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Decision Making under Uncertainty: An Experimental
Study in Market Settings

Federico Echenique Taisuke Imai Kota Saito ∗

Abstract

We design and implement a novel experimental test of subjective expected utility theory
and its generalizations. Our experiments are implemented in the laboratory with a student
population, and pushed out through a large-scale panel to a general sample of the US popu-
lation. We �nd that a majority of subjects’ choices are consistent with maximization of some
utility function, but not with subjective utility theory. The theory is tested by gauging how
subjects respond to price changes. A majority of subjects respond to price changes in the
direction predicted by the theory, but not to a degree that makes them fully consistent with
subjective expected utility. Surprisingly, maxmin expected utility adds no explanatory power
to subjective expected utility.

Our �ndings remain the same regardless of whether we look at laboratory data or the
panel survey, even though the two subject populations are very di�erent. The degree of
violations of subjective expected utility theory is not a�ected by age nor cognitive ability,
but it is correlated with �nancial literacy.

∗Echenique: Division of the Humanities and Social Sciences, California Institute of Technology,
fede@hss.caltech.edu. Imai: Department of Economics, LMU Munich, taisuke.imai@econ.lmu.de. Saito:
Division of the Humanities and Social Sciences, California Institute of Technology, saito@caltech.edu.
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1 Introduction

We present an empirical investigation of the most widely used theories of decision under uncer-
tainty, including subjective expected utility and maxmin expected utility. We consider economic
environments, where an agent has to choose a portfolio of state-dependent payo�s, given state
prices and a budget. Such environments are ubiquitous in economic theory, where agents choose
a portfolio of Arrow-Debreu securities in complete markets. In our study, we record subjects’
choices in a laboratory setting, and in a large-scale �eld panel. In consequence, we obtain results
for very di�erent populations, ranging from undergraduate students to older retirees, acting in
economic environments that resemble real-world �nancial decisions. Our data allows us to see
if subjects’ demographic characteristics, such as age, income, and education, as well as cognitive
ability and �nancial literacy, are related to how well they comply with the theories. We can also
relate the results of our experiment to traditional measures of ambiguity aversion. Finally, ex-
periments speak to the external validity of laboratory studies, since we can compare behaviors
in the lab to the behaviors of a sample of the general US population.

Subjective expected utility theory (SEU; Savage, 1954) is the standard model of decision mak-
ing under uncertainty (that is, where states of the world are uncertain, and no objective prob-
abilities are known). The theory postulates an agent that has a subjective probabilistic belief
over states of the world, and who maximizes the expected utility with respect to this belief. The
starting point of our analysis is a methodological innovation: a nonparametric test for SEU using
data on market choices (Echenique and Saito, 2015). Our experiments were conducted with the
purpose of recreating the economic settings that are commonly assumed in economic theory: the
choice of a �nancial state-contingent portfolio under uncertainty, and with an eye to using the
new nonparametric tests to gauge the empirical performance of SEU.

While SEU is the dominant theory of choice under uncertainty, it is well known to face em-
pirical challenges. In an in�uential paper, Ellsberg (1961) suggested that many agents would not
conform to SEU. The phenomenon he uncovered, known as the “Ellsberg paradox,” suggests that
agents may seek to avoid betting on uncertain events in ways that cannot be represented with
a subjective probability. Such avoidance of uncertain bets is termed ambiguity aversion. The
Ellsberg paradox is based on a thought experiment, however, using bets on drawing a particular
colored ball from an urn. The Ellsberg paradox therefore assumes an abstract, arti�cial, choice
environment. One of our contributions is to empirically assess SEU in an economic environment
that resembles the real-world �nancial markets where economists routinely assume that SEU
guides agents’ choices.
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To account for the Ellsberg paradox, researchers have developed generalizations of SEU.
Gilboa and Schmeidler (1989) suggest that an agent in Ellsberg’s example may have too little
information to form a unique subjective belief, and hence entertains multiple subjective proba-
bilities. Being ambiguity averse, the agent maximizes the minimal expected utility over all sub-
jective probabilities she entertains. The resulting theory is called maxmin expected utility (MEU).
On the other hand, Machina and Schmeidler (1992) postulate that agents may have a unique sub-
jective probability, but not necessarily decide according to the expected utility with respect to the
probability. Such agents are called probabilistically sophisticated.

Our understanding of ambiguity aversion is incomplete. It has been identi�ed in di�erent
contexts, and in di�erent subject populations (Trautmann and van de Kuilen, 2015); but the liter-
ature has relied almost exclusively on the paradigm introduced by Ellsberg (1961), where agents
are o�ered bets on the color of balls drawn from urns whose composition is not fully speci�ed.
The simple binary choice structure of Ellsberg makes it easy to identify violations of SEU through
violations of the so-called “sure-thing principle” (postulates P2 and P4 of Savage, 1954). But the
arti�cial nature of the experiment may question the external validity of its �ndings. Despite its
di�culty, designing choice environment that are more “natural,” while providing clean identi�ca-
tion, is an important task in the empirical literature on ambiguity aversion (Baillon et al., 2018b).
In our paper, we investigate deviations from SEU and MEU in economic environments, combin-
ing a novel experimental paradigm and measurement techniques that are inspired by recent work
on revealed preference theory. We are also able to partially test for probabilistic sophistication.

Echenique and Saito (2015) provide a necessary and su�cient condition for an agent’s behav-
ior in the market to be consistent with (risk-averse) SEU. Chambers et al. (2016) provide a similar
condition for MEU when there are two states of the world. Echenique et al. (2018) characterize
“approximate” SEU by relaxing conditions in the model. These revealed preference character-
izations provide nonparametric tests for SEU and MEU as well as a measure quantifying “how
much” a dataset deviates from these theories. While the cited studies focus mostly on establishing
theoretical revealed preference conditions, the main motivation of the current paper is to bring
the theoretical machinery to actual choices people make in the face of uncertainty. Our empirical
approach is nonparametric in the sense that we do not impose any speci�c functional form, such
as CRRA or CARA. We do assume that agents are risk averse or risk neutral (they have a concave
von-Neumann-Morgenstern utility).

The theoretical revealed preference results assume data on an agent’s behavior in the market:
meaning a collection of purchases of Arrow-Debreu securities at di�erent budget constraints.
This setting naturally translates into our proposed experimental design, which follows the spirit
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of portfolio choice tasks introduced by Loomes (1991) and Choi et al. (2007), and later used in
many other studies (e.g., Ahn et al., 2014; Carvalho and Silverman, 2019; Choi et al., 2014; Hey
and Pace, 2014). Subjects in our experiment are asked to allocate “tokens” into two accounts. Each
account has an associated exchange rate which converts tokens into actual monetary rewards.
These exchange rates de�ne a budget set. Two accounts correspond to two mutually exclusive
events, and subjects are told that they receive payment based on the chosen allocation, and on the
realized event. Importantly, subjects are provided no information regarding the probabilities of
these events. We generate uncertainty from two di�erent sources. The �rst source is the classical
Ellsberg-style “urns and balls.” The second source comes from simulated stock prices.

As said, we ran our experiments in the laboratory where we used undergraduate students as
subjects, and on a large-scale panel where we recruited representative of the US population. See
Section 2.2 for details.

1.1 Overview of Results

Our main �ndings are that: 1) subjects are consistent with utility maximization and probabilistic
sophistication, but not SEU1; 2)MEUhas no added explanatory power to SEU; 3) demand responds
to price in the direction predicted by SEU, but not enough to make the data consistent with
SEU; 4) subjects in the lab and in the panel display the same patterns; and 5) correlations with
demographics exist but are limited.

The main purpose of our study was to nonparametrically test theories of decision under un-
certainty. We �nd that most subjects are utility maximizers (they satisfy the Generalized Axiom
of Revealed Preference), and satisfy Epstein’s (2000) necessary condition for probabilistic sophis-
tication. But the news is not good for the more restrictive theories. In our experiments, across
lab and panel, the vast majority of subjects do not conform to SEU. This �nding would be in line
with the message of the Ellsberg paradox, except that pass rates for MEU are just as low as for
SEU. In fact, in all of our sample, only one subject’s choice is consistent with MEU but not SEU.

Onemight conjecture that the theories could be reconciledwith the data if one allows for small
mistakes, but our measures of the distance of the data to being rationalizable do not suggest so. A
more forgiving test is to check if price changes are negatively correlated with quantity changes:
we refer to this property as “downward-sloping demand,” and it bears a close connection to SEU
(see Echenique et al. (2018) for details). The vast majority of subjects exhibit the downward-
sloping demand property, at least to some degree (meaning that the correlation between price and

1Since we check a necessary condition for probabilistic sophistication, we can only say that subjects are not
inconsistent with probabilistic sophistication. See Section 3.
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quantity changes is negative), but not to the extent needed to make them fully consistent with
SEU. The downward-sloping demand property is strongly correlated with our measure of the
distance between the data and SEU, so there is a precise sense in which the degree of compliance
with downward-sloping demand can be tied to the violations of SEU.2

Our panel experiment allows us to compare the distance to SEU between subjects with di�er-
ent sociodemographic characteristics. We �nd that distance to SEU is correlated with �nancial
literacy, with more �nancially literate subjects being closer to SEU than less literate subjects; and
gender di�erences, with males being closer to SEU than females. A notable �nding is the absence
of a signi�cant correlation with factors that have been shown to matter for related theories of
choice (Choi et al., 2014; Echenique et al., 2018). In particular, older subjects, subjects with lower
educational backgrounds, and subjects with lower cognitive ability, do not necessarily exhibit
lower degrees of compliance with SEU.

One �nal implication of our results is worth discussing. Our experiments included a ver-
sion of the standard Ellsberg question. The distance to SEU, or the degree of compliance with
downward-sloping demand, are not related to the answers to the Ellsberg question, but the vari-
ability of uncertainty in our market experiment is. The experiments included a treatment on the
variability of the uncertain environment, speci�cally the variability in the sample paths of the
stock price whose outcomes subjects were betting on. Subjects who were exposed to more vari-
able uncertainty seem less ambiguity averse (in the sense of Ellsberg) than subjects who were
exposed to less variable uncertainty.

1.2 Related Literature

Starting with an in�uential thought experiment by Ellsberg (1961), many studies have tested SEU
and relatedmodels of decisionmaking under uncertainty using data from laboratory experiments.
Trautmann and van de Kuilen (2015) provide an overview of this large but still growing empir-
ical literature. Typical experiments involve “urns and colored-balls” following Ellsberg’s (1961)
original thought experiment, and individual’s attitude towards ambiguity is inferred by looking
at valuations or beliefs elicited through a series of binary choices (e.g., Abdellaoui et al., 2011;
Baillon and Bleichordt, 2015; Chew et al., 2017; Epstein and Halevy, 2019; Halevy, 2007). Other
studies try to parametrically estimate the models under consideration (e.g., Ahn et al., 2014; Dim-
mock et al., 2015; Hey et al., 2010; Hey and Pace, 2014). Unlike these studies, our approach is
nonparametric, imposing no assumptions on functional form other than risk-aversion. While

2Echenique et al. (2018) contain a detailed discussion.
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the use of arti�cially generated ambiguity as in Ellsberg-style urns and balls has attractive fea-
tures that make the interpretation of choice behavior, and experimental implementation, simple,
it has been argued that researchers should not rely too much on a paradigm that uses an arti�cial
source of ambiguity. Instead, one should study more “natural” sources of ambiguity.3 In response
to these concerns, several studies use non-arti�cial sources of ambiguity such as stock market in-
dices and temperature (Abdellaoui et al., 2011; Baillon and Bleichordt, 2015; Baillon et al., 2018a).
Baillon et al. (2018b) introduce a method that elicits ambiguity attitudes for natural events while
controlling for unobservable subjective likelihoods.

It is also important to note that there are several studies that try to understand the relationship
between sociodemographic characteristics, ambiguity attitudes, and real-world behavior (espe-
cially �nancial).4 This is a subset of a growing empirical literature that seeks to understand
the common foundation of a wide class of (behavioral) preferences and to relate cross-/within-
country heterogeneity and cultural or sociodemographic characteristics (e.g., Bianchi and Tallon,
2019; Bonsang and Dohmen, 2015; Dimmock et al., 2015, 2016a,b; Dohmen et al., 2018; Falk et al.,
2018; Hu�man et al., forthcoming; Sunde and Dohmen, 2016; Tymula et al., 2013).

Finally, the analysis of our data uses theoretical tools developed and discussed in Chambers
et al. (2016), Echenique and Saito (2015), and Echenique et al. (2018). They require coupling SEU
and MEU with risk-aversion. The methods in Polisson et al. (2017) avoid the assumption of risk-
aversion, but are computationally hard to implement in the case of SEU (their paper contains an
application to objective EU, for which their method is e�cient). Polisson et. al. also develop a test
for �rst-order stochastic dominance in models with known (objective) probabilities. Their test
could be seen as a �rst step towards an understanding of probabilistic sophistication.

2 Experimental Design

Weconducted experiments at the Experimental Social Science Laboratory (ESSL) at the University
of California, Irvine (hereafter the lab), and on the Understanding America Study (UAS) panel,

3For example, Camerer and Weber (1992) note that: “Experimental studies that do not directly test a speci�c
theory should contribute to a broader understanding of betting on natural events in a wider variety of conditions
where information is missing. There are diminishing returns to studying urns!” (p. 361). Similarly, Gilboa (2009)
writes: “David Schmeidler often says, ‘Real life is not about balls and urns.’ Indeed,important decisions involve war
and peace, recessions and booms, diseases and cures” (p. 136).

4Trautmann and van de Kuilen (2015) note the importance of this direction: “Interestingly, the empirical literature
has so far provided little evidence linking individual attitudes toward ambiguity to behavior outside the lab. Are those
agents who show the strongest degree of ambiguity aversion in some decision task also the ones who are most likely
to avoid ambiguous investments?” (p. 89).
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T���� 1: Order of the tasks.

Platform Treatment Task 1 Task 2 Task 3 Task 4

Laboratory Large volatility Market-stock Market-Ellsberg Standard Ellsberg Survey
Small volatility Market-stock Market-Ellsberg Standard Ellsberg Survey

Panel Large volatility Market-stock Standard Ellsberg — —
Small volatility Market-stock Standard Ellsberg — —

a longitudinal survey platform (hereafter the panel).5 The general structure of tasks in the lab
and in the panel were the same. We shall �rst in Section 2.1 describe the basic tasks, which were
common to the lab and the panel experiments. Then in Section 2.2 we turn to the features that
were unique to each. Further details and instructions are presented in the online appendices D
and E.

2.1 Tasks

We �rst describe the two basic tasks used in our experiments: the market task (also referred to
as the allocation task), and the Ellsberg two-urn choice task. The market task has two versions,
depending on the source of uncertainty. The exact set of tasks di�ered somewhat depending on
the platform: the lab or the panel. Table 1 summarizes the lab and the panel experiments.

Market task. Themarket task is meant to represent the most basic economic problem of choice
under uncertainty. An agent chooses among Arrow-Debreu commodities, given state prices and
a budget. Experimental implementations of such portfolio choice problems were introduced by
Loomes (1991) and Choi et al. (2007), and later used in Ahn et al. (2014), Choi et al. (2014), and
Hey and Pace (2014), among others.

Uncertainty is represented through a state space � = {�1,�2,�3}. For each choice problem
there are two relevant events, denoted by E

s

, s = 1, 2. Events are sets of states, which are lumped
together in ways that will be clear below. The events E1 and E2 are mutually exclusive. Sub-
jects are endowed with 100 (divisible) tokens in each round. An event-contingent payo� may be
purchased at a price, which experimentally is captured through an “exchange value.” Exchange
values, denoted z

s

, s = 1, 2, relate tokens allocated to an event, and monetary outcomes. Given
exchange values (z1, z2), subjects are asked to decide on the allocation of tokens, (a1,a2), between

5Our experiment was approved by the Institutional Review Board of California Institute of Technology (#15-
0478). It was then reviewed and approved by the director of ESSL and the board of UAS. The module number of our
UAS survey is 116.
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E

1
1 E

1
2

E

2
1 E

2
2

State of the world

Type 1 event partition

Type 2 event partition

B Y R

Token value $0.36 $0.24

Token 30 70

Account value $10.80 $16.80

B Y R

Token value $0.40 $0.50

Tokens 75 25

Account value $30.00 $12.50

F����� 1: (Left) Event structure in two types of questions. (Right) Illustration of the allocation table for a
type 1 question (top) and a type 2 question (bottom).

the two events. A subjects who decides on an allocation (a1,a2) earns xs = a

s

⇥ z

s

if event E
s

oc-
curs. The sets of exchange values (z1, z2) used in the experiments are presented in Table D.1 in
online appendix.

An allocation (a1,a2) of tokens is equivalent to buying a xs units of an Arrow-Debreu security
that pays $1 per unit if event E

s

holds, from a budget set satisfying p1x1 + p2x2 = I , where prices
and income (p1,p2, I ) are determined by the token exchange values (z1, z2) in the round.6

Our design deviates from the other studies mentioned above by introducing a novel event
structure. There are three underlying states of the world: �

i

, i = 1, 2, 3, and we introduce two
types of questions. In Type 1 questions, event 1 is E11 = {�1} and event 2 is E12 = {�2,�3}. In
Type 2 questions, event 1 is E21 = {�1,�2} and event 2 is E22 = {�3}. See Figure 1 for an illustration.
This event structure requires SEU decision makers to behave consistently not only within each
type of questions but also across two types of questions.

The design allows us to examine one aspect of SEU rationality, monotonicity of choice.7 The
monotonicity follows from the fact that SEU rational agent should consider event E21 is more
likely than event E11 and, hence, the agent should allocate more tokens on event E21 than on event
E

1
1 if the prices are the same. We present a more detailed discussion later in the paper.
Subjects in our experimentsmake decisions through a computer interface. The allocation table

on the computer screen contains all the information subjects need to make their decisions in each
6We set p1 = 1 (normalization) and p2 = z1/z2. Then, the income is given by I = 100 ⇥ z1.
7Hey and Pace’s (2014) design is the closest to ours. In their experiment, uncertainty was generated by the colors

of balls in the Bingo Blower and subjects were asked to make 76 allocation decisions in two di�erent types. In the
�rst type of problems, subjects were asked to allocate between two of the colors. In the second type, they were
asked to allocate between one of the colors and the other two. Note that the motivation of Hey and Pace (2014) is a
parametric estimation of leading models of ambiguity aversion.
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question; see right panels in Figure 1. The table displays exchange values (z1, z2) for the current
question, their current allocation of tokens (a1,a2), and implied monetary value of each account,
referred to as the “account value,” (a1 ⇥ z1,a2 ⇥ z2). Subjects can allocate tokens between two
events using a slider at the bottom of the screen; every change in allocation is instantaneously
re�ected in the allocation table.8

An important feature of our design is that we implement the task under two di�erent sources
of uncertainty. Subjects face two versions of the market task, as we change the source of uncer-
tainty. In the �rst version, called “market-Ellsberg”, uncertainty is generatedwith an Ellsberg urn.
In the second version, termed “market-stock”, uncertainty is generated through a stochastic pro-
cess that resembles the uncertain price of a �nancial asset, or amarket index. Themarket-Ellsberg
version follows Ellsberg (1961), and the empirical literature on ambiguity aversion (Trautmann
and van de Kuilen, 2015). Subjects are presented with a bag containing 30 red, yellow, and blue
chips, but they are not told anything about the composition of the bag. The three states of the
world are then de�ned by the color of a chip drawn from the bag: state 1 (�1) corresponds to
drawing a blue chip, state 2 (�2) corresponds to drawing a yellow chip, and state 3 (�3) corre-
sponds to drawing a red chip.

In the market-stock task, uncertainty is generated through the realization of simulated stock
prices. Subjects are presented with a history of stock prices, as in Figure 2.9 The chart shows
the evolution of a stock price for 300 periods; the next 200 periods are unknown, and left blank.
Subject are told that prices are determined through a model used in �nancial economics to ap-
proximate real world stock prices. They are told that the chart represents the realized stock price
up to period 300, and that the remaining periods will be determined according to the same model
from �nancial economics. Let the price at period 300 be the “starting value” and the price at period
500 be the “target value.” We de�ne three states, given some threshold R 2 (0, 1): �1 = (R,+1),
in which the target value rises by more than 100R% compared to the starting value (see the blue
region in the �gure), �2 = [�R,R], in which the price varies by at most 100R% between the start-
ing value and the target value (the yellow region in the �gure), and �3 = [�1,�R), in which the
target value falls by more than 100R% compared to the starting value (the red region in Figure 2).

8Tokens are divisible (the slider moves in the increment of 0.01). This ensures that the point on the budget line
which equalizes the payouts in the two events (i.e., on the 45-degree line) is technically feasible.

9We used a Geometric Brownian Motion to simulate 100 stock price paths that share the common starting price
and the time horizon. After visually inspecting the pattern of each price path, we handpicked 28 paths and then
asked workers on Amazon Mechanical Turk what they believed the future price of each path would be. The elicited
belief distributions were then averaged across subjects. Some price paths, especially those with clear upward or
downward trends, tend to be associated with skewed distributions. Others have more symmetric distributions. We
thus selected two relatively “neutral” ones from the latter set for the main experiment. See online appendix D.2.

9



?

100

150

200

250

300

0 100 200 300 400 500
Period

Pr
ic
e

F����� 2: Source of uncertainty in the market-stock task.
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F����� 3: Set of 20 budgets.

We chose token exchange values (z1, z2) for each question to increase the power of our tests.
After running several choice simulations to calculate the power of our tests, we select 20 budgets
(10 for type 1, 10 for type 2) shown in Figure 3 (and Table D.1 in online appendix). Note that event 1
is “more likely” in type 2 decision problems since E11 ✓ E

2
1. In constructing budget sets, we made

assets in account 1 more “relatively expensive” than assets in account 2 in type 2 questions. This
is re�ected in the steeper slope of the budget lines presented in Figure 3.

Several remarks about our experimental design are in order. First, we use the movement of
stock prices as a source of uncertainty, not balls and urns. We are not the �rst to use �nancial
information as the source of uncertainty (see Abdellaoui et al., 2011; Baillon and Bleichordt, 2015;
Baillon et al., 2018a), but it is rare in the experimental literature. Second, subjects were allowed to
make fractional allocations of tokens between accounts. Our fractional allocation design sought
to mimic choices from a continuous budget line, as in the theoretical models we try to test. Third,
we asked two types of allocation decisions. This makes our task demanding for subjects, but
it creates a powerful environment for our revealed preference analysis, and allows for natural
within-subject comparisons.

Ellsberg two-urn choice task. In addition to the market task described above, we presented
our subjects with a standard two-urn version of Ellsberg’s (1961) choice question. The purpose
of including this standard task is to compare the behavior of subjects in the di�erent designs. By
this comparison, we can investigate how traditional evaluations of ambiguity aversion relate to
market choices, and see if the market setting a�ects subjects’ attitude toward uncertainty.

Subjects confront two bags: bag A and bag B, each of which contains 20 chips. They receive
the following information: Bag A contains 10 orange chips and 10 green chips. Bag B contains 20
chips, each of which is either orange or green. The number of chips of each color in bag B is
unknown to them, so there can be anywhere from 0 to 20 orange chips, and anywhere from 0
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to 20 green chips, as long as the total number of orange and green chips sums to 20.
Subjects were o�ered choices between bets on the color of the chip that would be drawn at

the end of the experiment. Before choosing between bets, subjects were �rst asked to choose
a �xed color (orange or green; called “Your Color”) for which they would be paid if they chose
certain bets. They were then asked three questions.10

The �rst question asks to choose between a bet that pays $X+b if the color of the ball drawn
from bag A is “Your Color” (and nothing otherwise), and a bet that pays $X if the color of a ball
drawn from bag B is “Your Color” (and nothing otherwise). Similarly, the second question asks to
choose between a bet that pays $X if the color of the ball drawn from bag A is “Your Color,” and a
bet that pays $X if the color of a ball drawn from bag B is “Your Color”. Finally, the third question
asks to choose between a bet that pays $X if the color of the ball drawn from bag A is “Your Color”
and a bet that pays $X+b if the color of a ball drawn from bag B is “Your Color”. The payo� X

and the bonus b depended on the platform: (X, b) = (10, 0.5) in our lab study and (X, b) = (100, 5)
in the panel. In our lab experiments, the content of bag B had already been determined at the
beginning of the experiment by an assistant. The timing is important to ensure that there is no
incentive to hedge (Baillon et al., 2015; Saito, 2015; Epstein and Halevy, 2019). The subjects were
allowed to inspect the content of each bag after completing the experiment.

Post-experiment survey. In the lab experiment, subjects were asked to �ll out a short survey
asking for their age, gender, major in college, the three-item cognitive re�ection test (CRT; Fred-
erick, 2005), and strategies they employed in the allocation tasks if any (see online appendix D.3).
In the panel study, subjects answered a standard questionnaire that the Understanding America
Study (UAS) asks of all its panelist households.

2.2 Implementation

Interface. We prepared an experimental interface that runs on a web browser. In the panel
study, our interface was embedded in the survey page of the UAS. Therefore, subjects in both the
lab and panel experiments interacted with the exact same interface.

Recruiting and sampling. Subjects for our lab study were recruited from a database of under-
graduate students enrolled in the University of California at Irvine. The recruiting methodology

10We adopted the three-question setting akin to Epstein and Halevy (2019), as a way of identifying strict ambiguity
preferences. The typical Ellsberg-style experiment would ask only one question, namely the second one.
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F����� 4: Context of market information: large volatility (left) and small volatility (right).

for the UAS survey is described in detail in the survey website.11 Within the UAS sample, we
drew a strati�ed random sub-sample with the aim of obtaining a representative sample of sub-
jects in di�erent age cohorts. In particular, we recruited subjects in three age groups: from 20 to
39, from 40 to 59, and 60 and above, randomly from the pool of survey participants. The purpose
of stratifying the sample was to be able to assess the relation between age and pass rates for our
revealed preference tests.

Treatments. In the market-stock task, we prepared two simulated paths of stock prices with
di�erent degree of volatility, so that one path seems relatively more volatile than the other, while
keeping the general trend in prices as similar as possible between the two paths. Since the percep-
tion of volatility is only relative, we embed each path in the common market “context” as shown
in Figure 4. Here, the bold black lines indicate the stock under consideration, and the other lines
in the background are the same in the two treatments.

Our treatment variation is the perceived volatility of simulated stock prices (we call the two
treatments Large and Small). The subjects were randomly assigned to either a large volatility
condition (left panel in Figure 4), or a small volatility condition (right panel).12 The instructions
for the market-stock task included one of the two charts of Figure 4, depending on the treatment
(see online appendix E).

Order of the tasks. Subjects in the lab study performed three tasks in the following order:
market-stock, market-Ellsberg, and standard Ellsberg. Subjects in the Panel study performed two
tasks, market-stock and standard Ellsberg, but due to time constraints we did not implement
market-Ellsberg in the panel. Table 1, which has a summary of the structure of the experiments

11https://uasdata.usc.edu/index.php.
12In the lab study, random assignment to one of the two treatments was done at the session level, meaning that

all subjects in the same session were shown the same price path.
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and treatments, lists the order in which the tasks were completed.

Incentives. In the lab study, we used the standard incentive structure of paying-one-choice-
at-random. Subjects received a sealed envelope when they entered the laboratory room. The
envelope contained a piece of paper, on which two numbers were written. The �rst number indi-
cated the task number, and the second number indicated the question number in that task. Both
numbers were randomly selected beforehand. At the end of the experiment, subjects brought the
envelope to the experimenter’s computer station. If the selected task was the market task with
stock price information, the simulated “future” price path was presented on the screen. If, on the
other hand, the selected task involved the Ellsberg urn, the subject was asked to pick one chip
from the relevant bag. All subjects received a $7 showup fee.

In the panel study, four subjects were randomly selected to receive the bonus payment based
on their choices in the experiments. Unlike the lab study, the bonus payment for these subjects
was determined by a randomization implemented by the computer program, but payments were
of a much larger scale. All subjects received a participation fee of $10 by completing the entire
survey.

3 Results

This section presents results from the lab and the panel. For each dataset, we �rst discuss the
basic patterns of subjects’ choices, and then proceed to present our revealed preference tests.

3.1 Results from the Lab

We conducted seven experimental sessions at the Experimental Social Science Laboratory (ESSL)
of the University of California, Irvine. A total of 127 subjects (62 in treatment Small and 65 in
treatment Large; age mean = 20.16, SD = 1.58; 35% male) participated in the study.13 Each
session lasted about an hour, and subjects earned on average $21.3 (including a $7 showup fee,
SD = 9.21).

13Three additional subjects participated in the study, but we excluded their data from the analysis. One subject
accidentally participated in two sessions (thus, the data from the second appearance was excluded). Two subjects
spent signi�cantly longer time for each decision than anyone else. They had to be eliminated from our data, because
they were delaying the experiment for the rest of the subjects in their session. We distributed the instructions for
each task of the experiment just before they were to perform that task, so each subject would had to wait until all
the other subjects in the session completed the task. We had to “nudge” the two subjects that were extremely slow,
and hence eliminated their choices from our data.
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Choices in themarket tasks. In the twomarket tasks, subjects face the same set of 20 budgets
in random order, with the exception of two budgets for which the order was �xed (see below). The
choices made by about three-quarters of the subjects are positively correlated between the two
tasks (Figure C.1 in online appendix), and 36% of those subjects exhibited signi�cantly positive
correlation (one-sided, p < 0.05).

Subjects faced budgets in random order, with one exception. The exception is that we pre-
pared two consecutive questions: questions #5 and #6, that had the same budget, butwith di�erent
event structures. These were the only questions that were not presented in random order. We
included them to check that subjects had a basic understanding of the task. The 5th question was
presented as a type 1 question while the 6th question was presented as a type 2 question. Since
the event upon which the �rst account pays o� is a larger set in question #6 than in question #5
({�1} = E

1
1 ✓ E

2
1 = {�1,�2} by construction), while prices and budget remain the same, subjects

should allocate more to the �rst account in question #6 than in question #5: we term this property
monotonicity of allocation with respect to event structure.

More than 70% of the subjects satis�ed monotonicity with respect to event structure, and this
number increased to 90% if we allow for a small margin of error of �ve tokens. Moreover, choices
are clustered around the allocation which equalizes payout from the two accounts, which can be
interpreted as the subjects’ ambiguity aversion. See Figure C.2 in online appendix.

As Echenique et al. (2018) discuss in depth, the empirical content of expected utility is cap-
tured in part by a negative relation between state prices and allocations: a property that can be
thought of as “downward-sloping demand.” We thus look at how subjects’ choices responded to
price variability between budgets; in particular, we focus on the relation between price ratios,
log (p2/p1), and allocation ratios, log (x2/x1), pooling choices from all subjects. Figure 5 shows a
negative relation between these two quantities, con�rming the downward-sloping demand prop-
erty at the aggregate level. It holds for both types of questions and in both tasks.

We also quantify the degree of compliance with the downward-sloping demand property at
the individual level by calculating correlation �

dsd between log (p2/p1) and log (x2/x1).14 A sig-
ni�cant majority of the subjects made choices that responded to prices negatively (�dsd < 0;
Figure C.3 in online appendix).

Revealed preference tests. Did the subjects in our experiment make choices that are con-
sistent with basic economic models of utility maximization, including the standard subjective

14Let �t be the (Spearman’s) correlation coe�cient in type t questions. We obtain the “average” correlation coef-
�cient, �dsd, by Fisher’s z-transformation �

dsd = tanh
�Õ2

t=1 tanh
�1(�t )/2

�
.
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F����� 5: Downward-sloping demand in the market-stock task (A) and the market-Ellsberg task (B). Each
dot represents mean log (x2/x1) at each log (p2/p1) and bars indicate standard error of means.

T���� 2: Pass rates.

GARP PS SEU MEU

Market-stock 0.5827 0.4803 0.0000 0.0000
Market-Ellsberg 0.6693 0.6220 0.0157 0.0157

Note: Since Epstein’s (2000) condition is only necessary for probabilistic sophistication, the numbers reported here
capture the fraction of the subjects who are not inconsistent with probabilistic sophistication.

expected utility (SEU) theory? In order to answer this question, we implement nonparametric,
revealed-preference tests on each individual subject’s choice data. These tests include: GARP,
probabilistic sophistication (hereafter PS; Machina and Schmeidler, 1992), SEU (based on and ex-
tended from Echenique and Saito, 2015), and MEU (based on Chambers et al., 2016).

Recall that depending on how we partition the state space, we have two types of decision
problem. For GARP and PS, we �rst test each type of problem separately and then combine the
results. We say that a subject’s data satis�es GARP if it passes the GARP test for both types.
Similarly, we say that a subject’s data is not inconsistent with PS if it is not inconsistent with
PS in the sense of Epstein’s (2000) condition for both types, and satis�es monotonicity of allo-
cation with respect to event structure. For SEU and MEU, we implement the test directly on the
data combining two types of problems. It is not obvious that this can be done: see the online
appendices A and B for details.

Table 2 presents the pass rate of each test. That is, the fraction of subjects (out of 127) who
passed each test. We �nd that a majority of subjects satisfy GARP, meaning that their choices are
consistent with maximization of some utility function. On the contrary, subjects clearly did not
make choices that are consistent with SEU. The SEU pass rates are below 0.1, and not a single
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T���� 3: Distance measures.

CCEI e⇤ (SEU) e⇤ (MEU)

Task Mean Median SD Mean Median SD Mean Median SD

Market-stock 0.9805 1.0000 0.0450 0.8508 0.8238 0.3749 0.8448 0.8148 0.3784
Market-Ellsberg 0.9892 1.0000 0.0317 0.7631 0.6931 0.3834 0.7605 0.6931 0.3839

agent passed the SEU test in the market-stock task.15

Perhaps surprisingly, allowing for multiple priors via MEU does not change the result. Pass
rates for MEU are the same as for SEU, implying thatMEU does not capture violations of SEU in our
experiment. These �ndings are consistent with data from the experiment in Hey and Pace (2014):
see Chambers et al. (2016), which performs the same kind of analysis as we do in the present
paper for Hey and Pace’s (2014) data.

Finally, we look at PS to investigate whether observed behavior is (in)consistent with prefer-
ences being based on probabilities, using the necessary condition proposed by Epstein (2000) and
checking monotonicity of allocation in questions #5 and #6. We �nd that 48% to 62% of subjects
are not inconsistent with PS.

Distance measures. The Critical Cost E�ciency Index (CCEI; Afriat, 1972) is a measure of the
degree of compliance with GARP. It is heavily used in the recent experimental literature to gauge
how close subjects are to being rational economic agents (e.g., Choi et al., 2014). In our lab data,
the average CCEI is above 0.98, which implies that on average budget lines needed to be shifted
down by about two percent to eliminate a subject’s GARP violations (Table 3). The CCEI scores
reported in Table 3 are substantially higher than those reported in Choi et al. (2014), but close to
the CCEI scores in Choi et al. (2007). This would seem to indicate a higher level of compliance
with utility maximizing behavior than in the 2014 experiment, and about the same as the 2007
experiment. Note, however, that there are several substantial di�erences in the settings and the
designs between the two aforementioned studies and ours. We had two types of events (other
studies typically have one �xed event structure), each type involved 10 budgets (i.e., total 20 bud-
gets) while the aforementioned studies had 25 and 50 budgets respectively. Importantly, objective
probabilities were not provided in our study.

The pass rates for SEU are very small, but it is possible that small mistakes could account
15Along similar lines, Echenique et al. (2018) �nd that only �ve out of more than 3,000 participants in three online

surveys (Carvalho et al., 2016; Carvalho and Silverman, 2019; Choi et al., 2014) make choices that are consistent with
objective expected utility theory.
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F����� 6: Comparing e⇤ across tasks.

for a subjects’ violation of SEU. We turn to a measure of the severity of violatios of SEU. Ta-
ble 3 reports e⇤ (minimal e), a measure of the degree of deviation from SEU theory proposed by
Echenique et al. (2018). The number e⇤ comes from a perturbation to the model that allows SEU
to accommodate the data: It can be interpreted as the size of a utility perturbation that can ra-
tionalized the observed choices. Thus, the number e⇤ is zero if a choice data is consistent with
SEU, meaning that no perturbation is needed to rationalize the data by means of SEU, but takes a
positive value if it violates SEU. The larger is e⇤, the larger is the size of the perturbation needed
to rationalize the data by means of a perturbed version of SEU. See Echenique et al. (2018) for
details.

One basic �nding from our experiments is that the joint e⇤ (i.e., calculated from data combin-
ing both types of questions) in the market-stock task is signi�cantly higher than in the market-
Ellsberg task (paired-sample t-test; t(126) = 2.635, p = 0.009). See also Figure 6A. This �nding
suggests that subjects made choices that were closer to SEU when the source of information was
an Ellsberg urn than when the source was a stock price, but the result has to be quali�ed because
the order of the two market tasks was not counterbalanced.

As we mentioned above, subjects’ choices in the two market tasks are correlated (Figure C.1).
This correlation is re�ected in the degree of violation of SEU—Figure 6B shows that e⇤ from two
tasks are highly correlated (Spearman’s correlation coe�cient: r = 0.406 for treatment Large,
r = 0.583 for treatment Small).

We also �nd that e⇤ and the downward-sloping demand property (speci�cally, the aggregate
correlation coe�cient between price and quantity, as described above) are closely related; see
Figure C.5. The subjects’ e⇤ tend to be large when their choices do not respond to price changes,
indicating larger deviation from SEU. This is particularly true when the subjects are choosing
allocations that are close to the 45-degree line in order to hedge against uncertainty. On the
contrary, CCEI can be (close to) one even when choices are not responding to price changes
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F����� 7: (A) Probability of choosing a risky bet in each question in the standard-Ellsberg task in the lab
data. Bars indicate standard errors of means. (BC) LOESS curves relating e⇤ and ambiguity attitude.

(Figure C.6). The connection between e⇤ and downward sloping demand (and the disconnection
with CCEI) is natural. Compliance with SEU requires a certain kind of downward sloping demand
property (Echenique and Saito, 2015). Our subjects largely display responses to the price that go
in the direction predicted by SEU, but not to the degree that the theory demands.

Table 3 also shows that the data is not much closer to MEU than to SEU. The MEU model has
little added explanatory power beyond SEU. In other words, the way in which subjects’ choices
deviate from SEU is not captured by the MEU model. In MEU, agents’ beliefs can depend on
choices, as in the perturbation of the SEU model behind our e⇤ calculation. However, in MEU, the
dependency is speci�c: beliefs are chosen so as to minimize expected utility. Our �nding suggests
that subjects’ belief may depend on choices, but not determined pessimistically. Therefore, the
MEU model cannot explain the subjects’ choices better than SEU; the needed size of perturbation
for MEU is not much lower than that of SEU.

We do not observe gender di�erences on e⇤. We do, however, observe an e�ect of cognitive
ability as measured with the three-item Cognitive Re�ection Test (CRT; Frederick, 2005). Subjects
who answered all three questions correctly exhibit lower e⇤ than those who answered none of
them correctly. This e�ect is statistically signi�cant only in the market-stock task (Figure C.7,
Table C.2).

Ambiguity attitude. Finally, we look at the relation between behavior in the market tasks
and subjects’ attitudes toward ambiguity, measured with a standard Ellsberg-paradox design. As
explained in Section 2.1, we asked three questions regarding choices between an ambiguous bet
and a risky bet to identify subjects’ attitude toward ambiguity. Figure 7 shows the frequency with
which subjects preferred to bet on the risky urn, for each question.
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In the �rst question, the risky bet pays an additional $0.5 in case of winning. This bonus
made almost all (95.3%) subjects choose the risky bet. The third question has instead a bonus for
choosing the ambiguous bet, which then pays an additional $0.5 in case of winning. A little more
than half of the subjects (61.5% in the Large treatment, 53.2% in the Small treatment) preferred the
risky bet, but the di�erence from 50% (i.e., indi�erence at the aggregate level) is not signi�cantly
large (z-test for proportion; p = 0.063 in the Large treatment and p = 0.612 in the Small treat-
ment). In the second question, which pays the equal winning prize in the two bets (as in many
other Ellsberg-style studies), subjects in the Small treatment chose the risky bet more frequently
than those in the Large treatment (61.5% in the Large treatment and 73.0% in the Small treatment;
two-sample z-test for proportion, p = 0.031).

We classify subjects as weakly ambiguity averse if they chose the risky bet, both in the �rst
and in the second question (68.5% of the subjects). Similarly, we classify subjects as strictly am-
biguity averse if they chose the risky bet in all three questions (44.1% of the subjects). In order
to connect the deviation from SEU captured by e⇤ and a measure of ambiguity attitude standard
in the literature, we nonparametrically estimate how the probability of being classi�ed as ambi-
guity averse depends on e⇤. Figure 7BC suggest a weak but quadratic relationship between these
two. Ambiguity aversion is the leading explanation for violations of SEU, so our �nding may
seem counterintuitive. One might instead expect a monotonic relation between e⇤ and ambiguity
aversion. It is, however, important to emphasize that e⇤ captures any deviation from SEU. Not
only those that could be traced to ambiguity aversion.

3.2 Results from the Panel

A total of 764 subjects (age mean = 50.26, SD = 15.45; 50.39% male) completed the study. The
median survey length was 29.1 minutes. In addition to $10 baseline payment for completing the
survey, four randomly selected subjects received additional payment from one of the choices they
made during the survey (average $137.56).

We tried to get subjects to do our experiment on a desktop or laptop computer, but a signi�cant
proportion of them took it with their mobile devices—such as smartphones or tablets. These
devices usually have screens that are smaller than desktop/laptop computers, which makes it
quite di�cult to understand our experiments, and perform the tasks we request them to complete.
We thus analyze the data following three inclusion criteria, (i) desktop/laptop computer only
(66%), (ii) desktop/laptop computer and tablet (76%), and (iii) all devices combined. We treat the
�rst as the “core” sample. Table 4 provides summary statistics of individual sociodemographic
characteristics across the three inclusion criteria. We present the entire sample as well as the core
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F����� 8: Downward-sloping demand. Each dot represents mean log (x2/x1) at each log (p2/p1) and bars
indicate standard error of means.

sample (those who used desktop/laptop computers), and the excluded sample (those who did not
use desktop/laptop computers). It is evident that the type of device used is correlated with some
of the demographic variables (age: �

2(2) = 17.79, p < 0.001; education level: �

2(3) = 53.70,
p < 0.001; income level: �

2(4) = 43.97, p < 0.001). The sub-samples of subjects exhibited
markedly di�erent patterns of behavior as well. Throughout the rest of the paper, we analyze
data from the core sample.16

The set of 20 budgets used in the market task is the 10-times scaled-up version of the one used
in the lab (Figure 3). This keeps the relative prices the same between our two studies, making the
distance measure e⇤ comparable between data from the lab and the panel.17

We start by checking the monotonicity of allocations with respect to event structure, along
the lines of our discussion for the lab experiment. Our subjects’ choices on questions 5 and 6 are
informative about how attentive they are when they perform the tasks in our experiment. We
�nd that about 60% of subjects satisfy monotonicity, and that this number jumps to 78% if we
allow for a margin of error of �ve tokens (see Figure C.8). There are no treatment di�erences.
Our subjects also made choices that are, to some extent, responding to underlying price changes
(Figure 8).

Revealed preference tests, distancemeasures, and ambiguity attitude. The pass rates for
GARP, SEU and MEU presented in Table 5 are very similar to those of our lab data. We �nd high
GARP pass rates, but very low rates for SEU and MEU. Importantly, MEU does not have more
explanatory power than SEU: there is no room for additional rationalizations by allowing for
multiple priors (only one non-SEU subject is rationalized by MEU). High compliance with GARP

16Results from the same analyses on the entire subjects, or comparison across sub-samples, are available upon
request.

17The distance is measured in units of relative price.
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T���� 4: Sociodemographic information.

Device

Variable All Desktop/laptop Other

Gender
Male 0.504 0.529 0.456

Age group
20-39 0.319 0.279 0.395
40-59 0.353 0.345 0.369
60- 0.327 0.375 0.236

Education level
Less than high school 0.258 0.190 0.388
Some college 0.219 0.200 0.255
Assoc./professional degree 0.187 0.200 0.163
College or post-graduate 0.336 0.410 0.194

Household annual income
-$25k 0.211 0.148 0.331
$25k-$50k 0.258 0.246 0.281
$50k-$75k 0.202 0.230 0.148
$75k-$150k 0.262 0.297 0.194
$150k- 0.068 0.080 0.046

Occupation type
Full-time 0.497 0.509 0.475
Part-time 0.102 0.100 0.106
Not working 0.401 0.319 0.418

Marital status
Married/live with partner 0.690 0.713 0.646

# of obs. in the sample 764 501 263

pushes the average CCEI score above 0.97 (Table 6). The average e⇤ of 0.907 is not statistically
di�erent from the average 0.878 in the lab study (two-sample t-test, t(626) = 0.772, p = 0.441). As
in our lab study, we �nd that e⇤ and how well choices respond to prices are positively associated
(Figure C.10). Subjects who violated monotonicity with respect to event structure (monotonicity
in questions #5 and #6) for more than �ve-token margin have signi�cantly higher e⇤ on aver-
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T���� 5: Pass rates.

Treatment N GARP PS SEU MEU

Large variance 245 0.4492 0.3945 0.0122 0.0122
Small variance 256 0.4367 0.3959 0.0156 0.0195

Combined 501 0.4431 0.3952 0.0140 0.0160
Note: Since Epstein’s (2000) condition is only necessary for probabilistic sophistication, the numbers reported here
capture the fraction of the subjects who are not inconsistent with probabilistic sophistication.

T���� 6: Distance measures.

CCEI e⇤ (SEU) e⇤ (MEU)

Treatment N Mean Median SD Mean Median SD Mean Median SD

Large variance 245 0.9720 0.9950 0.0509 0.8974 0.9309 0.3740 0.8927 0.9163 0.3765
Small variance 256 0.9688 0.9958 0.0552 0.8868 0.9062 0.3820 0.8852 0.9062 0.3829

Combined 501 0.9704 0.9954 0.0531 0.8920 0.9163 0.3778 0.8888 0.9163 0.3794

age (mean 0.999 vs. 0.881, two-sample t-test, t(499) = 2.925, p < 0.01), but the di�erence is
not signi�cant when we do not allow for this margin (mean 0.928 vs. 0.894, two-sample t-test,
t(499) = 0.988, p = 0.324). Among the subjects who satis�ed (exact) monotonicity with respect
to event structure, the larger the di�erence between tokens allocated in two questions becomes,
the higher e⇤ becomes (Spearman’s correlation coe�cient r = 0.127, p = 0.024). So there is some
evidence that the degree of violation of monotonicity in questions #5 and #6 is related to the
magnitude of deviation from SEU.

The pattern of choices in the standard-Ellsberg task is also similar to what we observed in
the lab data, but the overall frequency with which the risky bet is chosen is smaller. In particular,
only 70% of the subjects (regardless of treatment) chose the risky bet in the �rst question, in
which the risky bet pays a $5 more than the ambiguous bet in case of winning (note that almost
everybody chose the risky bet in the lab, albeit with a reward magnitude that is 1/10th of what
we used in the panel). There are thus 44% (26%) of subjects who are weakly (strictly) ambiguity
averse (Figure 9). These numbers are lower than in the lab data. Now, using this classi�cation, we
look at the relationship between ambiguity aversion and e⇤. Unlike Figure 7BC, using lab data,
Figure 9A exhibits a decreasing relation between the two (there is a slight indication of re�ection
around e⇤ ⇡ 0.8, but it is not as strong as Figure 7BC). Combining these two observations, we
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F����� 9: (A) Probability of choosing a risky bet in each question in the standard-Ellsberg task in the panel
data. (B) LOESS curves relating e⇤ and ambiguity attitude.

can see that subjects with small e⇤ (close to SEU) are not necessarily less ambiguity averse in the
standard Ellsberg task.

Sociodemographic correlation. One of the great advantages of using the UAS survey is that
registered researchers can access datasets from past surveys, and use subject responses in related
surveys and experiments. In particular, we use basic demographic information collected through
the survey, as well as measures of cognitive ability, �nancial literacy, and other behavioral data
from relevant experiments.18

We estimated a linear model
�

i

=X
i

� + �
i

,

where the dependent variable�
i

is subject i’s value of e⇤ or downward-sloping demand measured
by correlation �

dsd between log (p2/p1) and log (x2/x1), and X
i

is a vector of sociodemographic
characteristics. These explanatory variables include: age group (omitted category is “20-39 years
old”), above-median �nancial literacy (measured in UAS modules #1 and #6; omitted category
is “below-median score”), cognitive ability measured with CRT (omitted category is “score is 0”),
education level (omitted category is “high school or less”), annual income group (omitted category
is “less than $25,000”), gender, and employment status. The model is estimated by OLS with
robust standard errors. We also estimate logistic regressions where the dependent variable �

i

is
monotonicity of allocation with respect to event structure (= 1 if monotonicity is violated with
a margin of �ve tokens) and ambiguity attitude in the sense of standard Ellsberg (= 1 if choices

18The cognitive ability measure is taken from survey module #1. Two �nancial literacy measures are taken from
modules #1 and #6, which asked both the basic and sophisticated �nancial literacy questions in Lusardi and Mitchell
(2017). One caveat to this approach is the time lag between previous the surveys and ours. For example, the �rst
survey module #1 was administered in May 2014.
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indicate weak ambiguity aversion).
Regression results are presented in the �rst two columns of Table 7. First, there is no e�ect

of age on e⇤. Cognitive ability measured with CRT is negatively associated but the e�ect is not
strong. The �nancial literacy variable measured in UAS module #6 is negatively correlated with
e⇤ (i.e., subjects with higher �nancial literacy are closer to SEU). Subjects in higher income brack-
ets have larger e⇤ (i.e., further away from SEU), compared to those in the lowest bracket in our
sample. Educational background has an e�ect in the expected direction, but only in the cate-
gory “associate or professional degree,” not in “college or post-graduate degree.”19 Demographic
characteristics do not capture variation in the compliance with the downward-sloping demand
property (column 2), but the similar e�ect of income is observed. Other two measures, violation
of monotonicity with respect to event structure and ambiguity attitude in the sense of Ellsberg,
also exhibit non-signi�cant association with demographic characteristics (except that high CRT
score subjects tend to be ambiguity averse compared to low CRT score counterpart).

3.3 Comparing the Lab and the Panel

Finally, we compare the distribution of e⇤ in the lab and panel data. We can make this comparison
because the same set of prices was used in the two experiments. Budgets were very di�erent, but
e⇤ is about relative prices and not about budgets (in contrast with CCEI; see Echenique et al.
(2018) for details). It is evident from Figure 10 that there is no di�erence in distributions. As a
basic check to compare that subjects’ decisions are at least di�erent than what random choices
would o�er, we compared the observed distributions to what purely random choices would give
rise to: the two distributions are signi�cantly di�erent from the distribution of e⇤ when simulated
subjects make uniformly random choices.

4 Conclusion

Motivated by recent theoretical advances that provide revealed-preference characterizations of
expected utility theory, we design and implement a novel experimental test of the theory. We
�nd that subjects are mostly consistent with utility maximization, and respond to price changes
in the expected direction: they satisfy the downward-sloping demand property, at least to some
degree, but not enough to make their choices consistent with SEU. Our �ndings are the same,

19In contrast to these observations, Echenique et al. (2018) �nd that older subjects have larger e⇤ for OEU (i.e.,
further away from OEU, not SEU) than younger subjects; a robust �nding in the sense that it holds across data from
three di�erent panel surveys (Choi et al., 2014; Carvalho et al., 2016; Carvalho and Silverman, 2019).
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T���� 7: Relation between demographic characteristics and measures for several aspects of behavior in
the experiment.

OLS logistic

(1) (2) (3) (4)
Dependent variable e⇤ �

dsd Violate mon. Weak AA

Treatment: Large 0.016 0.055 0.003 0.182
(0.034) (0.036) (0.233) (0.198)

Age: 40-59 �0.012 �0.008 �0.109 �0.134
(0.045) (0.049) (0.316) (0.263)

Age: 60+ 0.026 �0.041 0.365 �0.249
(0.048) (0.052) (0.319) (0.288)

Financial literacy (UAS #1): High 0.034 0.033 �0.291 0.307
(0.043) (0.043) (0.263) (0.250)

Financial literacy (UAS #6): High �0.106⇤⇤ �0.054 0.067 0.204
(0.041) (0.041) (0.268) (0.247)

CRT score (UAS #1): 1 �0.013 �0.031 �0.362 0.436
(0.040) (0.041) (0.264) (0.232)

CRT score (UAS #1): 2+ �0.059 �0.029 �0.609 0.711⇤

(0.051) (0.053) (0.362) (0.286)
Education: Some college 0.046 �0.000 0.142 �0.070

(0.053) (0.059) (0.342) (0.331)
Education: Assoc. or pro. degree �0.107⇤ �0.095 �0.167 �0.026

(0.054) (0.059) (0.374) (0.324)
Education: College or postgrad �0.015 �0.050 �0.478 0.574

(0.050) (0.055) (0.346) (0.299)
Income: 25,000-49,999 0.109 0.096 �0.055 0.470

(0.059) (0.059) (0.368) (0.335)
Income: 50,000-74,999 0.184⇤⇤ 0.122⇤ 0.635 0.071

(0.058) (0.059) (0.374) (0.353)
Income: 75,000-149,999 0.155⇤⇤ 0.142⇤ �0.112 0.226

(0.060) (0.061) (0.414) (0.349)
Income: 150,000+ 0.124 0.187 �0.087 0.675

(0.085) (0.101) (0.614) (0.484)
Male �0.062 �0.019 �0.130 0.277

(0.036) (0.036) (0.247) (0.210)
Working 0.024 �0.005 �0.311 �0.309

(0.040) (0.043) (0.299) (0.250)
Constant 0.838⇤⇤⇤ �0.302⇤⇤⇤ �0.779 �1.237⇤⇤

(0.070) (0.075) (0.431) (0.430)

Observations 490 490 490 490
R

2 0.070 0.033
Adjusted R2 0.039 0.001
Log likelihood -239.470 -309.069

Note: Robust standard errors are presented in parentheses. ⇤p < 0.05; ⇤⇤p < 0.01; ⇤⇤⇤p < 0.001.
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F����� 10: Comparing distributions of e⇤ from the panel study and the lab study.

regardless of whether we look at lab or panel data. In fact, there is a striking similarity in how
SEU is violated across the two studies. The subject populations are very di�erent, but look very
similar in terms of the distribution of the degree of violation of SEU.

Motivated by the literature on ambiguity aversion, we study the possibility that violations
of SEU are due to ambiguity aversion, and look at whether maxmin expected utility (MEU) can
explain the data. MEU adds no explanatory power to SEU: with a single exception, all subjects
who fail to satisfy SEU also fail MEU. It is possible that other models of ambiguity aversion could
do a better job of accounting for our experimental data. We are restricted to MEU because it is
the only model for which there exists nonparametric tests of the kind that we use in our paper;
it is also arguably the best known, and most widely applied, model in the ambiguity literature.
The testable implications of other models of ambiguity-averse choice is an interesting direction
for future research.

Finally, the results in our experiments are markedly una�ected by some of the demographic
characteristics that other studies (on risky choice, not uncertain) have found signi�cant. Older
subjects do not seem to violate SEU to a larger degree than younger subjects. Neither do we
see higher degrees of SEU violations in our broad sample of the US population, compared to our
laboratory experiment conducted on undergraduate students. There are modest e�ects of income
and education. Financial literacy is correlated with subjects’ distance to SEU.

There is no doubt that further studies are necessary to fully understand the behavior in en-
vironments that are more “natural” than traditional arti�cial Ellsberg-style settings. Our non-
parametric revealed preference tests and the empirical approach driven by these theories should
hopefully be a useful tool to collect more evidence in this direction.
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A Theoretical Background

Let S be a �nite set of states. We occasionally use S to denote the number |S | of states. Let
�++ = {µ 2 RS

++ :
ÕS

s=1 µs = 1} denote the set of strictly positive probability measures on S . In
the models we consider below, the objects of choice are state-contingent monetary payo�s, or
monetary acts, which is a vector in RS

+.
A dataset is a �nite collection (pk ,xk)K

k=1, where each p
k 2 RS

++ is a vector of strictly positive
(Arrow-Debreu) prices, and each xk 2 RS

+ is a monetary act. The interpretation of a dataset is
that each pair (pk ,xk) consists of a monetary act xk chosen from the budget B(pk ,pk · xk) = {x 2
RS
+ : pk · x  pk · xk} of a�ordable acts. We now introduce several concepts of rationalization of

the dataset.
Following Echenique and Saito (2015), we say that a dataset (pk ,xk)K

k=1 is subjective expected
utility (SEU) rational if there is µ 2 �++ and a concave and strictly increasing functionu : R+ ! R
such that, for all k ,

� 2 B(pk ,pk · xk) =)
’
s2S

µsu(�s) 
’
s2S

µsu(xks ).

Similarly, following Chambers et al. (2016), we say that a dataset (pk ,xk)K
k=1 is maxmin ex-

pected utility (MEU) rational if there is a convex set � ✓ �++ and a concave and strictly increasing
function u : R+ ! R such that, for all k ,

� 2 B(pk ,pk · xk) =) inf
�2�

’
s2S

�su(�s)  inf
�2�

’
s2S

�su(xks ).

When imposed on a dataset, expected utility maximization may be too demanding. In order to
capture situationswhere themodel holds approximately, Echenique et al. (2018) relax the previous
de�nition of SEU rationality by “perturbing” some elements of the model.

Let e 2 R+. A dataset (xk ,pk)K
k=1 is e-belief-perturbed SEU rational if there exist µk 2 �++ for

each k 2 K and a concave and strictly increasing function u : R+ ! R such that, for all k ,

� 2 B(pk ,pk · xk) =)
’
s2S

µks u(�s) 
’
s2S

µks u(xks ),

and for each k, l 2 K and s, t 2 S ,
µks /µkt
µls/µlt

 1 + e .

Echenique et al. (2018) introduce perturbation of prices and beliefs and show that three sources
of perturbations are equivalent. More precisely, for any e 2 R+, a dataset is e-perturbed rational-
izable according to one of the sources if and only if it is also rationalizable according to any of
the other sources with the same e .
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B Implementation

This section presents a method to implement the revealed preference tests.

B.1 Exact Revealed Preference Tests

We are able to check whether a given dataset is consistent with SEU or MEU by solving the linear
programming problem implied by the corresponding axiom. The construction of linear program-
ming problems closely follows the argument in the proofs of Theorems appeared in Echenique
and Saito (2015) and Chambers et al. (2016). For example, Echenique and Saito (2015) prove in
Lemma 7 that a dataset (xk ,pk)K

k=1 is SEU rational if and only if there are strictly positive numbers
�ks , �k , and µs for s = 1, . . . , S and k = 1, . . . ,K such that

µs�
k
s = �kpks , xks > xk

0
s 0 ) �ks  �k

0
s 0 ,

or equivalently, in a log-linearlized form,

log�ks + log µs � log �k � logpks = 0, xks > xk
0

s 0 ) log�ks  log�k
0

s 0 .

In this way, testing SEU rationality boils down to checking for existence of a solution to the
above system, which is expressed as a system of linear equalities and inequalities:

8>>>><
>>>>:

A · z = 0

B · z � 0

E · z > 0

.

A system of linear inequalities. We now construct three key ingredients of the system, ma-
trices A, B, and E for testing SEU.

The �rst matrix A has K ⇥ S rows and K ⇥ S + S + K + 1 columns, de�ned as follows: We
have one row for every pair (k, s); one column for every pair (k, s); one column for every s , one
column for each k ; and one last column. In the row corresponding to (k, s) the matrix has zeroes
everywhere with the following exceptions: it has a 1 in the column for (k, s); it has a 1 in the
column for s; it has a �1 in the column for k ; and � logpks in the very last column. This �nalizes

3



the construction of A. The resulting matrix looks as follows:

2666666666664

(1,1) ··· (k,s) ··· (K ,S) 1 ··· s ··· S 1 ··· k ··· K p

(1,1) 1 · · · 0 · · · 0 1 · · · 0 · · · 0 �1 · · · 0 · · · 0 � logp11
...

...
...

...
...

...
...

...
...

...
...

(k,s) 0 · · · 1 · · · 0 0 · · · 1 · · · 0 0 · · · �1 · · · 0 � logpks
...

...
...

...
...

...
...

...
...

...
...

(K ,S) 0 · · · 0 · · · 1 0 · · · 0 · · · 1 0 · · · 0 · · · �1 � logpKS

3777777777775

.

Next, we construct matrix B that has K ⇥S +S +K + 1 columns and there is one row for every
pair (k, s) and (k0, s0) for which xks > xk

0
s 0 . In the row corresponding to xks > xk

0
s 0 we have zeroes

everywhere with the exception of a �1 in the column for (k, s) and a 1 in the column for (k0, s0).
Finally, we prepare a matrix that captures the requirement that the last component of a so-

lution be strictly positive. The matrix E has a single row and K ⇥ S + S + K + 1 columns. It has
zeroes everywhere except for 1 in the last column.

In order to test MEU, we need to modify matrices A, B, and E appropriately, following char-
acterization provided by Chambers et al. (2016), for the case of two states of the world. Let
K0 = {k : xk1 = xk2 }, K1 = {k : xk1 < xk2 } and K2 = {k : xk1 > xk2 }. The �rst-order conditions are:

µks�
k
s = �kpks ,

for s = 1, 2 and k 2 {1, . . . ,K}, where µk1 = µ̄1 if k 2 K1, µk1 = µ
1
if k 2 K2, µk1 2 [µ

1
, µ̄1] if k 2 K0.

We now use � = µ1/µ2 instead of µ1. Then we can rewrite the �rst-order conditions:

�k�k1 = �kpk1 and �k2 = �kpk2 ,

for k 2 {1, . . . ,K}, where �k = �̄ if k 2 K1, �k = � if k 2 K2, �k 2 [� , �̄ ] if k 2 K0.
Let A be a matrix with 2K + 2 + |K0 | + K + 1 columns. The �rst 2K columns are labeled with

a di�erent pair (k, s). The next two columns are labeled �̄ and � . The next |K0 | columns are for
choices on the 45-degree line. The next K columns are labeled with k . Finally the last column is
labeled p.

For each (k, 2),A has a row with all zero entries with the following exception: It has a 1 in the
column labeled (k, 2); It has a �1 in the column labeled k ; It has � logpks in the column labeled
p. For each (k, 1) with k 2 K1, A has a row with all zero entries with the following exception:
It has a 1 in the column labeled (k, 1); It has a �1 in the column labeled k ; it has � logpks in the
column labeled p; It has a 1 in the column labeled �̄ . For each (k, 1) with k 2 K2 [ K0, A has a
row de�ned as above. The only di�erence is that it has a 1 in the column labeled � if k 2 K2 and
in the column labeled �k if k 2 K0, instead of having a 1 in the column labeled �̄ .
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The resulting matrix A looks as follows:

266666666666664

(1,1) ··· (k,s) ··· (K ,S) �̄ � �k ··· 1 ··· k ··· K p

...
...

...
...

...
...
...

...
...

...
...

(k,s)2(K ,2) 0 · · · 1 · · · 0 0 0 0 · · · 0 · · · �1 · · · 0 � logpks
(k,s)2(K1,1) 0 · · · 1 · · · 0 1 0 0 · · · 0 · · · �1 · · · 0 � logpks
(k,s)2(K2,1) 0 · · · 1 · · · 0 0 1 0 · · · 0 · · · �1 · · · 0 � logpks
(k,s)2(K0,1) 0 · · · 1 · · · 0 0 0 1 · · · 0 · · · �1 · · · 0 � logpks
...

...
...

...
...
...
...

...
...

...
...

377777777777775

.

Let B be a matrix with the same number of columns as A. The columns of B are labeled like
those of A. B has a row for each pair (xks ,xk

0
s 0 ) with xks > xk

0
s 0 . The row for xks > xk

0
s 0 has all zeroes

except for a 1 in column (k0, s0) and a �1 in column (k, s). Finally, B has a row which has a 1 in
the column for �̄ and a �1 in the column for � and 2|K0 | additional rows to capture �k 2 [� , �̄ ]
for k 2 K0. The resulting matrix B looks as follows:

266666666666664

(1,1) ··· (k,s) ··· (k 0,s 0) ··· (K ,S) �̄ � �k ··· 1 ··· k ··· K p

...
...

...
...

...
...
...
...

...
...

...
...

xks >x
k 0
s 0 0 · · · �1 · · · 1 · · · 0 0 0 0 · · · 0 · · · 0 · · · 0 0
...

...
...

...
...

...
...
... · · · ...

...
...

...

�̄�� 0 · · · 0 · · · 0 · · · 0 1 �1 0 · · · 0 · · · 0 · · · 0 0
�k�� 0 · · · 0 · · · 0 · · · 0 0 �1 1 · · · 0 · · · 0 · · · 0 0
�k�̄ 0 · · · 0 · · · 0 · · · 0 1 0 �1 · · · 0 · · · 0 · · · 0 0

377777777777775

.

Solve the system. Our task is to check if there is a vector z that solves the following system
of linear inequalities corresponding to model M 2 {SEU,MEU}. If there is a solution z to this
system, we say that the dataset is “M rational.”

Extension. There are three underlying states of the world, S = {�1,�2,�3} in the experiments.
There are two types of questions: in type 1 questions, two events are s1 = {�1} and s23 = {�2,�3};
in type 2 questions, two events are s12 = {�1,�2} and s3 = {�3}. Let S1 = {s1, s23} denote the
set of events in type 1 questions and S2 = {s12, s3} denote the set of events in type 2 questions.
Suppose we have K observations in the data (xk ,pk)K

k=1. Let k1 2 K1 and k2 2 K2 denote indices
for type 1 and type 2 questions, respectively (thus K = K1 [ K2). Note that there is no type 1
question with state s1. Therefore, indices for observations (k) and states (s) need to be consistent,
i.e., (k, s) 2 Ki ⇥ Si for each i = 1, 2.

In order to test SEU in this environment, we use the following proposition.
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Proposition B.1. There exist strictly positive numbers µ1, µ23, µ12, µ3, �k11 , �k223, �
k1
12, �

k1
3 , �k1, �k2

such that

µ1�
k1
1 = �k2pk11 for each k1, (FOC1)

µ23�
k1
23 = �k2pk123 for each k1, (FOC2)

µ12�
k2
12 = �k1pk212 for each k2, (FOC3)

µ3�
k2
3 = �k1pk23 for each k2, (FOC4)

µ12 + µ3 = 1, (NO1)

µ1 + µ23 = 1, (NO2)

µ12 � µ1, (MO1)

µ23 � µ3, (MO2)

µ12 � µ1 = µ23 � µ3. (EQ)

if and only if there exist strictly positive numbers µ̃23, µ̃12, �k11 , �k223, �
k2
12, �

k2
3 , �̃k1, �̃k2 such that

�k11 = �̃k1pk11 for each k1, (FOC10)

µ̃23�
k1
23 = �̃k1pk123 for each k1, (FOC20)

µ̃12�
k2
12 = �̃k2pk212 for each k2, (FOC30)

�k23 = �̃k2pk23 for each k2, (FOC40)

µ̃23µ̃12 � 1. (MO10)

Proof. De�ne µ1 = 1/(1 + µ̃23), µ23 = µ̃23/(1 + µ̃23), µ12 = µ̃12/(1 + µ̃12), µ3 = 1/(1 + µ̃12), �k1 =
�̃k1/(1+ µ̃23), and �k2 = �̃k2/(1+ µ̃12). Then, conditions FOC1-FOC1 are equivalent to FOC10-FOC40
since, for example,

µ12�
k2
12 = �k2pk212 () µ̃12

1 + µ̃12
�k212 =

�̃k2

1 + µ̃12
pk212 () µ̃12�

k2
12 = �̃k2pk212.

Condition MO1 is equivalent to MO10 since

µ12 � µ1 () µ̃12
1 + µ̃12

� 1
1 + µ̃23

() µ̃12 + µ̃12µ̃23 � 1 + µ̃12 () µ̃12µ̃23 � 1,

and similarly MO2 is equivalent to MO10. Condition EQ is satis�ed since

µ12 � µ1 =
µ̃12

1 + µ̃12
� 1
1 + µ̃23

=
µ̃12µ̃23 � 1

(1 + µ̃12)(1 + µ̃23)
=

µ̃23
1 + µ̃23

� 1
1 + µ̃12

= µ23 � µ3.

⇤
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In order to implement the test, we �rst assemble matrices A (capturing � , µ, and �; equality
constraints in the linear programming problem) and B (capturing concavity ofu; weak inequality
constraints). The above proposition has two implications: (i) We need to �nd only two strictly
positive numbers capturing subjective beliefs, µ̃23 and µ̃12, instead of four numbers µ1, µ23, µ12,
and µ3. (ii) We need to add one row in B to take care of additional weak inequality constraint
µ̃23µ̃12 � 1 (or equivalently, log µ̃23 + log µ̃12 � 0).

Let us now consider MEU. Suppose that in the �rst m1 observations we have a partition
{{�1}, {�2,�3}} (i.e., type 1 questions), and in the second m2 observations we have a partition
{{�1,�2}, {�3}} (i.e., type 2 questions).

• Partition 1: {{�1}, {�2,�3}}. Let O0 = {k : xk1 = xk23}, O1 = {k : xk1 < xk23} and O2 = {k :
xk1 > xk23}. Afriat inequalities are now:

�k�k1 = �kpk1 and �k23 = �kpk23,

for k 2 {1, . . . ,m1}, where �k = �̄ if k 2 O1, �k = � if k 2 O2, and �k 2 [� , �̄ ] if k 2 O0.

• Partition 2: {{�1,�2}, {�3}}. Let T 0 = {k : xk12 = xk3 }, T 1 = {k : xk12 < xk3 } and T 2 = {k :
xk12 > xk3 }. Afriat inequalities are now:

�k�k12 = �kpk12 and �k3 = �kpk3 ,

for k 2 {m1 + 1, . . . ,m1 +m2}, where �k = �̄ if k 2 T 1, �k = � if k 2 T 2, and �k 2 [� , �̄ ] if
k 2 T 0.

The unknowns are
� , �̄ ,�k ,�ks , �

k

for all k = 1, . . . ,m1, and s 2 {{�1}, {�2,�3}}, and

� , �̄ ,�k ,�ks , �
k

for all k =m1 + 1, . . . ,m1 +m2, s 2 {{�1,�2}, {�3}}. The system of inequalities are:

8>>>>>>>>>><
>>>>>>>>>>:

�k�k1 = �kpk1 if k 2 O0

�̄�k1 = �kpk1 if k 2 O1

��k1 = �kpk1 if k 2 O2

�k23 = �kpk23 if k 2 O0 [O1 [O2

�  �k  �̄ if k 2 O0 [O1 [O2

,

8>>>>>>>>>><
>>>>>>>>>>:

�k�k12 = �kpk12 if k 2 T 0

�̄�k12 = �kpk12 if k 2 T 1

��k12 = �kpk12 if k 2 T 2

�k3 = �kpk3 if k 2 T 0 [T 1 [T 2

�  �k  �̄ if k 2 T 0 [T 1 [T 2

7



and, in addition, the constraints �  �̄ , �  �̄ , �  � , and �̄  �̄ .
Note that this system of inequalities is linear after we take the log of each variable. In partic-

ular the constraint that �k 2 [� , �̄ ] is written as log (� )  log (�k)  log (�̄ ).

Proposition B.2. A solution to the previous Afriat inequalities gives a solution to the FOCs.

Proof. De�ne
µk1 = �

k/(1 + �k), µk23 = 1/(1 + �k)

if k = 1, . . . ,m1, and
µk

0
12 = �k 0/(1 + �k 0), µk

0
3 = 1/(1 + �k 0)

if k0 =m1 + 1, . . . ,m1 +m2. Then

1 = µk1 + µ
k
23 = µk

0
12 + µ

k 0
3 .

Observe that

(a) �  �̄ =) µ
1
 µ̄1.

(b) �  �̄ =) µ
12

 µ̄12.

(c) �  � =) µ
1
 µ

12
.

(d) �̄  �̄ =) µ̄1  µ̄12.

De�ne µ
2
= µ

12
� µ

1
. Note that µ

2
= µ̄23 � µ̄3 because

1 = µ
12
+ µ̄3 = µ

1
+ µ̄23 =) µ

12
� µ

1
= µ̄23 � µ̄3.

Note also that µ
2
� 0, as (c) implies that µ

12
� µ

1
. Similarly, if we de�ne µ̄2 = µ̄12 � µ̄1. Then

using (d) we obtain that
0  µ̄2 = µ

23
� µ

3
.

⇤

B.2 Approximate Revealed Preference Tests

Proposition B.3. Given e 2 R+, a dataset (xk ,pk)Kk=1 is e-price-perturbed SEU rational if and only
if there exist strictly positive numbers �ks , �k , µs , and �ks such that:

1. for all (k, s), (k0, s0) 2 [2
i=1(Ki ⇥ Si),

µs�
k
s = �k�ks p

k
s , xks > xk

0
s 0 =) �ks  �k

0
s 0 ,

8



2. for all i = 1, 2, ’
s2Si

µs = 1,

3. µ12 � µ1 and µ23 � µ3,

4. µ12 � µ1 = µ23 � µ3, and

5. for all k, l 2 K and s, t 2 S ,
�ks /�kt
�ls/�lt

 1 + e .

Proposition B.4. Given e 2 R+, a dataset (xk ,pk)Kk=1 is e-price-perturbed SEU rational if and only
if there exist strictly positive numbers �ks , �̃k , µ̃s , and �ks such that:

1. for all k1 2 K1,
�k11 = �̃k1�k11 p

k1
1 , and µ̃23�

k1
23 = �̃k1�k123p

k1
23, (e-FOC1)

2. for all k2 2 K2,
µ̃12�

k2
12 = �̃k2�k212p

k2
12 and �k23 = �̃k2�k23 p

k2
3 , (e-FOC2)

3. for all (k, s), (k0, s0) 2 [2
i=1(Ki ⇥ Si),

xks > xk
0

s 0 =) �ks  �k
0

s 0 , (e-CON)

4. µ̃23µ̃12 � 1 (e-MON), and

5. for all k, l 2 K and s, t 2 S ,
�ks /�kt
�ls/�lt

 1 + e .

De�nition B.1. Given a dataset (xk ,pk)K
k=1, minimal e for SEU, eSEU⇤ , is the solution to the fol-

lowing problem:

min
(µ̃s ,�ks ,�̃k ,�ks )k,s

max
k,l2K ,s,t2S

�ks /�kt
�ls/�lt

(F)

subject to (e-FOC1), (e-FOC2), (e-CON), and (e-MON).

Remark B.1. Notice that in the objective function of the problem (F),

�ks /�kt
�ls/�lt

,

two states s, t are �xed and observations k, l are di�erent. In our experimental setup, it means
that either k, l 2 K1 or k, l 2 K2.

9



Remark B.2. By log-linearizing and substituting equality constraints in the objective function
in the problem (F), we obtain

log

 
�ks /�kt
�ls/�lt

!
= log �ks � log �kt � log �ls + log �

l
t

= (log µ̃s + log�ks � log �k � logpks ) � (log µ̃t + log�kt � log �k � logpkt )
� (log µ̃s + log�ls � log �l � logpls) + (log µ̃t + log�lt � log �l � logplt )

= (log µ̃s + log�ks � logpks ) � (log µ̃t + log�kt � logpkt )
� (log µ̃s + log�ls � logpls) + (log µ̃t + log�lt � logplt )

= (log�ks � logpks ) � (log�kt � logpkt ) � (log�ls � logpls) + (log�lt � logplt ).

B.3 Probabilistic Sophistication

Machina and Schmeidler (1992) propose the most basic Bayesian model of decision under un-
certainty. An agent is probabilistically sophisticated if x 2 RS

+ is evaluated by the distribution it
induces given some prior µ 2 �++. Epstein (2000) shows the following.

Theorem B.1 (Epstein (2000)). If a dataset (xk ,pk)K
k=1 is probabilitsically sophisticated, then there

cannot exist k,k0 2 K and s, t 2 S such that

1. pkt � pks and pk 0s � pk
0

t , with at least one inequality being strict, and

2. xkt > xks and xk 0s > xk
0

t .
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C Additional Results

C.1 Lab Data
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F����� C.1: Empirical CDF of within-subject (Spearman’s) correlation between allocations in the market-
stock task and the market-Ellsberg task. The two distributions are not signi�cantly di�erent (two-sample
Kolmogorov-Smirnov test, p = 0.57).
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F����� C.2: Monotonicity of allocations with respect to event structures. (A) Empirical CDFs of token
allocation di�erence. The dotted line represents a 5-token margin. No two pairs of distributions is sig-
ni�cantly di�erent (two-sample Kolmogorov-Smirnov test). (B) Token allocations in two questions. The
dot-dashed lines at 46.67 indicate the number of tokens which equalizes payouts in two events.

11



0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5
Downward−sloping demand

C
D

F

Large
Small
Ellsberg

A

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5

C
D

F

Type 1
Type 2

B

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5
Downward−sloping demand

C
D

F

Type 1
Type 2

D

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5

Ty
pe

 2

C

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5
Type 1

Ty
pe

 2

E

F����� C.3: Downward-sloping demand at the individual level (measured by �dsd). (A) Comparison across
tasks. (BC) market-stock. (DE) Market-Ellsberg.
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F����� C.4: Relation between the degree of conformity to downward-sloping demand and e⇤. Note: We
�rst calculate Spearman’s correlation coe�cient for each type of problem and then take the maximum as
a conservative measure of compliance with the downward-sloping demand property. Gray lines represent
LOESS curves together with con�dence bands.
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F����� C.5: Relation between the degree of conformity to downward-sloping demand (measured by �dsd)
and e⇤. (AB) the market-stock task, (CD) the market-Ellsberg task, (B1, D1) type 1 questions, (B2, D2)
type 2 questions. Note: Correlation coe�cient �dsd in panels A and C are �rst calculated for each type
of problem and then aggregated by Fisher’s z-transformation (r̄ = tanh(Õn

i=1 tanh
�1(ri )/n)). Gray lines

represent LOESS curves together with con�dence bands.
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and CCEI: (AB) the market-stock task, (CD) the market-Ellsberg task, (B1, D1) type 1 questions, (B2, D2)
type 2 questions.
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F����� C.7: Cognitive Re�ection Test score and e⇤.
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T���� C.1: Pass rates.

GARP SEU MEU PS

Task Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint

Market-stock 0.7638 0.6850 0.5827 0.0472 0.0158 0.0000 0.0472 0.0158 0.0000 0.7323 0.8110 0.4803
Market-Ellsberg 0.8268 0.5650 0.6693 0.0787 0.0315 0.0157 0.0787 0.0315 0.0157 0.8110 0.8346 0.6220

Note: A subject satis�es GARP “jointly” if the subject passes GARP for both types. A subject is not inconsistent with
PS “jointly” if the subject is not inconsistent with PS in the sense of Epstein for both types, and satis�es monotonic-
ity of allocation with respect to event structure. Since Epstein’s (2000) condition is only necessary for probabilistic
sophistication, the numbers reported here capture the fraction of the subjects who are not inconsistent with proba-
bilistic sophistication.
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T���� C.2: E�ect of cognitive ability on e⇤.

(1) (2)

market-Ellsberg �0.175⇤⇤ �0.154⇤⇤
(0.057) (0.067)

Score 1 �0.084 �0.083
(0.067) (0.063)

Score 2 �0.099 �0.093
(0.066) (0.064)

Score 3 �0.324⇤⇤ �0.326⇤⇤
(0.096) (0.099)

market-Ellsberg ⇥ Score 1 0.156⇤ 0.156⇤

(0.076) (0.075)
market-Ellsberg ⇥ Score 2 0.081 0.080

(0.073) (0.074)
market-Ellsberg ⇥ Score 3 0.140 0.146

(0.114) (0.118)
Treatment: Small 0.045

(0.077)
Gender: Male �0.028

(0.098)
Constant 0.952⇤⇤ 0.939⇤⇤

(0.048) (0.067)

R2 0.0798 0.0826
# observations 254 254
# clusters 7 7

Note: Standard errors in parentheses are clustered at the session level. Signi�cance levels: ⇤p < 0.05; ⇤⇤p < 0.01.
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C.2 Panel Data
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F����� C.8: Monotonicity of allocations with respect to event structure. (A) Empirical CDFs of token
allocation di�erence. The dotted line represents a 5-token margin. No two pairs of distributions are sig-
ni�cantly di�erent (two-sample Kolmogorov-Smirnov test). (B) Token allocations in two questions. The
dot-dashed lines at 46.67 indicate the number of tokens which equalizes payouts in two events.
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F����� C.9: Downward-sloping demand at the individual level (measured by �dsd).
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F����� C.10: Relation between the degree of conformity to downward-sloping demand and e⇤ (A) and
CCEI (B). Note: We �rst calculate Spearman’s correlation coe�cient for each type of problem and then
take the maximum as a conservative measure of compliance with the downward-sloping demand property.
Gray lines represent LOESS curves together with con�dence bands.

T���� C.3: Pass rates.

GARP SEU MEU PS

Treatment N Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint

Large variance 245 0.6653 0.5918 0.4492 0.0653 0.0490 0.0122 0.0653 0.0490 0.0122 0.6776 0.8041 0.3945
Small variance 256 0.6523 0.6016 0.4367 0.0430 0.0430 0.0156 0.0430 0.0430 0.0195 0.6680 0.7813 0.3959

Combined 501 0.6587 0.5968 0.4431 0.0539 0.0459 0.0140 0.0539 0.0459 0.0160 0.6727 0.7924 0.3952

Note: A subject satis�es GARP “jointly” if the subject passes GARP for both types. A subject is not inconsistent with
PS “jointly” if the subject is not inconsistent with PS in the sense of Epstein for both types, and satis�es monotonic-
ity of allocation with respect to event structure. Since Epstein’s (2000) condition is only necessary for probabilistic
sophistication, the numbers reported here capture the fraction of the subjects who are not inconsistent with proba-
bilistic sophistication.
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C.3 Sample Comparison in the Panel Study
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F����� C.11: (Panel) Monotonicity of allocation with respect to event structure. (A) Empirical CDFs of
token allocation di�erence. The dotted line represents 5-token margin. Two-sample Kolmogorov-Smirnov
testp-values: Computer vs. Tablet,p = 0.116; Computer vs. Mobile,p = 0.044; Tablet vs. Mobile,p = 0.575.
(B) Token allocations in two questions. The dot-dashed lines at 46.67 indicate the number of tokens which
equalizes payouts in two events.
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F����� C.12: (Panel) Distribution of measures, by subjects using computer,tablet, or mobile.
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C.4 Power Calculation

It is well known that tests in revealed preference theory can have low power when used on
certain con�gurations of budget sets. As a result, it is common to assess the power of a test by
comparing the pass rates (the fraction of choices that pass the relevant revealed preference axiom)
of the observed choice data from some benchmark behavior such as purely random choices. 1

We assess the power of the tests using two kinds of data-generating process. In the �rst bench-
mark, we use the simple bootstrap procedure to look at the power from an ex-post perspective
(Andreoni and Miller, 2002). More precisely, for each budget set, we randomly pick one choice
from the set of choices observed in the experiment. We repeat this to generate 10,000 synthetic
choice data. In the second benchmark, we generate 10,000 datasets in which choices are made at
random and uniformly distributed on the frontier of the budget set (Method 1 of Bronars, 1987).
Table C.4 report pass rates. The simulated choices almost always violate SEU andMEU. Pass rates
for GARP test range from 0.23 to 0.68, depending on underlying data-generating process. These
numbers are higher than those reported in other studies (e.g., Choi et al., 2007, 2014), but given
that each type of problems has only 10 budgets, the con�guration of budgets in our design has
reasonable power to detect GARP violations.

T���� C.4: Pass rates under di�erent data generating process. Simulation sample size N = 10, 000.

GARP PS SEU MEU

Data-generating process Device Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint

The Lab
Bootstrap from Market-stock (Large) 0.4591 0.5577 0.2562 0.5762 0.8742 0.3913 0.0007 0.0001 0.0000 0.0011 0.0001 0.0000
Bootstrap from Market-stock (Small) 0.4769 0.4005 0.1934 0.6689 0.7269 0.4003 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000
Bootstrap from Market-Ellsberg 0.4712 0.5365 0.2560 0.7429 0.8373 0.5196 0.0002 0.0002 0.0000 0.0002 0.0004 0.0000

The Panel
Bootstrap from Market-stock (Large) All 0.3642 0.3162 0.1172 0.4894 0.7299 0.2545 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
Bootstrap from Market-stock (Small) All 0.3184 0.2842 0.0881 0.4857 0.7136 0.2521 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
Bootstrap from Market-stock (Large) Desktop/laptop 0.3940 0.3533 0.1389 0.4878 0.7319 0.2661 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000
Bootstrap from Market-stock (Small) Desktop/laptop 0.3314 0.2908 0.0967 0.5106 0.7245 0.2789 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000

Uniform random 0.2270 0.1440 0.0332 0.5002 0.5350 0.1925 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1The idea of using random choices as a benchmark is �rst applied to revealed preference theory by Bronars
(1987). This approach is the most popular in empirical application: see, among others, Andreoni and Miller (2002),
Fisman et al. (2007), Choi et al. (2007), Crawford (2010), Beatty and Crawford (2011), Adams et al. (2014), and Dean
and Martin (2016). For overview of power calculation, see discussion in Andreoni et al. (2013) and Crawford and
De Rock (2014).
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T���� C.5: CCEI and e⇤ calculated with randomly generated choice data. Simulation sample size N =

10, 000.

CCEI e⇤(SEU) e⇤(MEU)

Type 1 Type 2 Joint Type 1 Type 2 Joint Type 1 Type 2 Joint

Mean 0.9123 0.9194 0.8716 0.7761 0.8257 0.9777 0.7631 0.8257 0.9725
Median 0.9256 0.9436 0.8841 0.7340 0.9365 1.0166 0.7326 0.9365 1.0145
SD 0.0829 0.0817 0.0855 0.2583 0.2890 0.2035 0.2633 0.2890 0.2094
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D Design Detail

D.1 The Set of Budgets

T���� D.1: The set of 20 budgets. The numbers indicate “exchange value” for each account (z1, z2).

Lab Panel

Type Order Account 1 Account 2 Account 1 Account 2

1 1 random 0.30 0.18 3.0 1.8
2 1 random 0.30 0.24 3.0 2.4
3 1 random 0.38 0.30 3.8 3.0
4 1 random 0.40 0.40 4.0 4.0
5 1 random 0.50 0.12 5.0 1.2
6 1 random 0.50 0.24 5.0 2.4
7 1 random 0.50 0.34 5.0 3.4
8 1 random 0.50 0.44 5.0 4.4
9 1 random 0.60 0.30 6.0 3.0
10 1 �xed (5th) 0.32 0.28 3.2 2.8
11 2 random 0.14 0.50 1.4 5.0
12 2 random 0.24 0.50 2.4 5.0
13 2 random 0.28 0.32 2.8 3.2
14 2 random 0.30 0.36 3.0 3.6
15 2 random 0.30 0.42 3.0 4.2
16 2 random 0.30 0.56 3.0 5.6
17 2 random 0.38 0.52 3.8 5.2
18 2 random 0.40 0.50 4.0 5.0
19 2 random 0.50 0.56 5.0 5.6
20 2 �xed (6th) 0.32 0.28 3.2 2.8
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D.2 Simulated Price Paths for the Market-Stock Task

In order to simulate price paths, we use a Geometric Brownian Motion (GBM):

dSt = µStdt + �StdWt ,

whereWt is a Wiener process, µ is a drift parameter, and � is a volatility parameter. To simulate
trajectories of GBM, we calculate increments of S :

St+h = St ⇥ exp
⇣
(µ � � 2/2)h + �

p
hZ

⌘
,

with Z ⇠ N (0, 1).
As a �rst step, we generated N paths of GBM, where each path Pn = (Pn0 , Pn1 , . . . , PnT ) has

the common starting price P0 and T periods of prices. We then group these N paths into several
categories, based on several observable features: (i) absolute movement withinT periods; (ii) �nal
price is higher than the initial price; (iii) �nal price is lower than the initial price; (iv) trends such
as up-down, down-up, straight-gain, straight-loss, and cycle.

After visually inspecting the pattern of each price path, we handpicked 28 paths and then
asked workers on Amazon Mechanical Turk what they believed the future price of each path
would be. We used a “bins-and-balls” belief elicitation task (also known as a histogram elicitation
method) introduced by Delavande and Rohwedder (2008) to elicit subjective belief distribution.
The method, later re�ned by (Delavande et al., 2011) and Rothchild (2012), is simple and easy to
understand. It has been shown to work well in experiments conducted at developing countries
(Delavande et al., 2011) and online survey (Huck et al., 2016).

The idea of the task is as follows. First, the (continuous) state of the world (ranges of future
prices) is partitioned into 20 disjoint and exhaustive bins. Second, subjects are asked to place 20
“balls,” each representing 5% probability mass, into these bins. The subjects were then asked to
express how likely they believed that the price to be in each or the 20 ranges. Figure D.1 illustrates
the task.

The elicited belief distributions were then averaged across subjects. Some price paths, espe-
cially those with clear upward or downward trend, tend to be associated with skewed distribu-
tions. Others have more symmetric distributions. We thus selected two relatively “neutral” ones
from the latter set for the main experiment.
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F����� D.1: Illustration of the bins-and-balls belief elicitation task.
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D.3 Post-Experiment Survey in the Laboratory Study

Demographic information.

1. What is your age?

2. What is your gender?

3. What is your ethnicity?

4. What is your major?

Three-item cognitive re�ection test.

1. If it takes 5 people 5 months to save a total of $5,000, how many months would it take 100
people to save a total of $100,000?

2. A TV and a radio cost $110 in total. The TV costs $100 more than the radio. How much
does the radio cost?

3. In a lake, there is a patch of lily pads. Each day, the patch doubles in size. If it takes 48 days
for the patch to cover the entire lake, how long would it take for the patch to cover half of
the lake?
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E Instructions for the Experiments

Welcome!

Thank you for participating in today’s experiment.

Please turn o� all electronic devices, especially phones and tablets. During the experiment you
are not allowed to open or use any other applications on these laboratory computers, except for
the interface of the experiment.

This experiment is designed to study decision making. You will be paid for your participation
in cash privately at the end of the session. Please follow the instructions carefully and do not
hesitate to ask the experimenter any questions by raising your hand. The experimenter will then
come to your desk.

Structure of the experiment

The experiment consists of 3 tasks and a survey. We will hand out speci�c instructions for each
of the tasks just before you are to perform that task.

At the front of this laboratory you will see several opaque bags labeledA, B, and so on, which we
will use in some of the tasks during the experiment. Each of these bags contains colored chips.
The exact composition of chips in each bag (for example, how many of them are red) may or may
not be announced to you. If you wish, you can inspect these bags after completing all sections
of the experiment.

Payment

In order to determine the payment, one task and one question from that taskwill be randomly
selected. Your payo� in the experiment will consist of the amounts you earned in the selected
question plus a $10 show-up fee if you complete the experiment as announced. The speci�c rules
applied to determine payo�s for each section will be described in detail in the instructions for
that part.
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To select one task and one question that will determine your payment, the assistant rolled two
fair dice for each participant. The assistant wrote down two numbers, one indicating the task
and another indicating the question in that particular task that counts for payment. The note
was placed into a sealed envelope. Please write your participant ID on the envelope once you
receive it. Please do not open the envelope until you are instructed by the experimenter.

Remember that the question determining your payment is selected before youmake any decisions
in the experiment. This protocol of determining payments suggests that you should make a
decision in each question as if it is the question that determines your payment.

Important rules

In the experiment we use a web browser. It is important that you ...

1. do not close or refresh the browser,

2. do not open other windows/tabs on the browser,

3. do not exit the full screen mode, and

4. do not open other applications and programs.

If you exit the full screen mode, please click the button at the top right corner to enter the full
screen mode again.

Please raise your hand if you have any questions regarding the structure of the experiment.
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Task 1

Overview

In this part of the experiment, you will be asked a total of 20 independent questions that share a
common structure. Your goal is to invest tokens in two di�erent accounts. The accounts pay o�
according to the value of a stock.

There is a hypothetical company which we refer to as Company X. We simulated a history
of stock prices of this company using a model frequently used in �nancial economics. You will
be presented a chart plotting the history of Company X’s stock prices. The �gure below is an
illustration of such chart. Note that the price history presented in the image is meant to be an
example, and is not the same one as you will see in the task.
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Period
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e

The chart shows stock prices from period 1 to 300 (imagine that period 300 is “today”). You do
not know the movement beyond period 300, the area shaded in gray. Your payo� in this task
depends on the “future” value of Company X’s stock price at period 500, i.e., at the end of the
chart. More precisely, it depends on whether the �nal price lies in the Blue area (increase by more
than the threshold), Yellow area (change up to the threshold), or Red area (decrease by more than
the threshold). In this example, the threshold is set to 10%.

How it works

Now we will explain the task in detail.
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You will be asked a total of 20 independent questions. In each decision problem, you will be
endowed with 100 tokens and asked to choose the portion of this amount (between 0 and 100
tokens, inclusive and divisible) that you wish to allocate between two accounts. Tokens allocated
to each account may have di�erent monetary values. Your payo� in this task will be determined
by the following three components:

(i) the monetary value of tokens in each account, which is given in the question,

(ii) your allocation of tokens in each of the two accounts, and

(iii) in which colored area Company X’s stock price lies at period 500.

Two types of questions

There are two types of questions.

In Type 1 questions, two accounts are

Account Blue-or-Yellow : Stock price increases by a positive percentage
or decreases by at most 10%.

Account Red : Stock price decreases by more than 10%.

In Type 2 questions, two accounts are

Account Blue : Stock price increases by more than 10%.
Account Yellow-or-Red : Stock price decreases by any percentage

or increases at most 10%.

These two types of questions appear in random order. To understand the decision problem for
the given trial correctly, it would be of your best interest to check the type of the question (1 or 2)
on the right of the stock chart and also at the top of the “allocation table” which will be explained
below.
The “allocation table” at the bottom block of the screen shows information on the monetary
values of tokens. In the example of Type 1 question below, each token you allocate to the Blue-
or-Yellow account is worth $0.30 (30 cents), while each token you allocate to the Red account is
worth $0.25 (25 cents). Notice that monetary values of tokens may change across questions.
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(�) Example: Type 2 question

B Y R
Token value $0.30 $0.25
Tokens 75 25
Account value $22.50 $6.25

How to make a decision

You can allocate 100 tokens between two accounts using the slider. The table will be updated
instantly once you move the slider, showing current allocations of tokens and their implied pay-
ment amounts if the stock ends up in the corresponding color region. No cursor appears at the
start of the experiment—you need to click anywhere on the slider line to activate it.

Alternatively, you can allocate tokens by directly putting numbers in one of the boxes, or clicking
up/down arrow (which appears when you mouse-over the box) to make small adjustments.

How your payo� for this task is determined

Your payo� is determined by the number of tokens in your two accounts, and the “future” value
of stock X at the end of the chart (period 500), which will be simulated after you complete all
questions.

Suppose you allocated 75 tokens to account Blue-or-Yellow and 25 tokens to account Red as in
the above example. If this question has been chosen to determine your payo�, your payo� will
be determined by the price of company X’s stock in period 500. If stock X hits blue or yellow
area at period 500 (as in panel (a) below), then you will earn 75 ⇥ $0.30 = $22.50 (22 dollars 50
cents). On the other hand, if stock X hits red area (as in panel (b) below), then you will earn
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25 ⇥ $0.25 = $6.25 (6 dollars 25 cents). Amount below one cent will be rounded up.
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(�) Example: Stock price hits Blue area
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(�) Example: Stock price hits Red area

Important

• The history of stock prices of Company X up to period 300 (“today”) is the same throughout
this task.

• You will not know “future” prices (between period 301 and period 500) until you complete
all tasks in the experiment.

• Token values and question types can vary between questions.

• Once you hit the Proceed button, you cannot change your decision. You cannot go back
to previous pages, either. Note also that you cannot change the question by refreshing the
browser once it is displayed.

• Remember that the question that will determine your payment has already been selected
at the start of the experiment. It is your best interest to treat each question as if it is the
question that determines you payment.

Hypothetical Stock Market

Aswementioned before, we simulated a history of stock prices of this company using amodel fre-
quently used in �nancial economics. The following chart illustrates eight such simulated stocks
in our “hypothetical stock market”.



Let’s imagine that we are at period 300 (“today”) and we do not know the “future” stock prices
(periods 301 to 500).

The black solid line represents the price history of our Company X. You will see ONLY this price
history during this task.
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Task 2

Overview

In this part of the experiment, you will be asked a total of 20 independent questions that share a
common structure. Your goal is to invest tokens in two di�erent accounts. The accounts pay o�
according to the color of a chip drawn from a bag at the end of the experiment.

There is an opaque bag Z which contains 30 colored chips. Each chip is either Blue, Yellow, or
Red. The number of chips of each color is unknown to you: There can be anywhere from 0 to 30
Blue chips, anywhere from 0 to 30 Yellow chips, and anywhere from 0 to 30 Red chips, as long as
the total number of Blue, Yellow, and Red chips sums to 30. Your payo� in this task depends on
the color of a chip you will draw at the end of the experiment.

⇥?
⇥?
⇥?

Bag Z: Total 30 chips

The contents of bag Z has already been determined by an assistant at the beginning of the exper-
iment. If you wish, you can inspect the contents of the bag after completing the experiment.

How it works

Now we will explain the task in detail.

You will be asked a total of 20 independent questions. In each decision problem, you will be
endowed with 100 tokens and asked to choose the portion of this amount (between 0 and 100
tokens, inclusive and divisible) that you wish to allocate between two accounts. Tokens allocated
to each account may have di�erent monetary values. Your payo� in this task will be determined
by the following three components:

(i) the monetary value of tokens in each account,

(ii) your allocation of tokens in each of the two accounts, and

(iii) the color of the chip you will draw from the bag at the end of the experiment.
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Two types of questions

There are two types of questions.

In Type 1 questions, two accounts are

Account Blue-or-Yellow : The color of chip drawn from the bag is either Blue or Yellow.
Account Red : The color of chip drawn from the bag is Red.

In Type 2 questions, two accounts are

Account Blue : The color of chip drawn from the bag is Blue.
Account Yellow-or-Red : The color of chip drawn from the bag is either Yellow or Red.

These two types of questions appear in random order. To understand the decision problem for
the given trial correctly, it would be of your best interest to check the account structure at the
top of the “allocation table” which will be explained below.

The “allocation table” at the bottom block of the screen shows information on the monetary
values of tokens. In the example of Type 2 question below, each token you allocate to the Blue
account is worth $0.36 (36 cents), while each token you allocate to the Yellow-or-Red account
is worth $0.24 (24 cents). Notice that monetary values of tokens may change across questions.

B Y R
Token value $0.36 $0.24
Token 30 70
Account value $10.80 $16.80

How to make a decision

You can allocate 100 tokens between two accounts using the slider. The table will be updated
instantly once you move the slider, showing current allocations of tokens and their implied pay-
ment amounts. No cursor appears at the start of the experiment—you need to click anywhere on
the slider line to activate it.

Alternatively, you can allocate tokens by directly putting numbers in one of the boxes, or clicking
up/down arrow (which appears when you mouse-over the box) to make small adjustments.
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How your payo� for this task is determined

Your payo� is determined by the number of tokens in your two accounts, and the color of a chip
you will draw from the bag at the end of the experiment.

Suppose you allocated 30 tokens to account Blue and 70 tokens to account Yellow-or-Red as in
the above example. If this question has been chosen to determine your payo�, your payo� will
be determined by the color of a chip you will draw at the end of the experiment. If it is Blue,
then you will earn 30 ⇥ $0.36 = $10.80 (10 dollars 80 cents). On the other hand, if it is Yellow or
Red, then you will earn 70 ⇥ $0.24 = $16.80 (16 dollars 80 cents). Amount below one cent will be
rounded up.

Important

• The composition of the bag (how many chips are blue, yellow, or red) is the same through-
out this task.

• You will not know the actual composition until you complete all tasks in the experiment.

• Token values and question types can vary between questions.

• Once you hit the Proceed button, you cannot change your decision. You cannot go back
to previous pages, either. Note also that you cannot change the question by refreshing the
browser once it is displayed.

• Remember that the question that will determine your payment has already been selected
at the start of the experiment. It is your best interest to treat each question as if it is the
only question that determines you payment.
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Task 3

There are two bags, bag A and bag B, each of which contains 30 chips. Each chip is either orange
or green. The contents of each bag is as follows:

• Bag A contains 10 orange chips and 10 green chips.

• Bag B contains 20 chips. Each chip is either orange or green. The number of chips of each
color is unknown to you: There can be anywhere from 0 to 20 orange chips, and anywhere
from 0 to 20 green chips, as long as the total number of orange and green chips sums to 20.

⇥10
⇥10

Bag A: Total 20 chips

⇥?
⇥?

Bag B: Total 20 chips

The contents of bag B has already been determined at the beginning of the experiment. If you
wish, you can inspect the contents of each bag after completing the experiment.

You will now answer several questions, each of which o�ers you a choice between bets on the
color of a chip that you will draw from one of two bags at the end of the experiment (if this sec-
tion is chosen for payment).
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You will �rst be asked to choose one of the two colors. We will call this Your Color. You will be
paid only if a chip of this color is drawn from the bag at the end of the experiment.

You will then be asked to answer the following three questions.

• Question: Please select a bet

1. $10.50 if a chip drawn from bag A is of Your Color and $0 otherwise.

2. $10.00 if a chip drawn from bag B is of Your Color and $0 otherwise.

• Question: Please select a bet

1. $10.00 if a chip drawn from bag A is of Your Color and $0 otherwise.

2. $10.00 if a chip drawn from bag B is of Your Color and $0 otherwise.

• Question: Please select a bet

1. $10.00 if a chip drawn from bag A is of Your Color and $0 otherwise.

2. $10.50 if a chip drawn from bag B is of Your Color and $0 otherwise.

How your payo� for this section is determined

Suppose one of the three questions in this section is selected for determining your payment. If
you chose bet 1 in that particular question, you will draw a chip from bag A. On the other hand,
if you chose bet 2 in that particular question, you will draw a chip from bag B. In either case, you
will get payment if the color of the drawn chip matches with Your Color.

How to make a decision

You will see four questions on the screen. The �rst one asks which color you want to use as Your
Color and the following three questions ask which bet you would like to play.

For each question, you can make your selection by clicking on the check box for the option you
would like to choose. You can change your selection as many times as you want, and there is
no time limit. Once you make your selections for all three questions, you can submit them by
clicking Proceed. You will not be able to change your decision after that.
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