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In a symmetric repeated game with standard preferences, there are no gains from in-
tertemporal trade. In fact, under a suitable normalization of utility, the payoff set in the
repeated game is identical to that in the stage game. We show that this conclusion may
no longer be true if preferences are recursive and stationary, but not time separable. If
so, the players’ rates of time preference are no longer fixed, but may vary endogenously,
depending on what transpires in the course of the game. This creates opportunities for in-
tertemporal trade, giving rise to new and interesting dynamics. For example, the efficient
and symmetric outcome of a repeated prisoner’s dilemma may be to take turns defecting,
even though the efficient and symmetric outcome of the stage game is to cooperate. A
folk theorem shows that such dynamics can be sustained in equilibrium if the players are
sufficiently patient.
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1 Introduction

In symmetric repeated games with standard preferences, there are no gains from in-
tertemporal trade. In fact, under a suitable normalization of utility, the payoff set in
the repeated game is identical to that in the stage game. This conclusion rests on two
premises. One is the symmetry of the game, which, among other things, requires that
the players’ rates of time preference be identical. The second premise is the assumption
of time separable utility, which implies that rates of time preference are fixed and unaf-
fected by what transpires in the course of the game. If utility is stationary and recursive,
but not time separable, the latter is no longer true. Rates of time preference may vary
endogenously, creating opportunities for intertemporal trade. This paper investigates the
conditions under which endogenous discounting gives rise to intertemporal trade, the
forms such trade could take, and whether it can be sustained in strategic settings with no
commitment.

More precisely, we assume that players have intertemporal preferences of the form
studied in Uzawa [28] and Epstein [9], with the discounted sum of payoffs satisfying the
recursion:

vi(a0, a1, ...) = gi(a0) + βi(a0)vi(a1, a2, ...). (1)

Above, gi(a) is player i’s stage payoff from an action profile a and βi(a) is the player’s
discount factor as a function of a. Note that if the functions βi : A → (0, 1) are constant,
one obtains the standard model with exogenous, but potentially unequal, rates of time
preference.

The preferences in (1) provide a simple way to capture two assumptions that have
been central to the study of endogenous discounting.1 Say that player i exhibits decreas-
ing marginal impatience (DMI) if 1 − βi(a) decreases the more desirable he finds the
constant path (a, a, ...). Fisher et al. [10, p.72] was an early proponent of this assumption,
noting that the needs of the present may bear more heavily on a person whose consump-
tion is low. Friedman [11, p.30], on the other hand, noted that DMI leads to “disequilib-
rium behavior” and advocated the polar case of increasing marginal impatience (IMI).
Later, Lucas and Stokey [17] used IMI in a general equilibrium growth model and showed
that it insures the existence and stability of a steady state with a nontrivial distribution
of capital. Since then, IMI has become a staple in the growth literature, where, following

1Chew and Epstein [8] show that the representation in (1) is implied whenever preferences are recursive,
stationary, and exhibit indifference to the timing of resolution of uncertainty. It is in this sense that the
model is simple: it allows us to focus on the effects of endogenous discounting, while abstracting from other
implications, such as attitudes toward the timing of resolution of uncertainty, that come with relaxations of
separability.
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Lucas and Stokey [17, p.168], it can be roughly interpreted as “diminishing returns to the
accumulation of wealth.”

We do not take sides in the ongoing debate which assumption is a more appropriate
restriction on behavior. Instead, we study each case in turn, characterizing fully the con-
ditions under which gains from intertemporal trade exist and giving sufficient conditions
under which such trade can be sustained in equilibrium.

1.1 IMI and Intertemporal Trade

Intuitively, an intertemporal trade happens when an impatient player “borrows” from a
more patient counterpart and then “repays the debt” in a later period. Note, in particular,
that an intertemporal trade is attained by means of a non-constant play path (a0, a1, ...). If
such a path is not Pareto dominated by any constant path (a, a, ...), or a one-time random-
ization among constant paths, we say that there is a gain from intertemporal trade. As
remarked previously, symmetric games with standard preferences admit no such gains.

Assuming IMI, our first contribution is to show that gains from intertemporal trade
exist in a broad class of games. Namely, it is necessary and sufficient that the game fea-
ture some conflict of interest, by which we mean that no single play path simultaneously
maximizes the utility of every player. Interestingly, the proof exploits a well-known be-
havioral implication of IMI, known as correlation aversion, according to which the play-
ers dislike positive autocorrelation in the intertemporal distribution of risk. Such behav-
ior has been the subject of a number of recent decision-theoretic as well as experimental
studies.2 To our knowledge, we are the first to study its implications in the context of a
strategic interaction.

In games with no commitment, “the lenders” need credible punishments to insure that
“the borrowers pay back.” Therefore, our second contribution is to obtain a novel folk
theorem for games with endogenous discounting. The result, which covers both IMI and
DMI, generalizes a folk theorem of Abreu et al. [1] and insures that gains from intertem-
poral trade can arise in a subgame perfect equilbrium (SPE), whenever the players are
sufficiently patient.

Focusing on the prisoner’s dilemma, our third contribution is to characterize the play
paths that are efficient (first-best). The goal is to showcase some of the novel dynamics
brought about by intertemporal trade. Consider Figure 1(a). The inner rectangle is the
convex hull of payoffs attainable by constant play paths (a, a, ...). The feasible set is strictly
larger, however, as the Pareto frontier shifts out to incorporate gains from intertemporal

2Among others, see Bommier et al. [5], Miao and Zhong [18], Andersen et al. [3].
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Figure 1: Pareto frontier in a repeated prisoner’s dilemma. As usual, C stands for “cooperate”
and D for “defect”. Extreme points are associated with the play paths that generate them. The
dash-dotted lines in Figure 1(b) are independent of the level of patience and give a least-upper
bound on the set of SPE payoffs attainable at any level of patience.

trade. Note, in particular, that (CC, CC, ...) need not be efficient in the repeated game,
even though it is efficient in the space of constant paths. Instead, the sum of the players’
utilities is maximized when they take turns defecting, a form of behavior which we call
intertemporal cooperation.

Note as well that eventually every efficient path, except the extremes in which one
player defects forever, becomes one of intertemporal cooperation. Thus, over time, the
continuation utilities (v1, v2) induced by such a path converge away from the corners of
the Pareto frontier toward an equal division of surplus. From a normative standpoint, this
finding presents a curious case in which efficiency and fairness considerations align (at
least asymptotically). There are also implications for “the provision of incentives.” Recall
the usual statement of a folk theorem, according to which if the players are sufficiently
patient, a play path can arise in a SPE if and only if it is sequentially individually rational
(SIR), which means that the players’ security levels are cleared at each point in time.
Since efficient paths converge to a symmetric outcome, we see that the SIR constraints
become slack over time. This conclusion differs from other studies which we preview
momentarily and which typically find that intertemporal trade pushes some players to
their security levels.
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1.2 DMI and Immiseration

Under DMI, gains from intertemporal trade exist under slightly more stringent condi-
tions. As before, the game must feature conflict of interest, but curiously it should not
be the prisoner’s dilemma. The nuances of this finding are discussed carefully in Sec-
tion 6. Here, we focus on another result which presents a more striking contrast between
the case of IMI and DMI. Namely, under DMI, the first-best level of intertemporal trade
cannot be sustained in a SPE under any level of patience.3 This finding builds on a liter-
ature of so-called “immiseration results,” but as we are about to explain the endogeneity
of discounting comes with a twist. The earliest antecedent is a conjecture by Ramsey
[24] who argued that in a competitive economy with standard preferences, but unequal
discount factors, the most patient agents would eventually possess all the capital. This
conjecture, confirmed by Rader [23] and Becker [4], rests on the efficiency of competitive
markets which mandates that impatient agents borrow to consume early on, while their
more patient counterparts lend, deferring their own consumption. More recently, Lehrer
and Pauzner [16] considered how Ramsey’s conjecture may play out in a strategic set-
ting. Looking at a repeated prisoner’s dilemma, they identify a stark tension between
the requirements of efficiency and SIR. In parallel with Ramsey [24], efficiency once again
requires that the utility of the more patient player be eventually maximized. But in the
prisoner’s dilemma, this is possible only if the impatient player is pushed below his secu-
rity level, violating SIR. Thus, first-best outcomes cannot be sustained in a SPE, no matter
how patient the players.

Suppose now that marginal impatience is decreasing rather than constant. If at some
point in the game player i’s continuation utility is higher than j’s, i must be more pa-
tient. If the play path is efficient, player i must then be rewarded relatively more in the
future, which, under DMI, insures that i would sustain the higher level of patience as the
game progresses. In this way, DMI and efficiency combine to produce a self-enforcing
dynamic that once again pushes one of the players to their most preferred point on the
Pareto frontier. What makes our game different, however, is that because the players are
a priori symmetric, this dynamic is not unavoidable. If the players coordinate on a play
path along which they attain symmetric outcomes, their rates of time preference remain
identical and Ramsey’s “immiseration dynamic” is never triggered. In the prisoner’s
dilemma, this means that (CC, CC, ...) is the only first best outcome that can be sustained
in a SPE.4 In sum, the endogeneity of discounting means that Ramsey’s immiseration

3Some gains from intertemporal trade, though not the first-best level, can still be sustained. See Theorem
6.2 in Section 6.
4A suitable generalization applies to all two-player symmetric games. See Theorem 6.1. Unlike Figure 1(a),
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dynamic, rather than destroying all first-best equilibria, becomes a form of equilibrium
selection.

At this point, one may wonder whether, as the players become increasingly patient,
any first-best outcome can be approximated by equilibrium outcomes. Our final result
gives an example in which this is not the case: in the prisoner’s dilemma, SPE outcomes,
other than (CC, CC, ...), remain bounded away from the first best frontier even as dis-
count factors converge to 1. See Figure 1(b). Though the formal analysis is limited to the
prisoner’s dilemma, some of the ideas behind it are more general and reveal additional
and interesting ways in which DMI can make a difference in a strategic context. Details
are provided in Section 6.

2 The Model

There is a finite set of players: I := {1, 2, ..., n}. In the stage game, player i can choose a
pure action ai in a finite, nonsingleton set Ai. Let A := ×i∈I Ai. Player i’s mixed actions
are denoted by αi ∈ ∆(Ai). In the repeated game, time is discrete and indexed by t ∈
{0, 1, 2, ...} =: T . To focus on the effects of endogenous discounting, we keep things as
simple as possible and assume perfect monitoring as well as the availability of public
randomization. We also assume that deviations from mixed actions are detectable.5 A
complete history thus consists of all past mixed actions, the realized pure action profiles,
and the past realizations of the public signal. Given a pure play path a = (a0, a1, ...) ∈ A∞

and a time period t > 0, we let ta denote the continuation path (at, at+1, ...). To describe
player i’s preferences, we first define a utility function vi : A∞ → R on the space of pure
paths by letting

vi(a) = gi(a0) + βi(a0)gi(a1) + βi(a0)βi(a1)gi(a2) + ... = gi(a0) + βi(a0)vi(1a). (2)

Above, gi : A → R is i’s stage payoff and βi : A → (0, 1) is his discount factor. To define
preferences over random paths, let Σi be the set of behavioral strategies for player i ∈ I in
the repeated game. A strategy profile σ ∈ Σ = ×i∈IΣi induces a probability distribution
on A∞ in the usual way. Abusing notation, we denote the induced measure by σ as well
and let vi(σ) := Eσvi(a). We call the preferences thus constructed Uzawa-Epstein and

note as well that, under DMI, the first-best outcome in the space of constant play paths remains first-best in
the space of all paths.
5Except for preferences, our setting is identical to that of Fudenberg and Maskin [12], Abreu et al. [1], and
Chen and Takahashi [6]. Note however that the observability of mixed actions is first assumed and then
relaxed in the folk theorems of these papers. We conjecture that the same is possible here, but since the
proof of our folk theorem is already exceedingly long and since the folk theorem is not our main focus, we
leave that step for future work.
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identify them with the pair (gi, βi).
A repeated game with endogenous discounting is thus a tuple (A, (gi, βi)i∈I). The

game is symmetric if Ai = Aj for all i, j ∈ I and the functions g : a 7→ (g1(a), ..., gn(a))
and β : a 7→ (β1(a), ..., βn(a)) are both symmetric. When defining minmax levels, we
assume, as is standard, that the players cannot use correlated strategies. In particular, let
Σ∗i ⊂ Σi and Σ∗ ⊂ Σ be the strategy spaces in which the players randomize independently
of one another, that is, the public randomization device is not used. Player i’s security
level or minmax payoff is the number vi := minσ−i∈×k 6=iΣ∗k

maxσi∈Σ∗i
vi(σi, σ−i). A minmax

strategy against player i is a strategy profile σ−i ∈ ×k 6=iΣ∗k that attains the minimum in
the definition of vi.6

We use v to denote the function σ 7→ (v1(σ), ..., vn(σ)) or a single point in its image. We
use vmax

i to denote i’s maximum feasible payoff in the repeated game. It is known that for
each i, there is some a ∈ A such that vi(a, a, ...) = vmax

i . See, e.g., Kochov [13, Lemma 3.4].
Finally, we assume that no player is indifferent among all strategies. This is true if and
only if for every i, there are action profiles a′, a′′ ∈ A such that vi(a′′, a′′, ...) > vi(a′, a′, ...)
or, equivalently, if the function a 7→ gi(a)/(1− βi(a)) is not constant.

3 Security Levels and Patience

In subsequent sections we ask whether gains from intertemporal trade exists and can
be sustained in a SPE as the players become sufficiently patient. To answer the latter
question, we first need to specify how discount factors approach 1. As we now explain,
this requires care when discounting is endogenous. To set the stage, let αcon denote the
constant strategy such that the mixed action α ∈ ∆(A) is played after every history and
consider the lemma:

Lemma 3.1. For each i, the minmax strategy against player i and i’s best response can be chosen
to be constant.

Given α ∈ ∆(A), let gi(α) := ∑a∈A gi(a)α(a) and βi(α) := ∑a∈A βi(a)α(a), where α(a)
is the probability assigned to a ∈ A by α, and note that

vi(α
con) = Eα[gi(a) + βi(a)vi(α

con)] = gi(α) + βi(α)vi(α
con) ⇔ vi(α

con) =
gi(α)

1− βi(α)
.

As is well-known, note that if discounting is exogenous, that is, if the function βi is con-
stant, player i’s ranking of constant strategies is independent of βi. In fact, vi(α

con) >

6Lemma 3.1 shows that if preferences are standard, our definition of minmax values reduces to the minmax
values in the stage game. Section 4 explains why we need the above definition.
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vi(α̂
con) if and only if gi(α) > gi(α̂). It follows that minmax strategies as well as the play-

ers’ security levels can be chosen independently of the level of patience. In particular,
one can raise the level of patience without affecting what constitutes a punishment in the
game. Thus, for high enough levels of patience, the threat of future punishments would
eventually outweigh the short-term gains from a deviation, an argument that is at the
heart of all folk theorems.

If discounting is endogenous, however, we see that punishments and security levels
may vary with the rate of time preference. If, in particular, security levels increase with
patience, so that punishments become less severe, it is a priori less clear that raising the
level of patience would do anything to deter short-term deviations. Luckily, Lemma 3.1
suggests a solution: minmax strategies would not change if we could restrict the way
discount factors approach 1 so that the ranking of constant strategies does not change. To
see how this can be done, let (A, (gi, βi)i∈I) be a repeated game and for every λ ∈ [0, 1),
let

βiλ := λ + (1− λ)βi. (3)

By construction, λ > λ′ if and only if βiλ � βiλ′ ,7 which means that we can interpret
λ as a measure of the players’ patience. Given λ, we can also scale the stage payoffs by
(1 − λ). As in the case of standard preferences, in which one multiplies by “(1 − β),”
this normalization insures that discounted sums do not blow up as the players become
increasingly patient. Putting everything together, each λ gives rise to a repeated game
Γ(λ) = (A, (1− λ)gi, βiλ). Letting viλ : Σ → R be i’s utility function in Γ(λ), we also see
that

viλ(α
con) =

gi(α)

1− βi(α)
.

As desired, the ranking of constant strategies, in fact the utilities of such strategies, is
independent of λ. By Lemma 3.1, so are the minmax strategies against each player and
their respective security levels. Eyeing a folk theorem, subsequent sections would thus
be concerned with the equilibria of Γ(λ) as λ ↗ 1. We would also write Γ to mean the
family of games {Γ(λ) : λ ∈ [0, 1)} as well as the single game (A, (gi, βi)i∈I). To reduce
notation and highlight that the ranking of constant strategies is independent of λ, we also
write vi(α) in place of viλ(α

con).8

Another advantage of letting discount factors approach 1 in the above manner is cap-

7By βiλ � βiλ′ , we mean that βiλ(a) > βiλ′(a) for every a ∈ A.
8Note that in our notation, βi0 = βi. Similarly, both Γ(0) and Γ could designate the single game
(A, (gi, βi)i∈I). This overlap in notation makes it possible to switch seamlessly between results concern-
ing a single game and those concerning a family of games.
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tured by the equality:

1− βiλ(a)
1− β jλ(a′)

=
1− βi(a)
1− β j(a′)

∀λ ∈ [0, 1), i, j ∈ I, a, a′ ∈ A. (4)

Since the fraction on the right-hand side is independent of λ, we see that the relative
impatiences across players and action profiles are independent of λ. Keeping fixed the
relative (im)patiences across players is a requirement familiar from the literature on re-
peated games with fixed but heterogeneous discount rates. See Chen and Takahashi [6],
Lehrer and Pauzner [16], and Sugaya [26], among others. On the other hand, keeping
fixed the relative impatiences across action profiles is a requirement specific to the study of
endogenous discounting. In the context of this paper, it insures that the assumptions of
increasing and decreasing marginal impatience, which we study in Sections 5 and 6 re-
spectively, are preserved as we vary λ. This turns out to be especially important since the
choice of assumption matters critically for first-best outcomes as well as for equilibrium
behavior.9

4 A Folk Theorem

Subgame perfections requires that the threat of future punishments be credible. Follow-
ing Fudenberg and Maskin [12], this can be done by finding strategies that punish a player
who deviates, while simultaneously rewarding the players who are supposed to carry out
the punishment. Abreu et al. [1] show that such asymmetric treatment is possible under a
general condition they call non-equivalent utilities (NEU). It requires that no two players
have identical preferences in the stage game, i.e, that for every i, j, there are α, α′ ∈ ∆(A)

such that gi(α) > gi(α
′), but gj(α) ≤ gj(α

′).10 A subtle issue arises in the case of endoge-
nous discounting in that the stage payoffs gi do not have a well-defined ordinal meaning
in terms of the repeated game. To see why, recall that in consumer choice theory one typ-
ically speaks of the utility of a bundle and that, unless utility is additively separable, it is
hard to speak of the utility of a single good. Thinking of a play path as a bundle of stage
outcomes, we see that an analogous problem arises whenever intertemporal utility is not

9It is not difficult to see that (3) and (4) are in fact equivalent restrictions on a family of discount factors. Note
as well that our convergence path is sufficient, but not necessary, for preserving the ranking of constant
strategies and the assumptions of IMI and DMI. In this respect, Theorem 3 in Sugaya [26] suggests that
a more general convergence path with the latter properties would not affect the limit set of equilibrium
payoffs as long as (4) holds in the limit as βi ↗ 1. However, to formally extend Sugaya’s result to the case
of endogenous discounting, one needs to normalize payoffs so they do not blow up as βi ↗ 1. We found
such a normalization for the convergence path we selected, but not more generally.

10NEU generalizes the stronger assumption of Fudenberg and Maskin [12] that the set {g(α) : α ∈ ∆(A)} ⊂
Rn have full dimension.
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time additive, which is precisely how Uzawa-Epstein preferences generalize the standard
model. The next lemma, due to Epstein [9], makes this clear.

Lemma 4.1. Two pairs (gi, βi), (g′i, β′i) induce the same preference relation on ∆(A∞) if and only
if β′i = βi and there are constants γ > 0 and θ such that g′i = γgi + θ(1− βi). In particular, if
θ 6= 0, the functions gi, g′i need not be monotone transformations of one another.

We deal with the preceding problem by stating all results and assumptions that con-
cern stage payoffs in terms of the players’ preferences over constant play paths. This
difference is immaterial in the standard model in which gi(α) ≥ gi(α̂) if and only if
vi(α) ≥ vi(α̂). In sum, we can reformulate the NEU condition of Abreu et al. [1] as
follows.

Definition 4.1. A repeated game (A, (gi, βi)i) satisfies NEU if no two players have identical
preferences on the space Σcon of constant strategies.

The next lemma, due to Chew [7], characterizes NEU in terms of the utility represen-
tations (gi, βi). The lemma also shows that the condition is generic.11

Lemma 4.2. (gi, βi) and (gj, β j) induce the same preference relation on the space Σcon of constant
strategies if and only if there are constants r, q, s, t such that qt > rs and gj = qgi + r(1− βi)

and β j = 1− sgi − t(1− βi).

For a path α = (α0, α1, ...) ∈ (∆A)∞ to arise in a SPE, it is necessary that at each point
in time the continuation utility of every player exceeds their security level, i.e., that the
path be SIR. As is typical, our folk theorem shows that SIR is also sufficient provided that
the players are sufficiently patient. To state the result formally, normalize utilities so that
the security level of every player is zero12 and for every ε ≥ 0 and λ, let SIRε(λ) be the
set of all ε-sequentially individually rational paths α ∈ (∆A)∞, i.e., all paths such that
viλ(tα) ≥ ε for all i, t.

Theorem 4.1. Assume NEU. For every ε > 0, there exists λ ∈ [0, 1) such that for all λ ∈ (λ, 1),
every path α ∈ SIRε(λ) can be supported in a SPE of the game Γ(λ).

Remark 4.1. NEU is not required in two-player games, where deviations can be deterred by the
threat of mutual minmaxing. The argument is analogous to that in Fudenberg and Maskin [12].

11The connection between the present setup and that of Chew [7] is explained in Appendix B.1.
12To do so, let ĝi := gi − vi(1− βi). By Lemma 4.1, the pair (ĝi, βi) induces the same preference on ∆(A∞)
as (gi, βi). By construction, each game Γ̂(λ) := (A, ((1− λ)ĝi, βiλ)i) is strategically equivalent to Γ(λ) =
(A, ((1− λ)gi, βiλ)i) and all security levels are zero.
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Despite the genericity of NEU, the next example presents an important case that is
excluded by the condition.

Example 4.1. Suppose discounting is exogenous and for every i, j, gi = gj, while βi 6= β j.
If so, all players have identical preferences on the space Σcon of constant strategies and NEU
fails. Yet, no two players have identical preferences on the space Σ of all strategies.13 The latter
implication, termed Dynamic NEU by Chen and Takahashi [6], is the most general NEU-type
condition one can formulate as it does not restrict in any way the set of strategies that can be
ranked differently. Remarkably, when discounting is exogenous, Chen and Takahashi [6] are able
to prove a folk theorem under this condition, but we could not extend their theorem to the case of
endogenous discounting.

It is interesting to note that while our NEU condition mimics that of Abreu et al. [1], the
proof of our folk theorem shares some important aspects with that of Chen and Takahashi
[6]. As usual, the main challenge is finding strategies that punish a deviation, while
giving the punishers an incentive to punish. Abreu et al. [1] construct such strategies
within the set Σcon of constant strategies by exploiting three ingredients of their setup: (i)
the availability of public randomization, which enriches the set Σcon, (ii) the fact that by
NEU the players rank this set differently, and (iii) the linearity of the mappings α 7→ vi(α),
which brings a lot of tractability to the problem. As can be seen from (2), however, that
linearity is lost when discounting is endogenous. This makes working with constant
strategies much more difficult.14 To compensate for this, our proof leverages (i) and (ii)
together with some useful intertemporal properties of the Uzawa-Epstein preferences we
study. These properties, first noted by Epstein [9], pertain to behavioral definitions of
impatience that can only be fleshed out by the use of non-constant strategies. In this
aspect, our proof resembles that of Chen and Takahashi [6], who exploit intertemporal
tradeoffs as well. The exact constructions are different however. Ours is designed to
deal with the endogeneity of discounting, while maintaining (ii). Chen and Takahashi [6]
exploit the time separability of the standard preference specification, while relaxing (ii)
completely.

13Note that if discounting is endogenous, it is possible for NEU to hold while gi = gj for every i, j. In those
cases, however, one can invoke Lemma 4.1 and re-normalize utility so that these equalities break down.

14Because of the nonlinearity of the functions α 7→ vi(α), the set of payoffs attainable by constant strategies
need not be convex, even though we assume public randomization. On the other hand, this nonlinearity
generates some interesting predictions concerning intertemporal trade. See Sections 5 and 6.
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5 Increasing Marginal Impatience

Say that a game Γ satisfies increasing marginal impatience (IMI) if for all i ∈ I and all
a, a′ ∈ A,

gi(a)
1− βi(a)

>
gi(a′)

1− βi(a′)
if and only if βi(a) < βi(a′).

In this section, we investigate whether this assumption, advocated by Friedman [11] and
made popular by Lucas and Stokey [17], leads to gains from intertemporal trade. Intu-
itively, an intertemporal trade happens when an impatient player “borrows” from a more
patient counterpart and then “repays the debt” in a later period. More generally, such
trade requires that distinct actions be taken in at least two periods. With this in mind, let
Vpc be the convex hull of {v(a) : a ∈ A} and note that in symmetric games with exoge-
nous discounting, Vpc is equal to the set of all feasible payoffs, that is, there are no gains
from intertemporal trade. In contrast, we are going to show that, under IMI, such gains
exist in games with endogenous discounting. Remarkably, this is true even in symmetric
games, as differences in discounting can emerge endogenously, in the course of the game.
Using our folk theorem, we would also show that intertemporal trade can be sustained in
a SPE.

To state our first result, let V(λ) be the set of all feasible payoffs in Γ(λ) and, once
again, assume that utilities are normalized so that all security levels are zero, a normal-
ization we maintain throughout the rest of the paper. Given sets A, B ⊂ Rm, write B < A
if B ⊂ A 6⊂ {v ∈ Rm : ∃v′ ∈ B s.t. v′ ≥ v}, that is, if A is a superset of B and A contains at
least one element that is not dominated by an element of B. Also, write v > B if there is
no v′ ∈ B such that v′ ≥ v, but v ≥ v′ for some v′ ∈ B. We want to show that Vpc < V(λ).
Clearly, a necessary condition is that no action profile a ∈ A simultaneously maximizes
the utility of every player, i.e., there is no a ∈ A such that vi(a) = vmax

i for every i.15

Our next result shows that this condition, which we call conflict of interest (CI), is also
sufficient.

Theorem 5.1. Γ satisfies CI if and only if Vpc < V(λ) for all λ. If CI and NEU hold and
Vpc contains some payoff v � 0, then there is a feasible payoff v̂ such that v̂ > Vpc and for all
sufficiently high λ, v̂ can arise in a SPE.

The proof of Theorem 5.1 exploits an important behavioral implication of IMI known
as correlation aversion. Details are provided in the next lemma due to Epstein [9]. To

15CI is equivalent to the requirement that no single play path, constant or not, maximizes the utility of every
player. This is because a non-constant path can attain vmax

i , for some i, if and only if (at, at, ...) attains vmax
i

for every t.
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v2

v1
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v(a′)

v(ρa + (1− ρ)a′)

(a) Theorem 5.1

v2

v1

v(a)

v(a′)

v̂λ

η

(b) Theorem 5.2

Figure 2: In each figure the solid curve is the Pareto frontier of the set Vpc, while the dashed curve
shows the Pareto improvements obtained in Theorem 5.1. On the right, we show that mixing the
Pareto improvements of Theorem 5.1 need not give a Pareto improvement of the point v(a), which
is extreme in Vpc. A different construction is thus needed to obtain the Pareto improvement v̂λ.

state it, let ∑m
k=1 $kak be the mixed action profile α ∈ ∆(A) such that ak ∈ A is played with

probability $k > 0.

Lemma 5.1. IMI holds if and only if for every mixed action ∑m
k=1 $kak and every i, we have

∑m
k=1 $kvi(ak) ≤ vi(∑m

k=1 $kak). In addition, the inequality is strict if and only if vi(ak) 6= vi(al)

for some k, l ≤ m.

Proof. For m = 2, the posited inequality can be rewritten as (vi(a1) − vi(a2))(βi(a1) −
βi(a2)) ≤ 0, which is equivalent to IMI. That IMI implies the desired inequality for m > 2
follows from a simple inductive argument.

To understand the lemma, let v(α) = (v1(α), ..., vn(α)) and note that a payoff $v(a) +
(1− $)v(a′) arises if the players randomize once and, depending on the outcome, play
a forever after or a′ forever after. Thus, stage play is perfectly positively correlated over
time. On the other hand, a payoff v($a+(1− $)a′) arises if the mixed action $a+(1− $)a′

is played after every history, leading to stage play that is IID over time. It is intuitive that a
player may prefer the latter scenario. Positive autocorrelation compounds the uncertainty
faced in the initial round of play so that, in particular, a bad outcome in that round is
repeated forever after.16

Given Lemma 5.1, the proof of Theorem 5.1 is completed by showing that, under CI,
the Pareto frontier of Vpc has a face F that is perpendicular to some strictly positive direc-
tion η � 0 and is not a singleton. This means that moving along the face F benefits some

16Experimental evidence supports this intuition. See Miao and Zhong [18] and Andersen et al. [3].
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player i, but hurts another player j. We then show that any point v in the relative interior
of F is Pareto dominated by a payoff v(α), where α ∈ ∆(A) randomizes among actions
a ∈ A whose payoffs v(a) are extreme points of F. Figure 2 provides an illustration.

Example 5.1 (Constant Mixed Strategies and Intertemporal Trade). At this stage, it is
important to clarify the link between the play of a constant mixed strategy αcon and intertemporal
trade. Consider Figure 2 and let α be a mixed action that randomizes between a and a′. Since
αcon induces an IID distribution in ∆(A∞), the realized pure play path (a0, a1, ...) would be non-
constant almost surely. Moreover, the players feel differently about a and a′ and, hence, experience
different levels of patience along the path. Gains from intertemporal trade are thus factored into
the utilities vi(α). In fact, if α = 1

2 a + 1
2 a′, it is easy to see that

vi(α) = lim
λ↗1

viλ(a, a′, a, a′, ...).

Thus, as the players become increasingly patient, there is no difference between playing the mixed
action α in each period and alternating between a and a′ deterministically. To be even more spe-
cific, recall Figure 1(a) which depicted a situation in which (CD, DC, CD, DC, ...) is a first-best
outcome of the repeated prisoner’s dilemma and, hence, specifies an optimal pattern of intertem-
poral trade. By the law of large numbers, the constant strategy αcon, where α = 1

2CD + 1
2 DC,

induces almost surely a pure play path in which the relative frequency of both CD and DC is 1
2 .

However, the realized pattern need not exactly match the repeated alternation between CD and
DC that is optimal. Because of this, v(α) would be strictly inside the Pareto frontier, even though
it factors in some gains from intertemporal trade. But as the players become infinitely patient,
the exact pattern becomes immaterial and only the relative frequencies matter. In particular, v(α)
becomes efficient.

Theorem 5.1 does not tells us whether the extreme points on the Pareto frontier of
Vpc can be dominated. We observed in Section 2 that each player’s utility is maximized
by some constant path (a, a, ...). Thus, a payoff v such that vi = vmax

i for some i is an
extreme point that cannot be dominated. The next section shows that an extreme point
v such that vi = vj for all i, j ∈ I need not be dominated either. On the other hand, our
next result shows that, generically, all other extreme points are dominated. In addition, if
these extreme points are strictly individually rational, then the Pareto improvements can
be sustained in a SPE.

Theorem 5.2. Consider a symmetric game Γ satisfying CI. Let a ∈ A be such that vmax
j > vj(a)

for all j ∈ I and for some i ∈ I, vi(a) > vj(a) for all j 6= i. Then, for every λ, there is v̂λ ∈ V(λ)

such that v̂λ � v(a). If, in addition, NEU holds and v(a) � 0, then for all sufficiently high λ,
the payoff v̂λ can arise in a SPE.

14



C D
C c, c b, d
D d, b 0, 0

Figure 3: The prisoner’s dilemma

Figure 2(b) shows that the payoff v̂λ found in Theorem 5.2 need not be a convex com-
bination of the Pareto improvements found in Theorem 5.1. The construction of v̂λ is thus
more intricate, employing strategies that are not constant.17 However, we do not know
whether the use of such strategies is necessary. More importantly, we have not yet con-
firmed whether there are feasible payoffs outside the convex hull of {v(α) : α ∈ ∆(A)}.
Letting Vc denote this convex hull, our next result shows that the answer to the latter
question is yes.

Theorem 5.3. If Γ is symmetric and satisfies CI, then Vc < V(λ) for every λ.

A final question is whether some payoffs v /∈ Vc can arise in a SPE. Though we have
not been able to answer this question at the present level of generality, there is a sufficient
condition that is arguably easy to check. Consider α ∈ ∆(A) such that (i) v(α) is on the
Pareto frontier of Vc, (ii) for some i, we have vi(α) > vk(α) and βi(α) < βk(α) for all k 6= i,
and (iii) vmax

j > vj(α) > 0 for every j. If such α exists, Lemma E23 in the appendix shows
that there are Pareto improvements v̂λ � v(α) that can arise in a SPE for all λ sufficiently
large.

In specific games, it may also be possible to compute directly the play paths that com-
prise the Pareto frontier of V(λ). Section 5.1 does so for the prisoner’s dilemma and
shows that first-best paths can be sustained in a SPE.

5.1 The Prisoner’s Dilemma

Let the action space A and the stage payoffs g1, g2 : A → R be as in Figure 3 where,
as usual, C stands for “cooperate” and D for “defect.” To define discounting, let β :
{b, 0, c, d} → (0, 1) be a function associating each possible stage payoff with a level of
patience and for each i, let βi := β ◦ gi.18 As is typical in a prisoner’s dilemma, we

17In addition, our proof of Theorem 5.2 (but not any other results) requires that the public randomization
device be able to recommend distinct mixed, as opposed to pure, actions depending on the state of nature.
We discuss this point in Appendix E.

18Defining discount factors as a function of stage payoffs rather than action profiles is w.l.o.g. in the context
of the prisoner’s dilemma. Indeed, under IMI, (5) implies that d > c > 0 > b. Under DMI, it is possible
that d = c but β1(DC) > β1(CC), in which case discount factors cannot be expressed as a function of stage
payoffs. It is easy to check however that the proof of Theorem 6.3 goes through in that case as well.
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assume that
d

1− β(d)
>

c
1− β(c)

> 0 >
b

1− β(b)
. (5)

Consistent with the discussion of Lemma 4.1, note that these inequalities are ordinal re-
strictions on preferences in the repeated game. For instance, the first one says that each
player prefers the constant path in which he defects and the other player cooperates to
the play path in which both players cooperate. We also assume that

c
1− β(c)

>
1
2

b
1− β(b)

+
1
2

d
1− β(d)

. (6)

This means that each player prefers cooperation in every period to receiving his worst
or best play path with equal probability. The assumption helps us highlight the different
predictions brought about by endogenous discounting. Specifically, if (6) holds within
the standard model, then (CC, CC, ...) is the unique play path that maximizes the sum of
the players’ utilities while, as we show next, this need not be the case when discounting
is endogenous.

5.1.1 First-Best Outcomes

Figure 4 depicts two possibilities for the Pareto frontier in the repeated prisoner’s dilemma.
Consistent with Theorem 5.1, note that in both cases there are gains from intertemporal
trade. On the left, the path aC := (CC, CC, ...), which we refer to as one of intratemporal
cooperation, is efficient. The more surprising case is on the right. There, the sum of the
players’ utilities is maximized not by aC, but by the play paths in which the players take
turns defecting:

aA,1 := (DC, CD, DC, CD, ...)

aA,2 := (CD, DC, CD, DC, ...).

These paths represent an intertemporal compromise in which the players alternate be-
tween their most preferred outcomes. We refer to these paths as ones of intertemporal
cooperation.

Another notable implication of IMI is that, eventually, every efficient path, other than
the extremes in which one player defects forever, becomes one of cooperation (intra- or
inter- temporal). In this sense, IMI and the intertemporal trade it leads to promote an
equitable division of surplus. In Section 5.1.2, we would also show that this has implica-
tions for the provision of incentives. First, however, we formalize our characterization of
the Pareto frontier.

Intratemporal Cooperation. Let C1 be the set of paths such that DC is played in at most
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(a) Intratemporal cooperation

(DC,DC,...)

(DD,DD,...)

(CD,CD,...)

(CC,CC,...)

v2

v1

(CD,DC,CD,DC...)

(CD,CD,DC,CD,DC...)

(CD,CD,CD,DC,CD,DC...)

(b) Intertemporal cooperation

Figure 4: Two forms of cooperation under IMI

one period while CC is played in all other periods. The subscript “1” is used to designate
the fact that the action profile DC, if it occurs, favors player 1. Next, let E1C1 be the set
of paths a ∈ A∞ such that for some T ≥ 0, depending on the path, at = DC for all
t < T and Ta ∈ C1. Here, the letter E is mnemonic for the fact that cooperation prevails
eventually, that is, after some period. Define the sets C2 and E2C2 analogously and let
EC := E1C1 ∪ E2C2.19

Intertemporal cooperation. Consider the pairs (DC, CD) and (CD, DC) in A2 and inter-
pret each such pair as a simple intertemporal trade in which one of the players gets to
defect “today” and, in exchange, lets the other player defect “tomorrow.” LetA be the set
of all play paths in which the players make such simple trades in succession. Formally,

A := {a ∈ A∞ : a2t, a2t+1 ∈ {DC, CD} and a2t 6= a2t+1 ∀t ∈ T }.

One can verify that the sum of utilities, v1λ(a) + v2λ(a), is the same for all paths a ∈ A,
which in the context of Figure 4(b) means that the payoffs from such paths are dispersed
along the linear segment of the frontier that is perpendicular to the 45-degree line. Ac-
cordingly, we expand the notion of intertemporal cooperation to include any path a ∈ A,
not just the paths aA,1 and aA,2, whose payoffs constitute the extreme points of that seg-
ment. It remains to introduce the play paths along which intertemporal cooperation ob-
tains eventually. Thus, let E1A be the set of play paths a ∈ A∞ such that for some T ≥ 0,
depending on the path, at = DC for all t < T, and Ta ∈ A. Define E2A analogously and
let EA := E1A∪ E2A.

19By definition, C1 contains paths such as (CC, DC, CC, CC, ...) in which player 1 defects in a single period
t > 0. The payoffs v from such paths are a convex combination of v(aC) and vλ(DC, aC). Such v are on the
Pareto frontier but not an extreme point, which is why they are not shown in Figure 4.
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At this point, we should note that the Pareto frontier could take a third form not
shown in Figure 4. Namely, for some λ, intra- and inter- temporal cooperation could
be simultaneously efficient. The analysis of this case is notationally cumbersome and de-
livers few additional insights. As, moreover, the case does not arise for any λ sufficiently
high, we defer its analysis to Appendix L. To state our current result, say that a path
α ∈ (∆A)∞ is efficient if there is no strategy σ ∈ Σ that gives each player strictly higher
utility and let P(λ) be the set of all efficient pure play paths in Γ(λ). Also, a level of pa-
tience λ is irregular if intra- and inter- temporal cooperation are both efficient, that is, if
aC, aA,1, aA,2 ∈ P(λ). Else, λ is regular. Finally, let amax,i ∈ A∞ be a play path which gives
i his maximum payoff. In the context of the prisoner’s dilemma, this path is unique. For
instance, amax,1 = (DC, DC, ...).

Theorem 5.4. For every regular λ ∈ [0, 1), the set P(λ) of efficient play paths is equal to either
EC ∪ {amax,1, amax,2} or EA ∪ {amax,1, amax,2}.

To conclude our characterization of the Pareto frontier, we note that Figure 4(b) could
prevail even in the limit as λ ↗ 1. That is, intratemporal cooperation could remain
inefficient even as absolute differences in discounting disappear. To see this, let α∗ =
1
2 DC + 1

2CD. A simple calculation shows that the sum of the players’ utilities from any
alternating path a ∈ A decreases monotonically to 2v1(α

∗) as λ↗ 1. If v1(α
∗) > v1(aC) =

v2(aC), it follows that the paths a ∈ A (intertemporal cooperation) are efficient for all λ

and Pareto dominate aC (intratemporal cooperation) for all λ high enough, as well as, in
the limit.

5.1.2 Equilibrium Behavior

The folk theorem in Section 4 shows that if the players are sufficiently patients, a play path
can arise in a SPE if the security levels of each player are cleared at every stage. Theorem
5.4 suggests that this condition can be weakened in the case of efficient paths. Namely,
since all efficient play paths, other than amax,i, converge to cooperation as time progresses,
it is enough to check whether each player’s security level is cleared at the beginning of
the game, i.e., whether the path is individually rational (IR). The only caveat in this line
of reasoning arises in the case of intratemporal cooperation when we consider efficient
paths such as

(CC, CC, DC, CC, CC...). (7)

Since a defection occurs in some period t > 0, such paths could be IR but not SIR. As is
clear, however, a modicum of patience is enough to rule out this possibility. To formalize
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these observations, let IRε(λ) be the set of all ε-individually rational paths a ∈ A∞, i.e.,
all pure paths a ∈ A∞ such that viλ(a) ≥ ε.

Corollary 5.1. Let λ be the smallest λ ∈ [0, 1) such that the path (CD, CC, CC, ...) is individu-
ally rational. Then, for every λ ∈ (λ, 1) and every ε > 0 small enough, if a ∈ P(λ) ∩ IRε(λ),
then a ∈ SIRε(λ).

A higher but readily computable threshold is needed to insure that, in addition to
being SIR, the path in (7) is attainable in a SPE. Namely, let λ′ be such that

(1− λ′)d = (1− λ′)b + (λ′ + (1− λ′)β(b))
c

1− β(c)
(8)

and let λ′ = max{0, λ′}. Then,

Corollary 5.2. For every λ ∈ (λ′, 1) and every ε > (1− λ)d, every path a ∈ P(λ) ∩ IRε(λ)

can be supported in a SPE of the game.

Consistent with the preceding discussion, we note that if intertemporal cooperation is
efficient for all λ, then the thresholds λ and λ′ in the above corollaries can be set to 0.

6 Decreasing Marginal Impatience

This section studies the implications of decreasing marginal impatience in symmetric
two-player games. Our first result shows that efficient paths takes one of two forms:
either one player’s continuation utility is eventually maximized or both players attain
identical continuation utilities along the entire path. In many games, maximizing the
utility of one player implies that the other player is pushed below his security level or
“immiserated.” The result may therefore be viewed as a formalization of Friedman’s [11]
argument that DMI leads to “disequilibrium behavior.” The important twist is that be-
cause discounting is endogenous, immiseration need not occur if the players coordinate
on a symmetric path.

Theorem 6.1. For every λ, every efficient path a ∈ P(λ) is such that either (i) viλ(Ta) = vmax
i

for some i ∈ I and T ≥ 0, or (ii) v1λ(ta) = v2λ(ta) for every t ≥ 0.

Remark 6.1. If viλ(Ta) = vmax
i for some T ≥ 0, then viλ(ta) = vmax

i for all t ≥ T. Also, under
DMI, v1λ(ta) = v2λ(ta) for every t ≥ 0 if and only if g1(at) = g2(at) for all t. That is, a player’s
continuation utility is maximized only if all subsequent continuation utilities are maximized as
well. In addition, the players continuation utilities are equal throughout the game if and only if
the stage payoffs are equal as well.
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Intuition for Theorem 6.1 was given in the introduction. If at some point in time player
i’s continuation utility is higher than j’s, i would exhibit a greater level of patience. Effi-
ciency then requires that j’s utility be frontloaded while i ’s utility be backloaded. The lat-
ter implies that i’s continuation utility remains higher as the game progresses and, given
DMI, that i sustains the higher level of patience. This self-enforcing dynamic continues
until player i’s utility cannot be backloaded any further, which is when i’s utility is max-
imized. The only alternative is when the players coordinate on a path along which they
attain identical continuation utilities and, hence, identical levels of patience throughout
the game.

The conclusions of Theorem 6.1 become especially stark when we consider the pris-
oner’s dilemma. Then, maximizing the utility of player i means that player j is pushed
below his security level, leaving (CC, CC, ...) as the only efficient path that can arise in a
SPE.

Corollary 6.1. The path (CC, CC, ...) is the only efficient path that can arise in a SPE of the
prisoner’s dilemma.

Theorem 6.1 does not tell us whether gains from intertemporal trade exist under DMI.
As in Section 5, a necessary condition is that the game feature some conflict of interest.
Remarkably, now we must also require that the game not be the prisoner’s dilemma. For-
mally, say that Γ has conflict of interest but is not prisoner’s dilemma (CINPD) if the
Pareto frontier of Vpc has an extreme point v such that vmax

i > vi > vj for some i ∈ {1, 2}
and j 6= i.20 Intuitively, vi > vj generates differences in discounting by making player
i more patient, while vmax

i > vi insures that there is room for i’s utility to grow via in-
tertemporal trade. By comparison, in the prisoner’s dilemma, the only points v(a) ∈ Vpc

at which differences in discounting obtain are v(CD) and v(DC). But at these points, the
utility of the more patient player is fully maximized, leaving no room for intertemporal
trade to kick in.

Theorem 6.2. If Γ satisfies CINPD, then Vpc < V(λ) for each λ. If CINPD holds and the
extreme point v in its statement is strictly individually rational, then for all λ sufficiently large,
there is a feasible payoff v̂λ ∈ V(λ) such that v̂λ > Vpc and v̂λ can arise in a SPE of Γ(λ).

Proof. By CINPD and the symmetry of the game, the Pareto frontier of Vpc has an extreme
point v such that vmax

2 > v2 > v1. Let v∗ be the extreme point adjacent to v and such that
v∗2 > v2, and let a, a∗ ∈ A be such that v(a) = v and v(a∗) = v∗. See Figure 5(a) for an
illustration. Also, let ((a)T, a∗, a, a, ...) be the path in which a∗ is played in period T and a

20Note that, under symmetry, CINPD implies CI.
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in all other periods. We claim that for any λ, there is T large enough such that the path
generates gains from intertemporal trade. Furthermore, there is λ high enough such that
for all T, the path is SIR if and only if v � 0. The intuition is as follows. Since v2 > v1,
player 2 attains a higher level of patience at the start of the path when a ∈ A is played.
Efficiency then requires that 2’s utility be backloaded, which is achieved by playing a∗ in
period T. In fact, to obtain a first-best outcome, the logic behind Theorem 6.1 tells us that
2’s utility should continue to rise until it is fully maximized. Since, however, this may not
be SIR for player 1, the path ((a)T, a∗, a, a, ...) sacrifices some efficiency by requiring that
play of a ∈ A be resumed after a single round of a∗ ∈ A.

Formally, for any λ, i, and T, let $i = [βiλ(a)]T(1 − βiλ(a∗)). By construction, the
Pareto frontier of Vpc has a linear segment connecting the extreme points v and v∗, which
we chose to be adjacent. On that linear segment is a point (1− $1)v + $1v∗. On the other
hand,

vλ((a)T, a∗, a, a, ...) = ((1− $1)v1 + $1v∗1 , (1− $2)v2 + $2v∗2).

As illustrated in Figure 5(a), to show that vλ((a)T, a∗, a, a, ...) > Vpc, it is therefore enough
to show that

(1− $2)v2 + $2v∗2 > (1− $1)v2 + $1v∗2 .

Since v∗2 > v2, the above is equivalent to $2 > $1. But $2 > $1 if and only if[β2λ(a)
β1λ(a)

]T
>

1− β1λ(a∗)
1− β2λ(a∗)

.

Given the symmetry of the game and DMI, it is easy to see that v2(a) > v1(a) implies
β2λ(a) > β1λ(a). Hence, $2 > $1 for all T large enough. To prove the final assertion of
the theorem, assume that v(a) � 0 and pick ε such that v(a) � ε > 0. For sufficiently
high λ, we have (a∗, a, a, ...) ∈ IRε(λ), which implies that ((a)T, a∗, a, a, ...) ∈ SIRε(λ) for
all T. Thus, for λ and T sufficiently high, the path is both a SPE and delivers gains from
intertemporal trade.

We conclude the paper by showing that in the prisoner’s dilemma, first-best outcomes,
other than (CC, CC, ...), cannot be attained in a SPE even asymptotically as λ ↗ 1. An
important question for future work is whether a similar result applies in games with gains
from intertemporal trade. For now, we note that a key step in the present analysis, see
the upcoming discussion concerning the Pareto frontier of {v(α) : α ∈ ∆(A)}, holds more
generally and may be helpful in such a pursuit. To elaborate, let V0(λ) be the space of SIR
payoffs given λ and let V∗(λ) be the space of SPE payoffs.21 Theorem 6.3 shows that the

21A SIR payoff is one attainable by a SIR strategy. A SPE payoff is similarly defined.
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Figure 5: In Figure 5(b), the Pareto frontier of V0(λ), given by the dash-dotted line, is independent
of λ and, hence, an upper bound on the set of SPE payoffs attainable at any level of patience λ.

Pareto frontier of V0(λ) is independent of λ and, except for the point v(CC), strictly inside
the set of feasible payoffs. This frontier, which we depict as the dash-dotted (blue) line in
Figure 5(b), is therefore an upper bound for the set ∪λV∗(λ) of SPE payoffs attainable at
any level of patience.

Interestingly, this bound arises for reasons that are conceptually distinct from the im-
miseration dynamics driving Theorem 6.1. Indeed, recall that a key implication of en-
dogenous discounting is the nonlinearity of the mappings α 7→ vi(α). As we showed in
Figure 2(a), under IMI, this nonlinearity implies that the Pareto frontier of {v(α) : α ∈
∆(A)} bends outward, delivering gains from intertemporal trade. Under DMI, the fron-
tier bends inward, as shown by the curved dashed line in Figure 5(b). It follows that a
point such as v̂ in Figure 5(b) cannot be attained by any constant strategy αcon. Instead,
it can only be attained by a one-time randomization between the paths (CC, CC, ...) and
(CD, CD, ...). But since the latter path is not SIR, v̂ cannot arise in a SPE no matter the
level of patience.

Behaviorally, the inward bend traces back to the discussion of autocorrelations in Sec-
tion 5. Namely, under DMI, the players prefer perfect positive autocorrelation, as in a
one-time randomization $(a, a, ...) + (1− $)(a′, a′, ...) between the constant paths (a, a, ...)
and (a′, a′, ...), to the IID distribution induced by playing $a + (1− $)a′ ∈ ∆(A) each pe-
riod. The advantage of positive autocorrelation is that, with probability 1, the realized
outcome stream is smooth over time. The disadvantage is greater risk as the initial draw
gets propagated, rather than offset, by future draws. For example, under perfect positive
autocorrelation, a bad draw in t = 0 implies a bad draw forever after. Recalling Lemma
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5.1, we can sum things up as follows: under IMI, the players are more concerned with
eliminating risk; under DMI, they are more concerned with obtaining a smooth outcome
stream.22

Finally, we characterize the upper bound in Figure 5(b) and show that it is in fact a
least upper bound for the set ∪λV∗(λ) of all SPE payoffs. Given ε ≥ 0, let αε,2 ∈ ∆A be
the mixed action $CC + (1− $)CD such that v1(α

ε,2) = ε. Define αε,1 analogously and
let Fε

i be the line connecting v(αε,i) with v(CC). These lines are independent of λ since
the utilities v(αε,i) and v(CC) are independent of λ. Our next and final result shows that
F0

1 ∪ F0
2 is the Pareto frontier of V0(λ) for each λ and, hence, an upper bound on ∪λV∗(λ).

To see that F0
1 ∪ F0

2 is a least upper bound, note that Fε
1 ∪ Fε

2 ⊂ V∗(λ) for every ε > 0 and
λ such that ε > (1− λ)d. Thus, the lines Fε

i , which we depict as the thin solid lines below
F0

i , give us lower bounds for the Pareto frontier of ∪λV∗(λ). But, as λ ↗ 1, we can let
ε↘ 0, so that Fε

1 ∪ Fε
2 → F0

1 ∪ F0
2 .

Theorem 6.3. For each λ, the Pareto frontier of the set V0(λ) of SIR payoffs is independent of λ

and given by F0
1 ∪ F0

2 . Except for v(CC), the space of SPE payoffs is thus bounded away from the
first best frontier even as λ↗ 1.

7 Conclusions and Related Literature

The paper showed that, under IMI, gains from intertemporal trade exist in a broad class
of games. In addition, such trade does not lead to immiseration and can be sustained
in a SPE. Under DMI, gains from intertemporal trade exist as well. However, the first-
best pattern of such trade leads to the immiseration of some player or, in Friedman’s
[11] words, to “disequilibrium behavior.” The twist we highlighted is that immiseration
can be prevented if the players coordinate on a path along which they attain symmetric
outcomes and consequently remain equally patient.

Our conclusions under IMI owe a conceptual debt to the work Lucas and Stokey [17],
who used IMI to circumvent the immiseration results of Rader [23] and Becker [4] and ob-
tain a steady state with a non-trivial distribution of capital. Viewing Lehrer and Pauzner
[16] as the strategic analogue of Rader [23] and Becker [4],23 one can say that our main
message under IMI relates to Lehrer and Pauzner [16], the way Lucas and Stokey [17]
relate to Becker [4] and Rader [23]. Note however that the repeated games we study are
quite different from the growth economies of Lucas and Stokey [17]. As such, there is
little formal overlap between the papers. To give one example, recall that one of our main

22See Figure 1 in Bommier et al. [5] for an illustration of this trade-off.
23Recall that, as in Rader [23] and Becker [4], discounting in Lehrer and Pauzner [16] is exogenous.
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Figure 6: Time preferences in a two-period model with divisible consumption

results, Theorem 5.1, hinges on the player’s attitudes toward autocorrelations, that is, on
the presence of uncertainty. By comparison, the model of Lucas and Stokey [17] has no
uncertainty.

We should also mention two recent papers that study games with non-standard in-
tertemporal preferences. Like us, Sekiguchi and Wakai [25] consider preferences that are
recursive and stationary but not time separable. It is known from Koopmans [14] that
rates of time preference are endogenous whenever this is the case. As we illustrate in
Figure 6 however, the endogeneity can take different forms. In the two-period setup of
the figure, discount factors equal the inverse of the marginal rate of substitution at points
(c, c) along the 45-degree line. Figure 6(c) depicts the case of DMI in which discount fac-
tors increase with the level of consumption c. By comparison, in Sekiguchi and Wakai
[25], changes in c do not affect the rate of time preference. Rather, the kink in the indiffer-
ence curves means that gains in consumption, (c, c + ε), are discounted differently from
losses, (c, c− ε). Given the different preference specifications and the different setups of
the papers — Sekiguchi and Wakai [25] study a Cournot game — there is little overlap,
formal or conceptual, between the papers. On the other hand, Obara and Park [21] focus
on the present-biased preferences of Laibson [15]. The non-stationarity of these prefer-
ences and the associated failures of time consistency lead to very different problems than
the ones we consider.

Finally, the paper by Neilson and Winter [20] has a title almost identical to ours, but
the setups are completely different. In Neilson and Winter [20], one of the players first
chooses the length of time between successive repetitions of the stage game. After that,
the players engage in a standard repeated game with no asymmetries related to discount-
ing.
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Appendix

A Proof of Lemma 3.1

Endow A with the discrete topology and A∞ with the product topology. Since the set A is
finite, A and A∞ are separable Borel spaces. Endow ∆(Ai) and ∆(A) with the usual Eu-
clidean topologies. Let ∆(A∞) be the set of Borel probability measures on A∞, endowed
with the weak∗ topology. Endow each Σi and Σ with the respective product topologies.
From Kolmogorov’s Consistency Theorem, see Parthasarathy [22, Theorem 3.1,3.2], we
know that each strategy profile σ ∈ Σ induces a probability measure in ∆(A∞) and that
the mapping from Σ into ∆(A∞) is continuous. Conclude that player i’s utility function
vi : Σ→ R is continuous. Fix some i ∈ I. Since the space Σ∗i is compact, the maximization
problem maxσi∈Σ∗i

vi(σi, σ−i) has a solution for every σ−i ∈ ×k 6=iΣ∗k . By the maximum the-
orem, see Aliprantis and Border [2, Theorem 17.31], maxσi∈Σ∗i

vi(σi, σ−i) is a continuous
function of σ−i. Thus, the minmax payoff vi = minσ−i∈×k 6=iΣ∗k

maxσi∈Σ∗i
vi(σi, σ−i) is well

defined.

Lemma A1. For every i ∈ I and α−i ∈ ×k 6=i∆(Ak),

max
σi∈Σ∗i

vi(σi, αcon
−i ) = max

αi∈∆(Ai)
vi(α

con
i , αcon

−i ).

Proof. Fixing i ∈ I and α−i ∈ ×k 6=i∆(Ak), take some α̂i ∈ argmaxαi∈∆(Ai)
vi(α

con
i , αcon

−i ),
which exists since ∆(Ai) is compact and the function αi 7→ v(αcon

i , αcon
−i ) continuous. Sup-

pose by way of contradiction that there exists a strategy σ̃i ∈ Σ∗i such that vi(σ̃i, αcon
−i ) >

vi(α̂
con
i , αcon

−i ). By the one shot deviation principle, we can assume that σ̃i = α̂i
con, except

at a single history ht. Moreover, since players j 6= i are using a constant strategy, we can
assume that ht is the initial (empty) history. Let α̃i 6= α̂i be the initial action prescribed by
σ̃i. Then,

vi(σ̃i, αcon
−i ) = gi(α̃i, α−i) + βi(α̃i, α−i)vi(α̂

con
i , αcon

−i ) > vi(α̂
con
i , αcon

−i ),

which, after some rearranging, yields

vi(α̃
con
i , αcon

−i ) =
gi(α̃i, α−i)

1− βi(α̃i, α−i)
> vi(α̂

con
i , αcon

−i ).

The last inequality contradicts the fact that α̂i ∈ argmaxαi∈∆(Ai)
vi(α

con
i , αcon

−i ).

Next, say that a strategy σi ∈ Σ∗i is finite if there is some t such that after every history
ht, player i plays a constant strategy. A strategy profile σ = (σ1, ..., σn) ∈ Σ∗ is finite
if every σi is finite. Let vc

i be i’s minmax payoff when all players are restricted to using
constant strategies. By Lemma A1, the best reply to a constant strategy is a constant
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strategy. Hence, vi ≤ vc
i . To prove the opposite inequality, let σ−i ∈ ×k 6=iΣ∗k be a minmax

strategy against player i and let σi ∈ Σ∗i be a best reply. For every t, let σt
−i be the finite

strategy that coincides with σ−i up to and including period t. By construction, σt
−i →t σ−i.

Using Lemma A1, a standard backward induction argument shows that each σt
−i has a

best reply σt
i ∈ Σ∗i that is a finite strategy. From the maximum theorem, deduce that

lim
t

vi(σ
t
i , σt
−i) = lim

t
max
σ′i∈Σ∗i

vi(σ
′
i , σt
−i) = max

σ′i∈Σ∗i
vi(σ

′
i , σ−i) = vi.

It is therefore enough to show that vi(σ
t
i , σt
−i) ≥ vc

i for every t. Fix some t ≥ 1 and consider
a history ht−1. Let (αi, α−i) ∈ ∆(A) be the action profile prescribed by (σt

i , σt
−i) at ht−1. Let

ht(a) be the history in period t that succeeds ht−1 when a ∈ A is the action profile realized
in period t− 1. Let vi(σ

t
i , σt
−i|ht−1) and vi(σ

t
i , σt
−i|ht(a)) be i’s continuation utilities at ht−1

and ht(a), a ∈ A, when (σt
i , σt
−i) is played. By construction, the continuation strategy

prescribed by σt
−i after each history ht(a) is constant. Thus, vi(σ

t
i , σt
−i|ht(a)) ≥ vc

i for
every a ∈ A. Then,

vi(σ
t
i , σt
−i|ht−1) = max

α′i∈∆(Ai)
E(α′i ,α−i)

[gi(a) + βi(a)vi(σ
t
i , σt
−i|ht(a))]

≥ max
α′i∈∆(Ai)

E(α′i ,α−i)
[gi(a) + βi(a)vc

i ]

≥ min
α′−i∈×k 6=i∆(Ak)

max
α′i∈∆(Ai)

E(α′i ,α
′
−i)

[gi(a) + βi(a)vc
i ] = vc

i .

Iterating the argument we see that vi(σ
t
i , σt
−i) ≥ vc

i , as desired.

B Proof of Theorem 4.1

B.1 Payoff Asymmetry

The goal of this section is to prove Lemma B3 below, which is a key step in the proof of our
folk theorem and which may be viewed as a generalization of the “payoff-asymmetry”
lemma of Abreu et al. [1, Lemma 2]. The proof exploits insights from Chew’s [7] work on
non-expected utility preferences. To see the connection, note that each pair (gi, βi) induces
a preference relation �i on ∆(A) represented by the utility function gi(α)/(1 − βi(α)).
When βi : A → (0, 1) is constant, �i is a standard expected utility preference on the sim-
plex ∆(A). If βi is not constant, then �i belongs to the more general class of weighted-
utility preferences studied in Chew [7]. We begin with a preliminary observation regard-
ing such preferences.

Lemma B2. Let � be a weighted-utility preference on ∆(A) and E1 and E2 two distinct indiffer-
ence curves of � intersecting the interior of ∆(A). Then, � is fully determined by E1 and E2 and
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the ranking between them.

Proof. If� is an expected utility preference, all indifference curves are parallel translations
of one another. In addition, the ranking between E1 and E2 determines the direction of
increasing preference. When � is not expected utility, the proof follows from Figure 1 in
Chew [7]. Namely, embed the simplex ∆A into R|A|−1 in the usual way. The indifferences
curves E1 and E2 are hyperplanes whose intersection is an (|A| − 3)-dimensional linear
subspace L. Rotating the hyperplane E1 around L generates all indifference curves of
�. Once again, the ranking between E1 and E2 determines the direction of increasing
preference.

Lemma B3. If the repeated game (A, (gi, βi)i) satisfies NEU, then there exist lotteries α1, ..., αn ∈
∆(A) such that vi(α

j) > vi(α
i) for every i 6= j.

Proof. Say that a vector (α1, ..., αn) with the sought after property is a separation for (�1

, ...,�n). Also, let Ei(α) := {α′ ∈ ∆(A) : α′ ∼i α} be player i’s indifference set through
α ∈ ∆(A) and Ui(α), Li(α) the resp. upper and lower contour sets. If n = 2, we claim that
one can pick a generic α ∈ ∆(A) and α1, α2 arbitrarily close to α such that α2 �1 α �1 α1

and α1 �2 α �2 α2. Suppose that�1 and�2 have the same indifference sets. Since�1 6=�2

by NEU, it follows that �1 is the negation of �2. Hence, for any triple α1, α, α2 ∈ ∆(A)

such that α2 �1 α �1 α1, we have α1 �2 α �2 α2. Since the indifference curves of �1

are hyperplanes, the choice of α1, α, α2 is generic. If �1 and �2 do not have the same
indifference sets, then, by Lemma B2, they have in common at most one indifference
set E∗ intersecting the interior of ∆(A). Pick any α /∈ E∗ in the interior of ∆(A). The
hyperplanes E1(α) and E2(α) are distinct and partition ∆(A) into four cones with peak α :
U1(α) ∩U2(α), U1(α) ∩ L2(α), L1(α) ∩U2(α), L1(α) ∩ L2(α). Picking any α2 in the interior
of U1(α)∩ L2(α) and α1 in the interior of L1(α)∩U2(α), completes the proof of our claim.

Proceeding by induction, suppose that (α1, ..., αm) is a separation for (�1, ...,�m) and
let �m+1 be a distinct weighted-utility preference. Reindexing if necessary, we can sup-
pose that αi �m+1 α1 for all i < m + 1. Since α2 �1 α1 and α2 �m+1 α1, we know that�1 is
not the negation of�m+1. By perturbing α1 appropriately, we can assume that αi �m+1 α1

for all i < m + 1. Since, by Lemma B2, �1 and �m+1 have at most one indifference curve
in common, we can also assume that E1(α

1) 6= Em+1(α
1). Using the argument for n = 2,

we can find lotteries α′, α′′ such that α′′ �1 α1 �1 α′ and α′ �m+1� α1 �m+1 α′′. More-
over, choosing α′, α′′ sufficiently close to α1 insures that (α′, α2, ..., αm, α′′) is a separation
for (�1,�2, ...,�m+1).
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B.2 Decision-theoretic preliminaries

Fix i. The next two lemmas, whose simple proofs we omit, capture behavioral implica-
tions of impatience that are characteristic of Uzawa-Epstein preferences and that will be
useful in the proof of our folk theorem. In particular, let α0, α1, ..., αK ∈ ∆A be mixed ac-
tions such that vi(α

k) ≤ vi(α
k+1) for every k = 0, ..., K− 1. Lemma B4 shows that player i

prefers that more beneficial actions be played first.

Lemma B4. For every α ∈ (∆A)∞ and every permutation π : {0, 1, ..., K} → {0, 1, ..., K}, we
have vi(α

0, α1, ..., αK, α) ≤ vi(α
π(0), απ(1), ..., απ(K), α).

The next lemma says that if the continuation path α is better than each of the actions
αk, it is beneficial to remove some of these actions so as to advance the play of α.

Lemma B5. For every α ∈ (∆A)∞ such that vi(α
K) < vi(α) and every subset {α̂0, ..., α̂K̂} ⊂

{α0, α1, ..., αK}, we have vi(α
0, α1, ..., αK, α) ≤ vi(α̂

0, ..., α̂K̂, α).

We need one more lemma.

Lemma B6. If vi(α) > vi(α
′), then vi(α) > vi($α + (1− $)α′) > vi(α

′) for all $ ∈ (0, 1).

Proof. This follows from the fact that for all ρ ∈ (0, 1), k, l ∈ R, and s, t ∈ R++, if ks−1 >

lt−1, then ks−1 > (ρk + (1− ρ)l)(ρs + (1− ρ)t)−1 > lt−1.

Finally, we remark that for every path (α0, α1, ...) ∈ (∆A)∞,

vi(α
0, α1, ...) =

(
1− βi(α

0)
)
vi(α

0) + βi(α
0)vi(α

1, α2, ...). (9)

Thus, vi(α
0, α1, ...) is a convex combination of vi(α

0) and vi(α
1, α2, ...).24

B.3 Constructing dynamic player-specific punishments

The definition below is adapted from Chen and Takahashi [6].

Definition B1. For every λ ∈ [0, 1), a play path α ∈ (∆A)∞ allows dynamic player-specific
punishments (DPSP) with wedge γ > 0 if there exists paths r1, ..., rn ∈ (∆A)∞ such that for
every i, j 6= i, and every t, we have (i) viλ(ri) < viλ(tα)− γ, (ii) γ < viλ(ri) ≤ viλ(tri), and
(iii) viλ(ri) < viλ(trj)− γ.

In Section B.4, we use the paths (ri)i in Definition B1 to construct off-path strategies
that punish a deviation from α, while simultaneously giving the players incentives to

24On the other hand, since the “weights” depend on i, the payoff v(α0, α1, ...) need not be a convex combi-
nation of v(α0) and v(α1, α2, ...).
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carry out the punishment. Roughly, condition (i) deters player i from deviating from the
target path α; condition (ii) insures that the punishment phase is SIR and that no player
wants to restart the punishment; finally, condition (iii) provides incentives for player i to
carry out a punishment against player j.

The goal of this section is to prove the following lemma.

Lemma B7. Assume NEU. For every ε > 0, there are γ > 0 and λ ∈ [0, 1) such that for every
λ > λ, every α ∈ SIRε(λ) allows DPSP {ri

λ}i with wedge γ.

We begin by defining paths {ri
λ}i∈I indexed by two free parameters T1, T2 ∈ N++, to

be determined later. Fix ε > 0 and λ ∈ [0, 1) such that SIRε(λ) 6= ∅, and some i ∈ I. Since
the set SIRε(λ) is compact, we can find a path wi

λ ∈ argminα̂∈SIRε(λ) viλ(α̂). By Lemma
B3, there exists κ1, ..., κn ∈ ∆A such that vi(κ

i) < vi(κ
j) for all j 6= i. Enumerate the κ’s

according to i’s preferences:

vi(κ
i0) ≤ vi(κ

i1) ≤ ... ≤ vi(κ
in−1).

By construction, κi0 = κi. For any α ∈ ∆A and T ∈ N++, let (α)T ∈ (∆(A))T be the finite
sequence such that α is played T times. For every T2 ∈N++, let

αi
λ := ((κi0)T2 , (κi1)T2 , ..., (κin−1)T2 , wi

λ).

Collecting all κ’s into a single block Ki
λ ∈ (∆A)NT2 , we can also write αi

λ as (Ki
λ, wi

λ). Next,
recall from Section 2 that there are action profiles li ∈ A and hi ∈ A such that (li, li, ...) and
(hi, hi, ...) minimize and resp. maximize viλ among all strategies (and for all λ). Define

Li
λ := {l j ∈ A|vi(l j) < viλ(α

i
λ), j ∈ I}

and let Ni := |Li
λ|. Since vi(li) ≤ vi(κ

im) for all m = 0, ..., n − 1, and vi(li) ≤ 0 < ε ≤
viλ(wi

λ), we have vi(li) < viλ(α
i
λ). Thus, li ∈ Li

λ and Ni ≥ 1. Enumerate all action
profiles in Li

λ according to i’s preferences:

vi(li0) ≤ vi(li1) ≤ ... ≤ vi(l
iNi−1). (10)

By the definition of li, we know that li0 = li. For every T1 ∈N++, define the play path

ri
λ := ((li0)T1 , (li1)T1 , ..., (liNi−1)T1 , αi

λ) ∈ (∆A)∞,

Collecting all l’s into a block Li
λ, we may also write ri

λ as (Li
λ, αi

λ).
So far, the construction of the paths {ri

λ}i∈I did not reference the target path α ∈
SIRε(λ). However, since viλ(wi

λ) ≤ viλ(tα) for every t and α ∈ SIRε(λ), condition (i) in
Definition B1, which is where the target path α appears, would be automatically satisfied
if we could show that viλ(ri

λ) < viλ(wi
λ)− γ for every i. The rest of the proof calibrates

the paths {ri
λ}i∈I by choosing T1 and T2 appropriately so that the latter condition as well
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as conditions (ii) and (iii) in Definition B1 are met. To begin, recall the following property
of the exponential.

Lemma B8. For every β ∈ [0, 1) and θ ∈ R, limλ→1(λ + (1− λ)β)
θ

1−λ = e−(1−β)θ.

Let βi := maxa βi(a) and β
i

:= mina βi(a), and for every λ > 0, let βiλ := λ+ (1− λ)βi

and β
iλ

:= λ + (1− λ)β
i
.

Lemma B9. Take T1 = d θ(1−η)
1−λ e and T2 = d θη

1−λe, where θ > 0, 0 < η < 1. There exist θ∗ > 0,
γ′ > 0, and λ′ ∈ [0, 1) such that if θ = θ∗, then for every i ∈ I, λ ∈ (λ′, 1), and η ∈ (0, 1),

(1− [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′.

Proof. By Lemma B8,

lim
λ→1

(1− [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε = (1− 1

e(1−β
i
)nθ

)vi(li) +
1

e(1−β
i
)nθ

ε.

Let fi(θ) denote the above limit and notice that fi(0) = ε > 0 for every i ∈ I. Since
vi(li) ≤ 0 < ε, fi is decreasing and continuous in θ. Thus, there exists θi > 0, small
enough, such that fi(θ) > 0 for all θ ∈ (0, θi]. Take θ∗ := mini θi and choose γ′ > 0 such
that fi(θ

∗) > γ′ for all i ∈ I. Finally, pick λ′i > 0 such that

(1− [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′ ∀λ ∈ (λ′i, 1),

and let λ′ := maxi λ′i to complete the proof.

Lemma B10. Let θ∗ be defined as in Lemma B9. Take T1 = d θ∗(1−η)
1−λ e and T2 = d θ∗η

1−λe where
0 < η < 1. There exist 0 < η∗ < 1, γ′′ > 0, and λ′′ ∈ [0, 1) such that if η = η∗, then for every
i ∈ I and λ ∈ (λ′′, 1)

(1− [βiλ]
T1 [β

iλ
]nT2)ε− (1− [βiλ]

T1)vi(li)− [βiλ]
T1(1− [β

iλ
]nT2)vi(hi) > γ′′.

Proof. For every i ∈ I, define

fi(η) :=
(1− e−(1−βi)θ

∗(1−η))vi(li) + e−(1−βi)θ
∗(1−η)(1− e−(1−β

i
)nθ∗η)vi(hi)

1− e−(1−βi)θ
∗(1−η)−(1−β

i
)nθ∗η

.

The function fi is continuous, strictly increasing, and such that fi(0) = vi(li) ≤ 0 < ε.
Thus, there exists ηi > 0, small enough, such that fi(η) < ε for all η ∈ (0, ηi]. Taking
η∗ := mini ηi, we have fi(η

∗) < ε for every i ∈ I. Thus, there exists γ′′ > 0 such that

(1− 1

e(1−βi)θ
∗(1−η∗)+(1−β

i
)nθ∗η∗

)ε− (1− 1

e(1−βi)θ
∗(1−η∗)

)vi(li)

− 1

e(1−βi)θ
∗(1−η∗)

(1− 1

e(1−β
i
)nθ∗η∗

)vi(hi) > γ′′ ∀i ∈ I.

30



Lemma B8 implies that

lim
λ→1

(1− [βiλ]
T1 [β

iλ
]nT2)ε− (1− [βiλ]

T1)vi(li)− [βiλ]
T1(1− [β

iλ
]nT2)vi(hi)

= (1− 1

e(1−βi)θ
∗(1−η∗)+(1−β

i
)nθ∗η∗

)ε− (1− 1

e(1−βi)θ
∗(1−η∗)

)vi(li)

− 1

e(1−βi)θ
∗(1−η∗)

(1− 1

e(1−β
i
)nθ∗η∗

)vi(hi).

Thus, for every i ∈ I, we can find λ′′i ∈ [0, 1) such that for every λ ∈ (λ′′i , 1),

(1− [βiλ]
T1 [β

iλ
]nT2)ε− (1− [βiλ]

T1)vi(li)− [βiλ]
T1(1− [β

iλ
]nT2)vi(hi) > γ′′.

Taking λ′′ := maxi λ′′i completes the proof.

Let T1 = d θ∗(1−η∗)
1−λ e and T2 = d θ∗η∗

1−λ e, where θ∗ is defined as in Lemma B9 and η∗ is
defined as in Lemma B10.

Lemma B11. There exist γ′ > 0 and λ′ ∈ [0, 1) such that viλ(ri
λ) > γ′ for all i ∈ I, λ ∈ (λ′, 1).

Proof. By Lemma B9, there exist γ′ > 0 and λ′ ∈ [0, 1) such that

(1− [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′ ∀i ∈ I, ∀λ ∈ (λ′, 1). (11)

Take λ ∈ (λ′, 1) and i ∈ I. Since vi(li) ≤ vi(lim) for all m = 0, ..., Ni− 1 and vi(li) ≤ vi(κ
im)

for all m = 0, ..., n− 1, we have

viλ(ri
λ) ≥ (1− [β

iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)viλ(wi

λ).

Since viλ(wi
λ) ≥ ε, we obtain

viλ(ri
λ) ≥ (1− [β

iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′.

The last inequality follows from (11) and λ ∈ (λ′, 1).

Lemma B12. There exist γ′′ > 0 and λ′′ ∈ [0, 1) such that viλ(ri
λ) < viλ(wi

λ) − γ′′ for all
i ∈ I and λ ∈ (λ′′, 1).

Proof. Fix i ∈ I. Since vi(hi) ≥ vi(κ
im) for all m = 0, ..., n− 1, we obtain

viλ(α
i
λ) ≤ (1− [β

iλ
]nT2)vi(hi) + [β

iλ
]nT2viλ(wi

λ).

By Lemma B5, viλ(ri
λ) reaches its maximum when Lλ

i = {li}. Since vi(li) < viλ(wi
λ) ≤

vi(hi), we have viλ(ri
λ) ≤ x

x = (1− [βiλ]
T1)vi(li) + [βiλ]

T1(1− [β
iλ
]nT2)vi(hi) + [βiλ]

T1 [β
iλ
]nT2viλ(wi

λ).

Since viλ(wi
λ) ≥ ε, Lemma B10 implies that there are γ′′ > 0 and λ′′ ∈ [0, 1) such that for

all i ∈ I and λ ∈ (λ′′, 1),

(1− [βiλ]
T1 [β

iλ
]nT2)viλ(wi

λ)− (1− [βiλ]
T1)vi(li)− [βiλ]

T1(1− [β
iλ
]nT2)vi(hi) > γ′′.
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This is equivalent to x < viλ(wi
λ)− γ′′. Thus, viλ(ri

λ) ≤ x < viλ(wi
λ)− γ′′.

Lemma B13. For all i ∈ I and all λ ∈ (λ′′, 1), viλ(ri
λ) ≤ viλ(tri

λ) for all t.

Proof. Take λ ∈ (λ′′, 1) and i ∈ I. Since vi(lim) < viλ(α
i
λ) for all m = 0, ..., Ni− 1, it follows

from (9) and (10) that

viλ(ri
λ) ≤ viλ(1ri

λ) ≤ ... ≤ viλ(NiT1−1ri
λ) ≤ viλ(NiT1

ri
λ) = viλ(α

i
λ). (12)

Thus, viλ(ri
λ) ≤ viλ(tri

λ) for all t ≤ NiT1. To prove the same for t > NiT1, suppose first
that

vi(κ
im) < viλ((m+1)T2

αi
λ) ∀m = 0, ..., n− 1. (13)

The construction of αi
λ implies that for every m = 0, ..., n− 1,

viλ(mT2αi
λ) = vi(κ

im)(1− [βiλ(κ
im)]T2) + [βiλ(κ

im)]T2viλ((m+1)T2
αi

λ). (14)

It follows from (9) and (13) that viλ(mT2αi
λ) < viλ((m+1)T2

αi
λ) for all m = 0, ..., n− 1. Hence,

viλ(α
i
λ) < viλ(tα

i
λ) for all t > 0. Together with (12), this implies viλ(ri

λ) ≤ viλ(tri
λ) for all

t > NiT1.
Alternatively, suppose that there is an index k such that vi(κ

ik) ≥ viλ((k+1)T2
αi

λ) and
vi(κ

im) < viλ((m+1)T2
αi

λ) for all m < k. It follows from (9) and (12) that

viλ(ri
λ) ≤ viλ(α

i
λ) < viλ(tα

i
λ) ∀t = 1, ..., kT2.

Since vi(κ
ik) ≥ viλ((k+1)T2

αi
λ), (14) and (9) yield

viλ(kT2αi
λ) ≥ viλ(tα

i
λ) t = kT2 + 1, ..., (k + 1)T2.

By construction,

viλ((k+1)T2
αi

λ) = vi(κ
ik+1)(1− [βiλ(κ

ik+1)]T2) + [βiλ(κ
ik+1)]T2viλ((k+2)T2

αi
λ).

Since vi(κ
ik+1) ≥ vi(κ

ik) ≥ viλ((k+1)T2
αi

λ), we have vi(κ
ik+1) ≥ viλ((k+2)T2

αi
λ). The latter

implies that

viλ((k+1)T2
αi

λ) ≥ viλ(tα
i
λ) ∀t = (k + 1)T2 + 1, ..., (k + 2)T2.

Repeating the arguments above, we can show that for every t = kT2 + 1, ..., nT2 − 1,

viλ(kT2αi
λ) ≥ viλ(tα

i
λ) ≥ viλ(nT2αi

λ) = viλ(wi
λ). (15)

For all t > nT2, we have tα
i
λ = τwi

λ ∈ SIRε(λ), where τ = t− nT2. Hence, viλ(wi
λ) ≤

viλ(tα
i
λ). Combined with (15), this yields

viλ(wi
λ) = viλ(nT2αi

λ) ≤ viλ(tα
i
λ) ∀t ≥ kT2 + 1.

Since λ ∈ (λ′′, 1), Lemma B12 shows that viλ(ri
λ) < viλ(wi

λ) ≤ viλ(tα
i
λ) for all t ≥ kT2 + 1,

completing the proof.
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Lemma B14. There exist γ′′′ > 0 and λ′′′ ∈ [0, 1) such that for every i, j ∈ I, i 6= j, and
λ ∈ (λ′′′, 1), we have [β

iλ
]nT1(vi(κ

j)− vi(κ
i))(1− [βiλ]

T2)2 > γ′′′.

Proof. By Lemma B8,

lim
λ→1

[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1− [βiλ]

T2)2 =
1

e(1−β
i
)nθ(1−η)

(vi(κ
j)− vi(κ

i))(1− 1

e(1−βi)θη
)2,

which is strictly greater than 0 since vi(κ
j)− vi(κ

i) > 0 for all j 6= i.

Given a list B = (x0, ..., xT−1) in a product space XT and k < T − 1, we write kB
for the list (xk, xk+1, ..., xT−1) ∈ XT−k. Given lists B = (x0, ..., xT−1) ∈ XT and B′ =
(y0, ..., yK−1) ∈ XK, we write B ⊂ B′ if {x0, ..., xT−1} ⊂ {y0, ..., yK−1}. Given a list B =

(α0, ..., αT−1) of action profiles, we let π↑i (B) := (xπ(0), ..., xπ(T−1)) be the permutation of
B such that vi(α

π(t)) ≤ vi(α
π(t+1)) for all t = 0, ..., T − 2.

Lemma B15. For all i, j ∈ I, i 6= j, λ ∈ (λ′′′, 1), and t ≤ N jT1, viλ
(

tr
j
λ

)
− viλ

(
tL

j
λ, αi

λ

)
> γ′′′.

Proof. For all t ≤ N jT1, we have tr
j
λ = ( tL

j
λ, α

j
λ) and, hence,

viλ
(

tr
j
λ

)
− viλ

(
tL

j
λ, αi

λ

)
≥ viλ

(
Lj

λ, α
j
λ

)
− viλ

(
Lj

λ, αi
λ

)
=

=
N j−1

∏
m=0

[βiλ(l jm)]T1
(
viλ
(
α

j
λ

)
− viλ

(
αi

λ

))
≥ [β

iλ
]nT1(viλ

(
α

j
λ

)
− viλ

(
αi

λ

)
).

(16)

Thus, we seek a lower bound for viλ
(
α

j
λ

)
− viλ

(
αi

λ

)
. By the construction of αi

λ, there is an
index k 6= 0 such that κik = κ j. Let

Ki\j := ((κi0)T2 , ..., (κik−1)T2 , (κik+1)T2 , ..., (κin−1)T2) and K j\j := ((κ j1)T2 , (κ j2)T2 , ..., (κ jn−1)T2).

Thus, Ki\j and K j\j are obtained from Ki and K j respectively by removing the κ j’s. The list
Ki\j, like Ki, orders its elements in a way that is unfavorable to player i. Thus, by Lemma
B4, viλ

(
K j\j, wi

λ

)
≥ viλ(Ki\j, wi

λ) and, by stationarity,

viλ(K j, wi
λ) = viλ

(
(κ j)T2 , K j\j, wi

λ

)
≥ viλ((κ

j)T2 , Ki\j, wi
λ).

Since viλ(w
j
λ) ≥ viλ(wi

λ),

viλ(α
j
λ) = viλ(K j, wj

λ) ≥ viλ(K j, wi
λ) ≥ viλ((κ

j)T2 , Ki\j, wi
λ).

Next, let K̃ be the list obtained from Ki by moving the block (κ j)T2 immediately after the
initial block (κi)T2 . By Lemma B4, we have viλ(K̃, wi

λ) ≥ viλ(Ki, wi
λ) = viλ

(
αi

λ). We
conclude that

[β
iλ
]nT1(viλ

(
α

j
λ

)
− viλ

(
αi

λ

)
) ≥ [β

iλ
]nT1(viλ((κ

j)T2 , Ki\j, wi
λ)− viλ(K̃, wi

λ))

=[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1− [βiλ(κ

j)]T2)(1− [βiλ(κ
i)]T2)
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≥[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1− [βiλ]

T2)2 > γ′′′,

where the equality follows by a direct calculation and the last inequality by Lemma B14.
Together with (16), the last chain of inequalities completes the proof.

Lemma B16. For all i, j ∈ I, i 6= j, and λ ∈ (λ′′′, 1), viλ(tr
j
λ)− viλ(ri

λ) > γ′′′ for all t ≤ N jT1.

Proof. Write tr
j
λ as (tL

j
λ, α

j
λ). By Lemma B4, viλ(tL

j
λ, αi

λ) ≥ viλ(π
↑
i (tL

j
λ), αi

λ). Hence,
by Lemma B15, viλ

(
tr

j
λ

)
− viλ(π

↑
i (tL

j
λ), αi

λ) > γ′′′. It is therefore enough to show that

viλ(π
↑
i (tL

j
λ), αi

λ) ≥ viλ(ri
λ). Recall that ri

λ = (Li
λ, αi

λ). Since tL
j
λ ⊂ Lj

λ, we can write
π↑i (tL

j
λ) as (L′, L′′) where L′ ⊂ Li

λ and L′′ ⊂ Lj
λ \ Li

λ. We claim that

viλ(L′, L′′, αi
λ) ≥ viλ(L′, αi

λ) ≥ viλ(Li
λ, αi

λ) =: viλ(ri
λ) (17)

By stationarity, or if L′ = ∅, the first inequality is equivalent to viλ(L′′, αi
λ) ≥ viλ(α

i
λ),

which follows since vi(l′′) ≥ viλ(α
i
λ) for all l′′ ∈ L′′. The second inequality in (17) follows

from Lemma B5.

Lemma B17. For all i 6= j, λ ∈ (λ′′, 1), viλ(tr
j
λ)− viλ(ri

λ) > γ′′ for all t > N jT1.

Proof. The desired inequality is equivalent to viλ(tα
j
λ) ≥ viλ(ri

λ) for all t > 0. If t ≥ nT2,
then tα

j
λ = τwj

λ ∈ SIRε(λ) where τ = t− nT2. Hence, viλ(tα
j
λ) ≥ viλ(wi

λ). By Lemma
B12, viλ(wi

λ)− γ′′ > viλ(ri
λ) and we are done. Suppose now that t < nT2 and write tα

j
λ

as (tK j, wj
λ). Lemmas B5 and B4 imply that

viλ(ri
λ) ≤ viλ((li)T1 , Ki, wi

λ) ≤ viλ((li)T1 ,t K j, Ki \ tK j, wi
λ).

These inequalities, together with the construction of wi
λ, yield

viλ( tK j, wj
λ)− viλ(ri

λ) ≥ viλ( tK j, wi
λ)− viλ((li)T1 , tK j, Ki \ tK j, wi

λ) =: x.

Lengthy but straightforward calculations show that

x ≥ (1− [βiλ]
T1 [β

iλ
]nT2)ε− (1− [βiλ]

T1)vi(li)− [βiλ]
T1(1− [β

iλ
]nT2)vi(hi).

By Lemma B10, x > γ′′ whenever λ ∈ (λ′′, 1).

Take γ := min{γ′, γ′′, γ′′′} and λ := max{λ′, λ′′, λ′′′}, where γ′, γ′′, γ′′′ and λ′, λ′′, λ′′′

are defined as in Lemmas B11, B12, and B16. Then, Lemmas B12, B13, B16, and B17
show that for all λ ∈ (λ, 1) and α ∈ SIRε(λ), the paths {ri

λ}i∈I meet all the conditions in
Definition B1 .

B.4 Equilibrium Strategies

Let mi := (mi
1, ..., mi

n) ∈ Σ be a strategy profile in which player i best-responds to a
minmax strategy by the opponents. By Lemma 3.1, we can choose mi to be a profile of

34



constant strategies and, hence, identify mi with an element of ∆(A). Utilities are normal-
ized so that gi(mi) = 0 for every i ∈ I. Take ε > 0. By Lemma B7, there exist γ > 0
and λ′ ≥ 0 such that for every λ > λ′, every α ∈ SIRε(λ) allows DPSP with wedge
γ. Let gi := maxa gi(a) and choose an integer µi such that µi >

gi

γ
(

1−βi(mi)
) . Recall that

βiλ(mi) := λ + (1− λ)βi(mi) and note that

lim
λ→1

1− [βiλ(mi)]µi

1− βiλ(mi)
= lim

βiλ(mi)→1

1− [βiλ(mi)]µi

1− βiλ(mi)
= µi.

Thus, we can find λ′′i ∈ [0, 1) such that

gi
γ
(
1− βi(mi)

) <
1− [βiλ(mi)]µi

1− βiλ(mi)
∀λ > λ′′i . (18)

Fix j 6= i and an integer µ between 1 and µj. Let m := maxi,a
gi(a)

1−βi(a) and consider the
inequality

(1− λ)gi +
(
m− [βiλ(mj)]µ(m + γ)

)
− gi(mj)

1− βi(mj)
(1− [βiλ(mj)]µ) < 0. (19)

Note that gi and gi(mj)

1−βi(mj)
are constants that do not depend on λ. Also, the first and last

term converge to 0 as λ → 1. The second term converges to a negative number. Thus,
there exists λ′′′i such that the inequality in (19) is satisfied for all λ > λ′′′i . Since there are
finitely players j 6= i and finitely many integers µ between between 1 and µj, the threshold
λ′′′i can be chosen independently of j 6= i and µ.

Let λi := max{λ′′i , λ′′′i }, λ′′ := maxi λi, and λ := max{λ′, λ′′}. Take any λ > λ and
α ∈ SIRε(λ). Let {ri

λ}i∈I be the DPSP with wedge γ. By definition, we have viλ(tα) ≥ ε,
for all i ∈ I and t ∈ T . Consider the following strategy σi ∈ Σi for player i: (A) play
αi as long as α was played last period. If player j deviates from (A), then (B) play mj

i for
µj periods, and then (C) play rj

λ thereafter. If player k deviates in phase (B) or (C), begin
phase (B) again with j = k. It remains to show that, given the choice of λ, no player
has an incentive to deviate. We leave this part of the proof, which follows from simple
calculations, as an exercise.

C Convexity of the Feasible Set

Fix an n-player game (A, (gi, βi)i). The next two lemmas establish that the set V ⊂ Rn of
all feasible payoffs is convex, which will be useful in subsequent proofs.

Lemma C18. For every measure σ ∈ ∆(A∞) with finite support, there exists a behavioral strat-
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egy that induces σ.25

Proof. Let {a1, ..., am} ⊂ A∞ be the support of σ ∈ ∆(A∞). W.l.o.g., we can assume
that ak 6= al for every k, l ≤ m. Let Π′t be the partition of S := {1, ..., m} such that k, k̃
belong to an element of Π′t if and only if at

k = at
k̃
, and let Πt be the join of the partitions

Π′0, ..., Π′t. View σ as a probability measure on S and for each t ∈ T , A ∈ Πt, B ∈ Πt+1

such that B ⊂ A, we can define the conditional probability σ(B|A, t). But each B ∈ Πt+1

corresponds to a pure action a ∈ A. We can thus define a mixed action αA,t ∈ ∆(A)

by letting α(a|A, t) = σ(B|A, t). Moreover, each pair (t, A), A ∈ Πt corresponds to a
history in the repeated game. The on-path behavioral strategy “play αt,A in history (t, A)”
induces the distribution σ ∈ ∆(A∞).

Lemma C19. The set of all feasible payoffs is convex.

Proof. Let Vp be the convex hull of v(A∞). Note that the set v(A∞) ⊂ Rn is compact since
A∞ is compact in the product topology and each function vi is continuous. As the convex
hull of a finite-dimensional compact set, Vp is compact as well. By Lemma C18, Vp ⊂ V.
Thus, the proof would be complete if we can show the converse inclusion. Take any Borel
measure σ ∈ ∆(A∞) and let σm ∈ ∆(A∞), m ∈ N, be measures with finite support such
that σm →m σ in the weak∗ topology. By construction, v(σm) ∈ Vp for each m. Since Vp is
compact, v(σ) ∈ Vp and V ⊂ Vp.

We need one more lemma, whose straightforward proof we omit.

Lemma C20. Assume the game is symmetric and take a ∈ A and i, j ∈ I.

1. Under IMI, vi(a) ≥ vj(a) if and only if βi(a) ≤ β j(a).

2. Under DMI, vi(a) ≥ vj(a) if and only if βi(a) ≥ β j(a).

D Proof of Theorem 5.1

Necessity of CI is obvious. Turn to sufficiency. For every η ∈ Rn
+, define the η-face of Vpc

to be the set

F(η) = {v ∈ Vpc : η · v ≥ η · v′ ∀v′ ∈ Vpc}.

Lemma D21. For some η ∈ Rn
++, the set F(η) is not a singleton.

25The lemma is closely related to Kuhn’s theorem. We provide a proof as we are unaware of this particular
formulation.
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Proof. By way of contradiction, suppose F(η) is a singleton for each η ∈ Rn
++. Since Vpc

is a polytope, E := {F(η) : η ∈ Rn
++} is a finite set of extreme points. By CI, the set E is

not a singleton. For every v ∈ E, let N(v) = {η ∈ Rn
++ : F(η) = {v}}. By construction,

each set N(v) is closed in Rn
++ and N(v) ∩ N(v′) = ∅ for all distinct v, v′ ∈ E. But then

{N(v) : v ∈ E} is a finite partition of Rn
++ into disjoint relatively closed subsets, which is

impossible since Rn
++ is connected.

Pick η ∈ Rn
++ such that F(η) is not a singleton. Let I∗ be the set of players i such that

vi 6= v′i for some v, v′ ∈ F(η). For any v in the relative interior of F(η), we are going to
find a feasible payoff v′ such that v′i > vi for all i ∈ I∗ and v′i = vi for all i /∈ I∗. Since
η � 0, such a v′ cannot belong to Vpc, proving the first part of Theorem 5.1. Let v1, ..., vm

be the extreme points of F(η) and a1, ..., am ∈ A be the action profiles that generate them,
so that vi(ak) = vk

i for every i ∈ I and k ≤ m. If v is in the relative interior of F(η),
there are weights ($1, ..., $m) ∈ (0, 1)m such that ∑m

k=1 $k = 1 and v = ∑m
k=1 $kvk. Let

α := ∑m
k=1 $kak ∈ ∆(A) be the mixed action profile such that ak is played with probability

$k. By Lemma 5.1,

vi :=
m

∑
k=1

$kvi(ak) ≤ vi(
m

∑
k=1

$kak) =: vi(α) ∀i ∈ I. (20)

In addition, the inequality is strict if and only if i ∈ I∗, that is, if and only if vi(ak) 6= vi(al)

for some k, l ≤ m.
Next, suppose there is v ∈ Vpc such that v � 0. Let ε > 0 be such that v � ε and

let Vpc
ε be the set of all v′ ∈ Vpc such that v′ ≥ ε. We claim that there is no v ∈ Vpc

ε

such that v ≥ v′ for all v′ ∈ Vpc
ε . If there were, then, by CI, there is i ∈ I and vi ∈ Vpc

such that vi
i > vi. But then for all $ ∈ (0, 1) sufficiently high, $vi + (1− $)vi

i > vi and
$v + (1− $)vi ∈ Vpc

ε , contradicting the definition of v. Next, we can apply Lemma D21
to show that Vpc

ε has a face F(η), with η � 0, that is not a singleton, and the arguments
following the lemma to show that for any v′ in the relative interior of F(η), there is α ∈
∆(A) such that v(α) ≥ v′ and v(α) 6= v′. By construction, v(α) ≥ ε. Hence, by Theorem
4.1, there is λ such that for all λ ≥ λ, v(α) can be sustained in a SPE.

E Proof of Theorem 5.2

The proof of Theorem 5.2 uses strategies in which the public randomization device (PRB)
may recommend distinct mixed actions depending on the state of nature. This allows us to
implement strategies in which, for example, the players follow a path (α0, α1, ...) ∈ (∆A)∞

with some probability $ or (α̂0, α̂1, ...) ∈ (∆A)∞ with probability (1− $). We call such play
random mixed paths (RMP). They can be implemented by letting the PRB be a uniform
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draw from [0, 1]. In the present example, one can first partition [0, 1] into [0, $] and ($, 1],
and then partition the intervals [0, $] and ($, 1] so as to implement the mixed actions α0

and α̂0 respectively.
Note that use of RMPs is not necessary when preferences are standard since the single

mixed path ($α0 + (1− $)α̂0, $α1 + (1− $)α̂1, ...) ∈ (∆A)∞ would deliver an equivalent
payoff. That is,

$vλ(α
0, α1, ...) + (1− $)vλ(α̂

0, α̂1, ...) = vλ($α0 + (1− $)α̂0, $α1 + (1− $)α̂1, ...). (21)

In addition, if the two paths on the left are SIR, so is the RMP on the right.26 What happens
when discounting is endogenous? First, the identity in (21) breaks down. To gain some
intuition why, note that the RMP, whose utility is on left-hand-side of (21), induces a
distribution on A∞ that is autocorrelated and, as the discussion following Theorem 5.1
showed, autocorrelations matter when discounting is endogenous. Also note that, by
Lemmas C18 and C19, any feasible payoff, including that of an RMP, can be replicated
without the use of RMPs. The problem is that when this replication is carried out, it is
difficult to guarantee that play would be SIR. By comparison, if each of the single paths
(α0, α1, ...), (α̂0, α̂1, ...) are SIR, then so is the RMP that randomizes between them.27 This
makes it easy to insure that the payoff attained by an RMP can be attained in a SPE.

We should also remark that RMPs are only used in the proof of Theorem 5.2. In partic-
ular, the off-path punishments we construct in the proof of our folk theorem take the form
of single paths (α0, α1, ...), not RMPs. Moreover, if RMPs appear “on path,” we can use
the same punishments to sustain the behavior in a SPE, provided, of course, that the ap-
propriate SIR constraints are met and the players are sufficiently patient. That is, our folk
theorem extends to the case of RMPs.28 Finally, we note that allowing for RMPs works
against us in Theorem 6.3 since the bounds derived in that theorem have to cover a larger
class of strategies.

Lemma E22. If α ∈ ∆(A) is such that vi(α) > vk(α) and βi(α) < βk(α) for some i, k ∈ I,
then for every η ∈ Rn

+ such that ηk > 0 and every λ, there is α ∈ (∆A)∞ such that η · vλ(α) >

η · v(α). In addition, viλ(α) < vi(α), vkλ(α) > vk(α), and vjλ(α) = vj(α) for all j 6= i, k.

26Consistent with these observations, note that, while using a uniform distribution on [0, 1] as PRB is com-
mon, more minimalist formulations of the standard repeated-game model, such as Myerson [19, p.332], do
not allow the use of RMPs.

27The SIR constraints for the RMP are: (i)$viλ(α
0, α1, ...) + (1− $)viλ(α̂

0, α̂1, ...) ≥ 0 and, for every t > 0,
viλ(αt, αt+1, ...) ≥ 0 and viλ(α̂t, α̂t+1, ...) ≥ 0.

28One can ask whether the use of RMPs could simplify the proof of our folk theorem. We suspect that
the answer is no, as the single paths in the support of an RMP must have properties not unlike those in
Definition B1. In addition, as we noted above, some specifications of the standard model do not allow
for RMPs. Accordingly, we wanted to make sure that our folk theorem covers those cases and generalizes
existing results.
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Proof. Fix λ and η such that ηk > 0. By symmetry, there exists αk ∈ ∆(A) such that
vi(αk) = vk(α), vi(α) = vk(αk), βiλ(αk) = βkλ(α), βiλ(α) = βkλ(αk), and for all j 6= i, k,
vj(α) = vj(αk) and β jλ(α) = β jλ(αk). Since βiλ(α) < βkλ(α), there is T large enough such
that

vk(αk)− vk(α) >
ηi

ηk
[

βiλ(α)

βkλ(α)
]T
(
vi(a)− vi(αk)

)
. (22)

Let α be the path (α0, α1, ...) such that αt = α for all t ≤ T and αt = αk for all t > T.
It follows from (22) that η · vλ(α) > η · v(α). The rest of the (in)equalities follow by
construction.

Lemma E23. Suppose α ∈ ∆(A) is such that for some ε > 0, vmax
j > vj(α) ≥ ε for every j ∈ I

and for some i ∈ I, vi(α) > vk(α) and βi(α) < βk(α) for every k 6= i. Then, for every λ, there
is a payoff v̂λ � v(α). In addition, there is λ such that for all λ ≥ λ, the payoff v̂λ can arise in a
SPE.

Proof. Let amax,i ∈ A be some action such that vi(amax,i) = vmax
i . By Lemma B6, vi(ρα +

(1− ρ)amax,i) > vi(α) ≥ ε for all ρ ∈ (0, 1). Take 0 < ε′ ≤ ε and ρ ∈ (0, 1) close enough to
1 such that

vk(ρα + (1− ρ)amax,i) > ε′ ∀k ∈ I. (23)

Let v := (v1(α), ..., vn(α)), αρ := ρα + (1 − ρ)amax,i, and vρ := (v1(α
ρ), ..., vn(αρ)). By

construction, vρ
i − vi > 0. Fix λ. By Lemma E22, for every k 6= i and η ∈ Rn

++, there is a
payoff vk,η (depending on λ) such that

η · (vk,η − v) > 0, (24)

vk,η
i − vi < 0 < vk,η

k − vk and [vk,η
j = vj ∀j 6= i, k] (25)

Given (25), we can rewrite (24) as

|vk,η
i − vi|

vk,η
k − vk

<
ηk
ηi

. (26)

Choose ηm ∈ Rn
++ such that ηm

k
ηm

i
→m 0. By (26), we must have

|vk,ηm

i − vi|
vk,ηm

k − vk

→m 0. (27)

For each m, let Am be the convex hull of the set {vρ} ∪ {vk,ηm
: k 6= i} and let D := {v′ ∈

Rn : v′j > vj ∀j}. We claim that Am ∩ D 6= ∅ for some m. If not, it follows from the
separating hyperplane theorem that for every m, there is a probability vector ρm ∈ [0, 1]n
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such that

ρm · (vρ − v) ≤ 0 and [ρm · (vk,ηm − v) ≤ 0 ∀k 6= i]. (28)

It follows from the latter inequality and the inequalities in (25) that ρm
i > 0. Fix k 6= i.

Using the equalities in (25), we can rewrite the second inequality in (28) as

ρm
k

ρm
i
≤
|vk,ηm

i − vi|
vk,ηm

k − vk

.

From (27), it follows that ρm
k →m 0 for every k 6= i. But then, ρm · (vρ − v)→m (vρ

i − vi) >

0, contradicting the first inequality in (28), which holds for every m. Thus, Am ∩ D 6= ∅
for some m, which means that there exists a probability vector γ ∈ [0, 1]n such that

v̂λ := γivρ + ∑k 6=i γkvk,ηm � v.

Let αk ∈ (∆A)∞ be the path that generates vk,ηm
. The payoff v̂λ is obtained by the RMP

in which (αρ, αρ, ...) is played with probability γi and each αk ∈ A∞ with probability γk,
k 6= i. For each λ, all paths in the support of the RMP belong to SIRε′(λ). As noted at the
start of the section, Theorem 4.1 guarantees that the RMP can be sustained in a SPE for all
λ sufficiently high.

To complete the proof of Theorem 5.2, take a ∈ A such that vmax
j > vj(a) for every j

and, for some i, vi(a) > vk(a) for all k 6= i. By Lemma C20, βi(a) < βk(a) for all k 6= i.
It follows from Lemma E22 that there are no λ and η ∈ Rn

+ \ {0} such that v(a) belongs
to a face F(η) of V(λ). Since V(λ) is convex, it follows that there is v̂λ ∈ V(λ) such that
v̂λ � v(a). If, in addition, v(a) ≥ ε for some ε > 0, then Lemma E23 shows that we can
choose the Pareto improvements v̂λ such that they can arise in a SPE for all λ sufficiently
high.

F Proof of Theorem 5.3

Let Si be the set of α ∈ ∆(A) such that vi(α) > vk(α) and βi(α) < βk(α) for some k 6= i.
Let Vc

+ be the Pareto frontier of Vc, that is, the set of points v ∈ Vc such that there is no
v′ ∈ Vc such that v′ � v. Also, let ei be the vector in Rn

+ whose ith-coordinate is 1 and all
other coordinates are 0, and note that v(amax,i) ∈ F(ei).

Lemma F24. If α ∈ ∆(A) is such that v(α) ∈ F(ei), then α ∈ Si.

Proof. If a ∈ A is such that v(a) ∈ F(ei), then a ∈ Si by Lemma C20. By Lemma B6,
if α ∈ ∆(A) ∈ F(ei), then every a ∈ supp α is such that v(a) ∈ F(ei). By Lemma C20,
βi(a) = min{βi(a′) : a′ ∈ A} for all a ∈ supp α. By the symmetry of the game, vi(α) ≥
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vk(α) and βi(α) ≤ βk(α). Finally, by CI, for every a ∈ supp α, there is k ∈ I such that
vi(a) > vk(a) and, by Lemma C20, βi(a) < βk(a). It follows that vi(α) > vk(α) and
βi(α) < βk(α) for some k.

Let X be the set of extreme points v of Vc such that v ∈ Vc
+. Let Y := X \ F(ei) and

let Z be the set of v ∈ X ∩ F(ei) such that every open neighborhood O of v intersects
Vc
+ \ F(ei). Suppose Z ∩ cl Y 6= ∅, which one can think of a situation in which the face

F(ei) connects smoothly with the rest of the frontier Vc
+. Let v̂ ∈ Z and ym ∈ Y be such

that ym →m v̂. Let αm be such that v(αm) = ym for each m. Passing onto a subsequence if
necessary, we may assume that αm →m α∗, where v(α∗) = v̂ ∈ Z. By Lemma F24, α∗ ∈ Si

and, hence, αm ∈ Si for some m large enough. By construction, v(αm) belongs to a face
F(η) of the frontier Vc

+ for some η ∈ Rn
+ \ {0, ei}. But, by Lemma E22, v(αm) is not on the

corresponding η-face of V(λ). Thus, Vc ( V(λ). Alternatively, suppose F(ei) connects
nonsmoothly to the rest of the frontier Vc

+. Then, there is v∗ ∈ X belonging to both F(ei)

and a face F(η) of Vc
+ such that η ∈ Rn

+ \ {0, ei}. Again, by Lemma E22, Vc ( V(λ). The
next lemma, an adaptation of Lemma 2.2 in Toth [27], confirms that the two scenarios we
considered are exhaustive.

Lemma F25. If Z \ cl Y 6= ∅, then there is v∗ ∈ X ∩ F(ei) such that N(v∗) is not a singleton.

G Two Player Games: Preliminary Lemmas

This section introduces some preliminary notation and results concerning two player
games which are used in the remainder of the paper. First, when the indices i, j ap-
pear in the same context, it would be understood that i 6= j, i.e., that they refer to the
two distinct players of the game. Fix λ ∈ [0, 1) and η ∈ R2

+. Given a ∈ A∞, define
sλ(a, η) := η · vλ(a) and let P(λ, η) be the set of pure play paths a ∈ A∞ that maximize the
function sλ(·, η). Clearly, P(λ, η) ⊂ P(λ), that is, the paths in P(λ, η) are efficient. Simi-
larly, F(λ, η) denotes the set of payoffs (v1, v2) ∈ V(λ) such that η1v1 + η2v2 ≥ η1v′1 + η2v′2
for all (v′1, v′2) ∈ V(λ). Also, say that η and η′ determine the same direction if there is
ξ > 0 such that η′ = ξη. If true, this implies that P(λ, η) = P(λ, η′). Finally, given a ∈ A∞

and t ≥ 1, let

ηt
λ(a) :=

(
η1

t−1

∏
τ=0

β1λ(aτ), η2

t−1

∏
τ=0

β2λ(aτ)
)
∈ R2

+.

When the path a is clear from the context, we may also write ηt
λ in place of ηt

λ(a).
The next two results are standard and we omit the proofs.
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Lemma G26. If a ∈ P(λ, η), then ta ∈ P(λ, ηt
λ(a)) for all t > 0. Also, if â ∈ P(λ, ηt

λ(a)) for
some t > 0, then (a0, ..., at−1, â) ∈ P(λ, η).

Lemma G27. If a ∈ P(λ, η), a′ ∈ P(λ, η′) and η′i
η′j

> ηi
ηj

, then viλ(a′) ≥ viλ(a) and vjλ(a′) ≤
vjλ(a).

Let AE := {a ∈ A : v1(a) = v2(a)}. For the sake of simplicity, we assume that if
AE 6= ∅, then arg maxa∈AE v1(a) consists of a single element a∗ ∈ AE. The next two
lemmas assume either DMI or IMI.

Lemma G28. For every a ∈ P(λ, η), if a0 ∈ AE, then (a0, a0, ...) ∈ P(λ, η). Moreover,
vλ(1a), vλ(a), vλ(a0) ∈ F(λ, η).

Proof. Under both IMI and DMI, a0 ∈ AE if and only if g1(a0) = g2(a0) and β1λ(a0) =

β2λ(a0). Since β1λ(a0) = β2λ(a0), the direction η1
λ =

(
η1β1λ(a0), η2β2λ(a0)

)
is the same

as η. By Lemma G26, 1a ∈ P(λ, η). Since a = (a0, 1a) ∈ P(λ, η) as well, we have
sλ(a, η) = sλ(1a, η). Since viλ(a) = (1− λ)gi(a0) + βiλ(a0)viλ(1a) and β1λ(a0) = β2λ(a0),
we conclude that

sλ(a, η) = sλ(1a, η) = η1
g1(a0)

1− β1(a0)
+ η2

g2(a0)

1− β2(a0)
= η1v1(a0) + η2v2(a0). (29)

Moreover, since 1a ∈ P(λ, η), it follows that (a0, a0, ...) ∈ P(λ, η). Since the paths 1a, a,
and (a0, a0, ...) are all efficient given η, it follows that vλ(1a), vλ(a), v(a0) ∈ F(λ, η), as
desired.

Lemma G29. Suppose AE 6= ∅. For every a ∈ P(λ, η), if at ∈ AE for some t, then at = a∗.

Proof. If AE is singleton, the result holds trivially. Else take a path a ∈ P(λ, η) and sup-
pose at ∈ AE \ {a∗} for some t. By Lemma G28, (at, at, ...) ∈ P(λ, ηt

λ). However, since
vi(at) < vi(a∗), i ∈ I, we have ηt

1λv1(at) + ηt
2λv2(at) < ηt

1λv1(a∗) + ηt
2λv2(a∗). Thus,

the path (at, at, ...) is strictly Pareto dominated by the path (a∗, a∗...), contradicting the
efficiency of (at, at, ...).

H Proof of Theorem 5.4

Write vc for c(1− β(c))−1 and define vd and vb similarly. Since vd > vc > 0 > vb, IMI
implies β(d) < β(c) < β(b). Given λ, write βλ(d) for λ + (1 − λ)β(d) etc., and note
that βλ(d) < βλ(c) < βλ(b) for all λ. Finally, recall that in the prisoner’s dilemma,
amax,1 = (DC, DC, ...) and likewise for player 2.

Lemma H30. For every i ∈ I, λ ∈ [0, 1) and η ∈ R2
++, we have amax,i /∈ P(λ, η).
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Proof. Since βλ(d) < βλ(b), there is T > 0 large enough such that i’s weight ηi
ηj
[ βλ(d)

βλ(b)
]T is

almost zero. But then amax,i /∈ P(λ, ηT
λ ) and, by Lemma G26, amax,i /∈ P(λ, η).

Lemma H31. For every λ ∈ [0, 1), η ∈ R2
+, and a ∈ P(λ, η), if a0 = CD and a1 = DC, then

aA,2 ∈ P(λ, η). Similarly, if a0 = DC and a1 = CD, then aA,1 ∈ P(λ, η).

Proof. If a ∈ P(λ, η) is such that a0 = CD and a1 = DC, then

η2
λ =

(
η1βλ(b)βλ(d), η2βλ(d)βλ(b)

)
.

Thus, the direction η2
λ is the same as η. By Lemma G26, 2a ∈ P(λ, η) and, hence, sλ(a, η) =

sλ(2a, η). Deduce that

sλ(2a, η) = η1(1− λ)
b + βλ(b)d

1− βλ(b)βλ(d)
+ η2(1− λ)

d + βλ(d)b
1− βλ(b)βλ(d)

= sλ(aA,2, η). (30)

Hence, aA,2 ∈ P(λ, η).

Lemma H32. For every λ ∈ [0, 1), η ∈ R2
+, and a ∈ P(λ, η), if η1

η2
< 1, then v1λ(a) ≤ v2λ(a)

and a0 6= DC; if η1
η2

> 1, then v1λ(a) ≥ v2λ(a) and a0 6= CD.

Proof. It is enough to consider the case when η1
η2

< 1. The inequality v1λ(a) ≤ v2λ(a)
follows directly from the symmetry of the game. To prove the second assertion, suppose
by way of contradiction that a0 = DC. Let T ≥ 1 be the first period t such that at 6= DC.
Such T exists because v1λ(a) ≤ v2λ(a). Suppose aT = CC. Consider the path â such that
ât = DC for all 0 ≤ t < T and ât = CC for all t ≥ T. From Lemma G28, â ∈ P(λ, η). But,
by construction, v1λ(â) > v2λ(â), contradicting the first assertion in the lemma. Thus, aT

can only be CD. But then, by Lemma H31, aA,1 ∈ P(λ, ηT−1
λ (a)). Also,

ηT−1
1λ (a)

ηT−1
2λ (a)

=
[βλ(d)]T−1

[βλ(b)]T−1
η1

η2
≤ η1

η2
< 1,

where the first inequality follows from the fact that βλ(d) < βλ(b). But then v1λ(aA,1) >

v2λ(aA,1), contradicting the first assertion in the lemma. Thus, a0 6= DC.

Next, let aC(0) := aC and for every T ≥ 1, let aC(T) be the path such that at = CD
for all 0 ≤ t < T and Ta = aC. Recall that ηsym := (1, 1) and Psym(λ) := P(λ, ηsym). For
simplicity, write sλ(a) instead of sλ(a, ηsym). The next lemma shows that there is no λ

such that aC(1) ∈ Psym(λ).

Lemma H33. sλ

(
aC(1)

)
< max{sλ(aC), sλ(aA,2)} for all λ ∈ [0, 1).

Proof. By construction, sλ(aC) > sλ

(
aC(1)

)
if and only if

vc >
b + d

1− β(b) + 1− β(d)
. (31)
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If (31) holds, the proof is complete. Suppose that (31) holds with equality. Then,

sλ

(
aC(1)

)
=

2(b + d)
1− β(b) + 1− β(d)

. (32)

Also, since sλ′(aA,2) is decreasing in λ′, we have

sλ(aA,2) > lim
λ′→1

sλ′(a
A,2) =

2(b + d)
1− β(b) + 1− β(d)

. (33)

Combining (32) and (33) gives sλ(aA,2) > sλ

(
aC(1)

)
. Finally, if the strict inequality in (31)

is reversed, then

sλ

(
aC(1)

)
< (1− λ)(b + d) +

(
βλ(b) + βλ(d)

) b + d
1− β(b) + 1− β(d)

=
2(b + d)

1− β(b) + 1− β(d)
< sλ(aA,2).

The equality follows from direct simplification. The last inequality follows from (33).

Consider the inequalities

1 ≤ f (λ) :=
c

1−β(c) − (1− λ) b+βλ(b)d
1−βλ(b)βλ(d)

(1− λ) d+βλ(d)b
1−βλ(b)βλ(d)

− c
1−β(c)

≤

√
βλ(b)
βλ(d)

. (34)

Lemma H34. The inequalities in (34) hold if and only if there is η ∈ R2
+ such that aA,2, aC ∈

P(λ, η), that is, if and only if λ is irregular.

Proof. Suppose aA,2, aC ∈ P(λ, η) for some λ and η ∈ R2
+. If f (λ) < 0, then either aC or

aA,2 is strictly Pareto dominated. If f (λ) ∈ [0, 1), then aC is strictly Pareto dominated by
some path in A. Conclude that f (λ) ≥ 1. Turn to the second inequality. Since aA,2, aC ∈
P(λ, η), Lemma G26 implies that

(
CD, DC, aC) ∈ P(λ, η). By Lemma G26, the paths(

DC, aC) and
(

DC, aA,2) = aA,1 are efficient given the direction
(
η1βλ(b), η2βλ(d)

)
. By

the symmetry of the game, the path
(
CD, aC) and the path

(
CD, DC, aA,2) = aA,2 are

efficient given the direction

η′ :=
(
η2βλ(d), η1βλ(b)

)
. (35)

Thus, the path aA,2 is efficient under both η and η′. By the convexity of the feasible set,
we have η′1

η′2
≤ η1

η2
. Since aA,2, aC ∈ P(λ, η), it must be that

η = (v2λ(aA,2)− vc, vc − v1λ(aA,2)).

Taking this and (35) into account, deduce that η′1
η′2
≤ η1

η2
is equivalent to the second inequal-

ity in (34). Identical arguments show that aA,2, aC ∈ P(λ, η) whenever (34) holds.
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Given a path a ∈ A∞ and some T ∈ T , say that (T, T + 1) is an alternation for a if
aT, aT+1 ∈ {CD, DC} and aT 6= aT+1. In the rest of this section, we fix a regular λ. The
case of irregular λ is deferred until Section L.

Lemma H35. For every η ∈ R2
++ and a ∈ P(λ, η), if (T, T + 1) is an alternation for a, then

at 6= CC for every t ∈ T .

Proof. It is w.l.o.g. to assume that aT = CD and aT+1 = DC. By Lemma H31, aA,2 ∈
P(λ, ηT

λ (a)). Assuming T ≥ 1, we are going to show that at 6= CC for every t < T. If
not, let T′ be the greatest integer k < T such that ak = CC. By Lemma G28, we know that
aC ∈ P(λ, ηT′

λ (a)). The latter is possible only if

vc > v1λ(aA,2). (36)

Otherwise, we would have

vc ≤ v1λ(aA,2) < v2λ(aA,2),

and, hence, aC would be strictly Pareto dominated by aA,2. Next, observe that, by con-
struction, T′ ≤ T − 1. Suppose first that T′ = T − 1. Since aT′ = CC,

(ηT
1λ(a), ηT

2λ(a)) = (ηT′
1λ(a)βλ(c), ηT′

2λ(a)βλ(c)).

Thus, ηT′
λ (a) and ηT

λ (a) determine the same direction and so P(λ, ηT
λ (a)) = P(λ, ηT′

λ (a)).
But then aC, aA,2 ∈ P(λ, ηT

λ (a)), contradicting the regularity of λ. Suppose now that
T′ < T − 1. It is w.l.o.g. to assume that at = CD for all T′ < t < T. Else, there would be
an alternation (k, k + 1) where T′ < k < T and we can use the latter alternation in place
of (T, T + 1). The direction ηT′+2

λ (a) satisfies

(ηT′+2
1λ (a), ηT′+2

2λ (a)) = ((ηT′
1λ(a)βλ(c)βλ(b), ηT′

2λ(a)βλ(c)βλ(d)).

Since βλ(b) > βλ(d), we have ηT′+2
1λ (a)

ηT′+2
2λ (a)

>
ηT′

1λ(a)

ηT′
2λ(a)

. But then, aC ∈ P(λ, ηT′
λ (a)) implies that

v1λ(a′) ≥ vc ∀a′ ∈ P(λ, ηT′+2
λ (a)). (37)

Let â ∈ A∞ be a path such that ât = at = CD for all T′ + 2 ≤ t < T and T â = aA,2.
By Lemma G26, the fact that T′+2a ∈ P(λ, ηT′+2

λ (a)) and aA,2 ∈ P(λ, ηT
λ (a)) implies that

T′+2â ∈ P(λ, ηT′+2
λ (a)). We claim that v1λ(T′+2â) ≤ v1λ(aA,2) < vc. The first inequality

follows since T′+2â begins with a repetitive play of the action profile CD, which hurts
player 1, followed by the more desirable path aA,2. The second inequality follows from
(36). Together, the inequalities contradict (37).

Next, we show that at 6= CC for every t > T + 1. Note that

(ηT+2
1λ (a), ηT+2

2λ (a)) = (ηT
1λ(a)βλ(b)βλ(d), ηT

2λ(a)βλ(d)βλ(b)).
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Thus, ηT
λ (a) and ηT+2

λ (a) determine the same direction, from where we may conclude that
P(λ, ηT

λ (a)) = P(λ, ηT+2
λ (a)). By way of contradiction, suppose first that aT+2 = CC. By

Lemma G28, aC ∈ P(λ, ηT+2
λ (a)). But then, aC, aA,2 ∈ P(λ, ηT

λ (a)), contradicting Lemma
H34. Suppose now that ak = CC for some k > T + 2. Let T′ be the smallest such k. It is
w.l.o.g. to assume that at = DC for all T + 1 < t < T′. Else, there would be an alternation
(k, k + 1) where T < k < T′ and we can use the latter alternation in place of (T, T +

1). Since (T, T + 1) is an alternation, ηT
λ (a) and ηT+2

λ (a) determine the same direction,
from where it follows that P(λ, ηT

λ (a)) = P(λ, ηT+2
λ (a)). If T′ = T + 2, then aT+2 = CC

and Lemma G28 would imply that aC ∈ P(λ, ηT+2
λ (a)). But then aC, aA,2 ∈ P(λ, ηT

λ (a)),
contradicting Lemma H34. Hence, T′ > T + 2. Now, since aT = CD, Lemma H32 shows
that ηT

1λ(a) ≤ ηT
2λ(a). And, since aT+2 = DC, Lemma H32 shows that ηT+2

1λ (a) ≥ ηT+2
2λ (a).

Conclude that both ηT
λ (a) and ηT+2

λ (a) determine the same direction as ηsym. To complete
the proof, suppose first that T′ = T + 3. Hence, aT+3 = CC and, by Lemma G28, we know
that aC ∈ P(λ, ηT+3

λ (a)). Then, by Lemma G26, (DC, aC) ∈ P(λ, ηT+2
λ (a)). But recall that

ηT+2
λ (a) and ηsym determine the same direction. Thus, (DC, aC) ∈ Psym(λ), contradicting

Lemma H33. Alternatively, suppose that T′ > T + 3. Then, aT+2 = aT+3 = DC and,
hence,

ηT+3
λ (a) = (ηT+2

1λ (a)βλ(d), ηT+2
2λ (a)βλ(b)).

Since ηT+2
1λ (a) = ηT+2

2λ (a), we may conclude that ηT+3
1λ (a) < ηT+3

2λ (a). But then, Lemma
H32 shows that aT+3 cannot be DC, a contradiction.

Lemma H36. For every η ∈ R2
++ such that η1 < η2 and every path a ∈ P(λ, η), if a0 = CC,

then a ∈ C2.

Proof. If a = aC, we are done. Suppose that a 6= aC. We are going to show that 1a ∈ C2

and, hence, a ∈ C2. Let T be the first period t such that at 6= CC. Since a0 = CC,
we know that T > 0. By the choice of T, we know that the direction ηt

λ(a) is the same
as η for every 0 < t ≤ T. Since η1

η2
< 1, Lemma H32 shows that aT 6= DC. Thus,

aT = CD. Next, we are going to show that aT+1 = CC. By Lemma H30, the constant path(
CD, CD, ...

)
/∈ P(λ, ηT

λ (a)). Hence, there exists t > T such that at 6= CD. Let T′ be the
smallest such t. By construction, aT′−1 = CD. Since a0 = CC, Lemma H35 implies that
aT′ 6= DC. Else, (T′− 1, T′) would be an alternation for a path that contains CC. Conclude
that aT′ = CC. Next, observe that

(ηT+1
1λ (a), ηT+1

2λ (a)) = (η1[βλ(c)]Tβλ(b), η2[βλ(c)]Tβλ(d)).

Since βλ(b) > βλ(d), we have ηT+1
1λ (a)

ηT+1
2λ (a)

> η1
η2

. Since a0 = CC, Lemma G28 shows that
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aC ∈ P(λ, η). Combining the last two observations, conclude that

v1λ(a′) ≥ vc ∀a′ ∈ P(λ, ηT+1
λ (a)). (38)

Recall that aT′ = CC. By Lemma G28, aC ∈ P(λ, ηT′
λ (a)). Define the path â ∈ A∞

such that ât = at = CD for T + 1 ≤ t < T′ and T′ â = aC. Lemma G26 implies that

T+1â ∈ P(λ, ηT+1
λ (a)). If T′ > T + 1, then v1λ(T+1â) < vc, contradicting (38). Hence,

T′ = T + 1, that is, aT+1 = CC. To summarize, we have shown that for every a ∈ P(λ, η)

such that at = CC for all t < T and aT = CD, we have aT+1 = CC.
Next, we are going to show that, in fact, T+1a = aC. If not, we can find k > T + 1

such that ak 6= CC. Let T′′ be the smallest such k. By the choice of T′′, we know that
ηT′′

λ (a) and ηT+1
λ (a) determine the same direction so that P(λ, ηT+1

λ (a)) = P(λ, ηT′′
λ (a)).

By Lemma G26, T′′a ∈ P(λ, ηT′′
λ (a)). Thus, T′′a ∈ P(λ, ηT+1

λ (a)). But then, by Lemma G26,
ã := (a0, a1, ..., aT, T′′a) ∈ P(λ, η). By construction, ã is such that ãt = CC for all t < T,
ãT = CD, and ãT+1 6= CC, contradicting the first part of the proof.

Lemma H37. For every η ∈ R2
++ and a ∈ P(λ, η), if a0 = CD, and a1 = CC, then 2a /∈ C1.

Proof. If 2a ∈ C1, there is T > 1 such that aT = DC and T+1a = aC. By the choice of
T, we know that ηT

λ (a) and η1
λ(a) determine the same direction, so that P(λ, ηT

λ (a)) =

P(λ, η1
λ(a)). But, by Lemma G26, Ta ∈ P(λ, ηT

λ (a)). Thus, Ta ∈ P(λ, η1
λ(a)). But then, by

Lemma G26, â :=
(
CD,T a

)
=
(
CD, DC, aC) ∈ P(λ, η). Thus, â contains an alternation

followed by a play of CC, contradicting Lemma H35.

Lemma H38. For every a ∈ Psym(λ), if a0 = CD, then a ∈ A.

Proof. Let η := ηsym. Since a0 = CD and βλ(b) > βλ(d),

η1
1λ(a)

η1
2λ(a)

=
η1βλ(b)
η2βλ(d)

=
βλ(b)
βλ(d)

> 1.

Since 1a ∈ P(λ, η1
λ(a)), we can apply Lemma H32 to deduce that a1 ∈ {CC, DC}. If

a1 = CC, it follows from Lemma G28 that aC ∈ P(λ, η1
λ(a)). But then, by Lemma G26,

(CD, aC) ∈ Psym(λ), contradicting Lemma H33. Thus, a1 = DC. Deduce that η2
λ(a) and

η determine the same direction and, by Lemma H31, that aA,2 ∈ P(λ, η). Since (0,1) is an
alternation for the path a, we know from Lemma H35 that at 6= CC for all t > 1. Thus,
a2 ∈ {CD, DC}. By Lemma G26, 2a ∈ P(λ, η2

λ(a)). But, since η2
λ(a) and η determine the

same direction, we have 2a ∈ P(λ, η). We also know that a2 ∈ {CD, DC}. Thus, the same
arguments that showed that a1 = DC now show that a3 ∈ {CD, DC} \ {a2}. Proceeding
like this, conclude that a ∈ A.

Lemma H39. For every η ∈ R2
++ and a ∈ P(λ, η), if a0 = CD and a1 = DC, then a ∈ E2A.
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Proof. Since a0 = CD, it follows from Lemma H32 that η1 ≤ η2. Suppose η1 = η2. We
know from Lemma H38 that a ∈ A and, hence, that a ∈ E2A. Next, suppose η1 < η2.
Since a0 = CD and a1 = DC, η and η2

λ determine the same direction. Hence, η2
1λ < η2

2λ.
Since the path a has an alternation (0, 1), we know from Lemma H35 that at 6= CC for
all t > T. Hence, Lemma H32 implies that a2 = CD. Moreover, since a1 = DC, Lemma
H32 shows that η1

1λ ≥ η1
2λ. If η1

1λ = η1
2λ, we know from Lemma H38 that P(λ, η1

λ) ⊆ A.
Therefore, a ∈ E2A, as desired. Now suppose η1

1λ > η1
2λ. Recall that a1 = DC and

a2 = CD. Thus, η1
λ and η3

λ determine the same direction. As a result, we have η3
1λ > η3

2λ.
Recall that at 6= CC for all t > T. Hence, Lemma H32 implies that a3 = DC. Proceeding
like this, we get η2t

1λ < η2t
2λ and η2t+1

1λ > η2t+1
2λ for all t ∈ T . Lemma H32 implies that

a2t = CD and a2t+1 = DC for all t ∈ T . That is, a = aA,2 ∈ E2A.

Let P++(λ) := ∪η∈R2
++

P(λ, η).

Lemma H40. P++(λ) ⊆ EC ∪ EA.

Proof. First, we show that if a ∈ Psym(λ), then a ∈ A ∪ {aC}. By Lemma G29, DD cannot
be played along any efficient path. Hence, a0 ∈ {CC, DC, CD}. If a0 ∈ {CD, DC}, Lemma
H38 shows that a ∈ A. Alternatively, suppose that a0 = CC. By Lemma G28, the path
aC is efficient. Assume that a 6= aC. Let T be the first period t such that at 6= CC. By
construction, for any t ≤ T, the direction (ηsym)t

λ is the same as ηsym. Thus, Ta ∈ P(λ, η).
W.l.o.g, assume aT = CD. The proof in Lemma H38 shows that aT+1 = DC. Thus,
(T, T + 1) is an alternation for a. Since a0 = CC, Lemma H35 is contradicted. Conclude
that P(λ, ηsym) = {aC}.

Next, take any a ∈ P(λ, η) where 0 < η1 < η2. Since η1 < η2, Lemma H32 shows that
v1λ(a) ≤ v2λ(a) and a0 6= DC. By Lemma G29, DD cannot be played along any efficient
path. Hence, a0 ∈ {CC, CD}. If a0 = CC, Lemma H36 shows that 1a ∈ C2 and, hence,
a ∈ C2. Alternatively, suppose a0 = CD. By Lemma H30, the constant path

(
CD, CD, ...

)
is not efficient. Let T be the first period t such that at 6= CD. Suppose aT = CC. If
ηT

1λ < ηT
2λ, then Lemma H36 shows that Ta ∈ C2. If ηT

1λ = ηT
2λ, we have already shown

that Ta = aC. If ηT
1λ > ηT

2λ, Lemma H36 implies that Ta ∈ C1. Moreover, Lemma H37
implies that at 6= DC for all t > T. Therefore, Ta = aC. Finally, suppose aT = DC.
Lemma H39 shows that T−1a ∈ E2A and, hence, a ∈ E2A.

Lemma H41. If sλ(aC) > sλ(aA,2), then P++(λ) ⊇ EC. Else, P++(λ) ⊇ EA.

Proof. We prove that E2C2 ⊆ P++(λ). Everything else follows from analogous arguments.
Recall the paths aC(T), T ∈ T , defined prior to Lemma H33. Note that aC(T) ∈ E2C2 for
every T. Let η(0) := (1, 1) and, for every T ≥ 1,

η(T) :=
(
v2λ

(
aC(T)

)
− v2λ

(
aC(T − 1)

)
, v1λ

(
aC(T − 1)

)
− v1λ

(
aC(T)

))
.
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First, we are going to show that aC(T) ∈ P(λ, η(T)) for every T ∈ T . The proof is by
induction. From Lemma H40, we know that aC(0) ∈ P(λ, η(0)). Suppose that aC(T) ∈
P(λ, η(T)) for some T > 0. We have to show that aC(T + 1) ∈ P(λ, η(T + 1)). From
Lemma H40, we know that P(λ, η(T + 1)) ⊆ EC. It is therefore enough to show that

sλ

(
aC(T + 1), η(T + 1)

)
≥ sλ

(
a, η(T + 1)

)
∀a ∈ EC. (39)

Observe that, by construction, η1(T+1)
η2(T+1) < 1. Lemma H32 implies that v1λ(a) ≤ v2λ(a) for

all a ∈ P
(
λ, η(T + 1)

)
. Hence, it is enough to show that the inequality in (39) is satisfied

for all paths a ∈ E2C2. First, we verify that the inequality is satisfied for all paths in the
set {aC(T′) : T′ ∈ T } ⊆ E2C2. If T′ > T + 1, then the inequality in (39) is equivalent to

βλ(d) + ... + [βλ(d)]T
′−T−1 ≤ βλ(b) + ... + [βλ(b)]T

′−T−1,

which holds since βλ(d) < βλ(b). If T′ = T, then (39) holds since, by the definition of
η(T + 1), we have

sλ

(
aC(T + 1), η(T + 1)

)
= sλ

(
aC(T), η(T + 1)

)
. (40)

Finally, take T′ < T. By the induction hypothesis, a(T) ∈ P(λ, η(T)) and, hence,

sλ

(
aC(T), η(T)

)
≥ sλ

(
aC(T′), η(T)

)
.

The above inequality is equivalent to

η2(T)
η1(T)

≥ v1λ(aC(T′))− v1λ(aC(T))
v2λ(aC(T))− v2λ(aC(T′))

.

Also, by construction, η2(T+1)
η1(T+1) >

η2(T)
η1(T)

. Hence, we have

η2(T + 1)
η1(T + 1)

>
v1λ(aC(T′))− v1λ(aC(T))
v2λ(aC(T))− v2λ(aC(T′))

. (41)

Combining (40) and (41) yields sλ

(
aC(T + 1), η(T + 1)

)
≥ sλ

(
aC(T′), η(T + 1)

)
, as de-

sired. Now, we are going to show that the inequality in (39) is satisfied for every path
a ∈ E2C2 \ {aC(T′) : T′ ∈ T }. For such a path a, there are periods T∗ < T∗∗ such that CD
is played in all periods t < T∗, CD is played in period T∗∗ as well, and CC is played in all
other periods. Letting $ := 1− [βλ(c)]T

∗∗−T∗ , observe that

vλ(a) = $vλ(aC(T∗)) + (1− $)vλ(aC(T∗ + 1)).

Conclude that (39) holds for all paths a ∈ E2C2 and, hence, that every path aC(T′), T′ ∈ T ,
is efficient. It remains to show that every path a ∈ E2C2 \ {aC(T′) : T′ ∈ T } is efficient.
But, as we just showed, v(a) is a convex combination of v(aC(T)) and v(aC(T + 1)) for
some T. Since aC(T), aC(T + 1) ∈ P(λ, η(T + 1)), we see that a ∈ P(λ, η(T + 1)).
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I Proof of Corollary 5.2

Since (1− λ)b + βλ(b)vc is increasing in λ, we have (1− λ)d < (1− λ)b + βλ(b)vc for
any λ > λ. Take any ε′ such that

(1− λ)d < ε′ ≤ min{ε, (1− λ)b + βλ(b)vc}.

Since a ∈ IRε(λ) and ε′ ≤ ε, we have a ∈ IRε′(λ). Corollary 5.1 implies that a ∈ SIRε′(λ).
To support a in a SPE, consider the following grim trigger strategy σi ∈ Σi for player i:
(A) play at

i in period t as long as at−1 was played last period. After any deviation from
(A), then (B) play DD forever after. If there are any deviations while in phase (B), then
begin phase (B) again. If player i deviates in phase (A) and then conforms, he receives at
most d the period he deviates, and zero afterwards. Thus, his total payoff is no greater
than (1− λ)d and the gain from deviating is less than (1− λ)d − ε′, which is less than
zero by the choice of ε′. Thus, no player has an incentive to deviate in phase (A). Since
playing DD after any history is a SPE, no player wants to deviate in phase (B) either.

J Proof of Theorem 6.1

As in Section G, let AE := {a ∈ A : v1(a) = v2(a)}. For simplicity, we continue to assume
that if AE 6= ∅, then arg maxa∈AE v1(a) consists of a single element a∗ ∈ AE. To state the
next four lemmas, fix λ ∈ [0, 1), η ∈ R2

++, and a ∈ P(λ, η).

Lemma J42. If β1λ(a0) > β2λ(a0), then v1λ(a) > v2λ(a).

Proof. Since β1λ(a0) > β2λ(a0), η1
1λ

η1
2λ

> η1
η2

and, since 1a ∈ P(λ, η1
λ),

v2λ(1a) ≤ v2λ(a) and v1λ(1a) ≥ v1λ(a). (42)

From (9), we know that viλ(a) is a convex combination of vi(a0) and viλ(1a) for every i ∈
I. Thus, the inequalities in (42) are possible only if v2λ(a) ≤ v2(a0) and v1(a0) ≤ v1λ(a).
By Lemma C20, β2λ(a0) < β1λ(a0) implies v2(a0) < v1(a0). Hence, v2λ(a) < v1λ(a).

Lemma J43. If v1λ(a) = v2λ(a), then a = (a∗, a∗, ...).

Proof. By Lemma J42, β1λ(a0) = β2λ(a0) and, hence, a0 ∈ AE by Lemma C20. It follows
that v1λ(1a) = v2λ(1a). Since, 1a ∈ P(λ, η1

λ), the exact same argument shows that a1 ∈ AE

and, inductively, that at ∈ AE for every t. By Lemma G29, a = (a∗, a∗, ...).

The proof of the next lemma follows from similar arguments and is omitted.

Lemma J44. If v1λ(a) < v2λ(a) and a0 ∈ AE, then v1λ(1a) < v1λ(a) and v2λ(1a) > v2λ(a).
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Lemma J45. If β1λ(a0) < β2λ(a0), then β1λ(at) < β2λ(at) for all t > 0.

Proof. Suppose by way of contradiction that there is t such that β1λ(at) ≥ β2λ(at) and let
T be the smallest such t. Since β1λ(at) < β2λ(at) for all t < T,

ηT
1λ(a)

ηT
2λ(a)

=
η1 ∏0≤t<T β1λ(at)

η2 ∏0≤t<T β2λ(at)
<

η1

η2
.

Thus, any path â ∈ P(λ, ηT
λ (a)) should satisfy

v1λ(â) ≤ v1λ(a) and v2λ(a) ≤ v2λ(â).

Also, because β1λ(a0) < β2λ(a0), Lemma J42 implies that v1λ(a) < v2λ(a). Conclude that

v1λ(â) < v2λ(â) ∀â ∈ P(λ, ηT
λ (a)). (43)

By Lemma G26, Ta ∈ P(λ, ηT
λ (a)) and, hence, v1λ(Ta) < v2λ(Ta). By Lemma J42, β1λ(aT) ≤

β2λ(aT). By the choice of T, it must be that β1λ(aT) = β2λ(aT). By Lemma C20, v1(aT) =

v2(aT) so that aT ∈ AE. It follows from Lemmas G28 and G29 that a′ := (a∗, a∗, ...) ∈
P(λ, ηT

λ (a)). But then, v1λ(a′) = v2λ(a′), contradicting (43).

We can now complete the proof of Theorem 6.1. For simplicity, assume that for each
i, the path amax,i ∈ A∞ that attains i’s maximum payoff is unique. If amax,1 = amax,2, then
P(λ) = {amax,1} = {amax,2} for all λ ∈ [0, 1). From now on, assume amax,1 6= amax,2. Take
λ ∈ [0, 1), η ∈ R2

+, and a ∈ P(λ, η). If ηi = 0 and ηj > 0 for some i ∈ I and j 6= i, then
a = amax,j. Thus, assume η ∈ R2

++. If v1λ(a) = v2λ(a), then Lemma J43 shows that a =

(a∗, a∗, ...), as desired. Assume v1λ(a) < v2λ(a). By Lemma J42, β1λ(a0) ≤ β2λ(a0). We
claim that there is T such that β1λ(at) < β2λ(at) for all t > T. If β1λ(a0) < β2λ(a0), Lemma
J45 shows that β1λ(at) < β2λ(at) for all t > 0, as desired. Assume β1λ(a0) = β2λ(a0) and
let T ≥ 1 be the first period t such that β1λ(at) 6= β2λ(at). By Lemma C20, such T exists
since v1λ(a) < v2λ(a). By construction, β1λ(at) = β2λ(at) for every 0 ≤ t < T. Lemma
G29 implies that at = a∗ for every 0 ≤ t < T. Since a0 = a∗, Lemma J44 implies that

v1λ(1a) < v1λ(a) and v2λ(a) < v2λ(1a).

Since, by assumption, v1λ(a) < v2λ(a), conclude that v1λ(1a) < v2λ(1a). Applying
Lemma J44 repeatedly, conclude that v1λ(ta) < v2λ(ta) for every t ≤ T. By Lemma
J42, β1λ(aT) ≤ β2λ(aT) and, by the choice of T, β1λ(aT) < β2λ(aT). By Lemma J45,
β1λ(at) < β2λ(at) for all t > T.

Finally, let B := {a ∈ A : β1λ(a) < β2λ(a)} and l := mina∈B
β2λ(a)
β1λ(a) . By construction,

l > 1 and, for every t ≥ T,

ηt
2λ(a)

ηt
1λ(a)

=
ηT

2λ(a)
ηT

1λ(a)
× ∏

T≤τ<t

β2λ(aτ)

β1λ(aτ)
≥

ηT
2λ(a)

ηT
1λ(a)

× lt−T.
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Since l > 1, lt−T → +∞ as t → +∞. Thus, player 2’s relative weight ηt
2λ(a)

ηt
1λ(a)

increases to

infinity. Conclude that there is some T′ such that T′a = amax,2, completing the proof.

K Proof of Theorem 6.3

In Appendix E, we constructed a SIR payoff v using a random mixed path (RMP) and
highlighted that it is an open question whether v could be generated by a single, SIR path
(α0, α1, ...) ∈ (∆A)∞. Accordingly, we want the bounds posited by Theorem 6.3 to cover

payoffs from RMPs and, in fact, from any SIR strategy σ. Fixing λ, we thus let ŜIR
0
(λ) be

the set of all SIR strategies σ ∈ Σ given λ. Similarly, we let P̂(λ, η) be the set of strategies

σ ∈ ŜIR
0
(λ) that maximize η1v1 + η2v2 and let P̂(λ) := ∪η∈R2

+
P̂(λ, η). Of special interest

would be strategies σ′ in which play in periods t ≥ 1 is independent of what transpired
in period t = 0. Such strategies can be written in the form (α, σ), where α ∈ ∆(A) is the
action played in period t = 0, strategy σ is played starting from period t = 1. Given the
independence of period-0 history, we get

viλ(α, σ) = (1− βiλ(α))vi(α) + βiλ(α)viλ(σ),

which is an analogue of (9). We also have the following analogue of Lemma G26:

Lemma K46. If (α, σ) ∈ P̂(λ, η), then σ ∈ P̂(λ, η′) where η′i = βiλ(α)ηi.

The next lemma shows that in the prisoner’s dilemma, the conclusions of Lemma C20
extend to mixed actions.

Lemma K47. Under DMI, βi(α) ≥ β j(α) if and only if vi(α) ≥ vj(α).

Proof. Recall that d > b and, under DMI, β(d) > β(b). Hence, β1(α) ≥ β2(α) if and only
if α(DC) ≥ α(CD) if and only if g1(α) ≥ g2(α). Combining these equivalences gives the
desired conclusion.

Lemma K48. If (α, σ) ∈ P̂(λ), then αcon ∈ ŜIR
0
(λ). In addition, if β1(α) = β2(α), then

α = CC.

Proof. If βi(α) = β j(α), then vλ(α, σ) is a convex combination of v(α) and vλ(σ). More-
over, by Lemma K47, vi(α) = vj(α). Thus, (vc, vc) ≥ v(α) and, unless α = CC, some
convex combination of (vc, vc) and vλ(σ) would strictly Pareto dominate vλ(α, σ). Sup-
pose that β1(α) < β2(α). If (α, σ) ∈ P̂(λ, η), we know from Lemma K46 that σ ∈ P̂(λ, η′)

where η′i = βiλ(α)ηi. Since η′1
η′2

< η1
η2

, we must have v1λ(σ) ≤ v1λ(α, σ). This implies that
v1(α) ≥ v1λ(α, σ) ≥ 0. Also, by Lemma K47, v2(α) > v1(α) ≥ 0.
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Lemma K49. max{v2(α) : αcon ∈ ŜIR
0
(λ)} = v2(α

0,2) > vc.

Proof. Let $∗ ∈ (0, 1) be such that v1($
∗CD + (1− $∗)DC) = 0. Direct calculations show

that

v2(α
0,2) = c(d− b)(c(1− β(d))− b(1− β(c)))−1

v2($
∗CD + (1− $∗)DC) = (d2 − b2)(d(1− β(d)− b(1− β(b))−1

It is immediate that v2(α
0,2) > vc. To show the other assertion, it is enough to show

that v2(α
0,2) > v2($

∗CD + (1− $∗)DC). Using DMI and the above expressions, the latter
inequality can be reduced to (6).

Given strategies σ, σ′ ∈ Σ and $ ∈ [0, 1], let $σ + (1− $)σ′ be the strategy in which
the period-0 public randomization device determines whether the players follow σ or σ′,
with the probability of the former being $. The construction is analogous to that of an
RMP in Appendix E. As in that context, note that

viλ($σ + (1− $)σ′) = $viλ(σ) + (1− $)viλ(σ
′).

Also, if σ, σ′ ∈ ŜIR
0
(λ), then $σ + (1− $)σ′ ∈ ŜIR

0
(λ). Finally, any strategy σ̂ can be

expressed as a distribution over strategies of the form (α, σ). To state the next lemma, let

v∗2λ := max{v2λ(σ) : σ ∈ ŜIR
0
(λ)}.

Lemma K50. If σ ∈ ŜIR
0
(λ) is such that v2λ(σ) = v∗2λ, then v1λ(σ) = 0.

Proof. If v1λ(σ) > 0, then for some $ ∈ (0, 1), the strategy $(CD, σ) + (1− $)σ would

belong to ŜIR
0
(λ) and v2λ($(CD, σ) + (1− $)σ) > v2λ(σ), contradicting v2λ(σ) = v∗2λ.

Recall that F0
2 is the linear segment connecting v(α0,2) and (vc, vc). Let R be the

ray originating at (vc, vc) and passing through v(α0,2), and let F2(λ) := {vλ(σ) : σ ∈
P̂(λ) and v2λ(σ) ≥ v1λ(σ)}. The next two lemmas collect several facts about the geome-
try of the feasible set (under DMI). The simple, but tedious, proofs are omitted.

Lemma K51. vλ(CD, α0,2) ∈ R. Also, if σ ∈ Σ is such that v1λ(σ) = 0 and vλ(σ) =

$vλ(CD, σ) + (1− $)(vc, vc) for some $ ∈ (0, 1), then v2λ(σ) = v2(α
0,2). Finally, if v1λ(σ) =

0 and v2λ(σ) > v2(α
0,2), then vλ(CD, σ) lies strictly below the ray originating from (vc, vc) and

passing through vλ(σ).

Lemma K52. If (α, σ) is such that vi(α) < vj(α) and viλ(σ) > vjλ(σ), then vλ(α, σ) lies
strictly below the straight line passing through v(α) and vλ(σ).

53



Lemma K53. If v∗2λ = v2λ(α, σ) for some strategy (α, σ) ∈ ŜIR
0
(λ), then v∗2λ = v2(α

0,2).
Moreover, if v∗2λ = v2(α

0,2), then F2(λ) = F0
2 .

Proof. Lemmas K48 and K49 show that v∗2λ = v2(α
0,2). Assuming the latter, suppose that

for some σ ∈ ŜIR
0
(λ), vλ(σ) ∈ F2(λ) \ F0

2 . Since vλ(CD, α0,2) ∈ R, there is $ ∈ (0, 1) such

that $(CD, α0,2) + (1− $)σ ∈ ŜIR
0
(λ) and v2λ($(CD, α0,2) + (1− $)σ) > v2(α

0,2) = v∗2λ,
a contradiction.

If v∗2λ cannot be attained by a strategy of the form (α, σ), then it must be attainable by
a strategy σ̂ = $(α′, σ′) + (1− $)(α, σ) where v1λ(α

′, σ′) < 0 < v1λ(α, σ) and σ′, (α, σ), σ ∈
ŜIR

0
(λ). Also, there must be some direction η ∈ R2

+ such that σ̂, (α, σ) ∈ P̂(λ, η). Let L(η)
be the linear segment connecting vλ(σ̂) and vλ(α, σ), and note that L(η) is a part of the
frontier F2(λ) that is orthogonal to η. By Lemma K46, σ ∈ P̂(λ, η′), where η′i = βiλ(α)ηi.

Case 1: Suppose v2(α) > v1(α). By Lemma K47, β2(α) > β1(α) and η′1
η′2

< η1
η2

. It follows
that vλ(σ) = vλ(σ̂) and w.l.o.g. that we can express σ̂ as $(α′, σ′) + (1− $)(α, σ̂). Note
that α(DD) = 0. Otherwise, replacing DD with CC in α would lead to a strict Pareto
improvement, contradicting the fact that v2λ(σ̂) = v∗2λ. With this in mind, observe that

vλ(α, σ̂) = α(CD)vλ(CD, σ̂) + α(CC)vλ(CC, σ̂) + α(DC)vλ(DC, σ̂). (44)

Let L be the line passing through (vc, vc) and vλ(σ̂). By construction, vλ(CC, σ̂) ∈ L. By
Lemma K52, vλ(DC, σ̂) is below the line connecting v(DC) and vλ(σ̂), and hence, below
L. Finally, by Lemma K51, vλ(CD, σ̂) is on or below L. Moreover, vλ(CD, σ̂) ∈ L if and
only if v2λ(σ̂) = v2(α

0,2). Putting everything together, we see from (44) that vλ(α, σ̂) ∈
P̂(λ) is possible only if v2λ(σ̂) = v2(α

0,2) and α(DC) = 0. By Lemma K53, F2(λ) = F0
2 .

Case 2: Suppose v2(α) = v1(α), which implies that α = CC. We claim that the fron-
tier F2(λ) is linear. If vλ(σ) = (vc, vc), then vλ(α, σ) = (vc, vc) and the claim follows. If
v1λ(σ) < vc, then v1λ(σ) < v1λ(CC, σ) = v1λ(α, σ). Thus, vλ(σ) belongs to the linear
segment L(η) connecting vλ(σ̂) and vλ(α, σ). But since α = CC, vλ(α, σ) lies on a lin-
ear segment L′ connecting (vc, vc) and vλ(σ). Putting everything together, we see that
vλ(σ) 6= vλ(CC, σ) and vλ(σ), vλ(CC, σ) ∈ L(η) ∩ L′. This implies that L′ ⊂ L(η) and,
hence, that the frontier F2(λ) is a single linear segment connecting vλ(σ̂) with (vc, vc).

It remains to show that vλ(σ̂) = v(α0,2). Since F2(λ) is linear and since vλ(σ̂) is a
convex combination of vλ(α

′, σ′) and the point vλ(α, σ) ∈ F2(λ), vλ(α
′, σ′) must lie on the

line L′′ defined by F2(λ). As before,

vλ(α
′, σ′) = α′(CC)vλ(CC, σ′) + α′(CD)vλ(CD, σ′) + α′(DC)vλ(DC, σ′). (45)

We know that σ′ ∈ P̂(λ).
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Case 2.1: Suppose vλ(σ
′) = $vλ(σ̂) + (1− $)(vc, vc) for some $ ∈ [0, 1]. Then, we have

vλ(CC, σ′) ∈ F2(λ). By Lemma K52, vλ(DC, σ′) is below the line connecting v(DC) and
vλ(σ

′), and, hence, below L′′. By construction, it is also the case that

vλ(CD, σ′) = $vλ(CD, σ̂) + (1− $)vλ(CD, aC).

By Lemma K51, vλ(CD, σ̂) is on or below L′′. Moreover, vλ(CD, σ̂) ∈ L′′ if and only if
vλ(σ̂) = v(α0,2). Direct verification shows that vλ(CD, aC) is below the line connecting
(vc, vc) and v(α0,2). Summarizing, we see from (45) that vλ(α

′, σ′) ∈ L′′ if and only if
vλ(σ̂) = v(α0,2).

Case 2.2: Let σ̌ be the symmetric analogue of σ̂ so that, in particular, viλ(σ̌) = vjλ(σ̂).
Suppose vλ(σ

′) = $vλ(σ̌) + (1− $)vc for some $ ∈ [0, 1). We are going to obtain a con-
tradiction, which would effectively complete the proof of Theorem 6.3. Recall that, by
definition, v∗2λ = v2λ(σ̂) and note that vλ(CD, σ̂) = (b, d + β(d)v∗2λ) and vλ(CD, σ̌) =

(b + β(b)v∗2λ, d). Since v1λ(α
′, σ′) < 0, deduce from (45) that v1λ(CD, σ′) < 0 and, hence,

that v1λ(CD, σ̌) = b + β(b)v∗2λ < 0.
Next, let R̂ be the ray originating at (vc, vc) and passing through vλ(CD, σ̂) and let Ř

be the ray originating at (vc, vc) and passing through vλ(CD, σ̌). The slopes of these rays
are respectively:

Š := (d− vc)/(b + β(b)v∗2λ − vc) and Ŝ := (d + β(d)v∗2λ − vc)/(b− vc)

Since vλ(σ
′) = $vλ(σ̌) + (1− $)(vc, vc), deduce that |Š| ≥ |Ŝ| and that v2λ(CD, σ̌) = d >

vc. The latter, together with the fact that v∗2λ > vc and b + β(b)v∗2λ < 0, implies that the
inequality |Š| ≥ |Ŝ| is equivalent to

v∗2λ ≥
1

β(b)β(d)
[vcβ(b) + vcβ(d)− β(b)d− β(d)b]. (46)

Since aC is a first-best outcome, we know that 2vc ≥ v∗2λ. Combining the latter with (46)
and simplifying gives

vd − vc

vc − vb
≥ β(d)

β(b)
.

It follows from DMI that (vd − vc)/(vc − vb) > 1, but this contradicts (6).

L When Both Intra- and Inter-temporal Cooperation are Efficient

This section describes the Pareto set for irregular λ, i.e., such that aA,2, aC ∈ P(λ). Let
CA1 be the set of paths a ∈ A∞ such that at ∈ {CC, DC, CD} for every t and, in addition,
at = DC for some t if and only if at+1 = CD. If we let X := CC and Y = (DC, CD),
we can identify CA1 with the Cartesian product {X, Y}∞. Define CA2 analogously, with
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the difference that CD is played in period t if and only if DC is played in period t + 1.
Note that aC, aA,i ∈ CAi, i ∈ I. Let CA := CA1 ∪ CA2. Define ECA1 to be the set of
paths such that DC is played until some period T ≥ 0 and Ta ∈ CA. Define ECA2

analogously and let ECA := ECA1 ∪ ECA2. Next, let X := CC, Y := (DC, CD), and
Z := (CD, DC). Let CAM := {X, Y, Z}∞ and identify CAM with a subset of A∞ in the
obvious manner. Observe that CA1 ∪ CA2 ⊆ CAM. Also, for any path a ∈ CAM, a ∈
Psym(λ) if and only if sλ(aA,2) = sλ(aC). Define ECAM

1 to be the set of paths such that DC
is played until some period T ≥ 0 and Ta ∈ CAM. Define ECAM

2 analogously. Finally, let
ECAM := ECAM

1 ∪ ECAM
1 . The proof of the next theorem parallels that of Theorem 5.4

and is omitted.

Theorem L1. Suppose (34) holds. If the first inequality is strict, P(λ) = ECA∪{amax,1, amax,2};
else, P(λ) = ECAM ∪ {amax,1, amax,2}.
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