choice shares was

slightly less balanced, ranging from 21–30%. Additionally, the laptop study was incentive-

aligned, but without a “none” option, which makes it inappropriate for WTP calculation

(Allenby, Brazell, Howell, and Rossi 2014). Another relevant difference for our application

is the variation in the characteristics of the attributes included in the studies. Notably,

some attributes in the coffee makers study contain pictorial information (e. g., design and

system), while in the laptop study, all attributes are nonpictorial. We would expect the

pictorial attributes to require more visual attention to be processed and incorporated into

the decision-making. Furthermore, both studies include six attributes, which results in 64

possible attribute processing strategies. Therefore, we can investigate how well the models

can identify the particular strategy applied by an individual given these many possibilities.

Regarding the eye tracking information, we observe that all respondents do fixate on

all attributes across choice tasks. The standardized number of fixations and therefore our

measure of visual attention varies substantially across attributes (mean ranging from −0.70
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to 0.53 for coffee makers and from −0.95 to 1.13 for laptops), across individuals (standard

deviation ranging from 0.75 to 0.89 for coffee makers and 0.24 to 0.79 for laptops), as well

as within individuals (average range across individuals of 2.59 for coffee makers and 2.51

for laptops). This variation, therefore, allows identification of the parameter estimates, and

hence we conclude that the datasets are well suited for our analysis.

4.2 Model Comparison

For each of the datasets, we have estimated six models, including the MNL, MMNL, EAA,

EAA(va), MEAA, and MEAA(va), where “va” indicates that the models include the visual

attention measure. In the initial solutions, the MEAA and MEAA(va) models had very large

and positive intercept estimates in the submodel of the class probabilities in Equation (3)

for the attributes price (coffee makers) and support (laptops). Note that this is not an issue

and only shows that there is no ANA for these attributes after controlling for preference

heterogeneity (Hole et al. 2013). Hence, we simply reestimated the models setting these

attributes to 100% attendance. Consequentially, for both datasets, 52 = 32 possible attribute

processing strategies (or classes) are available. Please note that we also included a dummy

variable for the “none” option in the coffee makers study, but we do not allow for ANA here

because “none” is not a product attribute. Additionally, we estimated the heterogeneous

models with a diagonal specification of Σ for reasons of parsimony. We report the final

estimation results in Tables 3 and 4.

[Insert Table 3 and 4]

In general, we are interested in several comparisons. First, by contrasting homogeneous

vs. heterogeneous models, we aim to validate the importance of accounting for preference

heterogeneity, primarily due to potential confounding with ANA. Second, by comparing the

models that assume full attendance vs. those including ANA, we outline the implications

of neglecting the latter in a marketing context. Third, the prime focus is the comparison of

models that include the measure of visual attention vs. “regular” ANA models (i. e., EAA
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and MEAA).

For the comparison of in-sample fit across models, we use log-likelihood (LL), Bayesian

information criterion (BIC), and McFadden’s R2 (ρ2) (see Wedel and Kamakura 2000). The

BIC has the advantage over LL that it penalizes model complexity and we can further use it

for the comparison of non-nested models.5 ρ2 offers an intuitive interpretation, with values

between 0.2 and 0.4 indicating a very good fit (Louviere, Hensher, and Swait 2000).

First, the models fit the data in both applications quite well. Furthermore, as suggested

by the smaller BIC, larger ρ2, and LL-values, all heterogeneous models outperform their

homogeneous counterparts in both applications. For example, the MEAA outperforms the

EAA and the MEAA(va) outperforms the EAA(va). Moreover, the MMNL outperforms

all homogenous models, including the best fitting EAA(va). Thus, relaxing the assumption

of homogeneity in preferences is crucial, including for models that accommodate ANA. In

addition, in both applications, there is more to gain by accounting only for preference het-

erogeneity vs. only for ANA. Second, the MEAA and MEAA(va) outperform the MMNL,

while the EAA and EAA(va) outperform the MNL model, i. e., in general, accounting for

ANA leads to considerable improvement in model fit across both applications. Finally, the

MEAA(va) is, overall, the best fitting model and outperforms the MEAA in both studies.

Similarly, the EAA(va) outperforms the EAA model. Hence, the visual attention measure

is a useful indicator of ANA.6

To assess the predictive validity of the models, we additionally report hit rate and hit

probability as common measures of out-of-sample fit (Gilbride et al. 2006). Using the

individual-level posterior parameter estimates, we computed the measures from leave-one-

out cross-validation (Maldonado, Montoya, and Weber 2015). In each fold, we randomly

5Note that the MEAA model nests all other models at the boundary of the parameter space, hence the LL

ratio test is not applicable (McLachlan and Peel 2000).
6As an additional validation exercise, we have used the derived measure of visual attention in an exogenous
approach. Using grid search, we determined the cutoff value for building the discrete indicator of ANA. The
corresponding attributes are then set to zero in the MNL and MMNL models. These benchmark models
(which can be estimated using standard software) outperform the MNL and MMNL and have a comparative
fit to EAA and MEAA models. Results are available from the authors upon request.
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left out one choice task for each respondent, repeated this procedure T times, and averaged

the results. Hence, all observations are also used once in the validation, which increases

the robustness of the results, however, at the cost of the need for T estimation runs. The

hit rate is the average rate of correct predictions across the individuals. However, it does

not convey any information on the “certainty” of the prediction. On the other hand, hit

probability, as the average predicted probability of the chosen alternative across the sample,

does. These measures confirm the result based on the in-sample fit, although the relative

differences across models are somewhat smaller, but we also do not detect overfitting. In

general, all the heterogeneous models fit very well both in-sample (ρ2 values of over 0.39) and

out-of-sample (hit rate of more than 0.64 and hit probability of more than 0.59 among four

alternatives). Therefore, getting any additional improvement out-of-sample is challenging.

We would, hence, consider the MEAA(va) model to be more reliable. As we will show, they

generate somewhat different insights, particularly on the individual-level.

4.3 Parameter Estimates

The resulting parameter estimates are presented in the upper panels in Tables 3 and 4. In

general, the estimates across all models in both studies have face validity (e. g., negative

price parameters) and reasonable magnitudes. However, we do observe relevant differences

in utility parameters, including partworth and price estimates, across models. In particular,

we see both increases and decreases in the magnitudes when moving from the worse fitting

(M)MNL models to the better fitting (M)EAA and (M)EAA(va) models. For example,

in the MEAA models, the mean price parameter increases in magnitude compared to the

MMNL model. At the same time, the standard deviation decreases. As we find some level

of non-attendance to price in the laptop study, it is expected that some of the heterogeneity

recovered in the MMNL is now captured by the non-attendance class, shifting the mean away

from zero and implying less continuous heterogeneity. In the case of the coffee makers study,

the shift in the price estimate initially seems counterintuitive considering the full attendance
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to this attribute. However, as Hess et al. (2013) state, such changes may also depend on

the specification of other attributes. Along with the potential scale differences, the latter

complicates the direct comparison of the utility estimates. Assuming that the true model

includes preference heterogeneity and ANA, the results show that neglecting the latter leads

to biased estimates.

Turning to the class parameters in the (M)EAA models, we see large differences in the

intercepts across attributes in both datasets. This already indicates differences in the at-

tribute attendance probabilities, and interestingly, the differences in intercepts persist in

models including the visual attention measure. Regarding the latter, we observe a positive

and significant effect in both applications, i. e., a higher level of visual attention generally

results in a higher likelihood of attending an attribute. Notably, the magnitude of the effect

increases in the MEAA(va) compared to the EAA(va) model. One potential explanation

for this finding is the confounding of preference heterogeneity and ANA. As visual atten-

tion should be indicative of non-attendance rather than low sensitivity, by better isolating

these two in the MEAA(va) model, the relationship between visual attention and attribute

attendance becomes more pronounced. We find further support of the confounding effect

when examining the average attribute attendance probabilities presented in Figure 2. In

particular, in both studies for almost all attributes, attendance probabilities are higher in

the MEAA models, becoming 100% for price in coffee makers and for support in laptops.

[Insert Figure 2]

The higher attribute attendance probabilities also translate into a higher probability of

attending more attributes, as evident from the shift of the probability distribution of the

number of attended attributes to the right for the MEAA models (see Figure 3). In studies

of choices of prescription drugs and commuting routes, respectively, Hole et al. (2013) and

Hess et al. (2013) also find that many attributes become 100% attended after accounting

for heterogeneity. However, we still see a considerable amount of non-attendance for most

of the attributes in our two applications. For example, except price and price per cup, the
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attendance probabilities for all other attributes in coffee makers remains below 50%, resulting

in the majority of respondents attending to three out of six attributes in the MEAA models.

One potential explanation is the differences in the level of involvement and the associated

risk of the decision in the various contexts. We find further supporting evidence by noting

that the levels of non-attendance are lower in the laptop study, potentially due to incentive

alignment and a higher risk related to financial cost. Additionally, we observe a larger shift of

the probability distribution for the number of attended attributes to the right in the MEAA

models, with the majority attending to four out of six attributes. It is, however, noteworthy

that despite incentive alignment, some respondents did not attend to price.

[Insert Figure 3]

Returning to the comparison of the MEAA(va) and MEAA models, some differences are

visible in attendance probabilities for price per cup in the coffee makers study, where the

MEAA(va) model retrieves 12.3 percentage points lower attendance probability. Likewise, for

laptops, we find a 7.5 to 15.6 percentage points lower attendance probabilities for capacity,

size, and price. As a result, the share of the respondents attending to three attributes

for coffee makers and four attributes for laptops becomes larger, mainly on account of the

smaller share of those attending to five or six attributes. All in all, we find ample evidence

for ANA in both product categories, frequent use of semicompensatory (more than 98% in

both studies), rare use of lexicographic (less than 2% in coffee makers and 0% in laptops)

and full compensatory strategy (less than 1% in both studies), and no use of random choice.

Considering the better fit and potential issues with confounding, from this point on, we focus

on the heterogeneous models.

4.4 Visual Attention and Attribute Non-attendance

The relationship between visual attention and attribute (non)attendance merits a more de-

tailed discussion. All in all, paying more attention to an attribute increases the likelihood

of, but does not guarantee, using it when making choices. Moreover, due to variation in
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attribute intercepts, the same amount of visual attention results in different attendance

probabilities across attributes, as illustrated in Figure 4.

[Insert Figure 4]

Here, we have calculated the attendance probabilities for a range of values of visual attention

(observed in the datasets) using the estimated γ̂ parameters. The negative (positive) values

of attribute intercepts shift this sigmoid relationship to the right (left), such that for a given

amount of visual attention, a higher attendance probability is implied for brand, followed

by material, price per cup, system and design in coffee makers (left panel). The dots in

Figure 4 are the average values of visual attention for each attribute and relate to the

average attendance probabilities presented in Figure 2. The model is, therefore, capturing

the heterogeneity in required processing capacity across attributes. It, in fact, distinguishes

some patterns in visual attention related to the characteristics of the attribute. In particular,

a distinction can be observed between pictorial (e. g., design and support) and nonpictorial

attributes, with the former seemingly requiring higher levels of attention for processing and

incorporating into decision-making. In the case of the laptop study (right panel), we also

see differences in inferred attendance probabilities across attributes. However, the attribute-

specific curves seem to be closer to each other than in the coffee makers study. One potential

explanation is that the laptop study does not contain any pictorial information. However,

the same level of visual attention results in a higher and similar probability of attending

price and capacity, followed by antivirus, and much lower probability for attending speed

and size.

4.5 Differences in Class Allocation

We now turn to the comparison of the MEAA models to investigate how much the visual

attention measure helps with allocating people into classes. To this end, we compare the

entropy measure calculated in Equation (8). We obtain values of 0.66 in the MEAA and

0.75 in the MEAA(va) for coffee makers and 0.76 in the MEAA and 0.84 in the MEAA(va)
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for laptops. Considering 32 classes in both applications, already the class allocation in

the MEAA model appears to be quite good, and even more so in the MEAA(va) model.

To illustrate some general patterns and critical distinctions between the models, we report

an example of class allocation for two respondents in the coffee makers study in Figure 5.

However, these are representative for most of the respondents in the analyses (64% and 70%

for coffee makers and laptops, respectively), where the MEAA(va) compared to the MEAA

model has a higher posterior probability for the identified class.

[Insert Figure 5]

More specifically, id = 14 (top panel) represents the case (34% and 26% for coffee makers

and laptops, respectively) where the MEAA(va) and the MEAA model indicate the same

class, but the former results in a higher posterior probability. By contrast, id = 28 (bottom

panel) illustrates the case (30% and 44% for coffee makers and laptops, respectively), where

the class allocation is different, with the MEAA(va) having a higher posterior probability

for the identified class. Note that the classes are distinct in terms of the implied attribute

processing strategy. Therefore, differences in the class allocation will have consequences for

other individual-level measures. For instance, the MEAA(va) model suggests that id = 28, in

addition to price (which is always attended), most likely attends to design. In contrast, the

MEAA model suggests that this respondent only attends to price and potentially to price

per cup. Therefore, the vector of parameters for id = 28 would be considerably different

between the models, which will have further repercussions for the WTP. Given that the

models suggest different class allocations (irrespective of which model leads to a higher

posterior class probability) for a considerable proportion of the samples (47% and 67% for

coffee makers and laptops, respectively), one can expect substantial discrepancies between

the derived individual-level insights. Hence, the additional use of visual attention is not only

important to improve (in-sample) fit on the aggregate level but also to obtain substantive

results on the individual level, which in turn are relevant for target marketing.
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4.6 Relative Importance of Attributes and Willingness-to-pay

The aggregate values of the relative importance of attributes for both studies are summarized

in Table 5. At first glance, the MMNL results seem consistent (e. g., same ranking across

attributes) with the MEAA models’ implied weighted average values in columns 3 and 4.

However, we still observe some meaningful differences in both studies. For example, for coffee

makers, the importance of design drops approximately 4 and price increases approximately 6

percentage point in the model accounting for ANA. Similarly, for laptops, the MMNL model

understates (overstates) the relative importance of speed (antivirus).

[Insert Table 5]

Nevertheless, firms might be more interested in understanding the importance of attributes

for those individuals who, in fact, use them when making choices. These are presented in

columns 5 and 6 in Table 5. Note that the sum of the relative importance across attributes is

no longer 100% as they are based on different subsets of the sample. Here, we see substantial

increases in the relative importance across all attributes except price. The magnitude of the

difference is dependent on the amount of ANA for a given attribute. For example, the

importance of design rises from 7.8% in the MMNL to approximately 32% in the MEAA

models. Contrasting with the results of Gilbride et al. (2006), we find larger differences in

the relative importance measure, which demonstrates that these are also context-specific.

Furthermore, the difference between the MEAA and MEAA(va) models appears to be

less pronounced. Nevertheless, we find some variation that is meaningful for practitioners.

In particular, even on average over the whole sample (column 3 and 4), the values differ by

approximately 2 to 3 percentage points for price per cup for coffee makers as well as for speed

and price for laptops. For the subsets of attenders (column 5 and 6), we find approximately

2 and 5 percentage point differences for brand and price per cup in the coffee makers study,

respectively. Even larger differences are suggested for laptops, with approximately 7 and up

to 12 percentage points for antivirus and price, accordingly.
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We also find differences in implied WTP across the three models presented in Table 6.7

Here, as well, for the MEAA models, we report the weighted average WTP across all and

only the attending individuals.

[Insert Table 6]

For the majority of the attribute-level comparisons, the MMNL model seems to overestimate

the average WTP (columns 2, 3 and 4). While in some cases the differences appear to be

small (e. g., for Krups vs. Severin 22.10e in MMNL compared to 18.98e in MEAA and

20.45e in MEAA(va)), in other cases they are considerable (e. g., for Philips vs. Severin

43.50e in MMNL vs. 23e in MEAA and 22.73e in MEAA(va)). This finding is in line with

the studies of Hole et al. (2013) and Hess et al. (2013). In particular, as 38.4% of the sample

in the MEAA and 40.2% in the MEAA(va) ignore the brand attribute, they, subsequently

have a zero WTP, which decreases the average value over the sample. By contrast, when

we consider only the subsets of attenders to the specific attribute (columns 5 and 6), the

MMNL model understates the WTP across almost all attribute-level comparisons by more

than 2 times. Interestingly, the MEAA(va) shows here (in absolute terms) slightly lower

WTP values (except for stainless steel vs. aluminum) compared to the MEAA.

To obtain a better understanding of the individual-level differences, we present the cu-

mulative distribution of individual WTP values (see also Hensher, Collins, and Greene 2013)

for selected attribute-level comparisons in Figure 6. The Krups vs. Severin comparison

(upper panel) is representative of 6 out of 9 attribute-level comparisons, where the WTP

stays (mostly) in the positive domain (i. e., for all individuals with nonzero WTP, Krups is

preferred over Severin). By contrast, plastic vs. aluminum (lower panel) represents the other

three cases, where the WTP in the MMNL model spreads across both positive and negative

domains (i. e., some individuals prefer plastic over aluminum, while others prefer aluminum

over plastic as a material for coffee makers).

7As the laptop study did not include a “none” option, we do not present the WTP calculations, as WTP
values are not necessarily meaningful (Allenby et al. 2014). Nevertheless, the general patterns observed for
coffee makers are also present in the laptop study. The results are available upon request.
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[Insert Figure 6]

In line with the previous literature (e. g., Hess et al. 2013), the MEAA models in all attribute-

level comparisons suggest a lower level of heterogeneity (i. e., the variance in the WTP

distribution). For both datasets, the recovered heterogeneity in WTP is overstated in the

MMNL model, and it seems to be driven mainly by extremes, for which we obtain (in absolute

terms) unrealistically high WTP values (e. g., |WTP| > 100e for plastic vs. aluminum). At

the same time, the WTP for the rest shrinks towards zero (e. g., |WTP| of only approximately

10 to 20e for a large fraction of the sample). In contrast, due to a high level of non-attendance

to brand and material, many individuals in the MEAA models have WTP values of exactly

zero, and therefore we obtain a lower mean value over the sample. However, for the rest of

the subset, the WTP values are in many cases much higher than MMNL predicts. Hence,

consistent with Gilbride et al. (2006), we also find supporting evidence that accounting for

ANA is crucial for accurate identification of subsets of individuals with high (but realistic)

WTP, i. e., the extremes of the preference distribution, and for the proper targeting of these

segments following the suggestions of Allenby and Ginter (1995). Comparing the WTP

distributions of the MEAA and MEAA(va) models, we see that the main difference in WTP

stems from different subsets of individuals with a (non)zero WTP for a given attribute, as

already discussed in Section 4.5. Note that, e. g., the MEAA(va) identifies more respondents

with WTP values of approximately 20e to 50e for Krups vs. Severin. Given that the

MEAA(va) provides the better class allocation and better model fit, we interpret the resulting

differences in WTP as important. Nevertheless, the WTP distributions of the models with

ANA are in general similar, and larger differences arise in comparisons using the MMNL

model.

In sum, we conclude that it is crucial to control for heterogeneity and ANA in discrete

choice models to obtain relative importance and WTP values that are realistic as well as

meaningful and, at the same time, insightful for targeting in marketing applications.
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5 Conclusion

In this paper, we show the prevalence of ANA in a marketing context, specifically in two

applications where individuals choose durable products, such as coffee makers and laptops.

Although one would expect that people are more careful when making product choices in

durable categories due to higher stakes, we find that across the two applications, even after

controlling for preference heterogeneity, the majority attends to only three to four (different)

attributes out of the available six. Simultaneously, almost no one considers all, none, or

only one attribute. In such cases, assuming full attendance can be misguided and lead to

considerable biases in the derived implications.

Furthermore, we provide empirical evidence of the positive and significant effect of visual

attention on the probability of attending a particular attribute. Our proposed model further

captures variation in the required visual attention for processing and incorporating different

attributes in decision-making. More specifically, our results may suggest that the same

level of attention to nonpictorial vs. pictorial information results in a higher likelihood of

attendance. The proposed model, in general, provides a framework for testing the efficiency

of, e. g., framing effects in CBC. For example, Jonker, Donkers, de Bekker-Grob, and Stolk

(2018) observe that more people seem to attend to an attribute when it is made more salient

by color coding. Our framework can enable further investigation, whether such shifts are

due to a higher level of visual attention or the ease of spotting salient information and

whether they vary across attributes, e. g., depending on perceived relevance. Notably, we

show that the use of eye tracking is informative in uncovering individual-level behavior. In

particular, it helps to more clearly classify individuals into segments related to different

attribute processing strategies. This implies less uncertainty in identifying the size of the

segments that the firm might want to target and differences in the individual-level results

(e. g., WTP). However, the model using the observed choices to infer ANA may already be

sufficient for recovering the approximate patterns of attribute processing strategies as well as

some key aggregate measures of interest (e. g., choice share predictions, relative importance
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and distributional characteristics of WTP).

Building upon our findings, several implications are noteworthy for marketing practition-

ers. First, we have demonstrated that ANA is plausible and applied by consumers in choice

situations and there is much to gain from employing appropriate tools to support segmen-

tation, targeting, and pricing decisions. Second, considering the general trend of decreasing

prices for eye tracking (Wedel 2018), our proposed model, retaining a rather simple way of

using this information, can be valuable for practitioners that want to engage in one-on-one

targeting.

We see several limitations and potential extensions of the employed model. First, we have

used the eye tracking information as a proxy for visual attention. However, it can instead

be modeled as an outcome of an underlying latent process to avoid potential measurement

error (which we would expect only to strengthen the effect of visual attention). Second, the

model can be extended by relaxing the assumption of stability in applied attribute processing

strategies across choice tasks. Several questions merit further investigation: whether such

switching occurs and to what extent, whether the potential biases are substantial or assum-

ing the stability of ANA strategies is acceptable. Last, the model can be easily extended

to incorporate, e. g., alternative specifications of parameter distributions (e. g., lognormal

vs. normal), and attribute-specific slopes for the effect of visual attention on attendance

probabilities.

Additionally, contrasting respondents’ self-reported (stated) ANA measures with our “re-

vealed” measure from eye tracking might be interesting. Both work well in isolation (see

Hole et al. 2013 for stated ANA and this paper for visual attention from eye tracking), but

the question remains which of the measures is a more appropriate indicator of ANA. Fur-

thermore, Balcombe et al. (2015), using a different modeling framework, suggest that these

two measures might be complementary. Due to the flexibility of the MEAA model, both

can be simultaneously incorporated to test related hypotheses, and we leave this for future

research.
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Utility function Decision rule

Class 1: Uijt1 = β1
i · x1

ijt + β2
i · x2

ijt + β3
i · x3

ijt + ǫijt Full compensatory

Class 2: Uijt2 = β2
i · x2

ijt + β3
i · x3

ijt + ǫijt Semi-compensatory

Class 3: Uijt3 = β1
i · x1

ijt + β3
i · x3

ijt + ǫijt Semi-compensatory

Class 4: Uijt4 = β1
i · x1

ijt + β2
i · x2

ijt + ǫijt Semi-compensatory

Class 5: Uijt5 = β1
i · x1

ijt + ǫijt Lexicographic

Class 6: Uijt6 = β2
i · x2

ijt + ǫijt Lexicographic

Class 7: Uijt7 = β3
i · x3

ijt + ǫijt Lexicographic

Class 8: Uijt8 = ǫijt Random choice

The upper notation indicates the preference parameter for a particular attribute (variable): βk

i

Table 1: Class characteristics in case of 3 attributes

Study Coffee Makers Laptops

Number of respondents: I = 59 I = 70
Number of choice tasks: T = 12 T = 20
Number of alternatives: J = 3 + none J = 4
Number of attributes: A = 6 A = 6
Attributes: brand, material, system speed, size, capacity

design, price, price per cup support, antivirus, price
Number of potential classes: C = 64 C = 64
Choice task design: Orthogonal and level balanced Random design
Randomization across subjects: Yes No
Incentive compatibility: No Yes
Source: Meißner et al. (2016) Yang et al. (2015)

Table 2: Description of datasets
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MNL EAA EAA(va) MMNL MEAA MEAA(va)

Utility Parameters

None: b -0.19 (0.11) 0.33 (0.13) 0.30 (0.14) -2.46 (0.87) -2.53 (0.96) -2.64 (0.91)
σ 4.39 (0.78) 4.48 (0.85) 4.67 (0.81)

Braun: b 0.06 (0.09) 1.51 (0.49) 0.60 (0.50) 0.08 (0.14) 0.52 (0.47) 0.43 (0.32)
σ 0.39 (0.16) 0.55 (0.37) 0.63 (0.33)

Krups: b 0.01 (0.09) 0.69 (0.49) 0.38 (0.38) -0.02 (0.12) 0.15 (0.39) 0.33 (0.41)
σ 0.05 (0.26) 0.88 (0.45) 0.62 (0.33)

Philips: b 0.23 (0.09) 0.99 (0.54) 0.62 (0.33) 0.38 (0.12) 0.90 (0.34) 0.68 (0.28)
σ 0.26 (0.18) 0.16 (0.48) 0.71 (0.35)

Stainless Steel:b 0.51 (0.07) 1.52 (0.19) 1.43 (0.19) 0.78 (0.11) 1.87 (0.30) 1.70 (0.22)
σ 0.40 (0.13) 0.36 (0.26) 0.30 (0.19)

Plastic: b -0.51 (0.08) -1.67 (0.25) -1.51 (0.24) -0.80 (0.12) -2.01 (0.35) -1.78 (0.27)
σ 0.41 (0.16) 0.60 (0.40) 0.53 (0.27)

Pad: b 0.22 (0.05) 1.73 (0.24) 1.50 (0.20) 0.33 (0.12) 1.99 (0.28) 1.90 (0.28)
σ 0.79 (0.14) 0.16 (1.07) 0.51 (0.40)

Design A: b -0.29 (0.09) -2.20 (0.75) -1.81 (0.53) -0.48 (0.13) -2.61 (1.09) -2.06 (0.58)
σ 0.01 (0.21) 0.02 (0.84) 0.05 (0.48)

Design B: b 0.03 (0.09) 0.32 (0.37) 0.25 (0.34) 0.05 (0.12) 0.31 (0.43) 0.23 (0.36)
σ 0.09 (0.17) 0.17 (0.53) 0.19 (0.44)

Design C: b 0.13 (0.09) 1.40 (0.41) 1.26 (0.30) 0.24 (0.12) 1.73 (0.72) 1.43 (0.35)
σ 0.20 (0.28) 0.47 (0.52) 0.07 (0.40)

Price per cup: b -0.80 (0.07) -1.76 (0.18) -1.74 (0.16) -1.34 (0.16) -1.77 (0.28) -1.90 (0.22)
σ 0.83 (0.14) 0.86 (0.20) 0.64 (0.19)

Price: b -2.12 (0.17) -3.72 (0.36) -3.72 (0.33) -3.45 (0.39) -4.19 (0.48) -4.13 (0.43)
σ 1.78 (0.34) 1.61 (0.43) 1.59 (0.40)

Class Parameters

Brand -2.08 (0.69) -0.08 (1.46) -0.54 (0.82) 1.59 (1.48)
Material -0.15 (0.35) 0.28 (0.52) -0.03 (0.36) 0.86 (0.60)
System -1.42 (0.38) -1.84 (0.47) -1.01 (0.33) -2.02 (0.64)
Design -1.76 (0.58) -2.05 (0.66) -1.72 (0.60) -2.64 (0.87)

Price per cup 0.57 (0.37) -0.13 (0.48) 2.08 (1.29) 0.72 (0.71)
Price 1.60 (0.53) 1.03 (0.58)

Visual attention 1.94 (0.36) 2.88 (0.66)

In Sample Fit

LL -745.11 -688.89 -656.50 -600.81 -578.33 -540.66
BIC 1568.98 1495.90 1437.68 1359.11 1346.96 1278.19

ρ2 0.24 0.30 0.33 0.39 0.41 0.45
Out-of-Sample Fit

Hitrate 0.55 0.57 0.60 0.64 0.67 0.68
Hitprob 0.43 0.49 0.51 0.59 0.62 0.63

Note: standard errors are indicated in parentheses.

Table 3: Parameters and fit measures of estimated models for coffee makers
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MNL EAA EAA(va) MMNL MEAA MEAA(va)

Utility Parameters

1.6 Ghz: b -1.69 (0.11) -2.26 (0.19) -2.72 (0.20) -2.71 (0.21) -3.16 (0.26) -3.00 (0.24)
σ 1.15 (0.15) 0.89 (0.15) 1.08 (0.16)

1.9 Ghz: b -0.69 (0.09) -0.91 (0.12) -1.14 (0.13) -1.17 (0.13) -1.46 (0.16) -1.36 (0.16)
σ 0.24 (0.16) 0.56 (0.15) 0.07 (0.34)

2.7 Ghz: b 0.98 (0.09) 1.19 (0.12) 1.45 (0.13) 1.62 (0.13) 1.84 (0.16) 1.73 (0.15)
σ 0.39 (0.12) 0.01 (0.23) 0.24 (0.18)

26 cm: b -0.31 (0.06) -1.68 (0.24) -2.04 (0.24) -0.44 (0.14) -0.38 (0.22) -0.07 (0.28)
σ 1.34 (0.16) 2.25 (0.33) 2.69 (0.40)

35.6 cm: b 0.22 (0.08) 0.11 (0.17) 0.23 (0.18) 0.29 (0.13) 0.76 (0.23) 0.74 (0.22)
σ 0.73 (0.12) 0.84 (0.14) 0.97 (0.16)

40 cm: b -0.03 (0.09) 0.41 (0.19) 0.52 (0.22) 0.00 (0.12) 0.13 (0.20) 0.06 (0.20)
σ 0.13 (0.16) 0.21 (0.25) 0.51 (0.27)

160 GB: b -1.16 (0.10) -1.99 (0.19) -2.11 (0.19) -1.82 (0.16) -2.48 (0.26) -2.40 (0.24)
σ 0.69 (0.11) 0.56 (0.17) 0.43 (0.17)

320 GB: b 0.05 (0.08) 0.23 (0.12) 0.15 (0.12) 0.05 (0.12) 0.08 (0.14) 0.05 (0.14)
σ 0.06 (0.13) 0.07 (0.24) 0.33 (0.13)

500 GB: b 0.61 (0.08) 1.00 (0.13) 1.12 (0.11) 0.99 (0.11) 1.25 (0.14) 1.22 (0.14)
σ 0.07 (0.10) 0.00 (0.12) 0.01 (0.10)

1 year support: b -0.15 (0.10) 0.49 (0.26) 0.78 (0.37) -0.29 (0.13) -0.27 (0.13) -0.24 (0.12)
σ 0.17 (0.13) 0.27 (0.13) 0.30 (0.13)

2 year support: b 0.17 (0.08) 0.54 (0.27) 0.37 (0.42) 0.23 (0.11) 0.15 (0.11) 0.14 (0.11)
σ 0.29 (0.11) 0.16 (0.16) 0.02 (0.19)

3 year support: b 0.03 (0.07) -0.18 (0.22) -0.24 (0.36) 0.06 (0.10) 0.05 (0.10) -0.02 (0.10)
σ 0.03 (0.09) 0.01 (0.12) 0.00 (0.12)

30 days antivirus: b -0.01 (0.06) -3.28 (0.55) -3.29 (0.54) -0.05 (0.09) -3.56 (0.81) -3.60 (0.67)
σ 0.36 (0.11) 0.99 (0.97) 0.51 (0.73)

1 year antivirus: b -0.10 (0.09) 0.25 (0.33) 0.24 (0.33) -0.18 (0.12) 0.05 (0.45) 0.00 (0.39)
σ 0.12 (0.10) 0.19 (0.48) 0.30 (0.51)

2 year antivirus: b 0.19 (0.09) 1.95 (0.41) 1.81 (0.38) 0.29 (0.13) 2.07 (0.51) 1.99 (0.47)
σ 0.21 (0.13) 0.22 (0.59) 0.30 (0.38)

Price: b -0.36 (0.03) -0.98 (0.06) -0.95 (0.07) -0.56 (0.07) -0.76 (0.11) -1.08 (0.12)
σ 0.95 (0.10) 0.74 (0.07) 0.66 (0.08)

Class Parameters

Speed 2.21 (0.77) -1.28 (0.50) 2.65 (0.79) -0.83 (1.01)
Size -0.89 (0.40) -2.78 (0.49) 0.36 (0.45) -2.74 (0.74)

Capacity 0.82 (0.41) 0.44 (0.37) 1.28 (0.49) 1.16 (0.56)
Support -1.37 (0.77) 0.08 (1.28)

Antivirus -2.57 (0.49) -0.70 (0.56) -2.47 (0.53) 0.72 (0.79)
Price -0.18 (0.26) -0.52 (0.36) 2.31 (2.20) 1.39 (0.60)

Visual attention 2.34 (0.35) 4.79 (0.84)

In Sample Fit

LL -1415.82 -1199.59 -1164.76 -1111.62 -1067.89 -1020.64
BIC 2947.56 2558.56 2496.14 2455.05 2403.81 2316.56

ρ2 0.27 0.38 0.40 0.43 0.45 0.47
Out-of-Sample Fit

Hitrate 0.56 0.61 0.63 0.70 0.70 0.70
Hitprob 0.43 0.54 0.55 0.62 0.64 0.64

Note: standard errors are indicated in parentheses.

Table 4: Parameters and fit measures of estimated models for laptops
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across all across individuals
individuals with attribute

attendance

MMNL MEAA MEAA(va) MEAA MEAA(va)

Coffee makers:

Brand 9.2% 6.8% 8.0% 23.7% 21.5%
Material 16.6% 16.3% 15.9% 32.0% 30.2%
System 10.5% 8.1% 8.8% 30.0% 30.5%
Design 7.8% 3.8% 4.4% 32.4% 32.2%

Price per cup 25.1% 28.5% 25.7% 30.6% 35.3%
Price 30.8% 36.4% 37.3% 36.4% 37.3%

Laptops:

Speed 35.4% 37.9% 39.9% 39.6% 43.0%
Size 15.0% 13.6% 14.6% 25.7% 30.1%

Capacity 19.9% 19.6% 18.4% 24.9% 27.5%
Support 4.0% 3.5% 3.4% 3.5% 3.4%

Antivirus 4.2% 2.2% 2.7% 30.4% 37.8%
Price 21.5% 23.2% 21.0% 23.2% 34.9%

Table 5: Average relative importance of attributes

across all across individuals
individuals with attribute

attendance

MMNL MEAA MEAA(va) MEAA MEAA(va)

Brand
Braun vs. Severin 28.98 20.99 21.51 72.83 57.67
Krups vs. Severin 22.10 18.98 20.45 65.87 54.83

Philips vs. Severin 43.50 23.00 22.73 79.83 60.94

Material
Stainless Steel vs. Aluminum 55.42 23.61 25.04 46.44 47.66

Plastic vs. Aluminum -25.42 -27.63 -24.84 -54.33 -47.27

System
Pad vs. Capsule 28.81 29.79 30.25 109.85 105.00

Design
A vs. D -33.56 -10.40 -9.97 -87.61 -73.50
B vs. D -7.68 -0.96 -0.84 -8.10 -6.17
C vs. D 0.54 3.88 4.11 32.67 30.30

Table 6: Average willingness-to-pay for coffee makers
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Figure 1: The main and restricted models

Figure 2: Attribute attendance probabilities
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Figure 3: Probability of attending a certain number of attributes

Note: points represent the mean visual attention for a given attribute.

Figure 4: Effect of visual attention on attribute attendance probability
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Figure 5: Class allocation based on MEAA models for selected individuals in the coffee
makers study
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Figure 6: Cumulative willingness-to-pay distribution of selected attribute level comparisons
for coffee makers
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